Science.gov

Sample records for a-plane gan films

  1. Current mapping of nonpolar a-plane and polar c-plane GaN films by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Shengrui; Jiang, Teng; Lin, Zhiyu; Zhao, Ying; Yang, Linan; Zhang, Jincheng; Li, Peixian; Hao, Yue

    2016-10-01

    Nonpolar (11-20) a-plane GaN and polar (0001) c-plane GaN films have been grown by metal organic chemical vapor deposition on r-plane (1-102) and c-plane (0001) sapphire substrates, respectively. Conductive atomic force microscopy (C-AFM) has been used to investigate the local conductivity of the films. C-AFM shows enhanced current conduction within the etch pits of c-plane GaN and triangular pits of a-plane GaN. The results indicate that the off-axis planes are more electrically active than c-plane and a-plane. Surprisingly, the C-AFM values in triangular pit of the a-plane GaN are much smaller than that in etch pits of the c-plane GaN. The dislocations type related current leakage mechanism is revealed for polar c-plane and nonpolar a-plane GaN films.

  2. Lattice distortion analysis of nonpolar a-plane $(11bar 20)$ GaN films by using a grazing-incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Seo, Yong Gon; Kim, Jihoon; Hwang, Sung-Min; Kim, Jihyun; Jang, Soohwan; Kim, Heesan; Baik, Kwang Hyeon

    2015-02-01

    This work examines the anisotropic microstructure and the lattice distortions of nonpolar a-plane GaN ( a-GaN) films by using the grazing-incidence X-ray diffraction technique. Faulted a-GaN films typically exhibit an in-plane anisotropy of the structural properties along the X-ray in-beam directions. For this reason, the anisotropic peak broadenings of the X-ray rocking curves (XRCs) were observed for various angle (phi) rotations for a-GaN films with and without SiN x interlayers. Analysis revealed the peak widths of the XRCs displayed an isotropic behavior for a nonpolar a-GaN bulk crystal. Thus, the in-plane anisotropy of the XRC peak widths for nonpolar a-GaN films apparently originates from the heteroepitaxial growth of the a-GaN layer on a foreign substrate. The lattice distortion analysis identified the presence of compressive strains in both the two in-plane directions (the c- and the m-axis), as well as a tensile strain along the normal growth direction. In addition, the observed frequency shifts in the Raman E2 (high) mode for the a-GaN films showed the existence of considerable in-plane compressive strain on both a-GaN films, as confirmed by the lattice distortion analysis performed using the grazing-incidence XRD method.

  3. Improved emission efficiency of a-plane GaN light emitting diodes with silica nano-spheres integrated into a-plane GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Park, J.; You, D.-J.; Joo, K.; Moon, D.; Jang, J.; Kim, D.-U.; Chang, H.; Moon, S.; Song, Y.-K.; Lee, G.-D.; Jeon, H.; Xu, J.; Nanishi, Y.; Yoon, E.

    2012-05-01

    A simple and inexpensive technique to improve the emission efficiency of nonpolar a-plane light emitting diodes (LEDs) is proposed. The 3-dimensional growth nature of a-plane GaN was utilized to form the regrowth template of a-plane GaN. Subsequently, the controlled integration of silica nano-spheres (CIS) into the regrowth template is performed to improve the crystal quality of a-plane GaN by epitaxial lateral overgrowth method. In addition, the CIS improves light extraction by the scattering process. The light output power from the CIS a-plane GaN LEDs showed 130%-150% increase compared to that of LED without silica nano-spheres.

  4. Direct Growth of a-Plane GaN on r-Plane Sapphire by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Chiu; Su, Yan-Kuin; Huang, Shyh-Jer; Wang, Yu-Jen; Wu, Chun-Ying; Chou, Ming-Chieh

    2010-04-01

    In this study, we had demonstrated the direct growth of nonpolar a-plane GaN on an r-plane sapphire by metal organic chemical vapor deposition (MOCVD) without any buffer layer. First, in this experiment, we had determined the optimum temperature for two-step growth, including obtaining three-dimensional (3D) GaN islands in the nucleation layer and coalescing with a further two-dimensional (2D) growth mode. The result shows that the nucleation layer grown under high temperature (1150 °C) leads to large islands with few grain boundaries. Under the same temperature, the effect of the V/III ratio on the growth of the overlaying GaN layer to obtain a flat and void free a-plane GaN layer is also studied. The result indicates one can directly grow a smooth epitaxial layer on an r-plane sapphire by changing the V/III ratio. The rms roughness decreases from 13.61 to 2.02 nm. The GaN crystal quality is verified using a mixed acid to etch the film surface. The etch pit density (EPD) is 3.16 ×107 cm-2.

  5. Growth of M- and A-plane GaN on LiGaO{sub 2} by plasma-assisted MBE

    SciTech Connect

    Schuber, R.; Schaadt, D. M.; Chou, M. M. C.; Vincze, P.; Schimmel, Th.

    2011-12-23

    We have performed non-polar M- and A-plane GaN growth on LiGaO{sub 2}(LGO) by plasma-assisted molecular beam expitaxy (MBE). We demonstrate that non-polar GaN growth on LGO yields high phase purity and flat surfaces. We find that annealing of the substrates prior to growth is a suitable method for avoiding a peeling off of the film from the substrate after growth.

  6. Direct Growth of a-Plane GaN on r-Plane Sapphire Substrate by Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Araki, Masahiro; Mochimizo, Noriaki; Hoshino, Katsuyuki; Tadatomo, Kazuyuki

    2007-02-01

    We have investigated the direct growth of nonpolar a-plane GaN layers on an r-plane sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE). A high-density nucleation of GaN islands was obtained on the r-plane sapphire substrate at the initial stage of the high-temperature growth without a buffer layer, which resulted in a two-dimensional (2D) growth mode. We studied the effects of V/III ratio growth conditions on the surface morphology and growth features of an a-plane GaN layer. The results showed that a high density of pits with an inverse-pyramidal shape were formed at a high V/III ratio, whereas a relatively low density of pits were formed at a low V/III ratio due to the increase in the rate of lateral growth along the c-axis direction. We successfully grew a-plane GaN layers with a flat and pit-free surface using the “two-step growth method”. The method consisted of growing a first layer at a high V/III ratio and growing a second layer at a low V/III ratio. We found that the first layer plays an important role in GaN layer growth. The formation of a void-free GaN layer with sidewall facets in the first step leads to a flat and pit-free layer grown at a high rate of lateral growth along the c-axis direction in the second step.

  7. Defect reduction in (112_O) a-plane GaN by two-stage epitaxiallateral overgrowth

    SciTech Connect

    Ni, X.; Ozgur, U.; Fu, Y.; Biyikli, N.; Xie, J.; Baski, A.A.; Morkoc, H.; Liliental-Weber, Z.

    2006-10-20

    In the epitaxial lateral overgrowth (ELO) of (11{bar 2}0) a-plane GaN, the uneven growth rates of two opposing wings, Ga- and N-wings, makes the coalescence of two neighboring wings more difficult than that in c-plane GaN. We report a two-stage growth method to get uniformly coalesced epitaxial lateral overgrown a-plane GaN using metalorganic chemical vapor deposition (MOCVD) by employing relatively lower growth temperature in the first step followed by enhanced lateral growth in the second. Using this method, the height differences between Ga-polar and N-polar wings at the coalescence front could be reduced, thereby making the coalescence of two wings much easier. Transmission electron microscopy (TEM) showed that the threading dislocation density in the wing areas was 1.0x10{sup 8}cm{sup -2}, more than two orders of magnitude lower than that in the window areas (4.2x10{sup 10}cm{sup -2}). However, high density of basal stacking faults of 1.2x104 cm-1 was still observed in the wing areas as compared to c-plane GaN. Atomic force microscopy and photoluminescence measurements on the coalesced ELO a-GaN sample also indicated improved material quality.

  8. Unintentional doping of a-plane GaN by insertion of in situ SiN masks

    NASA Astrophysics Data System (ADS)

    Witte, H.; Wieneke, M.; Rohrbeck, A.; Guenther, K.-M.; Dadgar, A.; Krost, A.

    2011-03-01

    Undoped a-plane GaN layers grown by metal-organic vapour phase epitaxy on sapphire (1 0 - 1 2) substrates using low temperature (LT) GaN seed layers and in situ SiN masks were characterized by Hall-effect measurements, CV-characteristics and photovoltage spectroscopy. With increasing deposition time of the SiN masks the electron concentrations of the GaN layers are enhanced. The dominant activation energy between 14 and 22 meV determined by temperature-dependent Hall effect is very similar to the donor silicon on gallium site. Two other activation energies at 30 meV and between 50 and 70 meV were found corresponding well with OGa and VN defects, respectively. The depth profiles of the net donor densities show a strong increase towards the substrate/LT-GaN/high temperature(HT)-GaN interface indicating diffusion of silicon from the SiN mask towards the surface. Therefore, the Si doping is attributed to the dissolution of the SiN masks during the following HT GaN layer growth. The Si doping from the SiN masks also explains the deterioration of the band bending within the LT-GaN/HT-GaN junction found by photovoltage spectroscopy.

  9. Polarization ratio enhancement of a-plane GaN light emitting diodes by asymmetric two-dimensional photonic crystals

    SciTech Connect

    Chou, Yen; Li, Hsiang-Wei; Yin, Yu-Feng; Wang, Yu-Ting; Lin, Yen-Chen; Wu, Yuh-Renn; Huang, Jian Jang; Lin, Da-Wei; Kuo, Hao-Chung

    2014-05-21

    Fabricating photonic crystals (PhCs) on GaN based non-polar light emitting diodes (LEDs) is an effective way to increase light extraction and meanwhile to preserve or improve polarization ratio. In this work, a-plane GaN LEDs with two-dimensional PhCs were demonstrated. With the E // m polarized modes (which mean the optical polarization with the electric field parallel to m-axis) as the target of diffraction, we matched E//m modes to the photonic bands and aligned E//c modes to fall within the photonic band gap. The results show stronger E//m but weaker E//c mode diffractions on both c- and m-axes. At the vertical direction, the polarization ratio is enhanced from 45.8% for the planar device to 52.3% for the LEDs with PhCs.

  10. Terahertz response of GaN thin films.

    PubMed

    Tsai, Tsong-Ru; Chen, Shi-Jie; Chang, Chih-Fu; Hsu, Sheng-Hsien; Lin, Tai-Yuan; Chi, Cheng-Chung

    2006-05-29

    The indices of refraction, extinction constants and complex conductivities of the GaN film for frequencies ranging from 0.2 to 2.5 THz are obtained using THz time-domain spectroscopy. The results correspond well with the Kohlrausch stretched exponential model. Using the Kohlrausch model fit not only provides the mobility of the free carriers in the GaN film, but also estimates the relaxation time distribution function and average relaxation time.

  11. Fabrication and properties of nanoporous GaN films

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Chua, S. J.; Sander, M. S.; Chen, P.; Tripathy, S.; Fonstad, C. G.

    2004-08-01

    Nanopore arrays with pore diameters of approximately 75nm were fabricated in GaN films by inductively coupled plasma etching using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN surface by evaporating an Al film onto a GaN epilayer and subsequently anodizing the aluminum. To minimize plasma-induced damage, the template was exposed to CF4-based plasma conditions. Scanning electron microscopy analysis shows that the diameter and the periodicity of the nanopores in the GaN were directly transferred from the original anodic alumina template. The pore diameter in the AAO film can be easily controlled by tuning the anodization conditions. Atomic force microscopy, photoluminescence, and micro-Raman techniques were employed to assess the etched GaN nanopore surface. This cost-effective, nonlithographic method to produce nano-patterned GaN templates is expected to be useful for growth and fabrication of nitride-based nanostructures and photonic band gap materials.

  12. Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Dang-Hui; Xu, Sheng-Rui; Hao, Yue; Zhang, Jin-Cheng; Xu, Tian-Han; Lin, Zhi-Yu; Zhou, Hao; Xue, Xiao-Yong

    2013-02-01

    In this paper, Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal—organic chemical vapor deposition (LPMOCVD) are investigated. We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K. The temperature-dependences of GaN phonon modes (A1 (TO), E2 (high), and E1 (TO)) and the linewidths of E2 (high) phonon peak are studied. The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range, and the relationship can be fitted to the pseudo-Voigt function. From analytic results we find a critical temperature existing in the relationship, which can characterize the anharmonic effects of a-plane GaN in different temperature ranges. In the range of higher temperature, the relationship exhibits an approximately linear behavior, which is consistent with the analyzed results theoretically.

  13. Separation of thick HVPE-GaN films from GaN templates using nanoporous GaN layers

    NASA Astrophysics Data System (ADS)

    Dong, Zengyin; Yang, Ruixia; Zhang, Song; Wang, Zaien; Chen, Jianli; Li, Xun

    2017-10-01

    In this work, we have succeeded in growing an approximate 2-inch self-separated thick GaN wafer by hydride vapor phase epitaxy with an introduction of a sacrificial layer of nanoporous GaN. Such nanoporous GaN layer is invented by using the HVPE growth of thin GaN layer on the spin-coating silica nanosphere layer followed by a hydrofluoric acid etching to the silica nanosphere layer. It has been found that the nanoporous GaN layer, enabling a reduction of stickiness between thick GaN films and the substrates, plays a significant role in the self-separation of thick GaN films during the cooling process. However, the thickness of the nanoporous GaN layer is another key issue to achieve good quality self-separated GaN thick films. In our study, we suggest that the nanoporous GaN layer with a thickness of approximately 150-240 nm can best serve as the sacrificial layer in self-separation process. Raman spectroscopy also indicates the self-separated thick GaN films by using the proposed approach are virtually strain-free.

  14. Spatially resolved and orientation dependent Raman mapping of epitaxial lateral overgrowth nonpolar a-plane GaN on r-plane sapphire

    PubMed Central

    Jiang, Teng; Xu, Sheng-rui; Zhang, Jin-cheng; Xie, Yong; Hao, Yue

    2016-01-01

    Uncoalesced a-plane GaN epitaxial lateral overgrowth (ELO) structures have been synthesized along two mask stripe orientations on a-plane GaN template by MOCVD. The morphology of two ELO GaN structures is performed by Scanning electronic microscopy. The anisotropy of crystalline quality and stress are investigated by micro-Raman spectroscopy. According to the Raman mapping spectra, the variations on the intensity, peak shift and the full width at half maximum (FWHM) of GaN E2 (high) peak indicate that the crystalline quality improvement occurs in the window region of the GaN stripes along [0001], which is caused by the dislocations bending towards the sidewalls. Conversely, the wing regions have better quality with less stress as the dislocations propagated upwards when the GaN stripes are along []. Spatial cathodoluminescence mapping results further support the explanation for the different dislocation growth mechanisms in the ELO processes with two different mask stripe orientations. PMID:26821824

  15. A-plane GaN growth on (11-20) 4H-SiC substrate with an ultrathin interlayer

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Song, Peifeng; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi

    2017-06-01

    A-plane GaN was attempted to be grown on (11-20) 4H-SiC bulk substrate without using a traditional thick buffer layer. By inducing TMAl treatment before the GaN growth step and using both a low pressure and V/III ratio, the interlayer thickness of the a-plane GaN/SiC was reduced to 1.7+0.5 nm. The ultrathin interlayer was observed to be either AlN or AlGaN with a low Ga composition. This study is aimed to contribute to the understanding of GaN growth on the sidewalls of c-plane trench structure SiC. The ultrathin growth technique is also hoped to be applied to the fabrication of GaN-based vertical structure nonpolar optical or electrical devices.

  16. Growth of ZnO and GaN Films

    NASA Astrophysics Data System (ADS)

    Chang, J.; Hong, S.-K.; Matsumoto, K.; Tokunaga, H.; Tachibana, A.; Lee, S. W.; Cho, M.-W.

    . Zinc oxide (ZnO) and gallium nitride (GaN) are wide bandgap semi conductors applicable to light emitting diodes (LEDs) and laser diodes (LDs) with wavelengths ranging from ultraviolet to blue light. Now ZnO and GaN are key ma terials for optoelectronic device applications and their applications are being rapidly expanded to lots of other technology including electronics, biotechnology, nanotech-nology, and fusion technology among all these. As a fundamental starting point for the development of this new technique, epitaxy of ZnO and GaN films is one of the most important key technology. Hence, development of the growth technique for high quality epitaxial films is highly necessary. Among the various kinds of epi taxy technique for semiconductor films developed so far, physical vapor deposition (PVD)-based epitaxy technique has been revealed to be the appropriate way for the high quality ZnO film and related alloy growths, while chemical vapor deposition (CVD)-based epitaxy technique has been proved to be the best method for the high quality GaN film and related alloy growths.

  17. Defect reduction in (11-20) a-plane GaN by two step epitaxiallateral overgrowth

    SciTech Connect

    Ni, X.; Ozgur, U.; Fu, Y.; Biyikii, N.; Morkoc, H.; Liliental-Weber, Z.

    2006-11-25

    We report a two-step growth method to obtain uniformly coalesced epitaxial lateral overgrown a-plane GaN by metal-organic chemical vapor deposition (MOCVD). By obtaining a large wing height to width aspect ratio in the first step followed by enhanced lateral growth in the second step via controlling the growth temperature, we reduced the tilt angle between the advancing Ga-polar and N-polar wings for improved properties. Transmission electron microscopy (TEM) showed that the threading dislocation density in the wing area was 1.0 x 10{sup 8}cm{sup -2}, more than two orders of magnitude lower than that in the window area (4.2 x 10{sup 10} cm{sup -2}). However, a high density of basal stacking faults, 1.2 x 10{sup 4} cm{sup -1}, was still observed in the wing area. Near field scanning optical microscopy (NSOM) at room temperature revealed that the luminescence was mainly from the wing regions with very little contribution from the windows and meeting fronts. These observations suggest that due to significant reduction of threading dislocations radiative recombination is enhanced in the wings.

  18. Effects of Nano- and Microscale SiO2 Masks on the Growth of a-Plane GaN Layers on r-Plane Sapphire

    NASA Astrophysics Data System (ADS)

    Son, Ji-Su; Miao, Cao; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi; Seo, Yong Gon; Hwang, Sung-Min; Baik, Kwang Hyeon

    2013-08-01

    We report on the combined effects of a-plane GaN layers on a nanoscale patterned insulator on an r-plane sapphire substrate and epitaxial lateral overgrowth (ELOG) techniques. The fully coalescent a-plane GaN layer using nano- and microscale SiO2 masks showed the formation of nano- and microscale voids on the masks, respectively. Atomic force microscopy (AFM) measurements revealed a surface roughness of 0.63 nm and a submicron pit density of ˜7.8 ×107 cm-2. Photoluminescence (PL) intensity was enhanced by a factor of 9.0 in comparison with that of a planar sample. Omega full-width at half-maximum (FWHM) values of the (11bar 20) X-ray rocking curve along the c- and m-axes were 553 and 788 arcsec, respectively. A plan-view cathodoluminescence (CL) mapping image showed high luminescence intensity on the SiO2 masks.

  19. Ultraviolet Photoconductive Detectors Based on A-Plane ZnO Film Grow by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Yu, Naisen; Dong, Dapeng; Qi, Yan; Wu, Yunfeng; Chen, Lu

    2016-02-01

    A-plane ZnO film was grown on a-plane GaN/r-sapphire template by using the hydrothermal growth method. The film was characterized for the structural and morphological properties by means of x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results show the a-plane ZnO film with a very uniform striated morphology was achieved. Meanwhile, an ultraviolet (UV) photoconductive detector based on the as-grown a-plane film was fabricated, and the detector current was increased by more than 17 times under 5 V bias upon UV illumination. Moreover, it also showed good reproducibility and stability, which confirms the film as a good potential material for UV optoelectronic devices.

  20. GaN film growth on LiNbO3 surfaces using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hoai Nam, Man; Goo, Son Chul; Deock Kim, Moon; Yang, Woochul

    2009-09-01

    GaN has been used for high power, high frequency electronic and optoelectronic devices such as light emitting diodes and laser diodes. Most of the GaN films grow on sapphire (0001) and silicon (111) substrates. In these work, we are trying to grow GaN films on lithium niobate (LiNbO3) substrates using molecular beam epitaxy (MBE). As a ferroelectric materials, LiNbO3 has a spontaneous polarization which may provide excellent control of polarity of GaN. The growth of GaN films on LiNbO3 has been performed after the LiNbO3 substrates was annealed in air at 1000°C for 2 hours. The annealed substrates allowed us to prepare atomically flat surfaces and improve adhesion of GaN on LiNbO3. The AlN buffer layer was deposited to get a smaller lattice mismatch with the GaN films. Compared with GaN films grown without a AlN layer, the crystal qualities of GaN films with AlN buffer layers are extremely improved. The surface morphology of LiNbO3 substrates and the grown GaN films were characterized by atomic force microscopy (AFM), and the crystal structures were studied by X-ray diffraction (XRD).

  1. Morphological and microstructural evolution in the two-step growth of nonpolar a-plane GaN on r-plane sapphire

    NASA Astrophysics Data System (ADS)

    Sun, Qian; Kong, Bo Hyun; Yerino, Christopher D.; Ko, Tsung-Shine; Leung, Benjamin; Cho, Hyung Koun; Han, Jung

    2009-12-01

    In this paper, we report a detailed study on the evolution of surface morphology and microstructure of nonpolar a-plane GaN (a-GaN) through controlled growth interruptions. Microscopy imaging shows that the two-step a-GaN growth went through a roughening-recovery process. The first-step growth (under high V/III and high pressure) produced a rough surface with tall mesas separated by voids. The second-step growth (under low V/III and low pressure) promoted the lateral growth and filled up the voids. Striations that formed during the island coalescence persisted throughout the second-step growth, but could be relieved by an additional third-step growth. The morphological evolution was explained according to the kinetic Wulff plots. The microstructure of the a-GaN films was investigated by transmission electron microscopy (TEM) and x-ray rocking curve analysis. Most of the extended defects observed in the plan-view TEM images were I1 type basal-plane stacking faults (BSFs) and their associated partial dislocations (PDs). It is found that the bending of PDs (at the inclined/vertical growth fronts) within the basal plane toward the m-axes was responsible for the substantial reduction in threading PDs and the increase in BSF dimension. Based on a careful correlation between the morphological evolution and the microstructure development, we proposed a model explaining the possible mechanisms for the great reduction in defect density during the two-step growth process.

  2. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  3. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  4. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect

    Chandrasekaran, R.; Moustakas, T. D.; Ozcan, A. S.; Ludwig, K. F.; Zhou, L.; Smith, David J.

    2010-08-15

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.

  5. Demonstration of flexible thin film transistors with GaN channels

    NASA Astrophysics Data System (ADS)

    Bolat, S.; Sisman, Z.; Okyay, A. K.

    2016-12-01

    We report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far.

  6. Characterizations of GaN film growth by ECR plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fu, Silie; Chen, Junfang; Zhang, Hongbin; Guo, Chaofen; Li, Wei; Zhao, Wenfen

    2009-06-01

    The electron cyclotron resonance plasma-enhanced metalorganic chemical vapor deposition technology (ECR-MOPECVD) is adopted to grow GaN films on (0 0 0 1) α-Al2O3 substrate. The gas sources are pure N2 and trimethylgallium (TMG). Optical emission spectroscopy (OES) and thermodynamic analysis of GaN growth are applied to understand the GaN growth process. The OES of ECR plasma shows that TMG is significantly dissociated in ECR plasma. Reactants N and Ga in the plasma, obtained easily under the self-heating condition, are essential for the GaN growth. They contribute to the realization of GaN film growth at a relatively low temperature. The thermodynamic study shows that the driving force for the GaN growth is high when N2:TMG>1. Furthermore, higher N2:TMG flow ratio makes the GaN growth easier. Finally, X-ray diffraction, photoluminescence, and atomic force microscope are applied to investigate crystal quality, morphology, and roughness of the GaN films. The results demonstrate that the ECR-MOPECVD technology is favorable for depositing GaN films at low temperatures.

  7. Surface chemistry and electronic structure of nonpolar and polar GaN films

    NASA Astrophysics Data System (ADS)

    Mishra, Monu; Krishna, T. C. Shibin; Aggarwal, Neha; Gupta, Govind

    2015-08-01

    Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Gasbnd O/Gasbnd N ratio varied from 0.11-0.23 for nonpolar and 0.17-0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  8. Study of the integrated growth of dielectric films on GaN semiconductor substrates.

    PubMed

    Li, Yanrong; Zhu, Jun; Luo, Wenbo

    2010-10-01

    Typical perovskite oxides SrTiO₃ (STO) and PbZr₀.₅₂Ti₀.₄₈O₃ (PZT) were fabricated on GaN semiconductor substrates by pulsed laser deposition. STO and PZT films were deposited on bare GaN, TiO₂, and MgO-buffered GaN. The effects of TiO₂ and MgO buffer-layers on the orientations and electric properties of the perovskite films were systematically studied. The crystalline properties were in situ monitored by reflective high energy electron diffraction and ex situ characterized by X-ray diffraction. It was found that the epitaxial temperature of STO and PZT was reduced by inserting a buffer layer. (111)-oriented films were obtained on bare and TiO₂-buffered GaN. However, the orientations of the perovskite films were changed to be (110) when deposited on MgO buffer layer. Furthermore, PZT films deposited on MgO- and TiO₂-buffered GaN show better electric performance compared with these films directly deposited on GaN. These results show that perovskite oxide could be epitaxially grown on GaN semiconductor substrates by inserting a proper buffer layer.

  9. Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light

    NASA Astrophysics Data System (ADS)

    Cao, Dezhong; Xiao, Hongdi; Fang, Jiacheng; Liu, Jianqiang; Gao, Qingxue; Liu, Xiangdong; Ma, Jin

    2017-01-01

    Nanoporous (NP) GaN thin films, which were fabricated by an electrochemical etching method at different voltages, were used as photoelectrodes during photoelectrochemical (PEC) water splitting in 1 M oxalic acid solution. Upon illumination at a power density of 100 mW cm-2 (AM 1.5), water splitting is observed in NP GaN thin films, presumably resulting from the valence band edge which is more positive than the redox potential of the oxidizing species. In comparison with NP GaN film fabricated at 8 V, NP GaN obtained at 18 V shows nearly twofold enhancement in photocurrent with the maximum photo-to-hydrogen conversion efficiency of 1.05% at ~0 V (versus Ag/AgCl). This enhancement could be explained with (i) the increase of surface area and surface states, and (ii) the decrease of resistances and carrier concentration in the NP GaN thin films. High stability of the NP GaN thin films during the PEC water splitting further confirms that the NP GaN thin film could be applied to the design of efficient solar cells and solar fuel devices.

  10. Improvement of Crystalline Quality in GaN Films by Air-Bridged Lateral Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Kidoguchi, Isao; Ishibashi, Akihiko; Sugahara, Gaku; Tsujimura, Ayumu; Ban, Yuzaburoh

    2000-05-01

    Air-bridged lateral epitaxial growth (ABLEG), a new technique of lateral growth of GaN films, has been developed using low-pressure metalorganic vapor phase epitaxy. A previously grown 1-μm-thick GaN film is grooved along the < 1{\\bar 1}00 >\\textrm{GaN} direction, and the bottoms of the trenches and the sidewalls are covered with a silicon nitride mask. A free-standing GaN material is regrown from the exposed (0001) surface of the ridged GaN seed structure. Cross-sectional transmission electron microscopy analysis reveals that the dislocations originating from the underlying seed GaN extend straight in the < 0001 > direction and dislocations do not propagate into the wing region. The wing region also exhibits a smooth surface and the root mean square roughness is found to be 0.088 nm by atomic force microscopy measurement of the (0001) face of the wing region.

  11. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Shih, Huan-Yu; Lin, Ming-Chih; Chen, Liang-Yih; Chen, Miin-Jang

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH3. The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate.

  12. Air-bridged lateral epitaxial overgrowth of GaN thin films

    NASA Astrophysics Data System (ADS)

    Kidoguchi, Isao; Ishibashi, Akihiko; Sugahara, Gaku; Ban, Yuzaburoh

    2000-06-01

    A promising technique of selective lateral epitaxy, namely air-bridged lateral epitaxial overgrowth, is demonstrated in order to reduce the wing tilt as well as the threading dislocation density in GaN thin films. A seed GaN layer was etched to make ridge-stripe along <11¯00>GaN direction and a GaN material was regrown from the exposed (0001) top facet of the ridged GaN seed structures, whose sidewalls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor phase epitaxy. The density of dislocations in the wing region was reduced to be <107cm-2, which was at least two orders of magnitude lower than that of underlying GaN. The magnitude of the wing tilt was determined to be 0.08° by x-ray diffraction (XRD) measurements, which was smaller than other lateral epitaxial overgrown GaN thin films. The full width at half maximum of XRD for the wing region was 138 arc sec, indicating high uniformity of c-axis orientation.

  13. Physical states and properties of barium titanate films in a plane electric field

    NASA Astrophysics Data System (ADS)

    Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.

    2016-07-01

    The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.

  14. Growth of GaN films on PLD-deposited TaC substrates

    NASA Astrophysics Data System (ADS)

    Kirchner, K. W.; Derenge, M. A.; Zheleva, T. S.; Vispute, R. D.; Jones, K. A.

    2010-09-01

    GaN films were grown by metal organic chemical vapor deposition on TaC substrates that were created by pulsed laser deposition of TaC onto (0 0 0 1) SiC substrates at ˜1000 °C. This was done to determine if good quality TaC films could be grown, and if good quality GaN films could be grown on this closely lattice matched to GaN, conductive material. This was done by depositing the TaC on on-axis and 3° or 8° off-axis (0 0 0 1) SiC at temperatures ranging from 950 to 1200 °C, and examining them using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The GaN films were grown on as-deposited TaC films, and films annealed at 1200, 1400, or 1600 °C, and examined using the same techniques. The TaC films were polycrystalline with a slight (1 1 1) texture, and the grains were ˜200 nm in diameter. Films grown on-axis were found to be of higher quality than those grown on off-axis substrates, but the latter could be improved to a comparable quality by annealing them at 1200-1600 °C for 30 min. TaC films deposited at temperatures above 1000 °C were found to react with the SiC. GaN films could be deposited onto the TaC when the surface was nitrided with NH 3 for 3 min at 1100 °C and the low temperature buffer layer was AlN. However, the GaN did not nucleate easily on the TaC film, and the crystallites did not have the desired (0 0 0 1) preferred orientation. They were ˜10 times larger than those typically seen in films grown on SiC or sapphire. Also the etch pit concentration in the GaN films grown on the TaC was more than 2 orders of magnitude less than it was for growth on the SiC.

  15. Fabrication and Characterization Of Volatile Organic Compound Gas Sensor Based GaN Thin Film

    NASA Astrophysics Data System (ADS)

    Rusdiana, D.; Aminudin, A.

    2017-02-01

    Gas sensor using GaN film has been proposed on silicon substrate by sol gel spin coating technique with parameters growth temperature of 850°C, spinner rate of 1000 rpm, Ga2O3 molarity of 1.33 M and N sources derived from nitrogen gas at a flow rate of 100 sccm. From the results of testing the electrical properties of the gas environment type volatile organic compound, especially hydrogen gas turns electric resistance GaN semiconductor thin films declined sharply from 1.5 x 10-2 to 7 x 10-3 Ohm.cm. The GaN thin film not only exhibited good sensitivity to hydrogen gas but also showed good linearity in the characteristic of the sensitivity to hydrogen gas concentration.

  16. Comparing electrical performance of GaN trench-gate MOSFETs with a-plane (11\\bar{2}0) and m-plane (1\\bar{1}00) sidewall channels

    NASA Astrophysics Data System (ADS)

    Gupta, Chirag; Chan, Silvia H.; Lund, Cory; Agarwal, Anchal; Koksaldi, Onur S.; Liu, Junquian; Enatsu, Yuuki; Keller, Stacia; Mishra, Umesh K.

    2016-12-01

    GaN trench-gate MOSFETs with m- and a-plane-oriented sidewall channels were fabricated and characterized. The trench-gate MOSFET performance depended strongly on the sidewall-MOS-channel plane orientation. The m-plane-oriented MOS channel devices demonstrated higher channel mobility, higher current density, lower sub-threshold slope, and lower hysteresis with similar threshold voltage and on-off ratio compared to a-plane MOS channel devices. These results indicate that orienting trench-gate MOSFET toward the m-plane would allow for better on-state characteristics while maintaining similar off-state characteristics.

  17. Growth and characterization of GaN thin films on Si(111) substrates using SiC intermediate layer

    SciTech Connect

    Lim, K.Y.; Lee, K.J.; Park, C.I.; Kim, K.C.; Choi, S.C.; Lee, W.H.; Suh, E.K.; Yang, G.M.; Nahm, K.S.

    2000-07-01

    GaN films have been grown atop Si-terminated 3C-SiC intermediate layer on Si(111) substrates using low pressure metalorganic chemical vapor deposition (LP-MOCVD). The SiC intermediate layer was grown by chemical vapor deposition (CVD) using tetramethylsilane (TMS) as the single source precursor. The Si terminated SiC surface was obtained by immediately flow of SiH{sub 4} gas after growth of SiC film. LP-MOCVD growth of GaN on 3C-SiC/Si(111) was carried out with trimethylgallium (TMG) and NH{sub 3}. Single crystalline hexagonal GaN layers can be grown on Si terminated SiC intermediate layer using an AlN or GaN buffer layer. Compared with GaN layers grown using a GaN buffer layer, the crystal qualities of GaN films with AlN buffer layers are extremely improved. The GaN films were characterized by x-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). Full width at half maximum (FWHM) of double crystal x-ray diffraction (DCXD) rocking curve for GaN (0002) on 3C-SiC/Si(111) was 890 arcsec. PL near band edge emission peak position and FWHM at room temperature are 3.38 eV and 79.35 meV, respectively.

  18. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  19. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    NASA Astrophysics Data System (ADS)

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-01

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500-750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  20. Growth and Characterization of N-Polar GaN Films on Si(111) by Plasma Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sansaptak; Nidhi; Wu, Feng; Speck, James S.; Mishra, Umesh K.

    2012-11-01

    Smooth N-polar GaN films were epitaxially grown by plasma assisted molecular beam epitaxy (PAMBE) on on-axis p-Si(111). The structural quality of the as-grown GaN films was further improved by insertion of AlGaN/GaN superlattice structures, resulting in reduced threading dislocation density and also efficient stress management in the GaN film to mitigate crack formation. The structural quality of these films was comparable to N-polar GaN grown on C-SiC by MBE. Convergent beam electron diffraction (CBED) imaging and KOH etch studies were performed to confirm the N-polarity of the sample. Room temperature photoluminescence measurements revealed strong GaN band-edge emission.

  1. The depth-profiled carrier concentration and scattering mechanism in undoped GaN film grown on sapphire

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.; Wei, Z. F.; Xu, S. J.; Zhi, C. Y.

    2004-07-01

    Temperature-dependent Hall (TDH) measurements and confocal micro-Raman spectroscopy have been used to study the free carrier spatial distribution and scattering mechanism in unintentionally doped GaN film grown on the sapphire substrate with the method of metalorganic chemical vapor deposition. Both the TDH data and the depth-profiled Raman spectra agreed with the existence of a nonuniform spatial distribution of free carriers in the GaN film with a highly conductive layer of ˜1 μm thickness near the GaN sapphire boundary. With the consideration of this parallel conduction channel adjacent to GaN sapphire boundary, detailed analysis of the TDH mobility data suggests that a relatively high concentration of nitrogen vacancies exists and nitrogen vacancy scattering has an important influence on limiting the electron mobility in the bulk film of the present GaN sample.

  2. Realization of compressively strained GaN films grown on Si(110) substrates by inserting a thin AlN/GaN superlattice interlayer

    SciTech Connect

    Shen, X. Q.; Takahashi, T.; Kawashima, H.; Ide, T.; Shimizu, M.

    2012-07-16

    We investigate the strain properties of GaN films grown by plasma-assisted molecular beam epitaxy on Si(110) substrates. It is found that the strain of the GaN film can be converted from a tensile to a compressive state simply by inserting a thin AlN/GaN superlattice structure (SLs) within the GaN film. The GaN layers seperated by the SLs can have different strain states, which indicates that the SLs plays a key role in the strain modulation during the growth and the cooling down processes. Using this simple technique, we grow a crack-free GaN film exceeding 2-{mu}m-thick. The realization of the compressively strained GaN film makes it possible to grow thick GaN films without crack generation on Si substrates for optic and electronic device applications.

  3. Refractive index of erbium doped GaN thin films

    SciTech Connect

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  4. Injection Laser Using Rare Earth Doped GaN Thin Films for Visible and Infrared Applications

    DTIC Science & Technology

    2010-05-01

    was firstly synthesized in 1937[3, 4]. In 1959 small GaN crystals was synthesized by hot gallium metals in ammonia gas ambient condition.[5] GaN...energy of 3.39eV and electron concentration above 1019cm-3. In 1971, Manasevit[7] utilized metal -organic chemical vapor deposition (MOCVD) to grow...quality of GaN thin films were obtained in 1986 by Amano and Akasaki[9] with the optimized “two-step growth” method in metal -organic vapor phase

  5. Some of structural and morphological optimization of GaN thin film on Si(100) substrate grown by RF sputter

    NASA Astrophysics Data System (ADS)

    Mantarcı, Asim; Kundakçı, Mutlu

    2017-04-01

    One of important material of III-nitrides can be said to be GaN with direct-wide band gap ( 3.4 eV) and many industrial devices such as solar cell, LED has been based on GaN thin film. In this research, we elaborately investigated growth of GaN thin film on Si(100) substrate by RF sputter technique and characterization of the film. We have successfully grown GaN thin film on Si substrate with hexagonal structure which has been confirmed by analysis of X-ray measurements. Also, we obtained structural properties of GaN film by (XRD) X-ray Diffraction measurements depending on different Argon, nitrogen and RF power values. During experiment, the value from 25sccm to 100sccm Argon gas value, the value from 0sccm to 4sccm Nitrogen gas value and from 50 watt to 125 watt RF power value has been applied. Among these values, we determined the best film in terms of crystalline structure of film. From AFM results, we attained and analyzed average roughness (Ra), maximum peak height (Rp), and maximum depth (Rv), average absolute slope of the profile (Δa)(°) of the fılms successfully. The film having the lowest roughness (Ra) has been achieved depending on different Argon, nitrogen and RF power values. Atomic Force Microscopy results confirmed that some of the films have homogeneous and uniform structure without any holes and crack; but others has voids referring impurities coming from growth process. To sum up, not only growing GaN thin film on Si substrate has been investigated, but also some of structural and morphological parameters' optimization has been studied, analyzed and the best film was determined in view of varied Argon, nitrogen and RF power values. For future direction, optimization of GaN thin film in detail can enable us to fabricate high quality film; therefore it will helps to improving device technology.

  6. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  7. Heteroepitaxial VO2 thin films on GaN: Structure and metal-insulator transition characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO2) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010)vo2‖(0001)GaN‖(0001)A12O3 and [100]vo2‖[1¯21¯0]A12O3 from x-ray diffraction. VO2 heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO2. Electrical characterization of VO2 films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO2 films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  8. Defect analysis in GaN films of HEMT structure by cross-sectional cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Isobe, Yasuhiro; Hung, Hung; Oasa, Kohei; Ono, Tasuku; Onizawa, Takashi; Yoshioka, Akira; Takada, Yoshiharu; Saito, Yasunobu; Sugiyama, Naoharu; Tsuda, Kunio; Sugiyama, Toru; Mizushima, Ichiro

    2017-06-01

    Defect analysis of GaN films in high electron mobility transistor (HEMT) structures by cross-sectional cathodoluminescence (X-CL) is demonstrated as a useful technique for improving the current collapse of GaN-HEMT devices, and the relationship between crystal quality and device characteristics is also investigated. The crystal quality of intrinsic-GaN (i-GaN) and carbon-doped GaN produced clearly different peak intensities of blue luminescence (BL), yellow luminescence (YL), and band-edge emission (BE), which is independently detected by X-CL. Current collapse in GaN-HEMT devices is found to be determined by the BL/BE and YL/BE ratios at the top of the i-GaN layer, which is close to the channel. Moreover, the i-GaN thickness required in order to minimize the BL/BE and YL/BE ratios and the thickness dependency of GaN for minimizing the BL/BE and YL/BE ratios depending on the growth conditions can be evaluated by X-CL. However, there is no correlation between current collapse in GaN-HEMT devices and the YL/BE ratio by conventional photoluminescence because HEMT devices consist of multiple GaN layers and the YL signal is detected from the carbon-doped GaN layer. Thus, the X-CL analysis method is a useful technique for device design in order to suppress current collapse.

  9. The effects of Si doping on dislocation movement and tensile stress in GaN films

    NASA Astrophysics Data System (ADS)

    Moram, M. A.; Kappers, M. J.; Massabuau, F.; Oliver, R. A.; Humphreys, C. J.

    2011-04-01

    Dislocations in undoped GaN move in response to the in-plane tensile stress present during film growth. Dislocation movement during growth relieves tensile stress, produces arrays of a-type dislocations and reduces the overall dislocation density, with preferential reduction of (a+c)-type dislocations. However, Si-doping limits dislocation movement, limiting the relief of the tensile stress that develops during growth and limiting dislocation reduction, probably due to the formation of Si impurity atmospheres at dislocations. Consequently, Si-doped films are under relatively greater tensile stress compared to undoped GaN films grown under similar conditions. Alternative dopants could be chosen to reduce tensile stress development, such as Ge.

  10. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-10-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  11. Anisotropic strain relaxation and the resulting degree of polarization by one- and two-step growth in nonpolar a-plane GaN grown on r-sapphire substrate

    SciTech Connect

    Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung

    2013-12-21

    Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.

  12. Photoluminescence Observation of GaN Thin Films Treated by Inductively-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji; Itoh, Noriyoshi; Nakano, Yoshitaka; Sugai, Hideo

    2011-10-01

    This paper reports observations of photoluminescence from plasma-treated GaN thin films. A 10 mTorr Ar ICP was used, and irradiation of 313 nm ultraviolet (UV) light from Hg-Xe light source induced the photoluminescence of the GaN film. In both in-situ and ex-situ observations, significant yellow luminescence was observed visually, and the ex-situ observed luminescence ranges in a wavelength of 500-800 nm corresponding to defect-states-related transition. The measurements also revealed that the luminescence also contains UV emission at a wavelength of ~365 nm attributed to transition related to near band edges. In order to examine effects of the plasma on the luminescence, the ex-situ observation was made as a function of the plasma treatment time. As the treatment time increased, both the UV and the luminescence intensity decreased, and the decrease in the emission became significant when the 313 nm UV light was irradiated onto the plasma-exposed GaN surface. These results suggested that plasma-induced defect formation leads to the luminescence degradation, and that the photoluminescence observation will be useful for damage monitoring of the GaN surface. This work is partly supported by the 2nd stage Knowledge Cluster Initiative and Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  13. Spatial distribution of carrier concentration in un-doped GaN film grown on sapphire

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Beling, C. D.; Fung, S.; Ling, C. C.

    2004-03-01

    The depth and lateral dependent carrier concentration of un-intentionally doped GaN film grown on sapphire substrate have been studied by temperature-dependent Hall effect measurement, confocal micro-Raman spectroscopy and capacitance-voltage (C-V) measurements. The depth-dependent free carrier concentration extracted from the depth-profiled Raman spectra confirms a non-uniform spatial distribution of free carriers in the GaN film with a highly conductive layer of 1 m thickness near the GaN/sapphire boundary. The temperature dependent Hall data have been analyzed using two-layer model to extract the carrier concentration in the GaN bulk film and in the parallel conduction channel adjacent to the GaN/sapphire boundary. The carrier concentrations of the two layers derived from the Raman technique and the Hall measurements agree with each other. The lateral-dependent carrier concentration of the 2-inch GaN epitaxial wafer has also been studied by micro-Raman spectroscopy and C-V measurements. The line-shape fitting of the Raman A1(LO) coupled modes taken from horizontal lateral-different positions on the wafer yielded a rudimentary spatial map of the carrier concentration. These data are compared well with a lateral-dependent carrier concentration map of the wafer revealed by C-V measurements. The study in the article indicates that Raman spectroscopy of the LO phonon-plasmon mode can be used as a nondestructive and reliable, in situ diagnostic for GaN wafer production.

  14. Optical and Electrical Characteristics of CO2-Laser-Treated Mg-Doped GaN Film

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Yokoyama, Meiso; Chang, Shoou-Jinn; Guo, Jan-Dar; Sheu, Chia-hon; Chen, Tsung-yu; Tsai, Wen-Chung; Tsang, Jian-Shihn; Chan, Shih-Hsiung; Sze, Simon M.

    2000-11-01

    This work investigates the optical and electrical characteristics of CO2-laser annealed Mg-doped GaN films to activate Mg-doped p-type GaN films. Results obtained from the CO2 laser annealing investigation were similar to those of thermal annealing or low energy electron beam irradiation (LEEBI) treatment to activate the Mg-doped p-GaN films. The room-temperature photoluminescence (PL) intensity of the blue emission of the Mg-doped GaN film after 10 W laser annealing was approximately ten times stronger than that of the as-grown film. The resistivity of the Mg-doped GaN film decreased from 105 Ω{\\cdot}cm to 2-3 Ω{\\cdot}cm as the laser annealing power rose above 6 W@. The hole concentration of Mg-doped GaN film was approximately 1× 1017 cm-3 when the laser annealing power was 7.5 W.

  15. MOCVD of BN and GaN thin films on silicon: new attempt of GaN growth with BN buffer layer

    NASA Astrophysics Data System (ADS)

    Boo, Jin-Hyo; Rohr, Carsten; Ho, Wilson

    1998-06-01

    Highly oriented polycrystalline h-BN thin films were deposited on silicon substrates in the temperature range of 600-900°C from the single molecular precursor of borane-triethylamine complex, (C 2H 5) 3N : BH 3, by supersonic jet assisted chemical vapor deposition. Hydrogen was used as carrier gas, and additional nitrogen was supplied by either ammonia through a nozzle or nitrogen via a remote microwave plasma. Hexagonal GaN films were also grown on Si(1 0 0) with h-BN buffer layers at temperatures between 550 and 750°C with dual supersonic molecular beam sources. Triethylgallium, (C 2H 5) 3Ga, and ammonia, NH 3, were used as precursors. Hydrogen was used as seeding gas for the precursors, providing a wide range of possible kinetic energies for the supersonic beams. The h-BN buffer layers and the GaN films were characterized in situ by Auger electron spectroscopy (AES), and ex situ by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and optical transmission. This is the first report of growing the h-BN films on silicon substrates from the single source precursor of borane-triethylamine complex and new attempts of GaN film growth on silicon with BN buffer layer.

  16. Spectroscopic ellipsometry studies of GaN films deposited by reactive rf sputtering of GaAs target

    SciTech Connect

    Biswas, A.; Bhattacharyya, D.; Sahoo, N. K.; Yadav, Brajesh S.; Major, S. S.; Srinivasa, R. S.

    2008-04-15

    GaN films have been deposited by reactive rf sputtering of GaAs target in 100% nitrogen ambient on quartz substrates at different substrate temperatures ranging from room temperature to 700 deg. C. A series of films, from arsenic-rich amorphous to nearly arsenic-free polycrystalline hexagonal GaN, has been obtained. The films have been characterized by phase modulated spectroscopic ellipsometry to obtain the optical parameters, viz., fundamental band gap, refractive index, and extinction coefficient, and to understand their dependence on composition and microstructure. A generalized optical dispersion model has been used to carry out the ellipsometric analysis for amorphous and polycrystalline GaN films and the variation of the optical parameters of the films has been studied as a function of substrate temperature. The refractive index values of polycrystalline films with preferred orientation of crystallites are slightly higher (2.2) compared to those for amorphous and randomly oriented films. The dominantly amorphous GaN film shows a band gap of 3.47 eV, which decreases to 3.37 eV for the strongly c-axis oriented polycrystalline film due to the reduction in amorphous phase content with increase in substrate temperature.

  17. Synthesis and Luminescent Properties of GaN and GaN-Mn Blue Nanocrystalline Thin-film Phosphor for FED

    SciTech Connect

    Bondar, V D; Felter, T E; Hunt, C E; Kucharsky, I Y; Chakhovskoi, A G

    2003-04-09

    The technologies of fabrication of thin film phosphors based on gallium nitride using rf-magnetron sputtering are developed and structural properties of films are studied. Luminescence and electron spin resonance (ESR) spectra of GaN and GaN-Mn thin films have been studied. The correlation between cathodoluminescence intensity and conductivity of GaN films has been found. The nature of emission centers in GaN and GaN-Mn thin films is discussed as well as mechanism of luminescence in these films is proposed.

  18. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  19. Surfactant assisted growth of MgO films on GaN

    SciTech Connect

    Paisley, E. A.; Shelton, T. C.; Collazo, R.; Sitar, Z.; Maria, J.-P.; Christen, H. M.; Biegalski, M. D.; Mita, S.

    2012-08-27

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy and pulsed laser deposition using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface by stabilizing the {l_brace}111{r_brace} rocksalt facet. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 Multiplication-Sign reduction in leakage current density for the surfactant-assisted samples. These data verify numerous predictions regarding the role of H-termination in regulating the habit of rocksalt crystals.

  20. Low-threshold GaN thin-film random laser through the weak scattering feedback

    NASA Astrophysics Data System (ADS)

    Zhu, Hai; Chen, Anqi; Wu, Yanyan; Ji, Xu; He, Yiting; Qiu, Zhiren; Tang, Zikang; Yu, Siufung

    2017-02-01

    Room temperature random lasing is demonstrated from a GaN epitaxy film with defect pits that result from growth imperfection. The optical coherence feedback is attributed to the formation of closed-loop paths of light through the scattering effect of the defect pits, which can avoid the difficulty of fabricating an artificial cavity. The random lasing action was also investigated through near and far-field patterns that imaged onto the CCD camera. In addition, the angle distribution of the laser beam was illustrated by use of an angle-resolved spectrometer. The lasing threshold, based on the weak scattering diffusive mode of GaN, is about one order of magnitude lower than that strong scattering random laser (RL). Hence, the results in this paper represent a low-cost technique to realize GaN-based laser diodes without the fabrication difficulty of cavity facets that result from the hardness of the sapphire substrate.

  1. High-quality GaN films obtained by air-bridged lateral epitaxial growth

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiko; Kidoguchi, Isao; Sugahara, Gaku; Ban, Yuzaburoh

    2000-12-01

    High-quality GaN films with low dislocation density and low wing tilt of c-axis orientation have been successfully obtained by a promising technique of selected area growth, namely air-bridged lateral epitaxial growth (ABLEG). A GaN film was grown from the exposed (0 0 0 1) top facet of the ridged GaN seed structures, whose side walls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor-phase epitaxy. The ridge-stripe structures of the GaN seed were constructed in the 1 1¯00 GaN direction. At the optimum growth temperature of 950°C, only the 1 1 2¯ 0 and {0 0 0 1} facets were obtained. Continuing the growth led to fabricating the air-bridged structure, where the coalescence of the wing region occurred. From the transmission electron microscopy study, it was found that most of the vertical dislocations along the c-axis were confined to the seed region, while the horizontal dislocations were newly generated in the vicinity of coalescence boundary. The densities of the vertical dislocations were about 9×10 8 cm -2 in the seed region, while below 1×10 6 cm -2 in other regions. The densities of the horizontal dislocations were about 1×10 6 cm -2 in the wing region and 4×10 7 cm -2 in the vicinity of the coalescence boundary, respectively. The X-ray diffraction (XRD) measurements revealed that the tilt angle of c-axis relative to underlying seed GaN was about 297 arcsec (0.083°), and the full-width at half-maximum of the XRD curve for the wing region was 138 arcsec, indicating that the wing region has high uniformity of c-axis orientation. Both of the wing and the coalescence boundary region exhibited atomically smooth surfaces with stepped terraces, whose root mean square roughness was found to be 0.089 nm by atomic force microscopy measurements.

  2. MOCVD of ZnO thin films for potential use as compliant layers for GaN on Si

    NASA Astrophysics Data System (ADS)

    Black, Kate; Jones, Anthony C.; Chalker, Paul R.; Gaskell, Jeffrey M.; Murray, Robert T.; Joyce, Tim B.; Rushworth, Simon A.

    2008-03-01

    This paper explores the use of nanostructured zinc oxide (ZnO) films as a compliant buffer layer for the growth of gallium nitride (GaN) on silicon substrates. Thin films of ZnO have been deposited on silicon (1 1 1) substrates by liquid injection metalorganic chemical vapour deposition (MOCVD) using dimethyl zinc-tetrahydrofuran adduct and oxygen. The use of the adduct complex avoids pre-reaction between the dialkyl zinc complex and oxygen which has been observed elsewhere. ZnO films deposited by this method were stoichiometric and of high purity, with no detectable carbon contamination. Films were deposited over a temperature range 350-550 °C, and exhibited a nanowire-like morphology. Subsequent deposition of GaN layers grown by molecular beam epitaxy (MBE) on the ZnO film resulted in the transformation of the nanowires to gallium oxide, accompanied by virtually complete removal of zinc from the layer. A heteroepitaxially oriented ( c-axis) GaN/gallium oxide/silicon structure was produced after the nitride deposition which consisted of characteristic columnar GaN with the GaN[0 0 0 1]||Si [1 1 1]. Selective area electron diffraction of the by-product oxide interlayer showed a polycrystalline-like behaviour that gave rise to a random azimuthal distribution of the GaN grains.

  3. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD

    PubMed Central

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-01-01

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates. PMID:27101930

  4. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    SciTech Connect

    Chung, Kunook; Beak, Hyeonjun; Tchoe, Youngbin; Oh, Hongseok; Yi, Gyu-Chul; Yoo, Hyobin; Kim, Miyoung

    2014-09-01

    We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO{sub 2}/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, In{sub x}Ga{sub 1–x}N/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  5. Enhanced UV detection by non-polar epitaxial GaN films

    SciTech Connect

    Mukundan, Shruti; Chandan, Greeshma; Mohan, Lokesh; Krupanidhi, S. B.; Roul, Basanta; Shetty, Arjun

    2015-12-15

    Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time.

  6. Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate (a-plane Al2O3)

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Phillips, L.; Reece, C. E.; Seo, Kang; Krishnan, M.; Valderrama, E.

    2011-08-01

    An energetic condensation technique, cathodic arc discharge deposition, is used to grow epitaxial Niobium (Nb) thin films on a-plane sapphire (hexagonal-closed-packed Al2O3) at moderate substrate heating temperature (<400 °C). The epitaxial Nb(110)/Al2O3(1,1,-2,0) thin films reached a maximum residual resistance ratio (RRR) value 214, despite using a reactor-grade Nb cathode source whose RRR was only 30. The measurements suggest that the film's density of impurities and structural defects are lower when compared to Nb films produced by other techniques, such as magnetron sputtering, e-beam evaporation or molecular-beam-epitaxy. At lower substrate temperature, textured polycrystalline Nb thin films were created, and the films might have twin symmetry grains with {110} orientations in-plane. The texture was revealed by x-ray diffraction pole figures. The twin symmetry might be caused by a combination effect of the Nb/Al2O3 three-dimensional epitaxial relationship ("3D-Registry" Claassen's nomenclature) and the "Volmer-Weber" (Island) growth model. However, pole figures obtained by electron backscattering diffraction (EBSD) found no twin symmetry on the thin films' topmost surface (˜50 nm in depth). The EBSD pole figures showed only one Nb{110} crystal plane orientation. A possible mechanism is suggested to explain the differences between the bulk (XRD) and surface (EBSD) pole figures.

  7. Growth of AlN and GaN thin films via OMVPE and gas source MBE and their characterization

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Weeks, T. W.; Bremser, M. D.; Tanaka, S.; Kern, R. S.; Sitar, Z.; Ailey, K. S.; Perry, W. G.; Wang, C.

    1997-02-01

    Thin films of AlN and GaN are deposited primarily via the common forms of organometallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE). Sapphire is the most common substrate; however, a host of materials have been used with varying degrees of success. Both growth techniques have been employed by the authors to grow AlN and GaN primarily on 6H-SiC(0001). The mismatch in atomic layer stacking sequences along the growth direction produces inversion domain boundaries in the AlN at the SiC steps; this sequence problem may discourage the nucleation of GaN. Films of AlN and GaN grown by MBE at 650°C are textured; monocrystalline films are achieved at 1050°C by this technique and OMVPE. Donor and acceptor doping of GaN has been achieved via MBE without post growth annealing. Acceptor doping in CVD material requires annealing to displace the H from the Mg and eventually remove it from the material. High brightness light emitting diodes are commercially available; however, numerous concerns regarding metal and nitrogen sources, heteroepitaxial nucleation, the role of buffer layers, surface migration rates as a function of temperature, substantial defect densities and their effect on film and device properties, ohmic and rectifying contacts, wet and dry etching and suitable gate and field insulators must and are being addressed.

  8. Heteroepitaxial VO{sub 2} thin films on GaN: Structure and metal-insulator transition characteristics

    SciTech Connect

    Zhou You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO{sub 2}) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010){sub vo{sub 2}} parallel (0001){sub GaN} parallel (0001){sub A1{sub 2O{sub 3}}} and [100]{sub vo{sub 2}} parallel [1210]{sub GaN} parallel [0110]{sub A1{sub 2O{sub 3}}} from x-ray diffraction. VO{sub 2} heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO{sub 2}. Electrical characterization of VO{sub 2} films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO{sub 2} films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  9. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lin, Zhiyu; Zhang, Jincheng Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue; Su, Xujun; Shi, Xuefang

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  10. A study of the optical and polarisation properties of InGaN/GaN multiple quantum wells grown on a-plane and m-plane GaN substrates

    PubMed Central

    Kundys, Dmytro; Sutherland, Danny; Davies, Matthew J.; Oehler, Fabrice; Griffiths, James; Dawson, Philip; Kappers, Menno J.; Humphreys, Colin J.; Schulz, Stefan; Tang, Fengzai; Oliver, Rachel A.

    2016-01-01

    Abstract We report on a comparative study of the low temperature emission and polarisation properties of InGaN/GaN quantum wells grown on nonpolar (112¯0) a-plane and (101¯0) m-plane free-standing bulk GaN substrates where the In content varied from 0.14 to 0.28 in the m-plane series and 0.08 to 0.21 for the a-plane series. The low temperature photoluminescence spectra from both sets of samples are broad with full width at half maximum height increasing from 81 to 330 meV as the In fraction increases. Photoluminescence excitation spectroscopy indicates that the recombination mainly involves strongly localised carriers. At 10 K the degree of linear polarisation of the a-plane samples is much smaller than of the m-plane counterparts and also varies across the spectrum. From polarisation-resolved photoluminescence excitation spectroscopy we measured the energy splitting between the lowest valence sub-bands to lie in the range of 23–54 meV for the a- and m-plane samples in which we could observe distinct exciton features. Thus the thermal occupation of a higher valence sub-band cannot be responsible for the reduction of the degree of linear polarisation at 10 K. Time-resolved spectroscopy indicates that in a-plane samples there is an extra emission component which is at least partly responsible for the reduction in the degree of linear polarisation. PMID:27933113

  11. Anisotropic electrical conductivity of surface-roughened semipolar (11\\bar{2}2) GaN films by photochemical etching

    NASA Astrophysics Data System (ADS)

    Jang, Soohwan; Lee, Sohyun; Baik, Kwang Hyeon

    2017-05-01

    We studied the anisotropy of electrical conductivity in surface-roughened semipolar (11\\bar{2}2) GaN (s-GaN) films. Highly crystalline s-GaN films were obtained using asymmetric lateral epitaxy on oxide-patterned m-plane sapphire substrates. The in-plane structural anisotropy of the s-GaN films was confirmed by anisotropic peak broadening in X-ray rocking curves (XRC) with the in-beam orientations. The XRC full-width at half maximum (FWHM) values were measured to be 454 and 615 arcsec along the [11\\bar{2}3] GaN and [1\\bar{1}00] GaN directions, respectively. The s-GaN surface was roughened using photo-chemical etching, and the electrical anisotropy was then investigated as a function of azimuth angles with the transmission line method. The Ohmic contact properties on the roughened s-GaN surface did not depend on the azimuth angle or annealing temperatures between 750 and 950 °C. The sheet resistances parallel to the [1\\bar{1}00] GaN direction on roughened s-GaN were found to be approximately half of the resistance parallel to the [11\\bar{2}3] GaN direction, showing that anisotropic electrical conductivity is maintained for surface-roughened s-GaN due to charged carrier scattering induced by basal-plane stacking faults.

  12. Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film.

    PubMed

    Wölz, M; Hauswald, C; Flissikowski, T; Gotschke, T; Fernández-Garrido, S; Brandt, O; Grahn, H T; Geelhaar, L; Riechert, H

    2015-06-10

    Vertical GaN nanowires are grown in a self-induced way on a sputtered Ti film by plasma-assisted molecular beam epitaxy. Both in situ electron diffraction and ex situ ellipsometry show that Ti is converted to TiN upon exposure of the surface to the N plasma. In addition, the ellipsometric data demonstrate this TiN film to be metallic. The diffraction data evidence that the GaN nanowires have a strict epitaxial relationship to this film. Photoluminescence spectroscopy of the GaN nanowires shows excitonic transitions virtually identical in spectral position, line width, and decay time to those of state-of-the-art GaN nanowires grown on Si. Therefore, the crystalline quality of the GaN nanowires grown on metallic TiN and on Si is equivalent. The freedom to employ metallic substrates for the epitaxial growth of semiconductor nanowires in high structural quality may enable novel applications that benefit from the associated high thermal and electrical conductivity as well as optical reflectivity.

  13. Predicted lattice-misfit stresses in a gallium-nitride (GaN) film

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Yi, S.

    2017-02-01

    Effective, easy-to-use and physically meaningful analytical predictive models are developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed. First of all, the interfacial shearing stresses are evaluated. These stresses might lead to the occurrence and growth of dislocations, as well as to possible delaminations (adhesive strength of the assembly) and the elevated stress and strain in the buffering material, if any (cohesive strength of the assembly). Second of all, the normal radial and circumferential (tangential) stresses acting in the film cross-sections are determined. These stresses determine the short- and long-term strength (fracture toughness) of the film material. It is shown that while the normal stresses in the semiconductor film are independent of its thickness, the interfacial shearing stresses increase with an increase in the induced force (not stress!) acting in the film cross-sections, and that this force increases with an increase in the film thickness. This leads, for a thick enough film, to the occurrence, growth and propagation of dislocations. These start at the assembly ends and propagate, when the film thickness increases, inwards the structure. The TEA data are compared with the results obtained using a simplified strength-of-materials approach (SMA). This approach considers, instead of an actual circular assembly, an elongated bi-material rectangular strip of unit width and of finite length equal to the wafer diameter. The analysis, although applicable to any semiconductor crystal growth (SCG) technology is geared in this analysis to the Gallium-Nitride (GaN) technology. The numerical example is carried out for a GaN film grown on a Silicon Carbide (SiC) substrate. It is concluded that the SMA model is acceptable for understanding the physics of the state of stress and for the prediction

  14. Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Komae, Yasuaki; Yasui, Kanji; Suemitsu, Maki; Endoh, Tetsuo; Ito, Takashi; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2009-07-01

    Intermittent gas supplies for hot-mesh chemical vapor deposition (CVD) for the epitaxial growth of gallium nitride (GaN) films were investigated to improve film crystallinity and optical properties. The GaN films were deposited on SiC/Si(111) substrates using an alternating-source gas supply or an intermittent supply of source gases such as ammonia (NH3) and trimethylgallium (TMG) in hot-mesh CVD after deposition of an aluminum nitride (AlN) buffer layer. The AlN layer was deposited using NH3 and trimethylaluminum (TMA) on a SiC layer grown by carbonization of a Si substrate using propane (C3H8). GaN films were grown on the AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru)-coated tungsten (W) mesh and TMG molecules. After testing various gas supply modes, GaN films with good crystallinity and surface morphology were obtained using an intermittent supply of TMG and a continuous supply of NH3 gas. An optimal interval for the TMG gas supply was also obtained for the apparatus employed.

  15. Microstructure of GaN films grown on Si(1 1 1) substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hu, G. Q.; Kong, X.; Wan, L.; Wang, Y. Q.; Duan, X. F.; Lu, Y.; Liu, X. L.

    2003-09-01

    We report the transmission electron microscopy (TEM) study of the microstructure of wurtzitic GaN films grown on Si(1 1 1) substrates with AlN buffer layers by metalorganic chemical vapor deposition (MOCVD) method. An amorphous layer was formed at the interface between Si and AlN when thick GaN film was grown. We propose the amorphous layer was induced by the large stress at the interface when thick GaN was grown. The In 0.1Ga 0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations from passing through the MQW. But no evident reduction of the edge dislocations by the MQW was observed. It was found that dislocations located at the boundaries of grains slightly in-plane misoriented have screw component. Inversion domain is also observed.

  16. Surfactant assisted growth of MgO films on GaN

    SciTech Connect

    Paisley, Elisibeth A.; Shelton, T C; Mita, S; Gaddy, Brian E.; Irving, D L; Christen, Hans M; Sitar, Z; Biegalski, Michael D; Maria, Jon Paul

    2012-01-01

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface due to stabilizing the {111} rocksalt facet. MBE growth of MgO in water terminates after several monolayers, and is attributed to saturation of surface active sites needed to facilitate the Mg oxidation reaction. MgO films prepared by PLD grow continuously, this occurs due to the presence of excited oxidizing species in the laser plasma eliminate the need for catalytic surface sites. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly two order of magnitude reduction in leakage current density for the smoother surfactant-assisted samples. Collectively, these data verify numerous predictions and calculations regarding the role of H-termination in regulating the habit of MgO crystals.

  17. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2017-09-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  18. Halide vapor phase epitaxy of thick GaN films on ScAlMgO4 substrates and their self-separation for fabricating freestanding wafers

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kazuki; Kanoh, Masaya; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Mukai, Takashi; Matsuoka, Takashi

    2017-10-01

    Halide vapor phase epitaxy of thick GaN films was demonstrated on ScAlMgO4 (SCAM) substrates, and their self-separation was achieved. The 320-µm-thick GaN film was self-separated from the SCAM substrate during the cooling process after the growth. This separation phenomenon occurred because of both the c-plane cleavability of SCAM and the difference in the thermal-expansion coefficients between GaN and SCAM. The dark-spot densities for the GaN films on the SCAM substrates were approximately 30% lower than those on sapphire substrates. These results indicate that SCAM substrates are promising for fabricating a high-quality freestanding GaN wafer at a low cost.

  19. Synthesis and characterization of GaN thin films deposited on different substrates using a low-cost electrochemical deposition technique

    SciTech Connect

    Al-Heuseen, K.; Hashim, M. R.

    2012-09-06

    Gallium nitride GaN thin films were deposited on three different substrates; Si (111), Si (100) and ITO coated glass using electrochemical deposition technique at 20 Degree-Sign C. A mixture of gallium nitrate, ammonium nitrate was used as electrolyte. The deposited films were investigated at room temperature by a series of material characterization techniques, namely; scanning electron microscopy (SEM), EDX and X-ray diffraction (XRD). SEM images and EDX results indicated that the growth of GaN films varies according to the substrates. XRD analyses showed the presence of hexagonal wurtzite and cubic zinc blende GaN phases with the crystallite size around 18-29 nm.

  20. First-principle-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film

    SciTech Connect

    Wu, Ruikang; Hu, Run E-mail: luoxb@hust.edu.cn; Luo, Xiaobing E-mail: luoxb@hust.edu.cn

    2016-04-14

    In this study, we developed a first-principle-based full-dispersion Monte Carlo simulation method to study the anisotropic phonon transport in wurtzite GaN thin film. The input data of thermal properties in MC simulations were calculated based on the first-principle method. The anisotropy of thermal conductivity in bulk wurtzite GaN is found to be strengthened by isotopic scatterings and reduced temperature, and the anisotropy reaches 40.08% for natural bulk GaN at 100 K. With the GaN thin film thickness decreasing, the anisotropy of the out-of-plane thermal conductivity is heavily reduced due to both the ballistic transport and the less importance of the low-frequency phonons with anisotropic group velocities. On the contrary, it is observed that the in-plane thermal conductivity anisotropy of the GaN thin film is strengthened by reducing the film thickness. And the anisotropy reaches 35.63% when the natural GaN thin film thickness reduces to 50 nm at 300 K with the degree of specularity being zero. The anisotropy is also improved by increasing the surface roughness of the GaN thin film.

  1. Growth and characterization of GaN thin film on Si substrate by thermionic vacuum arc (TVA)

    NASA Astrophysics Data System (ADS)

    Kundakçı, Mutlu; Mantarcı, Asim; Erdoğan, Erman

    2017-01-01

    Gallium nitride (GaN) is an attractive material with a wide-direct band gap (3.4 eV) and is one of the significant III-nitride materials, with many advantageous device applications such as high electron mobility transistors, lasers, sensors, LEDs, detectors, and solar cells, and has found applications in optoelectronic devices. GaN could also be useful for industrial research in the future. Chemical vapor deposition (CVD), molecular beam epitaxy (MBE), sputter, and pulsed laser deposition (PLD) are some of the methods used to fabricate GaN thin film. In this research, a GaN thin film grown on a silicon substrate using the thermionic vacuum arc (TVA) technique has been extensively studied. Fast deposition, short production time, homogeneity, and uniform nanostructure with low roughness can be seen as some of the merits of this method. The growth of the GaN was conducted at an operating pressure of 1× {{10}-6} \\text{Torr} , a plasma current 0.6 \\text{A} and for a very short period of time of 40 s. For the characterization process, scanning electron microscopy (SEM) was conducted to determine the structure and surface morphology of the material. Energy dispersive x-ray spectroscopy (EDX) was used to comprehend the elemental analysis characterization of the film. X-ray diffraction (XRD) was used to analyze the structure of the film. Raman measurements were taken to investigate the phonon modes of the material. The morphological properties of the material were analyzed in detail by atomic force microscopy (AFM).

  2. Study of different type of dislocations in GaN thin films

    NASA Astrophysics Data System (ADS)

    Yu, L. P.; Shi, J. Y.; Wang, Y. Z.; Zhang, H.

    2004-08-01

    High-resolution X-ray diffraction was used to analyze the type of dislocations in GaN epitaxial thin films. Rocking curves of five planes were investigated, (0 0 0 2) , (1 0 1¯ 3) , (1 0 1¯ 2) , (1 0 1¯ 1) , and (2 0 2¯ 1) , respectively. Pseudo-Voigt function was used to simulate the rocking-curve of every plane. Every extension of the rocking-curve was regarded as the effect of the interaction of the twist and tilt fractions of the dislocations. From the result, it is found that carrier mobility is more sensitive to substrate normal tilt dislocation than to in-plane twist and the interaction of the twist and tilt fractions also affect the carrier mobility.

  3. Growth of GaN epitaxial films on polycrystalline diamond by metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Allsopp, Duncan W. E.; Bowen, Chris R.

    2017-04-01

    Heat extraction is often essential in ensuring efficient performance of semiconductor devices and requires minimising the thermal resistance between the functional semiconductor layers and any heat sink. This paper reports the epitaxial growth of N-polar GaN films on polycrystalline diamond substrates of high thermal conductivity with metal-organic vapor phase epitaxy, by using a Si x C layer formed during deposition of polycrystalline diamond on a silicon substrate. The Si x C layer acts to provide the necessary structure ordering information for the formation of a single crystal GaN film at the wafer scale. It is shown that a three-dimensional island (3D) growth process removes hexagonal defects that are induced by the non-single crystal nature of the Si x C layer. It is also shown that intensive 3D growth and the introduction of a convex curvature of the substrate can be deployed to reduce tensile stress in the GaN epitaxy to enable the growth of a crack-free layer up to a thickness of 1.1µm. The twist and tilt can be as low as 0.65° and 0.39° respectively, values broadly comparable with GaN grown on Si substrates with a similar structure.

  4. Microstructures of GaN and In{sub x}Ga{sub 1-x}N films grown by MOCVD on free-standing GaN templates

    SciTech Connect

    Jasinski, J.; Liliental-Weber, Z.; Huang, D.; Reshchikov, M.A.; Yun, F.; Morkoc, H.; Sone, C.; Park, S.S.; Lee, K.Y.

    2002-04-30

    We summarize structural properties of thick HVPE GaN templates from the point of view of their application as substrates for growth of nitride layers. This is followed by the results of optical and structural studies, mostly transmission electron microscopy, of nitride layers grown by MOCVD on top of the HVPE substrates. The results indicate high structural quality of these layers with a low density of threading dislocations (in the range of 10{sup 6} cm{sup -2}). Convergent beam electron diffraction studies showed that the MOCVD GaN films have Ga-polarity, the same polarity as the HVPE GaN substrates. Structural studies of an InGaN layer grown on top of the MOCVD GaN film showed the presence of two layers, which differed in lattice parameter and composition. The upper layer, on the top of the structure had a c-lattice parameter about 2% larger than that of GaN and contained 10.3 {+-} 0.8% of In. Values measured for the thinner, intermediate layer adjacent to the GaN layer were about 2 .5 times lower.

  5. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  6. Photoluminescence study of wurtzite Si-doped GaN thin films

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammed; Carlone, Cosmo; Charbonneau, N. Sylvain; Khanna, Shyam M.

    1998-10-01

    The photoluminescence (PL) temperature dependence of wurtzite n-type GaN thin films grown on (0001) sapphire substrates by Magnetron sputter epitaxy is reported. Samples were non-intentionally doped, lightly and highly Si-doped. The PL of non-intentionally doped samples consist of the near band edge emission and a broad yellow band (YB) near 2.2 eV. This yellow emission is equally present in spectra of all Si-doped samples. The bound exciton (D0-X) at 3.488 eV and (A0-X) at 3.456 eV are present only in the lightly Si-doped samples. The evolution of the energy position of the (D0-X) is the same as the band gap temperature variation, but the (A0-X) transition is anormally independent of the temperature in the range studied here. In both Si-doped GaN samples a peak at 3.318 eV and transitions between 3.36 and 3.39 eV are observed. The temperature dependence of the latter shows a fine structure composed of four peaks at 3.364 eV, 3.368 eV, 3.375 eV and 3.383 eV. They are tentatively attributed to the superposition of two donor-acceptor and band-acceptor transitions. This interpretation implies the presence of two donors (D1,D2) and two acceptors (A1,A2). From the energy position of the band-acceptor and the energy gap of GaN at 20 K, an acceptor ionization energy of 120 and 135 meV respectively is obtained. Assuming 10 meV for a Coulomb interaction energy of the ionized donor-acceptor pairs, a donor ionization energy of 14 and 18 meV respectively is obtained from the energy difference between the donor-acceptor and the band-acceptor positions. An activation energy of 10.8 meV is deduced from the temperature dependence of the YB. The shallow donor (about 10 meV) contributes to the mechanism of the YB.

  7. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-01-01

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573

  8. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  9. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  10. Thermodynamic theory of epitaxial alloys: first-principles mixed-basis cluster expansion of (In, Ga)N alloy film.

    PubMed

    Liu, Jefferson Zhe; Zunger, Alex

    2009-07-22

    Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN)(2)/(GaN)(2) (at x = 0.50) and (InN)(4)/(GaN)(1) (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy.

  11. Study of InN epitaxial films and nanorods grown on GaN template by RF-MOMBE

    PubMed Central

    2012-01-01

    This paper reports on high-quality InN materials prepared on a GaN template using radio-frequency metalorganic molecular beam epitaxy. We also discuss the structural and electro-optical properties of InN nanorods/films. The X-ray diffraction peaks of InN(0002) and InN(0004) were identified from their spectra, indicating that the (0001)-oriented hexagonal InN was epitaxially grown on the GaN template. Scanning electron microscopic images of the surface morphology revealed a two-dimensional growth at a rate of approximately 0.85 μm/h. Cross-sectional transmission electron microscopy images identified a sharp InN/GaN interface and a clear epitaxial orientation relationship of [0001]InN // [0001]GaN and ( 2¯110)InN // ( 2¯110)GaN. The optical properties of wurtzite InN nanorods were determined according to the photoluminescence, revealing a band gap of 0.77 eV. PMID:22908859

  12. In Situ Oxidation of GaN Layer and Its Effect on Structural Properties of Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ngo, Trong Si; Le, Duc Duy; Tran, Duy Khanh; Song, Jung-Hoon; Hong, Soon-Ku

    2017-06-01

    Plasma-assisted molecular beam epitaxy (PAMBE) was used to grow Ga2O3 films on oxidized GaN layers on nitrided sapphire substrates. The GaN layer was grown by PAMBE, and the in situ oxidation of the GaN layer was achieved through exposure to oxygen plasma, which resulted in the formation of monoclinic β-Ga2O3. Crystalline monoclinic β-Ga2O3 films were grown on the GaN layers, with and without oxidation. The orientation relationships were [11\\overline{2} 0] Al2O3//[1\\overline{1} 00] AlN//[1\\overline{1} 00] GaN//[102] β-Ga2O3 and [1\\overline{1} 00] Al2O3//[11\\overline{2} 0] AlN//[11\\overline{2} 0] GaN//[010] β-Ga2O3. The grown β-Ga2O3 films were not single-crystalline but showed rotational domains along the growth direction with three variations, which resulted in six-fold rotational symmetry instead of two-fold rotational symmetry. The surface roughness of the grown β-Ga2O3 film was closely reflected to that of as-grown GaN and oxidized GaN. By analyzing the x-ray omega rocking curves for the on-axis (\\overline{2} 01) and off-axis (002) reflections, it was concluded that rotational domains dominantly affected the crystal quality of the β-Ga2O3 films.

  13. In Situ Oxidation of GaN Layer and Its Effect on Structural Properties of Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ngo, Trong Si; Le, Duc Duy; Tran, Duy Khanh; Song, Jung-Hoon; Hong, Soon-Ku

    2017-01-01

    Plasma-assisted molecular beam epitaxy (PAMBE) was used to grow Ga2O3 films on oxidized GaN layers on nitrided sapphire substrates. The GaN layer was grown by PAMBE, and the in situ oxidation of the GaN layer was achieved through exposure to oxygen plasma, which resulted in the formation of monoclinic β-Ga2O3. Crystalline monoclinic β-Ga2O3 films were grown on the GaN layers, with and without oxidation. The orientation relationships were [11overline{2} 0 ] Al2O3//[1overline{1} 00 ] AlN//[1overline{1} 00 ] GaN//[102] β-Ga2O3 and [1overline{1} 00 ] Al2O3//[11overline{2} 0 ] AlN//[11overline{2} 0 ] GaN//[010] β-Ga2O3. The grown β-Ga2O3 films were not single-crystalline but showed rotational domains along the growth direction with three variations, which resulted in six-fold rotational symmetry instead of two-fold rotational symmetry. The surface roughness of the grown β-Ga2O3 film was closely reflected to that of as-grown GaN and oxidized GaN. By analyzing the x-ray omega rocking curves for the on-axis (overline{2} 01 ) and off-axis (002) reflections, it was concluded that rotational domains dominantly affected the crystal quality of the β-Ga2O3 films.

  14. On the origin of threading dislocations in GaN films

    NASA Astrophysics Data System (ADS)

    Moram, M. A.; Ghedia, C. S.; Rao, D. V. S.; Barnard, J. S.; Zhang, Y.; Kappers, M. J.; Humphreys, C. J.

    2009-10-01

    A series of GaN films were grown by metalorganic vapor phase epitaxy on nitrided sapphire using an initial annealed low-temperature nucleation layer (LT-NL), without employing any conventional threading dislocation (TD) reduction methods. Film thicknesses ranging from the LT-NL to 500 nm were used. The island network morphology was investigated at each growth stage using atomic force microscopy. Data from cathodoluminescence studies showed initially uniform luminescence, followed by the gradual development of bright (low TD) regions which had lateral sizes different from the island sizes at all times and which continued to increase in size after coalescence. The formation of low-energy arrays of a-type TDs also continued after island coalescence. X-ray diffraction, transmission electron microscopy (TEM) and AFM data indicated that the highest (a +c)-type TD densities were found in the LT-NL, but subsequently decreased due to TD loop formation (promoted by island facets) and reaction to produce a-type TDs. a-type TD densities were also high in the LT-NL but subsequently increased slightly, due to the reaction of (a +c)-type TDs. A very sharp dynamical `correlation' peak was also observed in XRD of the LT-NL, related to TDs with an a-component. Furthermore, defect formation was observed within the LT-NL using high-resolution TEM. These data are consistent with TD formation predominantly in the LT-NL, followed by TD movement at elevated growth temperatures. Initially, coalesced films had a high TD density with a spatially random TD arrangement, but progressively altered into a lower TD density, spatially clustered arrangement during growth. This type of microstructure may mistakenly be interpreted as arising from island coalescence.

  15. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    PubMed

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications.

  16. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AIN and InN

    DTIC Science & Technology

    1992-12-01

    AD-A258 804 Final Technical Report Ii Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent...Technical 6/1/86-12/31/92 4. TITLE AND SUBTITLE Growth, Nitrogen Vacancy Reduction and 5. FUNDING NUMBERS Solid Solution Formation in Cubic GaN Thin...According to the structural and chemical analyses, there is no reason to believe that a homogeneous solid solution close to this composition had

  17. A comparative study on ferromagnetic C/O-implanted GaN films by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Juping; Li, Qiang; Liu, Jiandang; Ye, Bangjiao

    2016-05-01

    Room temperature ferromagnetism was observed in both C- and O-implanted GaN films, which were irradiated by 80 keV C/O-ions with respective dose of 5 × 1016 and 2 × 1017 ions/cm2. Positron annihilation spectroscopy was used to explore the magnetic origin and the correlation between the magnetism and structural features. The results reveal that carbon-ions play an important role in the stable ferromagnetism in C-implanted GaN films, while oxygen has no effect on the magnetic properties, even than a weak hysteresis loop was observed in O-implanted sample. This weak ferromagnetism is demonstrated as originated from Ga-related vacancies which induced by implantation. With first-principle calculations, we confirmed that substitutional C-ion at N-site can introduce magnetic moment for 0.8 μB and stabilize ferromagnetic coupling with adjacent Ga-vacancy at room temperature. Moreover, the effect of O-ions was clearly ruled out. Our discussion gives an experimental and theoretical insight of the different origin of ferromagnetism between acceptor and donor non-metal-doped GaN materials.

  18. Ion implantation of epitaxial GaN films: damage, doping and activation

    SciTech Connect

    Parikh, N.; Suvkhanov, A.; Lioubtchenko, M.; Carlson, E.; Bremser, M.; Bray, D.; Davis, R.; Hunn, J.

    1996-12-31

    Single-crystal GaN films grown on AlN buffer layers previously deposited on 6H-SiC(0001) were studied for radiation damage and its recovery using Rutherford backscattering/channeling, photoluminescence, and cross-sectional TEM. The highest fluence of (1e15 cm{sup -2}) 110 keV Mg and 160 keV Si produced little damage at implantation temperature 550 C. RT damage was higher for same fluences compared to 550 C implantation. The damage was partially annealed by RTA at 1000 C, however, this was not enough to recover the PL signal even for the lowest fluence (1e14 cm{sup -2}). XTEM of as-implanted samples revealed small clusters of defects extended beyond the projected ion range. To recover damage completely, perhaps one needs to go either much higher RTA temperature and/or implant samples in a smaller fluence increment and anneal in between implants to recover the damage.

  19. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1991-06-01

    p PTIC (AD-A238 521 Semi-Annual Letter Report Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the...SUBTITLE Growth, Nitrogen Vacancy Reduction and S. FUNDING NUMBERS solid Solution Formation in Cubic GaN Thin Films and the R&T:s40000lsrqO5 Subsequent

  20. Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Liu, Xianlin; Li, Chengming; Wei, Hongyuan; Guo, Yan; Jiao, Chunmei; Li, Zhiwei; Xu, Xiaoqing; Song, Huaping; Yang, Shaoyan; Zhu, Qinsen; Wang, Zhanguo; Yang, Anli; Yang, Tieying; Wang, Huanhua

    2011-12-01

    Cracks appeared in GaN epitaxial layers which were grown by a novel method combining metal organic vapor-phase epitaxy (MOCVD) and hydride vapor-phase epitaxy (HVPE) in one chamber. The origin of cracks in a 22-μm thick GaN film was fully investigated by high-resolution X-ray diffraction (XRD), micro-Raman spectra, and scanning electron microscopy (SEM). Many cracks under the surface were first observed by SEM after etching for 10 min. By investigating the cross section of the sample with high-resolution micro-Raman spectra, the distribution of the stress along the depth was determined. From the interface of the film/substrate to the top surface of the film, several turnings were found. A large compressive stress existed at the interface. The stress went down as the detecting area was moved up from the interface to the overlayer, and it was maintained at a large value for a long depth area. Then it went down again, and it finally increased near the top surface. The cross-section of the film was observed after cleaving and etching for 2 min. It was found that the crystal quality of the healed part was nearly the same as the uncracked region. This indicated that cracking occurred in the growth, when the tensile stress accumulated and reached the critical value. Moreover, the cracks would heal because of high lateral growth rate.

  1. Chemical etching behavior of non-polar GaN sidewalls

    NASA Astrophysics Data System (ADS)

    Jung, Younghun; Jang, Soohwan; Baik, Kwang Hyeon; Kim, Hong-Yeol; Kim, Jihyun

    2016-12-01

    Wet-chemical etching of non-polar GaN films can be applied to form textured surfaces that enhance light extraction efficiency in light-emitting diodes. The etch-induced shapes (trigonal prisms) on the sidewalls of concave and convex mesa patterns defined on a-plane GaN films exhibited an alignment towards the [000 1 ̅] direction. An etch-rate vector model that includes one fast etching direction and two etching directions normal to the fast direction was developed to explain the creation of the etch-induced trigonal prisms. The large lattice parameter along with [000 1 ̅] and single dangling bond of a-plane surface supply enough space for attack of OH- ions, which is confirmed by XPS analysis that indicates the increased hydroxide spectra on a-plane after KOH etching and these are the reason for different etch rate and formation of trigonal prisms.

  2. Structural, optical, and magnetic properties of highly-resistive Sm-implanted GaN thin films

    SciTech Connect

    Lo, Fang-Yuh Huang, Cheng-De; Chou, Kai-Chieh; Guo, Jhong-Yu; Liu, Hsiang-Lin; Chia, Chi-Ta; Ney, Verena; Ney, Andreas; Shvarkov, Stepan; Reuter, Dirk; Wieck, Andreas D.; Pezzagna, Sébastien; Chern, Ming-Yau; Massies, Jean

    2014-07-28

    Samarium ions of 200 keV in energy were implanted into highly-resistive molecular-beam-epitaxy grown GaN thin films with a focused-ion-beam implanter at room temperature. The implantation doses range from 1 × 10{sup 14} to 1 × 10{sup 16 }cm{sup −2}. Structural properties studied by x-ray diffraction and Raman-scattering spectroscopy revealed Sm incorporation into GaN matrix without secondary phase. The optical measurements showed that the band gap and optical constants changed very slightly by the implantation. Photoluminescence measurements showed emission spectra similar to p-type GaN for all samples. Magnetic investigations with a superconducting quantum interference device identified magnetic ordering for Sm dose of and above 1 × 10{sup 15 }cm{sup −2} before thermal annealing, while ferromagnetism was only observed after thermal annealing from the sample with highest Sm dose. The long-range magnetic ordering can be attributed to interaction of Sm ions through the implantation-induced Ga vacancy.

  3. Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition

    SciTech Connect

    Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-15

    Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Si (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.

  4. Thermally enhanced formation of photon-induced damage on GaN films in Cl2 plasma

    NASA Astrophysics Data System (ADS)

    Liu, Zecheng; Asano, Atsuki; Imamura, Masato; Ishikawa, Kenji; Takeda, Keigo; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2017-09-01

    Deep ultraviolet (UV) photons emitted from Cl2 plasmas become a critical cause of degradation in both photoluminescence (PL) properties and surface stoichiometry as a result of plasma-induced damage on GaN films in Cl2 plasma etching at high temperatures. The damages were formed thermally by photon-irradiations of plasma UV emissions with wavelengths of ˜258-306 nm from Cl2 plasma at temperatures greater than 500 °C. The damage were observed with a depth of approximately 3.2 nm. The PL property degraded by the UV emission-induced damage at an early period of plasma etching and reached a constant value.

  5. Analysis of reactor geometry and diluent gas flow effects on the metalorganic vapor phase epitaxy of AIN and GaN thin films on α(6H)-SiC substrates

    NASA Astrophysics Data System (ADS)

    Hanser, A. D.; Wolden, C. A.; Perry, W. G.; Zheleva, T.; Carlson, E. P.; Banks, A. D.; Therrien, R. J.; Davis, R. F.

    1998-04-01

    The influence of diluent gas on the metalorganic vapor phase epitaxy of AlN and GaN thin films has been investigated. A computational fluid dynamics model using the finite element method was employed to improve film uniformity and to analyze transport phenomena. The properties of AlN and GaN thin films grown on α(6H)-SiC(0001) substrates in H2 and N2 diluent gas environments were evaluated. Thin films of AlN grown in H2 and N2 had root mean square (rms) roughness values of 1.5 and 1.8 nm, respectively. The surface and defect microstructures of the GaN thin films, observed by scanning and transmission electron microscopy, respectively, were very similar for both diluents. Low temperature (12K) photoluminescence measurements of GaN films grown in N2 had peak intensities and full widths at half maximum equal to or better than those films grown in H2. A room temperature Hall mobility of 275 cm2/V·s was measured on 1 µm thick, Si-doped, n-type (1×1017 cm-3) GaN films grown in N2. Acceptor-type behavior of Mg-doped GaN films deposited in N2 was repeatably obtained without post-growth annealing, in contrast to similar films grown in H2. The GaN growth rates were ˜30% higher when H2 was used as the diluent. The measured differences in the growth rates of AlN and GaN films in H2 and N2 was attributed to the different transport properties of these mixtures, and agreed well with the computer model predictions. Nitrogen is shown to be a feasible alternative diluent to hydrogen for the growth of AlN and GaN thin films.

  6. Optical Emission Spectroscopy of Electron Cyclotron Resonance-Plasma Enchanced Metalorganic Chemical Vapor Deposition Process for Deposition of GaN Film

    NASA Astrophysics Data System (ADS)

    Fu, Silie; Chen, Junfang; Li, Yun; Li, Wei; Zhang, Maoping; Hu, Shejun

    2008-02-01

    An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 2θ = 34.48°, being sharper and more intense with the increase in the N2: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced metalorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.

  7. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy

    SciTech Connect

    Misra, M.; Shah, K.S.; Moustakas, T.D.; Vaudo, R.P.; Singh, R.

    1995-08-01

    We report for the first time, fabrication of photoconducting UV detectors made from GaN films grown by molecular beam epitaxy. Semi-instilating GaN films were grown by the method of electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-MBE). Photoconductive devices with interdigitated electrodes were fabricated and their photoconducting properties were investigated. In this paper we report on the performance of the detectors in terms of UV responsivity, gain-quantum efficiency product, spectral response and response time. We have measured responsivity of 125A/W and gain-quantum efficiency product of 600 at 254nm and 25V. The response time was measured to be on the order of 20ns for our detectors, corresponding to a bandwidth of 25Mhz. The spectral response showed a sharp long-wavelength cutoff at 365nm, and remained constant in the 200nm to 365nm range. The response of the detectors to low-energy x-rays was measured and found to be linear for x-rays with energies ranging from 60kVp to 90kVp.

  8. Ga2O3 and GaN nanocrystalline film: reverse micelle assisted solvothermal synthesis and characterization.

    PubMed

    Sinha, Godhuli; Ganguli, Dibyendu; Chaudhuri, Subhadra

    2008-03-01

    Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.

  9. Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures

    SciTech Connect

    Shelton, Christopher T.; Sachet, Edward; Paisley, Elizabeth A.; Hoffmann, Marc P.; Rajan, Joseph; Collazo, Ramón; Sitar, Zlatko; Maria, Jon-Paul

    2014-01-28

    We demonstrate the use of anomalous x-ray scattering of constituent cations at their absorption edge, in a conventional Bragg-Brentano diffractometer, to measure absolutely and quantitatively the polar orientation and polarity fraction of unipolar and mixed polar wurtzitic crystals. In one set of experiments, the gradual transition between c+ and c− polarity of epitaxial ZnO films on sapphire as a function of MgO buffer layer thickness is monitored quantitatively, while in a second experiment, we map the polarity of a lateral polar homojunction in GaN. The dispersion measurements are compared with piezoforce microscopy images, and we demonstrate how x-ray dispersion and scanning probe methods can provide complementary information that can discriminate between polarity fractions at a material surface and polarity fractions averaged over the film bulk.

  10. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AIN and InN

    DTIC Science & Technology

    1992-02-01

    IK AD-A248 058 - - H Final Technical ReportI I Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the...structural and chemical analyses, there is no reason to believe that a homogeneous solid solution close to this composition had formed. Moreover

  11. ZrB2 thin films deposited on GaN(0001) by magnetron sputtering from a ZrB2 target

    NASA Astrophysics Data System (ADS)

    Tengdelius, Lina; Lu, Jun; Forsberg, Urban; Li, Xun; Hultman, Lars; Janzén, Erik; Högberg, Hans

    2016-11-01

    ZrB2 films were deposited on 900 °C-preheated or non-preheated GaN(0001) surfaces by direct current magnetron sputtering from a compound target. Analytical transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray spectroscopy and electron energy loss spectroscopy revealed a 0001 fiber textured ZrB2 film growth following the formation of a 2 nm thick amorphous BN layer onto the GaN(0001) at a substrate temperature of 900 °C. The amorphous BN layer remains when the substrate temperature is lowered to 500 °C or when the preheating step is removed from the process and results in the growth of polycrystalline ZrB2 films. The ZrB2 growth phenomena on GaN(0001) is compared to on 4H-SiC(0001), Si(111), and Al2O3(0001) substrates, which yield epitaxial film growth. The decomposition of the GaN surface during vacuum processing during BN interfacial layer formation is found to impede epitaxial growth of ZrB2.

  12. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    SciTech Connect

    Alevli, Mustafa; Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  13. Structural and magnetic properties of ultra-thin Fe films on metal-organic chemical vapour deposited GaN(0001)

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Young; Ionescu, Adrian; Mansell, Rhodri; Farrer, Ian; Oehler, Fabrice; Kinane, Christy J.; Cooper, Joshaniel F. K.; Steinke, Nina-Juliane; Langridge, Sean; Stankiewicz, Romuald; Humphreys, Colin J.; Cowburn, Russell P.; Holmes, Stuart N.; Barnes, Crispin H. W.

    2017-01-01

    Structural and magnetic properties of 1-10 nm thick Fe films deposited on GaN(0001) were investigated. In-situ reflecting high energy electron diffraction images indicated a α-Fe(110)/GaN(0001) growth of the 3D Volmer-Weber type. The α-Fe(110) X-ray diffraction peak showed a 1° full-width at half-maximum, indicating ≈20 nm grain sizes. A significant reduction in Fe atomic moment from its bulk value was observed for films thinner than 4 nm. Both GaN/Fe interface roughness and Fe film coercivity increased with Fe thickness, indicating a possible deterioration of Fe crystalline quality. Magnetic anisotropy was mainly uniaxial for all films while hexagonal anisotropies appeared for thicknesses higher than 3.7 nm.

  14. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    SciTech Connect

    Alevli, Mustafa Gungor, Neşe; Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.

  15. Interface roughness of double buffer layer of GaN film grown on Si(1 1 1) substrate using GIXR analysis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Yamabe, N.; Ohachi, T.

    2011-03-01

    A double buffer layer (DBL), interface reaction epitaxy (IRE) AlN/β-Si3N4/Si, grown by an IRE of β-Si3N4 and AlN films on Si, was fabricated to improve the crystalline quality of successively grown 30 nm GaN on a 30 nm AlN buffer layer using plasma-assisted molecular beam epitaxy (PA-MBE). The DBL was first prepared by surface nitridation of Si and successively prepared by IRE between the deposited Al and N atoms in β-Si3N4. Both the AlN buffer layer on the DBL and GaN film on the AlN buffer layer were grown by activity-modulation migration enhanced epitaxy (AM-MEE). Hetero epitaxial grown films of GaN(30 nm)/AlN buffer(30 nm)/DBL/Si(1 1 1) were prepared for analysis using a three layer model of grazing incidence-angle X-ray reflectivity (GIXR), which consisted of three layers of GaN, AlN buffer and Si and of the three interfaces of the GaN surface, GaN/AlN buffer and AlN buffer/DBL/Si. The nitridation temperature dependence of the interface roughness of the DBL was measured to be 0.5 and 0.6 nm, for nitridation temperatures of 780 and 830 °C, respectively. The full width at half maximum (FWHM) of rocking curve GaN(0 0 0 2) measured by X-ray diffraction (XRD) for nitridation temperatures of 780 and 830 °C were 58.2 and 55.2 arcmin, respectively.

  16. Investigation of AlN films grown by molecular beam epitaxy on vicinal Si(111) as templates for GaN quantum dots

    SciTech Connect

    Benaissa, M.; Vennegues, P.; Tottereau, O.; Nguyen, L.; Semond, F.

    2006-12-04

    The use of AlN epitaxial films deposited on vicinal Si(111) as templates for the growth of GaN quantum dots is investigated by transmission electron microscopy and atomic force microscopy. It is found that the substrate vicinality induces both a slight tilt of the AlN (0001) direction with respect to the [111] direction and a step bunching mechanism. As a consequence, a dislocation dragging behavior is observed giving rise to dislocation-free areas well suited for the nucleation of GaN quantum dots.

  17. Ar{sup +}-irradiation-induced damage in hydride vapor-phase epitaxy GaN films

    SciTech Connect

    Nakano, Yoshitaka Ogawa, Daisuke; Nakamura, Keiji; Kawakami, Retsuo; Niibe, Masahito

    2015-07-15

    The authors have investigated the electrical characteristics of hydride vapor-phase epitaxy GaN films exposed to Ar{sup +} irradiation, employing Schottky barrier diodes. The Ar{sup +} irradiation tends to largely increase the effective carrier concentration in the near surface region of GaN up to ∼25 nm, due to the generation of donor-type N vacancy defects, compared to the original value before the irradiation. More interestingly, acceptor-type deep-level defects are found to be formed at ∼2.1, ∼2.9, and ∼3.2 eV below the conduction band in the subsequently deeper region, in which Ga vacancies introduced by the Ar{sup +} irradiation are considered to be in-diffused and immediately combined with hydrogen. These N vacancies and hydrogenated Ga vacancies formed are dominantly responsible for changing the depth profiles of the effective carrier concentration via the carrier generation, the carrier trapping, and/or carrier compensation.

  18. Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer

    PubMed Central

    Yu, Yang; Fong, Patrick W. K.; Wang, Shifeng; Surya, Charles

    2016-01-01

    High quality wafer-scale free-standing WS2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS2 and hydrophilic property of sapphire. Our results show that vdWR is a reliable technique to obtain type-II textured crystallites in WS2, which is the key factor for the wafer-scale etching-free transfer. The transferred films were found to be free of observable wrinkles, cracks, or polymer residues. High quality p-n junctions fabricated by room-temperature transfer of the p-type WS2 onto an n-type GaN was demonstrated with a small leakage current density of 29.6 μA/cm2 at −1 V which shows superior performances compared to the directly grown WS2/GaN heterojunctions. PMID:27897210

  19. Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Fong, Patrick W. K.; Wang, Shifeng; Surya, Charles

    2016-11-01

    High quality wafer-scale free-standing WS2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS2 and hydrophilic property of sapphire. Our results show that vdWR is a reliable technique to obtain type-II textured crystallites in WS2, which is the key factor for the wafer-scale etching-free transfer. The transferred films were found to be free of observable wrinkles, cracks, or polymer residues. High quality p-n junctions fabricated by room-temperature transfer of the p-type WS2 onto an n-type GaN was demonstrated with a small leakage current density of 29.6 μA/cm2 at ‑1 V which shows superior performances compared to the directly grown WS2/GaN heterojunctions.

  20. X-ray and transmission electron microscopy characterization of twinned CdO thin films grown on a-plane sapphire by metalorganic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Martínez-Tomás, M. C.; Zúñiga-Pérez, J.; Vennéguès, P.; Tottereau, O.; Muñoz-Sanjosé, V.

    2007-07-01

    In the frame of studying II VI oxides of interest in optoelectronic technologies, the structural properties of CdO films grown by metalorganic vapour phase epitaxy on a-plane sapphire substrates have been analysed. The study has been performed by means of X-ray diffraction and cross-sectional transmission electron microscopy measurements. CdO films have been found to grow along [111] with the presence of twinned domains. Asymmetrical reflections have been used to study the crystalline quality of the twinned domains, independent of each other, as well as to determine their relative population. The analysis has been made as a function of growth conditions: VI/II precursors molar ratio and growth temperature.

  1. The importance of structural inhomogeneity in GaN thin films

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; Reis, Roberto dos; Weyher, Jan L.; Staszczak, Grzegorz; Jakieła, Rafał

    2016-12-01

    This paper describes two types of MOCVD-grown n-type GaN layers (Samples A and B) with similar carrier concentration but behaved differently under galvanic photo-etching. In order to understand this behavior, Transmission Electron Microscopy (TEM) for cross-section and plan-view samples, Secondary Ion Mass Spectroscopy (SIMS) and photoluminescence (PL) techniques were applied. SIMS studies showed that Si, C and O are approximately at the same concentration in both samples, but Sample B also contained Fe and Mg. Both GaN samples were grown on sapphire substrate with Ga growth polarity, which was confirmed by Convergent Beam Electron Diffraction (CBED). Despite a smaller layer thickness in Sample B, the density of edge dislocations is almost one order of magnitude lower than in Sample A. In addition, planar defects formed in this sample in the transition area between the undoped buffer and Si doped layers resulted in a substantial decrease in the density of screw dislocations at the sample surface. These planar defects most probably gave rise to the PL lines observed at 3.42 eV and 3.32 eV. The new PL lines that only appeared in Sample B might be related to Mg impurities found in this sample. There were no detectable gettering of these impurities at dislocations using different diffraction conditions. However, Fe rich platelets were found only in Sample B due to the presence of Fe as well as hexagonal features, similar to defects reported earlier in highly Mg-doped GaN. These structural and chemical non-uniformities between the two GaN samples can explain their different etching behaviors. This paper demonstrates that samples with similar carrier concentrations do not necessarily ensure similar structural and optical properties and that additional material characterization are needed to ensure that devices built on such samples have similar performance.

  2. In situ hole doping of wide-gap semiconductors by dual-target simultaneous laser ablation: GaN and SiC epitaxial films

    NASA Astrophysics Data System (ADS)

    Muto, Hachizo; Asano, Takashi; Wang, Rong-Ping; Kusumori, Takeshi

    2005-10-01

    Apparatus for dual-target simultaneous laser ablation deposition and in situ doping techniques have been developed to achieve p-type doping during epitaxial growth of wide-band-gap semiconductors. The apparatus has two target holders with a target-rotation mechanism and a rotation-axis adjusting mechanism to obtain homogeneously doped films. Mg-doped GaN films have been fabricated on 6H-SiC(0001) and Si(111) substrates in NH3 ambient by simultaneous ablation of GaN and Mg-metal targets using two lasers. Junctions of the films with n-type substrates show a diode curve characteristic of p-n junctions, but not for junction with p-Si, indicating hole doping without further procedures. In situ p-type doping to SiC was also achieved by using SiC and Al4C3 targets.

  3. The impact of substrate nitridation temperature and buffer design and synthesis on the polarity of GaN epitaxial films

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Alan Doolittle, W.; Brown, April S.; Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni

    2003-05-01

    The polarity of GaN epitaxial layers grown on GaN and AlN buffer layers was investigated and found to be dependent on nitridation temperature over the range of 200-700°C. When low temperature (LT), 500°C, GaN buffer layers are used, GaN epitaxial layers grown on 200°C nitrided sapphire have a higher density of N-polar inversion domains. However, a high density of dislocation pits was observed on GaN epitaxial layers based on AFM morphology when GaN epitaxial layers were grown on LT GaN buffer of 700°C nitrided sapphire substrate. With high temperature (HT), 850°C, AlN buffer layers, the density of N-polar inversion domains in GaN epitaxial layers depends on the thickness of AlN buffer layer. The structural quality of Ga-polar GaN epitaxial layer is dramatically improved when LT GaN and HT AlN buffer layers are combined with an optimized annealing time. The measured full-widths at half-maximum of (0 0 0 2) symmetric and (1 0 .4) asymmetric reflections are 68 and 246 arcsec, respectively, for 1.0 μm GaN epitaxial layers. The results presented here can be implemented to produce low dislocation density, single Ga-polar GaN epitaxial layers.

  4. Electroabsorption modulators based on bulk GaN films and GaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kao, Chen-Kai; Bhattacharyya, Anirban; Thomidis, Christos; Paiella, Roberto; Moustakas, Theodore D.

    2011-04-01

    Ultraviolet electroabsorption modulators based on bulk GaN films and on GaN/AlGaN multiple quantum wells were developed and characterized. In both types of devices, the absorption edge at room temperature is dominated by excitonic effects and can be strongly modified through the application of an external electric field. In the bulk devices, the applied voltage causes a broadening and quenching of the excitonic absorption, leading to enhanced transmission. In the quantum-well devices, the external field partially cancels the built-in polarization-induced electric fields in the well layers, thereby increasing the absorption. Unlike optical modulators based on smaller-bandgap zinc blende semiconductors, the bulk devices here are shown to provide similar performance levels as the quantum well devices, which is mainly a consequence of the uniquely large exciton binding energies of nitride semiconductors.

  5. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1992-06-01

    AD-A253 331 Semiannual Report Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication...Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using...34 substrates, such as using a graded AlxGal-xN solid solution as a buffer layer. E. Conclusion We have shown that in the use of our modified gas source MBE

  6. Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate (a-plane Al2O3)

    SciTech Connect

    Zhao, X.; Phillips, L.; Reece, C. E.; Seo, Kang; Krishnan, M.; Valderrama, E.

    2011-01-01

    An energetic condensation technique, cathodic arc discharge deposition, is used to growepitaxialNiobium(Nb)thin films on a-plane sapphire (hexagonal-closed-packed Al2O3) at moderate substrate heating temperature (<400 °C). The epitaxial Nb(110)/Al2O3(1,1,-2,0) thin films reached a maximum residual resistance ratio (RRR) value 214, despite using a reactor-grade Nbcathode source whose RRR was only 30. The measurements suggest that the film’s density of impurities and structural defects are lower when compared to Nb films produced by other techniques, such as magnetron sputtering, e-beam evaporation or molecular-beam-epitaxy. At lower substrate temperature, textured polycrystalline Nbthin films were created, and the films might have twin symmetry grains with {110} orientations in-plane. The texture was revealed by x-ray diffraction pole figures. The twin symmetry might be caused by a combination effect of the Nb/Al2O3 three-dimensional epitaxial relationship (“3D-Registry” Claassen’s nomenclature) and the “Volmer-Weber” (Island) growth model. However, pole figures obtained by electron backscattering diffraction (EBSD) found no twin symmetry on the thin films’ topmost surface (~50 nm in depth). The EBSD pole figures showed only one Nb{110} crystal plane orientation. Finally, a possible mechanism is suggested to explain the differences between the bulk (XRD) and surface (EBSD) pole figures.

  7. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films

    SciTech Connect

    Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X.

    2015-10-05

    We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.

  8. Patterning of GaN Crystal Films with Ion Beams and Subsequent Wet Etching

    DTIC Science & Technology

    2000-11-29

    potassium triphosphate (75°C) 0 Lifts off 0 O 0 Nitric/ boric acid (75°C) 0 Lifts off 0 O Lifts off Nitric/ boric / hydrogen peroxide 0...number of acid and basic solutions, performed at room temperature (25°C) unless otherwise noted. 20010426 006 N.C. No.: 80,243 Applicants: Molnar...et al PATENT APPLICATION TABLE I 15 20 25 30 Solution GaN InN AIN InAIN InGaN Oxalic acid (75°C) 0 Lifts off Lifts off Lifts off Lifts off

  9. Structures and stability of polar GaN thin films on ScAlMgO4 substrate: An ab initio-based study

    NASA Astrophysics Data System (ADS)

    Nakane, Harunobu; Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2017-06-01

    The structures and stability of polar GaN/ScAlMgO4(0001) interfaces are investigated by performing density-functional calculations. On the basis of the calculated interface energies, we find characteristic features of atomic arrangements depending on the polarity of interface. The interface with Ga-adatom is stabilized over the wide range of Ga chemical potential for Ga-polar GaN, while the interface with N-adatom is always stable for N-polar GaN. Furthermore, the interface resulting in Ga-polar films is found to be more stable than that in N-polar films on ScAlMgO4(0001) substrate. The stability of polar GaN/ScAlMgO4 interfaces is interpreted in terms of the formation of stable bonds and charge neutrality at the interface.

  10. Flexible resistive random access memory devices by using NiO x /GaN microdisk arrays fabricated on graphene films

    NASA Astrophysics Data System (ADS)

    Lee, Keundong; Park, Jong-woo; Tchoe, Youngbin; Yoon, Jiyoung; Chung, Kunook; Yoon, Hosang; Lee, Sangik; Yoon, Chansoo; Park, Bae Ho; Yi, Gyu-Chul

    2017-05-01

    We report flexible resistive random access memory (ReRAM) arrays fabricated by using NiO x /GaN microdisk arrays on graphene films. The ReRAM device was created from discrete GaN microdisk arrays grown on graphene films produced by chemical vapor deposition, followed by deposition of NiO x thin layers and Au metal contacts. The microdisk ReRAM arrays were transferred to flexible plastic substrates by a simple lift-off technique. The electrical and memory characteristics of the ReRAM devices were investigated under bending conditions. Resistive switching characteristics, including cumulative probability, endurance, and retention, were measured. After 1000 bending repetitions, no significant change in the device characteristics was observed. The flexible ReRAM devices, constructed by using only inorganic materials, operated reliably at temperatures as high as 180 °C.

  11. Deep-level defects related to the emissive pits in thick InGaN films on GaN template and bulk substrates

    NASA Astrophysics Data System (ADS)

    Sumiya, Masatomo; Toyomitsu, Naoki; Nakano, Yoshitaka; Wang, Jianyu; Harada, Yoshitomo; Sang, Liwen; Sekiguchi, Takashi; Yamaguchi, Tomohiro; Honda, Tohru

    2017-01-01

    We studied the emissive pits in InGaN films grown on compressive and strain-free GaN underlying layers. Pit density decreased with the full width at half maximum of ω(0002) of InGaN. The films grew on compressive and strain-free GaN underlying layers with spiral and step-flow modes, respectively. Carbon impurities accumulated inside the pits. Comparison of cathodoluminescence inside the pits and steady-state photocapacitance spectra showed that the energy level of the carbon impurities appeared at ˜2.8 eV below the conduction band (Ec) for both types of pits. Deep-level defects at Ec -2.4 eV resulting in green fluorescence emission were considered to originate from pits related to screw dislocations.

  12. Optical and structural characterization of GaN thin films at different N to Ga flux ratios

    SciTech Connect

    El-Naggar, Ahmed M.

    2011-01-15

    GaN films were grown on Si(111) substrates under various beam equivalent pressure (BEP) ratios by plasma-assisted molecular beam epitaxy. The optical properties for the grown samples were studied over a wide spectral range from 200 to 3300 nm using the reflectance spectrum only. It was found that increasing the N/Ga BEP ratio from 17.9 to 46.1 increases the refractive index (n) from 2.05 to 2.38 at wavelength 630 nm (for example), while the optical energy gap (E{sub g}) were found to be in the range between 3.325 to 3.35 eV with no specific trend. The structural properties for the grown films were studied through two types of rocking curve measurements; normal rocking curve ({omega}-scan) and triple axis rocking curve ({omega}/2{theta}-scan). It was found that with decreasing the N/Ga ratio from 46.1 to 17.9 the full width at half maximum decreases from 0.62 deg. to 0.58 deg. for {omega}-scan and from 0.022 deg. to 0.021 deg. for {omega}/2{theta}-scan. Thus, our results showed a clear correlation between the optical-structural parameters and the BEP ratios of N and Ga.

  13. Interfacial reaction between metal-insulator transition material NbO2 thin film and wide band gap semiconductor GaN

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kvit, Alexander; Demkov, Alexander

    Materials that undergo a metal-insulator transition (MIT) are potentially useful for a wide variety of applications including electronic and opto-electronic switches, memristors, sensors, and coatings. In most such materials, the MIT is driven by temperature. In one such material, NbO2, the MIT mechanism is primarily of the Peierls-type, in which the dimerization of the Nb atoms without electron correlation causes the transition from metallic to semiconducting. We describe our initial work at combining NbO2 and GaN in epitaxial form, which could be potentially useful in resistive switching devices operating at very high temperatures. We grow NbO2 films on GaN(0001)/Si(111) substrates using reactive molecular beam epitaxy from a metal evaporation source and molecular oxygen. X-ray diffraction shows that the films are found to grow with a single out of plane orientation but with three symmetry-related orientation domains in the plane. In situ x-ray photoelectron spectroscopy confirms that the phase pure NbO2 is formed but that a chemical reaction occurs between the GaN and NbO2 during the growth forming a polycrystalline interfacial layer. We perform STEM-EELS analysis of the film and the interface to further elucidate their chemical and structural properties.

  14. Growth, nitrogen vacancy reduction and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AIN and InN

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.

    1992-02-01

    An atomic layer epitaxy deposition system configured for the growth of thin films of the III-V nitrides of Al, Ga and In has been designed, constructed and commissioned. The system allows the introduction of up to 16 gases without mixing. Self-terminating growth of crystalline GaN films has been achieved on single crystal wafers of (0001) alpha(6H)-SiC. Results of analyses via Auger spectroscopy, electron microscopy and electron diffraction are described. Deposition of AlN and GaN via gas-source MBE was also continued during this period. The principal emphasis concerned the initial stages of growth of both compounds on the substrates of (00001) alpha(6H)-SiC and (0001) sapphire, as determined using X-ray photoelectron spectroscopy. An initial layer of silicon nitride formed on the surface of SiC prior to the deposition of either nitride. The deposition of GaN on sapphire followed the Stranski-Krastanov mode of nucleation and growth, while on SiC, characteristics of three-dimensional growth were evident. By contrast, AlN grew initially in a layer-by-layer mode. Deposition of GaN on vicinal (100) Beta-SiC during UV irradiation resulted in the formation of a new 4H polytype of this material. Deposition of BN via gas-source MBE on Cu(110) resulted in nanocrystalline cBN; films grown on (111) Cu resulted in h-BN (graphitic phase). Similar studies using Si(100) substrates also resulted in the occurrence of cBN. The occurrence of the cubic polytype was enhanced while that of h-BN was discouraged with the use of the UV light at 400-500 C.

  15. Growth of Low Defect Density Gallium Nitride (GaN) Films on Novel Tantalum Carbide (TaC) Substrates for Improved Device Performance

    DTIC Science & Technology

    2009-05-01

    on SiC substrates by pulse laser deposition (PLD) (10) and on magnesium oxide ( MgO ) substrates by electron beam evaporation (11), using TaC films...matched to GaN than currently used substrates. We created the TaC substrate, using pulse laser deposition (PLD) of TaC onto (0001) SiC substrates at...films grown on SiC or sapphire, and they contained more than an order of magnitude fewer dislocations compared to a typical value of 4 x 109 cm–2

  16. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.; Cusco, R.; Artus, L.; Novikov, S. V.; Foxon, C. T.; Calleja, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared results with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.

  17. Application of a Continued-Fraction-Based Theory to Line-Profile in Mn-Doped GaN Film

    NASA Astrophysics Data System (ADS)

    Park, Jung-Il; Lee, Hyeong-Rag; Lee, Su-Ho

    2012-05-01

    Starting with the Kubo formalism and using the projection operator technique (POT) introduced by Kawabata, the optical quantum transition line-profiles (QTLPs) formula for a Mn-doped wurtzite GaN film was derived as a function of temperature at a frequency of 9.49 GHz (X-band), on the basis of continued fraction representation (CFR) which is a counterpart of the conventional series expansion (CSE). Utilizing this formula we obtained the fine-structure parameter a - F = 9.4 ×10-4 cm-1 and fitting parameter ζ= 4.1. The optical quantum transition half-widths (QTHWs) obtained with the use of these parameters agrees quite well with the existing experimental result in the temperature region T > 20 K. The QTHWs increase with increasing temperature due to the interaction of electrons with optical phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition problems.

  18. Isotropic thin PTCDA films on GaN(0 0 0 1)

    NASA Astrophysics Data System (ADS)

    Ahrens, Ch; Flege, J. I.; Jaye, C.; Fischer, D. A.; Schmidt, Th; Falta, J.

    2016-11-01

    The growth of 3, 4, 9, 10-perylene tetracarboxylic dianhydride (PTCDA) on the Ga-polar GaN(0 0 0 1) surface has been studied by x-ray photoelectron spectroscopy (XPS), spot profile analysis low-energy electron diffraction (SPA-LEED), near edge x-ray absorption fine structure (NEXAFS), and scanning tunneling microscopy (STM). The stoichiometric ratios derived from XPS indicate that the molecules remain intact upon adsorption on the surface. Furthermore, no chemical shifts can be observed in the C 1s and O 1s core levels with progressing deposition of PTCDA, suggesting none or only weak interactions between the molecules and the substrate. NEXAFS data indicate the PTCDA molecules being oriented with their molecular plane parallel to the surface. High-resolution STM shows PTCDA islands of irregular shape on the sub-micron scale, and together with corresponding SPA-LEED data reveals a lateral ordering of the molecules that is compatible with the presence of (1 0 2) oriented PTCDA nano-crystals. SPA-LEED moreover clearly shows the presence of homogeneously distributed rotational domains of two-dimensionally isotropic PTCDA.

  19. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    NASA Astrophysics Data System (ADS)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  20. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer.

    PubMed

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-19

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2" tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2" GaN or 4" Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  1. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    PubMed Central

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-01-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate. PMID:27756906

  2. Anisotropic strain and phonon deformation potentials in GaN

    SciTech Connect

    Darakchieva, V.; Arwin, H.; Paskov, P. P.; Monemar, B.; Paskova, T.; Hommel, D.; Schubert, M.; Heuken, M.; Off, J.; Scholz, F.; Haskell, B. A.; Fini, P. T.; Speck, J. S.; Nakamura, S.

    2007-05-15

    We report optical phonon frequency studies in anisotropically strained c-plane- and a-plane-oriented GaN films by generalized infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The anisotropic strain in the films is obtained from high-resolution x-ray diffraction measurements. Experimental evidence for splitting of the GaN E{sub 1}(TO), E{sub 1}(LO), and E{sub 2} phonons under anisotropic strain in the basal plane is presented, and their phonon deformation potentials c{sub E{sub 1}}{sub (TO)}, c{sub E{sub 1}}{sub (LO)}, and c{sub E{sub 2}} are determined. A distinct correlation between anisotropic strain and the A{sub 1}(TO) and E{sub 1}(LO) frequencies of a-plane GaN films reveals the a{sub A{sub 1}}{sub (TO)}, b{sub A{sub 1}}{sub (TO)}, a{sub E{sub 1}}{sub (LO)}, and b{sub E{sub 1}}{sub (LO)} phonon deformation potentials. The a{sub A{sub 1}}{sub (TO)} and b{sub A{sub 1}}{sub (TO)} are found to be in very good agreement with previous results from Raman experiments [V. Yu. Davydov et al., J. Appl. Phys. 82, 5097 (1997)]. Our a{sub A{sub 1}}{sub (TO)} and a{sub E{sub 1}}{sub (LO)} phonon deformation potentials agree well with recently reported theoretical estimations [J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002)], while b{sub A{sub 1}}{sub (TO)} and b{sub E{sub 1}}{sub (LO)} are found to be significantly larger than the theoretical values. A discussion of the observed differences is presented.

  3. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ramaneti, Rajesh; Anaya, Julian; Korneychuk, Svetlana; Derluyn, Joff; Sun, Huarui; Pomeroy, James; Verbeeck, Johan; Haenen, Ken; Kuball, Martin

    2017-07-01

    Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (κDia) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of κDia in the measured 25-225 °C range. Device simulation using the experimental κDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD.

  4. Direct spontaneous growth and interfacial structural properties of inclined GaN nanopillars on r-plane sapphire

    SciTech Connect

    Adikimenakis, A.; Aretouli, K. E.; Tsagaraki, K.; Androulidaki, M.; Georgakilas, A.; Lotsari, A.; Dimitrakopulos, G. P. Kehagias, Th.; Komninou, Ph.

    2015-06-28

    The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structural characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5–6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.

  5. Direct spontaneous growth and interfacial structural properties of inclined GaN nanopillars on r-plane sapphire

    NASA Astrophysics Data System (ADS)

    Adikimenakis, A.; Lotsari, A.; Dimitrakopulos, G. P.; Kehagias, Th.; Aretouli, K. E.; Tsagaraki, K.; Androulidaki, M.; Komninou, Ph.; Georgakilas, A.

    2015-06-01

    The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structural characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5-6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.

  6. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.; Ide, T.; Shimizu, M.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  7. Positron beam study of indium tin oxide films on GaN

    NASA Astrophysics Data System (ADS)

    Cheung, C. K.; Wang, R. X.; Beling, C. D.; Djurisic, A. B.; Fung, S.

    2007-02-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 °C without oxygen and at 200 °C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 × 10-3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy.

  8. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern

    NASA Astrophysics Data System (ADS)

    Mynbaeva, M. G.; Kremleva, A. V.; Kirilenko, D. A.; Sitnikova, A. A.; Pechnikov, A. I.; Mynbaev, K. D.; Nikolaev, V. I.; Bougrov, V. E.; Lipsanen, H.; Romanov, A. E.

    2016-07-01

    A TEM study of defect structure of GaN films grown by chloride vapor-phase epitaxy (HVPE) on GaN/Al2O3 substrates was performed. The substrates were fabricated by metal-organic chemical vapor deposition overgrowth of templates with buried column pattern. The results of TEM study showed that the character of the defect structure of HVPE-grown films was determined by the configuration of the column pattern in the substrate. By choosing the proper pattern, the reduction in the density of threading dislocations in the films by two orders of magnitude (in respect to the substrate material), down to the value of 107 cm-2, was achieved.

  9. An investigation of thin Zr films on 6H-SiC(0001) and GaN(0001) surfaces by XPS, LEED, and STM

    NASA Astrophysics Data System (ADS)

    Idczak, K.; Mazur, P.; Zuber, S.; Markowski, L.

    2016-04-01

    In this work, the results of the growth of zirconium films deposited under the ultrahigh vacuum at room temperature on the 6H-SiC(0001) and GaN(0001) surfaces were studied. Observed changes in the chemical composition, bonding environment, and surface reconstruction, and the effects of high-temperature annealing of the film are presented and discussed as well. In the performed experiment, the X-ray photoelectron spectroscopy, low-energy electron diffraction, and scanning tunneling microscopy were used. The results show that for both investigated substrates, the grown films have eminently rich and varied compositions. Besides the metallic zirconium, there are also zirconium oxides, zirconium carbides, or zirconium nitrides. The growth process proceeds according to the Volmer-Weber mode. Moreover, the zirconium-semiconductor interface does not form typical Schottky contact, but some paths with a quasi-ohmic conduction character can be observed.

  10. High-voltage thin-film GaN LEDs fabricated on ceramic substrates: the alleviated droop effect at 670 W/cm(2).

    PubMed

    Tsai, M L; Liao, J H; Yeh, J H; Hsu, T C; Hon, S J; Chung, T Y; Lai, K Y

    2013-11-04

    High-voltage thin-film GaN LEDs with the emission wavelength of 455 nm were fabricated on ceramic substrates (230 W/m · K). The high-voltage operation was achieved by three cascaded sub-LEDs with dielectric passivation and metal bridges conformally deposited on the side walls. Under the driving power of 670 W/cm(2), the high-voltage LEDs exhibit much alleviated efficiency droop and the operative temperature below 80 °C. The excellent performances were attributed to the improved current spreading within each sub-LED and the superior heat sinking of the ceramic substrate.

  11. Control of polarity of ZnO films grown by plasma-assisted molecular-beam epitaxy: Zn- and O-polar ZnO films on Ga-polar GaN templates

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Ku; Hanada, Takashi; Ko, Hang-Ju; Chen, Yefan; Yao, Takafumi; Imai, Daisuke; Araki, Kiyoaki; Shinohara, Makoto

    2000-11-01

    We report on the growth of polarity-controlled ZnO films by plasma-assisted molecular-beam epitaxy. Different polar (Zn- and O-polar) ZnO films on unipolar (Ga-polar) GaN epilayers are selectively grown. Polarity of ZnO films is evaluated by coaxial impact collision ion scattering spectroscopy. Zn preexposure prior to ZnO growth results in Zn-polar ZnO films (Zn face), while O-plasma preexposure leads to the growth of O-polar ZnO films (O face). High-resolution transmission electron microscopy reveals the formation of an interface layer between ZnO and GaN epilayers in O-plasma preexposed samples, while no interface layer is observed in Zn preexposed samples. The interface layer is identified as single crystalline, monoclinic Ga2O3. We propose models for interface configurations at ZnO/GaN heterointerfaces, which can successfully explain the different polarities of the ZnO films.

  12. Resonantly enhanced selective photochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Trichas, E.; Kayambaki, M.; Iliopoulos, E.; Pelekanos, N. T.; Savvidis, P. G.

    2009-04-01

    Wavelength dependent photochemical etching of GaN films reveals a strong resonant enhancement of the photocurrent at the GaN gap, in close agreement with the excitonic absorption profile of GaN. The corresponding etching rate of GaN strongly correlates with the measured photocurrent. No photocurrent, nor etching is observed for AlGaN films under same excitation conditions. The method could pave the way to the development of truly selective etching of GaN on AlGaN for the fabrication of nitride based optoelectronic devices.

  13. Growth study of nonpolar Zn{sub 1-x}Mg{sub x}O epitaxial films on a-plane bulk ZnO by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Vogel, Stephen; Gries, Katharina I.; Volz, Kerstin; Eickhoff, Martin

    2012-09-17

    Nonpolar Zn{sub 1-x}Mg{sub x}O epitaxial films were grown by plasma-assisted molecular beam epitaxy on a-plane ZnO substrates. A smooth surface morphology was accomplished under oxygen-rich growth conditions. The benefits of the use of ZnO substrates on the structural properties are reflected by a low-density of threading dislocations. Furthermore, no indications for the generation of basal plane stacking faults are found. The pseudomorphic growth on a-plane ZnO substrates efficiently locks the epitaxial Zn{sub 1-x}Mg{sub x}O films to the wurtzite structure up to x = 0.25. The Mg concentration is not constant and increases with larger thickness. The optical properties reflect the influence of alloy disorder.

  14. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  15. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versus 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.

  16. Epitaxial growth and characterization of non-polar a-plane AlGaN films with MgN/AlGaN insertion layers

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhang, Xiong; Zhao, Jianguo; Zhang, Heng; Wu, Zili; Dai, Qian; Wang, Shuchang; Hu, Guohua; Cui, Yiping

    2017-06-01

    The MgN/AlGaN insertion layers were applied for the first time in the growth of non-polar a-plane AlGaN epi-layers by metal organic chemical vapor deposition technology. The full-width-at-half-maximum value of X-ray rocking curve for the a-plane AlGaN epi-layer was decreased by approximately 50.6% and the root-mean-square value of the surface was reduced by 74% by inserting the MgN/AlGaN insertion layers with optimized number of insertion pairs, which revealed that the compressive strain within the a-plane AlGaN epi-layers was effectively reduced, leading to significant improvements in crystalline quality and surface morphology, which is very helpful to fabricate high quality AlGaN-based ultraviolet light-emitting-diodes.

  17. Issues and examples regarding growth of AlN, GaN and Al{sub x}Ga{sub 1{minus}x}N thin films via OMVPE and gas source MBE

    SciTech Connect

    Davis, R.F.; Weeks, T.W. Jr.; Bremser, M.D.; Tanaka, S.; Kern, R.S.; Sitar, Z.; Ailey, K.S.; Perry, W.G.; Wang, C.

    1996-11-01

    Organometallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE) are the most common methods for the growth of thin films of AlN and GaN. Sapphire is the most common substrate; however, a host of materials have been used with varying degrees of success. Both growth techniques have been employed by the authors to grow AlN, GaN and Al{sub x}Ga{sub 1{minus}x}N thin films primarily on 6H-SiC(0001). The mismatch in atomic layer stacking sequences along the growth direction produces double positioning boundaries in AlN and the alloys at the SiC steps; the sequence problem appears to discourage the two-dimensional nucleation of GaN. Films of these materials grown by MBE at 650 C are textured; monocrystalline films are achieved between 850 C (pure GaN) and 1,050 C (pure AlN) by this technique and OMVPE. Donor and acceptor doping of GaN has been achieved via MBE without post growth annealing. Acceptor doping in CVD material requires annealing to displace the H from the Mg and eventually remove it from the material. High brightness light emitting diodes are commercially available; however, numerous concerns regarding metal and nitrogen sources, heteroepitaxial nucleation, the role of buffer layers, surface migration rates as a function of temperature, substantial defect densities and their effect on film and device properties, ohmic and rectifying contacts, wet and dry etching and suitable gate and field insulators must and are being addressed. Selected issues surrounding the growth of these materials with particular examples drawn from the authors` research are presented herein.

  18. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1990-12-01

    Laboratories, Inc. 3. Structural Analysis Reflection high-energy electron diffraction performed during growth indicated that the BGaN film remained...was used (Hitachi H-800) to more closely examine the microstructural evolution of the BN/ BGaN /GaN epitaxial films. Cross-section TEM specimens were... BGaN layer to be a mixture of cubic and wurtzitic phases. This layer was heavily faulted. The latter phenomenon is to be expected given the high

  19. Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thick a-plane AlN films grown on r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Tamaki, Shinya; Yamashita, Yasuhiro; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-08-01

    10-µm-thick a-plane AlN(11\\bar{2}0) films containing a low-temperature AlN (LT-AlN) buffer layer and a high-temperature AlN (HT-AlN) film were prepared on r-plane sapphire (1\\bar{1}02) substrates. The crystallinity of all the samples with different LT-AlN buffer layer thicknesses was improved after thermal annealing and HT-AlN growth, mainly owing to the elimination of domain boundaries and the concurrent suppression of facet formation. The optimum crystallinity of HT-AlN films was obtained with full widths at half maximum of the X-ray rocking curves of 660 arcsec for AlN(11\\bar{2}0)\\parallel [1\\bar{1}00]AlN and 840 arcsec for (0002) using a 200-nm-thick LT-AlN buffer layer.

  20. Method of growing GaN films with a low density of structural defects using an interlayer

    DOEpatents

    Bourret-Courchesne, Edith D.

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  1. Heteroepitaxial growth and surface structure of L1{sub 0}-MnGa(111) ultra-thin films on GaN(0001)

    SciTech Connect

    Mandru, Andrada-Oana; Wang, Kangkang; Cooper, Kevin; Ingram, David C.; Smith, Arthur R.; Garcia Diaz, Reyes; Takeuchi, Noboru; Haider, Muhammad

    2013-10-14

    L1{sub 0}-structured MnGa(111) ultra-thin films were heteroepitaxially grown on GaN(0001) under lightly Mn-rich conditions using molecular beam epitaxy. Room-temperature scanning tunneling microscopy (STM) investigations reveal smooth terraces and angular step edges, with the surface structure consisting primarily of a 2 × 2 reconstruction along with small patches of 1 × 2. Theoretical calculations were carried out using density functional theory, and the simulated STM images were calculated using the Tersoff-Hamman approximation, revealing that a stoichiometric 1 × 2 and a Mn-rich 2 × 2 surface structure give the best agreement with the observed experimental images.

  2. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    NASA Astrophysics Data System (ADS)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  3. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    SciTech Connect

    Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng Chang, Yuan-Ching; Huang, Hao-Ping; Chen, Nai-Chuan

    2014-03-21

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.

  4. Growth, nitrogen vacancy reduction, and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AlN and InN

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Ailey-Trent, K. S.; Kester, Daniel; Paisley, Michael J.; Perry, Bill

    1992-06-01

    Undoped GaN films have been deposited by gas-source MBE having essentially intrinsic electrical character. Acceptor-type behavior has been achieved with Mg doping. The electrical properties of these latter films were resistivity = 0.5 omega-cm, Hall mobility (holes = 10 sq cm/V-s and carrier concentration = 1(10)(exp 18) cu cm. Photo-assisted gas-source MBE growth of stoichiometric GaN was also achieved using a 500 W Hg lamp. Illumination and Ga cell temperature altered the texture of the polycrystalline GaN in unusual ways, changing the growth habit from (0001) is parallel to (100) to (0001) is parallel to (111) and back again. Thin films of cubic-BN (c-BN) were also deposited on various substrates via both gas-source MBE and electron beam MBE. The use of Si(100) substrates, the latter technique, and the characterization tools of RHEED, XPS, LEED, SEM, FTIR, and HRTEM resulted in the achievement of an initial amorphous BN layer followed by a layer of turbostratic BN and subsequently by a layer of cubic BN. Cubic BN films were also deposited on polycrystalline diamond films grown via CVD on Si(100). The effect of the bombarding species was examined. Finally, the plans for both a systematic investigation of the ion implantation and contact development and related characterization of AlN and GaN with n- and p-type dopants and the construction and employment of a UV luminescence facility is discussed.

  5. Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent Fabrication of Superlattice Structures Using AlN and InN

    DTIC Science & Technology

    1990-07-01

    that the BGaN film remained predominantly single crystal, but shows both a normal cubic [110] pattern and a second hexagonal pattern [0110]. By contrast...27 Transmission electron microscopy (iEM) was used (Hitachi H-800) to more closely examine the microstructural evolution of the BN/ BGaN /GaN epitaxial...area diffraction (SAD) also showed the BGaN layer to be a mixture of cubic and wurtzitic phases. This layer was heavily faulted. The latter phenomenon

  6. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  7. Fabrication of high-crystallinity a-plane AlN films grown on r-plane sapphire substrates by modulating buffer-layer growth temperature and thermal annealing conditions

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Yamashita, Yasuhiro; Miyake, Hideto; Hiramatsu, Kazumasa

    2017-06-01

    High-crystallinity a-plane AlN(11 2 ̅0) films containing a low-temperature AlN (LT-AlN) buffer layer and a high-temperature AlN (HT-AlN) film were grown on r-plane sapphire(1 1 ̅02) substrates. We investigated the effect of the growth temperature and thermal annealing conditions for the LT-AlN buffer layers on the crystallinity and surface morphology. The surface roughness of the buffer layers became smooth with the decrease in growth temperature to 900 °C, and the crystallinity of the buffer layers was improved by thermal annealing at temperatures over 1600 °C. HT-AlN films were then grown on the annealed LT-AlN buffer layers at 1500 °C. The optimum crystallinity of HT-AlN films without any facet formation at the surfaces was obtained with full width at half maximum values of the X-ray rocking curves for AlN(11 2 ̅0)//[1 1 ̅00]AlN at 770 and (0002) at 640″.

  8. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  9. Temperature dependence of the point defect properties of GaN thin films studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, HeNan; Zhang, Rong; Liu, Bin; Li, YeCao; Fu, DeYi; Li, Yi; Xie, ZiLi; Zhuang, Zhe; Zheng, YouDou; Wu, JingBo; Jin, BiaoBing; Chen, Jian; Wu, PeiHeng

    2013-11-01

    The dielectric functions of GaN for the temperature and frequency ranges of 10-300 K and 0.3-1 THz are obtained using terahertz time-domain spectroscopy. It is found that there are oscillations of the dielectric functions at various temperatures. Physically, the oscillation behavior is attributed to the resonance states of the point defects in the material. Furthermore, the dielectric functions are well fitted by the combination of the simple Drude model together with the classical damped oscillator model. According to the values of the fitting parameters, the concentration and electron lifetime of the point defects for various temperatures are determined, and the temperature dependences of them are in accordance with the previously reported result. Therefore, terahertz time-domain spectroscopy can be considered as a promising technique for investigating the relevant characteristics of the point defects in semiconductor materials.

  10. Spectroscopic measurements of the surface stoichiometry of chemical vapor deposited GaN

    NASA Astrophysics Data System (ADS)

    Craft, H. S.; Rice, A. L.; Collazo, R.; Sitar, Z.; Maria, J.-P.

    2011-02-01

    We report on the surface stoichiometry of Ga-polar GaN films grown by metalorganic chemical vapor deposition as studied by x-ray photoelectron spectroscopy. GaN film surfaces are found to be Ga-rich, with Ga:N ratios ranging from 1.3:1 to 3.2:1. In vacuo ion-beam sputter/annealing studies show that these treatments drive the apparent Ga:N surface composition farther from unity, either through a decrease in surface contamination, oxidation of the surface, or both. Simple annealing experiments decrease the Ga:N ratio. The measured GaN ratio is correlated with the GaN growth time, suggesting that residual Ga precursor after growth interacts with the GaN surface as it cools.

  11. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  12. P-type doping of GaN

    SciTech Connect

    Wong, Raechelle Kimberly

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.

  13. ZnO nanowire arrays synthesized on ZnO and GaN films for photovoltaic and light-emitting devices

    NASA Astrophysics Data System (ADS)

    Janfeshan, Bita; Sadeghimakki, Bahareh; Sadeghi Jahed, Navid Mohammad; Sivoththaman, Siva

    2014-01-01

    The wide bandgap, one-dimensional zinc oxide (ZnO) nanowires (NWs) and their heterostructures with other materials provide excellent pathways for efficient photovoltaic (PV) and light-emitting devices. ZnO NWs sensitized with quantum dots (QDs) provide high-surface area and tunable bandgap absorbers with a directional path for carriers in advanced PV devices, while ZnO heterojunctions with other p-type wide bandgap materials lead to light-emitting diodes (LEDs) with better emission and waveguiding properties compared with the homojunction counterparts. Synthesis of the structures with the desired morphology is a key to device applications. In this work, ZnO NW arrays were synthesized using hydrothermal method on ZnO and GaN thin films. Highly crystalline, upright, and ordered arrays of ZnO NWs in the 50 to 250-nm diameter range and 1 μm in length were obtained. The morphology and optical properties of the NWs were studied. Energy dispersive x-ray spectroscopy (EDX) analysis revealed nonstoichiometric oxygen content in the grown ZnO NWs. Photoluminescence (PL) studies depicted the presence of oxygen vacancy and interstitial zinc defects in the grown ZnO NWs, underlining the potential for LEDs. Further, hydrophobically ligated CdSe/ZnS QDs were successfully incorporated to the NW arrays. PL analysis indicated the injection of electrons from photoexcited QDs to the NWs, showing the potential for quantum dot-sensitized solar cells.

  14. Cathodoluminescence and Cross-sectional Transmission Electron Microscopy Studies for Deformation Behaviors of GaN Thin Films Under Berkovich Nanoindentation

    PubMed Central

    2008-01-01

    In this study, details of Berkovich nanoindentation-induced mechanical deformation mechanisms of metal-organic chemical-vapor deposition-derived GaN thin films have been systematic investigated with the aid of the cathodoluminescence (CL) and the cross-sectional transmission electron microscopy (XTEM) techniques. The multiple “pop-in” events were observed in the load-displacement (P–h) curve and appeared to occur randomly by increasing the indentation load. These instabilities are attributed to the dislocation nucleation and propagation. The CL images of nanoindentation show very well-defined rosette structures with the hexagonal system and, clearly display the distribution of deformation-induced extended defects/dislocations which affect CL emission. By using focused ion beam milling to accurately position the cross-section of an indented area, XTEM results demonstrate that the major plastic deformation is taking place through the propagation of dislocations. The present observations are in support to the massive dislocations activities occurring underneath the indenter during the loading cycle. No evidence of either phase transformation or formation of micro-cracking was observed by means of scanning electron microscopy and XTEM observations. We also discuss how these features correlate with Berkovich nanoindentation produced defects/dislocations structures.

  15. LETTER TO THE EDITOR: Extended x-ray absorption fine structure and photoluminescence study of Er-implanted GaN films

    NASA Astrophysics Data System (ADS)

    Wruck, D.; Lorenz, K.; Vianden, R.; Reinhold, B.; Mahnke, H.-E.; Baranowski, J. M.; Pakula, K.; Parthier, L.; Henneberger, F.

    2001-11-01

    Extended x-ray absorption fine structure and photoluminescence studies were performed on epitaxial GaN films implanted with 1×1016 cm-2 Er ions at 80 and 160 keV and, for a part of the samples, co-implanted with oxygen ions at 23 keV, followed by an anneal for 60 min at 900°C. It was shown for the samples both with, as well as without, oxygen co-implantation that Er is incorporated in a six-fold coordination with respect to oxygen, as in the cubic bixbyite structure Er2O3. The oxygen contamination of the non-oxygen-implanted samples is assumed to be due to nitrogen-vacancy-assisted oxygen diffusion from the sapphire substrate during annealing. The Stark level splitting of the 4I15/2 ground state of Er3+ observed in the 1.54 µm photoluminescence at low temperature in both types of samples is consistent with the low symmetry of the Er sites expected in cubic bixbyite Er2O3.

  16. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    SciTech Connect

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-10-26

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  17. Structural and defect characterization of Gd-doped GaN films by X-ray diffraction and positron annihilation

    NASA Astrophysics Data System (ADS)

    Yabuuchi, A.; Oshima, N.; O'Rourke, B. E.; Suzuki, R.; Ito, K.; Sano, S.; Higashi, K.; Zhou, Y.-K.; Hasegawa, S.

    2014-04-01

    Molecular-beam-epitaxy-grown Ga1-xGdxN films were investigated by X-ray diffraction and slow positron beams. From the positron lifetime results, N-vacancy-related defects may be expected in the Ga0.9Gd0.1N film grown under Ga-rich conditions which exhibits a lattice expansion in the c-axis direction. In contrast, Ga vacancies more than 1019 cm-3 were detected in the Ga0.9Gd0.1N film grown under N-rich conditions which does not exhibit the lattice expansion, implying that the highly-concentrated Ga vacancies contribute to a relaxation of the lattice distortion caused by incorporating oversized Gd atoms.

  18. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    SciTech Connect

    Choudhary, B. S.; Singh, A.; Tyagi, P. K.; Tanwar, S.; Kumar, M. Senthil; Kushvaha, S. S.

    2016-04-13

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  19. Magnetic resonance studies of the Mg acceptor in thick free-standing and thin-film GaN

    NASA Astrophysics Data System (ADS)

    Zvanut, Mary Ellen

    Mg, the only effective p-type dopant for the nitrides, substitutes for Ga and forms an acceptor with a defect level of about 0.16 eV. The magnetic resonance of such a center should be highly anisotropic, yet early work employing both optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopies revealed a defect with a nearly isotropic g-tensor. The results were attributed to crystal fields caused by compensation and/or strain typical of the heteroepitaxially grown films. The theory was supported by observation of the expected highly anisotropic ODMR signature in homoepitaxially grown films in which dislocation-induced non-uniform strain and compensation are reduced. The talk will review EPR measurements of thin films and describe new work which takes advantage of the recently available thick free-standing GaN:Mg substrates grown by hydride vapor phase epitaxy (HVPE) and high nitrogen pressure solution growth (HNPS). Interestingly, the films and HVPE substrates exhibit characteristically different types of EPR signals, and no EPR response could be induced in the HNPS substrates, with or without illumination. In the heteroepitaxial films, a curious angular dependent line-shape is observed in addition to the nearly isotropic g-tensor characteristic of the Mg-related acceptor. On the other hand, the free-standing HVPE crystals reveal a clear signature of a highly anisotropic shallow acceptor center. Comparison with SIMS measurements implies a direct relation to the Mg impurity, and frequency-dependent EPR studies demonstrate the influence of the anisotropic crystal fields. Overall, the measurements of the thick free-standing crystals show that the Mg acceptor is strongly affected by the local environment. The ODMR was performed by Evan Glaser, NRL and the free-standing Mg-doped HVPE crystals were grown by Jacob Leach, Kyma Tech. The work at UAB is supported by NSF Grant No. DMR-1308446.

  20. Investigation of different mechanisms of GaN growth induced on AlN and GaN nucleation layers

    SciTech Connect

    Tasco, V.; Campa, A.; Tarantini, I.; Passaseo, A.; Gonzalez-Posada, F.; Munoz, E.; Redondo-Cubero, A.; Lorenz, K.; Franco, N.

    2009-03-15

    The evolution of GaN growth on AlN and GaN nucleation layers is compared through morphological and structural analyses, including ion beam analysis. By using AlN nucleation layer grown at high temperature, improved crystalline quality is exhibited by 300 nm thin GaN epilayers. GaN (002) x-ray rocking curve as narrow as 168 arc sec and atomic-step surface morphology characterize such a thin GaN film on AlN. Defects are strongly confined into the first 50 nm of growth, whereas a fast laterally coherent growth is observed when increasing thickness, as an effect of high temperature AlN surface morphology and Ga adatom dynamics over this template.

  1. GaN growth on Si pillar arrays by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Won, Dongjin; Weng, Xiaojun; Yuwen, Yu A.; Ke, Yue; Kendrick, Chito; Shen, Haoting; Mayer, Theresa S.; Redwing, Joan M.

    2013-05-01

    GaN growth on high aspect ratio Si micro-pillar arrays prepared by deep reactive ion etching (DRIE) was investigated using Si(111), Si(110), Si(112), and Si(100) substrates. The sidewall roughness of the Si pillars resulting from DRIE was reduced by thermal annealing at 1100 °C in H2 for 5 min. Conformal AlN buffer layers were grown at 1100 °C on the pillars. In contrast, GaN films grown at 1100 °C were always faceted since GaN preferentially nucleated and grew on the Si{1 1¯ 0} and Si{1 1¯ 1} sidewall planes of the Si pillars. The preferential growth lead to unique symmetries for the independent GaN fins depending on pillar orientation. Lateral growth of the GaN fins at 1100 °C was enhanced with increasing V/III ratio up to 22710. However, the GaN fins did not coalesce seamlessly. A lower growth temperature of 800 °C gave rise to a conformal polycrystalline GaN shell. Post-annealing of the GaN shells at 1100 °C in H2 for 15 min after growth at 800 °C induced highly textured GaN films although the GaN films became partly faceted.

  2. Polarity of semipolar wurtzite crystals: X-ray photoelectron diffraction from GaN(101⁻1) and GaN(202⁻1) surfaces

    SciTech Connect

    Romanyuk, O. Jiříček, P.; Bartoš, I.; Paskova, T.

    2014-09-14

    Polarity of semipolar GaN(101⁻1) (101⁻1⁻) and GaN(202⁻1) (202⁻1⁻) surfaces was determined with X-ray photoelectron diffraction (XPD) using a standard MgKα source. The photoelectron emission from N 1s core level measured in the a-plane of the crystals shows significant differences for the two crystal orientations within the polar angle range of 80–100° from the (0001) normal. It was demonstrated that XPD polar plots recorded in the a-plane are similar for each polarity of the GaN(101⁻1) and GaN(202⁻1) crystals if referred to (0001) crystal axes. For polarity determinations of all important GaN(h0h⁻l) semipolar surfaces, the above given polar angle range is suitable.

  3. GaN nanowire arrays by a patterned metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  4. Incorporation of pervasive impurities on HVPE GaN growth directions

    NASA Astrophysics Data System (ADS)

    Freitas, J. A.; Culbertson, J. C.; Mahadik, N. A.; Glaser, E. R.; Sochacki, T.; Bockowski, M.; Lee, S. K.; Shim, K. B.

    2016-12-01

    High crystallinity thick films with low free carrier concentration (≤1×1015/cm3) and low compensation are required for many GaN-based electronic device applications. It has been demonstrated that low pressure chemical vapor and molecular beam epitaxy techniques can reproducibility deposit homoepitaxial films with low residual impurity concentrations. However, their typical slow growth rates prevent their utilization for thick film growth. Presently, hydride vapor phase epitaxy is the sole method that can deposit films with residual impurity concentrations ≤5×1016/cm3 at hundreds of microns per hour growth rate. It is crucial to verify if this method can reproducibly deliver thick free-standing GaN films of high crystalline quality with exceptionally low and uniform free carrier concentration. X-ray diffraction, Raman scattering, and low temperature photoluminescence experiments were carried out on a number of samples prepared by dicing a free-standing wafer into several pieces perpendicular and parallel to the major growth directions; namely, c-plane {0001}, a-plane {11-20}, and m-plane {1-100}. SIMS depth profiles were employed to identify and quantify the concentration of the pervasive impurities. Spatial maps of a Raman line sensitive to free-carrier concentration were measured to determine the spatial distribution of the net impurity concentration. The reduced concentration of un-compensated shallow donors was also verified by low temperature electron paramagnetic resonance.

  5. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    NASA Astrophysics Data System (ADS)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  6. New buffer layers for GaN on sapphire by atomic layer and molecular stream epitaxy

    SciTech Connect

    Piner, E.L.; He, Y.W.; Boutros, K.S.; McIntosh, F.G.; Roberts, J.C.; Bedair, S.M.; El-Masry, N.A.

    1996-11-01

    The current approach of depositing a low temperature then annealed AlN or GaN buffer for the growth of GaN on sapphire results in a high dislocation density. These dislocations thread through the GaN layer to the surface. Reducing their density either by growing thicker films or using a strained layer superlattice is ineffective. Two new approaches for AlN/GaN buffer layer growth for GaN on sapphire have been employed: Atomic Layer Epitaxy (ALE) and molecular Stream Epitaxy (MSE). ALE is distinguished by organo-metallic/ammonia separation while MSE is distinguished by cyclic annealing of the growing film. Both ALE and MSE enhance two dimensional growth of single crystal GaN on sapphire. The structural quality of epitaxial GaN grown on these buffer layers was studied by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The initial result for the ALE buffer shows an improved quality GaN film with lower defect densities. The MSE grown buffer layer closely resembles that of conventionally grown MOCVD buffer layers observed by others, with dislocations threading through the GaN epilayer. The effects of these buffer layers on the structural and optical properties of GaN grown on sapphire will be presented.

  7. GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Anderson, Jonathan W.; Lee, Kyoung-Keun; Piner, Edwin L.

    2012-03-01

    Gallium nitride (GaN) has enormous potential for applications in high electron mobility transistors (HEMTs) used in RF and power devices. Intrinsic device properties such as high electron mobility, high breakdown voltage, very high current density, electron confinement in a narrow channel, and high electron velocity in the 2-dimensional electron gas of the HEMT structure are due in large part to the wide band gap of this novel semiconductor material system. This presentation discusses the properties of GaN that make it superior to other semiconductor materials, and outlines the research that will be undertaken in a new program at Texas State University to advance GaN HEMT technology. This program's aim is to further innovate the exceptional performance of GaN through improved material growth processes and epitaxial structure design.

  8. Step-induced misorientation of GaN grown on r-plane sapphire

    SciTech Connect

    Smalc-Koziorowska, J.; Dimitrakopulos, G. P.; Sahonta, S.-L.; Komninou, Ph.; Tsiakatouras, G.; Georgakilas, A.

    2008-07-14

    In the growth of nonpolar (1120) a-plane GaN on r-plane (1102) sapphire by plasma-assisted molecular beam epitaxy, misoriented crystallites are observed close to the substrate. They have average diameter {approx}10 nm and are oriented with the (0001){sub GaN} plane approximately parallel to the (2113){sub sapph.} plane and [0110]{sub GaN} parallel [1101]{sub sapph.}. This semipolar orientation is promoted by a low misfit (2.4%) between (1011){sub GaN} and (1210){sub sapph.} planes. Its introduction, after nitridation treatment, is due to GaN nucleation on (2113){sub sapph.} step facets inclined at 26 deg. relative to the r-plane. Two variants are observed, leading to twinning when they abut inside the epilayer.

  9. Hydrogen sensing characteristics of semipolar (112{sup ¯}2) GaN Schottky diodes

    SciTech Connect

    Hyeon Baik, Kwang; Kim, Hyonwoong; Jang, Soohwan; Lee, Sung-Nam; Lim, Eunju; Pearton, S. J.; Ren, F.

    2014-02-17

    The hydrogen detection characteristics of semipolar (112{sup ¯}2) plane GaN Schottky diodes were investigated and compared to c-plane Ga- and N-polar and nonpolar a-plane (112{sup ¯}0) GaN diodes. The semipolar GaN diodes showed large current response to 4% hydrogen in nitrogen gas with an accompanying Schottky barrier reduction of 0.53 eV at 25 °C, and the devices exhibited full recovery to the initial current level upon switching to a nitrogen ambient. The current-voltage characteristics of the semipolar devices remained rectifying after hydrogen exposure, in sharp contrast to the case of c-plane N-polar GaN. These results show that the surface atom configuration and polarity play a strong role in hydrogen sensing with GaN.

  10. Terahertz study of m-plane GaN thin fims

    NASA Astrophysics Data System (ADS)

    Quadir, Shaham; Jang, Der-Jun; Lin, Ching-Liang; Lo, Ikai

    2014-03-01

    We investigate the optical properties of m-plane GaN thin films using the terahertz time domain spectroscopy. The m-plane GaN thin films were grown on γ-LiAlO2 substrates with buffer layers of low temperature grown GaN. The thin films were illuminated with terahertz radiation generated by a LT-GaAs antenna and the transmitted signal was detected by a ZnTe crystal. The polarization of the terahertz wave was chosen to be either parallel or perpendicular to the GaN [0001] direction. We compared the transmitted signals of the m-plane GaN thin films to that of the LAO substrate. The samples as well as the LAO substrate exhibited polarization dependence of absorption in terahertz spectrum. The carrier densities and the mobilities were derived from the transmittance of the THz wave using extended Drude model. We found, in all samples, both the carrier densities and mobilities along the GaN [0001] direction were smaller than those along the GaN [1120] direction due to the stripe formation along the GaN [1120].

  11. Stress and Defect Control in GaN Using Low Temperature Interlayers

    SciTech Connect

    Akasaki, I.; Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Iwaya, M.; Kashima, T.; Katsuragcawa, M.

    1998-12-04

    In organometallic vapor phase epitaxial growth of Gail on sapphire, the role of the low- temperature-deposited interlayers inserted between high-temperature-grown GaN layers was investigated by in situ stress measurement, X-ray diffraction, and transmission electron microscopy. Insertion of a series of low temperature GaN interlayers reduces the density of threading dislocations while simultaneously increasing the tensile stress during growth, ultimately resulting in cracking of the GaN film. Low temperature AIN interlayers were found to be effective in suppressing cracking by reducing tensile stress. The intedayer approach permits tailoring of the film stress to optimize film structure and properties.

  12. Fabrication of a Lateral Polarity GaN MESFET: An Exploratory Study

    DTIC Science & Technology

    2007-06-27

    the sheet resistance between Ga- polar and mixed-polar GaN films. Highly resistive Ga-polar GaN is advantageous in optoelectronic and electronic device...re si st an ce [ M Ω /s q. ] 108642 2nd nitridation time [min] (b) Figure 5. Sheet resistance of GaN grown on AlN region for the first set of LT...AlN layers deposited for 4, 6, and 8 min. 2nd nitridation time after ex-situ process was kept at 950°C for 1 min. (b) Sheet resistance of GaN grown on

  13. Si in GaN -- On the nature of the background donor

    SciTech Connect

    Wetzel, C.; Chen, A.L.; Suski, T.; Ager, J.W. III; Walukiewicz, W.

    1996-08-01

    A characterization of the Si impurity in GaN is performed by Raman spectroscopy. Applying hydrostatic pressure up to 25 GPa the authors study the behavior of the LO phonon-plasmon mode in a series of high mobility Si doped GaN films. In contrast to earlier results on unintentionally doped bulk GaN crystals no freeze out of the free carriers could be observed in Si doped samples. The authors find that Si is a shallow hydrogenic donor throughout the pressure range studied. This result positively excludes Si incorporation as a dominant source of free electrons in previously studied bulk GaN samples.

  14. Growth of freestanding GaN using pillar-epitaxial lateral overgrowth from GaN nanocolumns

    NASA Astrophysics Data System (ADS)

    Bougrioua, Z.; Gibart, P.; Calleja, E.; Jahn, U.; Trampert, A.; Ristic, J.; Utrera, M.; Nataf, G.

    2007-12-01

    Dislocation-free and strain-free GaN nanopillars, grown on Si by molecular beam epitaxy, were used as nanoseeds for a new form of epitaxial lateral overgrowth (ELO) by metalorganic vapour phase epitaxy (MOVPE) until full coalescence. Such overgrown GaN films are almost relaxed and were used as templates for producing thick GaN layers by halide vapour phase epitaxy (HVPE). The final GaN film is easily separated from the starting Si substrate. This is henceforth a new technology to produce freestanding GaN. The GaN crystal quality was assessed by transmission electron microscopy (TEM), photo- and cathodoluminescence (PL, CL). It was seen that the pillar-ELO is produced from a limited number of nanopillars. Some dislocations and basal stacking faults are formed during the coalescence. However, those that propagate parallel to the substrate do not replicate in the top layer and it is expected that the thickened material present a reduced defect density.

  15. Optical and field emission properties of layer-structure GaN nanowires

    SciTech Connect

    Cui, Zhen; Li, Enling; Shi, Wei; Ma, Deming

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  16. Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction.

    PubMed

    Liu, Nishuang; Tian, Weiwei; Zhang, Xianghui; Su, Jun; Zhang, Qi; Gao, Yihua

    2012-08-27

    The giant improvement of ultraviolet response behavior of a conventional GaN p-n film structured detector by the incorporation of slanted GaN nanowires is reported. The GaN nanowires/p-n film structure shows great photoresponse performance, exhibiting a short response time <0.1 s and a high sensitivity, being stable and reproducible with an on/off current contrast ratio as high as 1800 at zero bias under 365 nm ultraviolet light irradiation. Via carefully analyzing the experiment result and the band diagram of the device, the enhancement can be predominantly attributed to the photogenerated electrons in the slanted GaN nanowires.

  17. Influence of polarity on GaN thermal stability

    NASA Astrophysics Data System (ADS)

    Mastro, M. A.; Kryliouk, O. M.; Anderson, T. J.; Davydov, A.; Shapiro, A.

    2005-01-01

    A comparative study of the stability of Ga- and N-polar GaN films was made in different gas ambients (N 2, H 2, NH 3, HCl). The Ga-polar films were observed to undergo a dissociative sublimation, while the N-polar films formed condensed Ga in addition to the gaseous species. The difference in polarity affects the morphology and bonding on the surface, and thus, stability of the atoms bonded to the surface.

  18. Critical issues for homoepitaxial GaN growth by molecular beam epitaxy on hydride vapor-phase epitaxy-grown GaN substrates

    NASA Astrophysics Data System (ADS)

    Storm, D. F.; Hardy, M. T.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Meyer, D. J.; McConkie, Thomas O.; Zhou, Lin; Smith, David J.

    2016-12-01

    While the heteroepitaxial growth of gallium nitride-based materials and devices on substrates such as SiC, sapphire, and Si has been well-documented, the lack of a cost-effective source of bulk GaN crystals has hindered similar progress on homoepitaxy. Nevertheless, freestanding GaN wafers are becoming more widely available, and there is great interest in growing GaN films and devices on bulk GaN substrates, in order to take advantage of the greatly reduced density of threading dislocations, particularly for vertical devices. However, homoepitaxial GaN growth is far from a trivial task due to the reactivity and different chemical sensitivities of N-polar (000_1) and Ga-polar (0001) GaN surfaces, which can affect the microstructure and concentrations of impurities in homoepitaxial GaN layers. In order to achieve high quality, high purity homoepitaxial GaN, it is necessary to investigate the effect of the ex situ wet chemical clean, the use of in situ cleaning procedures, the sensitivity of the GaN surface to thermal decomposition, and the effect of growth temperature. We review the current understanding of these issues with a focus on homoepitaxial growth of GaN by molecular beam epitaxy (MBE) on c-plane surfaces of freestanding GaN substrates grown by hydride vapor phase epitaxy (HVPE), as HVPE-grown substrates are most widely available. We demonstrate methods for obtaining homoepitaxial GaN layers by plasma-assisted MBE in which no additional threading dislocations are generated from the regrowth interface and impurity concentrations are greatly reduced.

  19. Influence of Ga/N ratio on morphology, vacancies, and electrical transport in GaN grown by molecular beam epitaxy at high temperature

    NASA Astrophysics Data System (ADS)

    Koblmüller, G.; Reurings, F.; Tuomisto, F.; Speck, J. S.

    2010-11-01

    The effect of Ga/N flux ratio on surface morphology, incorporation of point defects and electrical transport properties of GaN films grown by plasma-assisted molecular beam epitaxy in a recently developed high-temperature growth regime was investigated. The homoepitaxial (0001) GaN films grown at ˜780-790 °C showed smoothest morphologies near the cross-over between N-rich and Ga-rich growth (0.75<Ga/N<1.1) contrasting previous observations for low-temperature growth. The higher-quality growth near Ga/N˜1 resulted from lower thermal decomposition rates and was corroborated by slightly lower Ga vacancy concentrations [VGa], lower unintentional oxygen incorporation, and improved electron mobilities. The consistently low [VGa], i.e., ˜1016 cm-3 for all films attribute further to the significant benefits of the high-temperature growth regime.

  20. Validity of Vegard’s rule for Al1-xInxN (0.08  <  x  <  0.28) thin films grown on GaN templates

    NASA Astrophysics Data System (ADS)

    Magalhães, S.; Franco, N.; Watson, I. M.; Martin, R. W.; O'Donnell, K. P.; Schenk, H. P. D.; Tang, F.; Sadler, T. C.; Kappers, M. J.; Oliver, R. A.; Monteiro, T.; Martin, T. L.; Bagot, P. A. J.; Moody, M. P.; Alves, E.; Lorenz, K.

    2017-05-01

    In this work, comparative x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) measurements allow a comprehensive characterization of Al1-xInxN thin films grown on GaN. Within the limits of experimental accuracy, and in the compositional range 0.08  <  x  <  0.28, the lattice parameters of the alloys generally obey Vegard’s rule, varying linearly with the InN fraction. Results are also consistent with the small deviation from linear behaviour suggested by Darakchieva et al (2008 Appl. Phys. Lett. 93 261908). However, unintentional incorporation of Ga, revealed by atom probe tomography (APT) at levels below the detection limit for RBS, may also affect the lattice parameters. Furthermore, in certain samples the compositions determined by XRD and RBS differ significantly. This fact, which was interpreted in earlier publications as an indication of a deviation from Vegard’s rule, may rather be ascribed to the influence of defects or impurities on the lattice parameters of the alloy. The wide-ranging set of Al1-xInxN films studied allowed furthermore a detailed investigation of the composition leading to lattice-matching of Al1-xInxN/GaN bilayers.

  1. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  2. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  3. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  4. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-07-01

    We demonstrate the high structural and optical properties of InxGa1‑xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm‑2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1‑xN epilayers can be achieved with high optical quality of InxGa1‑xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  5. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  6. Direct growth of freestanding GaN on C-face SiC by HVPE

    PubMed Central

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-01-01

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra. PMID:26034939

  7. Pulsed laser annealing of Be-implanted GaN

    SciTech Connect

    Wang, H.T.; Tan, L.S.; Chor, E.F.

    2005-11-01

    Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

  8. Pulsed laser annealing of Be-implanted GaN

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Tan, L. S.; Chor, E. F.

    2005-11-01

    Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

  9. MOCVD growth of GaN on Si through novel substrate modification techniques

    NASA Astrophysics Data System (ADS)

    Gagnon, Jarod C.

    GaN is a semiconductor material with great potential for use in high power electronics and optoelectronics due to the high electron mobility, high breakdown voltage, high thermal stability, and large direct bandgap of GaN. Si is a desirable substrate material for GaN heteroepitaxy due to the low cost of production, large wafer sizes available, and current widespread use in the electronics industry. The growth of GaN/Si devices suffers from the lattice and CTE mismatches between GaN and Si and therefore multiple methods of strain reduction have been employed to counter these effects. In this work we presented two novel methods of substrate modification to promote the growth of device quality GaN on Si. Initial work focused on the implantation of AlN/Si(111) substrates with N+ ions below the AlN/Si(111) interface. A reduction in the initial compressive stress in GaN films as well as the degree of tensile stress generation during growth was observed on implanted samples. Optical microscopy of the GaN surfaces showed reduced channeling crack density on implanted substrates. Transmission electron microscopy (TEM) studies showed a disordered layer in the Si substrate at the implantation depth which consisted of a mixture of polycrystalline and amorphous Si. Evidence was provided to suggest that the disordered layer at the implantation depth was acting as a compliant layer which decoupled the GaN film from the bulk Si substrate and partially accommodated the tensile stress formed during growth and cooling. A reduction in threading dislocation (TD) density on ion implanted substrates was also observed. Additional studies showed that by increasing the lateral size of AlN islands, the tensile growth stress and TD density in GaN films on ion implanted substrates could be further reduced. XRD studies showed an expansion of the AlN lattice on implanted substrates with larger lateral island sizes. The final tensile growth stress of films on implanted substrates was further

  10. High responsivity A-plane GaN-based metal-semiconductor-metal photodetectors for polarization-sensitive applications

    SciTech Connect

    Navarro, A.; Rivera, C.; Pereiro, J.; Munoz, E.; Imer, B.; DenBaars, S. P.; Speck, J. S.

    2009-05-25

    The fabrication and characterization of metal-semiconductor-metal polarization-sensitive photodetectors based on A-plane GaN grown on R-plane sapphire substrates is reported. These photodetectors take advantage of the in-plane crystal anisotropy, which results in linear dichroism near the band gap energy. The high resistivity of the A-plane GaN material leads to extremely low dark currents. For an optimized finger spacing of 1 {mu}m, dark current density and responsivity at 30 V are 0.3 nA/mm{sup 2} and 2 A/W, respectively. A maximum polarization sensitivity ratio of 1.8 was determined. In a differential configuration, the full width at half maximum of the polarization-sensitive region is 8.5 nm.

  11. Growth of low-threading-dislocation-density GaN on graphene by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    He, Shunyu; Xu, Yu; Qi, Lin; Li, Zongyao; Cao, Bing; Wang, Chinhua; Zhang, Jicai; Wang, Jianfeng; Xu, Ke

    2017-03-01

    Recently, gallium nitride (GaN) films grown on graphene have been widely studied. Here, we have grown low-threading-dislocation-density GaN films on graphene by hydride vapor phase epitaxy (HVPE). The full widths at half maximum (FWHMs) of X-ray rocking curves (XRCs) of the GaN films were 276 and 350 arcsec at the 0002 and 10\\bar{1}2 reflections, respectively. This shows that the threading dislocation densities are on the order of magnitude of 108 cm‑2, which is consistent with the results of cathodoluminescence (CL).

  12. Inversion domains in GaN grown on sapphire

    SciTech Connect

    Romano, L.T.; Northrup, J.E.; OKeefe, M.A.

    1996-10-01

    Planar defects observed in GaN films grown on (0001) sapphire have been identified as inversion domain boundaries (IDBs) by a combination of high resolution transmission electron microscopy, multiple dark field imaging, and convergent beam electron diffraction techniques. Films grown by molecular beam epitaxy (MBE), metalorganic vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE) were investigated and all were found to contain IDBs. The IDBs in the MBE and HVPE films extended from the interface to the film surface and formed columnar domains that ranged in width from 3 to 20 nm in the MBE films and up to 100 nm in the HVPE films. For the films investigated, the MBE films had the highest density, and the MOCVD films had the lowest density of IDBs. The nucleation of inversion domains (IDs) may result from step-related inhomogeneities of the GaN/sapphire interface. {copyright} {ital 1996 American Institute of Physics.}

  13. High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Koblmueller, G.; Wu, F.; Mates, T.; Speck, J. S.; Fernandez-Garrido, S.; Calleja, E.

    2007-11-26

    An alternative approach is presented for the plasma-assisted molecular beam epitaxy of high-quality GaN. Under N-rich growth conditions, an unexpected layer-by-layer growth mode was found for a wide range of growth temperatures in the GaN thermal decomposition regime (>750 deg. C). Consequently, superior surface morphologies with roughness of less than 1 nm (rms) have been achieved. For lightly Si-doped GaN films, room-temperature electron mobilities exceeding 1100 cm{sup 2}/V s were measured, surpassing the commonly insulating nature of GaN grown under N-rich conditions at low temperature.

  14. Nearly 4-Inch-Diameter Free-Standing GaN Wafer Fabricated by Hydride Vapor Phase Epitaxy with Pit-Inducing Buffer Layer

    NASA Astrophysics Data System (ADS)

    Sato, Tadashige; Okano, Shinya; Goto, Takenari; Yao, Takafumi; Seto, Ritsu; Sato, Akira; Goto, Hideki

    2013-08-01

    A free-standing GaN wafer was fabricated by depositing a GaN buffer that induced the formation of pits (hereafter, pit-inducing GaN buffer) on a low-temperature-grown GaN buffer on the sapphire substrate. A high-temperature-grown GaN layer was grown on the pit-inducing GaN buffer that induced the formation of pits on the high-temperature-grown GaN layer. The pit-inducing buffer suppresses crack formation in the thick GaN film thereby releasing growth stress. Thermal stress in GaN on a sapphire system is also discussed on the basis of calculations utilizing a bilayer model. We have succeeded in the fabrication of a nearly 4-in.-diameter free-standing GaN thick wafer with a pit-inducing GaN buffer by one-stop hydride vapor phase epitaxy, which will lead to a low-cost fabrication of free-standing GaN wafers.

  15. Preparation and characterization of one-dimensional GaN nanorods with Tb intermediate layer

    SciTech Connect

    Shi, Feng; Xue, Chengshan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanorods have been prepared on Si substrates by magnetron sputtering. ► GaN nanorods are single crystal with hexagonal wurtzite structure. ► GaN nanorods are high-quality crystalline after ammoniating at 950 °C for 15 min. ► Ammoniating temperatures and times affect the growth of GaN nanorods significantly. -- Abstract: GaN nanorods have been successfully prepared on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga{sub 2}O{sub 3}/Tb thin films. X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), FT-IR spectrophotometer, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), and photoluminescence (PL) spectroscopy were used to characterize the microstructures, morphologies compositions and optical properties of the GaN samples. The results demonstrate that the nanorods are single crystal GaN with hexagonal wurtzite structure and high-quality crystalline after ammoniating at 950 °C for 15 min, which have the size of 100–150 nm in diameter. Ammoniating temperatures and times affect the growth of GaN nanorods significantly. The growth procedure mainly follows the Tb catalyst-assisted VLS mechanism.

  16. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  17. The process and mechanism of the GaN nanoparticles formed by nitridation of β-Ga2O3 crystal

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Wang, Liang-Ling

    2017-04-01

    The process of conversion from β-Ga2O3 single crystal to gallium nitride (GaN) in an atmosphere of NH3 by chemical vapor deposition is investigated. The surface morphology and microstructure of the GaN nanoparticles are observed by scanning electron microscope, which indicates that the growth of GaN is via the Volmer-Weber mechanism. The β-Ga2O3 is firstly evaporated at high temperature to form the porous layer, followed by the surface-defect induced GaN nucleation formation. The crystalline structure and epitaxial relationship of the GaN nanoparticles are investigated by X-ray diffraction (XRD) via ω-2𝜃, showing GaN (0002) and (0004) diffraction peaks in the XRD spectra. It is concluded that the polycrystalline GaN film with hexagonal structure has a strong c-axis preferential orientation.

  18. Preparation of Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy with Void-Assisted Separation

    NASA Astrophysics Data System (ADS)

    Oshima, Yuichi; Eri, Takeshi; Shibata, Masatomo; Sunakawa, Haruo; Kobayashi, Kenji; Ichihashi, Toshinari; Usui, Akira

    2003-01-01

    We have developed a novel technique for preparing large-scale freestanding GaN wafers. Hydride vapor phase epitaxy (HVPE) growth of thick GaN layer was performed on a GaN template with a thin TiN film on the top. After the cooling process of the HVPE growth, the thick GaN layer was easily separated from the template by the assistance of many voids generated around the TiN film. As a result, a freestanding GaN wafer was obtained. The wafer obtained had a diameter of 45 mm, and a mirror-like surface. The-full-width-at-half-maximum (FWHM) of (0002) and (10\\bar{1}0) peaks in the X-ray rocking curve profile were 60 and 92 arcsec, respectively. The dislocation density was evaluated at 5× 106 cm-3 by etch pit density measurement.

  19. GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Hunter, J.; Tsong, I.

    1998-10-14

    The evolution of stress in gallium nitride films on sapphire has been measured in real- time during metal organic chemical vapor deposition. In spite of the 161%0 compressive lattice mismatch of GaN to sapphire, we find that GaN consistently grows in tension at 1050"C. Furthermore, in-situ stress monitoring indicates that there is no measurable relaxation of the tensile growth stress during annealing or thermal cycling.

  20. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  1. Effects of Ga:N addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing.

    PubMed

    Ahn, Byung Du; Jeon, Hye Ji; Park, Jin-Seong

    2014-06-25

    This paper addressed the effect of gallium nitrate hydrate addition on thin film transistor (TFT) performance and positive bias stability of amorphous zinc tin oxide (ZTO) TFTs by solution processing, Further, the mechanisms responsible for chemical properties and electronic band structure are explored. A broad exothermic peak accompanied by weight loss appeared in the range from about 350 to 570 °C for the ZTO solution; the thermal reaction of the Ga-ZTO:N solution was completed at 520 °C. This is because the gallium nitrate hydrate precursor promoted the decomposition and dehydroxylation reaction for Zn(CH3COO)2·2H2O and/or SnCl2·2H2O precursors. The concentrations of carbon and chloride in gallium nitrate hydrate added ZTO films annealed at 400 °C have a lower value (C 0.65, Cl 0.65 at. %) compared with those of ZTO films (C 3.15, Cl 0.82 at. %). Absorption bands at 416, 1550, and 1350 cm(-1) for GaZTO:N films indicated the presence of ZnGa2O4, N-H, and N═O groups by Fourier transform infrared spectroscopy measurement, respectively. As a result, an inverted staggered Ga-ZTO:N TFT exhibited a mobility of 4.84 cm(2) V(-1) s(-1) in the saturation region, a subthreshold swing of 0.35 V/decade, and a threshold gate voltage (Vth) of 0.04 V. In addition, the instability of Vth values of the ZTO TFTs under positive bias stress conditions was suppressed by adding Ga and N from 13.6 to 3.17 V, which caused a reduction in the oxygen-related defects located near the conduction band.

  2. Pit assisted oxygen chemisorption on GaN surfaces.

    PubMed

    Mishra, Monu; Krishna T C, Shibin; Aggarwal, Neha; Kaur, Mandeep; Singh, Sandeep; Gupta, Govind

    2015-06-21

    A comprehensive analysis of oxygen chemisorption on epitaxial gallium nitride (GaN) films grown at different substrate temperatures via RF-molecular beam epitaxy was carried out. Photoemission (XPS and UPS) measurements were performed to investigate the nature of the surface oxide and corresponding changes in the electronic structure. It was observed that the growth of GaN films at lower temperatures leads to a lower amount of surface oxide and vice versa was observed for a higher temperature growth. The XPS core level (CL) and valence band maximum (VBM) positions shifted towards higher binding energies (BE) with oxide coverage and revealed a downward band bending. XPS valence band spectra were de-convoluted to understand the nature of the hybridization states. UPS analysis divulged higher values of electronic affinity and ionization energy for GaN films grown at a higher substrate temperature. The surface morphology and pit structure were probed via microscopic measurements (FESEM and AFM). FESEM and AFM analysis revealed that the film surface was covered with hexagonal pits, which played a significant role in oxygen chemisorption. The favourable energetics of the pits offered an ideal site for oxygen adsorption. Pit density and pit depth were observed to be important parameters that governed the surface oxide coverage. The contribution of surface oxide was increased with an increase in average pit density as well as pit depth.

  3. Controlling of the electrical resistivity of GaN layer using AIN nucleation layer.

    PubMed

    Yi, Min-Su; Kim, Hyo Jung; Lee, Hyun Hwi

    2011-08-01

    The sheet resistance (Rs) of undoped GaN films on AIN/c-plane sapphire substrate was investigated. The Rs was strongly dependent on the AIN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using X-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AIN nucleation layer (NL) and was gradually relaxed as increasing AIN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AIN layer condition, which was originated by the crossover from planar to island grains of AIN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AIN buffer layer affected the electric resistance of GaN film.

  4. Morphological and microstructural stability of N-polar InAlN thin films grown on free-standing GaN substrates by molecular beam epitaxy

    SciTech Connect

    Hardy, Matthew T. Storm, David F.; Downey, Brian P.; Katzer, D. Scott; Meyer, David J.; McConkie, Thomas O.; Smith, David J.; Nepal, Neeraj

    2016-03-15

    The sensitivity of the surface morphology and microstructure of N-polar-oriented InAlN to variations in composition, temperature, and layer thickness for thin films grown by plasma-assisted molecular beam epitaxy (PAMBE) has been investigated. Lateral compositional inhomogeneity is present in N-rich InAlN films grown at low temperature, and phase segregation is exacerbated with increasing InN fraction. A smooth, step-flow surface morphology and elimination of compositional inhomogeneity can be achieved at a growth temperature 50 °C above the onset of In evaporation (650 °C). A GaN/AlN/GaN/200-nm InAlN heterostructure had a sheet charge density of 1.7 × 10{sup 13 }cm{sup −2} and no degradation in mobility (1760 cm{sup 2}/V s) relative to 15-nm-thick InAlN layers. Demonstration of thick-barrier high-electron-mobility transistors with good direct-current characteristics shows that device quality, thick InAlN layers can be successfully grown by PAMBE.

  5. Ultra High Temperature Rapid Thermal Annealing of GaN

    SciTech Connect

    Cao, X.A.; Fu, M.; Han, J.; Pearton, S.J.; Rieger, D.J.; Sekhar, J.A.; Shul, R.J.; Singh, R.K.; Wilson, R.G.; Zolper, J.C.

    1998-11-20

    All of the major acceptor (Mg, C, Be) and donor (Si, S, Se and Te) dopants have been implanted into GaN films grown on A1203 substrates. Annealing was performed at 1100- 1500 C, using AIN encapsulation. Activation percentages of >90Y0 were obtained for Si+ implantation annealed at 1400 C, while higher temperatures led to a decrease in both carrier concentration and electron mobility. No measurable redistribution of any of the implanted dopants was observed at 1450 C.

  6. Microstructure of GaN epitaxy on SiC using AlN buffer layers

    SciTech Connect

    Ponce, F.A.; Krusor, B.S.; Major, J.S. Jr.; Plano, W.E.; Welch, D.F.

    1995-07-17

    The crystalline structure of GaN epilayers on (0001) SiC substrates has been studied using x-ray diffraction and transmission microscopy. The films were grown by metalorganic chemical vapor deposition, using AlN buffer layers. X-ray diffraction measurements show negligible strain in the epilayer, and a long-range variation in orientation. Transmission electron lattice images show that the AlN buffer layer consists of small crystallites. The nature of the buffer layer and its interfaces with the substrate and the GaN film is discussed. The defect structure of the GaN film away from the substrate consists mostly of threading dislocations with a density of {similar_to}10{sup 9} cm{sup {minus}2}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. High quality (In)GaN films on homoepitaxial substrates

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhang, Yong; Yin, Yian

    2017-02-01

    High quality GaN and InGaN epitaxial thin films were deposited by metal organic chemical vapor deposition (MOCVD). Two sets of thin film samples were prepared by varying the substrates and temperatures under a proper condition for achieving better optical properties. The morphological, crystalline quality and optical property of epitaxial layers were characterized by atomic force microscope (AFM), X-ray diffraction (XRD), photoluminescence (PL) and Raman spectra, respectively. It was found that the epitaxial layers grown on GaN homoepitaxial substrate have higher quality than those grown on sapphire substrate. The root mean square (RMS) of GaN film and InGaN film in AFM morphological were 0.5 nm, 2.7 nm respectively. The full width at half maximum (FWHM) of (102) in GaN film on GaN substrate was 33arcsec and the FWHM of (002) in InGaN film on GaN substrate was 50.58arcsec by XRD. The PL peaks of GaN film and InGaN film were 361 nm, 458 nm respectively. The E2 (high) of GaN film and InGaN film in Raman were both 567.08 cm-1.

  8. Features of molecular beam epitaxy of the GaN (0001) and GaN (0001-bar) layers with the use of different methods of activation of nitrogen

    SciTech Connect

    Mizerov, A. M. Jmerik, V. N.; Kaibyshev, V. K.; Komissarova, T. A.; Masalov, S. A.; Ivanov, S. V.

    2009-08-15

    The results of comparative studies of the growth kinetics of the GaN layers of different polarity during ammonia molecular beam epitaxy and plasma-assisted molecular beam epitaxy (PA MBE) of nitrogen with the use of sapphire substrates and GaN(0001-bar)/c-Al{sub 2}O{sub 3} templates grown by gas-phase epitaxy from metalorganic compounds are presented. The possibility is shown of obtaining the GaN layers with an atomically smooth surface during molecular beam epitaxy with plasma activation of nitrogen. For this purpose, it is suggested to carry out the growth in conditions enriched with metal near the mode of formation of the Ga drops at a temperature close to the decomposition temperature of GaN (TS {approx} 760 deg. C). The conclusion is made that an increase in the growth temperature positively affects the structural, optical, and electrical properties of the GaN (0001-bar) layers. A high quality of the GaN (0001) films grown by the PA MBE method at a low temperature of {approx}700 deg. C on the GaN/c-Al{sub 2}O{sub 3} templates is shown.

  9. Dry etching characteristics of GaN using Cl 2/BCl 3 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Cao, Bin; Liu, Sheng

    2010-11-01

    ICP power/RF power, operating pressure, and Cl 2/BCl 3 gas mixing ratio are altered to investigate the effect of input process parameters on the etch characteristics of GaN films. The etch selectivity of GaN over SiO 2 and photoresist is studied. Although higher ICP/RF power can obtain higher GaN/photoresist etch selectivity, it can result in faceting of sidewall and weird sidewall profile due to photoresist mask erosion. Etch rates of GaN and SiO 2 decrease with the increase of operating pressure, and etch selectivity of GaN over SiO 2 increases with the increasing operating pressure at fixed ICP/RF power and mixture component. The highest etch selectivity of GaN over SiO 2 is 7.92, and an almost vertical etch profile having an etch rate of GaN close to 845.3 nm/min can be achieved. The surface morphology and root-mean-square roughness of the etched GaN under different etching conditions are evaluated by atomic force microscopy. The plasma-induced damage of GaN is analyzed using photoluminescence (PL) measurements. The optimized etching process, used for mesa formation during the LED fabrication, is presented. The periodic pattern can be transferred into GaN using a combination of Cl 2/BCl 3 plasma chemistry and hard mask SiO 2. Patterning of the sapphire substrate for fabricating LED with improved extraction efficiency is also possible using the same plasma chemistry.

  10. Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN

    NASA Astrophysics Data System (ADS)

    Zhong, Guohua; Zhang, Kang; He, Fan; Ma, Xuhang; Lu, Lanlan; Liu, Zhuang; Yang, Chunlei

    2012-09-01

    Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce-Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin-orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.

  11. Nucleation and Growth of GaN on GaAs (001) Substrates

    SciTech Connect

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-05-03

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

  12. Investigation of structural and optical properties of GaN on flat and porous silicon

    NASA Astrophysics Data System (ADS)

    Abud, Saleh H.; Selman, Abbas M.; Hassan, Z.

    2016-09-01

    In this work, gallium nitride (GaN) layers were successfully grown on Flat-Si and porous silicon (PSi) using a radio frequency-magnetron sputtering system. Field emission scanning electron microscopy and atomic force microscopy images showed that the grown film on Flat-Si had smoother surface, even though there were some cracks on it. Furthermore, the X-ray diffraction measurements showed that the peak intensity of all the grown layers on PSi was higher than that of the grown layer on Flat-Si. Our detailed observation showed that PSi is a promising substrate to obtain GaN films.

  13. Microstructure of heteroepitaxial GaN grown on mesa-patterned 4H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Bassim, N. D.; Twigg, M. E.; Eddy, C. R.; Henry, R. L.; Holm, R. T.; Culbertson, J. C.; Stahlbush, R. E.; Neudeck, P. G.; Trunek, A. J.; Powell, J. A.

    2004-06-01

    Cross-sectional transmission electron microscopy and atomic force microscopy have been used to study the microstructure of a thin heteroeptiaxial GaN film grown on (0001) 4H-SiC mesa surfaces with and without atomic scale steps. Analysis of a mesa that was completely free of atomic-scale surface steps prior to III -N film deposition showed that these GaN layers had a wide variation in island height (1-3μm ) and included the presence of pit-like defects on the film surface. This sample had a low dislocation density (5×108/cm2) as compared to conventionally grown samples on unpatterned (0001) on-axis 4H-SiC (2×109/cm2), coupled with a 3-5 times increase in grain size. A comparison of a GaN film on the step-free 4H-SiC mesa region with a GaN film on a stepped 4H-SiC mesa region on the same substrate showed that the presence of surface steps reduced the overall grain size of the film from 7-10μm to a grain size of about 2-3μm. Since the GaN films grow via a Volmer-Weber mechanism, a decrease in the number of heterogeneous nucleation sites may allow the growth of large GaN islands before coalescence, thus reducing the number of threading dislocations. These results are promising for the further development of unique, low-dislocation density active regions for GaN device structures on 4H-SiC.

  14. ScAlMgO{sub 4}: An oxide substrate for GaN epitaxy

    SciTech Connect

    Hellman, E.S.; Brandle, C.D.; Schneemeyer, L.F.; Wiesmann, D.; Brener, I.; Siegrist, T.; Berkstresser, G.W.; Buchanan, D.N.E.; Hartford, E.H. Jr.

    1996-11-01

    The authors report the use of ScAlMgO{sub 4} as a substrate for the epitaxial growth of wurzitic GaN. The low misfit (+ 1.8%) allows coherent epitaxy of GaN, as observed by RHEED. The congruent melting of ScAlMgO{sub 4} makes Czochralski growth possible, suggesting that large, high quality substrates can be realized. Boules about 17 mm in diameter are reported. The authors have used nitrogen-plasma molecular beam epitaxy to grow GaN epitaxial films onto ScAlMgO{sub 4} substrates. Band-gap photoluminescence has been observed from some of these films, depending primarily on the deposition conditions. A 3 x 3 superstructure has been observed by RHEED on the GaN surfaces. Structural analysis by x-ray diffraction indicates very good in-plane alignment of the GaN films. They also report thermal expansion measurements for ScAlMgO{sub 4}.

  15. MgCaO Dry Etching on GaN

    NASA Astrophysics Data System (ADS)

    Hlad, M.; Ren, F.

    2005-11-01

    MgCaO films grown by rf plasma-assisted Molecular Beam Epitaxy and capped with Sc2O3 are promising candidates as surface passivation layers and gate dielectrics on GaN-based high electron mobility transistors (HEMTs) and metal-oxide semiconductor HEMTs (MOS-HEMTs) respectively. Two different plasma chemistries were examined for etching these thin films on GaN. Inductively Coupled Plasmas of CH4/H2/Ar produced etch rates only in the range 20-70 å/min, comparable to the Ar sputter rates under the same conditions. Similarly slow MgCaO etch rates (˜100 å/min) were obtained with Cl2/Ar discharges under the same conditions, but GaN showed rates almost an order of magnitude higher. The MgCaO removal rates are limited by the low volatilities of the respective etch products. The CH4/H2/Ar plasma chemistry produced a selectivity of around 2 or etching the MgCaO with respect to GaN.

  16. Atomic layer deposition of GaN at low temperatures

    SciTech Connect

    Ozgit, Cagla; Donmez, Inci; Alevli, Mustafa; Biyikli, Necmi

    2012-01-15

    The authors report on the self-limiting growth of GaN thin films at low temperatures. Films were deposited on Si substrates by plasma-enhanced atomic layer deposition using trimethylgallium (TMG) and ammonia (NH{sub 3}) as the group-III and -V precursors, respectively. GaN deposition rate saturated at 185 deg. C for NH{sub 3} doses starting from 90 s. Atomic layer deposition temperature window was observed from 185 to {approx}385 deg. C. Deposition rate, which is constant at {approx}0.51 A/cycle within the temperature range of 250 - 350 deg. C, increased slightly as the temperature decreased to 185 deg. C. In the bulk film, concentrations of Ga, N, and O were constant at {approx}36.6, {approx}43.9, and {approx}19.5 at. %, respectively. C was detected only at the surface and no C impurities were found in the bulk film. High oxygen concentration in films was attributed to the oxygen impurities present in group-V precursor. High-resolution transmission electron microscopy studies revealed a microstructure consisting of small crystallites dispersed in an amorphous matrix.

  17. Simultaneous measurements and flow visualization in a plane mixing layer

    NASA Astrophysics Data System (ADS)

    Sherikar, S. V.; Chevray, R.

    Wind tunnel experiments performed to determine the flow characteristics of a plane mixing layer are described. Two parallel streams of air moving at different velocities were separated by a splitter plate prior to their mixing in the test section. Gaseous NH3 and gaseous HCI were introduced near the splitter plate to produce an ammonium chloride aerosol which made flow visualization possible. Flow visualization records (movies) and velocity measurements, using laser-doppler-velocimeters tracking silicone oil particles in the flow, were made simultaneously and synchronized using a chopped beam of a He-Ne laser which left a signature on the move film and provided a signal for flow rate data acquisition. Analysis of these synchronized data verified the existence of large, essentially two-dimensional coherent structures in the plane mixing layer.

  18. Experimental study of light output power for vertical GaN-based light-emitting diodes with various textured surface and thickness of GaN layer

    NASA Astrophysics Data System (ADS)

    Kwack, Ho-Sang; Lim, Hyun Soo; Song, Hyun-Don; Jung, Sung-Hoon; Cho, Hyun Kyong; Kwon, Ho-Ki; Oh, Myeong Seok

    2012-06-01

    The light output power (LOP) of vertical-type GaN-based light emitting diodes (LED) with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of texture formation and thickness of GaN film. We have investigated these changes experimentally and note that the enhancement of the LOP by a factor of 2.4 can be improved with optimum texturing parameters as compared to that without texturing. In addition, the LOP of GaN-based LEDs under the same texture density increase slightly as thickness of GaN film decreases. Base on these results, we have evidently demonstrated that the enhancement factors of LOP are related to the correlation between texture size (density) and thickness of GaN film.

  19. Studies on high temperature vapor phase epitaxy of GaN

    NASA Astrophysics Data System (ADS)

    Schneider, T.; Lukin, G.; Zimmermann, F.; Barchuk, M.; Niederschlag, E.; Pätzold, O.; Stelter, M.

    2017-06-01

    This paper deals with technological development and investigation of the high temperature vapor phase epitaxy (HTVPE) for the growth of GaN films. A novel Ga evaporation cell designed for an optimal local temperature field and gas flow is described. The influence of the reactor pressure and the temperature of the Ga melt on the growth rate in HTVPE is studied. The experiments demonstrated growth rates up to 165 μm/h, which could be of potential interest for the deposition of thick GaN layers. Optical properties of the HTVPE layers, as well as typical process impurities are studied by PL, SIMS and GDMS, and discussed in detail. First experiments on a deposition of GaN films on sapphire substrates by HTVPE are presented.

  20. Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers

    NASA Astrophysics Data System (ADS)

    Fan, H. J.; Fleischer, F.; Lee, W.; Nielsch, K.; Scholz, R.; Zacharias, M.; Gösele, U.; Dadgar, A.; Krost, A.

    2004-07-01

    Patterned growth of vertically aligned ZnO nanowire arrays on the micrometer and nanometer scale on sapphire and GaN epilayers is reported. In order to control the position and distribution density of the ZnO nanowires, Au seeding nanodots are defined, as regular arrays, with the assistance of deposition shadow masks. Electron micrographs reveal that the wires are single crystals having wire axes along the hexagonal c-axes. The epitaxial growth of ZnO nanowires on sapphire and GaN films on Si substrates was further verified by cross sectional electron microscopy investigations. Compared to the sapphire case, the perfect epitaxial growth on a GaN film on a Si substrate is believed to be more suitable for potential electronic device applications of ZnO nanowire arrays.

  1. Influence of Annealing Conditions on Dopant Antirotation of Si+ and Mg+ Implanted GaN

    SciTech Connect

    Suvkhanov, A.; Parikh, N.; Usov, I.; Hunn, J.D.; Withrow, S.; Thomson, D.; Herke, T.; Davis, R.F.; Krasnobaev, L.

    1999-10-12

    This report reflects the results of heat treatment under various conditions on as-grown and ion implanted GaN. The PL spectrums of as-grown GaN and GaN with 400 A AlN cap were almost identical. This fact allows one to use PL analysis without AlN stripping. As-grown GaN and ion implanted with Mg and Si crystals were annealed at 1300 C for 10 minutes in three different conditions: in flowing argon gas; in flowing ultra high purity nitrogen; and in a quartz capsule sealed with nitrogen gas. The results of PL, RBS, SEM and TEM analysis show an advantage of GaN high temperature annealing in quartz capsules with nitrogen ambient as compared to annealing in argon and nitrogen gas flow. Encapsulation with nitrogen over-pressure prevents the decomposition of the GaN crystal and the AlN capping film, and allows one to achieve optical activation of implanted Mg and Si after 1300 C annealing.

  2. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    SciTech Connect

    Velazquez, R.; Rivera, M.; Feng, P.

    2016-08-15

    High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN film in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.

  3. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    NASA Astrophysics Data System (ADS)

    Velazquez, R.; Aldalbahi, A.; Rivera, M.; Feng, P.

    2016-08-01

    High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN film in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.

  4. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    PubMed

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  5. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    SciTech Connect

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2013-12-02

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T{sub g}) and T{sub g} ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T{sub g} on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T{sub g} (800 °C) GaN films grown under QB conditions were compared to deep level spectra of high T{sub g} (1150 °C) GaN. Reducing T{sub g}, increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09 eV and 2.9 eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T{sub g} substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T{sub g} GaN growth to active layer growth can mitigate such non-radiative channels.

  6. Interface Electronic State Characterization of Plasma Enhanced Atomic Layer Deposited Dielectrics on GaN

    NASA Astrophysics Data System (ADS)

    Yang, Jialing

    In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25--220 °C). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O 3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H 2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and

  7. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    SciTech Connect

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined

  8. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    SciTech Connect

    Ansah-Antwi, KwaDwo Konadu Chua, Soo Jin; Soh, Chew Beng; Liu, Hongfei

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holes resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.

  9. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  10. Dislocation core structures in Si-doped GaN

    SciTech Connect

    Rhode, S. L. Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  11. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.

    2014-08-01

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  12. The growth of heteroepitaxial CuInSe{sub 2} on free-standing N-polar GaN

    SciTech Connect

    Shih, Cheng-Hung; Lo, Ikai You, Shuo-Ting; Tsai, Cheng-Da; Tseng, Bae-Heng; Chen, Yun-Feng; Chen, Chiao-Hsin; Lee, Chuo-Han; Lee, Wei-I; Hsu, Gary Z. L.

    2014-12-15

    We report that chalcopyrite CuInSe{sub 2} thin films were grown on free-standing N-polar GaN (0001{sup -}) by molecular beam epitaxy. X-ray diffraction showed that the CuInSe{sub 2} thin film was grown in (112) orientation, and its peak of rocking curve with full width at half maximum of about 897.8 arc-sec indicated the epitaxial growth of CuInSe{sub 2} (112) film on N-polar GaN. Microstructure analysis of the CuInSe{sub 2 } showed that the large lattice mismatch (28.5%) between CuInSe{sub 2 } and GaN is accommodated by domain matching, and no interface reaction occurs between CuInSe{sub 2} and GaN. Our experimental results show that GaN is stable for the epitaxial growth of CuInSe{sub 2} thin film, which exhibits a promising potential for optoelectronic applications.

  13. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    SciTech Connect

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.; Tadjer, Marko J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  14. Simulation of optimum parameters for GaN MSM UV photodetector

    SciTech Connect

    Alhelfi, Mohanad A. Ahmed, Naser M. Hashim, M. R. Hassan, Z.; Al-Rawi, Ali Amer

    2016-07-06

    In this study the optimum parameters of GaN M-S-M photodetector are discussed. The evaluation of the photodetector depends on many parameters, the most of the important parameters the quality of the GaN film and others depend on the geometry of the interdigited electrode. In this simulation work using MATLAB software with consideration of the reflection and absorption on the metal contacts, a detailed study involving various electrode spacings (S) and widths (W) reveals conclusive results in device design. The optimum interelectrode design for interdigitated MSM-PD has been specified and evaluated by effect on quantum efficiency and responsivity.

  15. Simulation of optimum parameters for GaN MSM UV photodetector

    NASA Astrophysics Data System (ADS)

    Alhelfi, Mohanad A.; Ahmed, Naser M.; Hashim, M. R.; Al-Rawi, Ali Amer; Hassan, Z.

    2016-07-01

    In this study the optimum parameters of GaN M-S-M photodetector are discussed. The evaluation of the photodetector depends on many parameters, the most of the important parameters the quality of the GaN film and others depend on the geometry of the interdigited electrode. In this simulation work using MATLAB software with consideration of the reflection and absorption on the metal contacts, a detailed study involving various electrode spacings (S) and widths (W) reveals conclusive results in device design. The optimum interelectrode design for interdigitated MSM-PD has been specified and evaluated by effect on quantum efficiency and responsivity.

  16. Highly ordered catalyst-free and mask-free GaN nanorods on r-plane sapphire.

    PubMed

    Aschenbrenner, T; Kruse, C; Kunert, G; Figge, S; Sebald, K; Kalden, J; Voss, T; Gutowski, J; Hommel, D

    2009-02-18

    Self-organized and highly ordered GaN nanorods were grown without catalyst on r-plane sapphire using a combination of molecular beam epitaxy and metal-organic vapor-phase epitaxy. AlN nucleation centers for the nanorods were prepared by nitridation of the sapphire in a metal-organic vapor-phase epitaxy reactor, while the nanorods were grown by molecular beam epitaxy. A coalesced two-dimensional GaN layer was observed between the nanorods. The nanorods are inclined by 62 degrees towards the [Formula: see text]-directions of the a-plane GaN layer. The high degree of ordering and the structural perfection were confirmed by micro-photoluminescence measurements.

  17. Si Complies with GaN to Overcome Thermal Mismatches for the Heteroepitaxy of Thick GaN on Si.

    PubMed

    Tanaka, Atsunori; Choi, Woojin; Chen, Renjie; Dayeh, Shadi A

    2017-08-21

    Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain-relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN-on-Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack-free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 10(7) cm(-2) achieved to date in GaN-on-Si is demonstrated. With these advances, the first vertical GaN metal-insulator-semiconductor field-effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost-effective high power device paradigm on an Si CMOS platform are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    SciTech Connect

    Prakash, Nisha Barvat, Arun; Anand, Kritika; Choursia, B.; Kushvaha, S. S.; Singh, V. N.; Pal, Prabir; Khanna, Suraj P.

    2016-05-23

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaN films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.

  19. Quantum dynamics of a plane pendulum

    SciTech Connect

    Leibscher, Monika; Schmidt, Burkhard

    2009-07-15

    A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution of the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.

  20. Radiation enhanced basal plane dislocation glide in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Vergeles, Pavel S.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2016-05-01

    A movement of basal plane segments of dislocations in GaN films grown by epitaxial lateral overgrowth under low energy electron beam irradiation (LEEBI) was studied by the electron beam induced current (EBIC) method. Only a small fraction of the basal plane dislocation segments were susceptible to irradiation and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide (REDG) in the structure with strong pinning. A dislocation velocity under LEEBI with a beam current lower than 1 nA was estimated as about 10 nm/s. The results assuming the REDG for prismatic plane dislocations were presented.

  1. Fabrication of non-polar GaN based highly responsive and fast UV photodetector

    NASA Astrophysics Data System (ADS)

    Gundimeda, Abhiram; Krishna, Shibin; Aggarwal, Neha; Sharma, Alka; Sharma, Nita Dilawar; Maurya, K. K.; Husale, Sudhir; Gupta, Govind

    2017-03-01

    We report the fabrication of ultraviolet photodetector on non-polar (11-20), nearly stress free, Gallium Nitride (GaN) film epitaxially grown on r-plane (1-102) sapphire substrate. High crystalline film leads to the formation of two faceted triangular islands like structures on the surface. The fabricated GaN ultraviolet photodetector exhibited a high responsivity of 340 mA/W at 5 V bias at room temperature which is the best performance reported for a-GaN/r-sapphire films. A detectivity of 1.24 × 109 Jones and noise equivalent power of 2.4 × 10-11 WHz-1/2 were also attained. The rise time and decay time of 280 ms and 450 ms have been calculated, respectively, which were the fastest response times reported for non-polar GaN ultraviolet photodetector. Such high performance devices substantiate that non-polar GaN can serve as an excellent photoconductive material for ultraviolet photodetector based applications.

  2. GaN Device Processing

    SciTech Connect

    Pearton, S.J.; Ren, F.; Zolper, J.C.; Shul, R.J.

    1998-01-01

    Recent progress in the development of dry and wet etching techniques, implant doping and isolation, thermal processing, gate insulator technology and high reliability contacts is reviewed. Etch selectivities up to 10 for InN over AlN are possible in Inductively Coupled Plasmas using a Cl2/Ar chemistry, but in general selectivities for each binary nitride relative to each other are low ({lt} OR = 2) BECAUSE OF THE HIGH ION ENERGIES NEEDED TO INITIATE ETCHING. IMPROVED N-TYPE OHMIC CONTACT RESISTANCES ARE OBTAINED BY SELECTIVE AREA SI+ IMPLANTATION FOLLOWED BY VERY HIGH TEMPERATURE ({gt}1300 deg C) anneals in which the thermal budget is minimized and AlN encapsulation prevents GaN surface decomposition. Implant isolation is effective in GaN, AlGaN and AlInN, but marginal in InGaN. Candidate gate insulators for GaN include AlN, AlON and Ga(Gd)O(x), but interface state densities are still to high to realize state-of-the-art MIS devices.

  3. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  4. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    PubMed

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  5. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD

    NASA Astrophysics Data System (ADS)

    Mena, Josué; Carvajal, Joan J.; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Diaz, Francesc; Aguiló, Magdalena

    2017-09-01

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  6. Lattice-matched HfN buffer layers for epitaxy of GaN on Si

    SciTech Connect

    Armitage, Robert; Yang, Qing; Feick, Henning; Gebauer, Joerg; Weber, Eicke R.; Shinkai, Satoko; Sasaki, Katsutaka

    2002-05-08

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using sputter-deposited hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 (mu)m. Initial results for GaN grown on the (111) surface show a photoluminescence peak width of 17 meV at 11 K, and an asymmetric x-ray rocking curve width of 20 arcmin. Wurtzite GaN on HfN/Si(001) shows reduced structural quality and peculiar low-temperature luminescence features. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  7. The pyroelectric coefficient of free standing GaN grown by HVPE

    NASA Astrophysics Data System (ADS)

    Jachalke, Sven; Hofmann, Patrick; Leibiger, Gunnar; Habel, Frank S.; Mehner, Erik; Leisegang, Tilmann; Meyer, Dirk C.; Mikolajick, Thomas

    2016-10-01

    The present study reports on the temperature dependent pyroelectric coefficient of free-standing and strain-free gallium nitride (GaN) grown by hydride vapor phase epitaxy (HVPE). The Sharp-Garn method is applied to extract the pyroelectric coefficient from the electrical current response of the crystals subjected to a sinusoidal temperature excitation in a range of 0 °C to 160 °C. To avoid compensation of the pyroelectric response by an internal conductivity, insulating GaN crystals were used by applying C, Mn, and Fe doping during HVPE growth. The different pyroelectric coefficients observed at room temperature due to the doping correlate well with the change of the lattice parameter c. The obtained data are compared to previously published theoretical and experimental values of thin film GaN and discussed in terms of a strained lattice.

  8. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    NASA Astrophysics Data System (ADS)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  9. Structural TEM study of nonpolar a-plane gallium nitride grown on(112_0) 4H-SiC by organometallic vapor phase epitaxy

    SciTech Connect

    Zakharov, Dmitri N.; Liliental-Weber, Zuzanna; Wagner, Brian; Reitmeier,Zachary J.; Preble, Edward A.; Davis, Robert F.

    2005-04-05

    Conventional and high resolution electron microscopy havebeen applied for studying lattice defects in nonpolar a-plane GaN grownon a 4H-SiC substrate with an AlN buffer layer. Samples in plan-view andcross-section configurations have been investigated. Basal and prismaticstacking faults together with Frank and Shockley partial dislocationswere found to be the main defects in the GaN layers. High resolutionelectron microscopy in combination with image simulation supported Drum smodel for the prismatic stacking faults. The density of basal stackingfaults was measured to be ~;1.6_106cm-1. The densities of partialdislocations terminating I1 and I2 types of intrinsic basal stackingfaults were ~;4.0_1010cm-2 and ~;0.4_1010cm-2, respectively. The energyof the I2 stacking fault in GaN was estimated to be (40+-4) erg/cm2 basedon the separation of Shockley partial dislocations. To the best of ourknowledge, the theoretically predicted I3 basal stacking fault in GaN wasobserved experimentally for the first time.

  10. Nanotexturing of GaN light-emitting diode material through mask-less dry etching.

    PubMed

    Dylewicz, Rafal; Khokhar, Ali Z; Wasielewski, Radoslaw; Mazur, Piotr; Rahman, Faiz

    2011-02-04

    We describe a new technique for random surface texturing of a gallium nitride (GaN) light-emitting diode wafer through a mask-less dry etch process. This involves depositing a sub-monolayer film of silica nanospheres (typical diameter of 200 nm) and then subjecting the coated wafer to a dry etch process with enhanced physical bombardment. The silica spheres acting as nanotargets get sputtered and silica fragments are randomly deposited on the GaN epi-layer. Subsequently, the reactive component of the dry etch plasma etches through the exposed GaN surface. Silica fragments act as nanoparticles, locally masking the underlying GaN. The etch rate is much reduced at these sites and consequently a rough topography develops. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) inspections show that random topographic features at the scale of a few tens of nanometres are formed. Optical measurements using angle-resolved photoluminescence show that GaN light-emitting diode material thus roughened has the capability to extract more light from within the epilayers.

  11. Nanotexturing of GaN light-emitting diode material through mask-less dry etching

    NASA Astrophysics Data System (ADS)

    Dylewicz, Rafal; Khokhar, Ali Z.; Wasielewski, Radoslaw; Mazur, Piotr; Rahman, Faiz

    2011-02-01

    We describe a new technique for random surface texturing of a gallium nitride (GaN) light-emitting diode wafer through a mask-less dry etch process. This involves depositing a sub-monolayer film of silica nanospheres (typical diameter of 200 nm) and then subjecting the coated wafer to a dry etch process with enhanced physical bombardment. The silica spheres acting as nanotargets get sputtered and silica fragments are randomly deposited on the GaN epi-layer. Subsequently, the reactive component of the dry etch plasma etches through the exposed GaN surface. Silica fragments act as nanoparticles, locally masking the underlying GaN. The etch rate is much reduced at these sites and consequently a rough topography develops. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) inspections show that random topographic features at the scale of a few tens of nanometres are formed. Optical measurements using angle-resolved photoluminescence show that GaN light-emitting diode material thus roughened has the capability to extract more light from within the epilayers.

  12. GaN High Power Devices

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

    2000-07-17

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  13. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH3:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes—unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting—were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE—both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  14. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    SciTech Connect

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH{sub 3}:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes - unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting - were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE - both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  15. Anisotropy of two-photon absorption and free-carrier effect in nonpolar GaN

    SciTech Connect

    Fang, Yu; Zhou, Feng; Yang, Junyi; Wu, Xingzhi; Xiao, Zhengguo; Li, Zhongguo; Song, Yinglin

    2015-03-30

    We reported a systematic study about the anisotropic optical nonlinearities in bulk m-plane and a-plane GaN crystals by Z-scan and pump-probe with phase object methods under picosecond at 532 nm. The two-photon absorption coefficient, which was measured as a function of polarization angle, exhibited oscillation curves with a period of π/2, indicating a highly polarized optical third-order nonlinearity in both nonpolar GaN samples. Furthermore, free-carrier absorption revealed stronger hole-related absorption for E⊥c than for E//c probe polarization. In contrast, free-carrier refraction was found almost isotropic due to electron-related refraction in the isotropic conduction bands.

  16. Structural Defects in Laterally Overgrown GaN Layers Grown onNon-polar Substrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2007-02-14

    Transmission electron microscopy was used to study defects in lateral epitaxial layers of GaN which were overgrown on a template of a-plane (11{und 2}0) GaN grown on (1{und 1}02) r-plane Al2O3. A high density of basal stacking faults is formed in these layers because the c-planes of wurtzite structure are arranged along the growth direction. Density of these faults is decreasing at least by two orders of magnitude lower in the wings compared to the seed areas. Prismatic stacking faults and threading dislocations are also observed, but their densities drastically decrease in the wings. The wings grow with opposite polarities and the Ga-wing width is at least 6 times larger than N-wing and coalescence is rather difficult. Some tilt and twist was detected using Large Angle Convergent Beam Electron Diffraction.

  17. Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation

    SciTech Connect

    Trivedi, R.A.; Tolle, J.; Chizmeshya, A.V.G.; Roucka, R.; Ritter, Cole; Kouvetakis, J.; Tsong, I.S.T.

    2005-08-15

    We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a ZrB{sub 2}(0001) buffer layer. The method utilizes the decomposition of a single gas-source precursor (D{sub 2}GaN{sub 3}){sub 3} on the substrate surface to form GaN. The film growth process is further promoted by irradiation of ultraviolet light to enhance the growth rate and ordering of the film. The best epitaxial film quality is achieved at a growth temperature of 550 deg. C with a growth rate of 3 nm/min. The films exhibit intense photoluminescence emission at 10 K with a single peak at 3.48 eV, indicative of band-edge emission for a single-phase hexagonal GaN film. The growth process achieved in this study is compatible with low Si processing temperatures and also enables direct epitaxy of GaN on ZrB{sub 2} in contrast to conventional metalorganic chemical vapor deposition based approaches.

  18. Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes

    SciTech Connect

    Guo, Wei Kirste, Ronny; Bryan, Zachary; Bryan, Isaac; Collazo, Ramón; Sitar, Zlatko; Gerhold, Michael

    2015-03-21

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher light extraction efficiency in deep-ultra-violet light-emitting diodes.

  19. Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Kirste, Ronny; Bryan, Zachary; Bryan, Isaac; Gerhold, Michael; Collazo, Ramón; Sitar, Zlatko

    2015-03-01

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher light extraction efficiency in deep-ultra-violet light-emitting diodes.

  20. Bulk ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Dwiliński, R.; Doradziński, R.; Garczyński, J.; Sierzputowski, L. P.; Puchalski, A.; Kanbara, Y.; Yagi, K.; Minakuchi, H.; Hayashi, H.

    2009-05-01

    In this work, results of structural characterization of high-quality ammonothermal GaN are presented. Besides expected low dislocation density (being of the order of 10 3 cm -2) the most interesting feature seems perfect flatness of the crystal lattice of studied crystals. Regardless the size of crystals, lattice curvature radius exceeds 100 m, whereas better crystals reveal radius of several hundred meters and the best above 1000 m. Excellent crystallinity manifests in very narrow X-ray diffraction peaks of full-width at half-maximum (FWHM) values about 16 arcsec.

  1. Incorporation of Mg in Free-Standing HVPE GaN Substrates

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K.

    2016-06-01

    Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm-3 and 1019 cm-3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor-shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm-3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.

  2. Electrical properties of Si-doped GaN prepared using pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Arakawa, Yasuaki; Ueno, Kohei; Imabeppu, Hideyuki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-01-01

    In this study, we investigated the basic electrical properties of Si-doped wurtzite GaN films prepared using a low-temperature pulsed sputtering deposition (PSD) process. We found that the electron concentration can be controlled in the range between 1.5 × 1016 and 2.0 × 1020 cm-3. For lightly Si-doped GaN ([Si] = 2.1 × 1016 cm-3), the room temperature (RT) electron mobility was as high as 1008 cm2 V-1 s-1, which was dominantly limited by polar optical phonon scattering. Moreover, we found that heavily Si-doped GaN prepared using PSD exhibited an RT mobility as high as 110 cm2 V-1 s-1 at an electron concentration of 2 × 1020 cm-3, which indicated that the resistivity of this film was almost as small as those of typical transparent conductive oxides such as indium tin oxide. At lower temperatures, the electron mobility increased to 1920 cm2 V-1 s-1 at 136 K, and the temperature dependence was well explained by conventional scattering models. These results indicate that Si-doped GaN prepared using PSD is promising not only for the fabrication of GaN-based power devices but also for use as epitaxial transparent electrode materials for nitride based optical devices.

  3. Fabrication of well-aligned ZnO nanorods by hydrothermal process using GaN epitaxial layer

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Min; Yi, Sung-Hak; Choi, Seung-Kyu; Kim, Jung-A.; Jung, Woo-Gwang

    2007-02-01

    One dimensional (1-D) ZnO nanorod structure of hexagonal shape was fabricated on epitaxial GaN layer by hydrothermal method. The growth of GaN epitaxial layer was carried out in a two-flow horizontal MOCVD reactor maintained at a pressure of 200 torr. Firstly, a 25 nm thick GaN buffer layer was grown at 520 °C. Then 2~3μm thick GaN epilayer was deposited at 1070 °C. Trimethylgallium (TMG) and NH 3 were used as Ga and N source, and H II gas was used as carrier gas. After the deposition of GaN epilayer thin-film, single crystalline ZnO nanorod was fabricated in aqueous solution. XRD and FE-SEM results showed ZnO nanorod arrays were oriented highly along the (002) plane. The ZnO nanorod was analyzed to have good quality crystallization by FE-TEM. The SAED pattern has shown that ZnO nanorod was grown in the direction along (002)-plane. Photoluminescence (PL) has shown that the GaN-ZnO hetero-structure has shown ultra-violet lasing action at room temperature. Narrow and strong ultra-violet peak was observed in comparison with PL result from epitaxial GaN layer. The analysis results have proved that aqueous solution growth method developed in the present work can be a good application for optical electronic device.

  4. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  5. Selective area growth of GaN on trench-patterned nonpolar bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Okada, Shunsuke; Iwai, Hiroki; Miyake, Hideto; Hiramatsu, Kazumasa

    2017-06-01

    Selective area growth of GaN (SAG-GaN) films grown on nonpolar m-plane bulk GaN substrates using trench patterns was performed by metalorganic vapor phase epitaxy. We investigated the transformation of SAG-GaN facet structures by changing growth temperature, ambient, and miscut angle of substrates. Substrates with trench patterns along a-axis formed (10-11), (10-10), and (000-1) facet structures after SAG-GaN growth for growth conditions of 800 °C in N2+NH3 and 1000 °C in H2+NH3 ambience. Those with trench pattern along 45° off from a-axis contained (11-22), (10-10), (0-110) facet structures in substrates with a miscut angle of 5° whereas SAG-GaN films completely coalesced and formed smooth (10-10) surface in substrates with a miscut angle of 1°. Undesirable grains were formed for 800 °C in N2+NH3 ambience regardless of the miscut angle of substrates whereas theses grains were annihilated using 1000 °C in H2+NH3 ambience due to the intensively hydrogen etching.

  6. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    SciTech Connect

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A.; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  7. Conductivity measurements on GaN grown by OMVPE and HVPE

    SciTech Connect

    Ben-Chorin, M.; Diener, J.; Meyer, B.K.; Drechsler, M.; Volm, D.; Amano, H.; Akasaki, I.; Detchprohm, T.; Hiramatsu, K.

    1996-11-01

    The authors report on conductance and cyclotron resonance (CR) experiments on GaN epitaxial films grown by the OMVPE and HVPE technique. From a precise determination of the electron effective mass the donor binding energy in the effective mass approximation (EMT) is calculated. The authors obtain 31.7 meV. The transport experiments on the HVPE films show that the conductance is thermally activated with an activation energy of 15 meV in contrast to the OMVPE films which showed temperature independent conductivity for temperatures between 4 and 100 K.

  8. Ultrahigh Si+ implant activation efficiency in GaN using a high-temperature rapid thermal process system

    NASA Astrophysics Data System (ADS)

    Cao, X. A.; Abernathy, C. R.; Singh, R. K.; Pearton, S. J.; Fu, M.; Sarvepalli, V.; Sekhar, J. A.; Zolper, J. C.; Rieger, D. J.; Han, J.; Drummond, T. J.; Shul, R. J.; Wilson, R. G.

    1998-07-01

    Si+ implant activation efficiencies above 90%, even at doses of 5×1015cm-2, have been achieved in GaN by rapid thermal processing at 1400-1500 °C for 10 s. The annealing system utilizes molybdenum intermetallic heating elements capable of operation up to 1900 °C, producing high heating and cooling rates (up to 100 °C s-1). Unencapsulated GaN shows severe surface pitting at 1300 °C and complete loss of the film by evaporation at 1400 °C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AlN and 3.4 eV for InN). Encapsulation with either rf magnetron reactively sputtered or metal organic molecular beam epitaxy-grown AlN thin films provides protection against GaN surface degradation up to 1400 °C, where peak electron concentrations of ˜5×1020cm-3 can be achieved in Si-implanted GaN. Secondary ion mass spectrometry profiling showed little measurable redistribution of Si, suggesting DSi⩽10-13 cm2 s-1 at 1400 °C. The implant activation efficiency decreases at higher temperatures, which may result from SiGa to SiN site switching and resultant self-compensation.

  9. XPS investigation of ion beam induced conversion of GaAs(0 0 1) surface into GaN overlayer

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Kumar, Mahesh; Govind; Mehta, B. R.; Shivaprasad, S. M.

    2009-10-01

    For the advance of GaN based optoelectronic devices, one of the major barriers has been the high defect density in GaN thin films, due to lattice parameter and thermal expansion incompatibility with conventional substrates. Of late, efforts are focused in fine tuning epitaxial growth and in search for a low temperature method of forming low defect GaN with zincblende structure, by a method compatible to the molecular beam epitaxy process. In principle, to grow zincblende GaN the substrate should have four-fold symmetry and thus zincblende GaN has been prepared on several substrates including Si, 3C-SiC, GaP, MgO, and on GaAs(0 0 1). The iso-structure and a common shared element make the epitaxial growth of GaN on GaAs(0 0 1) feasible and useful. In this study ion-induced conversion of GaAs(0 0 1) surface into GaN at room temperature is optimized. At the outset a Ga-rich surface is formed by Ar + ion bombardment. Nitrogen ion bombardment of the Ga-rich GaAs surface is performed by using 2-4 keV energy and fluence ranging from 3 × 10 13 ions/cm 2 to 1 × 10 18 ions/cm 2. Formation of surface GaN is manifested as chemical shift. In situ core level and true secondary electron emission spectra by X-ray photoelectron spectroscopy are monitored to observe the chemical and electronic property changes. Using XPS line shape analysis by deconvolution into chemical state, we report that 3 keV N 2+ ions and 7.2 × 10 17 ions/cm 2 are the optimal energy and fluence, respectively, for the nitridation of GaAs(0 0 1) surface at room temperature. The measurement of electron emission of the interface shows the dependence of work function to the chemical composition of the interface. Depth profile study by using Ar + ion sputtering, shows that a stoichiometric GaN of 1 nm thickness forms on the surface. This, room temperature and molecular beam epitaxy compatible, method of forming GaN temperature can serve as an excellent template for growing low defect GaN epitaxial overlayers.

  10. RHEED intensities from two-dimensional heteroepitaxial nanoscale systems of GaN on a Si surface

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2016-10-01

    This paper presents a computer program, which facilitates the calculation of changes to the intensity of RHEED oscillations from the heteroepitaxial structures of (0001)GaN films nucleated on a Si surface. The calculations are based on the use of a dynamical diffraction theory and different models of scattering crystal potential.

  11. Epitaxial growth, electrical and optical properties of a-plane InN on r-plane sapphire

    SciTech Connect

    Ajagunna, A. O.; Iliopoulos, E.; Tsiakatouras, G.; Tsagaraki, K.; Androulidaki, M.; Georgakilas, A.

    2010-01-15

    The heteroepitaxy of a-plane (1120) InN films on r-plane (1102) sapphire substrates, by nitrogen radio frequency plasma-assisted molecular beam epitaxy, has been investigated and compared to that of c-plane (0001) InN. The epitaxial growth of a-plane InN proceeded through the nucleation, growth, and coalescence of three-dimensional islands, resulting in surface roughness that increased monotonically with epilayer thickness. The full width at half maximum of (1120) x-ray diffraction rocking curves decreased significantly with increasing InN thickness, characteristic of structural improvement, and it reached the value of 24 arcmin for a 1 {mu}m thick film. Hall-effect measurements exhibited a similar dependence of electron concentration and mobility on thickness for both the a- and c-plane InN films. The analysis of the Hall-effect measurements, by considering the contribution of two conducting layers, indicates a similar accumulation of low mobility electrons with N{sub s}>10{sup 14} cm{sup -2} at the films' surface/interfacial region for both the a- and c-plane InN films. From optical transmittance measurements, the absorption edge of 0.768 eV was determined for the 1 {mu}m a-plane film, consistent with the expected Burstein-Moss effect. Photoluminescence spectra exhibited a lower energy peak at 0.631 eV, suggesting defect-related transitions.

  12. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Shekari, L.; Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z.

    2012-12-01

    Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  13. Bulk GaN Ion Cleaving

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Gösele, U.

    2010-05-01

    Bulk or freestanding GaN is a key material in various devices other than the blue laser diodes. However, the high cost of bulk GaN wafers severely limits the large scale exploitation of these potential technologies. In this paper, we discuss some engineering issues involved in the application of the ion-cut process to split a thin layer from 2-inch freestanding GaN. This process combines the implantation of light ions and wafer bonding and can possibly be used to reduce the cost of the fabrication of GaN-based devices by allowing the transfer of several bulk quality thin layers from the same donor wafer. To achieve this multi-layer transfer several conditions must be fulfilled. Here issues related to bulk GaN surface irregularities and wafer bowing are discussed. We also describe a method to circumvent most of these problems and achieve high quality bonding.

  14. Dislocation Reduction Mechanisms in Gallium Nitride Films Grown by Canti-Bridge Epitaxy Method

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Gang; Wang, Jing; Pei, Xiao-Jiang; Wan, Wei; Chen, Hong; Zhou, Jun-Ming

    2007-08-01

    By using the special maskless V-grooved c-plane sapphire as the substrate, we previously developed a novel GaN LEO method, or the so-called canti-bridge epitaxy (CBE), and consequently wing-tilt-free GaN films were obtained with low dislocation densities, with which all the conventional difficulties can be overcome [J. Vacuum Sci. Technol. B 23 (2005) 2476]. Here the evolution manner of dislocations in the CBE GaN films is investigated using transmission electron microscopy. The mechanisms of dislocation reduction are discussed. Dislocation behaviour is found to be similar to that in the conventional LEO GaN films except the enhanced dislocation-combination at the coalescence boundary that is a major dislocation-reduction mechanism for the bent horizontal-propagating dislocations in the CBE GaN films. The enhancement of this dislocation-combination probability is believed to result from the inclined shape and the undulate morphology of the sidewalls, which can be readily obtained in a wide range of applicable film-growth conditions during the GaN CBE process. Further development of the GaN CBE method and better crystal-quality of the GaN film both are expected.

  15. Ultra-high implant activation efficiency in GaN using novel high temperature RTP system

    SciTech Connect

    Cao, X.A.; Abernathy, C.R.; Singh, R.K.

    1998-04-01

    Si{sup +} implant activation efficiencies above 90%, even at doses of 5 {times} 10{sup 15} cm{sup {minus}2}, have been achieved in GaN by RTP at 1,400--1,500 C for 10 secs. The annealing system utilizes with MoSi{sub 2} heating elements capable of operation up to 1,900 C, producing high heating and cooling rates (up to 100 C{center_dot}s{sup {minus}1}). Unencapsulated GaN show severe surface pitting at 1,300 C, and complete loss of the film by evaporation at 1,400 C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AlN and 3.4 eV for InN). Encapsulation with either rf-magnetron reactively sputtered or MOMBE-grown AlN thin films provide protection against GaN surface degradation up to 1,400 C, where peak electron concentrations of {approximately} 5 {times} 10{sup 20} cm{sup {minus}3} can be achieved in Si-implanted GaN. SIMS profiling showed little measurable redistribution of Si, suggesting D{sub Si} {le} 10{sup {minus}13} cm{sup 2}{center_dot}s{sup {minus}1} at 1,400 C . The implant activation efficiency decreases at higher temperatures, which may result from Si{sub Ga} to Si{sub N} site switching and resultant self-compensation.

  16. Finite-difference time-domain analysis on light extraction in a GaN light-emitting diode by empirically capable dielectric nano-features

    NASA Astrophysics Data System (ADS)

    Park, ByeongChan; Noh, Heeso; Yu, Young Moon; Jang, Jae-Won

    2014-11-01

    Enhancement of light extraction in GaN light-emitting diode (LED) by addressing an array of nanomaterials is investigated by means of three dimensional (3D) finite-difference time-domain (FDTD) simulation experiments. The array of nanomaterials is placed on top of the GaN LED and is used as a light extraction layer. Depending on its empirically capable features, the refractive index of nanomaterials with perfectly spherical (particle) and hemispherical (plano-convex lens) shapes were decided as 1.47 [Polyethylene glycol (PEG)] and 2.13 [Zirconia (ZrO2)]. As a control experiment, a 3D FDTD simulation experiment of GaN LED with PEG film deposited on top is also carried out. Different light extraction profiles between subwavelength- and over-wavelength-scaled nanomaterials addressed GaN LEDs are observed in distributions of Poynting vector intensity of the light extraction layer-applied GaN LEDs. In addition, our results show that the dielectric effect on light extraction is more efficient in the light extraction layer with over-wavelength scaled features. In the case of a Zirconia particle array (ϕ = 500 nm) with hexagonal closed packed (hcp) structure on top of a GaN LED, light extraction along the normal axis of the LED surface is about six times larger than a GaN LED without the extraction layer.

  17. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  18. Structure and electronic properties of mixed (a + c) dislocation cores in GaN

    SciTech Connect

    Horton, M. K.; Rhode, S. L.; Moram, M. A.

    2014-08-14

    Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a + c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12{sup ¯}10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance.

  19. GaN on Diamond with Ultra-Low Thermal Barrier Resistance

    DTIC Science & Technology

    2016-03-31

    The diamond films were grown by a microwave plasma CVD system which is able to handle diamond growth of up to 50mm wafer scale at Fraunhofer USA...environment used to initiate the diamond nucleation. Typical diamond CVD growth was initiated in a hydrogen containing plasma at elevated temperature...It is well known that GaN can be etched by hydrogen at high temperatures, and AlN has better thermal stability under similar conditions. Therefore

  20. Crystalline growth of wurtzite GaN on (111) GaAs

    SciTech Connect

    Ross, J.; Gustafson, T.K. . Dept. of Electrical Engineering and Computer Sciences); Rubin, M. )

    1991-12-01

    Gallium Nitride films were grown on (111) gallium arsenide substrates using reactive rf magnetron sputtering. Despite a 20% lattice mismatch and different crystal structure, wurtzite. Heteroepitaxy was observed for growth temperatures between 550-600{degrees}C. X-ray diffraction patterns revealed (0002) GaN peak with a full-width-half-maximum (FWHM) as narrow as 0.17{degree}. Possible surface reconstructions to explain the epitaxial growth are presented.

  1. Optical properties of GaN pyramids

    SciTech Connect

    Zeng, K.C.; Lin, J.Y.; Jiang, H.X.; Yang, W.

    1999-03-01

    Picosecond time-resolved photoluminescence (PL) spectroscopy has been used to investigate the optical properties of GaN pyramids overgrown on hexagonal-patterned GaN(0001) epilayers on sapphire and silicon substrates with AlN buffer layers. We found that: (i) the release of the biaxial compressive strain in GaN pyramids on GaN/AlN/sapphire substrate led to a 7 meV redshift of the spectral peak position with respect to the strained GaN epilayer grown under identical conditions; (ii) in the GaN pyramids on GaN/AlN/sapphire substrate, strong band edge transitions with much narrower linewidths than those in the GaN epilayer have been observed, indicating the improved crystalline quality of the overgrown pyramids; (iii) PL spectra taken from different parts of the pyramids revealed that the top of the pyramid had the highest crystalline quality; and (iv) the presence of strong band-to-impurity transitions in the pyramids were primarily due to the incorporation of the oxygen and silicon impurities from the SiO{sub 2} mask. {copyright} {ital 1999 American Institute of Physics.}

  2. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  3. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO{sub 3} by rutile TiO{sub 2} layer on hexagonal GaN

    SciTech Connect

    Luo, W. B.; Zhu, J.; Chen, H.; Wang, X. P.; Zhang, Y.; Li, Y. R.

    2009-11-15

    Epitaxial SrTiO{sub 3} films were fabricated by laser molecular beam epitaxy on bare and TiO{sub 2} buffered GaN(0002), respectively. The whole deposition processes were in situ monitored by reflection high energy electron diffraction (RHEED). X-ray diffraction (XRD) was carried out to study the growth orientation and crystalline quality of STO films. The interfacial characters and epitaxial relationships were also investigated by high revolution transition electron microscope and selected area electron diffraction (SAED). According to the RHEED observation, the lowest epitaxy temperature of STO on TiO{sub 2} buffered GaN was decreased compared with the direct deposited one. The epitaxial relationship was (111)[110]STO//(0002)[1120]GaN in both cases as confirmed by RHEED, XRD, and SAED. The full width at half maximum of omega-scan and PHI-scan of STO on TiO{sub 2} buffered GaN was reduced compared with that deposited on bare GaN, indicating that epitaxial quality of STO film is improved by inserting TiO{sub 2} layer. In summary, the lattice mismatch was reduced by inserting rutile TiO{sub 2}. As a result, the crystalline temperature was reduced and enhanced epitaxial quality of STO thin film was obtained.

  4. Orientation-controlled epitaxial lateral overgrowth of semipolar GaN on Si(001) with a directionally sputtered AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Jun; Bae, Si-Young; Lekhal, Kaddour; Tamura, Akira; Suzuki, Takafumi; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2017-06-01

    We successfully grew semipolar (10 1 ̅ 3) and (10 1 ̅ 5) GaN films on Si(001) substrates employing metal-organic chemical vapor deposition (MOCVD) by inserting a directionally sputtered AlN (DS-AlN) buffer layer. To improve the crystal quality of the orientation-controlled semipolar (10 1 ̅ 3) and (10 1 ̅ 5) GaN films, a two-step epitaxial lateral overgrowth (ELO) process was performed with a striped mask. According to low-temperature cathodoluminescence (LT-CL) characterization, the ELO results in a coalesced morphology and a low defect density of <2.72×108 cm-2 for both semipolar (10 1 ̅ 3) and (10 1 ̅ 5) GaN films. For comparing the properties of planar and ELO semipolar GaN, a rocking curve of x-ray diffraction (XRD) and low-temperature photoluminescence (LT-PL) spectra was measured. The crystal orientation of semipolar GaN films was confirmed using electron backscatter diffraction (EBSD).

  5. The Effect of Hydrogen Carrier Gas on the Morphological Evolution and Material Properties of GaN on Sapphire

    SciTech Connect

    Ng, T.B.; Han, J.; Biefeld, R.M.; Zolper, J.C.; Crawford, M.H.; Follstaell, D.M.

    1998-01-01

    In-situ optical reflectance is used to monitor the morphological evolution of the two-step GaN growth on sapphire. The amount of H{sub 2} carrier gas used in the growth is observed to strongly influence the morphological evolution of the low temperature buffer layer and the subsequent high temperature nucleation behavior, which in turn affects the structural and electrical properties of the GaN epitaxial films. The optical reflectance transients correlate with the sizes and distributions of nuclei as observed by AFM.

  6. GaN on Silicon Substrate with AlN Buffer Layer for UV Photodiode

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Thahab, S. M.; Hassan, Z.

    Nitrogen plasma-assisted molecular beam epitaxy (PAMBE) deposited GaN thin films on (111) n-type silicon substrate with different thickness AlN buffer layers are investigated and distinguished by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman scattering. The thickness of AlN buffer layer ranged from 200 nm to 300 nm. Besides that, the electrical characteristics of the GaN thin film for ultraviolet detecting utilizations are studied by calculating the photo current/dark current ratio on a metal-semiconductor-metal (MSM) photodiode with and without the illumination of Hg-lamp source. The devices have been tested over room temperature (RT). The photocurrent analysis, together with the study of Schottky barrier height (SBH) development, ascertain that the principal mechanism of photo transport is thermionic emission. The photocurrent value is rigorously dependent on Schottky barrier height. The GaN/AlN(200 nm)/n-Si MSM photodiode produces the highest photo/dark current ratio for the lowest strain that consists of the GaN film grown on the AlN (200 nm) buffer layer.

  7. ODENDOR of Defects in GaN Epitaxial Layers

    NASA Astrophysics Data System (ADS)

    Glaser, E. R.; Kennedy, T. A.; Carlos, W. E.; Freitas, J. A., Jr.; Wickenden, A. E.; Koleske, D. D.

    1998-03-01

    Optically-detected electron-nuclear double resonance (ODENDOR) at 24 GHz has been performed on a set of GaN epitaxial layers (undoped and Si-doped) grown on Al_2O3 to identify and locate residual defects and dopants.(E.R. Glaser et al., submitted to Phys. Rev. B) The first observation was made by the Paderborn group.(F.K. Koschnick et al., Phys. Rev. B 54, R11042 (1996).) Strong ODENDOR with resolved quadrupole structure was observed between 6 and 14 MHz on the g = 1.951 effective-mass (EM) donor resonance found on the 2.2 eV emission bands from two high-resistivity films (n <= 1x10^16 cm-3). The lines are assigned to ^69,71Ga lattice nuclei coupled to the residual donors through a weak hyperfine interaction (<= 1 MHz). The quadrupole splitting of ~ 2.3 MHz found for ^69Ga varies between samples and in comparison to published values for strain-free GaN by 15-25 %. The symmetry of the electric field gradient provides evidence that the donors are located in the crystallites rather than near grain boundaries. ODENDOR was not found between 1.5 and 140 MHz on the g = 1.991 deep defect resonances. Possible reasons for the absence of signals will be discussed.

  8. Heteroepitaxial growth of GaN on atomically flat LiTaO 3 (0 0 0 1) using low-temperature AIN buffer layers

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Kobayashi, A.; Ohta, J.; Fujioka, H.; Oshima, M.

    2006-07-01

    We have grown GaN films on atomically-flat LiTaO 3 substrates by using pulsed laser deposition (PLD), and we then investigated the effect of the use of low-temperature AlN (LT-AlN) buffer layers on the structural properties of GaN. The full-width at half-maximum (FWHM) values for the crystal orientation distribution of the GaN films in the tilt directions were reduced from 0.48° to 0.17°, and those in the twist directions were reduced from 0.40° to 0.17° by the incorporation of AlN buffer layers grown at 580 °C. The surface morphology of GaN has also been improved by the insertion of LT-AlN buffer layers. X-ray reflectivity measurements have revealed that the interfacial layer thickness between LT-AlN and LiTaO 3 is as thin as 1.7 nm, and that the increase in the interfacial layer thickness caused by annealing at up to 700 °C is quite small. These results indicate that the PLD growth of GaN on atomically flat substrates using LT-AlN buffer layers is quite promising for achieving GaN on LiTaO 3.

  9. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors.

    PubMed

    Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Wasisto, Hutomo Suryo; Waag, Andreas

    2017-03-03

    Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

  10. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Suryo Wasisto, Hutomo; Waag, Andreas

    2017-03-01

    Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

  11. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Peng, Chen; Bo, Shen; Jian-Min, Zhu; Zhi-Zhong, Chen; Yu-Gang, Zhou; Shi-Yong, Xie; Rong, Zhang; Ping, Han; Shu-Lin, Gu; You-Dou, Zheng; Shu-Sheng, Jiang; Duan, Feng; Z, Huang C.

    2000-03-01

    Microstructures of GaN buffer layers grown on Si (111) substrates using rapid thermal process low-pressure metalorganic chemical vapor deposition are investigated by an atomic force microscope (AFM) and a high-resolution transmission electron microscope (HRTEM). AFM images show that the islands appear in the GaN buffer layer after annealing at high temperature. Cross-sectional HRTEM micrographs of the buffer region of these samples indicate that there are bunched steps on the surface of the Si substrate and a lot of domains in GaN misorienting each other with small angles. The boundaries of those domains locate near the bunched steps, and the regions of the film on a terrace between steps have the same crystal orientation. An amorphous-like layer, about 3 nm thick, can also be observed between the GaN buffer layer and the Si substrate.

  12. MOCVD growth of N-polar GaN on on-axis sapphire substrate: Impact of AlN nucleation layer on GaN surface hillock density

    NASA Astrophysics Data System (ADS)

    Marini, Jonathan; Leathersich, Jeffrey; Mahaboob, Isra; Bulmer, John; Newman, Neil; (Shadi) Shahedipour-Sandvik, F.

    2016-05-01

    We report on the impact of growth conditions on surface hillock density of N-polar GaN grown on nominally on-axis (0001) sapphire substrate by metal organic chemical vapor deposition (MOCVD). Large reduction in hillock density was achieved by implementation of an optimized high temperature AlN nucleation layer and use of indium surfactant in GaN overgrowth. A reduction by more than a factor of five in hillock density from 1000 to 170 hillocks/cm-2 was achieved as a result. Crystal quality and surface morphology of the resultant GaN films were characterized by high resolution x-ray diffraction and atomic force microscopy and found to be relatively unaffected by the buffer conditions. It is also shown that the density of smaller surface features is unaffected by AlN buffer conditions.

  13. Growth modes of InN (000-1) on GaN buffer layers on sapphire

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Kitajima, Takeshi; Chen, Dongxue; Leone, Stephen R.

    2005-03-01

    In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesalike with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered.

  14. Transport phenomena and the effects of reactor geometry for epitaxial GaN growth in a vertical MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Fu; Tsai, Tsung-Yen; Huang, Yen-Hsiu; Lee, Ming-Tsang; Horng, Ray-Hua

    2015-12-01

    In this study a numerical simulation was carried out to analyze the transport phenomena in a vertical type metal organic chemical vapor deposition (MOCVD) reactor for Gallium Nitride (GaN) growth. The simulated results were compared and validated by experiment. The effects of showerhead design and chamber height are investigated and discussed. It was found that, by properly adjusting the height of the chamber, both the growth rate and film uniformity could be significantly improved. This is attributed to the suppression of the thermal and mass transfer boundary layers by the injection flow of reacting gas mixtures, as well as the confined vertical vortices caused by the geometry of the reduced space. However, inappropriate design of the distance between the showerhead and the susceptor can result in uneven distribution of the organic source in the vicinity of the substrate surface resulting in an uneven growth rate of the GaN film. Consequently, there exists an optimal chamber height that will give the best growth rate and uniformity to the GaN film as discussed in this study. This study provides comprehensive insight into the transport phenomena of GaN growth that includes coupled heat and mass transfer as well as chemical reactions. The results provide important information in a succinct format and enable decisions to be made about the showerhead and the geometrical design and size of a vertical MOCVD reactor.

  15. The Formation and Characterization of GaN Hexagonal Pyramids

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  16. Spatial characterization of a 2 in GaN wafer by Raman spectroscopy and capacitance voltage measurements

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.

    2004-10-01

    Micro-Raman spectroscopy and capacitance-voltage (C-V) measurements have been used to investigate 2 in GaN epitaxial wafers grown by hydride vapour phase epitaxy on sapphire substrates. The position and line shape of the A1 longitudinal optical (LO) phonon mode were used to determine the carrier concentration at different locations across the wafer. The line-shape fitting of the Raman A1 (LO) coupled modes taken from horizontal lateral-different positions on the wafer yielded a rudimentary spatial map of the carrier concentration. These data compare well with a carrier density map of the wafer obtained by C-V measurements, confirming the non-uniform distribution of carrier concentration in the GaN epitaxial film and that Raman spectroscopy of the LO phonon-plasmon mode can be used as a reliable and production friendly wafer quality test for GaN wafer manufacturing processes.

  17. Structural properties of Al-rich AlInN grown on c-plane GaN substrate by metal-organic chemical vapor deposition

    PubMed Central

    2014-01-01

    The attractive prospect for AlInN/GaN-based devices for high electron mobility transistors with advanced structure relies on high-quality AlInN epilayer. In this work, we demonstrate the growth of high-quality Al-rich AlInN films deposited on c-plane GaN substrate by metal-organic chemical vapor deposition. X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy show that the films lattice-matched with GaN can have a very smooth surface with good crystallinity and uniform distribution of Al and In in AlInN. PMID:25489282

  18. Structures and optical properties of \\text{H}_{2}^{+} -implanted GaN epi-layers

    NASA Astrophysics Data System (ADS)

    Li, B. S.; Wang, Z. G.

    2015-06-01

    The implantation damage build-up and optical properties of GaN epitaxial films under \\text{H}2+ ion implantation have been investigated by a combination of Rutherford backscattering in channeling geometry, Raman spectroscopy, UV-visible spectroscopy and transmission electron microscopy. GaN epitaxial films were implanted with 134 keV \\text{H}2+ ions to doses ranging from 3.75   ×   1016 to 1.75   ×   1017 \\text{H}2+  cm-2 at room temperature or the same dose of 1.5   ×   1017 \\text{H}2+  cm-2 at room temperature, 573 and 723 K. The dependence of lattice disorder induced by \\text{H}2+ -implantation on the ion dose can be divided into a three-step damage process. A strong influence of the H concentration on the defect accumulation is discussed. The decrease in relative Ga disorder induced by \\text{H}2+ -implantation is linear with increasing implantation temperature. The absorption coefficient of GaN epitaxial films increases with increasing ion dose, leading to the decrease in Raman scattering spectra of Ga-N vibration. With increasing implantation doses up to 5   ×   1016 \\text{H}2+  cm-2, nanoscale hydrogen bubbles are observed in the H deposition peak region. Interstitial-type dislocation loops are observed in the damaged layer located near the damage peak region, and the geometry of the dislocation loops produced by H implantation is analyzed. The surface layer is almost free of lattice disorder induced by \\text{H}2+ -implantation.

  19. Spontaneous emission enhancement in micropatterned GaN

    NASA Astrophysics Data System (ADS)

    Niehus, M.; Sanguino, P.; Monteiro, T.; Soares, M. J.; Schwarz, R.

    2004-10-01

    With two interfering pulses from the fourth harmonic of a Nd-YAG laser we burnt a periodic lattice structure into the surface of GaN thin films. The lattice period of this permanent grating could be controlled between less than one and several tens of microns. Above the decomposition threshold, nitrogen evades from the sample surface, and the residual metallic gallium accumulates in the form of tiny droplets at the surfaces. The patterned structure shows structural similarities with microcavities. The question arises if the residual metallic gallium may act as a partially reflecting mirror. To test this hypothesis, we studied the steady-state and transient photoluminescence through the modulation of light emerging from the ubiquitous broad "yellow" photoluminescence band. The microlattice is evidenced by energy-equidistant spontaneous emission enhancement peaks in the steady-state photoluminescence spectra. We suggest that the partial reflection due to the residual metallic gallium leads to the observed enhancement effect.

  20. Ge doping of GaN beyond the Mott transition

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Schörmann, J.; Jiménez-Rodriguez, M.; Lim, C. B.; Walther, F.; Rohnke, M.; Mouton, I.; Amichi, L.; Bougerol, C.; Den Hertog, M. I.; Eickhoff, M.; Monroy, E.

    2016-11-01

    We present a study of germanium as n-type dopant in wurtzite GaN films grown by plasma-assisted molecular-beam epitaxy, reaching carrier concentrations of up to 6.7  ×  1020 cm-3 at 300 K, well beyond the Mott density. The Ge concentration and free carrier density were found to scale linearly with the Ge flux in the studied range. All the GaN:Ge layers present smooth surface morphology with atomic terraces, without trace of pits or cracks, and the mosaicity of the samples has no noticeable dependence on the Ge concentration. The variation of the GaN:Ge band gap with the carrier concentration is consistent with theoretical calculations of the band gap renormalization due to electron-electron and electron-ion interaction, and Burstein-Moss effect.

  1. Optical gain characteristics of a-plane GaN/AlGaN quantum well lasers grown on strain-engineered MgZnO layer

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan

    2017-09-01

    Optical gain characteristics of a-plane (11 2 bar 0) AlGaN/GaN quantum well (QW) lasers grown on a GaN buffer with strain anisotropy using a strain-engineered MgZnO layer were investigated using the multiband effective mass theory. The calculated transition energies for QW structures grown on MgZnO layer are in good agreement with experimental results. The optical gain of the QW structure grown on the MgZnO substrate is dominated by the z ‧ -polarization because the dominant states constituting the topmost valence subband for the QW structure changes from | Y ‧ > - to | Z ‧ > -like and carriers occupy higher states above k∥ = 0 at a higher carrier density. On the other hand, the optical gain of the QW structure grown on conventional GaN buffer is dominated by both y ‧ - and z ‧ -polarizations. Thus, the optical polarization characteristics of a-plane AlGaN/GaN QW lasers can be engineered by using MgZnO substrate.

  2. Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)

    NASA Astrophysics Data System (ADS)

    Mula, Guido; Adelmann, C.; Moehl, S.; Oullier, J.; Daudin, B.

    2001-11-01

    We study the adsorption of Ga on (0001) GaN surfaces by reflection high-energy electron diffraction. It is shown that a dynamically stable Ga bilayer can be formed on the GaN surface for appropriate Ga fluxes and substrate temperatures. The influence of the presence of this Ga film on the growth mode of GaN on AlN(0001) by plasma-assisted molecular-beam epitaxy is studied. It is demonstrated that under nearly stoichiometric and N-rich conditions, the GaN layer relaxes elastically during the first stages of epitaxy. At high temperatures the growth follows a Stranski-Krastanov mode, whereas at lower temperatures kinetically formed flat platelets are observed. Under Ga-rich conditions-where a Ga bilayer is rapidly formed due to excess Ga accumulating on the surface-the growth follows a Frank-van der Merwe layer-by-layer mode at any growth temperature and no initial elastic relaxation occurs. Hence, it is concluded that excess Ga acts as a surfactant, effectively suppressing both Stranski-Krastanov islanding and platelet formation. It is further demonstrated that the Stranski-Krastanov transition is in competition with elastic relaxation by platelets, and it is only observed when relaxation by platelets is inefficient. As a result, a growth mode phase diagram is outlined for the growth of GaN on AlN(0001).

  3. Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.

    2006-09-01

    Ordered GaN nanostructures, i.e., nanopore and nanodot arrays, have been demonstrated by combining a nonlithographic nanopatterning technique and nanoscale selective epitaxial growth. Hexagonal-close-packed nanopore arrays were fabricated in GaN surfaces and SiO2 surfaces on GaN films by inductively coupled plasma etching using anodic aluminum oxide templates as etching masks. Selective area growth through nanopores in SiO2 by metal organic chemical vapor deposition results in ordered GaN nanodot arrays with an average dot diameter and height of 60 and 100nm, respectively. The diameter and density of the GaN nanopore arrays and nanodot arrays are controlled by that of the anodic aluminum oxide template, which can be tuned in a wide range by controlling the anodization conditions. Applying anodic aluminum oxide as an etching mask provides an effective nonlithographic and free of foreign catalysts method to fabricate ordered and dense nitride nanostructures for either bottom-up or top-down technique in the application of high efficiency nitride light emitting diodes.

  4. Local structure and bonding of Er in GaN: A contrast with Er in Si

    SciTech Connect

    Citrin, P. H.; Northrup, P. A.; Birkhahn, R.; Steckl, A. J.

    2000-05-15

    X-ray absorption measurements from relatively high concentrations of Er (>0.1 at. %) doped in GaN films show that Er occupies the Ga site with an unprecedentedly short Er-N bond length. Electroluminescence intensities from these GaN:Er films correlate with the concentration of Er atoms that replace Ga, not with the abundantly present O impurities in the host. Simple chemical concepts are used to explain each of these results and their striking difference from those obtained for Er-doped Si. (c) 2000 American Institute of Physics.

  5. Properties of YMnO{sub 3} self-assembled nanocrystalline prisms on GaN

    SciTech Connect

    Keenan, Cameron; Chandril, Sandeep; Myers, Thomas H.; Lederman, David; Ramos-Moore, E.; Cabrera, A. L.

    2008-01-07

    Growth of YMnO{sub 3} on GaN (0001) using molecular beam epitaxy at temperatures greater than 850 deg. C resulted in the spontaneous formation of crystalline prisms, ranging from 20 to 60 nm in height and 50 to 500 nm in lateral size, surrounded by a 6 nm thick continuous YMnO{sub 3} film. The local dielectric properties were measured using scanning surface probe microscopy. The prisms were ferroelectric at room temperature and their ferroelectric properties were enhanced for taller prisms. This is consistent with these structures being less constrained than the continuous layer, which is clamped by the surrounding unpolarized film.

  6. Mushroom structure of GaN template for epitaxial growth of GaN

    NASA Astrophysics Data System (ADS)

    Lee, Sung Bo; Kwon, Tae-Wan; Park, Jungwon; Jin Choi, Won; Sung Park, Hae

    2012-07-01

    In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations.

  7. Theoretical study of gallium nitride molecules, GaN2 and GaN4.

    PubMed

    Tzeli, Demeter; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D

    2008-09-18

    The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.

  8. New approaches for calculating absolute surface energies of wurtzite (0001)/(000 1 ¯ ): A study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    2016-05-01

    The accurate absolute surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating the dangling bond energy of asymmetrically bonded surface atoms. In this study, we used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches. The surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite ZnO and GaN that we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group-I and group-VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces, and these results were also compared with the above method. The calculated results generally show that the surface energies of GaN are higher than those of ZnO, suggesting that ZnO tends to wet the GaN substrate, while GaN is unlikely to wet ZnO. Therefore, it will be challenging to grow high quality GaN thin films on ZnO substrates; however, high quality ZnO thin film on GaN substrate would be possible. These calculations and comparisons may provide important insights into crystal growth of the above materials, thereby leading to significant performance enhancements in semiconductor devices.

  9. Microwave annealing of Mg-implanted and in situ Be-doped GaN

    NASA Astrophysics Data System (ADS)

    Aluri, Geetha S.; Gowda, Madhu; Mahadik, Nadeemullah A.; Sundaresan, Siddarth G.; Rao, Mulpuri V.; Schreifels, John A.; Freitas, J. A.; Qadri, S. B.; Tian, Y.-L.

    2010-10-01

    An ultrafast microwave annealing method, different from conventional thermal annealing, is used to activate Mg-implants in GaN layer. The x-ray diffraction measurements indicated complete disappearance of the defect sublattice peak, introduced by the implantation process for single-energy Mg-implantation, when the annealing was performed at ≥1400 °C for 15 s. An increase in the intensity of Mg-acceptor related luminescence peak (at 3.26 eV) in the photoluminescence spectra confirms the Mg-acceptor activation in single-energy Mg-implanted GaN. In case of multiple-energy implantation, the implant generated defects persisted even after 1500 °C/15 s annealing, resulting in no net Mg-acceptor activation of the Mg-implant. The Mg-implant is relatively thermally stable and the sample surface roughness is 6 nm after 1500 °C/15 s annealing, using a 600 nm thick AlN cap. In situ Be-doped GaN films, after 1300 °C/5 s annealing have shown Be out-diffusion into the AlN layer and also in-diffusion toward the GaN/SiC interface. The in-diffusion and out-diffusion of the Be increased with increasing annealing temperature. In fact, after 1500 °C/5 s annealing, only a small fraction of in situ doped Be remained in the GaN layer, revealing the inadequateness of using Be-implantation for forming p-type doped layers in the GaN.

  10. Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface

    PubMed Central

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599

  11. Optical characteristics of wet-thermally oxidized bulk and nanoporous GaN

    NASA Astrophysics Data System (ADS)

    Kim, Sinjae; Kadam, Mahadev; Kang, Jin-Ho; Ryu, Sang-Wan

    2016-09-01

    Gallium nitride (GaN) films deposited on sapphire substrates by metal organic chemical vapor deposition were successfully transformed into bulk and nanoporous gallium oxide (Ga2O3) using a wet thermal oxidation technique. Oxidation depth measurements confirmed that the oxide growth appeared to be faster in the case of nanoporous GaN than that of bulk GaN. Spectroscopic ellipsometry was used to evaluate and compare the optical properties of nanoporous and bulk Ga2O3 films, such as refractive index and extinction coefficient, which revealed improved optical properties for nanoporous Ga2O3 compared to the bulk. The simulations conducted on the ellipsometric spectra for bulk and nanoporous Ga2O3 using the Forouhi-Bloomer model and the Bruggeman effective medium approximation revealed the best fit with a low mean square error value. In the case of nanoporous Ga2O3, zero absorption was observed in the wavelength range of 300 nm to 840 nm, supporting the use of this material as a transparent coating in optoelectronic devices.

  12. Dry etching of MgCaO gate dielectric and passivation layers on GaN

    NASA Astrophysics Data System (ADS)

    Hlad, M.; Voss, L.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.; Ren, F.

    2006-09-01

    MgCaO films grown by rf plasma-assisted molecular beam epitaxy and capped with Sc 2O 3 are promising candidates as surface passivation layers and gate dielectrics on GaN-based high electron mobility transistors (HEMTs) and metal-oxide semiconductor HEMTs (MOS-HEMTs), respectively. Two different plasma chemistries were examined for etching these thin films on GaN. Inductively coupled plasmas of CH 4/H 2/Ar produced etch rates only in the range 20-70 Å/min, comparable to the Ar sputter rates under the same conditions. Similarly slow MgCaO etch rates (˜100 Å/min) were obtained with Cl 2/Ar discharges under the same conditions, but GaN showed rates almost an order of magnitude higher. The MgCaO removal rates are limited by the low volatilities of the respective etch products. The CH 4/H 2/Ar plasma chemistry produced a selectivity of around 2 for etching the MgCaO with respect to GaN.

  13. Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy

    SciTech Connect

    Burnham, Shawn D.; Doolittle, W. Alan; Namkoong, Gon; Look, David C.; Clafin, Bruce

    2008-07-15

    The metal modulated epitaxy (MME) growth technique is reported as a reliable approach to obtain reproducible large hole concentrations in Mg-doped GaN grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates. An extremely Ga-rich flux was used, and modulated with the Mg source according to the MME growth technique. The shutter modulation approach of the MME technique allows optimal Mg surface coverage to build between MME cycles and Mg to incorporate at efficient levels in GaN films. The maximum sustained concentration of Mg obtained in GaN films using the MME technique was above 7x10{sup 20} cm{sup -3}, leading to a hole concentration as high as 4.5x10{sup 18} cm{sup -3} at room temperature, with a mobility of 1.1 cm{sup 2} V{sup -1} s{sup -1} and a resistivity of 1.3 {omega} cm. At 580 K, the corresponding values were 2.6x10{sup 19} cm{sup -3}, 1.2 cm{sup 2} V{sup -1} s{sup -1}, and 0.21 {omega} cm, respectively. Even under strong white light, the sample remained p-type with little change in the electrical parameters.

  14. Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    NASA Astrophysics Data System (ADS)

    Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy

    2016-12-01

    The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.

  15. Radaitive decay engineering in GaN Quantum Dots for biomedical application

    NASA Astrophysics Data System (ADS)

    Neogi, Arup; Basu Neogi, Purnima; Morkoc, Hadis

    2003-03-01

    Thin metallic films containing nanoscale surface features result in giant enhancement of linear and nonlinear optical responses. These enhancements are associated with excitation of surface plasmon (SP), collective electromagnetic modes whose characteristics are strongly dependent on the geometric structure of the metallic component of the medium and can be further enhanced via the directional emission from a semiconductor microcavity. The SP energy of Ag (3 eV) is modified ( 2.92 eV) by the GaN dielectric constant with bandgap at 3.4 eV [1] and is the ideal candidate for the resonantly modifying optical responses at metal-semiconductor interface. The spontaneous emission rate in strained GaN quantum dots grown using molecular beam epitaxy can be enhanced and the photoluminescence (PL) is reduced by nearly five times in the presence of a continuous Ag film due to resonant silver-surface plasmon interaction. The PL can also be enhanced using directional coupling through silver nano-shells fabricated by spin coating a silver halide solution over the GaN QDs having a 2 nm AlN cap layer. We also propose the use of radaitive decay engineering effects in wide-bandgap Ag-GaN semiconductor QD system for biomedical application. [1] A. Neogi, et al.; Phys. Rev., 66, 153305 (2002).

  16. Transport, Growth Mechanisms, and Material Quality in GaN Epitaxial Lateral Overgrowth

    SciTech Connect

    Baca, Albert G.; Bartram, M.E.; Coltrin, M.E.; Crawford, M.H.; Han, J.; Missert, N.; Willan, C.C.

    1999-01-11

    Growth kinetics, mechanisms, and material quality in GaN epitaxial lateral over-growth (ELO) were examined using a single mask of systematically varied patterns. A 2-D gas phase reaction/diffusion model describes how transport of the Ga precursor to the growth surface enhances the lateral rate in the early stages of growth. In agreement with SEM studies of truncated growth runs, the model also predicts the dramatic decrease in the lateral rate that occurs as GaN over-growth reduces the exposed area of the mask. At the point of convergence, a step-flow coalescence mechanism is observed to fill in the area between lateral growth-fronts. This alternative growth mode in which a secondary growth of GaN is nucleated along a single convergence line, may be responsible for producing smooth films observed to have uniform cathodoluminescence (CL) when using 1{micro}m nucleation zones. Although emission is comprised of both UV ({approximately}365nm) and yellow ({approximately}550nm) components, the spectra suggest these films have reduced concentrations of threading dislocations normally associated with non-radiative recombination centers and defects known to accompany growth-front convergence lines.

  17. Epitaxial integration of (0001) BiFeO{sub 3} with (0001) GaN

    SciTech Connect

    Tian, W.; Vaithyanathan, V.; Schlom, D. G.; Zhan, Q.; Yang, S. Y.; Chu, Y. H.; Ramesh, R.

    2007-04-23

    Epitaxial growth of (0001)-oriented BiFeO{sub 3} thin films on the (0001) surface of GaN has been realized using intervening epitaxial (111) SrTiO{sub 3}/(100) TiO{sub 2} buffer layers. The epitaxial BiFeO{sub 3} thin films have two in-plane orientations: [1120]BiFeO{sub 3}(parallel sign)[1120]GaN plus a twin variant related by a 180 deg. in-plane rotation. BiFeO{sub 3} shows an out-of-plane remanent polarization of {approx}90 {mu}C/cm{sup 2}, which is comparable to the remanent polarization of BiFeO{sub 3} prepared on (111) SrTiO{sub 3} single crystal substrates. The orientation of BiFeO{sub 3} realized on GaN provides the maximal out-of-plane polarization of BiFeO{sub 3}, which is equivalent to a surface charge of 5x10{sup 14} electrons/cm{sup 2}.

  18. Growth of self-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Jae; Fujii, Katsushi; Goto, Takenari; Kim, Chinkyo; Chang, Jiho; Hong, Soon-Ku; Cho, Meoungwhan; Yao, Takafumi

    2010-03-01

    Large-sized and high-quality free standing GaN are required with the development of GaN-based devices. We have developed new techniques to reduce the price of GaN substrates. In this paper, we introduce a simple fabrication way of freestanding GaN substrate using hydride vapor phase epitaxy (HVPE). An evaporable buffer layer was applied for the fabrication of 2inch freestanding GaN to separate from a sapphire substrate, in other words, a freestanding GaN was fabricated only by HVPE (one-stop process) without any process.

  19. Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates.

    PubMed

    Hwang, David; Yonkee, Benjamin P; Addin, Burhan Saif; Farrell, Robert M; Nakamura, Shuji; Speck, James S; DenBaars, Steven

    2016-10-03

    We demonstrate a thin-film flip-chip (TFFC) process for LEDs grown on freestanding c-plane GaN substrates. LEDs are transferred from a bulk GaN substrate to a sapphire submount via a photoelectrochemical (PEC) undercut etch. This PEC liftoff method allows for substrate reuse and exposes the N-face of the LEDs for additional roughening. The LEDs emitted at a wavelength of 432 nm with a turn on voltage of ~3 V. Etching the LEDs in heated KOH after transferring them to a sapphire submount increased the peak external quantum efficiency (EQE) by 42.5% from 9.9% (unintentionally roughened) to 14.1% (intentionally roughened).

  20. Nonpolar GaN grown on Si by hydride vapor phase epitaxy using anodized Al nanomask

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Markov, A. V.; Mezhennyi, M. V.; Govorkov, A. V.; Pavlov, V. F.; Smirnov, N. B.; Donskov, A. A.; D'yakonov, L. I.; Kozlova, Y. P.; Malakhov, S. S.; Yugova, T. G.; Osinsky, V. I.; Gorokh, G. G.; Lyahova, N. N.; Mityukhlyaev, V. B.; Pearton, S. J.

    2009-01-01

    GaN growth by the hydride vapor phase technique on (100) Si substrates masked by porous Al anodic oxide is described. The masks were prepared by vacuum deposition of Al with subsequent anodic oxidation in dilute sorrel acid. The grown GaN layer is nonpolar, with (112¯0) a-orientation and a full width at half maximum of the (112¯0) reflection below 500 arc sec and showing small anisotropy. This result is comparable with the results obtained for a-GaN growth using selective epitaxy or advanced buffer growth routines. Microcathodoluminescence spectra of the grown films confirm a low density of stacking faults. Possible growth mechanisms are discussed.

  1. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  2. In Situ Stress Measurements During GaN Growth on Ion-Implanted AlN/Si Substrates

    NASA Astrophysics Data System (ADS)

    Gagnon, Jarod C.; Tungare, Mihir; Weng, Xiaojun; Leathersich, Jeffrey M.; Shahedipour-Sandvik, Fatemeh; Redwing, Joan M.

    2012-05-01

    In situ wafer curvature measurements were used in combination with postgrowth structural characterization to study the evolution of film stress and microstructure in GaN layers grown by metalorganic chemical vapor deposition on N+ ion-implanted AlN/Si (111) substrates. The results were compared with growth on identical unimplanted substrates. In situ stress measurements revealed that, for the unimplanted sample, the GaN initiated growth under compressive stress of -1.41 GPa which arose due to lattice mismatch with the AlN buffer layer. In contrast, GaN growth on the ion-implanted sample began at lower compressive stress of -0.84 GPa, suggesting a reduction in epitaxial stress. In both cases, the compressive growth stress was fully relaxed after ~0.7 μm and minimal tensile stress was generated during growth. During post-growth cooling, tensile stress was introduced in the GaN layer of both samples due to thermal expansion mismatch. Post-growth optical microscopy characterization, however, demonstrated that the ion-implanted sample had lower density of channeling cracks compared with the unimplanted sample. Cross-sectional transmission electron microscopy images of the sample grown on ion-implanted Si with no post-implantation nitrogen annealing revealed the formation of horizontal cracks in the implanted region beneath the AlN buffer layer. The weakened layer acts to decouple the GaN film from the Si substrate and thereby reduces the density of channeling cracks in the film after growth.

  3. Structure-related optical behavior of nanoscale GaN island, tip, tube and cone arrays formed by inductively coupled plasmas etching

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Huang, Pei-Hsing; Cheng, Nai-Jen; Hung, Shang-Chao

    2016-03-01

    We introduce a one-step self-assembled technique to form various nanostructures on N-type GaN film and then present an optical characterization of a series of low-dimensional GaN nanostructures by using low-temperature photoluminescence (LTPL) spectroscopy. Nanoscale GaN island, tip, tube and cone-like structures of diameters ranging from 50 to 190 nm were self-assembled on a c-axis perpendicular to substrate surface with uniform diameter and uniform length by inductively coupled plasmas etching process without lithography. Optical LTPL measurements on nanostructures show consistent variations in the properties of the fabricated GaN structures as a function of surface area of GaN nanostructures. LTPL mapping gives an evidence for defect-induced donors and/or acceptors near the facets of the ICP-etched nanostructure. Our results indicate that a higher concentration of donor-related defects is introduced on the surface of GaN nanotubes. In particular, the nanotubes sample exhibits a conspicuous increased in yellow luminescence intensity compared to the other nanostructure samples. This result may support more information for the application of nanotubes on nanogenerators.

  4. Growth optimization toward low angle incidence microchannel epitaxy of GaN using ammonia-based metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Abe, Ryota; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-08-01

    Growth optimization toward low angle incidence microchannel epitaxy (LAIMCE) of GaN was accomplished using ammonia-based metal-organic molecular beam epitaxy (NH3-based MOMBE). Firstly, the [NH3]/[trimethylgallium (TMG)] ratio (R) dependence of selective GaN growth was studied. The growth temperature was set at 860 °C while R was varied from 5 to 200 with precursors being supplied parallel to the openings cut in the SiO2 mask. The selectivity of the growth was superior for all R, because TMG and NH3 preferably decompose on the GaN film. The formation of {112¯0}GaN or {112¯2}GaN sidewalls and (0001)GaN surface were observed by the change in R. The intersurface diffusion of Ga adatoms was also changed by a change in R. Ga adatoms migrate from the sidewalls to the top at R lower than 50, whereas the migration weakened with R greater than 100. Secondly, LAIMCE was optimized by changing the growth temperature. Consequently, 6 μm wide lateral overgrowth in the direction of precursor incidence was achieved with no pit after etching by H3PO4, which was six times wider than that in the opposite direction.

  5. Highly mismatched GaN1-x Sb x alloys: synthesis, structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Yu, K. M.; Sarney, W. L.; Novikov, S. V.; Segercrantz, N.; Ting, M.; Shaw, M.; Svensson, S. P.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2016-08-01

    Highly mismatched alloys (HMAs) is a class of semiconductor alloys whose constituents are distinctly different in terms of size, ionicity and/or electronegativity. Electronic properties of the alloys deviate significantly from an interpolation scheme based on small deviations from the virtual crystal approximation. Most of the HMAs were only studied in a dilute composition limit. Recent advances in understanding of the semiconductor synthesis processes allowed growth of thin films of HMAs under non-equilibrium conditions. Thus reducing the growth temperature allowed synthesis of group III-N-V HMAs over almost the entire composition range. This paper focuses on the GaN x Sb1-x HMA which has been suggested as a potential material for solar water dissociation devices. Here we review our recent work on the synthesis, structural and optical characterization of GaN1-x Sb x HMA. Theoretical modeling studies on its electronic structure based on the band anticrossing (BAC) model are also reviewed. In particular we discuss the effects of growth temperature, Ga flux and Sb flux on the incorporation of Sb, film microstructure and optical properties of the alloys. Results obtained from two separate MBE growths are directly compared. Our work demonstrates that a large range of direct bandgap energies from 3.4 eV to below 1.0 eV can be achieved for this alloy grown at low temperature. We show that the electronic band structure of GaN1-x Sb x HMA over the entire composition range is well described by a modified BAC model which includes the dependence of the host matrix band edges as well as the BAC model coupling parameters on composition. We emphasize that the modified BAC model of the electronic band structure developed for the full composition of GaN x Sb1-x is general and is applicable to any HMA.

  6. Proton irradiation induced defects in GaN: Rutherford backscattering and thermally stimulated current studies

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishikata, N.; Kamioka, K.; Kuriyama, K.; Kushida, K.

    2016-03-01

    The proton irradiation induced defects in GaN are studied by combining elastic recoil detection analysis (ERDA), thermally stimulated current (TSC), and Rutherford backscattering spectroscopy (RBS) measurements. The proton irradiation (peak concentration: 1.0 × 1015 cm-2) into GaN films with a thickness of 3 μm is performed using a 500 keV implanter. The proton concentration by a TRIM simulation is maximum at 3600 nm in depth, which means that the proton beam almost passes through the GaN film. The carrier concentration decreases three orders of magnitude to 1015 cm-3 by the proton irradiation, suggesting the existence of the proton irradiation-induced defects. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration at ∼220 nm is ∼8.3 × 1013 cm-2 and ∼1.0 × 1014 cm-2 for un-irradiated and as-irradiated samples, respectively, suggesting that electrical properties are almost not affected by hydrogen. TSC measurements show a broad spectrum at around 110 K which can be divided into three traps, P1 (ionization energy 173 meV), P2 (251 meV), and P3 (330 meV). The peak intensity of P1 is much larger than that of P2 and P3. These traps are related to the N vacancy and/or complex involving N vacancy (P1), neutral Ga vacancy (VGa) (P2), and complex involving VGa (P3). The Ga displacement concentration evaluated by RBS measurements is 1.75 × 1019 cm-3 corresponding to 1/1000 of the Ga concentration in GaN. The observed Ga displacement may be origins of P2 and P3 traps.

  7. Pseudomorphic Semiconducting Heterostructures from Combinations of AlN, GaN and Selected SiC Polytypes: Theoretical Advancement and Its Coordination with Experimental Studies of Nucleation, Growth, Characterization and Device Development

    DTIC Science & Technology

    1992-06-01

    solid solution as well as InN have been successfully deposited using a modified gas source MBE system. Application of single layers of the AlxGal-xN... solid solution or pure GaN films as UV light photon detectors has been achieved. The gain exhibited by these detectors at a forward voltage of 5V was...500uA and 10 mA for the solid solution films deposited on sapphire and alpha(6H)-SiC substrates, respectively. The GaN film deposited on sapphire

  8. Modelling the landing of a plane in a calculus lab

    NASA Astrophysics Data System (ADS)

    Morante, Antonio; Vallejo, José A.

    2012-10-01

    We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics.

  9. A Simple Chaotic Flow with a Plane of Equilibria

    NASA Astrophysics Data System (ADS)

    Jafari, Sajad; Sprott, J. C.; Molaie, Malihe

    2016-06-01

    Using a systematic computer search, a simple four-dimensional chaotic flow was found that has the unusual feature of having a plane of equilibria. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are important and potentially problematic in engineering applications.

  10. Modelling the Landing of a Plane in a Calculus Lab

    ERIC Educational Resources Information Center

    Morante, Antonio; Vallejo, Jose A.

    2012-01-01

    We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)

  11. Modelling the Landing of a Plane in a Calculus Lab

    ERIC Educational Resources Information Center

    Morante, Antonio; Vallejo, Jose A.

    2012-01-01

    We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)

  12. Growth parameter dependence of structural, electrical and magnetic properties in GaGdN layers grown on GaN(0001)

    NASA Astrophysics Data System (ADS)

    Sano, S.; Hasegawa, S.; Mitsuno, Y.; Higashi, K.; Ishimaru, M.; Sakurai, T.; Ohta, H.; Asahi, H.

    2013-09-01

    The growth parameter dependence of structural, electrical and magnetic properties in Gd-doped GaN layers grown by plasma-assisted molecular beam epitaxy has been investigated. The structural and magnetic properties of Gd-doped GaN films grown on GaN templates strongly depend on the MBE growth condition. While Gd-doped GaN grown under relatively high Ga fluxes consist of wurtzite GaGdN layers without Gd-related precipitates, Gd-incorporated GaN films grown under low Ga fluxes contain a lot of nanoparticles ranging from several nm to several tens nm in size. The samples with Gd-related nanoparticles exhibit hysteresis in the magnetization-magnetic field curves at 10 K. The separation between the field-cooled and zero-field-cooled magnetization-temperature curves is observed at around 30 K. This behavior is understood in terms of super-paramagnetism originating from the ferromagnetic nanoparticles observed in the cross-sectional transmission electron microscopy images.

  13. Effect of nitridation on the growth of GaN on ZrB{sub 2}(0001)/Si(111) by molecular-beam epitaxy

    SciTech Connect

    Wang, Z.-T.; Yamada-Takamura, Y.; Fujikawa, Y.; Sakurai, T.; Xue, Q. K.; Tolle, J.; Kouvetakis, J.; Tsong, I. S. T.

    2006-08-01

    The effect of nitridation on the epitaxial growth of GaN on lattice-matched ZrB{sub 2}(0001) films prepared ex situ and in situ was studied using an ultrahigh-vacuum molecular-beam epitaxy (MBE)-scanning probe microscopy system. The growth of GaN was carried out by rf-plasma-assisted MBE, and epitaxy of wurtzite GaN was observed on both ex situ and in situ prepared ZrB{sub 2} samples. The polarity was found to be consistently N-polar regardless of the samples, based on the observation of a series of N-polar Ga-rich reconstructions: (3x3) (6x6), and c(6x12). The nitridation of ZrB{sub 2} film was conducted by exposing it to active nitrogen and well-ordered hexagonal-BN (h-BN) formation was observed when the annealing temperature was above 900 deg.C. The partially formed BN layer affected neither the epitaxy nor the polarity of GaN, but when the surface was fully covered with well-ordered h-BN, GaN growth did not occur.

  14. Effect of nitridation on the growth of GaN on ZrB2(0001)/Si (111) by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Tao; Yamada-Takamura, Y.; Fujikawa, Y.; Sakurai, T.; Xue, Q. K.; Tolle, J.; Kouvetakis, J.; Tsong, I. S. T.

    2006-08-01

    The effect of nitridation on the epitaxial growth of GaN on lattice-matched ZrB2(0001) films prepared ex situ and in situ was studied using an ultrahigh-vacuum molecular-beam epitaxy (MBE)-scanning probe microscopy system. The growth of GaN was carried out by rf-plasma-assisted MBE, and epitaxy of wurtzite GaN was observed on both ex situ and in situ prepared ZrB2 samples. The polarity was found to be consistently N-polar regardless of the samples, based on the observation of a series of N-polar Ga-rich reconstructions: (3×3), (6×6), and c (6×12). The nitridation of ZrB2 film was conducted by exposing it to active nitrogen and well-ordered hexagonal-BN (h-BN) formation was observed when the annealing temperature was above 900°C. The partially formed BN layer affected neither the epitaxy nor the polarity of GaN, but when the surface was fully covered with well-ordered h-BN, GaN growth did not occur.

  15. Growth and characteristics of self-assembly defect-free GaN surface islands by molecular beam epitaxy.

    PubMed

    Hsu, Kuang-Yuan; Wang, Cheng-Yu; Liu, Chuan-Pu

    2011-04-01

    GaN surface nano-islands of high crystal quality, without any dislocations or other extended defects, are grown on a c-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Nano-island growth requires special conditions in terms of V/III ratio and substrate temperature, distinct from either film or nanocolumn growth. The insertion of a nitrided Ga layer can effectively improve the uniformity of the nano-islands in both shape and size. The islands are well faced truncated pyramids with island size ranged from 30 to 110 nm, and height ranged from 30 to 55 nm. On, the other hand, the density and facet of the GaN surface islands would be affected by the growth conditions. An increase of the V/III ratio from 30 to 40 led to an increase in density from 1.4 x 10(9) to 4.3 x 10(9) cm(-2) and an evolution from {1-21-1} facets to {1-21-2} facets. The GaN layers containing the surface islands can moderate the compressive strain due to the lattice and thermal mismatch between GaN and c-sapphire. Conductive atomic force microscopy shows that the off-axis sidewall facets are more electrically active than those at the island center. The formation of the GaN surface islands is strongly induced by the Ehrlich-Schwoebel barrier effect of preexisting islands grown in the early growth stage. GaN surface islands are ideal templates for growing nano-devices.

  16. Fundamental Bulk/Surface Structure Photoactivity Relationships of Supported (Rh2-yCryO3)/GaN Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Roberts, Charles; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    ABSTRACT. The supported (Rh2-yCryO3)/GaN photocatalyst was examined as a model nitride photocatalyst system to assist in the development of fundamental structure photoactivity relationships for UV activated water splitting. Surface characterization of the outermost surface layers by High Sensitivity-LEIS and High Resolution-XPS revealed for the first time that the GaN support consists of a GaOx outermost surface layer and a thin film of GaOxNy in the surface region. HR-XPS also demonstrates that the supported (Rh2-yCryO3) mixed oxide nanoparticles (NPs) exclusively consist of Cr+3 and Rh+3 cations and are surface enriched for the supported (Rh2-yCryO3)/GaN photocatalyst. Bulk analysis by Raman and UV-vis spectroscopy show that the bulk molecular and electronic structures, respectively, of the GaN support are not perturbed by the deposition of the (Rh2-yCryO3) mixed oxide NPs. The function of the GaN bulk lattice is to generate photoexcited electrons/holes, with the electrons harnessed by the surface Rh+3 sites for evolution of H2 and the holes trapped at the Ga oxide/oxynitride surface sites for splitting of water and evolving O2. These new structure-photoactivity relationships for supported (Rh2-yCryO3)/GaN also extend to the best performing visible light activated supported (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx) photocatalyst.

  17. Adsorbate interactions on the GaN(0001) surface and their effect on diffusion barriers and growth morphology.

    PubMed

    Chugh, Manjusha; Ranganathan, Madhav

    2017-01-18

    Studying the adsorbate interactions on a surface helps in understanding the growing surface morphologies and calculating the effective surface diffusion barriers. We study the interaction between Ga-Ga, N-N and Ga-N adatom pairs on the polar GaN(0001) surface using ab initio calculations based on density functional theory. The interaction energy between two adatoms on the surface does not seem to follow definite trends with increasing distance between the adatoms. The presence of a number of possible reconstructions on clean GaN(0001) and periodic effects due to the finite size complicate the analysis of the interactions. Various components of the total interaction energy are separated. We find that there is a large substrate lattice distortion caused due to Ga and N adatoms. The resulting elastic interaction is a major component of the interactions between the adatoms on the GaN(0001) surface. The dipolar interaction is much smaller in magnitude. We also evaluate the component of the interaction energy due to the substrate-mediated electronic interactions. The barriers for surface hopping of adatoms are significantly modified in the presence of other adatoms. We identify several possible surface hopping processes for Ga and N adatoms and calculate their barriers. In particular, we find that the N adatom has a lower barrier to move to an adjoining site on the other side of a neighboring Ga adatom. Kinetic Monte Carlo simulations are performed to see the effect of adatom interactions on the growing surface morphologies of GaN(0001). At the submonolayer growth stage, the fast diffusion of N adatoms located near Ga adatoms leads to more regular island features. In this way, we illustrate the role of adatom interactions in the initial surface nucleation and the morphologies of the growing GaN(0001) film.

  18. Electron beam induced current study of minority carrier diffusion length in homoepitaxial GaN (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Talin, A. Alec; Collins, Kimberlee C.; Armstrong, Andrew M.; Allerman, Andrew A.; Léonard, François

    2016-09-01

    GaN is a promising material for a range of high power, high frequency, and high temperature device applications. The wide bandgap of GaN leads to high breakdown voltages and low switching losses. Recently, large HVPE grown GaN substrates have become available for homoepitaxial growth leading to 103 reduction in dislocation density compared to similarly grown heteroepitaxial films. Device performance, however, is ultimately limited by the transport properties of minority carriers. Measured values for minority carrier diffusion lengths and lifetimes in GaN vary widely1-3, and a recent report suggests flaws in the commonly adopted electron beam induced current (EBIC) method in the planar-collection geometry.1 Here we report on EBIC measurements performed on 8 micrometer thick GaN grown by MOCVD on 2 inch GaN substrates with a n-type dopant density of 5×1016 cm-3. We determine the carrier diffusion length using both the conventional EBIC method by varying the electron beam-to-contact lateral distance as well as by varying the electron beam penetration depth and find the extracted values differ by 10×, with the latter technique yielding the lower diffusion length. We rationalize these results in light of other materials characteristics including Raman and photoluminescence. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Amorphous carbon buffer layers for separating free gallium nitride films

    NASA Astrophysics Data System (ADS)

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.

    2016-11-01

    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  20. GaN membrane MSM ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  1. Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN.

    PubMed

    Schmehl, Andreas; Vaithyanathan, Venu; Herrnberger, Alexander; Thiel, Stefan; Richter, Christoph; Liberati, Marco; Heeg, Tassilo; Röckerath, Martin; Kourkoutis, Lena Fitting; Mühlbauer, Sebastian; Böni, Peter; Muller, David A; Barash, Yuri; Schubert, Jürgen; Idzerda, Yves; Mannhart, Jochen; Schlom, Darrell G

    2007-11-01

    Doped EuO is an attractive material for the fabrication of proof-of-concept spintronic devices. Yet for decades its use has been hindered by its instability in air and the difficulty of preparing and patterning high-quality thin films. Here, we establish EuO as the pre-eminent material for the direct integration of a carrier-concentration-matched half-metal with the long-spin-lifetime semiconductors silicon and GaN, using methods that transcend these difficulties. Andreev reflection measurements reveal that the spin polarization in doped epitaxial EuO films exceeds 90%, demonstrating that EuO is a half-metal even when highly doped. Furthermore, EuO is epitaxially integrated with silicon and GaN. These results demonstrate the high potential of EuO for spintronic devices.

  2. Bending stability of GaN grown on a metallic flexible substrate by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. G.; Chávez-Veloz, S. G.; Compeán-García, V. D.; López-Luna, E.; Vidal, M. A.

    2017-08-01

    GaN thin films were grown on flexible metallic substrates by molecular beam epitaxy. MgO buffer layers were deposited by spin coating on Ni-Mo-Cr (Hastelloy C-276) alloy tapes that were used as substrates. The structural characterization of the GaN/MgO/hastelloy samples was performed by x-ray diffraction and Raman spectroscopy. The obtained nanometric films have the stable hexagonal phase (α-GaN) with an average crystallite size of 18 nm. The long and short range order of GaN decrease when the structure is bent. The most significant variations in the structural properties occur between 100 and 250 bending cycles.

  3. Optical Properties of GaN and ZnO

    NASA Astrophysics Data System (ADS)

    Song, J.-H.

    A brief review on the optical properties of wurtzite ZnO and GaN is presented in this chapter with an emphasis on comparison between the materials. The properties of free excitons and impurity-bound excitons, such as their energetic positions and binding energies, are summarized. The localization energy and the ionization energy of the dominant impurities obtained by emission spectroscopy are also presented. Typical aspects of emissions from donor—acceptor pairs, free-to-bound transition, and deep level recombination are discussed. Several experimental characteristics of the relevant heterostructures, InGaN/GaN and MgZnO/ZnO, are also given below. Basic optical methods characterizing the effects of internal electric fields and carrier-localization are summarized. The unique properties of polarization sensitive emissions from nonpolar films are presented. Based on the valence band structures, the polarization selection rules can be obtained in simpler forms. Some recent reports will also be introduced stating that the anisotropic strain in nonpolar films plays an important role in deciding the polarization selectivity. The results of Raman spectroscopy are summarized in the end, with the emphasis on deciding the residual strain and the carrier concentration.

  4. Stretching of a plane with a lattice of cuts

    NASA Astrophysics Data System (ADS)

    Dahl, Yu. M.

    2016-06-01

    An exact analytical solution of the problem in elasticity theory about stretching of a plane with an infinite lattice of rectilinear cuts has been obtained. The analysis is based on G.V. Kolosov's formulas associating the stress components with two regular functions of a complex variable. The obtained solution revealed the original effects of stretching stress screening and localization of compressive stresses between cuts.

  5. Ultrahigh Si{sup +} implant activation efficiency in GaN using a high-temperature rapid thermal process system

    SciTech Connect

    Cao, X.A.; Abernathy, C.R.; Singh, R.K.; Pearton, S.J.; Fu, M.; Sarvepalli, V.; Sekhar, J.A.; Zolper, J.C.; Rieger, D.J.; Han, J.; Drummond, T.J.; Shul, R.J.; Wilson, R.G.

    1998-07-01

    Si{sup +} implant activation efficiencies above 90{percent}, even at doses of 5{times}10{sup 15}thinspcm{sup {minus}2}, have been achieved in GaN by rapid thermal processing at 1400{endash}1500thinsp{degree}C for 10 s. The annealing system utilizes molybdenum intermetallic heating elements capable of operation up to 1900thinsp{degree}C, producing high heating and cooling rates (up to 100thinsp{degree}Cthinsps{sup {minus}1}). Unencapsulated GaN shows severe surface pitting at 1300thinsp{degree}C and complete loss of the film by evaporation at 1400thinsp{degree}C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AlN and 3.4 eV for InN). Encapsulation with either rf magnetron reactively sputtered or metal organic molecular beam epitaxy-grown AlN thin films provides protection against GaN surface degradation up to 1400thinsp{degree}C, where peak electron concentrations of {approximately}5{times}10{sup 20}thinspcm{sup {minus}3} can be achieved in Si-implanted GaN. Secondary ion mass spectrometry profiling showed little measurable redistribution of Si, suggesting D{sub Si}{le}10{sup {minus}13}thinspcm{sup 2}thinsps{sup {minus}1} at 1400thinsp{degree}C. The implant activation efficiency decreases at higher temperatures, which may result from Si{sub Ga} to Si{sub N} site switching and resultant self-compensation. {copyright} {ital 1998 American Institute of Physics.}

  6. The structure of dislocations in (In,Al,Ga)N wurtzite films grown epitaxially on (0001) or (112xAF2) GaN or AlN substrates

    NASA Astrophysics Data System (ADS)

    Jones, K. A.; Batyrev, I. G.

    2012-12-01

    When dislocations have to be nucleated in the film to accommodate the lattice mismatch with the substrate, the shear stress acting in the glide plane, projection of the edge component of the Burgers vector lying in the growth plane, shear stress required for the dislocation to glide, and ability to decompose into partial dislocation pairs with an associated stacking fault are considered. This is done for growth on the (0001) or (112¯2) substrates by calculating the angle the slip plane, h, makes with the growth plane, length of the Burgers vector, b, angle between b and the dislocation line, l, projection of b onto the normal to l lying in the growth plane, and planar density of h. The planar density is used as a measure of the shear stress required to move the dislocation, and it is computed by determining the interplanar spacing, d, and accounting for the atoms that lie in parallel planes, which are made possible by the fact that the wurtzite unit cell contains four atoms per lattice point. Only dislocations with pyramidal glide planes are considered for growth on the (0001) substrate because the plane strain generated by the lattice mismatch does not generate any shear stress in the basal or prismatic planes. Only one member of the family of planes is considerate for this growth plane because of its high symmetry. For growth on the (112¯2) plane both slip in the basal plane and the prismatic plane normal to the Burgers vector in it are examined.

  7. Effect of surface pretreatment of r-plane sapphire substrates on the crystal quality of a-plane AlN

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Yasui, Daiki; Tamaki, Shinya; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-05-01

    Single-crystal a-plane AlN(11\\bar{2}0) films were grown on r-plane sapphire (1\\bar{1}02) substrates by hydride vapor phase epitaxy (HVPE). We performed the optimization of thermal cleaning and nitridation conditions for r-plane sapphire substrates, and investigated the effect of ammonia (NH3) preflow on the crystallinity of a-plane AlN. An r-plane sapphire substrate with uniformly straight atomic steps was formed at 1000 °C, and NH3 preflow was subsequently supplied. The growth mode of a-plane AlN was promoted to be three-dimensional (3D) growth by the nitridation of r-plane sapphire substrates, and sizes of 3D islands were modified by changing the NH3 preflow time. The crystallinity of a-plane AlN films was improved by varying the NH3 preflow time from 30 to 90 s. The optimum crystal quality of a-plane AlN films was obtained with NH3 preflow for 30 s.

  8. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE

    NASA Astrophysics Data System (ADS)

    Cheng, Yutian; Liu, Peng; Wu, Jiejun; Xiang, Yong; Chen, Xinjuan; Ji, Cheng; Yu, Tongjun; Zhang, Guoyi

    2016-07-01

    The uniformity of flow field inner the reactor plays a crucial role for hydride vapor phase epitaxy (HVPE) crystal growth and its more important for large scale substrate. A new nozzle structure was designed by adding a push and dilution (PD) gas pipe in the center of gas channels for a 4-inch HVPE (PD-HVPE) system. Experimental results showed that the thickness inhomogeneity of 46 μm 4-inch GaN layer could reach ±1.8% by optimizing PD gas, greatly improved from ±14% grown with conventional nozzle. The simulations of the internal flow field were consistent with our experiment, and the enhancement in uniformity should be attributed to the redistribution of GaCl and NH3 upon the wafer induced by PD pipe. The full width at half maximum (FWHM) of X-ray diffraction rocking curves for the 4-inch GaN film were about 224 and 200 arcsec for (002) and (102) reflection. The dislocation density of as-grown GaN was about 6.4×107 cm-2.

  9. Polarity-Induced Selective Area Epitaxy of GaN Nanowires.

    PubMed

    de Souza Schiaber, Ziani; Calabrese, Gabriele; Kong, Xiang; Trampert, Achim; Jenichen, Bernd; Dias da Silva, José Humberto; Geelhaar, Lutz; Brandt, Oliver; Fernández-Garrido, Sergio

    2017-01-11

    We present a conceptually novel approach to achieve selective area epitaxy of GaN nanowires. The approach is based on the fact that these nanostructures do not form in plasma-assisted molecular beam epitaxy on structurally and chemically uniform cation-polar substrates. By in situ depositing and nitridating Si on a Ga-polar GaN film, we locally reverse the polarity to induce the selective area epitaxy of N-polar GaN nanowires. We show that the nanowire number density can be controlled over several orders of magnitude by varying the amount of predeposited Si. Using this growth approach, we demonstrate the synthesis of single-crystalline and uncoalesced nanowires with diameters as small as 20 nm. The achievement of nanowire number densities low enough to prevent the shadowing of the nanowire sidewalls from the impinging fluxes paves the way for the realization of homogeneous core-shell heterostructures without the need of using ex situ prepatterned substrates.

  10. Anisotropy of effective electron masses in highly doped nonpolar GaN

    SciTech Connect

    Feneberg, Martin Lange, Karsten; Lidig, Christian; Wieneke, Matthias; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois; Goldhahn, Rüdiger

    2013-12-02

    The anisotropic effective electron masses in wurtzite GaN are determined by generalized infrared spectroscopic ellipsometry. Nonpolar (112{sup ¯}0) oriented thin films allow accessing both effective masses, m{sub ⊥}{sup *} and m{sub ∥}{sup *}, by determining the screened plasma frequencies. A n-type doping range up to 1.7 × 10{sup 20} cm{sup −3} is investigated. The effective mass ratio m{sub ⊥}{sup *}/m{sub ∥}{sup *} is obtained with highest accuracy and is found to be 1.11 independent on electron concentration up to 1.2 × 10{sup 20} cm{sup −3}. For higher electron concentrations, the conduction band non-parabolicity is mirrored in changes. Absolute values for effective electron masses depend on additional input of carrier concentrations determined by Hall effect measurements. We obtain m{sub ⊥}{sup *}=(0.239±0.004)m{sub 0} and m{sub ∥}{sup *}=(0.216±0.003)m{sub 0} for the parabolic range of the GaN conduction band. Our data are indication of a parabolic GaN conduction band up to an energy of approximately 400 meV above the conduction band minimum.

  11. Gallium Nitride (GaN) High Power Electronics (FY11)

    DTIC Science & Technology

    2012-01-01

    Gallium Nitride (GaN) High Power Electronics (FY11) by Kenneth A. Jones, Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander...Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5903 January 2012 Gallium Nitride (GaN) High Power Electronics (FY11) Kenneth A...DSI 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Gallium Nitride (GaN) High Power Electronics (FY11) 5a. CONTRACT NUMBER 5b. GRANT

  12. Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN: Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN

    SciTech Connect

    Hossain, T.; Wei, D.; Nepal, N.; Garces, N. Y.; Hite, J. K.; Meyer, H. M.; Eddy, C. R.; Baker, Troy; Mayo, Ashley; Schmitt, Jason; Edgar, J. H.

    2014-02-24

    We report the benefits of dry oxidation of n -GaN for the fabrication of metal-oxide-semiconductor structures. GaN thin films grown on sapphire by MOCVD were thermally oxidized for 30, 45 and 60 minutes in a pure oxygen atmosphere at 850 °C to produce thin, smooth GaOx layers. Moreover, the GaN sample oxidized for 30 minutes had the best properties. Its surface roughness (0.595 nm) as measured by atomic force microscopy (AFM) was the lowest. Capacitance-voltage measurements showed it had the best saturation in accumulation region and the sharpest transition from accumulation to depletion regions. Under gate voltage sweep, capacitance-voltage hysteresis was completely absent. The interface trap density was minimum (Dit = 2.75×1010 cm–2eV–1) for sample oxidized for 30 mins. These results demonstrate a high quality GaOx layer is beneficial for GaN MOSFETs.

  13. Dislocation annihilation in regrown GaN on nanoporous GaN template with optimization of buffer layer growth

    NASA Astrophysics Data System (ADS)

    Soh, C. B.; Hartono, H.; Chow, S. Y.; Chua, S. J.; Fitzgerald, E. A.

    2007-01-01

    Nanoporous GaN template has been fabricated by electrochemical etching to give hexagonal pits with nanoscale pores of size 20-50nm in the underlying grains. The effect of GaN buffer layer grown at various temperatures from 650to1015°C on these as-fabricated nanopores templates is investigated by transmission electron microscopy. The buffer layer grown at the optimized temperature of 850°C partially fill up the pores and voids with annihilation of threading dislocations, serving as an excellent template for high-quality GaN growth. This phenomenon is, however, not observed for the samples grown with other temperature buffer layers. Micro-Raman measurements show significant strain relaxation and improvement in the crystal quality of the overgrown GaN layer on nanoporous GaN template as compared to overgrown on conventional GaN template.

  14. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate

    PubMed Central

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-01-01

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress. PMID:24569601

  15. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate.

    PubMed

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-02-26

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress.

  16. Photonic band gaps of wurtzite GaN and AlN photonic crystals at short wavelengths

    NASA Astrophysics Data System (ADS)

    Melo, E. G.; Alayo, M. I.

    2015-04-01

    Group III-nitride materials such as GaN and AlN have attracted a great attention in researches on photonic devices that operate at short light wavelengths. The large band gaps of these materials turn them suitable for nanophotonic devices that operate in light ranges from visible to deep ultraviolet. The physical properties of wurtzite GaN and AlN such as their second and third order nonlinear susceptibilities, and their thermal and piezoelectric coefficients, also make them excellent candidates for integrate photonic devices with electronics, microelectromechanics, microfluidics and general sensing applications. Using a plane wave expansion method (PWE) the photonic band gap maps of 36 different two-dimensional photonic crystal lattices in wurtzite GaN and AlN were obtained and analyzed. The wavelength dependence and the effects of the material anisotropy on the position of the photonic band gaps are also discussed. The results show regions with slow group velocity at the edges of a complete photonic band gap in the M-K direction of the triangular lattices with circular, hexagonal, and rhombic air holes. Was also found a very interesting disposition of the photonic band gaps in the lattices composed of rhombic air holes.

  17. Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN

    NASA Astrophysics Data System (ADS)

    Logothetidis, S.; Petalas, J.; Cardona, M.; Moustakas, T. D.

    1994-12-01

    The optical properties of cubic and hexagonal GaN thin films, grown by electron-cyclotron resonance microwave plasma-assisted molecular-beam epitaxy on silicon and sapphire substrates, respectively, have been studied at photon energies up to 25 eV with conventional and synchrotron-radiation spectroscopic ellipsometry. The fundamental gaps of the two polytypes are located at different energies, namely at 3.25 and 3.43 eV for cubic and hexagonal GaN. Analysis of the dielectric function of the two phases in the region 4.5-9.5 eV with appropriate models yields the energy location and broadening of the observed critical points. These critical points are assigned to specific points in the zinc-blende and wurtzite Brillouin zones, respectively, making use of the latest published band-structure studies and a comparison is made between the corresponding results for GaN, GaAs, and GaP. Measurements in the temperature range from 80 to 650 K provide the temperature dependence of these parameters. The features observed in the reflectivity spectra of hexagonal GaN are discussed in relation to other works. Kramers-Kronig analysis of the reflectivity between 0 and 33 eV of the hexagonal polytype verifies the existence of a broad feature centered at 14 eV. Finally, average properties, such as the effective ir dielectric constant and the effective number of valence electrons per atom are calculated for the two polytypes and compared to GaAs and GaP.

  18. Growth of Ga2O3 by furnace oxidation of GaN studied by perturbed angular correlations

    NASA Astrophysics Data System (ADS)

    Steffens, Michael; Vianden, Reiner; Pasquevich, Alberto F.

    2016-12-01

    Ga2O3 is a promising material for use in "solar-blind" UV-detectors which can be produced efficiently by oxidation of GaN. In this study we focus on the evolution of the oxide layer when GaN is heated in air. The experimental method applied is the perturbed angular correlation (PAC) spectroscopy of γ-rays emitted by radioactive nuclides, here 111Cd and 181Ta, whose parent nuclei are ion implanted into films of GaN grown on sapphire. As the emission pattern for nuclei in GaN is clearly distinct from that of nuclei in Ga2O3, the fraction of probe nuclei in the oxide layer can be directly measured and allows to follow the time dependent growth of the oxide on a scale of less than 100 nm. Additional measurements were carried out with the oxidized sample held at fixed temperatures in the temperature range from 19 K to 973 K showing transitions between the hyperfine interactions of 111Cd in the oxide matrix both at high and low temperatures. A model for these transitions is proposed.

  19. Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi; Chen, Reui-San; Chang, Fu-Chieh; Chen, Li-Chyong; Chen, Kuei-Hsien; Yang, Ying-Jay

    2009-10-01

    The size effects on both the photoconductivity and dark conductivity have been observed in m-axial GaN nanowires grown by chemical vapor deposition (CVD). For these nanowires with diameters at 50-130 nm, the products of carrier lifetime (τ) and mobility (μ) derived from the photocurrent measurements are typically at (2-8)×10-1 cm2/V, which are over two orders of magnitude higher than the maximal reported values [τμ=(1-5)×10-4 cm2/V] for their thin film counterparts. A significant decrease of τμ value at diameter below the critical values (dcrt) at 30-40 nm is observed. Similar size dependence is also found from the dark conductivity study. The temperature-dependent measurements further indicate two different thermal activation mechanisms in GaN nanowires with sizes above and below the dcrt. These results suggest a surface-dominant transport property in GaN nanowires both in dark and under light illumination due to the presence of surface depletion and band bending. Probable reasons leading to the smaller dcrt of the CVD-grown m-axial GaN nanowires, compared to the c-axial ones grown by molecular beam epitaxy are discussed as well.

  20. Phonon assignments in GaN bulk

    NASA Astrophysics Data System (ADS)

    Kunert, H. W.

    2004-07-01

    The measured phonon-density of states of bulk GaN by time-of-flight neutron spectroscopy has been recently reported by Nipko et al. [CITE]. The authors have also calculated the true partial and total DOS as well as the phonon dispersion curves along major symmetry directions in the Brillouin zone. However, the group-theoretical phonon assignments have not been provided. Based on calculated symmetry allowed modes spanned by displacement representation and on the derived connectivity relations along the major directions in the Brillouin zone we have assigned Nipko's phonon dispersion curves to irreducible representations (species) of the C^46v (P63mc) space group of GaN.

  1. Theoretical Investigation of GaN

    NASA Astrophysics Data System (ADS)

    Achour, H.; Louhibi-Fasla, S.; Mana, F.

    Using the Full Potential Linear Muffin Tin Orbitals (FPLMTO) method, the structural properties of GaN were studied. Different crystal structures were considered: NaCl, CsCl, wurtzite, zincblende, β-tin, Cinnabar and NiAs structures. The wurtzite is the calculated ground state structure. Results are given for lattice parameters, bulk modulus and its first derivative in the different cases. The phase transitions for GaN were also investigated. The results are compared with the available theoretical and experimental data. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the heat capacity Cv were successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1000 K.

  2. Amphoteric arsenic in GaN

    SciTech Connect

    Wahl, U.; Correia, J. G.; Araujo, J. P.; Rita, E.; Soares, J. C.

    2007-04-30

    The authors have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive {sup 73}As. They give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that As{sub Ga} 'antisites' are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called miscibility gap in ternary GaAs{sub 1-x}N{sub x} compounds, which cannot be grown with a single phase for values of x in the range of 0.1

  3. Evaluation of GaN substrates grown in supercritical basic ammonia

    SciTech Connect

    Saito, Makoto; Yamada, Hisashi; Iso, Kenji; Sato, Hitoshi; Hirasawa, Hirohiko; Kamber, Derrick S.; Hashimoto, Tadao; Baars, Steven P. den; Speck, James S.; Nakamura, Shuji

    2009-02-02

    GaN crystals grown by the basic ammonothermal method were investigated for their use as substrates for device regrowth. X-ray diffraction analysis indicated that the substrates contained multiple grains while secondary ion mass spectroscopy (SIMS) revealed a high concentration of hydrogen, oxygen, and sodium. Despite these drawbacks, the emission from the light emitting diode structures grown by metal organic chemical vapor deposition on both the c-plane and m-plane epitaxial wafers was demonstrated. The SIMS depth profiles showed that the diffusion of the alkali metal from the substrate into the epitaxial film was small, especially in the m-direction.

  4. Termination of hollow core nanopipes in GaN by an AlN interlayer

    NASA Astrophysics Data System (ADS)

    Contreras, O.; Ruiz-Zepeda, F.; Avalos-Borja, M.; Dadgar, A.; Krost, A.

    2016-12-01

    Nanopipes associated to screw dislocations are studied by transmission electron microscopy in Si-doped GaN films grown on silicon substrates. The observations revealed that dislocations had an empty core and that an AlN interlayer is suited to block their propagation. The termination mechanism is discussed in terms of strain and kinetic growth factors, which may affect the creation and propagation of nanopipes. According to the observations, it is proposed that either step pinning or lateral overgrowth occurring at the proximity of the defect assists in capping the nanopipe.

  5. GaN Nanowire Functionalized with Atomic Layer Deposition Techniques for Enhanced Immobilization of Biomolecules

    DTIC Science & Technology

    2010-01-01

    GaN NW chips were fabricated using the molecular beam epitaxy technique under the condition of a high substrate temperature (∼800 C) and a high N2...18382 DOI: 10.1021/la103337a Langmuir 2010, 26(23), 18382–18391Published on Web 11/01/2010 pubs.acs.org/Langmuir © 2010 American Chemical Society...detection sensitivity. Three kinds of ALD coating films, Al2O3, TiO2, and SiO2, were grown on the gallium nitride nanowire (GaNNW) surfaces and

  6. Enhanced photoluminescence from photonic crystal-coated GaN LED wafers

    NASA Astrophysics Data System (ADS)

    Rahman, F.; Khokhar, A. Z.

    2011-06-01

    This paper describes results of studies on photoluminescence from blue-emitting GaN LED wafers coated with a layer of synthetic opal photonic crystals. Commercial LED wafer material was used and samples were coated with thin films consisting of several layers of stacked spherical polystyrene balls. Various optical measurements were performed on these samples while they were excited with a 405 nm laser beam. Diffraction pattern due to the photonic crystal structure, showing the underlying six-fold symmetry, was recorded. The spectrum and angle-resolved intensity of photoluminescence were measured to understand the coupling of LED light with the grown photonic crystal structure on top of the wafer.

  7. Growth and Characterization of Single Crystalline InN Grown on GaN by RF Sputtering for Robust Schottky Contacts

    NASA Astrophysics Data System (ADS)

    Harotoonian, Vache; Woodall, Jerry M.

    2016-12-01

    High-quality, single crystal wurtzite InN films were fabricated by radio-frequency magnetron reactive sputtering on GaN templates. The sputtered InN films in this study were about 100 nm thick. Atomic force microscopy analysis revealed the sputtered InN film had root-mean-square surface roughness of about 0.4 nm, which is comparable to the underlying GaN template. Coupled x-ray diffraction (XRD) measurements confirmed the (0001) preferred growth orientation and ω-rocking curve full-width-half-maximum (FWHM) = 0.85° for the symmetrical (0002) diffraction peak. The present InN film has the best crystal quality in terms of narrower FWHM of XRD rocking curve among reported sputtered InN thin films. In-plane and out-of-plane XRD measurements revealed a relaxed film. Room temperature Hall Effect measurements showed mobility of 110 cm2/V.s and electron concentration of 1-2 × 1020/cm3. The feasibility of utilizing a cost effective and productive method of sputtering to form robust Schottky contacts to GaN using InN, an immiscible and metallic-like semiconductor, was explored.

  8. Fe-doped semi-insulating GaN with solid Fe source grown on (110) Si substrates by NH3 molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Noh, Young Kyun; Lee, Sang Tae; Kim, Moon Deock; Oh, Jae Eung

    2017-02-01

    Iron doped GaN layers were grown on (110) Si substrates by ammonia molecular beam epitaxy (MBE) using solid elemental iron as a source. Specular films with concentrations up to 1×1020 cm-3, as determined by secondary ion mass spectroscopy, were grown, unlike a limited incorporation of Fe into GaN by metal-rich rf plasma MBE. The Fe concentration in the film showed an exponential dependence on the inverse of source temperature with an activation energy of 3.4 eV, which agrees well to the reported value for the sublimation of Fe. A 1.5 μm thick GaN film with a sheet resistance of 1 GΩ/sq. was obtained by compensating unintentional residual donors with a small Fe concentration of 1×1017 cm-3. X-ray diffraction rocking curves indicated high crystalline quality, very similar to an undoped film, showing that the Fe incorporation required to obtain the semi-insulating film properties did not affect the structural properties of the film. The low-temperature PL spectra of highly resistive and semi-insulating Fe:GaN in the range of 1017 1018 cm-3 show dominant exciton emissions and enhanced donor-acceptor-pair (DAP) emissions, implying that Fe ions contribute to the DAP transition between donor levels and Fe-related acceptor levels, possibly compensating the residual donors to achieve the semi-insulating electrical properties.

  9. Dislocation filtering in GaN nanostructures.

    PubMed

    Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A

    2010-05-12

    Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.

  10. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    SciTech Connect

    Kyle, Erin C. H. Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  11. TEM characterization of GaN nanowires

    SciTech Connect

    Liliental-Weber, Zuzanna; Gao, Y.H.; Bando, Y.

    2002-02-21

    Transmission electron microscopy was applied to study GaN nanowires grown on carbon nanotube surfaces by chemical reaction between Ga{sub 2}O and NH{sub 3} gas in a conventional furnace. These wires grew in two crystallographic directions, <2{und 11}0> and <01{und 1}0> (fast growth directions of GaN), in the form of whiskers covered by small elongated GaN platelets. The morphology of these platelets is similar to that observed during the growth of single crystals from a Ga melt at high temperatures under high nitrogen pressure. It is thought that growth of nanowires in two different crystallographic directions and the arrangement of the platelets to the central whisker may be influenced by the presence of Ga{sub 2}O{sub 3} (based on the observation of the energy dispersive x-ray spectra), the interplanar spacings in the wire, and the presence of defects on the interface between the central part of the nanowire and the platelets surrounding it.

  12. Generation of a crowned pinion tooth surface by a plane

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhang, J.; Handschuh, R. F.

    1988-01-01

    The topology of a crowned spur pinion tooth surface that reduces the level of transmission errors due to misalignment is described. The geometry of the modified pinion tooth surface and of the regular involute gear tooth surface is discussed. The tooth contact analysis between the meshing surfaces is also described. Generating a modified pinion tooth surface by a plane whose motion is controlled by a 5-degree-of-freedom system is investigated. The numerical results included indicate that the transmission error remains low as the gears are misaligned.

  13. Stability of Alfven oscillations in a plane plasma slab

    SciTech Connect

    Patudin, V.M.; Sagalakov, A.M.

    1983-05-01

    The stability of the natural Alfven oscillations of a plane slab of a collisional, slightly nonequilibrium plasma in a uniform magnetic field is studied. An effective numerical method, a special version of the differential sweepout method, is proposed. A calculation procedure has been developed. The small-oscillation spectrum is analyzed for parabolic plasma density profiles, and neutral curves are plotted. The growth rates and critical parameters are determined. At a high plasma conductivity, both strongly and weakly localized perturbations near the axis can go unstable. For a density profile with an inflection point, weakly damped oscillations are observed near the inflection point. These oscillations can also be excited by an ion beam.

  14. A plane mirror experiment inspired by a comic strip

    NASA Astrophysics Data System (ADS)

    Lúcio Prados Ribeiro, Jair

    2016-01-01

    A comic strip about a plane mirror was used in a high school optics test, and it was perceived that a large portion of the students believed that the mirror should be larger than the object so the virtual image could be entirely visible. Inspired on the comic strip, an experimental demonstration with flat mirrors was developed, in order to readdress this topic learning. Students were encouraged to create their own investigation of the phenomenon with a simple instrumental apparatus and also suggest different experimental approaches.

  15. Reflection of a plane shock wave from a slit

    NASA Astrophysics Data System (ADS)

    Serov, A. O.; Shtemenko, L. S.; Shugaev, F. V.

    Laser shadow photography was used in a shock-tube visualization study of a plane shock wave reflected from a slit. The working gases were air and Freon 14, and the Mach number of the incident shock wave was in the 2-3 range. An intense interaction between the reflected wave and the walls of the slit was observed. This interaction could lead to the disappearance of the rectilinear part of this wave, thus reducing the load experienced by the body during this type of reflection.

  16. Dispersal of motile bacteria from a plane layer.

    PubMed Central

    Cridland, J V; Thonemann, P C

    1984-01-01

    The dispersal of an initially well-defined concentration of the motile bacterium Escherichia coli was measured under nonchemotactic conditions. The distribution of bacteria along a glass observation cell was measured by recording the intensity of light scattered by the organisms. For comparison, the diffusion of fluorescein was also measured by determining the distribution of fluorescence throughout the observation cell. The dispersal of bacteria from a plane layer, under nonchemotactic conditions, can be adequately described by the Gaussian solution of the diffusion equation. PMID:6440604

  17. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Hommel, D.; Roskowski, A.M.; Davis, R.F.

    2010-06-25

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  18. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun; Einfeldt, S.; Hommel, D.; Roskowski, A. M.; Davis, R. F.

    2005-01-01

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  19. Polarized photoluminescence excitation spectroscopy of a-plane InGaN/GaN multiple quantum wells grown on r-plane sapphire

    NASA Astrophysics Data System (ADS)

    Kundys, D.; Schulz, S.; Oehler, F.; Sutherland, D.; Badcock, T. J.; Dawson, P.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.

    2014-03-01

    We have performed a detailed study of the impact of basal plane stacking faults (BSFs) on the optical properties of both a-plane InGaN/GaN quantum wells (QWs) and GaN template samples grown on r-sapphire. In particular, we have used polarised photoluminescence excitation spectroscopy (P-PLE) to investigate the nature of the low temperature recombination as well as extracting information on the valence band (VB) polarisation anisotropy. Our low temperature P-PLE results revealed not only excitons associated with intersubband quantum well transitions and the GaN barrier material but also a transition associated with creation of excitons in BSFs. The strength of this BSF transition varied with detection energy across the quantum well emission suggesting that there is a significant contribution to the emission line width from changes in the local electronic environment of the QWs due to interactions with BSFs. Furthermore, we observed a corresponding progressive increase in the VB splitting of the QWs as the detection energy was varied across the quantum well emission spectrum.

  20. Structural, Optical and Electrical Properties of n-type GaN on Si (111) Grown by RF-plasma assisted Molecular Beam Epitaxy

    SciTech Connect

    Chin, C. W.; Hassan, Z.; Yam, F. K.

    2008-05-20

    In this paper, we present the study of the structural, optical and electrical of n-type GaN grown on silicon (111) by RF plasma-assisted molecular beam epitaxy (RF-MBE). X-ray diffraction (XRD) measurement reveals that the GaN was epitaxially grown on silicon. For the photoluminescence (PL) measurement, a sharp and intense peak at 364.5 nm indicates that the sample is of high optical quality. Hall effect measurement shows that the film has a carrier concentration of 3.28x10{sup 19} cm{sup -3}. The surface of the n-type GaN was smooth and no any cracks and pits.

  1. High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer

    SciTech Connect

    Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.

    2011-12-23

    High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.

  2. Abnormal variation of the growth rate under high NH3 injected regime in the growth of GaN by NH3-source MBE

    NASA Astrophysics Data System (ADS)

    Choi, Sungkuk; Jung, Soohoon; Cho, Youngji; Lee, Sangtae; Chang, Jiho

    2017-03-01

    Unusual growth-rate variation during GaN formation using gas-source MBE has been discussed with respect to the chemical reactions occurring in the transition layer. A series of samples were prepared to confirm the assumption by verifying the growth regime and the impacts on the crystal quality of the GaN film. We found that the growth rate can be varied along with the amount of NH3 supply even under NH3-rich condition with a fixed Ga flux. Two growth conditions were investigated for their impact on the transition layer. One was the atomic force microscopy result, which revealed that the adatom migration length is closely related to the transition layer formation. The other one is the photoluminescent spectra, which revealed that the luminescence property of GaN is strongly related to the transition layer.

  3. Enhanced catalyst-free nucleation of GaN nanowires on amorphous Al{sub 2}O{sub 3} by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Sobanska, Marta Klosek, Kamil; Borysiuk, Jolanta; Kret, Slawomir; Tchutchulasvili, Giorgi; Gieraltowska, Sylwia; Zytkiewicz, Zbigniew R.

    2014-01-28

    We report on plasma-assisted molecular beam epitaxial growth of GaN nanowires (NWs) on Si(111) substrates with a thin amorphous Al{sub 2}O{sub 3} buffer layer deposited by atomic layer deposition. Comparison of nucleation kinetics shows that presence of amorphous Al{sub 2}O{sub 3} buffer significantly enhances spontaneous nucleation of GaN NWs. Slower nucleation was observed on partially amorphous silicon nitride films. No growth of NWs was found on sapphire substrate under the same growth conditions which we explain by a low density of defects on monocrystalline substrate surface where NWs may nucleate. Our finding shows that tuning of substrate microstructure is an efficient tool to control rate of self-induced nucleation of GaN NWs.

  4. Pressure Stagnation Line on a Planing Hull in Calm Water

    NASA Astrophysics Data System (ADS)

    Ikeda, Christine; Judge, Carolyn

    2014-11-01

    High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and discomfort or injury to passengers. An experimental study aimed at understanding and predicting the physics of a planing craft re-entering the water after becoming partially airborne was conducted. A subset of this experiment includes calm water analysis to gain an understanding of the pressure stagnation line and its correlation with the wetted surface on the planning craft in calm water conditions. A planing hull model was towed in a 116-m long, 8-m wide tow-tank with a water depth of 5 m. Hull models at 1/10 and 1/4 of full-scale were examined. These models, only free to move in heave and pitch, were instrumented to measure dynamic pressures with point-pressure sensors at 12 locations near the LCG (longitudinal center of gravity) and transom as well as a highly spatially resolved pressure mapping system. These pressure measurements were sampled at rates up to 20 kHz. Using these pressure measurements along with underwater photos of the wetted surface allowed for the v-shaped wetted line and stagnation line to be measured. Preliminary results show that the peak pressures occur before the wetted line and that atmospheric pressure is reached at the transom. Supported by the Office of Naval Research.

  5. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    SciTech Connect

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  6. Influence of post-deposition annealing on interfacial properties between GaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect

    Ye, Gang; Wang, Hong Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Geok Ng, Serene Lay; Ji, Rong; Liu, Zhi Hong

    2014-10-13

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaO{sub x} layer of ZrO{sub 2} grown by atomic layer deposition (ALD) on GaN is studied. ZrO{sub 2} films were annealed in N{sub 2} atmospheres in temperature range of 300 °C to 700 °C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500 °C, which could be attributed to the thinning of GaO{sub x} layer associated with low surface defect states due to “clean up” effect of ALD-ZrO{sub 2} on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  7. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    SciTech Connect

    Nirwal, Varun Singh Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  8. Zinc-blende (Cubic) GaN and AlGaN Layers, Structures and Bulk Crystals by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, Sergei V.; Zainal, Norzaini; Akimov, Andrey V.; Staddon, Chris R.; Foxon, C. Thomas; Kent, Anthony J.

    2010-11-01

    We have studied the growth of zinc-blende GaN and AlGaN layers, structures and bulk crystals by molecular beam epitaxy (MBE). We have developed a process for growth by MBE of free-standing cubic GaN layers. Undoped thick cubic GaN films were grown on semi-insulating GaAs (001) substrates by a modified plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The resulting free-standing GaN wafers with thicknesses in the 30-100 μm range may be used as substrates for further epitaxy of cubic GaN-based structures and devices. We have developed procedures to cleave the wafers into 10×10 mm2 square substrates and to polish them to produce epi-ready surfaces. The first GaN/InGaN LEDs on our zinc-blende GaN substrates have been demonstrated by our collaborators at Sharp Laboratories of Europe.

  9. Improved crystal quality of semipolar (10 1 bar 3) GaN on Si(001) substrates using AlN/GaN superlattice interlayer

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Jun; Bae, Si-Young; Lekhal, Kaddour; Mitsunari, Tadashi; Tamura, Akira; Honda, Yoshio; Amano, Hiroshi

    2016-11-01

    The planar epitaxial growth of semipolar (10 1 bar 3) GaN on a Si(001) substrate was performed on a directionally sputtered AlN buffer layer. Three types of interlayers, i.e., single AlN, double AlN, and a stack of AlN/GaN layers were grown by metalorganic chemical vapor deposition (MOCVD) to achieve high quality GaN films. The results for the stack of AlN/GaN layers provide highest crystal quality and optical properties for GaN. Comparing the top (Ga face) and bottom (N face) surfaces of grown semipolar (10 1 bar 3) GaN confirms the defect density reduction that is due to the application of interlayers. Moreover, reduced inversion domain density on the bottom surface is attributed with the insertion of interlayers. Improving the quality of semipolar GaN on Si(001) substrates is expected to be useful for GaN/Si(001) integrated optoelectronics.

  10. GaN Electronics For High Power, High Temperature Applications

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  11. Growth of InN films by radical-enhanced metal organic chemical vapor deposition at a low temperature of 200 °C

    NASA Astrophysics Data System (ADS)

    Takai, Shinnosuke; Lu, Yi; Oda, Osamu; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2017-06-01

    The InN films were deposited on GaN surfaces at a low temperature of 200 °C by radical-enhanced metal organic chemical vapor deposition (REMOCVD). The REMOCVD system can provide N radicals from the plasma of a N2-H2 mixture gas without using ammonia. Two types of GaN substrate, bulk GaN and GaN on Si(111), were used. The growth mode was modeled as a step flow on the basis of surface morphology observation by atomic force microscopy.

  12. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  13. The structure of sheared turbulence near a plane boundary

    NASA Technical Reports Server (NTRS)

    Lee, Moon J.; Hunt, J. C. R.

    1988-01-01

    An analysis is presented of how a plane boundary affects the structure of turbulence in a sheared free stream. A uniform-shear boundary layer (USBL) is formulated with slip velocity condition at the surface, and inhomogeneous rapid distortion theory is applied. The effects of blocking by the surface on the turbulence structure in USBL is compared with those in the shear-free boundary layer (SFBL). Shear produces highly anisotropic eddies elongated in the flow direction. The vertical velocity variance is reduced with shear at all heights, roughly in proportion to the reduction in the homogeneous value, but the shape of the profile remains unchanged only near the surface. The streamwise integral scales increase with shear, indicating elongation of the streamwise extent of eddies.

  14. On the direct initiation of a plane detonation wave

    NASA Astrophysics Data System (ADS)

    Clarke, J. F.; Kassoy, D. R.; Riley, N.

    1986-11-01

    It is assumed that energy is transferred at a rapid rate through a plane wall into a spatially uniform and initially stagnant combustible gas mixture. This action generates a shock wave, just as it does in an inert mixture, and also switches on a significant rate of chemical reaction. The Navier-Stokes equations for plane unsteady flow are integrated numerically in order to reveal the subsequent history of events. Four principal time domains are identified, namely 'early', 'transitional', 'formation', and 'ZND'. The first contains a conduction-dominated explosion and formation of a shock wave; in the second interval the shock wave is responsible for the acceleration of chemical activity, which becomes intense during the 'formation' period. Finally a wave whose structure is in essence that of a ZND detonation wave emerges.

  15. m-plane GaN layers grown by rf-plasma assisted molecular beam epitaxy with varying Ga/N flux ratios on m-plane 4H-SiC substrates

    SciTech Connect

    Armitage, R.; Horita, M.; Suda, J.; Kimoto, T.

    2007-02-01

    A series of m-plane GaN layers with the Ga beam-equivalent pressure (BEP) as the only varied parameter was grown by rf-plasma assisted molecular beam epitaxy on m-plane 4H-SiC substrates using AlN buffer layers. The smoothest growth surfaces and most complete film coalescence were found for the highest Ga BEP corresponding to the Ga droplet accumulation regime. However, better structural quality as assessed by x-ray rocking curves was observed for growth at a lower Ga BEP value below the droplet limit. The variation of rocking curve widths for planes inclined with respect to the epilayer c axis followed a different trend with Ga BEP than those of reflections parallel to the c axis. The GaN layers were found to exhibit a large residual compressive strain along the a axis.

  16. Visible and near infrared emitting thin film electroluminescent gallium nitride doped with rare earths

    NASA Astrophysics Data System (ADS)

    Kim, Joo Han

    Visible and near-infrared (NIR) light-emitting thin-film electroluminescent gallium nitride (GaN) doped with rare earth (RE) elements was studied. The rare-earth-doped GaN thin films were prepared by radio frequency (RF) planar magnetron co-sputtering of separate targets consisting of a GaN compound target and a metallic rare earth target in a pure nitrogen atmosphere. The luminescence of rare-earth-doped GaN was shown to be a strong function of its structure and properties, and growth parameters affected the structure and properties of the GaN host films. A phase transition from the thermodynamically stable wurtzite to the metastable zinc-blende structure at room temperature in GaN host films was observed upon increasing the impact energy of the bombarding species, thereby increasing the compressive stress in the GaN film. The switch from wurtzite to zinc-blende GaN occurred at a compressive internal stress of ˜1 GPa. The internal compressive stress above this threshold value apparently stabilizes the zinc-blende GaN phase at room temperature. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) showed that the impact by hyperthermal species yielded a highly condensed fibrous GaN microstructure with a smooth surface morphology due to annihilation of porosity by knock-on and bombardment-induced adatom mobility. X-ray diffraction and texture analyses showed that the GaN films deposited at a low pressure had a predominant cubic phase with a preferred crystallographic orientation of the [111] direction perpendicular to the surface of the film. X-ray rocking curve data revealed that cubic GaN films grown with a lower growth rate exhibited a more highly [111]-textured structure. Alternating-current thin-film electroluminescent (ACTFEL) devices were fabricated based on GaN doped with rare earth (RE) elements. Visible electroluminescent light emission peaks at 475 (blue), 530 (green), and 614 nm (red) were demonstrated at room temperature

  17. HVPE GaN wafers with improved crystalline and electrical properties

    NASA Astrophysics Data System (ADS)

    Freitas, J. A.; Culbertson, J. C.; Mahadik, N. A.; Sochacki, T.; Iwinska, M.; Bockowski, M. S.

    2016-12-01

    The quest for low cost GaN substrates with optimized crystalline and electrical properties continues to fuel the search for a fast growth method to produce commercial wafers that will allow the fabrication of devices capable of achieving high performance at high power and/or high frequency. Thick films grown by hydride vapor phase epitaxy (HVPE) on Ammono substrates in addition to reproducing the high crystalline quality of those substrates show significant reduction in free carrier concentration. This work presents a detailed spectroscopic, X-ray diffraction, and Raman spectroscopy imaging investigation of thick freestanding HVPE GaN films deposited on HVPE/Ammono-GaN templates. The results demonstrate that they are stress-free, and have a nearly uniform and relatively lower residual background doping, in addition to high crystalline quality. This result is extremely important, because it demonstrates the usefulness of this new type of HVPE-GaN substrate to fabricate highly efficient optoelectronic and electronic devices.

  18. Layer-transferred MoS2/GaN PN diodes

    NASA Astrophysics Data System (ADS)

    Lee, Edwin W.; Lee, Choong Hee; Paul, Pran K.; Ma, Lu; McCulloch, William D.; Krishnamoorthy, Sriram; Wu, Yiying; Arehart, Aaron R.; Rajan, Siddharth

    2015-09-01

    Electrical and optical characterization of two-dimensional/three-dimensional (2D/3D) p-molybdenum disulfide/n-gallium nitride (p-MoS2/n-GaN) heterojunction diodes are reported. Devices were fabricated on high-quality, large-area p-MoS2 grown by chemical vapor deposition on sapphire substrates. The processed devices were transferred onto GaN/sapphire substrates, and the transferred films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). On-axis XRD spectra and surface topology obtained from AFM scans were consistent with previously grown high-quality, continuous MoS2 films. Current-voltage measurements of these diodes exhibited excellent rectification, and capacitance-voltage measurements were used to extract a conduction band offset of 0.23 eV for the transferred MoS2/GaN heterojunction. This conduction band offset was confirmed by internal photoemission measurements. The energy band lineup of the MoS2/GaN heterojunction is proposed here. This work demonstrates the potential of 2D/3D heterojunctions for novel device applications.

  19. Layer-transferred MoS{sub 2}/GaN PN diodes

    SciTech Connect

    Lee, Edwin W.; Lee, Choong Hee; Paul, Pran K.; Krishnamoorthy, Sriram; Arehart, Aaron R.; Ma, Lu; McCulloch, William D.; Wu, Yiying; Rajan, Siddharth

    2015-09-07

    Electrical and optical characterization of two-dimensional/three-dimensional (2D/3D) p-molybdenum disulfide/n-gallium nitride (p-MoS{sub 2}/n-GaN) heterojunction diodes are reported. Devices were fabricated on high-quality, large-area p-MoS{sub 2} grown by chemical vapor deposition on sapphire substrates. The processed devices were transferred onto GaN/sapphire substrates, and the transferred films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). On-axis XRD spectra and surface topology obtained from AFM scans were consistent with previously grown high-quality, continuous MoS{sub 2} films. Current-voltage measurements of these diodes exhibited excellent rectification, and capacitance-voltage measurements were used to extract a conduction band offset of 0.23 eV for the transferred MoS{sub 2}/GaN heterojunction. This conduction band offset was confirmed by internal photoemission measurements. The energy band lineup of the MoS{sub 2}/GaN heterojunction is proposed here. This work demonstrates the potential of 2D/3D heterojunctions for novel device applications.

  20. Characterization of mid-gap states in HVPE and MOVPE-grown n-type GaN

    NASA Astrophysics Data System (ADS)

    Hacke, P.; Okushi, H.; Kuroda, T.; Detchprohm, T.; Hiramatsu, K.; Sawaki, N.

    1998-06-01

    Optical-isothermal capacitance transient spectroscopy (O-ICTS) is used to characterize the mid-gap states in n-type GaN grown by hydride vapor phase epitaxy and metalorganic vapor phase epitaxy. Deep levels are resolved by the emission rate of carries in addition to the magnitude of the capacitance transient as a function of incident photon energy. The mid-gap region is dominated by a distribution of traps from which carriers photoionize to the conduction band in the range of about 1.5 to 2.5 eV; these traps are suspected of participating in the frequently observed yellow luminescence. The concentration of these mid-gap states are found to be lowest in thick HVPE-grown GaN films.

  1. GaN: Defect and Device Issues

    SciTech Connect

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  2. Yellow Luminescence Centers of GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyuan; Hubbard, Seth; Pavlidis, Dimitris

    2004-05-01

    The method for measuring Shockley-Read-Hall (SRH) lifetime of yellow centers of GaN was developed. The capture-section ratio (150) of hole to electron is extracted by comparing the experimental and theoretical results. A marked increase in the SRH lifetime (from 0.75 to 7.0 ns) with the increasing in Si doping density (from 1.5× 1017 to 8.8× 1018 cm-3) was observed, and it is attributed to some Si dopant substituting for the Ga vacancy. In addition, it is also found that the YL centers are an important factor limiting the performance of GaN-based devices.

  3. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  4. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    SciTech Connect

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  5. Optimization of GaN thin films via MOCVD

    NASA Technical Reports Server (NTRS)

    Dickens, Corey; Wilson, Sylvia L.

    1995-01-01

    A unique characteristic of every semiconductor is the amount of energy required to break an electron bond in the lowest band of allowed states, the valence band. The energy necessary to set an electron free and allow it to conduct in the material is termed the energy gap (Eg). Semiconductors with wide bandgap energies have been shown to possess properties for high power, high temperature, radiation resistance damage, and short wavelength optoelectronic applications. Gallium nitride, which has a wide gap of 3.39 eV, is a material that has demonstrated these characteristics. Various growth conditions are being investigated for quality gallium nitride heteroepitaxy growth via the technique of low pressure metal organic chemical vapor deposition (MOCVD) that can be used for device development.

  6. Optimization of GaN thin films via MOCVD

    NASA Technical Reports Server (NTRS)

    Dickens, Corey; Wilson, Sylvia L.

    1995-01-01

    A unique characteristic of every semiconductor is the amount of energy required to break an electron bond in the lowest band of allowed states, the valence band. The energy necessary to set an electron free and allow it to conduct in the material is termed the energy gap (Eg). Semiconductors with wide bandgap energies have been shown to possess properties for high power, high temperature, radiation resistance damage, and short wavelength optoelectronic applications. Gallium nitride, which has a wide gap of 3.39 eV, is a material that has demonstrated these characteristics. Various growth conditions are being investigated for quality gallium nitride heteroepitaxy growth via the technique of low pressure metal organic chemical vapor deposition (MOCVD) that can be used for device development.

  7. Growth of thick (112xAF0) GaN using a metal interlayer

    NASA Astrophysics Data System (ADS)

    Tavernier, P. R.; Imer, B.; DenBaars, S. P.; Clarke, D. R.

    2004-11-01

    Thick films of (112¯0)-oriented GaN have been grown on Ti-coated metal organic chemical vapor deposition templates using hydride vapor phase epitaxy. Significant reductions in crack density were observed enabling 240μm thick films to be grown on sapphire. The use of Ti interlayers was shown to generate significant fractions of voids at the interlayer regrowth interface facilitating void-assisted separation on cooling. Ti metal layers annealed under optimal conditions were found to produce a TiN nanomask suitable for lateral overgrowth during HVPE. An estimate of the void size required to allow spontaneous delamination of the substrate at the TiN-GaN interface is discussed with reference to growth conditions.

  8. An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations

    DOE PAGES

    Liu, Zhun; Wang, Ru-Zhi; Zapol, Peter

    2016-10-12

    We present elucidation of homoepitaxial growth mechanisms on vicinal non-polar surfaces of GaN that is highly important for gaining an understanding of and control thin film surface morphology and properties. Using first-principles calculations, we study the step-flow growth in m-plane GaN based on atomic row nucleation and kink propagation kinetics. Ga–N dimer adsorption onto the m-plane is energetically more favorable than that of Ga and N isolated adatoms. Therefore, we have treated the dimers as the dominant growth species attached to the step edges. By calculating the free energies of sequentially attached Ga–N dimers, we have elucidated that the a-stepmore » edge kink growth proceeds by parallel attachment rather than by across the step edge approach. We found a series of favorable configurations of kink propagation and calculated the free energy and nucleation barriers for kink evolution on five types of step edges (a, +c, -c, +a + c, and -a - c). By changing the chemical potential μGa and the excess chemical potential Δμ, the growth velocities at the five types of edges are controlled by the corresponding kink pair nucleation barrier E* in their free energy profiles. To explore the kink-flow growth instability observed at different Ga/N flux ratios, calculations of kink pairs on the incompact -c and +c-step edges are further performed to study their formation energies. Variations of these step edge morphologies with a tuned chemical environment are consistent with previous experimental observations, including stable diagonal ±a ± c-direction steps. In conclusion, our work provides a first-principles approach to explore step growth and surface morphology of the vicinal m-plane GaN, which is applicable to analyze and control the step-flow growth of other binary thin films.« less

  9. An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations

    SciTech Connect

    Liu, Zhun; Wang, Ru-Zhi; Zapol, Peter

    2016-10-12

    We present elucidation of homoepitaxial growth mechanisms on vicinal non-polar surfaces of GaN that is highly important for gaining an understanding of and control thin film surface morphology and properties. Using first-principles calculations, we study the step-flow growth in m-plane GaN based on atomic row nucleation and kink propagation kinetics. Ga–N dimer adsorption onto the m-plane is energetically more favorable than that of Ga and N isolated adatoms. Therefore, we have treated the dimers as the dominant growth species attached to the step edges. By calculating the free energies of sequentially attached Ga–N dimers, we have elucidated that the a-step edge kink growth proceeds by parallel attachment rather than by across the step edge approach. We found a series of favorable configurations of kink propagation and calculated the free energy and nucleation barriers for kink evolution on five types of step edges (a, +c, -c, +a + c, and -a - c). By changing the chemical potential μGa and the excess chemical potential Δμ, the growth velocities at the five types of edges are controlled by the corresponding kink pair nucleation barrier E* in their free energy profiles. To explore the kink-flow growth instability observed at different Ga/N flux ratios, calculations of kink pairs on the incompact -c and +c-step edges are further performed to study their formation energies. Variations of these step edge morphologies with a tuned chemical environment are consistent with previous experimental observations, including stable diagonal ±a ± c-direction steps. In conclusion, our work provides a first-principles approach to explore step growth and surface morphology of the vicinal m-plane GaN, which is applicable to analyze and control the step-flow growth of other binary thin films.

  10. GaN power devices for automotive applications

    NASA Astrophysics Data System (ADS)

    Uesugi, T.; Kachi, Tetsu

    2013-03-01

    GaN is an attractive material for high performance power devices. Vertical GaN power devices are suitable for high current operation, on the other hand, lateral GaN power devices, namely GaN lateral HEMTs have both low on-resistance and low parasitic capacitance. In addition, the GaN lateral HEMTs can be fabricated on Si substrate. We can get low conduction loss and low switching loss devices with low cost. So the GaN lateral HEMTs are suitable for subsystems like an air conditioner and an electric power steering. Serious technical issues about GaN power devices are a normally-off operation, a current collapse, and a high quality gate insulator. Several normally-off operation techniques have been proposed but there is no decisive method. An NH3 surface treatment and a SiO2 passivation are useful to suppress the current collapse. An Al2O3 deposited by ALD is excellent for gate insulator in breakdown and it has enough TDDB reliability under room temperature and 150°C.

  11. Cathodoluminescence characterization of suspended GaN nanomembranes

    NASA Astrophysics Data System (ADS)

    Stevens-Kalceff, M. A.; Tiginyanu, I. M.; Popa, V.; Braniste, T.; Brenner, P.

    2013-07-01

    Continuous suspended ˜15 nm thick gallium nitride (GaN) nano-membranes have been investigated using cathodoluminescence microanalysis. The GaN nanomembranes are fabricated by focused ion beam (FIB) pre-treatment of GaN epilayer surfaces followed by photoelectrochemical (PEC) etching. CL microanalysis enables high sensitivity, nanoscale spatial resolution detection of impurities, and defects, and is associated with key features of the suspended GaN nano-membranes. CL spectra and images of the suspended nano-membranes reveal the broad emission band at ˜2.2 eV which is associated with deep acceptor states and the near edge emission at ˜3.4 eV which is associated with free exciton transitions at 295 K. The near edge emission can be resolved into two components, one associated with emission from the nanomembrane and the other associated with CL from underlying GaN transmitted through the nanomembrane. CL spectroscopy gives insight into the physical properties and optical quality of the suspended GaN nano-membranes. Blue shift of the CL near band edge emission indicates that the suspended GaN nanomembranes exhibit the combined effects of quantum confinement and strain.

  12. GaN for LED applications

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.

    1973-01-01

    In order to improve the synthesis of GaN the effect of various growth and doping parameters has been studied. Although Be, Li, Mg, and Dy can be used to overcompensate native donors, the most interesting acceptor element is Zn. The emission spectrum and the luminescence efficiency depend on the growth temperature (below 800 C), on the partial pressure of the doping impurity, and on the duration of growth. Blue-green electroluminescence with a power efficiency of 0.1 percent and a brightness of 850 fL (at 0.6 mA and 22.5 V) was obtained. Some diodes allow the color of the emitted light to change by reversing the polarity of the bias. Continuous operation of a diode over a period of 5 months showed no evidence of degradation. The luminescence properties of ion-implanted GaN were studied. Delay effects were found in the electroluminescence of diodes, although, with a dc bias, a 70-MHz modulation was possible.

  13. Low temperature (100 °C) atomic layer deposited-ZrO2 for recessed gate GaN HEMTs on Si

    NASA Astrophysics Data System (ADS)

    Byun, Young-Chul; Lee, Jae-Gil; Meng, Xin; Lee, Joy S.; Lucero, Antonio T.; Kim, Si Joon; Young, Chadwin D.; Kim, Moon J.; Kim, Jiyoung

    2017-08-01

    In this paper, the effect of atomic layer deposited ZrO2 gate dielectrics, deposited at low temperature (100 °C), on the characteristics of recessed-gate High Electron Mobility Transistors (HEMTs) on Al0.25Ga0.75N/GaN/Si is investigated and compared with the characteristics of those with ZrO2 films deposited at typical atomic layer deposited (ALD) process temperatures (250 °C). Negligible hysteresis (ΔVth < 20 mV), low gate leakage current (Ig@2 V = 6.6 × 10-6 A/cm2), high breakdown voltage (>4 V), and low interfacial state density (Dit = 3.69 × 1011 eV-1 cm-2) were observed on recessed gate HEMTs with ˜5 nm ALD-ZrO2 films grown at 100 °C. The excellent properties of recessed gate HEMTs are due to the absence of an interfacial layer and an amorphous phase of the film. An interfacial layer between 250 °C-ZrO2 and GaN is observed via high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. However, 100 °C-ZrO2 and GaN shows no significant interfacial layer formation. Moreover, while 100 °C-ZrO2 films maintain an amorphous phase on either substrate (GaN and Si), 250 °C-ZrO2 films exhibit a polycrystalline-phase when deposited on GaN and an amorphous phase when deposited on Si. Contrary to popular belief, the low-temperature ALD process for ZrO2 results in excellent HEMT performance.

  14. Study of epitaxial lateral overgrowth of semipolar (1 1 − 2 2) GaN by using different SiO{sub 2} pattern sizes

    SciTech Connect

    Song, Ki-Ryong; Lee, Jae-Hwan; Han, Sang-Hyun; Yi, Hye-Rin; Lee, Sung-Nam

    2013-12-15

    Graphical abstract: - Highlights: • We examine comparative studies of semipolar ELO-GaN film. • Semipolar ELO-GaN film was grown by three step growth method. • The achievement of smooth surface morphology of semipolar ELO-GaN. • The crystal and optical properties was significantly improved by ELO process. - Abstract: We investigated the growth mode and the crystal properties of lateral epitaxial overgrowth (LEO) semipolar (1 1 − 2 2) GaN by using the various SiO{sub 2} pattern sizes of 6, 8, 10 and 12 μm with the window width of 4.0 μm. By using three-step growth technique, we successfully obtained the fully-coalescenced semipolar (1 1 − 2 2) LEO-GaN films regardless of the SiO{sub 2} pattern sizes. However, the coalescence thickness of LEO-GaN film was decreased with decreasing SiO{sub 2} pattern size, indicating that the coalescence of semipolar (1 1 − 2 2) GaN was easily formed by decreasing the pattern size of SiO{sub 2} mask. The full width at half maximums (FWHMs) of X-ray rocking curves (XRCs) of LEO-GaN films decreased with increasing SiO{sub 2} pattern size. In the pattern size of 4 × 10 μm, we achieved the minimum XRCs FWHM of 537 and 368 arc s with two different X-ray incident beam directions of [1 1 − 2 − 3] and [1 − 1 0 0], respectively. Moreover, the photoluminescence bandedge emission of semipolar (1 1 − 2 2) GaN was 45 times increased by LEO process. Based on these results, we concluded that the LEO pattern size of 4 × 10 μm would effectively decrease crystal defects of semipolar (1 1 − 2 2) GaN epilayer, resulting in an improvement of the optical properties.

  15. GaN membrane metal-semiconductor-metal ultraviolet photodetector.

    PubMed

    Müller, A; Konstantinidis, G; Dragoman, M; Neculoiu, D; Kostopoulos, A; Androulidaki, M; Kayambaki, M; Vasilache, D

    2008-04-01

    GaN is a wide-bandgap semiconductor with still unexplored capabilities for ultraviolet detection. To exploit GaN properties better for ultraviolet detection, a metal-semiconductor-metal-type photodetector structure was designed and manufactured on a 2.2 microm thin GaN membrane fabricated by micromachining techniques. As a result, a very low dark current (30 pA at 3 V) and a maximum responsivity of 14 mA/W at a wavelength of 370 nm were obtained.

  16. Optical spectroscopy of cubic GaN in nanowires

    NASA Astrophysics Data System (ADS)

    Renard, J.; Tourbot, G.; Sam-Giao, D.; Bougerol, C.; Daudin, B.; Gayral, B.

    2010-08-01

    We show that highly homogeneous cubic GaN can be grown by plasma-assisted molecular beam epitaxy on wurtzite GaN nanowires. The line width of the donor bound exciton is below 3 meV and can reach 1.6 meV in the best parts of the studied sample. This allows to perform a detailed spectroscopy of cubic GaN, and, in particular, to determine the precise spectral positions of the donor bound exciton, the fundamental free exciton and the split-off exciton in a photoluminescence experiment.

  17. Development of GaN photocathodes for UV detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; McPhate, J.; Malloy, J.; Tremsin, A.; Martin, A.; Ulmer, M.; Wessels, B.

    2006-11-01

    We have made substantial progress in the development of GaN photocathodes, including crystalline and polycrystalline GaN and InGaN coatings grown by chemical vapor deposition or molecular beam epitaxy on sapphire substrates. GaN and InGaN photocathodes have been developed with efficiencies up to 70% and cutoffs at ˜380 nm with low out of band response, and high stability and longevity. Samples have been processed and tested at ultra high vacuum to establish cathode process parameters, and some have been integrated into sealed tubes for long-term evaluation.

  18. Fabrication of GaN nanowire arrays by confined epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Sun, Xinyu; Fairchild, Michael; Hersee, Stephen D.

    2006-12-01

    The authors report the fabrication of GaN nanowire arrays inside a thick SiNx, selective growth mask that was patterned by interferometric lithography and dry etching. The GaN nanowires are molded by the apertures in the selective growth mask and the growth is epitaxial with respect to the underlying GaN layer. The precise location and diameter of each nanowire in the array are controlled by the growth mask patterning, and the resulting array has a long-range order that is compatible with photonic crystal applications. This process uses conventional metal organic precursors and does not require any additional metal catalysts.

  19. Vortex motion around a circular cylinder above a plane

    NASA Astrophysics Data System (ADS)

    Vasconcelos, G. L.; Moura, M.

    2017-08-01

    The study of vortex flows around solid obstacles is of considerable interest from both a theoretical and practical perspective. One geometry that has attracted renewed attention recently is that of vortex flows past a circular cylinder placed above a plane wall, where a stationary recirculating eddy can form in front of the cylinder, in contradistinction to the usual case (without the plane boundary) for which a vortex pair appears behind the cylinder. Here we analyze the problem of vortex flows past a cylinder near a wall through the lenses of the point-vortex model. By conformally mapping the fluid domain onto an annular region in an auxiliary complex plane, we compute the vortex Hamiltonian analytically in terms of certain special functions related to elliptic theta functions. A detailed analysis of the equilibria of the model is then presented. The location of the equilibrium in front of the cylinder is shown to be in qualitative agreement with recent experimental findings. We also show that a topological transition occurs in phase space as the parameters of the systems are varied.

  20. Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung

    2011-04-01

    We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields,using time-dependent, diffusive shock acceleration (DSA) simulations,including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum p_{eq}.In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as p^{-1}. Thus the slope of the downstream integrated spectrum steepens by one power of p for p_{br}

  1. Activation of ion implanted Si in GaN using a dual AlN annealing cap

    NASA Astrophysics Data System (ADS)

    Hager, C. E.; Jones, K. A.; Derenge, M. A.; Zheleva, T. S.

    2009-02-01

    A dual annealing cap composed of a thin, low temperature metal-organic chemical vapor deposition (MOCVD) deposited AlN adhesion layer and a thicker, sputtered AlN film for added mechanical strength enabled us to anneal Si-implanted layers for 30 min at temperatures up to 1250 °C. At higher temperatures the cap was destroyed by the large partial pressure of the N2 from the GaN, which exceeds the yield strength of AlN. Electrical activations as high as 70% and electron mobilities comparable to those of in situ doped films were achieved. Compared to other methods, the surfaces are better protected using this cap because it adheres better than sputtered AlN, SiO2, or Si3N4; does not crack like MOCVD grown AlN films deposited at normal temperatures (˜1100 °C); and is stronger than thin MOCVD grown AlN films deposited at low temperatures (˜600 °C). Even though N does not escape, and in so doing, forms thermal etch pits, the surface of the annealed GaN is roughened by solid state diffusion with the surface roughness increasing with the annealing temperature.

  2. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    SciTech Connect

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-21

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality (0002) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by (0002) oriented wurtzite GaN and (111) oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H{sub 2} into Ar and/or N{sub 2} during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H{sub 2} into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted (33{sup ¯}02) orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H{sub 2} into N{sub 2} due to the complex reaction between H{sub 2} and N{sub 2}.

  3. Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN

    NASA Astrophysics Data System (ADS)

    Amano, Hiroshi

    2013-05-01

    Thin films of III-V compound semiconductors such as GaAs and InP can be grown on native substrates, whereas such growth was difficult for group III nitride semiconductors. Despite this drawback, scientists have gradually become able to use the functions of group III nitride semiconductors by growing their thin films on non-native substrates such as sapphire and Si substrates. With the continuously increasing demand for the conservation and generation of energy, bulk substrates of group III nitride semiconductors are highly expected to maximize their potential. In this report, I review the current status of the growth methods for bulk GaN single crystals used for substrates as well as summarize the characteristics of blue light-emitting diodes (LEDs), heterojunction field-effect transistors (HFETs), and photovoltaic cells on GaN substrates.

  4. Saturation Behavior of Eu ion emission in GaN

    NASA Astrophysics Data System (ADS)

    Hernandez, Natalie; Mitchell, Brandon; Fujiwara, Yasufumi; Dierolf, Volkmar

    Europium doped Gallium Nitride (GaN:Eu) has been recognized as a candidate for the red-emitting active layer in nitride-based light emitting diodes. To better comprehend the excitation energy transfer from the excited GaN host to the Eu ion, we performed an extensive analysis of GaN:Eu and GaN co-doped with Eu and other dopants (Silicon and Magnesium). We determined how various growth parameters manipulated site formations and measured the optical accessibility of the Eu ions within the GaN host and the excitation efficiency of the energy transfer between the host material and the Eu ions. Furthermore, we derived a model for the saturation behavior of the emission of Eu ions within GaN. Our results suggest that the saturation behavior is strongly influenced by different crystal growth specifications and co-dopants.

  5. Crystallography and elasticity of individual GaN nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Baodan; Bando, Yoshio; Wang, Mingsheng; Tang, Chengchun; Mitome, Masanori; Golberg, Dmitri

    2009-05-01

    High-purity, crystalline [001]-oriented GaN nanotubes with outer diameters of 200 nm or more, rough surfaces and irregular internal channels were synthesized under epitaxial growth on [001]-oriented sapphire substrates. Elastic property measurements on free-standing individual GaN nanotubes, using the in situ transmission electron microscopy (TEM) electromechanical resonance technique, pointed at an average Young's modulus E of 37 GPa and minimum quality factor of 320. These numbers are notably lower than those for previously reported GaN nanowires. The crystallography and chemistry of the GaN nanotubes were analyzed using TEM and energy dispersion x-ray spectroscopy (EDS). It is suggested that the lowered Young's modulus and quality factor of the nanotubes are mainly due to the surface roughness and defectiveness.

  6. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  7. GaN nanorods coated with pure BN

    NASA Astrophysics Data System (ADS)

    Han, Wei-Qiang; Zettl, A.

    2002-12-01

    We report a method to efficiently synthesize gallium nitride (GaN) nanorods coated with insulating boron nitride (BN) layers. The GaN core is crystalline (with either a cubic zincblende or hexagonal wurtzite structure) and has diameters ranging from 10 to 85 nm and lengths up to 60 μm. The outer encapsulating BN shells with typical thicknesses less than 5 nm extend fully over, and adhere well to, the entire nanorod surface.

  8. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde

  9. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  10. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  11. Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Nygaard, K. J.; Glezer, A.

    1991-01-01

    The present study investigates the evolution of streamwise vortices in a plane mixing layer and their role in the generation of small-scale 3D motion in a closed-return water facility. Spanwise-periodic streamwise vortices are excited by a time-harmonic wavetrain with spanwise-periodic amplitude variations synthesized by a mosaic of 32 surface film heaters flush-mounted on the low partition. The onset of streamwise vortices is accompanied by significant distortion in the transverse distribution of the streamwise velocity component. The presence of inflexion points, absent in corresponding velocity distributions of the unforced flow, suggests the formation of locally unstable regions of large shear in which broadband perturbations already present in the base flow undergo rapid amplification, followed by breakdown to small-scale motion. The cores of the primary vortices are significantly altered as a result of spanwise nonuniform excitation. The 3D features of the streamwise vortices and their interaction with the base flow are inferred from surfaces or rms velocity fluctuations and an approximation to cross-stream vorticity using 3D single component velocity data.

  12. Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Nygaard, K. J.; Glezer, A.

    1991-01-01

    The present study investigates the evolution of streamwise vortices in a plane mixing layer and their role in the generation of small-scale 3D motion in a closed-return water facility. Spanwise-periodic streamwise vortices are excited by a time-harmonic wavetrain with spanwise-periodic amplitude variations synthesized by a mosaic of 32 surface film heaters flush-mounted on the low partition. The onset of streamwise vortices is accompanied by significant distortion in the transverse distribution of the streamwise velocity component. The presence of inflexion points, absent in corresponding velocity distributions of the unforced flow, suggests the formation of locally unstable regions of large shear in which broadband perturbations already present in the base flow undergo rapid amplification, followed by breakdown to small-scale motion. The cores of the primary vortices are significantly altered as a result of spanwise nonuniform excitation. The 3D features of the streamwise vortices and their interaction with the base flow are inferred from surfaces or rms velocity fluctuations and an approximation to cross-stream vorticity using 3D single component velocity data.

  13. Monte Carlo simulations of supercoiled DNAs confined to a plane.

    PubMed Central

    Fujimoto, Bryant S; Schurr, J Michael

    2002-01-01

    Recent advances in atomic force microscopy (AFM) have enabled researchers to obtain images of supercoiled DNAs deposited on mica surfaces in buffered aqueous milieux. Confining a supercoiled DNA to a plane greatly restricts its configurational freedom, and could conceivably alter certain structural properties, such as its twist and writhe. A program that was originally written to perform Monte Carlo simulations of supercoiled DNAs in solution was modified to include a surface potential. This potential flattens the DNAs to simulate the effect of deposition on a surface. We have simulated transfers of a 3760-basepair supercoiled DNA from solution to a surface in both 161 and 10 mM ionic strength. In both cases, the geometric and thermodynamic properties of the supercoiled DNAs on the surface differ significantly from the corresponding quantities in solution. At 161 mM ionic strength, the writhe/twist ratio is 1.20-1.33 times larger for DNAs on the surface than for DNAs in solution and significant differences in the radii of gyration are also observed. Simulated surface structures in 161 mM ionic strength closely resemble those observed by AFM. Simulated surface structures in 10 mM ionic strength are similar to a minority of the structures observed by AFM, but differ from the majority of such structures for unknown reasons. In 161 mM ionic strength, the internal energy (excluding the surface potential) decreases substantially as the DNA is confined to the surface. Evidently, supercoiled DNAs in solution are typically deformed farther from the minimum energy configuration than are the corresponding surface-confined DNAs. Nevertheless, the work (Delta A(int)) done on the internal coordinates, which include uniform rotations at constant configuration, during the transfer is positive and 2.6-fold larger than the decrease in internal energy. The corresponding entropy change is negative, and its contribution to Delta A(int) is positive and exceeds the decrease in internal

  14. GaN photovoltaic leakage current and correlation to grain size

    SciTech Connect

    Matthews, K. D.; Chen, X.; Hao, D.; Schaff, W. J.; Eastman, L. F.

    2010-10-15

    GaN p-i-n solar PV structures grown by rf plasma assisted molecular beam epitaxy (MBE) produce high performance IV characteristics with a leakage current density of less than 1x10{sup -4} mA cm{sup -2} at 0.1 V forward bias and an on-resistance of 0.039 {Omega} cm{sup 2}. Leakage current measurements taken for different size diodes processed on the same sample containing the solar cells reveal that current density increases with diode area, indicating that leakage is not a large function of surface leakage along the mesa. Nonannealed Pt/Au Ohmic p-contacts produce a contact resistivity of 4.91x10{sup -4} {Omega} cm{sup -2} for thin Mg doped contact layers with sheet resistivity of 62196 {Omega}/{open_square}. Under concentrated sunlight the cells produce an open-circuit voltage of 2.5 V and short circuit currents as high as 30 mA cm{sup -2}. Multiple growths comprised the study and on each wafer the IV curves representing several diodes showed considerable variation in parasitic leakage current density at low voltages on some wafers and practically no variation on others. It appears that a smaller grain size within the GaN thin film accounts for higher levels of dark current.

  15. Epitaxial PbxZr1-xTiO3 on GaN

    NASA Astrophysics Data System (ADS)

    Paisley, E. A.; Craft, H. S.; Losego, M. D.; Lu, H.; Gruverman, A.; Collazo, R.; Sitar, Z.; Maria, J.-P.

    2013-02-01

    Epitaxial integration of PbxZr1-xTiO3 (PZT) (111) with GaN (0002) presents the possibility of polarity coupling across a functional-oxide/nitride heteropolar interface. This work describes the synthesis and characterization of such thin film heterostructures by magnetron sputtering, with specific attention given to process optimization. Using x-ray diffraction and electrical characterization, the growth of epitaxial PZT (˜250 nm) on GaN and PZT on MgO/GaN stacks was verified. A two-stage growth process was developed for epitaxial PZT with a deposition temperature of 300 °C and an ex-situ anneal at 650 °C, which was effective in mitigating interfacial reactions and promoting phase-pure perovskite growth. Electrical analysis of interdigital capacitors revealed a nonlinear and hysteretic dielectric response consistent with ferroelectric PZT. Piezoresponse force microscopy (PFM) characterization shows clear evidence of ferroelectric switching, and PFM hysteresis loop analysis shows minimal evidence for direct polarity coupling, but suggests that band offsets which accompany the oxide-nitride heterostructures influence switching.

  16. Thermoelectric Properties of MOVPE Grown AlInN, Lattice-Matched to GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Tong, Hua; Liu, Guangyu; Herbsommer, Juan; Huang, Gensheng; Tansu, Nelson

    2010-03-01

    In this work, we investigate experimentally the growth and thermoelectric properties, i.e., thermal conductivity, Seebeck coefficient, and electrical conductivity, of n-type wurtzite high quality AlxIn1-xN, grown on GaN template on sapphire substrate by MOVPE, in-plane lattice-matched to GaN. The thermal conductivity is measured by 3φ method differential technique for thin films. The thermal conductivity value of Al0.83In0.17N is measured as 5.7 W/(mK). The Seebeck coefficient is calculated as the ratio of measured voltage difference and temperature difference when a temperature gradient is created in the sample. The absolute Seebeck coefficient value of Al0.83In0.17N is measured as 6.2x10-4 V/K. The sheet resistivity of lattice-matched Al0.83In0.17N is measured using Van der Pauw scheme and the electric conductivity is acquired accordingly to be 2.9x10^4 /(φ.m). The Z*T value of Al0.83In0.17N obtained is above 0.2 at room temperature. The results indicate AlInN based alloys are good candidates for thermoelectric devices.

  17. GaN photovoltaic leakage current and correlation to grain size

    NASA Astrophysics Data System (ADS)

    Matthews, K. D.; Chen, X.; Hao, D.; Schaff, W. J.; Eastman, L. F.

    2010-10-01

    GaN p-i-n solar PV structures grown by rf plasma assisted molecular beam epitaxy (MBE) produce high performance IV characteristics with a leakage current density of less than 1×10-4 mA cm-2 at 0.1 V forward bias and an on-resistance of 0.039 Ω cm2. Leakage current measurements taken for different size diodes processed on the same sample containing the solar cells reveal that current density increases with diode area, indicating that leakage is not a large function of surface leakage along the mesa. Nonannealed Pt/Au Ohmic p-contacts produce a contact resistivity of 4.91×10-4 Ω cm-2 for thin Mg doped contact layers with sheet resistivity of 62196 Ω/◻. Under concentrated sunlight the cells produce an open-circuit voltage of 2.5 V and short circuit currents as high as 30 mA cm-2. Multiple growths comprised the study and on each wafer the IV curves representing several diodes showed considerable variation in parasitic leakage current density at low voltages on some wafers and practically no variation on others. It appears that a smaller grain size within the GaN thin film accounts for higher levels of dark current.

  18. Plasticity and optical properties of GaN under highly localized nanoindentation stress fields

    NASA Astrophysics Data System (ADS)

    Caldas, P. G.; Silva, E. M.; Prioli, R.; Huang, J. Y.; Juday, R.; Fischer, A. M.; Ponce, F. A.

    2017-03-01

    Nanoscale plasticity has been studied on (0001) GaN thin films, using tips with very small radius of curvature. Cross-section transmission electron microscopy images of the nanoindentations indicate that the primary slip systems are the pyramidal {1 1 ¯ 01 } ⟨11 2 ¯ 3 ⟩ and {11 2 ¯ 2 } ⟨11 2 ¯ 3 ⟩ , followed by the basal {0002 } ⟨11 2 ¯ 0 ⟩ . Incipient plasticity was observed to be initiated by metastable atomic-scale slip events that occur as the crystal conforms to the shape of the tip. Large volumetric material displacements along the {1 1 ¯ 01 } ⟨11 2 ¯ 3 ⟩ and {11 2 ¯ 2 } ⟨11 2 ¯ 3 ⟩ slip systems were observed at an average shear stress of 11 GPa. Hexagonal shaped nanoindentation impressions following the symmetry of GaN were observed, with material pile-up in the ⟨11 2 ¯ 0 ⟩ directions. Spatially resolved cathodoluminescence images were used to correlate the microstructure with the optical properties. A large number of non-radiative defects were observed directly below the indentation. Regions under tensile stress extending from the nanoindentation along ⟨11 2 ¯ 0 ⟩ directions were associated with the {0002 } ⟨11 2 ¯ 0 ⟩ slip.

  19. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Krishnamoorthy, Sriram; O'Hara, Dante J.; Brenner, Mark R.; Johnson, Jared M.; Jamison, John S.; Myers, Roberto C.; Kawakami, Roland K.; Hwang, Jinwoo; Rajan, Siddharth

    2017-03-01

    Large area epitaxy of two-dimensional (2D) layered materials with high material quality is a crucial step in realizing novel device applications based on 2D materials. In this work, we report high-quality, crystalline, large-area gallium selenide (GaSe) films grown on bulk substrates such as c-plane sapphire and gallium nitride (GaN) using a valved cracker source for Se. (002)-Oriented GaSe with random in-plane orientation of domains was grown on sapphire and GaN substrates at a substrate temperature of 350-450 °C with complete surface coverage. Higher growth temperature (575 °C) resulted in the formation of single-crystalline ɛ-GaSe triangular domains with six-fold symmetry confirmed by in-situ reflection high electron energy diffraction and off-axis x-ray diffraction. A two-step growth method involving high temperature nucleation of single crystalline domains and low temperature growth to enhance coalescence was adopted to obtain continuous (002)-oriented GaSe with an epitaxial relationship with the substrate. While six-fold symmetry was maintained in the two step growth, β-GaSe phase was observed in addition to the dominant ɛ-GaSe in cross-sectional scanning transmission electron microscopy images. This work demonstrates the potential of growing high quality 2D-layered materials using molecular beam epitaxy and can be extended to the growth of other transition metal chalcogenides.

  20. Silicon implantation in epitaxial GaN layers: Encapsulant annealing and electrical properties

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.; Yoshida, S.; Kawaji, T.; Inada, T.

    2004-03-01

    Silicon ions have been implanted into GaN layers epitaxially grown on an AlN/(0001)-Al2O3 substrate to a dose of 1×1015/cm2. The Si-implanted GaN has been rapid thermal annealed at temperatures between 800 and 1250 °C. Thermal pits are formed in the surface during annealing at 1200 °C, resulting in deterioration of the morphology. The surface deterioration is effectively suppressed by using a 140-nm-thick Si3N4 film as an encapsulant during annealing up to 1250 °C. The electrical activation process for Si atoms has an activation energy of 3.1 eV in the range of 1000 to 1250 °C. Carrier concentration and mobility profiles for n-type layers formed by Si implantation have been examined by differential Hall-effect measurements. A very high electrical activity for implanted Si atoms of 86% can be achieved, and a highly doped n-type layer with a peak carrier concentration of 6×1019/cm3 is formed after annealing at 1250 °C. Electrons generated from Si atoms located near the end of range are trapped by defects remaining after annealing at 1250 °C.

  1. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution

    NASA Astrophysics Data System (ADS)

    Schuster, Fabian; Winnerl, Andrea; Weiszer, Saskia; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin

    2015-01-01

    In this work, we present a detailed study on GaN nanowire doping, which is vital for device fabrication. The nanowires (NWs) are grown by means of molecular beam epitaxy on diamond (111) substrates. Dopant atoms are found to facilitate nucleation, thus an increasing NW density is observed for increasing dopant fluxes. While maintaining nanowire morphology, we demonstrate the incorporation of Si and Mg up to concentrations of 9 × 1020cm-3 and 1 × 1020cm-3 , respectively. The dopant concentration in the nanowire cores is determined by the thermodynamic solubility limit, whereas excess dopants are found to segregate to the nanowire surface. The strain state of the NWs is investigated by X-ray diffraction, which confirms a negligible strain compared to planar thin films. Doping-related emissions are identified in low-temperature photoluminescence spectroscopy and the temperature quenching yields ionization energies of Si donors and Mg acceptors of 17 meV and 167 meV, respectively. At room temperature, luminescence and absorption spectra are found to coincide and the sub-band gap absorption is suppressed in n-type NWs. The charge carrier distribution in doped GaN nanowires is simulated under consideration of surface states at the non-polar side facets. For doping concentrations below 1017cm-3 , the nanowires are depleted of charge carriers, whereas they become highly conductive above 1019cm-3 .

  2. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis

    PubMed Central

    Watzlawick, Hildegard; Altenbuchner, Josef

    2016-01-01

    ABSTRACT Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the −35 box of the σA-type promoter of Pgan, which is located upstream of ganS. IMPORTANCE Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis. Nevertheless, the B. subtilis utilization system of galactan

  3. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    PubMed

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  4. DLTS study of n-type GaN grown by MOCVD on GaN substrates

    NASA Astrophysics Data System (ADS)

    Tokuda, Y.; Matsuoka, Y.; Ueda, H.; Ishiguro, O.; Soejima, N.; Kachi, T.

    2006-10-01

    Electron traps in n-type GaN layers grown homoepitaxially by MOCVD on free-standing GaN substrates have been characterized using DLTS for vertical Schottky diodes. Two free-standing HVPE GaN substrates (A and B), obtained from two different sources, are used. The Si-doped GaN layers with the thickness of 5 μm are grown on an area of 0.9×0.9 cm 2 of substrate A and on an area of 1×1 cm 2 of substrate B. Two traps labeled B1 (Ec-0.23 eV) and B2 (Ec-0.58 eV) are observed with trap B2 dominant in GaN on both substrates. There exist no dislocation-related traps which have been previously observed in MOCVD GaN on sapphire. This might be correlated to the reduction in dislocation density due to the homoepitaxial growth. However, it is found that there is a large variation, more than an order of magnitude, in trap B2 concentration and that the B2 spatial distributions are different between the two substrates used.

  5. Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy

    SciTech Connect

    Koley, G.; Spencer, M. G.

    2001-07-01

    Surface potentials on GaN epilayers and Al{sub 0.35}Ga{sub 0.65}N/GaN heterostructures have been studied by scanning Kelvin probe microscopy (SKPM) in conjunction with noncontact atomic force microscopy. The dependence of the surface potential on doping in GaN films, as well as the variation of surface potential with Al{sub 0.35}Ga{sub 0.65}N barrier layer thickness has been investigated. The bare surface barrier height (BSBH), as measured by SKPM, is observed to decrease from {similar_to}1. 40{+-}0.1 eV to {similar_to}0.60{+-}0.1 eV with increasing doping in the GaN epilayers. Schottky barrier height calculated from the measurements of BSBH on n-GaN agrees very well with results from previous studies. We have also estimated the surface state density for GaN based on the measured values of BSBH. The semiconductor {open_quotes}work function{close_quotes} at the Al{sub 0.35}Ga{sub 0.65}N surface (in heterostructure samples) is observed to decrease by {similar_to}0.60 eV with increase in barrier layer thickness from {similar_to}50 to {similar_to}440 Aa. A simple model considering the presence of a uniform density of charged acceptors in the Al{sub 0.35}Ga{sub 0.65}N layer is proposed to explain the observed decreasing trend in work function. {copyright} 2001 American Institute of Physics.

  6. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  7. Molecular beam epitaxy as a method for the growth of free-standing bulk zinc-blende GaN and AlGaN crystals

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.

    2011-05-01

    We have studied the growth of zinc-blende GaN and AlxGa1-xN layers, structures and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced GaN layers up to 100 μm in thickness. Thick, undoped, cubic GaN films were grown on semi-insulating GaAs (0 0 1) substrates by a modified plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The resulting free-standing GaN wafers may be used as substrates for further epitaxy of cubic GaN-based structures and devices. We have demonstrated that the PA-MBE process, we had developed, also allows us to achieve free-standing zinc-blende AlxGa1-xN wafers.

  8. MBE growth of GaN pn-junction photodetector on AlN/Si(1 1 1) substrate with Ni/Ag as ohmic contact

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, M. Z.; Baharin, A.; Hassan, Z.; Abu Hassan, H.; Abdullah, M. J.

    2013-04-01

    In this paper, we investigated the growth of GaN pn-junction layers on silicon (1 1 1) by plasma assisted molecular beam epitaxy (PA-MBE) system and the effect of thermal annealing of Ni/Ag contacts on the sample for photodetector applications. Si and Mg were used as n- and p-dopants, respectively. The reflection high energy electron diffraction images indicated a good surface morphology of GaN pn-junction layer. The full width at half maximum (FWHM) obtained from XRD measurement was 0.34°, indicating a good quality layer of sample. The pn-junctions sample has a good optical quality which is reflected by the photoluminescence system measurement. The structural evolution and temperature dependence of the current of Ni/Ag contacts on GaN pn-junction at various annealing were investigated by scanning electron microscopy (SEM) and current-voltage (I-V) measurements. The temperature dependence of the current may be attributed to changes of the surface morphology of Ni/Ag films on the surface. SEM results indicated the degradation of Ni/Ag contacts on GaN pn-junction above 800 °C.

  9. Laser damage mechanisms in conductive widegap semiconductor films

    SciTech Connect

    Yoo, Jae-Hyuck; Menor, Marlon G.; Adams, John J.; Raman, Rajesh N.; Lee, Jonathan R. I.; Olson, Tammy Y.; Shen, Nan; Suh, Joonki; Demos, Stavros G.; Bude, Jeff; Elhadj, Selim

    2016-07-25

    Here, laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN, carbon complexes were proposed as potential damage precursors or markers.

  10. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  11. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung

    2015-05-21

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  12. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGES

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; ...

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  13. Nanoscale morphology and optical property evolution of Pt nanostructures on GaN (0 0 0 1) by the systematic control of annealing temperature and duration with various Pt thickness

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-06-01

    By the controlled fabrication of Pt nanostructures, various surface morphology dependent electronic, catalytic and optical properties can be exploited for a wide range of applications. In this paper, the evolution of Pt nanostructures on GaN (0 0 0 1) by the solid-state dewetting of Pt thin films is investigated. Controlling the annealing temperature, time and film thickness allows us to fabricate distinct size, density and configurations of Pt nanostructures. For 10 nm Pt thickness, tiny voids and Pt hillocks up to 550 °C, extensive void expansion and Pt nanostructure evolution between 600 °C-750 °C and finally Pt nanostructures assisted nanoholes penetration on GaN surface above 800 °C are demonstrated. Furthermore, comparatively elongated Pt nanostructures and NHs are resulted with 20 nm Pt thickness and voids growth and connected Pt nanostructure are formed by annealing duration control. The transformation of Pt films to nanostructures is governed by the surface diffusion, Rayleigh instability, Volmer-Weber growth and energy minimization mechanism whereas NHs penetration is commenced by the decomposition of GaN, Pt-Ga alloying and nitrogen desorption at high temperature. In addition, the optical characteristic of Pt nanostructures on GaN (0 0 0 1) by reflectance, photoluminescence (PL) and Raman spectroscopy demonstrate the surface morphology dependent spectral response.

  14. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  15. Counter gradient diffusion in a plane wall jet

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Dhamotharan, V.

    2015-11-01

    Turbulent wall-jets are important in a variety of applications such as the Coanda effect for boundary layer separation control, film-cooling applications in a jet engine etc., One of the important features of a wall jet is the existence of a region of counter gradient diffusion of momentum. The counter-gradient region is a sort of pathological situation for RANS based turbulence models as they would not be able to predict this region. In this study we show from our experiments in a wall jet the counter-gradient region of diffusion can be understood from simple structural models for a wall jet eddy. Towards this flow visualization and hotwire measurements have been performed. It is seen from the smoke flow visualizations that the outward portion of the flow is backward leaning i.e. in the upstream direction. This is consistent with the orientation of eddy structure obtained from two-point correlation measurements. A building block eddy of a wall jet is proposed that has aspects of a boundary layer eddy in the inner wall region and a jet eddy in the outer region. It is argued by a simple vortex dynamics model that the counter-gradient region occurs due to the influence of the jet eddies in the near-wall region.

  16. Molecular-beam heteroepitaxial growth and characterization of wide-band-gap semiconductor films and devices

    NASA Astrophysics Data System (ADS)

    Piquette, Eric Charles

    The thesis consists of two parts. Part I describes work on the molecular beam epitaxial (MBE) growth of GaN, AlN, and AlxGa 1-xN alloys, as well as efforts in the initial technical development and demonstration of nitride-based high power electronic devices. The major issues pertaining to MBE growth are discussed, including special requirements of the growth system, substrates, film nucleation, n - and p-type doping, and the dependence of film quality on growth parameters. The GaN films were characterized by a variety of methods, including high resolution x-ray diffraction, photoluminescence, and Hall effect measurement. It is found that the film polarity and extended defect density as well as quality of photoluminescence and electrical transport properties depend crucially on how the nitride layer is nucleated on the substrate and how the subsequent film surface morphology evolves, which can be controlled by the growth conditions. A technique is proposed and demonstrated that utilizes the control of morphology evolution to reduce defect density and improve the structural quality of MBE GaN films. In addition to growth, the design and processing of high voltage GaN Schottky diodes is presented, as well as an experimental study of sputter-deposited ohmic and rectifying metal contacts to GaN. Simple models for high power devices, based on materials properties such as minority carrier diffusion length and critical electric breakdown field, are used to estimate the voltage standoff capability, current carrying capacity, and maximum operating frequency of unipolar and bipolar GaN power devices. The materials and transport properties of GaN pertinent to high power device design were measured experimentally. High voltage Schottky rectifiers were fabricated which verify the impressive electric breakdown field of GaN (2--5 MV/cm). Electron beam induced current (EBIC) experiments were also conducted to measure the minority carrier diffusion length for both electrons and

  17. Movement of basal plane dislocations in GaN during electron beam irradiation

    SciTech Connect

    Yakimov, E. B.; Vergeles, P. S.; Polyakov, A. Y.; Lee, In-Hwan; Pearton, S. J.

    2015-03-30

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can be moved by irradiation and only until they meet the latter pinning sites.

  18. Surface supersaturation in flow-rate modulation epitaxy of GaN

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Lin, Chia-Hung; Yamamoto, Hideki; Kumakura, Kazuhide

    2017-06-01

    Hillocks on N-face GaN (000 1 bar) films are effectively eliminated by group-III-source flow-rate modulation epitaxy (FME), wherein the flow-rate of group-III sources are sequentially modulated under a constant supply of NH3. A hillock-free smooth surface obtained by group-III-source FME is attributed to the enhancement of step-flow growth. We found that a hillock originates from a micropipe and grows by spiral growth around the micropipe. The spiral growth rate rapidly decreases with decreasing the degree of surface supersaturation σ, while the step-flow growth rate decreases linearly. For group-III-source FME, wherein σ is lower than conventional continuous growth, the spiral growth rate could be lower than the step-flow growth one so that the formation of hillocks is suppressed.

  19. MOVPE GaN gas phase chemistry for reactor design and optimization

    SciTech Connect

    Safvi, S.A.; Thon, A.; Kuech, T.F.; Redwing, J.M.; Flynn, J.S.; Tischler, M.A.

    1997-12-31

    The results of gas phase decomposition studies are used to construct a chemistry model which is compared to data obtained from an experimental MOVPE reactor. A flow tube reactor is used to study gas phase reactions between trimethylgallium (TMG) and ammonia at high temperatures, characteristic to the metalorganic vapor phase epitaxy (MOVPE) of GaN. Experiments were performed to determine the effect of the mixing of the Group III precursors and Group V precursors on the growth rate, growth uniformity and film properties. Growth rates are predicted for simple reaction mechanisms and compared to those obtained experimentally. Quantification of the loss of reacting species due to oligomerization is made based on experimentally observed growth rates. The model is used to obtain trends in growth rate and uniformity with the purpose of moving towards better operating conditions.

  20. Investigations of chemical vapor deposition of GaN using synchrotron radiation

    SciTech Connect

    Thompson, C.; Stephenson, G. B.; Eastman, J. A.; Munkholm, A.; Auciello, O.; Murty, M. V. R.; Fini, P.; DenBaars, S. P.; Speck, J. S.

    2000-05-25

    The authors apply synchrotron x-ray analysis techniques to probe the surface structure of GaN films during synthesis by metal-organic chemical vapor deposition (MOCVD). Their approach is to observe the evolution of surface structure and morphology in real time using grazing incidence x-ray scattering (GIXS). This technique combines the ability of x-rays to penetrate the chemical vapor deposition environment for in situ measurements, with the sensitivity of GIXS to atomic scale structure. In this paper they present examples from some of their studies of growth modes and surface evolution as a function of process conditions that illustrate the capabilities of synchrotron x-ray analysis during MOCVD growth. They focus on studies of the homoepitaxial growth mode, island coarsening dynamics, and effects of impurities.

  1. Tailoring GaN semiconductor surfaces with biomolecules.

    PubMed

    Estephan, Elias; Larroque, Christian; Cuisinier, Frédéric J G; Bálint, Zoltán; Gergely, Csilla

    2008-07-24

    Functionalization of semiconductors constitutes a crucial step in using these materials for various electronic, photonic, biomedical, and sensing applications. Within the various possible approaches, selection of material-binding biomolecules from a random biological library, based on the natural recognition of proteins or peptides toward specific material, offers many advantages, most notably biocompatibility. Here we report on the selective functionalization of GaN, an important semiconductor that has found broad uses in the past decade due to its efficient electroluminescence and pronounced chemical stability. A 12-mer peptide ("GaN_probe") with specific recognition for GaN has evolved. The subtle interplay of mostly nonpolar hydrophobic and some polar amino acidic residues defines the high affinity adhesion properties of the peptide. The interaction forces between the peptide and GaN are quantified, and the hydrophobic domain of the GaN_probe is identified as primordial for the binding specificity. These nanosized binding blocks are further used for controlled placement of biotin-streptavidin complexes on the GaN surface. Thus, the controlled grow of a new, patterned inorganic-organic hybrid material is achieved. Tailoring of GaN by biological molecules can lead to a new class of nanostructured semiconductor-based devices.

  2. Native defects in GaN: a hybrid functional study

    NASA Astrophysics Data System (ADS)

    Diallo, Ibrahima Castillo; Demchenko, Denis

    Intrinsic defects play an important role in the performance of GaN-based devices. We present hybrid density functional calculations of the electronic and possible optical properties of interstitial N (Ni-Ni) , N antisite (NGa) , interstitial Ga (Gai) , Ga antisite (GaN) , Ga vacancy (VGa) , N vacancy (VN) and Ga-N divacancies (VGaVN) in GaN. Our results show that the vacancies display relatively low formation energies in certain samples, whereas antisites and interstitials are energetically less favorable. However, interstitials can be created by electron irradiation. For instance, in 2.5 MeV electron-irradiated GaN samples, a strong correlation between the frequently observed photoluminescence (PL) band centered around 0.85 eV accompanied with a rich phonon sideband of ~0.88 eV and the theoretical optical behavior of interstitial Ga is discussed. N vacancies are found to likely contribute to the experimentally obtained green luminescence band (GL2) peaking at 2.24 eV in high-resistivity undoped and Mg-doped GaN. National Science Foundation (DMR-1410125) and the Thomas F. and Kate Miller Jeffress Memorial Trust.

  3. Growth and characterization of AlGaN films on patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kwak, Y. S.; Lee, D. S.; Kim, K. H.; Kim, W. H.; Moon, S. W.

    2011-12-01

    A GaN film and two AlGaN films with Al compositions of 5% and 10% have been grown on the patterned sapphire substrates (PSSs) by metal organic chemical vapor deposition (MOCVD). Optical properties and crystalline qualities of the films have been investigated. The GaN film and the Al0.05Ga0.95N film are almost entirely coalesced except for some point defects. However, the Al0.1Ga0.9N film contains large pits encircled by small pits adjacent to them. The large pits are distributed in the same manner with the PSS arrangement. Dislocations and inversion domain boundaries were also observed in the Al0.1Ga0.9N film.

  4. Microstructure evolution and development of annealed Ni/Au contacts to GaN nanowires.

    PubMed

    Herrero, Andrew M; Blanchard, Paul T; Sanders, Aric; Brubaker, Matt D; Sanford, Norman A; Roshko, Alexana; Bertness, Kris A

    2012-09-14

    The development of Ni/Au contacts to Mg-doped GaN nanowires (NWs) is examined. Unlike Ni/Au contacts to planar GaN, current-voltage (I-V) measurements of Mg-doped nanowire devices frequently exhibit a strong degradation after annealing in N(2)/O(2). This degradation originates from the poor wetting behavior of Ni and Au on SiO(2) and the excessive void formation that occurs at the metal/NW and metal/oxide interfaces. The void formation can cause cracking and delamination of the metal film as well as reduce the contact area at the metal/NW interface, which increases the resistance. The morphology and composition of the annealed Ni/Au contacts on SiO(2) and the p-GaN films were investigated by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) measurements. Adhesion experiments were performed in order to determine the degree of adhesion of the Ni/Au films to the SiO(2) as well as observe and analyze the morphology of the film's underside by SEM. Device degradation from annealing was prevented through the use of a specific adhesion layer of Ti/Al/Ni deposited prior to the nanowire dispersal and Ni/Au deposition. I-V measurements of NW devices fabricated using this adhesion layer showed a decrease in resistance after annealing, whereas all others showed an increase in resistance. Transmission electron microscopy (TEM) on a cross-section of a NW with Ni/Au contacts and a Ti/Al/Ni adhesion layer showed a lack of void formation at the contact/NW interface. Results of the XRD and TEM analysis of the NW contact structure using a Ti/Al/Ni adhesion layer suggests Al alloying of the Ni/Au contact increases the adhesion and stability of the metal film as well as prevents excessive void formation at the contact/NW interface.

  5. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  6. Characterization of electrospun GaN nanofibers

    NASA Astrophysics Data System (ADS)

    Ramos, Idalia; Melendez, Anamaris; Morales, Kristle; Campo, Eva M.; Santiago-Aviles, Jorge J.

    2010-03-01

    Gallium Nitride shows characteristics pertinent to optoelectronics and gas sensing applications. Nanofibers have been produced using electrospinning and a precursor composed of Gallium (III) Nitrate Hydrate dissolved in Dimethyl-Acetamide and Cellulose Acetate in Acetone and DMA. The resulting nanofibers were sintered at 400C in nitrogen for one hour to decompose the polymer, the furnace atmosphere switched to ammonia and the fibers sintered for periods of 3, 5 and 7 hrs at 900C. They showed morphologies with unclear dependence on processing parameters. X-ray Diffraction revealed the evolution towards wurtzite phase through annealing. From line broadening we estimate a crystalline domain size of about 12 nm. Transmission Electron Microscopy suggests nucleation and growth of X-tallites while Fourier-Transform Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy confirm the material evolution towards crystallinity and the production of wurtzite GaN nanofibers. I-V characteristics of single nanofibers show linearity with increments in conductivity for those fibers ammoniated during longer periods of time. Ongoing efforts aim at improving fabrication, sensing and photoluminescence characterization.

  7. Atomic layer deposition TiO2-Al2O3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  8. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  9. Growth and Doping of Al(x)Ga(1-x)N Films by Electron Cyclotron Resonance Assisted Molecular Beam

    DTIC Science & Technology

    1994-08-31

    of GaN film arom n on (00~ 1) St. sho%%ine, a -stakire :_ mirk...d .is S. a micritn~in. markcd as T: and j hexaeunatl %urritue regzion, marked a-, It...might expect that the hydrogen-donor state concentration is small in the p-type material. However, the chemistry of hydrogen in GaN is clearly a

  10. Desorption induced formation of negative nanowires in GaN

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Joong; Stach, Eric A.

    2011-06-01

    We report in-situ transmission electron microscopy studies of the formation of negative nanowires created by thermal decomposition of single crystal GaN. During annealing, vertical negative nanowires are formed in [0 0 0 1] by preferential dissociation of GaN along the {1 0 1¯ 0} prism planes, while lateral negative nanowires grow in close-packed <1 0 1¯ 0> by the self-catalytic solid-liquid-vapor (SLV) mechanism. Our quantitative measurements show that the growth rates of the laterally grown negative nanowires are independent of the wire diameter, indicating that the rate-limiting step is the decomposition of GaN on the surface of the Ga droplets that catalyze their creation. These nanoscale features offer controllable templates for the creation and integration of a broad range of nanoscale materials systems, with potential applications in nanoscale fluidics.

  11. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  12. GaN nanowire tips for nanoscale atomic force microscopy.

    PubMed

    Behzadirad, Mahmoud; Nami, Mohsen; Rishinaramagalam, Ashwin; Feezell, Daniel; Busani, Tito

    2017-04-07

    Imaging of high-aspect-ratio nanostructures with sharp edges and straight walls in nanoscale metrology by Atomic Force Microscopy (AFM) has been challenging due to the mechanical properties and conical geometry of the majority of available commercial tips. Here we report on the fabrication of GaN probes for nanoscale metrology of high-aspect-ratio structures to enhance the resolution of AFM imaging and improve the durability of AFM tips. GaN nanowires (NWs) were fabricated using bottom-up and top-down techniques and bonded to Si cantilevers to scan vertical trenches on Si substrates. Over several scans, the GaN probes demonstrated excellent durability while scanning uneven structures and showed resolution enhancements in topography images, independent of scan direction, compared to commercial Si tips.

  13. High-Sensitivity GaN Microchemical Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  14. Transient atomic behavior and surface kinetics of GaN

    NASA Astrophysics Data System (ADS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  15. Gallium kinetics on m-plane GaN

    NASA Astrophysics Data System (ADS)

    Lim, C. B.; Ajay, A.; Monroy, E.

    2017-07-01

    In this paper, we study the adsorption/desorption kinetics of gallium on (1-100) m-GaN during molecular-beam epitaxy on bulk substrates. We demonstrate the stabilization of a laterally contracted biatomic layer of Ga containing up to ≈2.5 times the (0001) surface atom density, on top of the GaN(1-100) surface. By assessing the surface morphology of m-GaN layers grown under different Ga/N flux ratios, we show that the presence of the Ga bilayer allows the growth of atomically smooth m-GaN without accumulation of Ga droplets and in conditions (substrate temperature and Ga/N ratio) that are compatible with the growth of c-GaN.

  16. Application of GaN for photoelectrolysis of water

    NASA Astrophysics Data System (ADS)

    Puzyk, M. V.; Usikov, A. S.; Kurin, S. Yu; Puzyk, A. M.; Fomichev, A. D.; Ermakov, I. A.; Kovalev, D. S.; Papchenko, B. P.; Helava, H.; Makarov, Yu N.

    2015-11-01

    GaN layers of n-type and p-type conductivity grown by HVPE on sapphire substrates were used as working electrodes for water electrolysis, photoelectrolysis and hydrogen gas generation. Specifically the water splitting process is discussed. Corrosion of the GaN materials is also considered. The hydrogen production rate under 365-nm UV LED irradiation of the GaN and external bias was 0.3 ml/(cm2*h) for an n-GaN photoanode (n∼8×1016 cm-3) in 1M Na2SO4 electrolyte and 1.2 ml/(cm2*h) for an n-GaN photoanode (n∼1×1017 cm-3) in 1M KOH electrolyte.

  17. Stability of Carbon Incorpoated Semipolar GaN(1101) Surface

    NASA Astrophysics Data System (ADS)

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2011-08-01

    The structural stability of carbon incorporated GaN(1101) surfaces is theoretically investigated by performing first-principles pseudopotential calculations. The calculated surface formation energies taking account of the metal organic vapor phase epitaxy conditions demonstrate that several carbon incorporated surfaces are stabilized depending on the growth conditions. Using surface phase diagrams, which are obtained by comparing the calculated adsorption energy with vapor-phase chemical potentials, we find that the semipolar surface forms NH2 and CH2 below ˜1660 K while the polar GaN(0001) surface with CH3 is stabilized below ˜1550 K. This difference could be one of possible explanations for p-type doping on the semipolar GaN(1101) surface.

  18. Desorption Induced Formation of Negative Nanowires in GaN

    SciTech Connect

    Stach, E.A.; Kim, B.-J.

    2011-06-01

    We report in-situ transmission electron microscopy studies of the formation of negative nanowires created by thermal decomposition of single crystal GaN. During annealing, vertical negative nanowires are formed in [0 0 0 1] by preferential dissociation of GaN along the 1 0 {bar 1} 0 prism planes, while lateral negative nanowires grow in close-packed 1 0 {bar 1} 0 by the self-catalytic solid-liquid-vapor (SLV) mechanism. Our quantitative measurements show that the growth rates of the laterally grown negative nanowires are independent of the wire diameter, indicating that the rate-limiting step is the decomposition of GaN on the surface of the Ga droplets that catalyze their creation. These nanoscale features offer controllable templates for the creation and integration of a broad range of nanoscale materials systems, with potential applications in nanoscale fluidics.

  19. Adsorption of Al on GaN(110) Surface

    NASA Astrophysics Data System (ADS)

    Xie, Jianjun; Ping, Jiang; Zhang, Kaiming; Xie, Xide

    The electronic properties of Al deposited on GaN(110) surface with different adsorption geometries have been studied by using the surface linear muffin tin orbital approach. The layer projected density of states for Al-covered GaN(110) surface is calculated and compared with that of the clean surface. The charge distribution before and after the adsorption of Al are investigated. It is found that the deposited Al atoms prefer to bond with the surface N atoms with some charge transferred from Al to the GaN substrate. Finally, the Al-Ga exchange mechanism is also studied and it is found that the adsorbed Al may replace the second layer Ga atom to form a more stable configuration.

  20. Gate stack engineering for GaN lateral power transistors

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Liu, Shenghou; Liu, Cheng; Hua, Mengyuan; Chen, Kevin J.

    2016-02-01

    Developing optimal gate-stack technology is a key to enhancing the reliability and performance of GaN insulated-gate devices for high-voltage power switching applications. In this paper, we discuss current challenges and review our recent progresses in gate-stack technology development toward high-performance and high-reliability GaN power devices, including (1) interface engineering that creates a high-quality dielectric/III-nitride interface with low trap density; (2) barrier-layer engineering that enables optimal trade-off between performance and stability; (3) bulk quality and reliability enhancement of the gate dielectric. These gate-stack techniques in terms of new process development and device structure design are valuable to realize highly reliable and competitive GaN power devices.