Science.gov

Sample records for a-receptor blockade attenuates

  1. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  2. Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension.

    PubMed

    Opocenský, Martin; Kramer, Herbert J; Bäcker, Angela; Vernerová, Zdenka; Eis, Václav; Cervenka, Ludek; Certíková Chábová, Vera; Tesar, Vladimír; Vanecková, Ivana

    2006-11-01

    We have recently found in male homozygous hypertensive Ren-2 transgenic rats (TGRs) fed a high-salt diet that early onset selective endothelin (ET) A (ET(A)) or nonselective ET(A)/ET B (ET(B)) receptor blockade improved survival rate and reduced proteinuria, glomerulosclerosis, and cardiac hypertrophy, whereas selective ET(A) receptor blockade also significantly attenuated the rise in blood pressure. Because antihypertensive therapy in general is known to be more efficient when started at early age, our study was performed to determine whether onset of ET receptor blockade at a later age in animals with established hypertension will have similar protective effects as does early-onset therapy. Male homozygous TGRs and age-matched normotensive Hannover Sprague-Dawley rats were fed a high-salt diet between days 51 and 90 of age. TGRs received vehicle (untreated), the selective ET(A) receptor blocker atrasentan (ABT-627), or the nonselective ET(A)/ET(B) receptor blocker bosentan. Survival rates in untreated and bosentan-treated TGRs were 50% and 64%, respectively, whereas with atrasentan, survival rate of TGR was 96%, thus, similar to 93% in Hannover Sprague-Dawley rats. From day 60 on, systolic blood pressure in atrasentan-treated TGRs was transiently lower (P<0.05) than in untreated or bosentan-treated TGRs. Glomerular podocyte injury was substantially reduced with atrasentan treatment independent of severe hypertension and strongly correlated with survival (P<0.001). Our data indicate that in homozygous TGR ET receptors play an important role also in established hypertension. Selective ET(A) receptor blockade not only reduces podocyte injury and end-organ damage but also improves growth and survival independently of hypertension.

  3. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats.

    PubMed

    Vaněčková, Ivana; Kujal, Petr; Husková, Zuzana; Vaňourková, Zdeňka; Vernerová, Zdenka; Certíková Chábová, Věra; Skaroupková, Petra; Kramer, Herbert J; Tesař, Vladimír; Červenka, Luděk

    2012-01-01

    Our previous studies in rats with ablation nephrectomy have shown similar cardiorenal protective effects of renin-angiotensin system (RAS)-dependent treatment (combination of angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker) and RAS-independent treatment (combination of α- and β-adrenoreceptor antagonist and diuretics). Moreover, selective blockade of endothelin (ET) receptor type A (ET(A)) improved survival rate and attenuated hypertension and organ damage in Ren-2 transgenic rats. Therefore, we were interested in whether ET(A) receptor blockade could have additive effects to the classical blockade of the RAS. Transgenic rats underwent 5/6 renal ablation at the age of 2 months and were treated for 20 weeks with RAS blockers alone (angiotensin II receptor blocker - losartan, and angiotensin-converting enzyme inhibitor - trandolapril), ET(A) receptor blocker alone (atrasentan) or with the combination of RAS and ET(A) receptor blockade. RAS blockade normalized blood pressure and improved survival. It decreased cardiac hypertrophy and proteinuria as well as tissue angiotensin II and ET-1 levels. In contrast, ET(A) receptor blockade only partially improved survival rate, reduced blood pressure, attenuated the development of cardiac hypertrophy and transiently reduced proteinuria. However, no additive cardio- and renoprotective effects of ET(A) and RAS blockade were noted at the end of the study. Copyright © 2012 S. Karger AG, Basel.

  4. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.

    PubMed

    Ikeda, Ken; Kurokawa, Masako; Aoyama, Shiro; Kuwana, Yoshihisa

    2002-01-01

    Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities.

  5. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  6. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  7. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  8. Endothelin A-receptor blockade worsens endotoxin-induced hepatic microcirculatory changes and necrosis.

    PubMed

    Nishida, T; Huang, T P; Seiyama, A; Hamada, E; Kamiike, W; Ueshima, S; Kazuo, H; Matsuda, H

    1998-08-01

    Endothelin 1 is considered to be an important regulator of sinusoidal blood flow and increases during endotoxemia. The purpose of this study was to investigate the role of endothelin 1 in hepatic microcirculation, oxygen transport, and liver injury during endotoxemia. Male Sprague-Dawley rats were continuously infused with 2.5 mL/h of saline, 0.8 mg . kg-1 . h-1 of lipopolysaccharide (LPS), 3 mg . kg-1 . h-1 of BQ-485, an endothelin A-receptor antagonist, or LPS plus BQ-485 for 7 hours. BQ-485 infusion had no significant effect on hepatic microcirculation and liver injury. LPS increased the plasma levels of aspartate aminotransferase (AST) and total bilirubin and decreased the hepatic adenosine triphosphate (ATP) level and bile flow rate. LPS + BQ-485 infusion further increased the plasma levels of AST and total bilirubin and decreased the bile flow rate and the hepatic ATP level. Dual-spot microspectroscopy revealed mild decreases in sinusoidal erythrocyte velocity and oxygen transport in the LPS group and profound decreases in these parameters in the LPS + BQ-485 group. Histological examinations revealed massive necrotic changes in the pericentral regions of the LPS + BQ-485 group. These results suggest that blockade of endothelin A receptors disturbs hepatic microcirculation and oxygen transport and aggravates the necrotic injury induced by endotoxin.

  9. ETA receptor blockade attenuates hypertension and decreases reactive oxygen species in ETB receptor-deficient rats.

    PubMed

    Elmarakby, Ahmed A; Dabbs Loomis, E; Pollock, Jennifer S; Pollock, David M

    2004-11-01

    We hypothesize that endothelin-A receptor stimulation contributes to the elevated blood pressure and superoxide production in endothelin-B receptor-deficient rats on a high salt diet. Experiments were conducted on homozygous endothelin-B-deficient (sl/sl) and wild-type rats (wt) fed a high salt diet (8% NaCl) for 3 weeks. Separate groups were given normal drinking water or water containing the endothelin-A receptor antagonist, ABT-627 (5 mg/kg per day; n = 8-9 in all groups). On a normal salt diet, (sl/sl) rats had a significantly elevated systolic blood pressure compared with wt (138 +/- 3 vs 117 +/- 4 mmHg, respectively; P < 0.05). High salt diet caused a significant increase in systolic blood pressure in (sl/sl) rats compared with wt (158 +/- 2 vs 138 +/- 3 mmHg, respectively; P < 0.05). Endothelin-A receptor blockade decreased systolic blood pressure in (sl/sl) rats on high salt (125 +/- 5 mmHg; P < 0.05 vs without antagonist) without affecting the systolic blood pressure in wt (119 +/- 4 mmHg). Aortic superoxide production (lucigenin chemiluminescence) and plasma 8-isoprostane were elevated in sl/sl rats and were significantly reduced by endothelin-A receptor blockade in sl/sl, but not in wt rats. These findings suggest that endothelin-1, through the endothelin-A receptor, contributes to salt-induced hypertension and vascular superoxide production in endothelin-B-deficient rats.

  10. Selective blockade of herpesvirus entry mediator-B and T lymphocyte attenuator pathway ameliorates acute graft-versus-host reaction.

    PubMed

    del Rio, Maria-Luisa; Jones, Nick D; Buhler, Leo; Norris, Paula; Shintani, Yasushi; Ware, Carl F; Rodriguez-Barbosa, Jose-Ignacio

    2012-05-15

    The cosignaling network mediated by the herpesvirus entry mediator (HVEM; TNFRSF14) functions as a dual directional system that involves proinflammatory ligand, lymphotoxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT; TNFSF14), and the inhibitory Ig family member B and T lymphocyte attenuator (BTLA). To dissect the differential contributions of HVEM/BTLA and HVEM/LIGHT interactions, topographically-specific, competitive, and nonblocking anti-HVEM Abs that inhibit BTLA binding, but not LIGHT, were developed. We demonstrate that a BTLA-specific competitor attenuated the course of acute graft-versus-host reaction in a murine F(1) transfer semiallogeneic model. Selective HVEM/BTLA blockade did not inhibit donor T cell infiltration into graft-versus-host reaction target organs, but decreased the functional activity of the alloreactive T cells. These results highlight the critical role of HVEM/BTLA pathway in the control of the allogeneic immune response and identify a new therapeutic target for transplantation and autoimmune diseases.

  11. Selective Blockade of Herpesvirus Entry Mediator–B and T Lymphocyte Attenuator Pathway Ameliorates Acute Graft-versus-Host Reaction

    PubMed Central

    del Rio, Maria-Luisa; Jones, Nick D.; Buhler, Leo; Norris, Paula; Shintani, Yasushi; Ware, Carl F.; Rodriguez-Barbosa, Jose-Ignacio

    2013-01-01

    The cosignaling network mediated by the herpesvirus entry mediator (HVEM; TNFRSF14) functions as a dual directional system that involves proinflammatory ligand, lymphotoxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT; TNFSF14), and the inhibitory Ig family member B and T lymphocyte attenuator (BTLA). To dissect the differential contributions of HVEM/BTLA and HVEM/LIGHT interactions, topographically-specific, competitive, and nonblocking anti-HVEM Abs that inhibit BTLA binding, but not LIGHT, were developed. We demonstrate that a BTLA-specific competitor attenuated the course of acute graft-versus-host reaction in a murine F1 transfer semiallogeneic model. Selective HVEM/BTLA blockade did not inhibit donor T cell infiltration into graft-versus-host reaction target organs, but decreased the functional activity of the alloreactive T cells. These results highlight the critical role of HVEM/BTLA pathway in the control of the allogeneic immune response and identify a new therapeutic target for transplantation and autoimmune diseases. PMID:22490863

  12. Orchiectomy or androgen receptor blockade attenuates baroreflex-mediated bradycardia in conscious rats

    PubMed Central

    Ward, Gregg R; Abdel-Rahman, Abdel A

    2006-01-01

    Background Previous studies have shown that testosterone enhances baroreflex bradycardia. Therefore, conscious unrestrained rats were used to investigate the role of the androgen receptor in the testosterone-mediated modulation of baroreflex bradycardia. Androgen depletion (3 weeks), and androgen receptor blockade (20–24 h), were implemented to test the hypothesis that testosterone influences baroreflex bradycardia via its activity at the androgen receptor in male rats. Phenylephrine (1–16 μg kg-1) was used to assess baroreflex bradycardia. Results Androgen depletion attenuated baroreflex bradycardia (P < 0.01). The antiandrogen flutamide (5, 15, or 30 mg kg-1, s.c.) caused dose-related attenuation of baroreflex bradycardia in spite of a significant (P < 0.05) increase in serum testosterone. The latter did not lead to increased serum 17β-estradiol level. Conclusion The data suggest: 1) Androgen depletion or adequate androgen receptor blockade attenuates baroreflex bradycardia. 2) The reflex increase in serum testosterone may counterbalance the action of the lower doses (5 or 15 mg kg-1) of flutamide. 3) The absence of a change in serum 17β-estradiol rules out its contribution to flutamide action on baroreflex bradycardia. PMID:16430770

  13. Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats.

    PubMed

    Vanêcková, Ivana; Kramer, Herbert J; Bäcker, Angela; Vernerová, Zdena; Opocensky, Martin; Cervenka, Ludêk

    2005-10-01

    We have recently found that nonselective endothelin ETA/ETB receptor blockade markedly improves survival rate and ameliorates end-organ damage in male homozygous rats transgenic (TGR) for the mouse Ren-2 renin gene without lowering blood pressure. Because activation of the ETA receptor may be responsible for the detrimental effects of ET in the development of hypertension, this study was performed to determine whether ETA or ETA/ETB receptor blockade exerts these beneficial effects. TGR and age-matched normotensive Hannover Sprague-Dawley rats fed a high-salt diet received either vehicle or bosentan and atrasentan (ABT-627) as nonselective ETA/ETB and selective ETA receptor blockers, respectively, from 29 until 90 days of age. The survival rate of 48% in untreated TGR was significantly (P<0.01) improved to 79% by bosentan and to 92% by ABT-627 (ABT-627 versus bosentan P<0.05). Proteinuria, glomerulosclerosis, and cardiac hypertrophy, as well as ET-1 content in left ventricular tissue, were significantly reduced by bosentan and to a greater degree by ABT-627, which also significantly attenuated the rise in blood pressure (P<0.05). Our data indicate that the ET system, especially via ETA receptors, plays an important role in the development of hypertensive end-organ damage and confirm the concept that the predominant role of ETB receptors within the peripheral vasculature is to mediate the vasorelaxant actions of ET-1. They also demonstrate that selective blockade of ETA receptors is superior to nonselective ETA/ETB in attenuating hypertension, hypertensive organ damage, and survival rate.

  14. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum.

    PubMed

    Tebano, Maria Teresa; Pintor, Annita; Frank, Claudio; Domenici, Maria Rosaria; Martire, Alberto; Pepponi, Rita; Potenza, Rosa Luisa; Grieco, Rosa; Popoli, Patrizia

    2004-07-01

    Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.

  15. Effects of CTGF Blockade on Attenuation and Reversal of Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Bickelhaupt, Sebastian; Erbel, Christian; Timke, Carmen; Wirkner, Ute; Dadrich, Monika; Flechsig, Paul; Tietz, Alexandra; Pföhler, Johanna; Gross, Wolfgang; Peschke, Peter; Hoeltgen, Line; Katus, Hugo A; Gröne, Hermann-Josef; Nicolay, Nils H; Saffrich, Rainer; Debus, Jürgen; Sternlicht, Mark D; Seeley, Todd W; Lipson, Kenneth E; Huber, Peter E

    2017-08-01

    Radiotherapy is a mainstay for the treatment of lung cancer that can induce pneumonitis or pulmonary fibrosis. The matricellular protein connective tissue growth factor (CTGF) is a central mediator of tissue remodeling. A radiation-induced mouse model of pulmonary fibrosis was used to determine if transient administration of a human antibody to CTGF (FG-3019) started at different times before or after 20 Gy thoracic irradiation reduced acute and chronic radiation toxicity. Mice (25 mice/group; 10 mice/group in a confirmation study) were examined by computed tomography, histology, gene expression changes, and for survival. In vitro experiments were performed to directly study the interaction of CTGF blockade and radiation. All statistical tests were two-sided. Administration of FG-3019 prevented (∼50%-80%) or reversed (∼50%) lung remodeling, improved lung function, improved mouse health, and rescued mice from lethal irradiation ( P < .01). Importantly, when antibody treatment was initiated at 16 weeks after thoracic irradiation, FG-3019 reversed established lung remodeling and restored lung function. CTGF blockade abrogated M2 polarized macrophage influx, normalized radiation-induced gene expression changes, and reduced myofibroblast abundance and Osteopontin expression. These results indicate that blocking CTGF attenuates radiation-induced pulmonary remodeling and can reverse the process after initiation. CTGF has a central role in radiation-induced fibrogenesis, and FG-3019 may benefit patients with radiation-induced pulmonary fibrosis or patients with other forms or origin of chronic fibrotic diseases.

  16. Endothelin A-receptor blockade in experimental diabetes improves glucose balance and gastrointestinal function.

    PubMed

    Balsiger, Bruno; Rickenbacher, Andreas; Boden, Penelope Jane; Biecker, Erwin; Tsui, Janice; Dashwood, Michael; Reichen, Jürg; Shaw, Sidney George

    2002-08-01

    Secondary complications of diabetes mellitus often involve gastrointestinal dysfunction. In the experimental Goto Kakizaki rat, a model of Type II diabetes, hyperglycaemia and reduced glucose clearance is associated with elevated plasma endothelin (ET)-1 levels and selective decreases in nitric oxide synthase in circular muscle, longitudinal muscle and neuronal elements of the gastrointestinal tract. Functionally, this is accompanied by decreased nitrergic relaxatory responses of jejunal longitudinal muscle to tetrodotoxin-sensitive electrical field stimulation. Long-term treatment with a selective ET A-type receptor antagonist, markedly reduced hyperglycaemia and restored plasma glucose clearance rates towards normal. This was associated with a restoration of N(G)-nitro-L-arginine methyl ester-sensitive relaxatory responses of jejunal longitudinal muscle to electrical field stimulation. The results indicate that beneficial effects of ETA receptor blockade on gastrointestinal function may result from an improvement in insulin sensitivity with concomitant reduction of the severity of hyperglycaemia. ETA receptor blockade may represent a new therapeutic principle for improving glucose tolerance in Type II diabetes and could be beneficial in alleviating or preventing hyperglycaemia-related secondary complications in this condition.

  17. BLOCKADE OF NERVE GROWTH FACTOR (NGF) RECEPTOR TRKA ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC INFLAMMATION

    EPA Science Inventory


    Recent studies have shown that asthmatics have increased levels of the neurotrophin, NGF, in their lungs. In addition, antibody blockade of NGF in mice attenuates airway resistance associated with allergic airway responses. DEP has been linked to asthma exacerbation in many c...

  18. BLOCKADE OF NERVE GROWTH FACTOR (NGF) RECEPTOR TRKA ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC INFLAMMATION

    EPA Science Inventory


    Recent studies have shown that asthmatics have increased levels of the neurotrophin, NGF, in their lungs. In addition, antibody blockade of NGF in mice attenuates airway resistance associated with allergic airway responses. DEP has been linked to asthma exacerbation in many c...

  19. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  20. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord

    PubMed Central

    Dai, Wen-Ling; Xiong, Feng; Yan, Bing; Cao, Zheng-Yu; Liu, Wen-Tao; Liu, Ji-Hua; Yu, Bo-Yang

    2016-01-01

    Tolerance induced by morphine remains a major unresolved problem and significantly limits its clinical use. Recent evidences have indicated that dopamine D2 receptor (D2DR) is likely to be involved in morphine-induced antinociceptive tolerance. However, its exact effect and molecular mechanism remain unknown. In this study we examined the effect of D2DR on morphine antinociceptive tolerance in mice spinal cord. Chronic morphine treatment significantly increased levels of D2DR in mice spinal dorsal horn. And the immunoreactivity of D2DR was newly expressed in neurons rather than astrocytes or microglia both in vivo and in vitro. Blockade of D2DR with its antagonist (sulpiride and L-741,626, i.t.) attenuated morphine antinociceptive tolerance without affecting basal pain perception. Sulpiride (i.t.) also down-regulated the expression of phosphorylation of NR1, PKC, MAPKs and suppressed the activation of astrocytes and microglia induced by chronic morphine administration. Particularly, D2DR was found to interact with μ opioid receptor (MOR) in neurons, and chronic morphine treatment enhanced the MOR/D2DR interactions. Sulpiride (i.t.) could disrupt the MOR/D2DR interactions and attenuate morphine tolerance, indicating that neuronal D2DR in the spinal cord may be involved in morphine tolerance possibly by interacting with MOR. These results may present new opportunities for the treatment and management of morphine-induced antinociceptive tolerance which often observed in clinic. PMID:28004735

  1. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2010-10-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.

  2. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade.

    PubMed

    Gavva, Narender R; Bannon, Anthony W; Hovland, David N; Lehto, Sonya G; Klionsky, Lana; Surapaneni, Sekhar; Immke, David C; Henley, Charles; Arik, Leyla; Bak, Annette; Davis, James; Ernst, Nadia; Hever, Gal; Kuang, Rongzhen; Shi, Licheng; Tamir, Rami; Wang, Jue; Wang, Weiya; Zajic, Gary; Zhu, Dawn; Norman, Mark H; Louis, Jean-Claude; Magal, Ella; Treanor, James J S

    2007-10-01

    Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics. Here, we report the in vitro and in vivo characterization of a novel and selective TRPV1 antagonist, N-(4-[6-(4-trifluoromethyl-phenyl)-pyrimidin-4-yloxy]-benzothiazol-2-yl)-acetamide I (AMG 517), and compare its pharmacology with that of a closely related analog, tert-butyl-2-(6-([2-(acetylamino)-1,3-benzothiazol-4-yl]oxy)pyrimidin-4-yl)-5-(trifluoromethyl)phenylcarbamate (AMG8163). Both AMG 517 and AMG8163 potently and completely antagonized capsaicin, proton, and heat activation of TRPV1 in vitro and blocked capsaicin-induced flinch in rats in vivo. To support initial clinical investigations, AMG 517 was evaluated in a comprehensive panel of toxicology studies that included in vivo assessments in rodents, dogs, and monkeys. The toxicology studies indicated that AMG 517 was generally well tolerated; however, transient increases in body temperature (hyperthermia) were observed in all species after AMG 517 dosing. To further investigate this effect, we tested and showed that the antipyretic, acetaminophen, suppressed the hyperthermia caused by TRPV1 blockade. We also showed that repeated administration of TRPV1 antagonists attenuated the hyperthermia response, whereas the efficacy in capsaicin-induced flinch model was maintained. In conclusion, these studies suggest that the transient hyperthermia elicited by TRPV1 blockade may be manageable in the development of TRPV1 antagonists as therapeutic agents. However, the impact of TRPV1 antagonist-induced hyperthermia on their clinical utility is still unknown.

  3. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement.

    PubMed

    Shoblock, James R; Welty, Natalie; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Morton, Kirsten; Palmer, James; Bonaventure, Pascal; Carruthers, Nicholas I; Lovenberg, Timothy W; Boggs, Jamin; Galici, Ruggero

    2011-05-01

    Orexin-1 receptor antagonists have been shown to block the reinforcing effects of drugs of abuse and food. However, whether blockade of orexin-2 receptor has similar effects has not been determined. We have recently described the in vitro and in vivo effects of JNJ-10397049, a selective and brain penetrant orexin-2 receptor antagonist. The goal of these studies was to evaluate whether systemic administration of JNJ-10397049 blocks the rewarding effects of ethanol and reverses ethanol withdrawal in rodents. As a comparison, SB-408124, a selective orexin-1 receptor antagonist, was also evaluated. Rats were trained to orally self-administer ethanol (8% v/v) or saccharin (0.1% v/v) under a fixed-ratio 3 schedule of reinforcement. A separate group of rats received a liquid diet of ethanol (8% v/v) and withdrawal signs were evaluated 4 h after ethanol discontinuation. In addition, ethanol-induced increases in extracellular dopamine levels in the nucleus accumbens were tested. In separate experiments, the acquisition, expression, and reinstatement of conditioned place preference (CPP) were evaluated in mice. Our results indicate that JNJ-10397049 (1, 3, and 10 mg/kg, sc) dose-dependently reduced ethanol self-administration without changing saccharin self-administration, dopamine levels, or withdrawal signs in rats. Treatment with JNJ-10397049 (10 mg/kg, sc) attenuated the acquisition, expression, and reinstatement of ethanol CPP and ethanol-induced hyperactivity in mice. Surprisingly, SB-408124 (3, 10 and 30 mg/kg, sc) did not have any effect in these procedures. Collectively, these results indicate, for the first time, that blockade of orexin-2 receptors is effective in reducing the reinforcing effects of ethanol.

  4. Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice.

    PubMed

    Gomes, Felipe V; Del Bel, Elaine A; Guimarães, Francisco S

    2013-10-01

    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa plant that produces antipsychotic effects in rodents and humans. It also reverses L-dopa-induced psychotic symptoms and improves motor function in Parkinson's patients. This latter effect raised the possibility that CBD could have beneficial effects on motor related striatal disorders. To investigate this possibility we evaluated if CBD would prevent catalepsy induced by drugs with distinct pharmacological mechanisms. The catalepsy test is largely used to investigate impairments of motor function caused by interference on striatal function. Male Swiss mice received acute pretreatment with CBD (5, 15, 30 or 60mg/kg, ip) 30min prior to the D2 receptor antagonist haloperidol (0.6mg/kg), the non-selective nitric oxide synthase (NOS) inhibitor L-nitro-N-arginine (L-NOARG, 80mg/kg) or the CB1 receptor agonist WIN55,212-2 (5mg/kg). The mice were tested 1, 2 or 4h after haloperidol, L-NOARG or WIN55,212-2 injection. These drugs significantly increased catalepsy time and this effect was attenuated dose-dependently by CBD. CBD, by itself, did not induce catalepsy. In a second set of experiments the mechanism of CBD effects was investigated. Thirty minutes before CBD (30mg/kg) the animals received the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). The anticataleptic effect of CBD was prevented by WAY100635. These findings indicate that CBD can attenuate catalepsy caused by different mechanisms (D2 blockade, NOS inhibition and CB1 agonism) via 5-HT1A receptor activation, suggesting that it could be useful in the treatment of striatal disorders.

  5. Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats.

    PubMed

    Yan, Yijin; Pushparaj, Abhiram; Le Strat, Yann; Gamaleddin, Islam; Barnes, Chanel; Justinova, Zuzana; Goldberg, Steven R; Le Foll, Bernard

    2012-02-01

    Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.

  6. Blockade of Dopamine D4 Receptors Attenuates Reinstatement of Extinguished Nicotine-Seeking Behavior in Rats

    PubMed Central

    Yan, Yijin; Pushparaj, Abhiram; Le Strat, Yann; Gamaleddin, Islam; Barnes, Chanel; Justinova, Zuzana; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse. PMID:22030716

  7. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage

    PubMed Central

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-01-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise. PMID:25605289

  8. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    PubMed

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  9. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice.

    PubMed

    Podowski, Megan; Calvi, Carla; Metzger, Shana; Misono, Kaori; Poonyagariyagorn, Hataya; Lopez-Mercado, Armando; Ku, Therese; Lauer, Thomas; McGrath-Morrow, Sharon; Berger, Alan; Cheadle, Christopher; Tuder, Rubin; Dietz, Harry C; Mitzner, Wayne; Wise, Robert; Neptune, Enid

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.

  10. Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice

    PubMed Central

    Podowski, Megan; Calvi, Carla; Metzger, Shana; Misono, Kaori; Poonyagariyagorn, Hataya; Lopez-Mercado, Armando; Ku, Therese; Lauer, Thomas; McGrath-Morrow, Sharon; Berger, Alan; Cheadle, Christopher; Tuder, Rubin; Dietz, Harry C.; Mitzner, Wayne; Wise, Robert; Neptune, Enid

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β–specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β–targeted therapies for patients with COPD. PMID:22182843

  11. NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation.

    PubMed

    Kreipke, Christian W; Walker, Paul D

    2004-07-01

    Previous behavioral studies suggest that the striatum mediates a hyperactive response to systemic NMDA receptor antagonism in combination with systemic D1 receptor stimulation. However, many experiments conducted at the cellular level suggest that inhibition of NMDA receptors should block D1 receptor-mediated locomotor activity. Therefore, we investigated the consequences of NMDA receptor blockade on the ability of striatal D1 receptors to elicit locomotor activity using systemic and intrastriatal injections of the NMDA antagonist MK-801 combined with intrastriatal injections of the D1 full agonist SKF 82958. Following drug treatment locomotor activity was measured via computerized activity monitors designed to quantify multiple parameters of rodent open-field behavior. Both systemic (0.1 mg/kg) and intrastriatal (1.0 microg) MK-801 pretreatments completely blocked locomotor and stereotypic activity elicited by 10 microg of SKF 82958 directly infused into the striatum. Further, increased activity triggered by intrastriatal SKF 82958 was attenuated by a posttreatment with intrastriatal infusion of 1 microg MK-801. These data suggest that D1-stimulated locomotor behaviors controlled by the striatum require functional NMDA channels.

  12. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  13. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control.

    PubMed

    El-Mas, Mahmoud M; El-Gowilly, Sahar M; Fouda, Mohamed A; Saad, Evan I

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.

  14. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  15. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  16. PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress

    PubMed Central

    Gao, Hong-Li; Yu, Xiao-Jing; Liu, Kai-Li; Shi, Xiao-Lian; Qi, Jie; Chen, Yan-Mei; Zhang, Yan; Bai, Juan; Yi, Qiu-Yue; Feng, Zhi-Peng; Chen, Wen-Sheng; Cui, Wei; Liu, Jin-Jun; Zhu, Guo-Qing; Kang, Yu-Ming

    2017-01-01

    The imbalance of neurotransmitters and excessive oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether blockade of p44/42 MAPK pathway in the hypothalamic paraventricular nucleus (PVN) ameliorates the development of hypertension through modulating neurotransmitters and attenuating oxidative stress. Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 6 weeks and were treated with bilateral PVN infusion of PD-98059 (0.025 μg/h), a p44/42 MAPK inhibitor, or vehicle via osmotic minipump. HS resulted in higher mean arterial pressure (MAP) and Fra-like (Fra-LI) activity, and plasma and PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. PD-98059 infusion reduced NE, TH, NOX2 and NOX4 in the PVN, and induced Cu/Zn-SOD and GAD67 in the PVN. It suggests that PVN blockade of p44/42 MAPK attenuates hypertension through modulating neurotransmitters and attenuating oxidative stress. PMID:28225041

  17. Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice

    PubMed Central

    Mihalek, Robert M.; Banerjee, Pradeep K.; Korpi, Esa R.; Quinlan, Joseph J.; Firestone, Leonard L.; Mi, Zhi-Ping; Lagenaur, Carl; Tretter, Verena; Sieghart, Werner; Anagnostaras, Stephan G.; Sage, Jennifer R.; Fanselow, Michael S.; Guidotti, Alessandro; Spigelman, Igor; Li, Zhiwei; DeLorey, Timothy M.; Olsen, Richard W.; Homanics, Gregg E.

    1999-01-01

    γ-Aminobutyric acid (GABA) type A receptors mediate fast inhibitory synaptic transmission and have been implicated in responses to sedative/hypnotic agents (including neuroactive steroids), anxiety, and learning and memory. Using gene targeting technology, we generated a strain of mice deficient in the δ subunit of the GABA type A receptors. In vivo testing of various behavioral responses revealed a strikingly selective attenuation of responses to neuroactive steroids, but not to other modulatory drugs. Electrophysiological recordings from hippocampal slices revealed a significantly faster miniature inhibitory postsynaptic current decay time in null mice, with no change in miniature inhibitory postsynaptic current amplitude or frequency. Learning and memory assessed with fear conditioning were normal. These results begin to illuminate the novel contributions of the δ subunit to GABA pharmacology and sedative/hypnotic responses and behavior and provide insights into the physiology of neurosteroids. PMID:10536021

  18. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    PubMed

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  19. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  20. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    PubMed

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P < 0.019) and integrated (↓48%, P < 0.004) pressor components of the reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs.

  1. Angiotensin Receptor Blockade With Candesartan Attenuates Atherosclerosis, Plaque Disruption, and Macrophage Accumulation Within the Plaque in a Rabbit Model

    PubMed Central

    Perez, Alexandra S.; Nasser, Imad; Stewart, Robert; Vaidya, Anand; Al Ammary, Fawaz; Schmidt, Ben; Horowitz, Gary; Dolgoff, Jennifer; Hamilton, James; Quist, William C.

    2010-01-01

    Background Little is known about whether direct angiotensin receptor blockade can reduce atherosclerosis and plaque disruption. This study evaluated the effect of angiotensin receptor blockade on both the development of atherosclerosis and the disruption of plaque in a modified Constantinides animal model. Methods and Results Twenty-eight New Zealand White rabbits underwent aortic balloon injury followed by a 1% cholesterol diet for 8 weeks. Thirteen rabbits received candesartan at 0.5 mg · kg−1 · d−1 beginning 2 days before aortic balloon injury and continued for the total 8 weeks of the cholesterol diet. The rabbits were then pharmacologically triggered and humanely killed, and their aortas were analyzed. The degree of atherosclerosis was determined by intima-media ratio of the infrarenal portion of the aorta. The frequency of intra-aortic thrombosis, a measure of plaque disruption, and the percentages of macrophage area and collagen-staining area of the plaque were determined. Candesartan-treated rabbits had less atherosclerosis (intima-media infrarenal aorta ratio of 1.18±0.08 versus 1.57±0.08 [mean±SEM] for the placebo group, P<0.001); fewer thrombi (3 of 13 versus 11 of 15; P<0.05); lower percentage area of macrophages to total plaque (18.8±2.7% versus 27±2.5%, P<0.05); and higher collagen to total plaque area (45±3% versus 35±2%, P<0.01). Conclusions These results demonstrate that angiotensin receptor blockade attenuates the degree of atherosclerosis and reduces both plaque disruption and macrophage accumulation while increasing collagen deposition in the aortas of this animal model. PMID:15451796

  2. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    PubMed

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  4. Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists.

    PubMed

    Miczek, K A; Hussain, S; Faccidomo, S

    1998-09-01

    One of the critical mechanisms by which alcohol heightens aggression involves forebrain serotonin (5-HT) systems, possibly via actions on 5-HT1A receptors. The present experiments tested the hypothesis that activating 5-HT1A receptors by selective agonists will block the aggression-heightening effects of ethanol. Initially, the selective antagonist WAY 100635 was used to assess whether or not the changes in aggressive behavior after treatment with 8-OH-DPAT and flesinoxan result from action at the 5-HT1A receptors. Resident male CFW mice engaged in aggressive behavior (i.e. attack bites, sideways threats, tail rattle) during 5-min confrontations with a group-housed intruder male. Quantitative analysis of the behavioral repertoire revealed systematic reductions in all salient elements of aggressive behavior after treatment with 8-OH-DPAT (0.1-0.3 mg/kg, i.p.) or flesinoxan (0.1-1.0 mg/kg, i.p.). The 5-HT1A agonists also reduced motor activities such as walking, rearing and grooming, although to a lesser degree. Pretreatment with the antagonist WAY 100635 (0.1 mg/kg, i.p.) shifted the agonist dose-effect curves for behavioral effects to the right. In a further experiment, oral ethanol (1.0 g/kg, p.o.) increased the frequency of attacks in excess of 2 SD from their mean vehicle level of attacks in 19 out of 76 resident mice. Low doses of 8-OH-DPAT (0.03-0.3 mg/kg) and flesinoxan (0.1, 0.3, 0.6 mg/kg), given before the ethanol treatment, attenuated the alcohol-heightened aggression in a dose-dependent fashion. By contrast, these low 5-HT1A agonist doses affected motor activity in ethanol-treated resident mice to a lesser degree, suggesting behavioral specificity of these anti-aggressive effects. The current results support the hypothesized significant role of 5-HT1A receptors in the aggression-heightening effects of alcohol. If these effects are in fact due to action at somatodendritic 5-HT1A autoreceptors, then the anti-aggressive effects would be associated with

  5. The α2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats

    PubMed Central

    Markou, Athina

    2013-01-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of α2 adrenergic and 5-HT2A receptors may contribute to these effects of clozapine. We investigated here whether blockade of α2 or 5-HT2A receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increased number of somatic signs. Thus, α2 adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking. PMID:20627663

  6. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  7. Blockade of Endocannabinoid Hydrolytic Enzymes Attenuates Precipitated Opioid Withdrawal Symptoms in MiceS⃞

    PubMed Central

    Ramesh, Divya; Ross, Gracious R.; Schlosburg, Joel E.; Owens, Robert A.; Abdullah, Rehab A.; Kinsey, Steven G.; Long, Jonathan Z.; Nomura, Daniel K.; Sim-Selley, Laura J.; Cravatt, Benjamin F.; Akbarali, Hamid I.

    2011-01-01

    Δ9-Tetrahydrocannbinol (THC), the primary active constituent of Cannabis sativa, has long been known to reduce opioid withdrawal symptoms. Although THC produces most of its pharmacological actions through the activation of CB1 and CB2 cannabinoid receptors, the role these receptors play in reducing the variety of opioid withdrawal symptoms remains unknown. The endogenous cannabinoids, N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonylglycerol (2-AG), activate both cannabinoid receptors but are rapidly metabolized by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. The objective of this study was to test whether increasing AEA or 2-AG, via inhibition of their respective hydrolytic enzymes, reduces naloxone-precipitated morphine withdrawal symptoms in in vivo and in vitro models of opioid dependence. Morphine-dependent mice challenged with naloxone reliably displayed a profound withdrawal syndrome, consisting of jumping, paw tremors, diarrhea, and weight loss. THC and the MAGL inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) dose dependently reduced the intensity of most measures through the activation of CB1 receptors. JZL184 also attenuated spontaneous withdrawal signs in morphine-dependent mice. The FAAH inhibitor N-(pyridin-3-yl)-4-(3-(5-(trifluoromethyl)pyridin-2-yloxy)benzyl)-piperdine-1-carboxamide (PF-3845) reduced the intensity of naloxone-precipitated jumps and paw flutters through the activation of CB1 receptors but did not ameliorate incidence of diarrhea or weight loss. In the final series of experiments, we investigated whether JZL184 or PF-3845 would attenuate naloxone-precipitated contractions in morphine-dependent ilea. Both enzyme inhibitors attenuated the intensity of naloxone-induced contractions, although this model does not account mechanistically for the autonomic withdrawal responses (i.e., diarrhea) observed in vivo. These results indicate

  8. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats.

    PubMed

    Loram, Lisa C; Strand, Keith A; Taylor, Frederick R; Sloane, Evan; Van Dam, Anne-Marie; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2015-05-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord.

  9. Aortic Remodeling Following Transverse Aortic Constriction in Mice is Attenuated with AT1 Receptor Blockade

    PubMed Central

    Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K.; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S.; Ju, Xiaoxi; Brasier, Allan R.; Milewicz, Dianna M.

    2016-01-01

    Objective Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of Ang II type 1 (AT1) receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Approach and Results Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation, aortic wall thickening and medial hypertrophy. Significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density due to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC induced adventitial hyperplasia, collagen accumulation and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas was effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked Erk activation and ROS production in the TAC ascending aorta. Conclusions Inhibition of the AT1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased TGF- β1 expression, adventitial Smad2 signaling and collagen accumulation. These results help to delineate the aortic TGF-β signaling that is dependent and independent of the AT1 receptor after TAC. PMID:23868934

  10. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells.

    PubMed

    Lin, Chih-Li; Lin, Jen-Kun

    2008-08-01

    Insulin resistance is the primary characteristic of type 2 diabetes which as a result of insulin signaling defects. It has been suggested that the tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) displays some antidiabetic effects, but the mechanism for EGCG insulin-enhancing effects is incompletely understood. In the present study, the investigations of EGCG on insulin signaling are performed in insulin-responsive human HepG2 cells cotreated with high glucose. We found that the high glucose condition causes significant increasing Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1), leading to reduce insulin-stimulated phosphorylation of Akt. As the results, the insulin metabolic effects of glycogen synthesis and glucose uptake are inhibited by high glucose. However, the treatment of EGCG improves insulin-stimulated downsignaling by reducing IRS-1 Ser307 phosphorylation. Furthermore, we also demonstrated these EGCG effects are essential depends on the 5'-AMP-activated protein kinase (AMPK) activation. Together, our data suggest a putative link between high glucose and insulin resistance in HepG2 cells, and the EGCG treatment attenuates insulin signaling blockade by reducing IRS-1 Ser307 phosphorylation through the AMPK activation pathway.

  11. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    PubMed

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress.

  12. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  13. CRM1 Blockade by Selective Inhibitors of Nuclear Export (SINE) attenuates Kidney Cancer Growth

    PubMed Central

    Inoue, Hiromi; Kauffman, Michael; Shacham, Sharon; Landesman, Yosef; Yang, Joy; Evans, Christopher P.; Weiss, Robert H.

    2015-01-01

    Since renal cell carcinoma (RCC) often presents asymptomatically, patients are commonly diagnosed at the metastatic stage when treatment options are limited and survival is poor. Given that progression-free survival with current therapies for metastatic RCC is only one to two years and existing drugs are associated with a high rate of resistance, new pharmacological targets are desperately needed. We identified and evaluated the nuclear exporter protein, chromosome region maintenance protein 1 (CRM1), as a novel potential therapeutic for RCC. Purpose To evaluate novel, selective inhibitors of nuclear export as potential RCC therapeutics. Materials and Methods Efficacy of the CRM1 inhibitors, KPT-185 and -251, was tested in several RCC cell lines and in a RCC xenograft model. Apoptosis and cell cycle arrest were quantified, and localization of p53 family proteins was assessed using standard techniques. Results KPT-185 attenuated CRM1 and showed increased cytotoxicity in RCC cells in vitro, with evidence of increased apoptosis as well as cell cycle arrest. KPT-185 caused both p53 and p21 to remain primarily in the nucleus in all RCC cell lines, suggesting a mechanism of action of these compounds dependent upon tumor-suppressor protein localization. Furthermore, when administered orally in a high-grade RCC xenograft model, the bioavailable CRM1 inhibitor KPT-251 significantly inhibited tumor growth in vivo with the expected on-target effects and with no obvious toxicity. Conclusions The CRM1 inhibitor family of proteins are novel therapeutic targets RCC and deserve further intensive investigation in this and other urologic malignancies. PMID:23079374

  14. CRM1 blockade by selective inhibitors of nuclear export attenuates kidney cancer growth.

    PubMed

    Inoue, Hiromi; Kauffman, Michael; Shacham, Sharon; Landesman, Yosef; Yang, Joy; Evans, Christopher P; Weiss, Robert H

    2013-06-01

    Renal cell carcinoma often presents asymptomatically and patients are commonly diagnosed at the metastatic stage, when treatment options are limited and survival is poor. Since progression-free survival using current therapy for metastatic renal cell carcinoma is only 1 to 2 years and existing drugs are associated with a high resistance rate, new pharmacological targets are needed. We identified and evaluated the nuclear exporter protein CRM1 as a novel potential therapy for renal cell carcinoma. We tested the efficacy of the CRM1 inhibitors KPT-185 and 251 in several renal cell carcinoma cell lines and in a renal cell carcinoma xenograft model. Apoptosis and cell cycle arrest were quantified and localization of p53 family proteins was assessed using standard techniques. KPT-185 attenuated CRM1 and showed increased cytotoxicity in renal cell carcinoma cells in vitro with evidence of increased apoptosis as well as cell cycle arrest. KPT-185 caused p53 and p21 to remain primarily in the nucleus in all renal cell carcinoma cell lines, suggesting that the mechanism of action of these compounds depends on tumor suppressor protein localization. Furthermore, when administered orally in a high grade renal cell carcinoma xenograft model, the bioavailable CRM1 inhibitor KPT-251 significantly inhibited tumor growth in vivo with the expected on target effects and no obvious toxicity. The CRM1 inhibitor protein family is a novel therapeutic target for renal cell carcinoma that deserves further intensive investigation for this and other urological malignancies. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    SciTech Connect

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Benderitter, Marc; Francois, Agnes

    2009-06-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET{sub A}), and ET type B receptor (ET{sub B}) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET{sub A} and ET{sub B} receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET{sub A}/ET{sub B} expression and ET{sub A}/ET{sub B} localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET{sub A} and ET{sub B} in healthy human rectums was similar to that in rat rectums. However, strong ET{sub A} immunostaining was seen in the presence of human radiation proctitis, and increased ET{sub A} mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET{sub A} was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET{sub A}, radiation exposure deregulates the endothelin system through an 'ET{sub A} profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or

  16. Muscarinic, but not nicotinic, acetylcholine receptor blockade in the ventral tegmental area attenuates cue-induced sucrose-seeking

    PubMed Central

    Addy, Nii A.; Nunes, Eric J.; Wickham, Robert J.

    2015-01-01

    The mesolimbic dopamine (DA) system is known to play a role in cue-mediated reward-seeking for natural rewards and drugs of abuse. Specifically, cholinergic and glutamatergic receptors in the ventral tegmental area (VTA) have been shown to regulate cue-induced drug-seeking. However, the potential role of these VTA receptors in regulating cue-induced reward seeking for natural rewards is unknown. Here, we examined whether blockade of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) would alter cue-induced sucrose seeking in male Sprague-Dawley rats. Subjects underwent 10 days of sucrose self-administration training (fixed ratio 1 schedule) followed by 7 days of forced abstinence. On withdrawal day 7, rats received bilateral VTA infusion of vehicle, the muscarinic AChR antagonist scopolamine (2.4 or 24 μg/side), the nicotinic AChR antagonist mecamylamine (3 or 30 μg/side), or the NMDAR antagonist AP-5 (0.1 or 1 μg/side) immediately prior to examination of cue-induced sucrose-seeking. Scopolamine infusion led to robust attenuation, but did not completely block, sucrose-seeking behavior. In contrast, VTA administration of mecamylamine or AP-5 did not alter cue-induced sucrose-seeking. Together, the data suggest that VTA muscarinic AChRs, but not nicotinic AChRs nor NMDARs, facilitate the ability of food-associated cues to drive seeking behavior for a food reward. PMID:26026787

  17. Myeloid-Derived Suppressor Cells Associated With Disease Progression in Primary HIV Infection: PD-L1 Blockade Attenuates Inhibition.

    PubMed

    Zhang, Zi-Ning; Yi, Nan; Zhang, Tong-Wei; Zhang, Le-Le; Wu, Xian; Liu, Mei; Fu, Ya-Jing; He, Si-Jia; Jiang, Yong-Jun; Ding, Hai-Bo; Chu, Zhen-Xing; Shang, Hong

    2017-10-01

    Events occurring during the initial phase of human immunodeficiency virus (HIV) infection are intriguing because of their dramatic impact on the subsequent course of the disease. In particular, the relationship between myeloid-derived suppressor cells (MDSCs) and HIV pathogenesis in primary infection remains unknown and the mechanism of MDSCs in HIV infection are incompletely defined. The frequency of MDSC expression in patients with primary HIV infection (PHI) and chronic HIV infection was measured, and the association with disease progression was studied. Programmed death-ligand 1 (PD-L1) and galectin-9 (Gal-9) expression on MDSCs was measured and in vitro blocking experiments were performed to study the role of PD-L1 in MDSCs' inhibition. We found increased levels of HLA-DRCD14CD33CD11b granulocytic(G)-MDSCs in PHI individuals compared with normal controls, which correlated with viral loads and was negatively related to CD4 T-cell levels. When cocultured with purified G-MDSCs, both proliferation and interferon-γ secretion by T cell receptor (TCR)-stimulated CD8 T cells from HIV-infected patients were significantly inhibited. We also demonstrated that PD-L1, but not Gal-9, expression on HLA-DRCD14CD33CD11b cells increased during HIV infection. The suppressive activity of G-MDSCs from HIV-infected patients was attenuated by PD-L1 blockade. We found a significant increase in G-MDSCs in PHI patients that was related to disease progression and PD-L1 was used by MDSCs to inhibit CD8 T cells in HIV infection. Our data improve the understanding of HIV pathogenesis in PHI.

  18. Neuroprotection by estradiol: a role of aromatase against spine synapse loss after blockade of GABA(A) receptors.

    PubMed

    Zhou, Lepu; Lehan, Nadine; Wehrenberg, Uwe; Disteldorf, Erik; von Lossow, Richard; Mares, Ute; Jarry, Hubertus; Rune, Gabriele M

    2007-01-01

    Estrogen has been suggested to be pro-epileptic by reducing GABA synthesis, resulting in increased spine density and a decreased threshold for seizures in the hippocampus, which, once they occur, are characterized by a dramatic spine loss in the affected brain areas. As considerable amounts of estradiol are synthesized in the hippocampus, in this study we focused on aromatase, the rate-limiting enzyme in estrogen synthesis in order to examine the role of locally synthesized estrogens in epilepsy. To this end, we first examined the effects of letrozole, a potent aromatase inhibitor, on GABA metabolism in single interneurons of hippocampal dispersion cultures. Letrozole downregulated estradiol release into the medium, as well as glutamate decarboxylase (GAD) expression and GABA synthesis, and decreased the number of GAD positive cells in the cultures. Next, we counted spine synapses and measured estradiol release of hippocampal slice cultures, in which GABA(A) receptors had been blocked by bicuculline, in order to mimic epileptic activity. Treatment of slice cultures with bicuculline resulted in a dramatic decrease in the number of spine synapses and in a significant suppression of estrogen synthesis. The decrease in synapse number in response to bicuculline was restored by combined application of estradiol and bicuculline. Surprisingly, estradiol alone had no effect on either spine synapse number or on GAD expression and GABA synthesis. "Rescue" of synapse number in "epileptic slices" by estradiol and maintenance of GABA metabolism by hippocampus-derived estradiol points to a neuroprotective role of aromatase in epilepsy. Re-filling of estradiol stores after their depletion due to overexcitation may therefore add to therapeutical strategies in epilepsy.

  19. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice.

    PubMed

    Farahmandfar, Maryam; Akbarabadi, Ardeshir; Bakhtazad, Atefeh; Zarrindast, Mohammad-Reza

    2017-03-06

    Ketamine and other noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists are known to induce deficits in learning and cognitive performance sensitive to prefrontal cortex (PFC) functions. The interaction of a glutamatergic and GABAergic systems is essential for many cognitive behaviors. In order to understand the effect of γ-aminobutyric acid (GABA)/glutamate interactions on learning and memory, we investigated the effects of intra medial prefrontal cortex (mPFC) injections of GABAergic agents on ketamine-induced amnesia using a one-trial passive avoidance task in mice. Pre-training systemic administration of ketamine (5, 10 and 15mg/kg, i.p.) dose-dependently decreased the memory acquisition of a one-trial passive avoidance task. Pre-training intra-mPFC injection of muscimol, GABAA receptor agonist (0.05, 0.1 and 0.2μg/mouse) and baclofen GABAB receptor agonist (0.05, 0.1, 0.5 and 1μg/mouse), impaired memory acquisition. However, co-pretreatment of different doses of muscimol and baclofen with a lower dose of ketamine (5mg/kg), which did not induce amnesia by itself, caused inhibition of memory formation. Our data showed that sole pre-training administration of bicuculline, GABA-A receptor antagonist and phaclofen GABA-B receptor antagonist into the mPFC, did not affect memory acquisition. In addition, the amnesia induced by pre-training ketamine (15mg/kg) was significantly decreased by the pretreatment of bicuculline (0.005, 0.1 and 0.5μg/mouse). It can be concluded that GABAergic system of the mPFC is involved in the ketamine-induced impairment of memory acquisition.

  20. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    PubMed

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Systemic Modulation of Serotonergic Synapses via Reuptake Blockade or 5HT1A Receptor Antagonism Does Not Alter Perithreshold Taste Sensitivity in Rats

    PubMed Central

    Spector, Alan C.

    2014-01-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration–response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. PMID:25056731

  2. Blockade of Extracellular High-Mobility Group Box 1 Attenuates Systemic Inflammation and Coagulation Abnormalities in Rats with Acute Traumatic Coagulopathy.

    PubMed

    Xu, Lin; Zhao, Kun; Shen, Xiao; Fan, Xin-Xin; Ding, Kai; Liu, Ren-Min; Wang, Feng

    2016-07-20

    BACKGROUND As an extracellularly released mediator, high-mobility group box 1 (HMGB1) initiates sterile inflammation following severe trauma. Serum HMGB1 levels correlate well with acute traumatic coagulopathy (ATC) in trauma patients, which is independently associated with higher mortality. We investigated the involvement of HMGB1 in ATC through blocking extracellular HMGB1. MATERIAL AND METHODS The ATC model was induced by polytrauma and hemorrhage in male Sprague-Dawley rats, which were randomly assigned to sham, ATC, and ATCH (ATC with HMGB1 blockade) groups. Thrombelastography (TEG) was performed to monitor changes in coagulation function. Serum levels of HMGB1, TNF-α, and IL-6 were measured, as well as lung levels of HMGB1 and nuclear factor (NF)-κB and expression of receptor for advanced glycation end-products (RAGE). RESULTS Compared with the sham group, HMGB1 increased the serum levels of TNF-α and IL-6, whereas HMGB1 blockade inhibited the induction of TNF-α and IL-6. HMGB1 also induced elevated serum soluble P-selectin and fibrinolysis markers plasmin-antiplasmin complex, which both were reduced by HMGB1 blockade. Thrombelastography revealed the hypocoagulability status in the ATC group, which was attenuated by anti-HMGB1 antibody. Furthermore, the lung level of NF-κB and expression of RAGE were decreased by anti-HMGB1 antibody, suggesting the role of RAGE/NF-κB pathway in ATC. CONCLUSIONS HMGB1 blockade can attenuate inflammation and coagulopathy in ATC rats. Anti-HMGB1 antibody might exert protective effects partly through the RAGE/NF-κB pathway. Thus, HMGB1 has potential as a therapeutic target in ATC.

  3. Role of adenosine A{sub 2A} receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    SciTech Connect

    El-Mas, Mahmoud M. El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 {mu}g/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 {mu}g/kg i.v.) dose-dependently reduced BRS{sub SNP} in contrast to no effect on BRS{sub PE}. BRS{sub SNP} was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS{sub SNP} were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS{sub SNP} was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A{sub 2A} antagonist), or VUF5574 (A{sub 3} antagonist). In contrast, BRS{sub SNP} was preserved after blockade of A{sub 1} (DPCPX) or A{sub 2B} (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS{sub SNP} depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A{sub 2A} receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms

  4. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    PubMed

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D1-family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D1-family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D1-family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D1-family receptors supports the hypothesis that D1 and/or D5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  5. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.

    PubMed

    Huang, Xiaoying; Zou, Lizhen; Yu, Xiaoming; Chen, Mayun; Guo, Rui; Cai, Hui; Yao, Dan; Xu, Xiaomei; Chen, Yanfan; Ding, Cheng; Cai, Xueding; Wang, Liangxing

    2015-05-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway.

  6. Blockade of patch-based μ opioid receptors in the striatum attenuates methamphetamine-induced conditioned place preference and reduces activation of the patch compartment.

    PubMed

    Horner, Kristen A; Logan, Mary Caroline; Fisher, Trevor J; Logue, Jordan B

    2017-02-05

    The behavioral effects of methamphetamine (METH) are mediated by the striatum, which is divided into the patch compartment, which mediates limbic and reward functions, and the matrix compartment, which mediates sensorimotor tasks. METH treatment results in repetitive behavior that is related to enhanced relative activation of the patch versus the matrix compartment. The patch, but not the matrix compartment contains a high density of μ opioid receptors, and localized blockade of patch-based μ opioid receptors attenuates METH-induced patch-enhanced activity and repetitive behaviors. Numerous studies have examined patch-enhanced activity and the contribution of patch-associated μ opioid receptors to METH-induced repetitive behavior, but it is not known whether patch-enhanced activity occurs during METH-mediated reward, nor is it known if patch-based μ opioid receptors contribute to METH reward. The goals of this study were to determine if blockade of patch-based μ opioid receptors alters METH-induced conditioned place preference (CPP), as well activation of the patch and matrix compartments following METH-mediated CPP. A biased conditioning paradigm was used to assess CPP, and conditioning occurred over an 8-d period. Animals were bilaterally infused in the striatum with the μ-specific antagonist CTAP or vehicle prior to conditioning. Animals were tested for preference 24h after the last day of conditioning, sacrificed and the brains processed for immunohistochemistry. Blockade of patch-based μ opioid receptors reduced METH-induced CPP, and reduced patch-enhanced c-Fos expression in the striatum following METH-mediated CPP. These data indicate that patch-enhanced activity is associated with METH-mediated reward and patch-based μ opioid receptors contribute to this phenomenon.

  7. Blockade of CTLA-4 promotes the development of effector CD8+ T lymphocytes and the therapeutic effect of vaccination with an attenuated protozoan expressing NY-ESO-1.

    PubMed

    Dos Santos, Luara Isabela; Galvão-Filho, Bruno; de Faria, Paula Cristina; Junqueira, Caroline; Dutra, Miriam Santos; Teixeira, Santuza Maria Ribeiro; Rodrigues, Maurício Martins; Ritter, Gerd; Bannard, Oliver; Fearon, Douglas Thomas; Antonelli, Lis Ribeiro; Gazzinelli, Ricardo Tostes

    2015-03-01

    The development of cancer immunotherapy has long been a challenge. Here, we report that prophylactic vaccination with a highly attenuated Trypanosoma cruzi strain expressing NY-ESO-1 (CL-14-NY-ESO-1) induces both effector memory and effector CD8(+) T lymphocytes that efficiently prevent tumor development. However, the therapeutic effect of such a vaccine is limited. We also demonstrate that blockade of Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) during vaccination enhances the frequency of NY-ESO-1-specific effector CD8(+) T cells producing IFN-γ and promotes lymphocyte migration to the tumor infiltrate. As a result, therapy with CL-14-NY-ESO-1 together with anti-CTLA-4 is highly effective in controlling the development of an established melanoma.

  8. Deletion of the G2A receptor fails to attenuate experimental autoimmune encephalomyelitis

    PubMed Central

    Osmers, Inga; Smith, Sherry S.; Parks, Brian W.; Yu, Shaohua; Srivastava, Roshni; Wohler, Jillian E.; Barnum, Scott R.; Kabarowski, Janusz H.S.

    2009-01-01

    Lysophosphatidylcholine (LPC) is a chemotactic lysolipid produced during inflammation by the hydrolytic action of phospholipase A2 enzymes. LPC stimulates chemotaxis of T cells in vitro through activation of the G protein-coupled receptor, G2A. This has led to the proposition that G2A contributes to the recruitment of T cells to sites of inflammation and thus promotes chronic inflammatory autoimmune diseases associated with the generation and subsequent tissue infiltration of auto-antigen-specific effector T cells. However, one study suggests that G2A may negatively regulate T cell proliferative responses to antigen receptor engagement and thereby attenuates autoimmunity by reducing the generation of autoreactive T cells. To address the relative contribution of these G2A-mediated effects to the pathophysiology of T cell-mediated autoimmune disease, we examined the impact of G2A inactivation on the onset and severity of murine experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Wild type (G2A+/+) and G2A-deficient (G2A-/-) C57BL/6J mice exhibited a similar incidence and onset of disease following immunization with MOG35-55 peptide. Disease severity was only moderately reduced in G2A-/- mice. Similar numbers of MOG35-55 specific T cells were generated in secondary lymphoid organs of MOG35-55-immunized G2A+/+ and G2A-/- mice. Comparable numbers of T cells were detected in spinal cords of G2A+/+ and G2A-/- mice. We conclude that the proposed anti-proliferative and chemotactic functions of G2A are not manifested in vivo and therefore therapeutic targeting of G2A is unlikely to be beneficial in the treatment of MS. PMID:19135725

  9. The blockade of GABAA receptors attenuates the inhibitory effect of orexin type 1 receptors antagonist on morphine withdrawal syndrome in rats.

    PubMed

    Davoudi, Mahnaz; Azizi, Hossein; Mirnajafi-Zadeh, Javad; Semnanian, Saeed

    2016-03-23

    The aim of present study was to investigate the involvement of orexin-A neuropeptide in naloxone-induced morphine withdrawal syndrome via modulating neurons bearing GABAA receptors. The locus coeruleus (LC) is a sensitive site for expression of the somatic aspects of morphine withdrawal. Intra-LC microinjection of GABAA receptor agonist attenuates morphine withdrawal signs in rats. Here we studied the influence of LC orexin type 1 receptors blockade by SB-334867 in presence of bicuculline, a GABAA receptor antagonist, on naloxone-induced morphine withdrawal syndrome. Adult male Wistar rats, weighing 250-300 g, were rendered dependent on morphine by subcutaneous (s.c.) injection of increasing morphine doses (6, 16, 26, 36, 46, 56 and 66 mg/kg, 2 ml/kg) at set intervals of 24 h for 7 days. On 8th day, naloxone (3 mg/kg, s.c.) was injected and the somatic signs of morphine withdrawal were evaluated. Intra-LC microinjections (0.2 μl) of either bicuculline (15 μM) or SB-334867 (3 mM) or a combination of both chemicals were done immediately before naloxone injection. Intra-LC microinjection of bicuculline (15 μM) had no significant effect on morphine withdrawal signs, whereas intra-LC microinjection of SB-334867 considerably attenuated morphine withdrawal signs. However, the effect of SB-334867 in attenuating naloxone-induced morphine withdrawal signs was blocked in presence of bicuculline. This finding, for the first time, indicated that orexin-A may participate in expression of naloxone-induced morphine withdrawal syndrome partly through decreasing the activity of neurons bearing GABAA receptors.

  10. Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice.

    PubMed

    Khaloo, Pegah; Sadeghi, Banafshe; Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Haj-Mirzaian, Arya; Zolfagharie, Samira; Dehpour, Ahmad-Reza

    2016-10-01

    Major depressive disorder is disease with high rate of morbidity and mortality. Stressful events lead to depression and they can be used as a model of depression in rodents. In this study we aimed to investigate whether lithium modifies the stressed-induced depression through blockade of opioid receptors in mice. We used foot shock stress as stressor and forced swimming test (FST), tail suspension test (TST) and open field test (OFT) to evaluation the behavioral responses in mice. We also used naltrexone hydrochloride (as opioid receptor antagonist), and morphine (as opioid receptor agonist). Our results displayed that foot-shock stress significantly increased the immobility time in TST and FST but it could not change the locomotor behavior in OFT. When we combined the low concentrations of lithium and naltrexone a significant reduction in immobility time was seen in the FST and TST in comparison with control foot-shock stressed group administered saline only. Despite the fact that our data showed low concentrations of lithium, when administered independently did not significantly affect the immobility time. Also our data indicated that concurrent administration of lithium and naltrexone had no effect on open field test. Further we demonstrated that simultaneous administration of morphine and lithium reverses the antidepressant like effect of active doses of lithium. Our data acclaimed that we lithium can augment stressed-induced depression and opioid pathways are involved in this action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Blockade of ionotropic glutamatergic transmission in the ventral tegmental area attenuates the physical signs of morphine withdrawal in rats.

    PubMed

    Wang, Hui-Ling; Zhao, Yan; Xiang, Xiao-Hui; Wang, Hui-Sheng; Wu, Wei-Ran

    2004-11-01

    The present study sought to assess whether the blockade of ionotropic glutamate receptors in the ventral tegmental area (VTA) could modulate the morphine withdrawal in male Sprague-Dawley rats. The effects of dizocilpine (MK-801) or 6,7-dinitroquinnoxaline-2,3-dione (DNQX), ionotropic glutamate receptor antagonists, microinjected unilaterally into the VTA 30 min before naloxone [2 mg/kg, intraperitoneally (i.p.)] administration on the morphine withdrawal were assessed. Morphine dependence was developed with increasing morphine injection (i.p.), and morphine withdrawal was induced by injection of naloxone (2 mg/kg, i.p.). Jumping, wet-dog shakes, writhing posture, wall clamber, weight loss and Gellert-Holtzman scale were used as the indices to evaluate the intensity of morphine withdrawal. The results showed that unilateral microinjection of MK-801 or DNQX into the VTA significantly increased the incidence of wall clamber, had no effect on weight loss, and reduced all other symptoms of morphine withdrawal. These data suggest that the ionotropic glutamate receptors in the VTA are involved in mediating naloxone-precipitated opiate withdrawal.

  12. Blockade of high-mobility group box 1 attenuates intestinal mucosal barrier dysfunction in experimental acute pancreatitis.

    PubMed

    Chen, Xia; Zhao, Hong-Xian; Bai, Chao; Zhou, Xiang-Yu

    2017-07-28

    The release of inflammatory cytokines, that plays a dominant role in local pancreatic inflammation and systemic complications in severe acute pancreatitis (SAP). High-mobility group box 1 (HMGB1) is implicated in the mechanism of organ dysfunction and bacterial translocation in SAP. This current study aims to investigate possible role of HMGB1 in the intestinal mucosal barrier dysfunction of SAP, and the effect of anti-HMGB1 antibody treatment in intestinal mucosal injury in SAP. Our data revealed that the HMGB1 expression was significantly increased in AP mice induced by caerulein and LPS, and the inhibition of HMGB1 played a protective role in intestinal mucosal barrier dysfunction, reduced the serum level of other proinflammatory cytokines include IL-1β, IL-6, TNF-α. Next we investigated the downstream receptors involving in HMGB1 signaling. We found that the expressions of toll-like receptor (TLR) 4 and TLR9 were elevated in ileum of AP mice, the administration of HMGB1 neutralizing antibody significantly reduced the TLR4 and TLR9 expression. It was concluded that HMGB1 contributed the mechanism to the intestinal mucosal barrier dysfunction during AP. Blockade of HMGB1 by administration of HMGB1 neutralizing antibody may be a beneficial therapeutic strategy in improving intestinal mucosal barrier dysfunction in SAP.

  13. Therapeutic blockade of LIGHT interaction with HVEM and LTβR attenuates in vivo cytotoxic allogeneic responses

    PubMed Central

    del Rio, Maria-Luisa; Fernandez-Renedo, Carlos; Scheu, Stefanie; Pfeffer, Klaus; Shintani, Yasushi; Kronenberg, Mitchell; Chaloin, Olivier; Schneider, Pascal; Rodriguez-Barbosa, Jose-Ignacio

    2016-01-01

    Background TNF/TNFR superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T cell activation and differentiation towards effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40/CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, HVEM and LTβR may decrease T cell-mediated allogeneic responses. Methods A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. Results We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors HVEM and LTβR. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host anti-donor short-term cytotoxic response in WT B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. Conclusions The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation. PMID:25226173

  14. Attenuation of Myocardial Injury by HMGB1 Blockade during Ischemia/Reperfusion Is Toll-Like Receptor 2-Dependent

    PubMed Central

    Iskandar, Franziska; Habeck, Katharina; Zimmermann, René; Schumann, Ralf R.; Koch, Alexander

    2013-01-01

    Genetic or pharmacological ablation of toll-like receptor 2 (TLR2) protects against myocardial ischemia/reperfusion injury (MI/R). However, the endogenous ligand responsible for TLR2 activation has not yet been detected. The objective of this study was to identify HMGB1 as an activator of TLR2 signalling during MI/R. C57BL/6 wild-type (WT) or TLR2−/−-mice were injected with vehicle, HMGB1, or HMGB1 BoxA one hour before myocardial ischemia (30 min) and reperfusion (24 hrs). Infarct size, cardiac troponin T, leukocyte infiltration, HMGB1 release, TLR4-, TLR9-, and RAGE-expression were quantified. HMGB1 plasma levels were measured in patients undergoing coronary artery bypass graft (CABG) surgery. HMGB1 antagonist BoxA reduced cardiomyocyte necrosis during MI/R in WT mice, accompanied by reduced leukocyte infiltration. Injection of HMGB1 did, however, not increase infarct size in WT animals. In TLR2−/−-hearts, neither BoxA nor HMGB1 affected infarct size. No differences in RAGE and TLR9 expression could be detected, while TLR2−/−-mice display increased TLR4 and HMGB1 expression. Plasma levels of HMGB1 were increased MI/R in TLR2−/−-mice after CABG surgery in patients carrying a TLR2 polymorphism (Arg753Gln). We here provide evidence that absence of TLR2 signalling abrogates infarct-sparing effects of HMGB1 blockade. PMID:24371373

  15. A Broad Blockade of Signaling from the IL-20 Family of Cytokines Potently Attenuates Collagen-Induced Arthritis.

    PubMed

    Liu, Xinyu; Zhou, Hong; Huang, Xueqin; Cui, Jingjing; Long, Tianzhen; Xu, Yang; Liu, Haipeng; Yu, Ruoxuan; Zhao, Rongchuan; Luo, Guangping; Huang, Anliang; Liang, Joshua G; Liang, Peng

    2016-10-15

    Two heterodimeric receptors consisting of either IL-20R1 or IL-22R1 in complex with a common β receptor subunit IL-20R2 are shared by three of the IL-20 family of cytokines: IL-19, IL-20, and IL-24. These proinflammatory cytokines have been implicated in the pathogenesis of some autoimmune diseases, including rheumatoid arthritis (RA), psoriasis, and atopic dermatitis. Although mAbs against IL-19 and IL-20 have each been shown to modulate disease severity of collagen-induced arthritis in animal models, and anti-IL-20 therapeutic Ab has exhibited some efficacy in the treatment of RA in clinical trials, benefits for a complete blockade of these functionally redundant cytokines remain to be explored. In this report, we show that recombinant human soluble IL-20R2-Fc fusion protein binds to IL-19, IL-20, and IL-24 with similar high affinity and blocks their signaling in vitro. In DBA/1 mouse collagen-induced arthritis model, recombinant human IL-20R2-Fc exhibits comparable efficacy as TNF blocker etanercept in the treatment of established arthritis, whereas the combined use of both biologics manifests little synergistic therapeutic effects. In situ ligand-receptor functional binding analysis shows that a large amount of immune infiltrates expressing high levels of TNFR and IL-20 subfamily cytokines congregate within the inflamed disease tissues. Colocalization experiments reveal that signals from IL-20R2 and TNF transduction pathways seem to converge in macrophages and function in tandem in orchestrating the pathogenesis of RA. Elucidation of this interaction provides a better understanding of cytokine cross-talk in RA and a rationale for more effective biologic therapies that target IL-20R2 instead of individual cytokines from IL-20 family. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice.

    PubMed

    Parker, Jones G; Wanat, Matthew J; Soden, Marta E; Ahmad, Kinza; Zweifel, Larry S; Bamford, Nigel S; Palmiter, Richard D

    2011-11-23

    Phasic dopamine (DA) transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered DA signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how DA neuron activity is modulated. While excitatory drive onto DA neurons is critical for generating phasic DA responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in DA neurons, we generated mice lacking the β3 subunit of the GABA(A) receptor specifically in DA neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. DA neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked IPSCs. Furthermore, electrical stimulation of excitatory afferents to DA neurons elicited more DA release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto DA neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABA(A) signaling in DA neurons in appetitive learning and decision-making.

  17. Blockade of intracellular Zn(2+) signaling in the basolateral amygdala affects object recognition memory via attenuation of dentate gyrus LTP.

    PubMed

    Fujise, Yuki; Kubota, Mitsuyasu; Suzuki, Miki; Tamano, Haruna; Takeda, Atsushi

    2017-09-01

    Hippocampus-dependent memory is modulated by the amygdala. However, it is unknown whether intracellular Zn(2+) signaling in the amygdala is involved in hippocampus-dependent memory. On the basis of the evidence that intracellular Zn(2+) signaling in dentate granule cells (DGC) is necessary for object recognition memory via LTP at medial perforant pathway (PP)-DGC synapses, the present study examined whether intracellular Zn(2+) signaling in the amygdala influences object recognition memory via modulation of LTP at medial PP-DGC synapses. When ZnAF-2DA (100 μM, 2 μl) was injected into the basolateral amygdala (BLA), intracellular ZnAF-2 locally chelated intracellular Zn(2+) in the amygdala. Recognition memory was affected when training of object recognition test was performed 20 min after ZnAF-2DA injection into the BLA. Twenty minutes after injection of ZnAF-2DA into the BLA, LTP induction at medial PP-DGC synapses was attenuated, while LTP induction at PP-BLA synapses was potentiated and LTP induction at BLA-DGC synapses was attenuated. These results suggest that intracellular Zn(2+) signaling in the BLA is involved in BLA-associated LTP and modulates LTP at medial PP-DGC synapses, followed by modulation of object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor blockade.

    PubMed

    Mak, I Tong; Kramer, Jay H; Chmielinska, Joanna J; Spurney, Christopher F; Weglicki, William B

    2015-01-01

    To determine whether the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib may cause hypomagnesemia, inflammation, and cardiac stress, erlotinib was administered to rats (10 mg · kg(-1)· d(-1)) for 9 weeks. Plasma magnesium decreased progressively between 3 and 9 weeks (-9% to -26%). Modest increases in plasma substance P (SP) occurred at 3 (27%) and 9 (25%) weeks. Neutrophil superoxide-generating activity increased 3-fold, and plasma 8-isoprostane rose 210%, along with noticeable appearance of cardiac perivascular nitrotyrosine. The neurokinin-1 (NK-1) receptor antagonist, aprepitant (2 mg · kg(-1) · d(-1)), attenuated erlotinib-induced hypomagnesemia up to 42%, reduced circulating SP, suppressed neutrophil superoxide activity and 8-isoprostane elevations; cardiac nitrotyrosine was diminished. Echocardiography revealed mild to moderately decreased left ventricular ejection fraction (-11%) and % fractional shortening (-17%) by 7 weeks of erlotinib treatment and significant reduction (-17.5%) in mitral valve E/A ratio at week 9 indicative of systolic and early diastolic dysfunction. Mild thinning of the left ventricular posterior wall suggested early dilated cardiomyopathy. Aprepitant completely prevented the erlotinib-induced systolic and diastolic dysfunction and partially attenuated the anatomical changes. Thus, chronic erlotinib treatment does induce moderate hypomagnesemia, triggering SP-mediated oxidative/inflammation stress and mild-to-moderate cardiac dysfunction, which can largely be corrected by the administration of the SP receptor blocker.

  19. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model

    PubMed Central

    Jurga, Agnieszka M.; Rojewska, Ewelina; Makuch, Wioletta; Pilat, Dominika; Przewlocka, Barbara

    2016-01-01

    Accumulating evidence indicates that microglial TLR2 and TLR4 play a significant role in nociception. Experiments were conducted to evaluate the contribution of TLR2 and TLR4 and their adaptor molecules to neuropathy and their ability to amplify opioid effectiveness. Behavioral tests (von Frey's and cold plate) and biochemical (Western blot and qRT-PCR) analysis of spinal cord and DRG tissue were conducted after chronic constriction injury (CCI) to the sciatic nerve. Repeated intrathecal administration of LPS-RS (TLR2 and TLR4 antagonist) and LPS-RS Ultrapure (TLR4 antagonist) attenuated allodynia and hyperalgesia. Biochemical analysis revealed time-dependent upregulation of mRNA and/or protein levels of TLR2 and TLR4 and MyD88 and TRIF adaptor molecules, which was paralleled by an increase in IBA-1/CD40-positive cells under neuropathy. LPS-RS and LPS-RS Ultrapure similarly influenced opioid analgesia by enhancing the effectiveness of buprenorphine but not morphine. Summing up, in light of their upregulation over the course of pain, both TLR2 and TLR4 may indeed play a significant role in neuropathy, which could be linked to the observed activation of IBA-1/CD40-positive cells. Blockade of TLR2 and TLR4 produced analgesia and enhanced buprenorphine's effectiveness, which suggests that they may be a putative target for future pharmacological pain relief tools, especially for opioid rotation, when the effect of morphine is tolerated. PMID:26962463

  20. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model.

    PubMed

    Jurga, Agnieszka M; Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Pilat, Dominika; Przewlocka, Barbara; Mika, Joanna

    2016-01-01

    Accumulating evidence indicates that microglial TLR2 and TLR4 play a significant role in nociception. Experiments were conducted to evaluate the contribution of TLR2 and TLR4 and their adaptor molecules to neuropathy and their ability to amplify opioid effectiveness. Behavioral tests (von Frey's and cold plate) and biochemical (Western blot and qRT-PCR) analysis of spinal cord and DRG tissue were conducted after chronic constriction injury (CCI) to the sciatic nerve. Repeated intrathecal administration of LPS-RS (TLR2 and TLR4 antagonist) and LPS-RS Ultrapure (TLR4 antagonist) attenuated allodynia and hyperalgesia. Biochemical analysis revealed time-dependent upregulation of mRNA and/or protein levels of TLR2 and TLR4 and MyD88 and TRIF adaptor molecules, which was paralleled by an increase in IBA-1/CD40-positive cells under neuropathy. LPS-RS and LPS-RS Ultrapure similarly influenced opioid analgesia by enhancing the effectiveness of buprenorphine but not morphine. Summing up, in light of their upregulation over the course of pain, both TLR2 and TLR4 may indeed play a significant role in neuropathy, which could be linked to the observed activation of IBA-1/CD40-positive cells. Blockade of TLR2 and TLR4 produced analgesia and enhanced buprenorphine's effectiveness, which suggests that they may be a putative target for future pharmacological pain relief tools, especially for opioid rotation, when the effect of morphine is tolerated.

  1. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Ángeles; Goya, Luis; Ramos, Sonia

    2014-02-01

    Insulin resistance is the primary characteristic of type 2 diabetes. Cocoa and its main flavanol, (-)-epicatechin (EC), display some antidiabetic effects, but the mechanisms for their preventive activities related to glucose metabolism and insulin signalling in the liver remain largely unknown. In the present work, the preventive effect of EC and a cocoa polyphenolic extract (CPE) on insulin signalling and on both glucose production and uptake are studied in insulin-responsive human HepG2 cells treated with high glucose. Pre-treatment of cells with EC or CPE reverted decreased tyrosine-phosphorylated and total levels of IR, IRS-1 and -2 triggered by high glucose. EC and CPE pre-treatment also prevented the inactivation of the PI3K/AKT pathway and AMPK, as well as the diminution of GLUT-2 levels induced by high glucose. Furthermore, pre-treatment of cells with EC and CPE avoided the increase in PEPCK levels and the diminished glucose uptake provoked by high glucose, returning enhanced levels of glucose production and decreased glycogen content to control values. These findings suggest that EC and CPE improved insulin sensitivity of HepG2 treated with high glucose, preventing or delaying a potential hepatic dysfunction through the attenuation of the insulin signalling blockade and the modulation of glucose uptake and production.

  2. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor

    PubMed Central

    Majuta, Lisa A.; Longo, Geraldine; Fealk, Michelle N.; McCaffrey, Gwen; Mantyh, Patrick W.

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain–related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti–nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains. PMID:25599311

  3. Myeloid-Specific Blockade of Notch Signaling Attenuates Choroidal Neovascularization through Compromised Macrophage Infiltration and Polarization in Mice

    PubMed Central

    Dou, Guo-Rui; Li, Na; Chang, Tian-Fang; Zhang, Ping; Gao, Xiang; Yan, Xian-Chun; Liang, Liang; Han, Hua; Wang, Yu-Sheng

    2016-01-01

    Macrophages have been recognized as an important inflammatory component in choroidal neovascularization (CNV). However, it is unclear how these cells are activated and polarized, how they affect angiogenesis and what the underlining mechanisms are during CNV. Notch signaling has been implicated in macrophage activation. Previously we have shown that inducible disruption of RBP-J, the critical transcription factor of Notch signaling, in adult mice results in enhanced CNV, but it is unclear what is the role of macrophage-specific Notch signaling in the development of CNV. In the current study, by using the myeloid specific RBP-J knockout mouse model combined with the laser-induced CNV model, we show that disruption of Notch signaling in macrophages displayed attenuated CNV growth, reduced macrophage infiltration and activation, and alleviated angiogenic response after laser induction. The inhibition of CNV occurred with reduced expression of VEGF and TNF-α in infiltrating inflammatory macrophages in myeloid specific RBP-J knockout mice. These changes might result in direct inhibition of EC lumen formation, as shown in an in vitro study. Therefore, clinical intervention of Notch signaling in CNV needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition. PMID:27339903

  4. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor.

    PubMed

    Majuta, Lisa A; Longo, Geraldine; Fealk, Michelle N; McCaffrey, Gwen; Mantyh, Patrick W

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain-related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti-nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains.

  5. Therapeutic blockade of CD54 attenuates pulmonary barrier damage in T cell-induced acute lung injury.

    PubMed

    Svedova, Julia; Ménoret, Antoine; Mittal, Payal; Ryan, Joseph M; Buturla, James A; Vella, Anthony T

    2017-07-01

    Acute respiratory distress syndrome (ARDS) is a serious, often fatal condition without available pharmacotherapy. Although the role of innate cells in ARDS has been studied extensively, emerging evidence suggests that T cells may be involved in disease etiology. Staphylococcus aureus enterotoxins are potent T-cell mitogens capable of triggering life-threatening shock. We demonstrate that 2 days after inhalation of S. aureus enterotoxin A, mice developed T cell-mediated increases in vascular permeability, as well as expression of injury markers and caspases in the lung. Pulmonary endothelial cells underwent sequential phenotypic changes marked by rapid activation coinciding with inflammatory events secondary to T-cell priming, followed by reductions in endothelial cell number juxtaposing simultaneous T-cell expansion and cytotoxic differentiation. Although initial T-cell activation influenced the extent of lung injury, CD54 (ICAM-1) blocking antibody administered well after enterotoxin exposure substantially attenuated pulmonary barrier damage. Thus CD54-targeted therapy may be a promising candidate for further exploration into its potential utility in treating ARDS patients. Copyright © 2017 the American Physiological Society.

  6. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    PubMed Central

    Bao, Rui; Zhu, Jiali; Wang, Jiafeng; Li, Jinbao

    2013-01-01

    Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and puncture (CLP) model. Our results indicated that there was a significant increase of PD-L1 expression in liver after CLP challenge compared to sham-operated controls, in terms of levels of mRNA transcription and immunohistochemistry. Anti-PD-L1 antibody significantly alleviated the morphology of liver injury in CLP mice. Anti-PD-L1 antibody administration decreased ALT and AST release in CLP mice, decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 mRNA in liver after sepsis challenge. Thus, anti-PD-L1 antibody might have a therapeutic potential in attenuating liver injury in sepsis. PMID:24324295

  7. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    PubMed

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  8. Blockade of Toll-Like Receptor 4 Attenuates Morphine Tolerance and Facilitates the Pain Relieving Properties of Morphine

    PubMed Central

    Eidson, Lori N.

    2013-01-01

    The ventrolateral periaqueductal gray (vlPAG) is an integral locus for morphine action. Although it is clear that glia contribute to the development of morphine tolerance, to date, the investigation of their role has been limited to spinal and medullary loci. Opioids induce a neuroinflammatory response that opposes acute and long-term analgesia, thereby limiting their efficacy as therapeutic agents. Recent data suggest that the innate immune receptor Toll-like receptor 4 (TLR4), along with its coreceptor myeloid differentiation factor-2 (MD-2), mediates these effects. To date, the brain loci through which TLR4 modulates morphine tolerance have not been identified. We have previously demonstrated that chronic subcutaneous morphine results in tolerance that is accompanied by increases in vlPAG glial cell activity. Using in vivo pharmacological manipulations of vlPAG glia and TLR4 in the adult male rat, we show that intra-vlPAG administration of the general glial cell metabolic inhibitor propentofylline or the astrocyte activity inhibitor fluorocitrate attenuate tolerance to morphine. Characterization of MD-2 expression within the PAG revealed dense MD-2 expression throughout the vlPAG. Further, antagonizing vlPAG TLR4 dose dependently prevented the development of morphine tolerance, and vlPAG microinjections of TLR4 agonists dose dependently produced a “naive” tolerance to subsequent challenge doses of morphine. Finally, using a model of persistent inflammatory pain and pharmacological manipulation of TLR4 we demonstrate that systemic antagonism of TLR4 potentiated acute morphine antihyperalgesia. These results, together, indicate that vlPAG glia regulate morphine tolerance development via TLR4 signaling, and implicate TLR4 as a potential therapeutic target for the treatment of pain. PMID:24089500

  9. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature

    PubMed Central

    Almeida, M. Camila; Hew-Butler, Tamara; Soriano, Renato N.; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L.; Nucci, Tatiane B.; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R.; Romanovsky, Andrej A.

    2012-01-01

    We studied M8-B, a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (Tb) in Trpm8+/+ mice and rats, but not in Trpm8−/− mice, thus suggesting an on-target action. The intravenous administration of M8-B was more effective in decreasing Tb in rats than the intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect Tb at either a constantly high or a constantly low ambient temperature (Ta), but the same dose readily decreased Tb if rats were kept at a high Ta during the M8-B infusion and transferred to a low Ta immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail skin temperatures < 23°C, the magnitude of the M8-B-induced decrease in Tb was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system. PMID:22323721

  10. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature.

    PubMed

    Almeida, M Camila; Hew-Butler, Tamara; Soriano, Renato N; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L; Nucci, Tatiane B; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R; Romanovsky, Andrej A

    2012-02-08

    We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures <23°C, the magnitude of the M8-B-induced decrease in T(b) was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.

  11. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    PubMed Central

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2015-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals. PMID:25642174

  12. Blockade of TRPA1 with HC-030031 attenuates visceral nociception by a mechanism independent of inflammatory resident cells, nitric oxide and the opioid system.

    PubMed

    Pereira, L M S; Lima-Júnior, R C P; Bem, A X C; Teixeira, C G; Grassi, L S; Medeiros, R P; Marques-Neto, R D; Callado, R B; Aragão, K S; Wong, D V T; Vale, M L; Brito, G A C; Ribeiro, R A

    2013-02-01

    Some studies have shown a somatic nociceptive response due to the activation of transient receptor potential A1 channels (TRPA1), which is modulated by the TRPA1 antagonist HC-030031. However, a few studies report the role of TRPA1 in visceral pain. Therefore, we investigated the participation of TRPA1 in visceral nociception and the involvement of nitric oxide, the opioid system and resident cells in the modulation of these channels. Mice were treated with vehicle or HC-030031 (18.75-300 mg/kg) before ifosfamide (400 mg/kg), 0.75% mustard oil (50 μL/colon), acetic acid 0.6% (10 mL/kg), zymosan (1 mg/cavity) or misoprostol (1 μg/cavity) injection. Visceral nociception was assessed through the electronic von Frey test or the writhing response. Ifosfamide-administered mice were euthanized for bladder analysis. The involvement of nitric oxide and the opioid system were investigated in mice injected with ifosfamide and mustard oil, respectively. The participation of resident peritoneal cells in acetic acid-, zymosan- or misoprostol-induced nociception was also evaluated. HC-030031 failed to protect animals against ifosfamide-induced bladder injury (p > 0.05). However, a marked antinociceptive effect against ifosfamide, mustard oil, acetic acid, zymosan and misoprostol was observed (p < 0.05). Neither L-arginine (600 mg/kg) nor naloxone (2 mg/kg) could reverse the antinociceptive effect of HC-030031. The reduction of the peritoneal cell population inhibited the acetic acid and zymosan-related writhes without interfering with the misoprostol effect. Our findings suggest that the blockade of TRPA1 attenuates visceral nociception by a mechanism independent of the modulation of resident cells, nitric oxide and opioid pathways. © 2012 European Federation of International Association for the Study of Pain Chapters.

  13. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  14. The modified Geller-Seifter test in rats was insensitive to GABAB receptor positive modulation or blockade, or 5-HT1A receptor activation.

    PubMed

    Paterson, Neil E; Hanania, Taleen

    2010-03-17

    Both the GABA(B) receptor positive modulator GS39783 and the GABA(B) receptor antagonist CGP46381 exhibit anxiolytic-like properties in animal models. In the present studies, the effects of GS39783 and CGP46381 in the modified Geller-Seifter task were assessed. First, the predictive validity of the task was confirmed by assessing the effects of multiple anxiolytic and non-anxiolytic compounds on punished and unpunished responding. Rats were trained in the modified Geller-Seifter task. After successful acquisition of the task, chlordiazepoxide, diazepam, MPEP, haloperidol, GS39783, 8-OH-DPAT, alprazolam and CGP46381 were tested consecutively. For each test compound, doses were administered in a randomized, counter-balanced, within-subjects design. Drug tests were performed only when rats exhibited baseline performance (the punished and time-out response rates were less than 10% of the unpunished response rate). Chlordiazepoxide, diazepam, alprazolam and MPEP released punished responding with variable effects on unpunished responding. Haloperidol had a small but significant effect on punished responding at an intermediate dose, and decreased unpunished responding at the highest dose tested. In contrast, administration of the GABA(B) receptor positive modulator GS398783 or the GABA(B) receptor antagonist CGP46381 at doses up to 30 mg/kg had no effects on either punished or unpunished responding. The 5-HT(1A) agonist 8-OH-DPAT did not release punished responding, but significantly decreased unpunished responding at the highest dose tested. The modified Geller-Seifter task generally exhibits good predictive validity for anxiolytic-like compounds. Neither GABA(B) receptor positive allosteric modulation nor blockade exhibited anxiolytic-like properties in the modified Geller-Seifter task. The 5-HT(1A) partial agonist buspirone was similarly ineffective. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Ethanol attenuates sensory stimulus-evoked responses in cerebellar granule cells via activation of GABA(A) receptors in vivo in mice.

    PubMed

    Wu, Guang; Liu, Heng; Jin, Juan; Hong, Lan; Lan, Yan; Chu, Chun-Ping; Qiu, De-Lai

    2014-02-21

    Acute alcohol intoxication affects cerebellar motor regulation possibly by altering the transfer and integration of external information in cerebellar cortical neurons, resulting in a dysfunction of cerebellar motor regulation or a cerebellar atexia. However, the synaptic mechanisms of ethanol induced impairments of sensory information processing in cerebellar cortical neurons are not fully understand. In the present study, we used electrophysiological and pharmacological methods to study the effects of ethanol on the sensory stimulation-evoked responses in cerebellar granule cells (GCs) in vivo in urethane anesthetized mice. Air-puff stimulation of the ipsilateral whisker-pad evoked stimulus-on (P1) and stimulus-off responses (P2) in GCs of cerebellar Crus II. Cerebellar surface perfusion of ethanol did not alter the onset latency of the sensory stimulation-evoked responses, but reversible reduced the amplitude of P1 and P2. The ethanol-induced reduction of the GCs sensory responses was concentration-dependent. In the presence of ethanol, the mean half-width, area under curve, rise Tau and decay Tau of P1 were significantly decreased. Blockade of gamma-aminobutyric acid type A (GABA(A)) receptors activity induced an increase in amplitude of P1, and abolished the ethanol induced inhibition of the GCs sensory responses. These results indicate that ethanol inhibits the tactile evoked responses in cerebellar GCs through enhancement of GABA(A) receptors activity.

  16. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  17. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    PubMed

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-06

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade.

    PubMed

    Ghavanini, Ahmad A; Mathers, David A; Puil, Ernest

    2005-09-01

    Using juvenile rat brain slices, we examined the possibility that strychnine-sensitive receptors for glycine-like amino acids contributed to synaptic inhibition in ventrobasal thalamus, where gamma-aminobutyrate (GABA) is the prevalent inhibitory transmitter. Ventrobasal nuclei showed staining for antibodies against alpha1 and alpha2 subunits of the glycine receptor. Exogenously applied glycine, taurine and beta-alanine increased membrane conductance, effects antagonized by strychnine, indicative of functional glycine receptors. Using glutamate receptor antagonists, we isolated inhibitory postsynaptic potentials and currents (IPSPs and IPSCs) evoked by high-threshold stimulation of medial lemniscus. Like the responses to glycine agonists, these synaptic responses reversed near E(Cl). In comparative tests with GABA receptor antagonists, strychnine attenuated inhibition in a majority of neurons, but did not alter slow, GABA(B) inhibition. For complete blockade, the majority of fast IPSPs required co-application of strychnine with bicuculline or gabazine, GABA(A) receptor antagonists. Strychnine acting with an IC50 approximately = 33 nM, eliminated residual fast inhibition during selective GABA(A) receptor blockade with gabazine. The latency of onset for IPSPs was compatible with polysynaptic pathways or prolonged axonal propagation time. Strychnine lacked effects on monosynaptic, GABAergic IPSPs from zona incerta. The specific actions of strychnine implicated a glycine receptor contribution to fast inhibition in somatosensory thalamus.

  19. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  20. PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma.

    PubMed

    Yu, Guang-Tao; Bu, Lin-Lin; Huang, Cong-Fa; Zhang, Wen-Feng; Chen, Wan-Jun; Gutkind, J Silvio; Kulkarni, Ashok B; Sun, Zhi-Jun

    2015-12-08

    Myeloid-derived suppressor cells (MDSCs) and tumor associated macrophages (TAMs) play key roles in the tumor immune suppressive network and tumor progression. However, precise roles of programmed death-1 (PD-1) in immunological functions of MDSCs and TAMs in head and neck squamous cell carcinoma (HNSCC) have not been clearly elucidated. In the present study, we show that PD-1 and PD-L1 levels were significantly higher in human HNSCC specimen than in normal oral mucosa. MDSCs and TAMs were characterized in mice and human HNSCC specimen, correlated well with PD-1 and PD-L1 expression. αPD-1 treatment was well tolerated and significantly reduced tumor growth in the HNSCC mouse model along with significant reduction in MDSCs and TAMs in immune organs and tumors. Molecular analysis suggests a reduction in the CD47/SIRPα pathway by PD-1 blockade, which regulates MDSCs, TAMs, dendritic cell as well as effector T cells. Hence, these data identify that PD-1/PD-L1 axis is significantly increased in human and mouse HNSCC. Adoptive αPD-1 immunotherapy may provide a novel therapeutic approach to modulate the micro- and macro-environment in HNSCC.

  1. Blockade of mGluR5 in the nucleus accumbens shell but not core attenuates heroin seeking behavior in rats

    PubMed Central

    Lou, Zhong-ze; Chen, Ling-hong; Liu, Hui-feng; Ruan, Lie-min; Zhou, Wen-hua

    2014-01-01

    Aim: Glutamatergic neurotransmission in the nucleus accumbens (NAc) is crucial for the relapse to heroin seeking. The aim of this study was to determine whether mGluR5 in the NAc core or shell involved in heroin seeking behavior in rats. Methods: Male SD rats were self-administered heroin under a fixed-ratio 1 (FR1) reinforcement schedule for 14 d, and subsequently withdrawn for 2 weeks. The selective mGluR5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 5, 15 and 50 nmol per side) was then microinjected into the NAc core or shell 10 min before a heroin-seeking test induced by context, cues or heroin priming. Results: Microinjection of MPEP into the NAc shell dose-dependently decreased the heroin seeking induced by context, cues or heroin priming. In contrast, microinjection of MPEP into the NAc core did not alter the heroin seeking induced by cues or heroin priming. In addition, microinjection with MPEP (15 nmol per side) in the NAc shell reversed both the percentage of open arms entries (OE%) and the percentage of time spent in open arms (OT%) after heroin withdrawal. Microinjection of MPEP (50 nmol per side) in the striatum as a control location did not affect the heroin seeking behavior. Microinjection of MPEP in the 3 locations did not change the locomotion activities. Conclusion: Blockade of mGluR5 in NAc shell in rats specifically suppresses the relapse to heroin-seeking and anxiety-like behavior, suggesting that mGluR5 antagonists may be a potential candidate for the therapy of heroin addiction. PMID:25399651

  2. Blockade of mGluR5 in the nucleus accumbens shell but not core attenuates heroin seeking behavior in rats.

    PubMed

    Lou, Zhong-ze; Chen, Ling-hong; Liu, Hui-feng; Ruan, Lie-min; Zhou, Wen-hua

    2014-12-01

    Glutamatergic neurotransmission in the nucleus accumbens (NAc) is crucial for the relapse to heroin seeking. The aim of this study was to determine whether mGluR5 in the NAc core or shell involved in heroin seeking behavior in rats. Male SD rats were self-administered heroin under a fixed-ratio 1 (FR1) reinforcement schedule for 14 d, and subsequently withdrawn for 2 weeks. The selective mGluR5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 5, 15 and 50 nmol per side) was then microinjected into the NAc core or shell 10 min before a heroin-seeking test induced by context, cues or heroin priming. Microinjection of MPEP into the NAc shell dose-dependently decreased the heroin seeking induced by context, cues or heroin priming. In contrast, microinjection of MPEP into the NAc core did not alter the heroin seeking induced by cues or heroin priming. In addition, microinjection with MPEP (15 nmol per side) in the NAc shell reversed both the percentage of open arms entries (OE%) and the percentage of time spent in open arms (OT%) after heroin withdrawal. Microinjection of MPEP (50 nmol per side) in the striatum as a control location did not affect the heroin seeking behavior. Microinjection of MPEP in the 3 locations did not change the locomotion activities. Blockade of mGluR5 in NAc shell in rats specifically suppresses the relapse to heroin-seeking and anxiety-like behavior, suggesting that mGluR5 antagonists may be a potential candidate for the therapy of heroin addiction.

  3. Angiotensin-(1-7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-L-arginine methyl ester.

    PubMed

    Benter, Ibrahim F; Yousif, Mariam H M; Al-Saleh, Fatemah M; Raghupathy, Raj; Chappell, Mark C; Diz, Debra I

    2011-05-01

    We assessed the contribution of angiotensin-(1-7) [Ang-(1-7)] to captopril-induced cardiovascular protection in spontaneously hypertensive rats (SHRs) chronically treated with the nitric oxide synthesis inhibitor NG-nitro-L-arginine methyl ester (SHR-l). NG-nitro-L-arginine methyl ester (80 mg/L) administration for 3 weeks increased mean arterial pressure (MAP) from 196 ± 6 to 229 ± 3 mm Hg (P < 0.05). Treatment of SHR-l with Ang-(1-7) antagonist [d-Ala7]-Ang-(1-7) (A779; 744 μg·kg(-1)·d(-1) ip) further elevated MAP to 253 ± 6 mm Hg (P < 0.05 vs SHR-l or SHR). Moreover, A779 treatment attenuated the reduction in MAP and proteinuria by either captopril (300 mg/L in drinking water) or hydralazine (1.5 mg·kg(-1)·d(-1) ip). In isolated perfused hearts, the recovery of left ventricular function from global ischemia was enhanced by captopril or hydralazine treatment and was exacerbated with A779. The Ang-(1-7) antagonist attenuated the beneficial effects of captopril and hydralazine on cardiac function. Recovery from global ischemia was also improved in isolated SHR-l hearts acutely perfused with captopril during both the perfusion and reperfusion periods. The acute administration of A779 reduced the beneficial actions of captopril to improve recovery after ischemia. We conclude that during periods of reduced nitric oxide availability, endogenous Ang-(1-7) plays a protective role in effectively buffering the increase in blood pressure and renal injury and the recovery from cardiac ischemia. Moreover, Ang-(1-7) contributes to the blood pressure lowering and tissue protective actions of captopril and hydralazine in a model of severe hypertension and end-organ damage.

  4. Angiotensin-(1-7) Blockade Attenuates Captopril- or Hydralazine-Induced Cardiovascular Protection in Spontaneously Hypertensive Rats-Treated with L-NAME

    PubMed Central

    Benter, Ibrahim F.; Yousif, Mariam H. M.; Al-Saleh, Fatemah M.; Chappell, Raj Raghupathy Mark C.; Diz, Debra I.

    2011-01-01

    We assessed the contribution of angiotensin-(1-7) [Ang-(1-7)] to captopril-induced cardiovascular protection in spontaneously hypertensive rats (SHR) chronically treated with the nitric oxide synthesis inhibitor L-NAME (SHR-L). L-NAME (80 mg/L) administration for three weeks increased mean arterial pressure (MAP) from 196 ± 6 mmHg to 229 ± 3 mmHg (p<0.05). Treatment of SHR-L with Ang-(1-7) antagonist, [D-Ala7]-Angiotensin-(1-7) (A779; 744 μg/kg/day ip) further elevated MAP to 253 ± 6 mmHg (p<0.05 vs. SHR-L or SHR). Moreover, A779 treatment attenuated the reduction in MAP and proteinuria by either captopril (300 mg/L in drinking water) or hydralazine (1.5 mg/kg/day ip). In isolated perfused hearts, the recovery of left ventricular function from global ischemia was enhanced by captopril or hydralazine treatment, and was exacerbated with A779. The Ang-(1-7) antagonist attenuated the beneficial effects of captopril and hydralazine on cardiac function. Recovery from global ischemia was also improved in isolated SHR-L hearts acutely perfused with captopril during both the perfusion and reperfusion periods. The acute administration of A779 reduced the beneficial actions of captopril to improve recovery following ischemia. We conclude that during periods of reduced nitric oxide availability, endogenous Ang-(1-7) plays a protective role to effectively buffer the increase in blood pressure and renal injury, as well as the recovery from cardiac ischemia. Moreover, Ang-(1-7) contributes to the blood pressure lowering and tissue protective actions of captopril and hydralazine in a model of severe hypertension and end-organ damage. PMID:21326110

  5. Blockade of D1 dopamine receptors in the medial prefrontal cortex attenuates amphetamine- and methamphetamine-induced locomotor activity in the rat.

    PubMed

    Hall, Darien A; Powers, John P; Gulley, Joshua M

    2009-12-01

    The medial prefrontal cortex (mPFC) is a component of the mesolimbic dopamine (DA) system involved in psychostimulant-induced hyperactivity and previous studies have shown that altering DA transmission or D2 receptors within the mPFC can decrease this stimulant effect. The goal of this study was to investigate a potential modulatory role for D1 receptors in the mPFC in amphetamine (AMPH)- and methamphetamine (METH)-induced hyperactivity. Locomotor activity in an open-field arena was measured in male, Sprague-Dawley rats given an intra-mPFC infusion of vehicle or the D1 receptor antagonist SCH 23390 (0.25 or 1.0 microg) prior to systemic (i.p.) injection of saline, AMPH (1 mg/kg), or METH (1 mg/kg). We found that SCH 23390 produced a dose-dependent decrease in AMPH- and METH-induced locomotion and rearing but had no significant effect on spontaneous behavior that occurred following systemic saline injections. Because SCH 23390 has been shown to have agonist-like properties at 5-HT(2C) receptors, a follow-up experiment was performed to determine if this contributed to the attenuation of METH-induced activity that we observed. Rats were given intra-mPFC infusions of both SCH 23390 (1.0 microg) and the 5-HT(2C) antagonist RS 102221 (0.25 microg) prior to METH (1 mg/kg, i.p.). The addition of the 5-HT(2C) antagonist failed to alter SCH 23390-induced decreases in METH-induced locomotion and rearing; infusion of RS 102221 alone had no significant effects on locomotion and produced a non-significant decrease in rearing. The results of these studies suggest that D1 activation in the mPFC plays a significant role in AMPH- and METH-induced hyperactivity.

  6. Tranexamic acid attenuates inflammatory response in cardiopulmonary bypass surgery through blockade of fibrinolysis: a case control study followed by a randomized double-blind controlled trial

    PubMed Central

    Jimenez, Juan J; Iribarren, Jose L; Lorente, Leonardo; Rodriguez, Jose M; Hernandez, Domingo; Nassar, Ibrahim; Perez, Rosalia; Brouard, Maitane; Milena, Antonio; Martinez, Rafael; Mora, Maria L

    2007-01-01

    Introduction Extracorporeal circulation induces hemostatic alterations that lead to inflammatory response (IR) and postoperative bleeding. Tranexamic acid (TA) reduces fibrinolysis and blood loss after cardiopulmonary bypass (CPB). However, its effects on IR and vasoplegic shock (VS) are not well known and elucidating these effects was the main objective of this study. Methods A case control study was carried out to determine factors associated with IR after CPB. Patients undergoing elective CPB surgery were randomly assigned to receive 2 g of TA or placebo (0.9% saline) before and after intervention. We performed an intention-to-treat analysis, comparing the incidence of IR and VS. We also analyzed several biological parameters related to inflammation, coagulation, and fibrinolysis systems. We used SPSS version 12.2 for statistical purposes. Results In the case control study, 165 patients were studied, 20.6% fulfilled IR criteria, and the use of TA proved to be an independent protective variable (odds ratio 0.38, 95% confidence interval 0.18 to 0.81; P < 0.01). The clinical trial was interrupted. Fifty patients were randomly assigned to receive TA (24) or placebo (26). Incidence of IR was 17% in the TA group versus 42% in the placebo group (P = 0.047). In the TA group, we observed a significant reduction in the incidence of VS (P = 0.003), the use of norepinephrine (P = 0.029), and time on mechanical ventilation (P = 0.018). These patients showed significantly lower D-dimer, plasminogen activator inhibitor 1, and creatine-kinase levels and a trend toward lower levels of soluble tumor necrosis factor receptor and interleukin-6 within the first 24 hours after CPB. Conclusion The use of TA attenuates the development of IR and VS after CPB. Trial registration number ISRCTN05718824. PMID:17988379

  7. CTLA-4 blockade enhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumor model.

    PubMed

    Espenschied, Jonathan; Lamont, Jeffrey; Longmate, Jeff; Pendas, Solange; Wang, Zhongde; Diamond, Don J; Ellenhorn, Joshua D I

    2003-03-15

    p53 is overexpressed by half of all cancers, and is an attractive target for a vaccine approach to immunotherapy. p53 overexpression is frequently the result of point mutations, which leaves the majority of the protein in its wild-type form. Therefore, the majority of p53 sequence is wild type, making it a self-protein for which tolerance plays a role in limiting immune responses. To overcome tolerance to p53, we have expressed wild-type murine p53 in the nonpathogenic attenuated poxvirus, modified vaccinia virus Ankara (recombinant modified vaccinia virus Ankara expressing wild-type murine p53 (rMVAp53)). Mice immunized with rMVAp53 vaccine developed vigorous p53-specific CTL responses. rMVAp53 vaccine was evaluated for its ability to inhibit the outgrowth of the syngeneic murine sarcoma Meth A, which overexpresses mutant p53. Mice were inoculated with a lethal dose (5 x 10(5) cells injected s.c.) of Meth A tumor cells and vaccinated by i.p. injection 3 days later with 5 x 10(7) PFU of rMVAp53. The majority of mice remained tumor free and resistant to rechallenge with Meth A tumor cells. We wished to determine whether rMVAp53 immunization could effect the rejection of an established, palpable Meth A tumor. In subsequent experiments, mice were injected with 10(6) Meth A tumor cells, and treated 6 days later with anti-CTLA-4 Ab (9H10) and rMVAp53. The majority of treated mice had complete tumor regression along with lasting tumor immunity. In vivo Ab depletion confirmed that the antitumor effect was primarily CD8 and to a lesser extent CD4 dependent. These experiments demonstrate the potential of a novel cell-free vaccine targeting p53 in malignancy.

  8. Blockade of the translocation and activation of c-Jun N-terminal kinase 3 (JNK3) attenuates dopaminergic neuronal damage in mouse model of Parkinson's disease.

    PubMed

    Pan, Jing; Xiao, Qin; Sheng, Cheng-Yu; Hong, Zhen; Yang, Hong-Qi; Wang, Gang; Ding, Jian-Qing; Chen, Sheng-Di

    2009-06-01

    Increasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal death in Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). JNK3, the only neural-specific isoform, may play an important role in mediating the neurotoxic effects of MPTP in dopaminergic neuronal injury. To analyze the variation in JNK3 activation, the levels of phospho-JNK3 were measured at the various time points of occurrence of MPTP-induced lesions. In our study, we observed that during MPTP intoxication, two peaks of JNK3 activation appeared at 8 and 24h. To further define the mechanism of JNK3 activation and translocation, the antioxidant N-acetylcysteine (NAC), the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine, and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate (KA) receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX) were administered to the mice 30 min after each of the four MPTP injections. The results revealed that NAC clearly inhibited JNK3 activation during the early intoxication, whereas ketamine preferably attenuated JNK3 activation during the latter intoxication. DNQX had no significant effects on JNK3 activation during intoxication. Consequently, reactive oxygen species (ROS) and the NMDA receptor were closely associated with JNK3 activation following MPTP intoxication. NAC and ketamine exerted a preventive effect against MPTP-induced loss of tyrosine hydroxylase-positive neurons and suppressed the nuclear translocation of JNK3, suggesting that NAC and ketamine can prevent MPTP-induced dopaminergic neuronal death by suppressing JNK3 activation.

  9. Blockade of RyRs in the ER Attenuates 6-OHDA-Induced Calcium Overload, Cellular Hypo-Excitability and Apoptosis in Dopaminergic Neurons

    PubMed Central

    Huang, Lu; Xue, Ying; Feng, DaYun; Yang, RuiXin; Nie, Tiejian; Zhu, Gang; Tao, Kai; Gao, GuoDong; Yang, Qian

    2017-01-01

    Calcium (Ca2+) dyshomeostasis induced by endoplasmic reticulum (ER) stress is an important molecular mechanism of selective dopaminergic (DA) neuron loss in Parkinson’s disease (PD). Inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), which are located on the ER surface, are the main endogenous Ca2+ release channels and play crucial roles in regulating Ca2+ homeostasis. However, the roles of these endogenous Ca2+ release channels in PD and their effects on the function and survival of DA neurons remain unknown. In this study, using a 6-hydroxydopamine (6-OHDA)-induced in vitro PD model (SN4741 Cell line), we found that 6-OHDA significantly increased cytoplasmic Ca2+ levels ([Ca2+]i), which was attenuated by pretreatment with 4-phenyl butyric acid (4-PBA; an ER stress inhibitor) or ryanodine (a RyRs blocker). In addition, in acute midbrain slices of male Sprague-Dawley rats, we found that 6-OHDA reduced the spike number and rheobase of DA neurons, which were also reversed by pretreatment with 4-PBA and ryanodine. TUNEL staining and MTT assays also showed that 4-PBA and ryanodine obviously alleviated 6-OHDA-induced cell apoptosis and devitalization. Interestingly, a IP3Rs blocker had little effect on the above 6-OHDA-induced neurotoxicity in DA neurons. In conclusion, our findings provide evidence of the different roles of IP3Rs and RyRs in the regulation of endogenous Ca2+ homeostasis, neuronal excitability, and viability in DA neurons, and suggest a potential therapeutic strategy for PD by inhibiting the RyRs Ca2+ channels in the ER. PMID:28316566

  10. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2A receptor-induced SDF-1/CXCR4/PI3K/AKT signaling.

    PubMed

    Huang, Xiaoying; Wu, Peiliang; Huang, Feifei; Xu, Min; Chen, Mayun; Huang, Kate; Li, Guo-Ping; Xu, Manhuan; Yao, Dan; Wang, Liangxing

    2017-08-03

    Baicalin, an important flavonoid in Scutellaria baicalensis Georgi extracts, exerts a variety of pharmacological effects. In this study, we explored the effects of baicalin on chronic hypoxia-induced pulmonary arterial hypertension (PAH) and investigated the mechanism underlying these effects. Moreover, we examined whether the inflammatory response was mediated by the A2A receptor (A2AR) and stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)-induced phosphatidyl inositol-3-kinase (PI3K) signaling in vivo. We established a hypoxia-induced pulmonary hypertension (HPH) mouse model by subjecting wild-type (WT) and A2AR knockout (A2AR(-/-)) animals to chronic hypoxia, and we examined the effects of a 4-week treatment with baicalin or the A2AR agonist CGS21680 in these animals. Invasive hemodynamic parameters, the right ventricular hypertrophy index, pulmonary congestion, the pulmonary arterial remodeling index, blood gas parameters, A2AR expression, and the expression of SDF-1/CXCR4/PI3K/protein kinase B (PKB; AKT) signaling components were measured. Compared with WT mice, A2AR(-/-) mice exhibited increased right ventricular systolic pressure (RVSP), right ventricle-to-left ventricle plus septum [RV/(LV + S)] ratio, RV weight-to-body weight (RV/BW) ratio, and lung wet weight-to-body weight (Lung/BW) ratio in the absence of an altered mean carotid arterial pressure (mCAP). These changes were accompanied by increases in pulmonary artery wall area and thickness and reductions in arterial oxygen pressure (PaO2) and hydrogen ion concentration (pH). In the HPH model, A2AR(-/-) mice displayed increased CXCR4, SDF-1, phospho-PI3K, and phospho-AKT expression compared with WT mice. Treating WT and A2AR(-/-) HPH mice with baicalin or CGS21680 attenuated the hypoxia-induced increases in RVSP, RV/(LV + S) and Lung/BW, as well as pulmonary arterial remodeling. Additionally, baicalin or CGS21680 alone could reverse the hypoxia-induced increases in CXCR4

  11. Protection of malonate-induced GABA but not dopamine loss by GABA transporter blockade in rat striatum.

    PubMed

    Zeevalk, Gail D; Manzino, Lawrence; Sonsalla, Patricia K

    2002-07-01

    Previous work has shown that overstimulation of GABA(A) receptors can potentiate neuronal cell damage during excitotoxic or metabolic stress in vitro and that GABA(A) antagonists or GABA transport blockers are neuroprotective under these situations. Malonate, a reversible succinate dehydrogenase/mitochondrial complex II inhibitor, is frequently used in animals to model cell loss in neurodegenerative diseases such as Parkinson's and Huntington's diseases. To determine if GABA transporter blockade during mitochondrial impairment can protect neurons in vivo as compared with in vitro studies, rats received a stereotaxic infusion of malonate (2 micromol) into the left striatum to induce a metabolic stress. The nonsubstrate GABA transport blocker, NO711 (20 nmol) was infused in some rats 30 min before and 3 h following malonate infusion. After 1 week, dopamine and GABA levels in the striata were measured. Malonate caused a significant loss of striatal dopamine and GABA. Blockade of the GABA transporter significantly attenuated GABA, but not dopamine loss. In contrast with several in vitro reports, GABA(A) receptors were not a downstream mediator of protection by NO711. Intrastriatal infusion of malonate (2 micromol) plus or minus the GABA(A) receptor agonist muscimol (1 micromol), the GABA(A) Cl- binding site antagonist picrotoxin (50 nmol) or the GABA(B) receptor antagonist saclofen (33 nmol) did not modify loss of striatal dopamine or GABA when examined 1 week following infusion. These data show that GABA transporter blockade during mitochondrial impairment in the striatum provides protection to GABAergic neurons. GABA transporter blockade, which is currently a pharmacological strategy for the treatment of epilepsy, may thus also be beneficial in the treatment of acute and chronic conditions involving energy inhibition such as stroke/ischemia or Huntington's disease. These findings also point to fundamental differences between immature and adult neurons in the

  12. Residual Neuromuscular Blockade.

    PubMed

    Plummer-Roberts, Anna L; Trost, Christina; Collins, Shawn; Hewer, Ian

    2016-02-01

    This article provides an update on residual neuromuscular blockade for nurse anesthetists. The neuromuscular junction, pharmacology for producing and reversing neuromuscular blockade, monitoring sites and methods, and patient implications relating to incomplete reversal of neuromuscular blockade are reviewed. Overall recommendations include using multiple settings when employing a peripheral nerve stimulator for monitoring return of neuromuscular function and administering pharmacologic reversal when the train-of-four ratio is below 0.9.

  13. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum.

    PubMed

    Popoli, Patrizia; Pintor, Annita; Domenici, Maria Rosaria; Frank, Claudio; Tebano, Maria Teresa; Pèzzola, Antonella; Scarchilli, Laura; Quarta, Davide; Reggio, Rosaria; Malchiodi-Albedi, Fiorella; Falchi, Mario; Massotti, Marino

    2002-03-01

    The aim of the present study was to evaluate whether, and by means of which mechanisms, the adenosine A2A receptor antagonist SCH 58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] exerted neuroprotective effects in a rat model of Huntington's disease. In a first set of experiments, SCH 58261 (0.01 and 1 mg/kg) was administered intraperitoneally to Wistar rats 20 min before the bilateral striatal injection of quinolinic acid (QA) (300 nmol/1 microl). SCH 58261 (0.01 but not 1 mg/kg, i.p.) did reduce significantly the effects of QA on motor activity, electroencephalographic changes, and striatal gliosis. Because QA acts by both increasing glutamate outflow and directly stimulating NMDA receptors, a second set of experiments was performed to evaluate whether SCH 58261 acted by preventing the presynaptic and/or the postsynaptic effects of QA. In microdialysis experiments in naive rats, striatal perfusion with QA (5 mm) enhanced glutamate levels by approximately 500%. Such an effect of QA was completely antagonized by pretreatment with SCH 58261 (0.01 but not 1 mg/kg, i.p.). In primary striatal cultures, bath application of QA (900 microm) significantly increased intracellular calcium levels, an effect prevented by the NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]. In this model, bath application of SCH 58261 (15-200 nm) tended to potentiate QA-induced calcium increase. We conclude the following: (1) the adenosine A2A receptor antagonist SCH 58261 has neuroprotective effects, although only at low doses, in an excitotoxic rat model of HD, and (2) the inhibition of QA-evoked glutamate outflow seems to be the major mechanism underlying the neuroprotective effects of SCH 58261.

  14. Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice.

    PubMed

    Pardo, M; Lopez-Cruz, L; Valverde, O; Ledent, C; Baqi, Y; Müller, C E; Salamone, J D; Correa, M

    2012-04-01

    Brain dopamine (DA) and adenosine interact in the regulation of behavioral activation and effort-related processes. In the present studies, a T-maze task was developed in mice for the assessment of effort-related decision making. With this task, the two arms of the maze have different reinforcement densities, and a vertical barrier is positioned in the arm with the higher density (HD), presenting the animal with an effort-related challenge. Under control conditions mice prefer the HD arm, and climb the barrier to obtain the larger amount of food. The DA D(2) receptor antagonist haloperidol decreased selection of the HD arm and increased selection of the arm with the low density of reinforcement. However, the HD arm was still the preferred choice in haloperidol-treated mice trained with barriers in both arms. Pre-feeding the mice to reduce food motivation dramatically increased omissions, an effect that was distinct from the actions of haloperidol. Co-administration of theophylline, a nonselective adenosine receptor antagonist, partially reversed the effects of haloperidol. This effect seems to be mediated by the A(2A) receptor but not the A(1) receptor, since the A(2A) antagonist MSX-3, but not the A(1) antagonist CPT, dose dependently reversed the effects of haloperidol on effort-related choice and on c-Fos expression in the dorsal striatum and nucleus accumbens. In addition, adenosine A(2A) receptor knockout mice were resistant to the effects of haloperidol on effort-related choice in the maze. These results indicate that DA D(2) and adenosine A(2A) receptors interact to regulate effort-related decision making and effort expenditure in mice.

  15. Contribution of 5-HT2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury.

    PubMed

    Lee, Kun-Ze; Gonzalez-Rothi, Elisa J

    2017-10-01

    Unilateral C2 spinal cord hemisection (C2Hx) interrupts bulbospinal respiratory pathways innervating ipsilateral phrenic motoneurons, resulting in cessation of ipsilateral diaphragm motor output. Plasticity within the spinal neural circuitry controlling the diaphragm can induce partial recovery of phrenic bursting which correlates with the time-dependent return of spinal serotonin (5-HT) immunoreactivity in the vicinity of phrenic motoneurons. The 5-HT2A receptor subtype is present on phrenic motoneurons and its expression is up-regulated after cervical spinal cord injury; however the functional role of these receptors following injury has not been clearly defined. The present study evaluated the functional role of 5-HT2A receptors by testing the hypothesis that pharmacologic blockade would attenuate diaphragm activity in rats with chronic cervical spinal cord injury. Bilateral diaphragm electromyography (EMG) was performed in vagal-intact and spontaneously breathing rats before and after intravenous administration of the 5-HT2A receptor antagonist Ketanserin (1mg/kg). Intravenous ketanserin significantly attenuated ipsilateral diaphragm EMG activity in C2Hx animals but had no impact on diaphragm output in uninjured animals. We conclude that 5-HT2A receptor activation contributes to the recovery of ipsilateral phrenic motor output after chronic cervical spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Traumatic Brain Injury-Induced Cognitive and Histological Deficits Are Attenuated by Delayed and Chronic Treatment with the 5-HT1A-Receptor Agonist Buspirone

    PubMed Central

    Olsen, Adam S.; Sozda, Christopher N.; Cheng, Jeffrey P.; Hoffman, Ann N.

    2012-01-01

    Abstract The aim of this study was to evaluate the potential efficacy of the serotonin1A (5-HT1A) receptor agonist buspirone (BUS) on behavioral and histological outcome after traumatic brain injury (TBI). Ninety-six isoflurane-anesthetized adult male rats were randomized to receive either a controlled cortical impact or sham injury, and then assigned to six TBI and six sham groups receiving one of five doses of BUS (0.01, 0.05, 0.1, 0.3, or 0.5 mg/kg) or saline vehicle (VEH, 1.0 mL/kg). Treatments began 24 h after surgery and were administered intraperitoneally once daily for 3 weeks. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative days 1–5 and 14–19, respectively. Morphologically intact CA1/CA3 cells and cortical lesion volume were quantified at 3 weeks. No differences were observed among the BUS and VEH sham groups in any end-point measure and thus the data were pooled. Regarding the TBI groups, repeated-measures ANOVAs revealed that the 0.3 mg/kg dose of BUS enhanced cognitive performance relative to VEH and the other BUS doses (p<0.05), but did not significantly impact motor function. Moreover, the same dose conferred selective histological protection as evidenced by smaller cortical lesions, but not greater CA1/CA3 cell survival. No significant behavioral or histological differences were observed among the other BUS doses versus VEH. These data indicate that BUS has a narrow therapeutic dose response, and that 0.3 mg/kg is optimal for enhancing spatial learning and memory in this model of TBI. BUS may have potential as a novel pharmacotherapy for clinical TBI. PMID:22416854

  17. Rosuvastatin attenuates mucus secretion in a murine model of chronic asthma by inhibiting the gamma-aminobutyric acid type A receptor.

    PubMed

    Zhu, Tao; Zhang, Wei; Wang, Dao-xin; Huang, Ni-wen; Bo, Hong; Deng, Wang; Deng, Jia

    2012-04-01

    Asthma is a chronic inflammatory disease characterized by reversible bronchial constriction, pulmonary inflammation and airway remodeling. Current standard therapies for asthma provide symptomatic control, but fail to target the underlying disease pathology. Furthermore, no therapeutic agent is effective in preventing airway remodeling. A substantial amount of evidence suggests that statins have anti-inflammatory properties and immunomodulatory activity. In this study, we investigated the effect of rosuvastatin on airway inflammation and its inhibitory mechanism in mucus hypersecretion in a murine model of chronic asthma. BALB/c mice were sensitized and challenged by ovalbumin to induce asthma. The recruitment of inflammatory cells into bronchoalveolar lavage fluid (BALF) and the lung tissues were measured by Diff-Quik staining and hematoxylin and eosin (H&E) staining. ELISA was used for measuring the levels of IL-4, IL-5, IL-13 and TNF-α in BALF. Periodic acid-Schiff (PAS) staining was used for mucus secretion. Gamma-aminobutyric acid type A receptor (GABAAR) β2 expression was measured by means of immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Rosuvastatin reduced the number of total inflammatory cells, lymphocytes, macrophages, neutrophils, and eosinophils recruited into BALF, the levels of IL-4, IL-5, IL-13 and TNF-α in BALF, along with the histological mucus index (HMI) and GABAAR β2 expression. Changes occurred in a dose-dependent manner. Based on its ability to reduce the inflammatory response and mucus hypersecretion by regulating GABAAR activity in a murine model of chronic asthma, rosuvastatin may be a useful therapeutic agent for treatment of asthma.

  18. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Role of 5-HT5A receptors in the consolidation of memory.

    PubMed

    Gonzalez, Roberto; Chávez-Pascacio, Karla; Meneses, Alfredo

    2013-09-01

    5-HT5 receptor occurs in brain areas implicated in learning and memory. Hence, the effects (0.01-3.0 mg/kg) of SB-6995516 (a 5-HT5A receptor antagonist) in the associative learning task of autoshaping were studied. The results showed that post-training injection of SB-699551 decreased conditioned responses (CR) during short-term (STM; 1.5h; at 0.1mg/kg) and long-term memory (LTM; 24 h; at 3.0 mg/kg) relative to the vehicle animals. Moreover, considering that there are no selective 5-HT5A receptor agonists, next, diverse doses of the serotonin precursor l-tryptophan were studied during STM and LTM, showing that l-tryptophan (5-100mg/kg) facilitated performance, particularly at 50mg/kg. In interactions experiments, l-tryptophan (50 mg/kg) attenuated the impairment effect induced by SB-699551 (either 0.3 or 3.0 mg/kg). All together this evidence suggests that the blockade of 5-HT5A receptor appear to be able to impair STM and LTM (24 h), while its stimulation might facilitate it. Of course further investigation is necessary, meanly with selective 5-HT5A compounds are necessary.

  20. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy.

    PubMed

    Leone, Robert D; Lo, Ying-Chun; Powell, Jonathan D

    2015-01-01

    The last several years have witnessed exciting progress in the development of immunotherapy for the treatment of cancer. This has been due in great part to the development of so-called checkpoint blockade. That is, antibodies that block inhibitory receptors such as CTLA-4 and PD-1 and thus unleash antigen-specific immune responses against tumors. It is clear that tumors evade the immune response by usurping pathways that play a role in negatively regulating normal immune responses. In this regard, adenosine in the immune microenvironment leading to the activation of the A2a receptor has been shown to represent one such negative feedback loop. Indeed, the tumor microenvironment has relatively high concentrations of adenosine. To this end, blocking A2a receptor activation has the potential to markedly enhance anti-tumor immunity in mouse models. This review will present data demonstrating the ability of A2a receptor blockade to enhance tumor vaccines, checkpoint blockade and adoptive T cell therapy. Also, as several recent studies have demonstrated that under certain conditions A2a receptor blockade can enhance tumor progression, we will also explore the complexities of adenosine signaling in the immune response. Despite important nuances to the A2a receptor pathway that require further elucidation, studies to date strongly support the development of A2a receptor antagonists (some of which have already been tested in phase III clinical trials for Parkinson Disease) as novel modalities in the immunotherapy armamentarium.

  1. Traceable Coulomb blockade thermometry

    NASA Astrophysics Data System (ADS)

    Hahtela, O.; Mykkänen, E.; Kemppinen, A.; Meschke, M.; Prunnila, M.; Gunnarsson, D.; Roschier, L.; Penttilä, J.; Pekola, J.

    2017-02-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods are demonstrated: numerical fitting of the full conductance curve and measuring the height of the conductance dip. The complete uncertainty analysis shows that using either analysis method the relative combined standard uncertainty (k  =  1) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 0.5%. In this temperature range, both analysis methods produced temperature estimates that deviated from 0.39% to 0.67% from the reference temperatures provided by a superconducting reference point device calibrated against the Provisional Low Temperature Scale of 2000.

  2. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4(+) T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling.

    PubMed

    Zhang, Hongjun; Ju, Baoling; Zhang, Xiaoli; Zhu, Yanfei; Nie, Ying; Xu, Yuanhong; Lei, Qiuxia

    2016-12-29

    Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4(+) T cells preferred to polarizing towards CD4(+) T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis.

  3. M100907 attenuates elevated grooming behavior in the BTBR mouse.

    PubMed

    Amodeo, Dionisio A; Rivera, Elaine; Dunn, Jeffrey T; Ragozzino, Michael E

    2016-10-15

    Individuals with autism spectrum disorder (ASD) exhibit social-communication deficits along with restricted interests and repetitive behaviors (RRBs). To date, there is a lack of effective treatments to alleviate RRBs. A recent study found that treatment with the 5HT2A receptor antagonist M100907 attenuates a reversal learning deficit in the BTBR mouse model of autism. The BTBR mouse also exhibits elevated grooming behavior which may model stereotyped motor behaviors also observed in ASD. The present study examined whether 5HT2A receptor blockade with M100907 at either 0.01 or 0.1mg/kg can reduce repetitive grooming in BTBR mice compared to that of vehicle-treated BTBR and C57BL6/J (B6) mice. M100907 at 0.1mg/kg, but not 0.01mg/kg, significantly attenuated repetitive grooming in BTBR mice compared to that of vehicle-treated BTBR mice. M100907 at either dose did not affect grooming behavior in B6 mice. To determine whether 0.1mg/kg M100907 had a more general effect on activity in BTBR mice, a second experiment determined whether M100907 at 0.1mg/kg affected locomotor activity in BTBR mice. M100907 treatment in BTBR and B6 mice did not alter locomotor activity compared to that of vehicle-treated BTBR and B6 mice. The present findings taken together with past results suggest that treatment with a 5HT2A receptor antagonist may be effective in ameliorating RRBs in ASD. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Deletion of adenosine A1 or A2A receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson’s disease

    PubMed Central

    Xiao, Danqing; Cassin, Jared J.; Healy, Brian; Burdett, Thomas C.; Chen, Jiang-Fan; Fredholm, Bertil B.; Schwarzschild, Michael A.

    2010-01-01

    Adenosine A2A receptor antagonism provides a promising approach to developing nondopaminergic therapy for Parkinson’s disease (PD). Clinical trials of A2A antagonists have targeted PD patients with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve parkinsonian symptoms. The role of adenosine in the development of LID is little known, especially regarding its actions via A1 receptors. We aimed to examine the effects of genetic deletion and pharmacological blockade of A1 and/or A2A receptors on the development of LID, on the induction of molecular markers of LID including striatal preprodynorphin and preproenkephalin (PPE), and on the integrity of dopaminergic nigrostriatal neurons in hemiparkinsonian mice. Following a unilateral 6-hydroxydopamine lesion A1, A2A and double A1-A2A knockout (KO) and wild-type littermate mice, and mice pretreated with caffeine (an antagonist of both A1 and A2A receptors) or saline were treated daily for 18–21 days with a low dose of L-DOPA. Total abnormal involuntary movements (AIMs, a measure of LID) were significantly attenuated (p<0.05) in A1 and A2A KOs, but not in A1-A2A KOs and caffeine-pretreated mice. An elevation of PPE mRNA ipsilateral to the lesion in WT mice was reduced in all KO mice. In addition, neuronal integrity assessed by striatal dopamine content was similar in all KOs and caffeine-pretreated mice following 6-hydroxydopamine lesioning. Our findings raise the possibility that A1 or A2A receptors blockade might also confer a disease-modifying benefit of reduced risk of disabling LID, whereas the effect of their combined inactivation is less clear. PMID:20828543

  5. Deletion of adenosine A₁ or A(₂A) receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson's disease.

    PubMed

    Xiao, Danqing; Cassin, Jared J; Healy, Brian; Burdett, Thomas C; Chen, Jiang-Fan; Fredholm, Bertil B; Schwarzschild, Michael A

    2011-01-07

    Adenosine A(₂A) receptor antagonism provides a promising approach to developing nondopaminergic therapy for Parkinson's disease (PD). Clinical trials of A(₂A) antagonists have targeted PD patients with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve parkinsonian symptoms. The role of adenosine in the development of LID is little known, especially regarding its actions via A₁ receptors. We aimed to examine the effects of genetic deletion and pharmacological blockade of A₁ and/or A(₂A) receptors on the development of LID, on the induction of molecular markers of LID including striatal preprodynorphin and preproenkephalin (PPE), and on the integrity of dopaminergic nigrostriatal neurons in hemiparkinsonian mice. Following a unilateral 6-hydroxydopamine lesion A₁, A(₂A) and double A₁-A(₂A) knockout (KO) and wild-type littermate mice, and mice pretreated with caffeine (an antagonist of both A₁ and A(₂A) receptors) or saline were treated daily for 18-21 days with a low dose of L-DOPA. Total abnormal involuntary movements (AIMs, a measure of LID) were significantly attenuated (p<0.05) in A₁ and A(₂A) KOs, but not in A₁-A(₂A) KOs and caffeine-pretreated mice. An elevation of PPE mRNA ipsilateral to the lesion in WT mice was reduced in all KO mice. In addition, neuronal integrity assessed by striatal dopamine content was similar in all KOs and caffeine-pretreated mice following 6-hydroxydopamine lesioning. Our findings raise the possibility that A₁ or A(₂A) receptors blockade might also confer a disease-modifying benefit of reduced risk of disabling LID, whereas the effect of their combined inactivation is less clear. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. CCR3 Blockade Attenuates Eosinophilic Ileitis and Associated Remodeling.

    PubMed

    Masterson, Joanne C; McNamee, Eóin N; Jedlicka, Paul; Fillon, Sophie; Ruybal, Joseph; Hosford, Lindsay; Rivera-Nieves, Jesús; Lee, James J; Furuta, Glenn T

    2011-11-01

    Intestinal remodeling and stricture formation is a complication of inflammatory bowel disease (IBD) that often requires surgical intervention. Although eosinophils are associated with mucosal remodeling in other organs and are increased in IBD tissues, their role in IBD-associated remodeling is unclear. Histological and molecular features of ileitis and remodeling were assessed using immunohistochemical, histomorphometric, flow cytometric, and molecular analysis (real-time RT-PCR) techniques in a murine model of chronic eosinophilic ileitis. Collagen protein was assessed by Sircol assay. Using a spontaneous eosinophilic Crohn's-like mouse model SAMP1/SkuSlc, we demonstrate an association between ileitis progression and remodeling over the course of 40 weeks. Mucosal and submucosal eosinophilia increased over the time course and correlated with increased histological inflammatory indices. Ileitis and remodeling increased over the 40 weeks, as did expression of fibronectin. CCR3-specific antibody-mediated reduction of eosinophils resulted in significant decrease in goblet cell hyperplasia, muscularis propria hypertrophy, villus blunting, and expression of inflammatory and remodeling genes, including fibronectin. Cellularity of local mesenteric lymph nodes, including T- and B-lymphocytes, was also significantly reduced. Thus, eosinophils participate in intestinal remodeling, supporting eosinophils as a novel therapeutic target. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  8. Coulomb-blockade and Pauli-blockade magnetometry

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Pályi, András

    2017-01-01

    Scanning-probe magnetometry is a valuable experimental tool to investigate magnetic phenomena at the micro- and nanoscale. We theoretically analyze the possibility of measuring magnetic fields via the electrical current flowing through quantum dots. We characterize the shot-noise-limited magnetic-field sensitivity of two devices: a single dot in the Coulomb blockade regime, and a double dot in the Pauli blockade regime. Constructing such magnetometers using carbon nanotube quantum dots would benefit from the large, strongly anisotropic and controllable g tensors, the low abundance of nuclear spins, and the small detection volume allowing for nanoscale spatial resolution; we estimate that a sensitivity below 1 μ T/√{Hz} can be achieved with this material. As quantum dots have already proven to be useful as scanning-probe electrometers, our proposal highlights their potential as hybrid sensors having in situ switching capability between electrical and magnetic sensing.

  9. Endothelin receptor blockade ameliorates renal injury by inhibition of RhoA/Rho-kinase signalling in deoxycorticosterone acetate-salt hypertensive rats.

    PubMed

    Lee, Tsung-Ming; Chung, Tun-Hui; Lin, Shinn-Zong; Chang, Nen-Chung

    2014-04-01

    Excessive production of fibrosis is a feature of hypertension-induced renal injury. Activation of RhoA/Rho-kinase (ROCK) axis has been shown in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed whether selective endothelin receptor blockers can attenuate renal fibrosis by inhibiting RhoA/ROCK axis in DOCA-salt rats. At 4 weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were randomized into three groups for 4 weeks: vehicle, ABT-627 (endothelin-A receptor inhibitor) and A192621 (endothelin-B receptor inhibitor). DOCA-salt was characterized by increased blood pressure, decreased renal function, increased proteinuria, increased glomerulosclerosis and tubulointerstitial fibrosis with myofibroblast accumulation, increased renal endothelin-1 levels and RhoA activity along with increased expression of connective tissue growth factor at both mRNA and protein levels as compared with uninephrectomized control male Wistar rats. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone, ameliorated proteinuria. Impaired renal function and histological changes were overcome by treatment with ABT-627, but not with A192621. The beneficial effects of bosentan, a nonspecific endothelin receptor blocker, on proteinuria, RhoA activity, and connective tissue growth factor levels were similar to ABT-627. Furthermore, in an isolated perfuse kidney, a RhoA inhibitor, C3 exoenzyme, and two ROCK inhibitors, fasudil and Y-27632, significantly attenuated connective tissue growth factor levels. These results indicate that DOCA-salt elevates renal endothelin-1 levels and RhoA activity via activation of mineralocorticoid receptor, resulting in renal fibrosis and proteinuria. Endothelin-A receptor blockade can attenuate DOCA-salt-induced renal fibrosis probably through the inhibition of RhoA/ROCK activity and connective tissue growth factor expression.

  10. Coulomb blockade in graphene nanoribbons.

    PubMed

    Sols, F; Guinea, F; Neto, A H

    2007-10-19

    We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presence of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.

  11. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade

    SciTech Connect

    Li Jing; Huang Shyhmin; Armstrong, Eric A.; Fowler, John F.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-08-01

    The formation of new blood vessels (angiogenesis) represents a critical factor in the malignant growth of solid tumors and metastases. Vascular endothelial cell growth factor (VEGF) and its receptor VEGFR2 represent central molecular targets for antiangiogenic intervention, because of their integral involvement in endothelial cell proliferation and migration. In the current study, we investigated in vitro and in vivo effects of receptor blockade on various aspects of the angiogenic process using monoclonal antibodies against VEGFR2 (cp1C11, which is human specific, and DC101, which is mouse specific). Molecular blockade of VEGFR2 inhibited several critical steps involved in angiogenesis. VEGFR2 blockade in endothelial cells attenuated cellular proliferation, reduced cellular migration, and disrupted cellular differentiation and resultant formation of capillary-like networks. Further, VEGFR2 blockade significantly reduced the growth response of human squamous cell carcinoma xenografts in athymic mice. The growth-inhibitory effect of VEGFR2 blockade in tumor xenografts seems to reflect antiangiogenic influence as demonstrated by vascular growth inhibition in an in vivo angiogenesis assay incorporating tumor-bearing Matrigel plugs. Further, administration of VEGFR2-blocking antibodies in endothelial cell cultures, and in mouse xenograft models, increased their response to ionizing radiation, indicating an interactive cytotoxic effect of VEGFR2 blockade with radiation. These data suggest that molecular inhibition of VEGFR2 alone, and in combination with radiation, can enhance tumor response through molecular targeting of tumor vasculature.

  12. THE SEROTONIN (5-HT) 5-HT2A RECEPTOR: ASSOCIATION WITH INHERENT AND COCAINE-EVOKED BEHAVIORAL DISINHIBITION IN RATS

    PubMed Central

    Anastasio, Noelle C.; Stoffel, Erin C.; Fox, Robert G.; Bubar, Marcy J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2011-01-01

    Alterations in the balance of functional activity within the serotonin (5-HT) system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently demonstrate greater impulsivity relative to non-drug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT2AR regulates inherent impulsivity, and that blockade of the 5-HT2AR alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT2AR as an important regulatory substrate in impulse control. PMID:21499079

  13. Collective multiphoton blockade in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, C. J.; Yang, Y. P.; Agarwal, G. S.

    2017-06-01

    We present a study of collective multiphoton blockade in coherently driven atoms in a single-mode cavity. Considering two atoms strongly coupled to an optical cavity, we show that the two-photon blockade with two-photon antibunching, and the three-photon blockade with three-photon antibunching can be observed simultaneously. The three-photon blockade probes both dressed states in the two-photon and three-photon spaces. The two-photon and three-photon blockades strongly depend on the location of the two atoms in the strong-coupling regime. The asymmetry in the atom-cavity coupling constants opens pathways for multiphoton blockade which is also shown to be sensitive to the atomic decay and pumping strengths. The work presented here predicts many quantum statistical features due to the collective behavior of atoms and can be useful to generate nonclassical photon pairs.

  14. Residual neuromuscular blockade in critical care.

    PubMed

    Wilson, Jason; Collins, Angela S; Rowan, Brea O

    2012-06-01

    Neuromuscular blockade is a pharmacological adjunct for anesthesia and for surgical interventions. Neuromuscular blockers can facilitate ease of instrumentation and reduce complications associated with intubation. An undesirable sequela of these agents is residual neuromuscular blockade. Residual neuromuscular blockade is linked to aspiration, diminished response to hypoxia, and obstruction of the upper airway that may occur soon after extubation. If an operation is particularly complex or requires a long anesthesia time, residual neuromuscular blockade can contribute to longer stays in the intensive care unit and more hours of mechanical ventilation. Given the risks of this medication class, it is essential to have an understanding of the mechanism of action of, assessment of, and factors affecting blockade and to be able to identify factors that affect pharmacokinetics.

  15. Detecting phonon blockade with photons

    SciTech Connect

    Didier, Nicolas; Pugnetti, Stefano; Fazio, Rosario; Blanter, Yaroslav M.

    2011-08-01

    Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge. We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by dissipation.

  16. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury.

    PubMed

    Chen, Cheng-Lung; Liao, Jiunn-Wang; Hu, Oliver Yoa-Pu; Pao, Li-Heng

    2016-09-01

    Tubular cell apoptosis significantly contributes to cisplatin-induced acute kidney injury (AKI) pathogenesis. Although KCa3.1, a calcium-activated potassium channel, participates in apoptosis, its involvement in cisplatin-induced AKI is unknown. Here, we found that cisplatin treatment triggered an early induction of KCa3.1 expression associated with HK-2 cell apoptosis, the development of renal tubular damage, and apoptosis in mice. Treatment with the highly selective KCa3.1 blocker TRAM-34 suppressed cisplatin-induced HK-2 cell apoptosis. We further assessed whether KCa3.1 mediated cisplatin-induced AKI in genetic knockout and pharmacological blockade mouse models. KCa3.1 deficiency reduced renal function loss, renal tubular damage, and the induction of the apoptotic marker caspase-3 in the kidneys of cisplatin-treated KCa3.1 (-/-) mice. Pharmacological blockade of KCa3.1 by TRAM-34 similarly attenuated cisplatin-induced AKI in mice. Furthermore, we dissected the mechanisms underlying cisplatin-induced apoptosis reduction via KCa3.1 blockade. We found that KCa3.1 blockade attenuated cytochrome c release and the increase in the intrinsic apoptotic mediators Bax, Bak, and caspase-9 after cisplatin treatment. KCa3.1 blocking inhibited the cisplatin-induced activation of the endoplasmic reticulum (ER) stress mediator caspase-12, which is independent of calcium-dependent protease m-calpain activation. Taken together, KCa3.1 blockade protects against cisplatin-induced AKI through the attenuation of apoptosis by interference with intrinsic apoptotic and ER stress-related mediators, providing a potential target for the prevention of cisplatin-induced AKI.

  17. Hypothermic anesthesia attenuates postoperative proteolysis.

    PubMed Central

    Johnson, D J; Brooks, D C; Pressler, V M; Hulton, N R; Colpoys, M F; Smith, R J; Wilmore, D W

    1986-01-01

    The catabolic response that commonly occurs after major operation is characterized by net skeletal muscle proteolysis and accelerated nitrogen excretion. This response was absent in patients undergoing cardiac surgical procedures associated with the combination of cardiopulmonary bypass, narcotic anesthesia, neuromuscular blockade, and hypothermia. Forearm nitrogen release was 422 +/- 492 nmol/100 ml X min on the first postoperative day, approximately 25% of preoperative values (1677 +/- 411, p less than 0.05). Nitrogen excretion and the degree of negative nitrogen balance were comparable to levels observed in nonstressed, fasting subjects. The potential role of hypothermia, high-dose fentanyl anesthesia, and neuromuscular blockade in modifying the catabolic response to laparotomy and retroperitoneal dissection was further evaluated in animal studies. Six hours after operation, amino acid nitrogen release from the hindquarter was 84% less than control values (p less than 0.05). Nitrogen excretion and urea production were also reduced compared to normothermic controls. It is concluded that the combination of hypothermia, narcotic anesthesia, and neuromuscular blockade attenuates the catabolic response to injury and thus may be useful in the care of critically ill surgical patients. PMID:3767477

  18. Attenuation of thermal nociception and hyperalgesia by VR1 blockers

    PubMed Central

    García-Martínez, Carolina; Humet, Marc; Planells-Cases, Rosa; Gomis, Ana; Caprini, Marco; Viana, Felix; De la Peña, Elvira; Sanchez-Baeza, Francisco; Carbonell, Teresa; De Felipe, Carmen; Pérez-Payá, Enrique; Belmonte, Carlos; Messeguer, Angel; Ferrer-Montiel, Antonio

    2002-01-01

    Vanilloid receptor subunit 1 (VR1) appears to play a critical role in the transduction of noxious chemical and thermal stimuli by sensory nerve endings in peripheral tissues. Thus, VR1 antagonists are useful compounds to unravel the contribution of this receptor to pain perception, as well as to induce analgesia. We have used a combinatorial approach to identify new, nonpeptidic channel blockers of VR1. Screening of a library of trimers of N-alkylglycines resulted in the identification of two molecules referred to as DD161515 {N-[2-(2-(N-methylpyrrolidinyl)ethyl]glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinamide} and DD191515 {[N-[3-(N,N-diethylamino)propyl]glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinamide} that selectively block VR1 channel activity with micromolar efficacy, rivaling that characteristic of vanilloid-related inhibitors. These compounds appear to be noncompetitive VR1 antagonists that recognize a receptor site distinct from that of capsaicin. Intraperitoneal administration of both trialkylglycines into mice significantly attenuated thermal nociception as measured in the hot plate test. It is noteworthy that these compounds eliminated pain and neurogenic inflammation evoked by intradermal injection of capsaicin into the animal hindpaw, as well as the thermal hyperalgesia induced by tissue irritation with nitrogen mustard. In contrast, responses to mechanical stimuli were not modified by either compound. Modulation of sensory nerve fibers excitability appears to underlie the peptoid analgesic activity. Collectively, these results indicate that blockade of VR1 activity attenuates chemical and thermal nociception and hyperalgesia, supporting the tenet that this ionotropic receptor contributes to chemical and thermal sensitivity and pain perception in vivo. These trialkylglycine-based, noncompetitive VR1 antagonists may likely be developed into analgesics to treat inflammatory pain. PMID:11854530

  19. Alpha 1-adrenergic blockade and sudden cardiac death.

    PubMed

    Vanoli, E; Hull, S S; Foreman, R D; Ferrari, A; Schwartz, P J

    1994-01-01

    The primary goal of the present study was to test whether selective pharmacologic blockade of alpha 1 receptors, and specifically of the subtype alpha 1a, could prevent ventricular fibrillation (VF) during acute myocardial ischemia. The development of new autonomic interventions is of clinical interest in view of the failure of traditional antiarrhythmic drugs to prevent sudden death. Experimental evidence indicates that alpha 1 receptors, and in particular the subtype alpha 1a, may be involved in the genesis of malignant arrhythmias during acute myocardial ischemia and reperfusion. Despite this evidence, questions have been raised about the actual antifibrillatory efficacy of alpha-adrenergic blockade in the acutely ischemic myocardium. The effects of prazosin and of abanoquil (UK 52,046), a highly selective alpha 1a receptor blocker, were tested and compared with propranolol in a conscious animal preparation for sudden death. Ten dogs with a 1-month-old anterior wall myocardial infarction were studied. These dogs had all developed, in control conditions, VF during a 2-minute occlusion of the circumflex coronary artery while exercising (n = 9) or lying on the table (n = 1). Afterwards, the dogs underwent additional tests with the following intravenously administered drugs: abanoquil (n = 10; 1 micrograms/kg), prazosin (n = 9; 0.1 mg/kg), and propranolol (n = 10; 1 mg/kg). Internal control analysis was used. All dogs tested had recurrence of VF with both alpha-adrenergic blockers. Propranolol significantly reduced heart rate during ischemia and prevented VF in 5 of 10 dogs tested (P < 0.05). When heart rate was kept constant by atrial pacing (n = 3), 2 of the 3 animals remained protected by propranolol. Just prior to onset of VF, heart rate was not significantly different in the control and in the abanoquil tests (237 +/- 45 and 253 +/- 34 beats/min, respectively), whereas it was higher (P < 0.05) with prazosin (288 +/- 40 beats/min). Alpha 1 and alpha 1a receptor

  20. Rydberg blockade in a hot atomic beam

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Burgdörfer, J.; Zhang, X.; Dunning, F. B.

    2017-04-01

    The dipole blockade of very-high-n , n ˜300 , strontium 5 s n f 1F3 Rydberg atoms in a hot atomic beam is studied. For such high n , the blockade radius can exceed the linear dimensions of the excitation volume. Rydberg atoms formed inside the excitation volume can, upon leaving the region, continue to suppress excitation until they have moved farther away than the blockade radius. Moreover, the high density of states originating from the many magnetic sublevels associated with the F states results in a small but finite probability of excitation of L =3 n 1F3 atom pairs at small internuclear separations below the blockade radius. We demonstrate that these effects can be distinguished from one another by the distinct features they imprint on the Mandel Q parameter as a function of the duration of the exciting laser.

  1. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    PubMed

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade.

  2. Selective blockade of the endothelin subtype A receptor decreases early atherosclerosis in hamsters fed cholesterol.

    PubMed Central

    Kowala, M. C.; Rose, P. M.; Stein, P. D.; Goller, N.; Recce, R.; Beyer, S.; Valentine, M.; Barton, D.; Durham, S. K.

    1995-01-01

    Recent studies suggest that endothelin and its receptors may be involved in atherogenesis. To test this hypothesis, cholesterol-fed hamsters were treated with a selective endothelin subtype A (ETA) receptor antagonist BMS-182874. Characterization of hamster atherosclerotic plaques indicated that they contained a fibrous cap of smooth muscle cells, large macrophage-foam cells, and epitopes of oxidized low density lipoprotein. Messenger RNA for both ETA and ETB receptors was detected in aortic endothelial cells, in medial smooth muscle cells, and in macrophage-foam cells and smooth muscle cells of the fibro-fatty plaques. BMS-182874 inhibited the endothelin-1-induced pressor response whereas the depressor effect was unaltered, suggesting that vascular ETA receptors were selectively blocked in vivo. In hyperlipidemic hamsters, BMS-182874 decreased the area of the fatty streak by reducing the number and size of macrophage-foam cells. The results indicated that ETA receptors and thus endothelin promoted the early inflammatory phase of atherosclerosis. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7717449

  3. Collisional blockade in microscopic optical dipole traps.

    PubMed

    Schlosser, N; Reymond, G; Grangier, P

    2002-07-08

    We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.

  4. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  5. Neuromuscular blockade in the elderly patient.

    PubMed

    Lee, Luis A; Athanassoglou, Vassilis; Pandit, Jaideep J

    2016-01-01

    Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids). Other drugs (atracurium, cisatracurium) have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient.

  6. PANCREATIC DIGESTIVE ENZYME BLOCKADE IN THE SMALL INTESTINE PREVENTS INSULIN RESISTANCE IN HEMORRHAGIC SHOCK

    PubMed Central

    DeLano, Frank A.; Schmid-Schönbein, Geert W.

    2013-01-01

    Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction. Suppression of the digestive enzymes in the lumen of the intestine with protease inhibitors is effective in reducing the level of the inflammatory reactions. To determine the degree to which blockade of digestive enzymes affects insulin resistance in shock, rats were exposed to acute hemorrhagic shock (mean arterial pressure of 30 mmHg for 2 hours) at which time all shed blood volume was returned. Digestive proteases in the intestine were blocked with a serine protease inhibitor (tranexamic acid in polyethylene glycol and physiological electrolyte solution) and the density of the insulin receptor was measured with immunohistochemistry in the mesentery microcirculation. The untreated rat without enzyme blockade had significantly attenuated levels of insulin receptor density as compared to control and treated rats. Blockade of the digestive proteases after 60 min of hypotension in the lumen of the small intestine lead to a lesser decrease in insulin receptor density compared to controls without protease blockade. Glucose tolerance test indicates a significant increase in plasma glucose levels two hours after hemorrhagic shock, which are reduced to control values in the presence of protease inhibition in the lumen of the intestine. The transient reduction of the plasma glucose levels after an insulin bolus is significantly attenuated after shock, but is restored in when digestive enzymes in the lumen of the intestine are blocked. These results suggest that in

  7. Pancreatic digestive enzyme blockade in the small intestine prevents insulin resistance in hemorrhagic shock.

    PubMed

    DeLano, Frank A; Schmid-Schönbein, Geert W

    2014-01-01

    Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance, but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction. Suppression of the digestive enzymes in the lumen of the intestine with protease inhibitors is effective in reducing the level of the inflammatory reactions. To determine the degree to which blockade of digestive enzymes affects insulin resistance in shock, rats were exposed to acute hemorrhagic shock (mean arterial pressure of 30 mmHg for 2 h) at which time all shed blood volume was returned. Digestive proteases in the intestine were blocked with a serine protease inhibitor (tranexamic acid in polyethylene glycol and physiological electrolyte solution), and the density of the insulin receptor was measured with immunohistochemistry in the mesentery microcirculation. The untreated rat without enzyme blockade had significantly attenuated levels of insulin receptor density as compared with control and treated rats. Blockade of the digestive proteases after 60 min of hypotension in the lumen of the small intestine led to a lesser decrease in insulin receptor density compared with controls without protease blockade. Glucose tolerance test indicates a significant increase in plasma glucose levels 2 h after hemorrhagic shock, which are reduced to control values in the presence of protease inhibition in the lumen of the intestine. The transient reduction of the plasma glucose levels after an insulin bolus is significantly attenuated after shock but is restored when digestive enzymes in the lumen of the intestine are blocked. These results suggest that in

  8. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  9. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  10. Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows.

    PubMed

    Popoli, Patrizia; Minghetti, Luisa; Tebano, Maria Teresa; Pintor, Annita; Domenici, Maria Rosaria; Massotti, Marino

    2004-01-01

    Adenosine A2A receptor antagonists are regarded as potential neuroprotective drugs, although the mechanisms underlying their effects remain to be elucidated. In this review, quinolinic acid (QA)-induced striatal toxicity was used as a tool to investigate the mechanisms of the neuroprotective effects of A2A receptor antagonists. After having examined the effects of selective A2A receptor antagonists toward different mechanisms of QA toxicity, we conclude that (1) the effect elicited by A2A receptor blockade on QA-induced glutamate outflow may be one of the mechanisms of the neuroprotective activity of A2A receptor antagonists; (2) A2A receptor antagonists have a potentially worsening influence on QA-dependent NMDA receptor activation; and (3) the ability of A2A receptor antagonists to prevent QA-induced lipid peroxidation does not correlate with the neuroprotective effects. These results suggest that A2A receptor antagonists may have either potentially beneficial or detrimental influence in models of neurodegeneration that are mainly due to increased glutamate levels or enhanced sensitivity of NMDA receptors, respectively.

  11. Isoproterenol reduces ischemia-reperfusion lung injury despite beta-blockade.

    PubMed

    Takashima, Seiki; Schlidt, Scott A; Koukoulis, Giovanna; Sevala, Mayura; Egan, Thomas M

    2005-06-01

    If lungs could be retrieved from non-heart-beating donors (NHBDs), the shortage of lungs for transplantation could be alleviated. The use of lungs from NHBDs is associated with a mandatory warm ischemic interval, which results in ischemia-reperfusion injury upon reperfusion. In an earlier study, rat lungs retrieved 2-h postmortem from NHBDs had reduced capillary leak measured by filtration coefficient (Kfc) when reperfused with isoproterenol (iso), associated with an increase in lung tissue levels of cyclic AMP (cAMP). The objective was to determine if this decrease in Kfc was because of beta-stimulation, or would persist despite beta-blockade. Donor rats were treated intraperitoneally with beta-blockade (propranolol or pindolol) or carrier, sacrificed, and lungs were retrieved immediately or 2 h postmortem. The lungs were reperfused with or without iso and the beta-blockers in the reperfusate. Outcome measures were Kfc, wet:dry weight ratio (W/D), lung levels of adenine nucleotides and cAMP. Lungs retrieved immediately after death had normal Kfc and W/D. After 2 h of ischemia, Kfc and W/D were markedly elevated in controls (no drug) and lungs reperfused with beta-blockers alone. Isoproterenol-reperfusion decreased Kfc and W/D significantly (P < 0.01) even in the presence of beta-blockade. Lung cAMP levels were increased only with iso in the absence of beta-blockade. The attenuation of ischemia-reperfusion injury because of iso occurs even in the presence of beta-blockade, and may not be a result of beta-stimulated increased cAMP.

  12. Sympathetic neural activation evoked by mu-receptor blockade in patients addicted to opioids is abolished by intravenous clonidine.

    PubMed

    Kienbaum, Peter; Heuter, Thorsten; Michel, Martin C; Scherbaum, Norbert; Gastpar, Markus; Peters, Jürgen

    2002-02-01

    Mu-opioid receptor blockade by naloxone administered for acute detoxification in patients addicted to opioids markedly increases catecholamine plasma concentrations, muscle sympathetic activity (MSA), and is associated with cardiovascular stimulation despite general anesthesia. The current authors tested the hypothesis that the alpha2-adrenoceptor agonist clonidine (1) attenuates increased MSA during mu-opioid receptor blockade for detoxification, and (2) prevents cardiovascular activation when given before detoxification. Fourteen mono-opioid addicted patients received naloxone during propofol anesthesia. Clonidine (10 microg x kg(-1) administered over 5 min + 5 microg x kg(-1) x h(-1) intravenous) was infused either before (n = 6) or after (n = 6) naloxone administration. Two patients without immediate clonidine administration occurring after naloxone administration served as time controls. Muscle sympathetic activity (n = 8) in the peroneal nerve, catecholamine plasma concentrations (n = 14), arterial blood pressure, and heart rate were assessed in awake patients, during propofol anesthesia before and after mu-opioid receptor blockade, and after clonidine administration. Mu-receptor blockade markedly increased MSA from a low activity (burst frequency: from 2 burst/min +/- 1 to 24 +/- 8, means +/- SD). Similarly, norepinephrine (41 pg/ml +/- 37 to 321 +/- 134) and epinephrine plasma concentration (13 pg/ml +/- 6 to 627 +/- 146) significantly increased, and were associated with, increased arterial blood pressure and heart rate. Clonidine immediately abolished both increased MSA (P < 0.001) and catecholamine plasma concentrations (P < 0.001). When clonidine was given before mu-opioid receptor blockade, catecholamine plasma concentrations and hemodynamic variables did not change. Administration of the alpha2-adrenoceptor agonist clonidine decreases both increased MSA and catecholamine plasma concentrations observed after mu-opioid receptor blockade for

  13. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function

    PubMed Central

    Ostrowski, Tim D.; Ostrowski, Daniela; Hasser, Eileen M.

    2014-01-01

    Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity. PMID:24671532

  14. [Cancer immunotherapy by immuno-checkpoint blockade].

    PubMed

    Kawakami, Yutaka

    2015-10-01

    As cancer immunotherapies utilizing anti-tumor T-cell responses, immuno-checkpoint blockade and adoptive T-cell immunotherapy have recently achieved durable responses even in advanced cancer patients with metastases. Administration of antibodies on the T-cell surface, CTLA-4 and PD-1 (or PD-1 ligand PD-L1), resulted in tumor regression of not only melanoma and renal cell cancer which were known to be relatively sensitive to immunotherapy, but also various malignancies including lung, bladder, ovarian, gastric, and head and neck cancers, as well as hematological malignancies such as Hodgkin and B-cell malignant lymphomas. These findings have changed the status of immunotherapy in the development of cancer treatments. Currently, development of combinations employing cancer immunotherapy with immuno-checkpoint blockade, as well as personalized cancer immunotherapy based on the evaluation of pretreatment immune status, are in progress.

  15. hERG Blockade by Iboga Alkaloids.

    PubMed

    Alper, Kenneth; Bai, Rong; Liu, Nian; Fowler, Steven J; Huang, Xi-Ping; Priori, Silvia G; Ruan, Yanfei

    2016-01-01

    The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel.

  16. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  17. Corneal stroma PDGF blockade and myofibroblast development

    PubMed Central

    Kaur, Harmeet; Chaurasia, Shyam S.; de Medeiros, Fabricio W.; Agrawal, Vandana; Salomao, Marcella Q.; Singh, Nirbhai; Ambati, Balamurali K.; Wilson, Steven E.

    2009-01-01

    Myofibroblast development and haze generation in the corneal stroma is mediated by cytokines, including transforming growth factor beta (TGF β), and possibly other cytokines. This study examined the effects of stromal PDGF-β blockade on the development of myofibroblasts in response to -9.0 diopter photorefractive keratectomy in the rabbit. Rabbits that had haze generating photorefractive keratectomy (PRK, for 9 diopters of myopia) in one eye were divided into three different groups: stromal application of plasmid pCMV.PDGFRB.23KDEL expressing a subunit of PDGF receptor b (domains 2-3, which bind PDGF-B), stromal application of empty plasmid pCMV, or stromal application of balanced salt solution (BSS). The plasmids (at a concentration 1000 ng/μl) or BSS was applied to the exposed stroma immediately after surgery and every 24 hours for 4-5 days until the epithelium healed. The group treated with pCMV.PDGFRB.23KDEL showed lower αSMA+ myofibroblast density in the anterior stroma compared to either control group (P≤ 0.001). Although there was also lower corneal haze at the slit lamp at one month after surgery, the difference in haze after PDGF-B blockade was not statistically significant compared to either control group. Stromal PDGF-B blockade during the early postoperative period following PRK decreases stromal αSMA+ myofibroblast generation. PDGF is an important modulator of myofibroblast development in the cornea. PMID:19133260

  18. Effect of beta blockade on singing performance.

    PubMed

    Gates, G A; Saegert, J; Wilson, N; Johnson, L; Shepherd, A; Hearne, E M

    1985-01-01

    The symptoms associated with performance anxiety, or the so-called stage fright syndrome, are similar to those of alpha and beta adrenergic stimulation. Suppression of symptoms and improvement in instrumentalist's performance after beta blockade suggest that this modality would be of benefit for singers as well. To evaluate the dose-effect relationship of beta blockade upon singing performance and the possible effect of these agents upon performance maturation, we studied 34 singing students during end of semester juries, using a double-blind crossover paradigm. Students performed once with either placebo, 20, 40, or 80 mg of nadolol, and again 48 hours later, with placebo. There was a significant dose-related, limiting effect upon intraperformance cardiac rate. A small, but statistically significant, dichotomous effect upon performance rating was noted: low-dose nadolol tended to enhance performance, whereas larger doses impaired performance. We conclude that the effects of low dose beta blockade upon singing are minimally helpful and high doses may detract from performance ability.

  19. At the Bench: Preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy

    PubMed Central

    Intlekofer, Andrew M.; Thompson, Craig B.

    2013-01-01

    Tumors can avoid immune surveillance by stimulating immune inhibitory receptors that function to turn off established immune responses. By blocking the ability of tumors to stimulate inhibitory receptors on T cells, sustained, anti-tumor immune responses can be generated in animals. Thus, therapeutic blockade of immune inhibitory checkpoints provides a potential method to boost anti-tumor immunity. The CTLA-4 and PD-1Rs represent two T cell-inhibitory receptors with independent mechanisms of action. Preclinical investigations revealed that CTLA-4 enforces an activation threshold and attenuates proliferation of tumor-specific T lymphocytes. In contrast, PD-1 functions primarily as a stop signal that limits T cell effector function within a tumor. The unique mechanisms and sites of action of CTLA-4 and PD-1 suggest that although blockade of either has the potential to promote anti-tumor immune responses, combined blockade of both might offer even more potent anti-tumor activity. See related review At the Bedside: CTLA-4 and PD-1 blocking antibodies in cancer immunotherapy. PMID:23625198

  20. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans.

    PubMed

    Gavva, Narender R; Treanor, James J S; Garami, Andras; Fang, Liang; Surapaneni, Sekhar; Akrami, Anna; Alvarez, Francisco; Bak, Annette; Darling, Mary; Gore, Anu; Jang, Graham R; Kesslak, James P; Ni, Liyun; Norman, Mark H; Palluconi, Gabrielle; Rose, Mark J; Salfi, Margaret; Tan, Edward; Romanovsky, Andrej A; Banfield, Christopher; Davar, Gudarz

    2008-05-01

    The vanilloid receptor TRPV1 has been identified as a molecular target for the treatment of pain associated with inflammatory diseases and cancer. Hence, TRPV1 antagonists have been considered for therapeutic evaluation in such diseases. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicited marked, but reversible, and generally plasma concentration-dependent hyperthermia. Similar to what was observed in rats, dogs, and monkeys, hyperthermia was attenuated after repeated dosing of AMG 517 (at the highest dose tested) in humans during a second Phase I trial. However, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long-lasting hyperthermia with maximal body temperature surpassing 40 degrees C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals. Mechanisms of AMG 517-induced hyperthermia were then studied in rats. AMG 517 caused hyperthermia by inducing tail skin vasoconstriction and increasing thermogenesis, which suggests that TRPV1 regulates vasomotor tone and metabolic heat production. In conclusion, these results demonstrate that: (a) TRPV1-selective antagonists like AMG 517 cannot be developed for systemic use as stand alone agents for treatment of pain and other diseases, (b) individual susceptibility influences magnitude of hyperthermia observed after TRPV1 blockade, and (c) TRPV1 plays a pivotal role as a molecular regulator for body temperature in humans.

  1. Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways.

    PubMed

    Nascimento, Francisney P; Figueredo, Sonia M; Marcon, Rodrigo; Martins, Daniel F; Macedo, Sérgio J; Lima, Denise A N; Almeida, Rúbia C; Ostroski, Rosana M; Rodrigues, Ana Lúcia S; Santos, Adair Roberto Soares

    2010-08-01

    Inosine, an endogenous purine, is the first metabolite of adenosine in a reaction catalyzed by adenosine deaminase. This study aimed to investigate the antinociceptive effects of inosine against several models of pain in mice and rats. In mice, inosine given by systemic or central routes inhibited acetic acid-induced nociception. Furthermore, inosine also decreased the late phase of formalin-induced licking and the nociception induced by glutamate. Inosine produced inhibition (for up to 4 h) of mechanical allodynia induced by complete Freund's adjuvant (CFA) injected into the mouse's paw. Given chronically for 21 days, inosine reversed the mechanical allodynia caused by CFA. Moreover, inosine also reduced the thermal (cold stimuli) and mechanical allodynia caused by partial sciatic nerve ligation (PSNL) for 4 h; when inosine was chronically administered, it decreased the mechanical allodynia induced by PSNL for 22 days. Antinociception caused by inosine in the acetic acid test was attenuated by treatment of mice with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; a selective adenosine A(1) receptor antagonist), 8-phenyltheophylline (8-PT; a nonselective adenosine A(1) receptor antagonist), and 4-{2- [7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl- amino]ethyl}phenol (ZM241385; a selective adenosine A(2A) receptor antagonist). In rats, inosine inhibited the mechanical and heat hyperalgesia induced by bradykinin and phorbol 12-myristate 13-acetate, without affecting similar responses caused by prostaglandin E(2) or forskolin. These results indicate that inosine induces antinociceptive, antiallodynic, and antihyperalgesic effects in rodents. The precise mechanisms through which inosine produces antinociception are currently under investigation, but involvement of adenosine A(1) and A(2A) receptors and blockade of the protein kinase C pathway seem to largely account for inosine's antinociceptive effect.

  2. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    SciTech Connect

    Cui, Ruibing; Yan, Lihui; Luo, Zheng; Guo, Xiaolan; Yan, Ming

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  3. The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors.

    PubMed

    Ikemoto, Satoshi

    2005-06-01

    The supramammillary nucleus (SUM), a dorsal layer of the mammillary body, has recently been implicated in positive reinforcement. The present study examined whether GABA(A) receptors in the SUM or adjacent regions are involved in primary reinforcement using intracranial self-administration procedures. Rats learned quickly to lever-press for infusions of the GABA(A) antagonist picrotoxin into the SUM. Although picrotoxin was also self-administered into the posterior hypothalamic nuclei and anterior ventral tegmental area, these regions were less responsive to lower doses of picrotoxin than the SUM. The finding that rats learned to respond selectively on the lever triggering drug infusions is consistent with picrotoxin's reinforcing effect. Coadministration of the GABA(A) agonist muscimol disrupted picrotoxin self-administration, and another GABA(A) antagonist, bicuculline, was also self-administered into the SUM; thus, the reinforcing effect of picrotoxin is mediated by GABA(A) receptors. Since rats did not self-administer the GABA(B) antagonist 2-hydroxysaclofen into the SUM, the role of GABA(B) receptors may be distinct from that of GABA(A) receptors. Pretreatment with the dopamine receptor antagonist SCH 23390 (0.05 mg/kg, i.p.) extinguished picrotoxin self-administration into the SUM, suggesting that the reinforcing effects of GABA(A) receptor blockade depend on normal dopamine transmission. In conclusion, the blockade of GABA(A) receptors in the SUM is reinforcing, and the brain 'reward' circuitry appears to be tonically inhibited via supramammillary GABA(A) receptors and more extensive than the meso-limbic dopamine system.

  4. Residual neuromuscular blockade and postoperative critical respiratory events: literature review.

    PubMed

    Kiekkas, Panagiotis; Bakalis, Nick; Stefanopoulos, Nikolaos; Konstantinou, Evangelos; Aretha, Diamanto

    2014-11-01

    To investigate and synthesise published literature on the associations between residual neuromuscular blockade and critical respiratory events of postoperative adult patients in the postanaesthesia care unit. Residual neuromuscular blockade continues to be common among patients transferred to the postanaesthesia care unit after general anaesthesia, while negative effects of residual neuromuscular blockade on respiratory function have been demonstrated in laboratory volunteers. Literature review. Using key terms, a search was conducted in Cumulative Index for Nursing and Allied Health Literature, PubMed, Web of Science, Cochrane Database and EMBASE (January 1990-May 2013) for clinical trials or observational studies on the associations between residual neuromuscular blockade and critical respiratory events, published in English-language journals. Nine articles met the inclusion criteria. Residual neuromuscular blockade definition threshold differed between studies. Among critical respiratory events, only hypoxaemia was investigated in all included studies. Residual neuromuscular blockade was significantly associated with increased incidence of hypoxaemia during postanaesthesia care unit stay in most studies, while associations with the rest of the critical respiratory events were inconclusive. Although limited, existing research has provided evidence that patients with residual neuromuscular blockade are at high risk of early postoperative hypoxaemia. Further studies are needed to investigate independent associations between residual neuromuscular blockade and critical respiratory events, along with causality of these associations. The clinical importance of residual neuromuscular blockade for groups at high risk of critical respiratory events should also be investigated. Healthcare professionals have to be aware of the increased risk of hypoxaemia in patients with residual neuromuscular blockade. Efforts to decrease residual neuromuscular blockade incidence

  5. Pharmacologic blockade of vascular adhesion protein-1 lessens neurologic dysfunction in rats subjected to subarachnoid hemorrhage.

    PubMed

    Xu, Hao-Liang; Garcia, Maggie; Testai, Fernando; Vetri, Francesco; Barabanova, Alexandra; Pelligrino, Dale A; Paisansathan, Chanannait

    2014-10-24

    Aneurysmal subarachnoid hemorrhage (SAH) is a potentially devastating clinical problem. Despite advances in the diagnosis and treatment of SAH, outcome remains unfavorable. An increased inflammatory state, one that is characterized by enhanced leukocyte trafficking has been reported to contribute to neuronal injury in association with multiple brain insults, including hemorrhagic and ischemic stroke. This study was designed to investigate, in rats, the neuropathologic consequences of heightened leukocyte trafficking following SAH, induced via endovascular perforation of the anterior cerebral artery. Experiments focused on the initial 48 h post-SAH and sought to establish whether blockade of vascular adhesion protein-1 (VAP-1), with LJP-1586, was able to provide dose-dependent neuroprotection. Treatment with LJP-1586 was initiated at 6h post-SAH. An intravital microscopy and closed cranial window system, that permitted examination of temporal patterns of rhodamine-6G-labeled leukocyte adhesion/extravasation, was used. Effects of LJP-1586 on neurologic outcomes and leukocyte trafficking at 24 h and 48 h post-SAH were examined. In VAP-1-inhibited vs control rats, results revealed a significant attenuation in leukocyte trafficking at both 24 h and 48 h after SAH, along with an improvement in neurologic outcome. In conclusion, our findings support the involvement of an amplified inflammatory state, characterized by enhanced leukocyte trafficking, during the first 48 h after SAH. VAP-1 blockade yielded neuroprotection that was associated with an attenuation of leukocyte trafficking and improved neurologic outcome. Published by Elsevier B.V.

  6. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    SciTech Connect

    Hargrove, D.M.; Bagby, G.J.; Lang, C.H.; Spitzer, J.J. )

    1988-01-01

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol ({beta}-blocker) and phentolamine ({alpha}-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection.

  7. Rotary antenna attenuator

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  8. [Axillary blockade of the brachial plexus. A prospective study of blockade success using electric nerve stimulation].

    PubMed

    Eifert, B; Hähnel, J; Kustermann, J

    1994-12-01

    Axillary block is a common anesthetic technique for operations on the hand and forearm. In our hospital, with many trainees in anaesthesia, only 250-300 axillary blocks per year are performed by about 30 colleagues. This implies a small number of blocks for each anaesthetist. The present study was designed to assess whether it is possible to teach this technique and use it with an adequate degree of success under these conditions. We used a nerve stimulator and studied whether the success of the block under these conditions is independent of anaesthetist's experience in this technique. Furthermore, we examined other factors involved in the success of the block. METHODS. The study included 112 patients subjected to elective surgery of the upper extremity; all received an axillary block. We used a nerve stimulator and injected mepivacaine 1% without adrenaline. The following parameters were recorded: the number of blocks to date performed by the anaesthetist; the minimal current required for nerve stimulation; the dose of local anaesthetic; the time between the end of injection and the beginning of surgery; the quality of sensory and motor blockade after 10, 20, and 30 min. Sensory blockade was assessed by the pinprick method (no blockade, analgesia, anaesthesia); motor blockade was judged by comparing the muscle strength of both arms (no blockade, paresis, paralysis). Data were analyzed using the Mann-Whitney test, with P < 0.05 considered statistically significant. RESULTS. Of the 112 blocks, 95 (85%) were successful; 17 (15%) failed and the patients required general anaesthesia. Eight of the successful blocks showed a decrease in analgesic quality after > or = 70 min and required additional analgesics or general anaesthesia. We found no correlation between the experience of the anaesthetist and the success of the block. The minimal required current for nerve stimulation in the success group was 0.4 mA and differed significantly from the value of 0.6 mA in the

  9. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    PubMed

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation. © 2016 S. Karger AG, Basel.

  10. Noradrenaline blockade specifically enhances metacognitive performance

    PubMed Central

    Hauser, Tobias U; Allen, Micah; Purg, Nina; Moutoussis, Michael; Rees, Geraint; Dolan, Raymond J

    2017-01-01

    Impairments in metacognition, the ability to accurately report one’s performance, are common in patients with psychiatric disorders, where a putative neuromodulatory dysregulation provides the rationale for pharmacological interventions. Previously, we have shown how unexpected arousal modulates metacognition (Allen et al., 2016). Here, we report a double-blind, placebo-controlled, study that examined specific effects of noradrenaline and dopamine on both metacognition and perceptual decision making. Signal theoretic analysis of a global motion discrimination task with adaptive performance staircasing revealed that noradrenergic blockade (40 mg propranolol) significantly increased metacognitive performance (type-II area under the curve, AUROC2), but had no impact on perceptual decision making performance. Blockade of dopamine D2/3 receptors (400 mg amisulpride) had no effect on either metacognition or perceptual decision making. Our study is the first to show a pharmacological enhancement of metacognitive performance, in the absence of any effect on perceptual decision making. This enhancement points to a regulatory role for noradrenergic neurotransmission in perceptual metacognition. DOI: http://dx.doi.org/10.7554/eLife.24901.001 PMID:28489001

  11. Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system.

    PubMed

    Li, Cheng; Zheng, Huaibin; Zhang, Zhaoyang; Yao, Xin; Zhang, Yunzhe; Zhang, Yiqi; Zhang, Yanpeng

    2013-10-28

    We investigate the interaction between dark states and Rydberg excitation blockade by using electromagnetically induced transparency (EIT), fluorescence, and four-wave mixing (FWM) signals both theoretically and experimentally. By scanning the frequency detunings of the probe and dressing fields, respectively, we first observe these signals (three coexisting EIT windows, two fluorescence signals, and two FWM signals) under Rydberg excitation blockade. Next, frequency detuning dependences of these signals are obtained, in which the modulated results are well explained by introducing the dressing effects (leading to the dark states) with the corrected factor of the Rydberg excitation blockade. In addition, the variations by changing the principal quantum number n of Rydberg state shown some interesting phenomena resulting from Rydberg blockade are observed. The unique nature of such blockaded signals can have potential application in the demonstration of quantum computing.

  12. Endogenous adenosine mediates coronary vasodilation during exercise after K(ATP)+ channel blockade.

    PubMed Central

    Duncker, D J; van Zon, N S; Pavek, T J; Herrlinger, S K; Bache, R J

    1995-01-01

    The mechanism of coronary vasodilation produced by exercise is not understood completely. Recently, we reported that blockade of vascular smooth muscle K(ATP)+ channels decreased coronary blood flow at rest, but did not attenuate the increments in coronary flow produced by exercise. Adenosine is not mandatory for maintaining basal coronary flow, or the increase in flow produced by exercise during normal arterial inflow, but does contribute to coronary vasodilation in hypoperfused myocardium. Therefore, we investigated whether adenosine opposed the hypoperfusion produced by K(ATP)+ channel blockade, thereby contributing to coronary vasodilation during exercise. 11 dogs were studied at rest and during exercise under control conditions, during intracoronary infusion of the K(ATP)+ channel blocker glibenclamide (50 micrograms/kg per min), and during intracoronary glibenclamide in the presence of adenosine receptor blockade. Glibenclamide decreased resting coronary blood flow from 45 +/- 5 to 35 +/- 4 ml/min (P < 0.05), but did not prevent exercise-induced increases of coronary flow. Glibenclamide caused an increase in myocardial oxygen extraction at the highest level of exercise with a decrease in coronary venous oxygen tension from 15.5 +/- 0.7 to 13.6 +/- 0.8 mmHg (P < 0.05). The addition of the adenosine receptor antagonist 8-phenyltheophylline (5 mg/kg intravenous) to K(ATP)+ channel blockade did not further decrease resting coronary blood flow but did attenuate the increase in coronary flow produced by exercise. This was accompanied by a further decrease of coronary venous oxygen tension to 10.1 +/- 0.7 mmHg (P < 0.05), indicating aggravation of the mismatch between oxygen demand and supply. These findings are compatible with the hypothesis that K+ATP channels modulate coronary vasomotor tone both under resting conditions and during exercise. However, when K(ATP)+ channels are blocked, adenosine released from the hypoperfused myocardium provides an alternate

  13. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  14. B and T lymphocyte attenuator is highly expressed on CMV-specific T cells during infection and regulates their function.

    PubMed

    Serriari, Nacer-Eddine; Gondois-Rey, Françoise; Guillaume, Yves; Remmerswaal, Ester B M; Pastor, Sonia; Messal, Nassima; Truneh, Alemseged; Hirsch, Ivan; van Lier, René A W; Olive, Daniel

    2010-09-15

    B and T lymphocyte attenuator (BTLA), like its relative programmed cell death-1 (PD-1), is a receptor that negatively regulates murine T cell activation. However, its expression and function on human T cells is currently unknown. We report in this study on the expression of BTLA in human T cell subsets as well as its regulation on virus-specific T cells during primary human CMV infection. BTLA is expressed on human CD4(+) T cells during different stages of differentiation, whereas on CD8(+) T cells, it is found on naive T cells and is progressively downregulated in memory and differentiated effector-type cells. During primary CMV infection, BTLA was highly induced on CMV-specific CD8(+) T cells immediately following their differentiation from naive cells. After control of CMV infection, BTLA expression went down on memory CD8(+) cells. Engagement of BTLA by mAbs blocked CD3/CD28-mediated T cell proliferation and Th1 and Th2 cytokine secretion. Finally, in vitro blockade of the BTLA pathway augmented, as efficient as anti-PD-1 mAbs, allogeneic as well as CMV-specific CD8(+) T cell proliferation. Thus, our results suggest that, like PD-1, BTLA provides a potential target for enhancing the functional capacity of CTLs in viral infections.

  15. Novel drug development for neuromuscular blockade.

    PubMed

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration.

  16. Experimental realization of a Coulomb blockade refrigerator

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Koski, J. V.; Pekola, J. P.

    2014-11-01

    We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single-electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while preventing heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow the theoretical model down to ˜80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature, in agreement with the theory, reaching about a 15 mK drop at the base temperature. The CBR appears as a promising electronic cooler at temperatures well below 100 mK.

  17. Beta blockade and physical training in rats.

    PubMed

    Harri, M

    1982-01-01

    Beta adrenergic blocking agents are widely used in the treatment of hypertension. Recent findings indicate that long-term physical training also could reduce elevated blood pressure and many physicians therefore recommend their patients to include physical training in their everyday program. However, it is not known whether a combination of beta blockade and physical training influences the responses of an organism to physical training. This problem was investigated using laboratory rats as an experimental animal model. Both swimming and running training were used, and a group of animals was trained without any medication while the other group performed their daily training session under the influence of 10 mg/kg of propranolol. Some of the effects produced by swimming training, such as hypertrophy of brown adipose tissue and heart muscle, resting bradycardia, increased tachycardic and tail skin temperature responses to isoprenaline, increased calorigenic response to noradrenaline and delayed cooling rate in cold water were similar to those produced by cold acclimation or repeated noradrenaline injections. It is thus tempting to conclude that the training-induced release of noradrenaline was responsible for the changes mentioned. Propranolol, when associated with the training, effectively hampered these changes. Running training increased the activity of oxidative enzymes in the skeletal muscle much more than did swimming training or repeated noradrenaline injections. Furthermore, running training neither induced hypertrophy of the brown fat nor enhanced calorigenic response to noradrenaline; it even led to enhanced rate of body cooling in cold water. Therefore the adaptive changes caused by running training most probably are not due to cold acclimation effects in spite of that propranolol, when associated with the running sessions, antagonized the development of running-induced changes, too. Some of these changes, such as cardiomegaly, training bradycardia and

  18. The Effect of Therapeutic Blockades of Dust Particles-Induced Ca2+ Signaling and Proinflammatory Cytokine IL-8 in Human Bronchial Epithelial Cells

    PubMed Central

    Yoon, Ju Hee; Jeong, Sung Hwan; Hong, Jeong Hee

    2015-01-01

    Bronchial epithelial cells are the first barrier of defense against respiratory pathogens. Dust particles as extracellular stimuli are associated with inflammatory reactions after inhalation. It has been reported that dust particles induce intracellular Ca2+ signal, which subsequently increases cytokines production such as interleukin- (IL-) 8. However, the study of therapeutic blockades of Ca2+ signaling induced by dust particles in human bronchial epithelial cells is poorly understood. We investigated how to modulate dust particles-induced Ca2+ signaling and proinflammatory cytokine IL-8 expression. Bronchial epithelial BEAS-2B cells were exposed to PM10 dust particles and subsequent mediated intracellular Ca2+ signaling and reactive oxygen species signal. Our results show that exposure to several inhibitors of Ca2+ pathway attenuated the PM10-induced Ca2+ response and subsequent IL-8 mRNA expression. PM10-mediated Ca2+ signal and IL-8 expression were attenuated by several pharmacological blockades such as antioxidants, IP3-PLC blockers, and TRPM2 inhibitors. Our results show that blockades of PLC or TRPM2 reduced both of PM10-mediated Ca2+ signal and IL-8 expression, suggesting that treatment with these blockades should be considered for potential therapeutic trials in pulmonary epithelium for inflammation caused by environmental events such as seasonal dust storm. PMID:26640326

  19. Attenuation of Choroidal Neovascularization by β2-Adrenergic Receptor Antagonism

    PubMed Central

    Lavine, Jeremy A.; Sang, Yanzhi; Wang, Shoujian; Ip, Michael S.; Sheibani, Nader

    2013-01-01

    Objectives To determine if β-adrenergic blockade inhibits choroidal neovascularization (CNV) in a mouse model of laser-induced CNV, and to investigate the mechanism by which β-adrenoreceptor antagonism blunts CNV. Methods The impact of β-adrenoreceptor blockade on CNV was determined using the laser-induced CNV model. Briefly, mice were subjected to laser burns, inducing CNV, and treated with daily intraperitoneal injections of propranolol. Neovascularization was measured on choroidal-sclera flat mounts using intercellular adhesion molecule-2 immunofluorescence staining. The impact of β-adrenergic receptor signaling on expression of vascular endothelial growth factor (VEGF) was investigated using primary mouse choroidal endothelial cells (ChEC) and retinal pigment epithelial (RPE) cells. These cells were incubated with β-adrenoreceptor agonists and/or antagonists, and assayed for VEGF mRNA and protein levels. Results Propranolol-treated mice demonstrated a 50% reduction in laser-induced CNV. Norepinephrine treatment stimulated VEGF mRNA expression and protein secretion in both ChEC and RPE cells. This effect was blocked by β2-adrenoreceptor antagonism and mimicked by β2-adrenergic receptor agonists. Conclusions and Clinical Relevance β-Adrenergic blockade attenuated CNV. β2-Adrenergic receptors regulated VEGF expression in ChEC and RPE cells. Antagonists of β-adrenergic receptors are safe and well tolerated in patients with glaucoma and cardiovascular disease. Thus, blockade of β-adrenoreceptors may provide a new avenue to inhibit VEGF expression in CNV. PMID:23303344

  20. Energy Gaps and Interaction Blockade in Confined Quantum Systems

    SciTech Connect

    Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.

    2007-07-06

    We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.

  1. Unconventional Photon Blockade Based on Two-Photon Tunneling

    NASA Astrophysics Data System (ADS)

    Zhou, Y. H.; Shen, H. Z.

    2017-09-01

    The study on the unconventional photon blockade mainly focus on Kerr nonlinearity. In this paper, we study the unconventional photon blockade based on another kind of nonlinearity, that is two-photon tunneling. The optimal conditions for strong antibunching are found by analytic calculations and numerical simulations, and the results are compared with the unconventional photon blockade based on Kerr nonlinearity, we find that the two-photon tunneling system has advantages for the larger antibunching area. Finally, we show that, after the symmetric-antisymmetric mode transformation, the two kinds of nonlinearities are equivalent from the perspective of photon antibunching.

  2. Paravertebral blockade of the brachial plexus in dogs.

    PubMed

    Lemke, Kip A; Creighton, Catherine M

    2008-11-01

    Local anesthetic techniques have the unique ability to block peripheral nociceptive input associated with surgical trauma and inflammation and to prevent sensitization of central nociceptive pathways and the development of pathologic pain. Complete neural blockade of the canine brachial plexus is difficult to achieve using the traditional axillary technique. This article describes paravertebral blockade of the brachial plexus in dogs and a new modified paravertebral technique. Both techniques are relatively easy to perform and produce complete blockade of the forelimb, including the shoulder. A review of relevant clinical anatomy and guidelines for using electrical nerve locators are also included.

  3. Optimal Photon Blockade on the Maximal Atomic Coherence

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Jun; Yu, Chang-shui

    2016-12-01

    There is generally no obvious evidence in any direct relation between photon blockade and atomic coherence. Here instead of only illustrating the photon statistics, we show an interesting relation between the steady-state photon blockade and the atomic coherence by designing a weakly driven cavity QED system with a two-level atom trapped. It is shown for the first time that the maximal atomic coherence has a perfect correspondence with the optimal photon blockade. The negative effects of the strong dissipations on photon statistics, atomic coherence and their correspondence are also addressed. The numerical simulation is also given to support all of our results.

  4. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    PubMed

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  5. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2014-01-01

    Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  6. Alpha-adrenergic receptor blockade by phentolamine increases the efficacy of vasodilators in penile corpus cavernosum.

    PubMed

    Kim, N N; Goldstein, I; Moreland, R B; Traish, A M

    2000-03-01

    Penile trabecular smooth muscle tone, a major determinant of erectile function, is highly regulated by numerous inter- and intracellular pathways. The interaction between pathways mediating contraction and relaxation has not been studied in detail. To this end, we investigated the functional effects of alpha adrenergic receptor blockade with phentolamine and its interaction with vasodilators (sildenafil, vasoactive intestinal polypeptide (VIP) and PGE1) that elevate cyclic nucleotides on penile cavernosal smooth muscle contractility. In organ bath preparations of cavernosal tissue strips contracted with phenylephrine, phentolamine significantly enhanced relaxation induced by sildenafil, VIP and PGE1. Sildenafil, VIP or PGE1 also significantly enhanced relaxation induced by phentolamine in cavernosal tissue strips contracted with phenylephrine. To study the effects of alpha adrenergic receptor blockade and modification of cyclic nucleotide metabolism during active neurogenic input, cavernosal tissue strips in organ bath preparations were contracted with the non-adrenergic agonist endothelin-1 and subjected to electrical field stimulation (EFS) in the absence or presence of phentolamine and/or sildenafil. EFS (5-40Hz) typically caused biphasic relaxation and contraction responses. Phentolamine alone enhanced relaxation and reduced or prevented contraction to EFS. Sildenafil enhanced relaxation to EFS at lower frequencies (< or = 5 Hz). The combination of phentolamine and sildenafil enhanced EFS-induced relaxation at all frequencies tested. EFS, in the presence of 10 nM phentolamine and 30 nM sildenafil, produced enhanced relaxation responses which were quantitatively similar to those obtained in the presence of 50 nM sildenafil alone. Thus, blockade of alpha-adrenergic receptors with phentolamine increases the efficacy of cyclic nucleotide-dependent vasodilators. Furthermore, phentolamine potentiates relaxation and attenuates contraction in response to endogenous

  7. Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade

    NASA Technical Reports Server (NTRS)

    Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.

    1995-01-01

    INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.

  8. Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade

    NASA Technical Reports Server (NTRS)

    Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.

    1995-01-01

    INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.

  9. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients.

    PubMed

    Trichard, C; Paillère-Martinot, M L; Attar-Levy, D; Recassens, C; Monnet, F; Martinot, J L

    1998-04-01

    This study examined the binding to cortical serotonin 5-HT2A receptors of conventional doses of the typical neuroleptic chlorpromazine in comparison with clozapine, the prototype atypical antipsychotic, and amisulpride, a specific dopamine D2-D3 blocker. Seventeen schizophrenic patients treated with chlorpromazine (75-700 mg/day), four treated with clozapine (200-600 mg/day), and five treated with amisulpride (200-1200 mg/day) were studied. Cortical 5-HT2A binding was estimated by reference to the values for 14 antipsychotic-free schizophrenic subjects with the use of positron emission tomography and [18F]setoperone, a high-affinity radioligand for cortical 5-HT2A receptors. A dose-dependent decrease in the number of available cortical binding sites for [18F] setoperone was demonstrated in the chlorpromazine group; for the highest dose, there was a virtual lack of sites available for binding. A very low percentage of available binding sites was also observed in the clozapine-treated patients at all doses. This suggests a high level of 5-HT2A blockade with both clozapine and high doses of chlorpromazine. No significant binding of amisulpride to 5-HT2A receptors was detected. A high level of 5-HT2A receptor blockade does not appear specific to clozapine in comparison with high doses of chlorpromazine, suggesting that the distinct clinical profiles of both drugs are unrelated to 5-HT2A blockade itself.

  10. Synaptic blockade plays a major role in the neural disturbance of experimental spinal cord compression.

    PubMed

    Yoshida, Hideaki; Okada, Yasumasa; Maruiwa, Hirofumi; Fukuda, Kentaro; Nakamura, Masaya; Chiba, Kazuhiro; Toyama, Yoshiaki

    2003-12-01

    We analyzed dynamic processes of neural excitation propagation in the experimentally compressed spinal cord using a high-speed optical recording system. Transverse slices of the juvenile rat cervical spinal cord were stained with a voltage-sensitive dye (di-4-ANEPPS). Two components were identified in the depolarizing optical responses to dorsal root electrical stimulation: a fast component of short duration corresponding to pre-synaptic excitation and a slow component of long duration corresponding to post-synaptic excitation. In the directly compressed dorsal horn, the slow component was attenuated more (attenuated to 37.4 +/- 9.1% of the control) than the fast component (to 70.5 +/- 14.9%) (p < 0.01) at 400 msec after stimulation. Depolarizing optical responses to compression and to chemical synaptic blockade were similar. There was a regional difference between white matter (attenuated to 86.2 +/- 10.5%) and gray matter (to 72.6 +/- 10.4%) (p < 0.03) in compression-induced changes of the fast components; neural activity in the white matter was resistant to compression, especially in the dorsal root entry zone. Depolarizing optical signals in the region adjacent to the directly compressed site were also attenuated; the fast component was attenuated to 77.6 +/- 10.4% and the slow component to 31.8 +/- 11.3% of the control signals (p < 0.01). Spinal cord dysfunction induced by purely mechanical compression without tissue destruction was virtually restored with early decompression. We suggest that a disturbance of synaptic transmission plays an important role in the pathophysiological mechanisms of spinal cord compression, at least under in vitro experimental conditions of juvenile rats.

  11. Pancreatic Digestive Enzyme Blockade in the Intestine Increases Survival After Experimental Shock

    PubMed Central

    DeLano, Frank A.; Hoyt, David B.; Schmid-Schönbein, Geert W.

    2015-01-01

    Shock, sepsis, and multiorgan failure are associated with inflammation, morbidity, and high mortality. The underlying pathophysiological mechanism is unknown, but evidence suggests that pancreatic enzymes in the intestinal lumen autodigest the intestine and generate systemic inflammation. Blocking these enzymes in the intestine reduces inflammation and multiorgan dysfunction. We investigated whether enzymatic blockade also reduces mortality after shock. Three rat shock models were used here: hemorrhagic shock, peritonitis shock induced by placement of cecal material into the peritoneum, and endotoxin shock. One hour after initiation of hemorrhagic, peritonitis, or endotoxin shock, animals were administered one of three different pancreatic enzyme inhibitors—6-amidino-2-naphtyl p-guanidinobenzoate di-methanesulfate, tranexamic acid, or aprotinin—into the lumen of the small intestine. In all forms of shock, blockade of digestive proteases with protease inhibitor attenuated entry of digestive enzymes into the wall of the intestine and subsequent autodigestion and morphological damage to the intestine, lung, and heart. Animals treated with protease inhibitors also survived in larger numbers than untreated controls over a period of 12 weeks. Surviving animals recovered completely and returned to normal weight within 14 days after shock. The results suggest that the active and concentrated digestive enzymes in the lumen of the intestine play a central role in shock and multi-organ failure, which can be treated with protease inhibitors that are currently available for use in the clinic. PMID:23345609

  12. Effect of intestinal chylomicron secretory blockade on apolipoprotein synthesis in the newborn piglet.

    PubMed

    Black, D D

    1992-04-01

    Pluronic L-81 is a hydrophobic surfactant which blocks intestinal chylomicron secretion at the pre-Golgi level without affecting triacylglycerol uptake and re-esterification. To study the effects of such blockade on apolipoprotein synthesis, newborn female piglets received 24 h intraduodenal infusions of low-triacylglycerol, or high-triacylglycerol with or without Pluronic L-81, diets, followed by determination of apolipoprotein (apo) B-48, A-I and A-IV synthesis and content and apo B and A-IV mRNA levels in the small intestine. Jejunal apo B-48 content, synthesis and mRNA levels were down-regulated below basal levels by the addition of Pluronic to the high-triacylglycerol infusion. The normal increase in apo A-I synthesis induced by triacylglycerol absorption was ablated in both jejunum and ileum, even though the expected increase in apo A-I content in jejunum still occurred. Although attenuated, the expected increase in jejunal apo A-IV synthesis and mRNA levels with triacylglycerol absorption was still present with Pluronic treatment. These results suggest very different mechanisms of cellular regulation and trafficking for the various apolipoproteins incorporated into nascent intestinal chylomicrons. Apo B may be specifically down-regulated by the chylomicron secretory blockade induced by Pluronic L-81.

  13. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock.

    PubMed

    DeLano, Frank A; Hoyt, David B; Schmid-Schönbein, Geert W

    2013-01-23

    Shock, sepsis, and multiorgan failure are associated with inflammation, morbidity, and high mortality. The underlying pathophysiological mechanism is unknown, but evidence suggests that pancreatic enzymes in the intestinal lumen autodigest the intestine and generate systemic inflammation. Blocking these enzymes in the intestine reduces inflammation and multiorgan dysfunction. We investigated whether enzymatic blockade also reduces mortality after shock. Three rat shock models were used here: hemorrhagic shock, peritonitis shock induced by placement of cecal material into the peritoneum, and endotoxin shock. One hour after initiation of hemorrhagic, peritonitis, or endotoxin shock, animals were administered one of three different pancreatic enzyme inhibitors--6-amidino-2-naphtyl p-guanidinobenzoate dimethanesulfate, tranexamic acid, or aprotinin--into the lumen of the small intestine. In all forms of shock, blockade of digestive proteases with protease inhibitor attenuated entry of digestive enzymes into the wall of the intestine and subsequent autodigestion and morphological damage to the intestine, lung, and heart. Animals treated with protease inhibitors also survived in larger numbers than untreated controls over a period of 12 weeks. Surviving animals recovered completely and returned to normal weight within 14 days after shock. The results suggest that the active and concentrated digestive enzymes in the lumen of the intestine play a central role in shock and multiorgan failure, which can be treated with protease inhibitors that are currently available for use in the clinic.

  14. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy

    PubMed Central

    Lee, Ju Yeon; Lee, Hyun Tae; Shin, Woori; Chae, Jongseok; Choi, Jaemo; Kim, Sung Hyun; Lim, Heejin; Won Heo, Tae; Park, Kyeong Young; Lee, Yeon Ji; Ryu, Seong Eon; Son, Ji Young; Lee, Jee Un; Heo, Yong-Seok

    2016-01-01

    Cancer cells express tumour-specific antigens derived via genetic and epigenetic alterations, which may be targeted by T-cell-mediated immune responses. However, cancer cells can avoid immune surveillance by suppressing immunity through activation of specific inhibitory signalling pathways, referred to as immune checkpoints. In recent years, the blockade of checkpoint molecules such as PD-1, PD-L1 and CTLA-4, with monoclonal antibodies has enabled the development of breakthrough therapies in oncology, and four therapeutic antibodies targeting these checkpoint molecules have been approved by the FDA for the treatment of several types of cancer. Here, we report the crystal structures of checkpoint molecules in complex with the Fab fragments of therapeutic antibodies, including PD-1/pembrolizumab, PD-1/nivolumab, PD-L1/BMS-936559 and CTLA-4/tremelimumab. These complex structures elucidate the precise epitopes of the antibodies and the molecular mechanisms underlying checkpoint blockade, providing useful information for the improvement of monoclonal antibodies capable of attenuating checkpoint signalling for the treatment of cancer. PMID:27796306

  15. Potential effect of angiotensin II receptor blockade in adipose tissue and bone.

    PubMed

    Nakagami, Hironori; Osako, Mariana Kiomy; Morishita, Ryuichi

    2013-01-01

    Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, and also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Blockade of renin-angiotensin system (RAS) attenuates weight gain and adiposity by enhanced energy expenditure, and the favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. Similarly, bone metabolism is closely regulated by hormones and cytokines, which have effects on both bone resorption and deposition. It is known that the receptors of Ang II are expressed in culture osteoclasts and osteoblasts, and Ang II is postulated to be able to act upon the cells involved in bone metabolism. In in vitro system, Ang II induced the differentiation and activation of osteoclasts responsible for bone resorption. Importantly, it was demonstrated by the sub-analysis of a recent clinical study that the fracture risk was significantly reduced by the usage of angiotensin-converting enzyme inhibitors. To treat the subgroups of hypertensive patients with osteoporosis RAS can be considered a novel target.

  16. Selective relaxant binding agents for reversal of neuromuscular blockade.

    PubMed

    Bom, Anton; Epemolu, Ola; Hope, Frank; Rutherford, Samantha; Thomson, Karen

    2007-06-01

    Traditionally, reversal of neuromuscular blockade during anaesthesia was achieved by increasing the acetylcholine concentration in the neuromuscular junction using acetylcholinesterase inhibitors. However, this is ineffective against profound blockade. Furthermore, the increase in acetylcholine level is not limited to the neuromuscular junction, resulting in unwanted side effects requiring co-treatment with muscarinic antagonists. Selective relaxant binding agents offer a new approach for the reversal of neuromuscular blockade: encapsulation of the neuromuscular blocking agent, resulting in inactivation. As part of this new approach, cyclodextrin molecules have been designed that selectively encapsulate steroidal neuromuscular blocking agents. Both animal and human experiments have demonstrated that fast, effective and complete recovery from both normal and profound neuromuscular blockade is now possible. Furthermore, these cyclodextrin derivatives do not have the unwanted side effects of acetylcholinesterase inhibitors.

  17. Phonon blockade in a quadratically coupled optomechanical system

    NASA Astrophysics Data System (ADS)

    Xie, Hong; Liao, Chang-Geng; Shang, Xiao; Ye, Ming-Yong; Lin, Xiu-Min

    2017-07-01

    Phonon blockade is achieved in a quadratically coupled optomechanical system, in which the nonlinear interaction between phonons is induced by a driving field via radiation pressure. It is different from the previous standard methods, where the nonlinear interaction for observing phonon blockade is obtained by coupling the mechanical resonator to a two-level system. The effective coupling strength can be tuned by controlling the amplitudes of the driving field, which allows large nonlinearities for the optomechanical system. The second-order correlation function is discussed both analytically and numerically to characterize the phonon statistical properties and the results show that the phonon blockade is available when the effective coupling strength is larger than the mechanical decay rate. This work provides a possible way to experimentally realize phonon blockade.

  18. Dual renin-angiotensin-aldosterone blockade: promises and pitfalls.

    PubMed

    Chrysant, Steven G; Chrysant, George S

    2015-01-01

    Single renin-angiotensin-aldosterone system (RAAS) blockade has been shown to be effective and safe for the treatment of hypertension, coronary heart disease (CHD), heart failure (HF), diabetes, and chronic kidney disease (CKD) with proteinuria. Due to the action of RAAS blockers at various levels of the RAAS cascade, it was hypothesized that dual RAAS blockade would result in more complete inhibition of angiotensin II (Ang II) production and be more effective in blocking its detrimental cardiovascular remodeling effects. Unfortunately, several clinical trials in patients with hypertension, CHD, HF, and CKD with proteinuria have demonstrated no superiority of dual versus single RAAS blockade, but a higher incidence of adverse events. Based on these findings, dual RAAS blockade is no longer recommended for the routine treatment of various cardiovascular diseases, except diabetic nephropathy with proteinuria and HF with reduced ejection fraction. All the new information gathered from studies within the last 3 years will be presented in this review.

  19. Rydberg blockade effects at n ˜300 in strontium

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Dunning, F. B.; Yoshida, S.; Burgdörfer, J.

    2015-11-01

    Rydberg blockade at n ˜300 , is examined using strontium n F13 Rydberg atoms excited in an atomic beam in a small volume defined by two tightly focused crossed laser beams. The observation of blockade for such states is challenging due to their extreme sensitivity to stray fields and the many magnetic sublevels associated with F states which results in a high local density of states. Nonetheless, with a careful choice of laser polarization to selectively excite only a limited number of these sublevels, sizable blockade effects are observed on an ˜0.1 mm length scale extending blockade measurements into the near-macroscopic regime and enabling study of the dynamics of strongly coupled many-body high-n Rydberg systems under carefully controlled conditions.

  20. Blockade involving high- n, n ~ 300 , strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Yoshida, Shuhei; Burgdörfer, Joachim; Zhang, Xinyue; Dunning, F. Barry

    2016-05-01

    The blockade of high- n strontium n1F3 Rydberg states contained in a hot atomic beam is investigated both theoretically and experimentally. One difficulty in such experiments is that, once created, Rydberg atoms move out of the excitation volume reducing blockade effects. While the effects of such motion are apparent, the data provide strong evidence of blockade, consistent with theoretical predictions. Because of their relatively high angular momentum (L = 3) , a pair of n1F3 Rydberg atoms have many degenerate states whose degeneracy is removed by Rydberg-Rydberg interactions yielding a high density of states near the target energy. To evaluate the effect of blockade not only the energy shifts but also the modification of the oscillator strengths for excitation have to be taken into account. The n-scaling of the interactions and the importance of high-order multipoles will also be discussed. Research supported by the NSF and Robert A. Welch Foundation.

  1. Radiotherapy and immune checkpoint blockades: a snapshot in 2016

    PubMed Central

    Koo, Taeryool; Kim, In Ah

    2016-01-01

    Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data. PMID:28030901

  2. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  3. Control of neuromuscular blockade in the presence of sensor faults.

    PubMed

    Lemos, João M; Magalhães, Hugo; Mendonça, Teresa; Dionísio, Rui

    2005-11-01

    The problem of embedding sensor fault tolerance in feedback control of neuromuscular blockade is considered. For tackling interruptions of feedback measurements, a structure based upon Bayesian inference as well as a predictive filter is proposed. This algorithm is general and can be applied to different situations. Here, it is incorporated in an adaptive automatic system for feedback control of neuromuscular blockade using continuous infusion of muscle relaxants. A significant contribution consists in the experimental clinical testing of the algorithm in patients undergoing surgery.

  4. From Napoleon To Netanyahu: Blockading Through Two Centuries

    DTIC Science & Technology

    2016-04-01

    galley ship in ancient times, blockading continues to be a fundamental activity of navies. Over the centuries, its meaning and roles evolved in...of the latter, strategic importance. This does not mean that they were not both necessary and effective. Throughout the history of warfare and...Throughout blockading’s history , this is AU/ACSC/Howard, J/AY16 4 readily visible by the wide variety of names blockading activities receive by those

  5. Interleukin-6 blockade in ocular inflammatory diseases

    PubMed Central

    Mesquida, M; Leszczynska, A; Llorenç, V; Adán, A

    2014-01-01

    Interleukin-6 (IL-6) is a key cytokine featuring redundancy and pleiotropic activity. It plays a central role in host defence against environmental stress such as infection and injury. Dysregulated, persistent interleukin (IL)-6 production has been implicated in the development of various autoimmune, chronic inflammatory diseases and even cancers. Significant elevation of IL-6 has been found in ocular fluids derived from refractory/chronic uveitis patients. In experimental autoimmune uveitis models with IL-6 knock-out mice, IL-6 has shown to be essential for inducing inflammation. IL-6 blockade can suppress acute T helper type 17 (Th17) responses via its differentiation and, importantly, can ameliorate chronic inflammation. Tocilizumab, a recombinant humanized anti-IL-6 receptor antibody, has been shown to be effective in several autoimmune diseases, including uveitis. Herein, we discuss the basic biology of IL-6 and its role in development of autoimmune conditions, focusing particularly on non-infectious uveitis. It also provides an overview of efficacy and safety of tocilizumab therapy for ocular inflammatory diseases. PMID:24528300

  6. Prolonged sensory-selective nerve blockade

    PubMed Central

    Sagie, Itay; Kohane, Daniel S.

    2010-01-01

    Sensory-selective local anesthesia has long been a key goal in local anesthetic development. For example, it allows women to be pain-free during labor without compromising their ability to push. Here we show that prolonged sensory-selective nerve block can be produced by specific concentrations of surfactants—such as are used to enhance drug flux across skin—in combination with QX-314, a lidocaine derivative that has relative difficulty penetrating nerves. For example, injection of 25 mM QX-314 in 30 mM octyltrimethylammonium bromide (OTAB) lasted up to 7 h. Sensory selectivity was imparted to varying degrees by cationic, neutral, and anionic surfactants, and also was achieved with another lidocaine derivative, QX-222. Simultaneous injection of OTAB at a s.c. injection site remote from the sciatic nerve did not result in prolonged sensory-specific nerve blockade from QX-314, suggesting that the observed effect is due to a local interaction between the surfactant and the lidocaine derivative, not a systemic effect. PMID:20133669

  7. Costimulation Blockade in Kidney Transplantation: An Update

    PubMed Central

    Malvezzi, Paolo; Jouve, Thomas; Rostaing, Lionel

    2016-01-01

    Abstract In the setting of solid-organ transplantation, calcineurin inhibitor (CNI)-based therapy remains the cornerstone of immunosuppression. However, long-term use of CNIs is associated with some degree of nephrotoxicity. This has led to exploring the blockade of some costimulation pathways as an efficient immunosuppressive tool instead of using CNIs. The only agent already in clinical use and approved by the health authorities for kidney transplant patients is belatacept (Nulojix), a fusion protein that interferes with cytotoxic T lymphocyte-associated protein 4. Belatacept has been demonstrated to be as efficient as cyclosporine-based immunosuppression and is associated with significantly better renal function, that is, no nephrotoxicity. However, in the immediate posttransplant period, significantly more mild/moderate episodes of acute rejection have been reported, favored by the fact that cytotoxic T lymphocyte-associated protein pathway has an inhibitory effect on the alloimmune response; thereby its inhibition is detrimental in this regard. This has led to the development of antibodies that target CD28. The most advanced is FR104, it has shown promise in nonhuman primate models of autoimmune diseases and allotransplantation. In addition, research into blocking the CD40-CD154 pathway is underway. A phase II study testing ASK1240, that is, anti-CD40 antibody has been completed, and the results are pending. PMID:27472094

  8. Orbital excitation blockade and algorithmic cooling in quantum gases.

    PubMed

    Bakr, Waseem S; Preiss, Philipp M; Tai, M Eric; Ma, Ruichao; Simon, Jonathan; Greiner, Markus

    2011-12-21

    Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.

  9. Effect of global and regional sympathetic blockade on arterial pressure during water deprivation in conscious rats.

    PubMed

    Veitenheimer, Britta J; Engeland, William C; Guzman, Pilar A; Fink, Gregory D; Osborn, John W

    2012-10-15

    Forty-eight hours of water deprivation (WD) in conscious rats results in a paradoxical increase in mean arterial pressure (MAP). Previous studies suggest this may be due to increased sympathetic nerve activity (SNA). However, this remains to be investigated in conscious, freely behaving animals. The purpose of this study was to determine, in conscious rats, the role of the sympathetic nervous system (SNS) in mediating WD-induced increases in MAP and to identify which vascular beds are targeted by increased SNA. Each rat was chronically instrumented with a radiotelemetry transmitter to measure MAP and heart rate (HR) and an indwelling venous catheter for plasma sampling and/or drug delivery. MAP and HR were continuously measured during a 2-day baseline period followed by 48 h of WD and then a recovery period. By the end of the WD period, MAP increased by ∼15 mmHg in control groups, whereas HR did not change significantly. Chronic blockade of α(1)/β(1)-adrenergic receptors significantly attenuated the WD-induced increase in MAP, suggesting a role for global activation of the SNS. However, the MAP response to WD was unaffected by selective denervations of the hindlimb, renal, or splanchnic vascular beds, or by adrenal demedullation. In contrast, complete adrenalectomy (with corticosterone and aldosterone replaced) significantly attenuated the MAP response to WD in the same time frame as α(1)/β(1)-adrenergic receptor blockade. These results suggest that, in conscious water-deprived rats, the SNS contributes to the MAP response and may be linked to release of adrenocortical hormones. Finally, this sympathetically mediated response is not dependent on increased SNA to one specific vascular bed.

  10. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells.

    PubMed

    Ogawa, Hiroyuki; Koyanagi-Aoi, Michiyo; Otani, Kyoko; Zen, Yoh; Maniwa, Yoshimasa; Aoi, Takashi

    2017-09-26

    In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them "lung cancer organoids". We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.

  11. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus.

    PubMed

    Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J

    2014-09-01

    Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in

  12. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Martire, Alberto; Ledent, Catherine; Ceruti, Stefania; Abbracchio, Maria P

    2007-04-01

    The aim of this review is to summarize and critically discuss the complex role played by adenosine A(2A) receptors (A(2A)Rs) in Huntington's disease (HD). Since A(2A)Rs are mainly localized on the neurons, which degenerate early in HD, and given their ability to stimulate glutamate outflow and inflammatory gliosis, it was hypothesized that they could be involved in the pathogenesis of HD, and that A(2A)R antagonists could be neuroprotective. This was further sustained by the demonstration that A(2A)Rs and underlying signaling systems undergo profound changes in cellular and animal models of HD. More recently, however, the equation A(2A) receptor blockade=neuroprotection has appeared too simplistic. First, it is now definitely clear that, besides mediating 'bad' responses (for example, stimulation of glutamate outflow and excessive glial activation), A(2A)Rs also promote 'good' responses (such as trophic and antinflammatory effects). This implies that A(2A)R blockade results either in pro-toxic or neuroprotective effects according to the mechanisms involved in a given experimental model. Second, since HD is a chronically progressive disease, the multiple mechanisms involving A(2A)Rs may play different relative roles along the degenerative process. Such different mechanisms can be influenced by A(2A)R activation or blockade in different ways, even leading to opposite outcomes depending on the time of agonist/antagonist administration. The number, and the complexity, of the possible scenarios is further increased by the influence of mutant Huntingtin on both the expression and functions of A(2A)Rs, and by the strikingly different effects mediated by A(2A)Rs expressed by different cell populations within the brain.

  13. Obesity and gastrointestinal hormones-dual effect of angiotensin II receptor blockade and a partial agonist of PPAR-γ.

    PubMed

    Nakagami, Hironori; Morishita, Ryuichi

    2011-03-01

    Obesity is strongly associated with type 2 diabetes, hypertension, and hyperlipidemia, which is one of the leading causes of mortality and morbidity worldwide. It is now clear that gut hormones play a role in the regulation of body weight and represent therapeutic targets for the future treatment of obesity. Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, but also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Importantly, blockade of the RAS attenuates weight gain and adiposity by enhanced energy expenditure. The favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. We designed a comparative study of telmisartan and losartan in ApoE-deficient mice. Treatment with telmisartan or losartan significantly reduced the development of lipid-rich plaque. However, treatment with telmisartan significantly improved endothelial dysfunction and inhibited lipid accumulation in the liver. These favorable characteristics of telmisartan might be due to its action as a partial agonist of PPAR-γ, beyond its blood pressure-lowering effect, through Ang II blockade, which may be called "metabosartan".

  14. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  15. 8-OH-DPAT abolishes the pulmonary C-fiber-mediated apneic response to fentanyl largely via acting on 5HT1A receptors in the nucleus tractus solitarius

    PubMed Central

    Zhuang, Jianguo; Zhang, Zhenxiong; Zhang, Cancan

    2012-01-01

    Intravenous bolus injection of morphine causes a vagal-mediated brief apnea (∼3 s), while continuous injection, via action upon central μ-opioid receptor (MOR), arrests ventilation (>20 s) that is eliminated by stimulating central 5-hydroxytryptamine 1A receptors (5HT1ARs). Bronchopulmonary C-fibers (PCFs) are essential for triggering a brief apnea, and their afferents terminate at the caudomedial region of the nucleus tractus solitarius (mNTS) that densely expresses 5HT1ARs. Thus we asked whether the vagal-mediated apneic response to MOR agonists was PCF dependent, and if so, whether this apnea was abolished by systemic administration of 8-hydroxy-2-(di-n-propylamino)tetral (8-OH-DPAT) largely through action upon mNTS 5HT1ARs. Right atrial bolus injection of fentanyl (5.0 μg/kg, a MOR agonist) was performed in the anesthetized and spontaneously breathing rats before and after: 1) selective blockade of PCFs' conduction and subsequent bivagotomy; 2) intravenous administration of 5HT1AR agonist 8-OH-DPAT; 3) intra-mNTS injection of 8-OH-DPAT; and 4) intra-mNTS injection of 5HT1AR antagonist WAY-100635 followed by 8-OH-DPAT (iv). We found the following: First, fentanyl evoked an immediate apnea (2.5 ± 0.4 s, ∼6-fold longer than the baseline expiratory duration, TE), which was abolished by either blocking PCFs' conduction or bivagotomy. Second, this apnea was prevented by systemic 8-OH-DPAT challenge. Third, intra-mNTS injection of 8-OH-DPAT greatly attenuated the apnea by 64%. Finally, intra-mNTS microinjection of WAY-100635 significantly attenuated (58%) the apneic blockade by 8-OH-DPAT (iv). We conclude that the vagal-mediated apneic response to MOR activation depends on PCFs, which is fully antagonized by systemic 8-OH-DPAT challenge largely via acting on mNTS 5HT1ARs. PMID:22696579

  16. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia.

  17. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    PubMed Central

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders. PMID:27992452

  18. Exploring dipole blockade using high- n strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Ye, Shuzhen; Dunning, F. Barry; Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim

    2014-05-01

    Studies of the production of strongly-polarized quasi-1D high- n, n ~ 300 , strontium `` nF'' Rydberg states in an atomic beam by three-photon excitation in a weak dc field suggest that (in the absence of blockade effects) densities of ~106 cm-3 might be achieved. At such densities the interparticle separation, ~ 100 μm , becomes comparable to that at which dipole blockade effects are expected to become important. Apparatus modifications are underway to allow the exploration of blockade at very high- n and the effects of the high energy level density. Blockade is also being examined through calculations of the energy spectrum for two interaction atoms. Access to the blockade regime promises creation of Rydberg atoms at well-defined separations whose interactions can be coherently controlled using electric field pulses thereby enabling study of the dynamics of strongly-coupled Rydberg systems. Research supported by the NSF, the Robert A. Welch Foundation, and the FWF (Austria).

  19. Theory of spin blockade in a triple quantum dots

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Hawrylak, Pawel

    2011-03-01

    We present a theory of electronic properties and spin blockade in a linear triple quantum dots. We use micoroscopic LCHO-CI and double-band Hubbard model to analyze the electronic and spin properties of a triple quantum dots near a symmetrical quadruple point involving the (1,1,1) configuration which is essential for implementing quantum information processing with electron spin. We calculate spectral functions and relate them via the rate equation, including coupling with a phonon bath, to current as a function of applied bias. We show that the spin blockade in a triple quantum dots can serve as a spectroscopic tool to distinguish spin polarized states from spin depolarized states. We also show that a spin blockade is developed only at high bias when an onsite triplet state on the edge quantum dot connected to the source lead becomes accessible in the transport window. In contradiction to the case of double quantum dot molecule, the onsite triplet is not only essential for lifting spin blockade but also important for building up spin polarisation and spin blockade in the system. The authors would like to acknowledge financial support from NSERC, OGS, and QuantumWorks.

  20. Intravenous platelet blockade with cangrelor during PCI.

    PubMed

    Bhatt, Deepak L; Lincoff, A Michael; Gibson, C Michael; Stone, Gregg W; McNulty, Steven; Montalescot, Gilles; Kleiman, Neal S; Goodman, Shaun G; White, Harvey D; Mahaffey, Kenneth W; Pollack, Charles V; Manoukian, Steven V; Widimsky, Petr; Chew, Derek P; Cura, Fernando; Manukov, Ivan; Tousek, Frantisek; Jafar, M Zubair; Arneja, Jaspal; Skerjanec, Simona; Harrington, Robert A

    2009-12-10

    Intravenous cangrelor, a rapid-acting, reversible adenosine diphosphate (ADP) receptor antagonist, might reduce ischemic events during percutaneous coronary intervention (PCI). In this double-blind, placebo-controlled study, we randomly assigned 5362 patients who had not been treated with clopidogrel to receive either cangrelor or placebo at the time of PCI, followed by 600 mg of clopidogrel. The primary end point was a composite of death, myocardial infarction, or ischemia-driven revascularization at 48 hours. Enrollment was stopped when an interim analysis concluded that the trial would be unlikely to show superiority for the primary end point. The primary end point occurred in 185 of 2654 patients receiving cangrelor (7.0%) and in 210 of 2641 patients receiving placebo (8.0%) (odds ratio in the cangrelor group, 0.87; 95% confidence interval [CI], 0.71 to 1.07; P=0.17) (modified intention-to-treat population adjusted for missing data). In the cangrelor group, as compared with the placebo group, two prespecified secondary end points were significantly reduced at 48 hours: the rate of stent thrombosis, from 0.6% to 0.2% (odds ratio, 0.31; 95% CI, 0.11 to 0.85; P=0.02), and the rate of death from any cause, from 0.7% to 0.2% (odds ratio, 0.33; 95% CI, 0.13 to 0.83; P=0.02). There was no significant difference in the rate of blood transfusion (1.0% in the cangrelor group and 0.6% in the placebo group, P=0.13), though major bleeding on one scale was increased in the cangrelor group, from 3.5% to 5.5% (P<0.001), because of more groin hematomas. The use of periprocedural cangrelor during PCI was not superior to placebo in reducing the primary end point. The prespecified secondary end points of stent thrombosis and death were lower in the cangrelor group, with no significant increase in the rate of transfusion. Further study of intravenous ADP blockade with cangrelor may be warranted. (ClinicalTrials.gov number, NCT00385138.) 2009 Massachusetts Medical Society

  1. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  2. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  3. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    PubMed

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH.

  4. Microwave variable waveguide attenuator.

    PubMed

    Fabeni, P; Mugnai, D; Pazzi, G P; Ranfagni, A

    2008-06-01

    A new type of cutoff attenuator is presented. The attenuator works in the X-band in conditions of almost perfect matching. This means that the phase of the wave, which propagates inside the guide, does not suffer sensible variation in the passage between X- and K(u)-bands. Moreover, the attenuator works directly in the X-band, avoiding the passage between waveguide and cable, thus eliminating spurious effects due to this (double) passage. Experimental results of attenuation and dephasing using a prototype are also presented.

  5. 5-HT₂A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: involvement of the noradrenergic system.

    PubMed

    Quesseveur, G; Repérant, C; David, D J; Gardier, A M; Sanchez, C; Guiard, B P

    2013-04-01

    Evidence suggests that the serotonin 2A receptor (5-HT2AR) modulates the therapeutic activity of selective serotonin reuptake inhibitors (SSRIs). Indeed, among the genetic factors known to influence the individual response to antidepressants, the HTR2A gene has been associated with SSRIs response in depressed patients. However, in these pharmacogenetic studies, the consequences of HTR2A gene polymorphisms on 5-HT2AR expression or function are lacking and the precise role of this receptor is still matter of debate. This study examined the effect of 5-HT2AR agonism or antagonism with DOI and MDL100907, respectively, on the serotonergic system and the antidepressant-like activity of the SSRI escitalopram in mouse. The 5-HT2AR agonist DOI decreased the firing rate of 5-HT neurons in the dorsal raphe (DR) nucleus of 5-HT2AR(+/+) anesthetized mice. This inhibitory response persisted in 5-HT2CR(-/-) but was completely blunted in 5-HT2AR(-/-) mutants. Moreover, the suppressant effect of DOI on DR 5-HT neuronal activity in 5-HT2AR(+/+) mice was attenuated by the loss of noradrenergic neurons induced by the neurotoxin DSP4. Conversely, in 5-HT2AR(+/+) mice, the pharmacological inactivation of the 5-HT2AR by the selective antagonist MDL100907 reversed escitalopram-induced decrease in DR 5-HT neuronal activity. Remarkably, in microdialysis experiments, a single injection of escitalopram increased cortical extracellular 5-HT, but not NE, levels in awake 5-HT2AR(+/+) mice. Although the addition of MDL100907 did not potentiate 5-HT neurotransmission, it allowed escitalopram to increase cortical NE outflow and consequently to elicit an antidepressant-like effect in the forced swimming test. These results suggest that the blockade of the 5-HT2AR may strengthen the antidepressant-like effect of escitalopram by facilitating the enhancement of the brain NE transmission. They provide support for the use of atypical antipsychotics with SSRIs as a relevant antidepressant augmentation

  6. Recent changes in the landscape of combination RAS blockade.

    PubMed

    Epstein, Benjamin J; Smith, Steven M; Choksi, Rushab

    2009-11-01

    The renin-angiotensin system (RAS) is a prime target for cardiovascular drug therapy. Inhibition of the RAS lowers blood pressure and confers protection against cardiovascular and renal events. These latter benefits cannot be entirely attributed to blood pressure lowering. Angiotensin-converting enzyme (ACE)-inhibitors and angiotensin receptor blockers (ARBs) have been studied extensively and, while there is irrefutable evidence that these agents mitigate the risk for cardiovascular and renal events, their protection is incomplete. In outcomes studies that have employed ACE-inhibitors or ARBs there has been a relatively high residual event rate in the treatment arm and this has been ascribed, by some, to the fact that neither ACE-inhibitors nor ARBs completely repress RAS. For this reason, combined RAS blockade with an ACE-inhibitor and ARB has emerged as a therapeutic option. In hypertension, combined RAS blockade elicits only a marginal incremental drop in blood pressure and it does not further lower the risk for cardiovascular events. In chronic heart failure and proteinuric renal disease, combining these agents in carefully selected patients is associated with a reduction in clinical events. Irrespective of the setting, dual RAS blockade is associated with an increase in the risk for adverse events, primarily hyperkalemia and worsening renal function. The emergence of the direct renin inhibitor, aliskiren, has afforded clinicians a new strategy for RAS blockade. Renin system blockade with aliskiren plus another RAS agent is the subject of ongoing large-scale clinical trials and early studies suggest promise for this strategy. Currently, combined RAS blockade with an ACE-inhibitor and an ARB should not be routinely employed for hypertension; however, the combination of an ACE-inhibitor or ARB with aliskiren might be considered in some patients given the more formidable blood pressure-lowering profile of this regimen. In carefully selected patients with heart

  7. Dexamethasone added to lidocaine prolongs axillary brachial plexus blockade.

    PubMed

    Movafegh, Ali; Razazian, Mehran; Hajimaohamadi, Fatemeh; Meysamie, Alipasha

    2006-01-01

    Different additives have been used to prolong regional blockade. We designed a prospective, randomized, double-blind study to evaluate the effect of dexamethasone added to lidocaine on the onset and duration of axillary brachial plexus block. Sixty patients scheduled for elective hand and forearm surgery under axillary brachial plexus block were randomly allocated to receive either 34 mL lidocaine 1.5% with 2 mL of isotonic saline chloride (control group, n = 30) or 34 mL lidocaine 1.5% with 2 mL of dexamethasone (8 mg) (dexamethasone group, n = 30). Neither epinephrine nor bicarbonate was added to the treatment mixture. We used a nerve stimulator and multiple stimulations technique in all of the patients. After performance of the block, sensory and motor blockade of radial, median, musculocutaneous, and ulnar nerves were recorded at 5, 15, and 30 min. The onset time of the sensory and motor blockade was defined as the time between last injection and the total abolition of the pinprick response and complete paralysis. The duration of sensory and motor blocks were considered as the time interval between the administration of the local anesthetic and the first postoperative pain and complete recovery of motor functions. Sixteen patients were excluded because of unsuccessful blockade. The duration of surgery and the onset times of sensory and motor block were similar in the two groups. The duration of sensory (242 +/- 76 versus 98 +/- 33 min) and motor (310 +/- 81 versus 130 +/- 31 min) blockade were significantly longer in the dexamethasone than in the control group (P < 0.01). We conclude that the addition of dexamethasone to lidocaine 1.5% solution in axillary brachial plexus block prolongs the duration of sensory and motor blockade.

  8. Adenosine A2B receptor blockade slows growth of bladder and breast tumors.

    PubMed

    Cekic, Caglar; Sag, Duygu; Li, Yuesheng; Theodorescu, Dan; Strieter, Robert M; Linden, Joel

    2012-01-01

    The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.

  9. Blockade of the renin-angiotensin system prevents acute and immunologically relevant colitis in murine models.

    PubMed

    Okawada, Manabu; Wilson, Michael W; Larsen, Scott D; Lipka, Elke; Hillfinger, John; Teitelbaum, Daniel H

    2016-12-01

    Blockade of the renin-angiotensin system (RAS) has been shown to alleviate inflammatory processes in the gastrointestinal tract. The aim of this study was to determine if blockade of the RAS would be effective in an immunologically relevant colitis model, and to compare outcome with an acute colitis model. A losartan analog, CCG-203025 (C23H26ClN3O5S) containing a highly polar sulfonic acid moiety that we expected would allow localized mucosal antagonism with minimal systemic absorption was selected as an angiotensin II type 1a receptor antagonist (AT1aR-A). Two colitis models were studied: (1) Acute colitis was induced in 8- to 10-week-old C57BL/6J mice by 2.5 % dextran sodium sulfate (DSS, in drinking water) for 7 days. (2) IL10-/-colitis Piroxicam (200 ppm) was administered orally in feed to 5-week-old IL-10-/-mice (C57BL/6J background) for 14 days followed by enalaprilat (ACE-I), CCG-203025 or PBS administered transanally for 14 days. In the DSS model, weight loss and histologic score for CCG-203025 were better than with placebo. In the IL10-/-model, ACE-I suppressed histologic damage better than CCG-203025. Both ACE-I and CCG-203025 reduced pro-inflammatory cytokines and chemokines. This study demonstrated the therapeutic efficacy of both ACE-I and AT1aR-A for preventing the development of both acute and immunologically relevant colitis.

  10. Anisotropic blockade using pendular long-range Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew T.; Lee, Hyunwoo; Pérez-Ríos, Jesús; Greene, Chris H.

    2017-05-01

    We propose an experiment to demonstrate a blockade mechanism caused by long-range anisotropic interactions in an ultracold dipolar gas composed of the recently observed "butterfly" Rydberg molecules. At the blockade radius, the strong intermolecular interaction between two adjacent molecules shifts their molecular states out of resonance with the photoassociation laser, preventing their simultaneous excitation. When the molecules are prepared in a quasi-one-dimensional (Q1D) trap, the interaction's strength can be tuned via a weak external field. The molecular density thus depends strongly on the angle between the trap axis and the field. The available Rydberg and internal molecular states provide a wide range of tunability.

  11. Anisotropic blockade using pendular long-range Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Eiles, M. T.; Lee, H.; Pérez-Ríos, J.; Greene, C. H.

    2017-07-01

    We propose an experiment to demonstrate a novel blockade mechanism caused by long-range anisotropic interactions in an ultracold dipolar gas composed of the recently observed "butterfly" Rydberg molecules. At the blockade radius, the strong intermolecular interaction between two adjacent molecules shifts their molecular states out of resonance with the photoassociation laser, preventing their simultaneous excitation. When the molecules are prepared in a quasi-one-dimensional (Q1D) trap, the interaction's strength can be tuned via a weak external field. The molecular density thus depends strongly on the angle between the trap axis and the field. The available Rydberg and molecular states provide a wide range of tunability.

  12. Involvement of α₂-adrenoceptors, imidazoline, and endothelin-A receptors in the effect of agmatine on morphine and oxycodone-induced hypothermia in mice.

    PubMed

    Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil

    2013-10-01

    Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present study was carried out to study the role of α₂-adrenoceptors, imidazoline, and ET(A) receptors in morphine and oxycodone hypothermia in mice. Body temperature was determined over 6 h in male Swiss Webster mice treated with morphine, oxycodone, agmatine, and combination of agmatine with morphine or oxycodone. Yohimbine, idazoxan, and BMS182874 were used to determine involvement of α₂-adrenoceptors, imidazoline, and ET(A) receptors, respectively. Morphine and oxycodone produced significant hypothermia that was not affected by α₂-adrenoceptor antagonist yohimbine, imidazoline receptor/α₂ adrenoceptor antagonist idazoxan, or ET(A) receptor antagonist, BMS182874. Agmatine did not produce hypothermia; however, it blocked oxycodone but not morphine-induced hypothermia. Agmatine-induced blockade of oxycodone hypothermia was inhibited by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared with yohimbine. Combined administration of BMS182874 and agmatine did not produce changes in body temperature in mice. However, when BMS182874 was administered along with agmatine and oxycodone, it blocked agmatine-induced reversal of oxycodone hypothermia. This is the first report demonstrating that agmatine does not affect morphine hypothermia in mice, but reverses oxycodone hypothermia. Imidazoline receptors and α₂-adrenoceptors are involved in agmatine-induced reversal of oxycodone hypothermia. Our findings also suggest that ET(A) receptors may be involved in blockade of oxycodone hypothermia by agmatine.

  13. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  14. β-Adrenergic receptor blockade impairs coronary exercise hyperemia in young men but not older men

    PubMed Central

    Ross, Amanda J.; Gao, Zhaohui; Pollock, Jonathan P.; Leuenberger, Urs A.; Sinoway, Lawrence I.

    2014-01-01

    Patients with coronary artery disease have attenuated coronary vasodilator responses to physiological stress, which is partially attributed to a β-adrenergic receptor (β-AR)-mediated mechanisms. Whether β-ARs contribute to impaired coronary vasodilation seen with healthy aging is unknown. The purpose of this study was to investigate the role of β-ARs in coronary exercise hyperemia in healthy humans. Six young men (26 ± 1 yr) and seven older men (67 ± 4 yr) performed isometric handgrip exercise at 30% maximal voluntary contraction for 2 min after receiving intravenous propranolol, a β-AR antagonist, and no treatment. Isoproterenol, a β-AR agonist, was infused to confirm the β-AR blockade. Blood pressure and heart rate were monitored continuously, and coronary blood flow velocity (CBV, left anterior descending artery) was measured by transthoracic Doppler echocardiography. Older men had an attenuated ΔCBV to isometric exercise (3.8 ± 1.3 vs. 9.7 ± 2.1 cm/s, P = 0.02) compared with young men. Propranolol decreased the ΔCBV at peak handgrip exercise in young men (9.7 ± 2.1 vs. 2.7 ± 0.9 cm/s, P = 0.008). However, propranolol had no effect on ΔCBV in older men (3.8 ± 1.3 vs. 4.2 ± 1.9 cm/s, P = 0.9). Older men also had attenuated coronary hyperemia to low-dose isoproterenol. These data indicate that β-AR control of coronary blood flow is impaired in healthy older men. PMID:25239806

  15. Dexmedetomidine Inhibits Phenylephrine-induced Contractions via Alpha-1 Adrenoceptor Blockade and Nitric Oxide Release in Isolated Rat Aortae

    PubMed Central

    Byon, Hyo-Jin; Ok, Seong-Ho; Lee, Soo Hee; Kang, Sebin; Cho, Youngil; Han, Jeong Yeol; Sohn, Ju-Tae

    2017-01-01

    The goal of this in vitro study was to examine the effect of the alpha-2 adrenoceptor agonist dexmedetomidine on phenylephrine (alpha-1 adrenoceptor agonist)-induced contraction in isolated rat aortae and to elucidate the associated cellular mechanisms, with a particular focus on alpha-1 adrenoceptor antagonism. Dexmedetomidine dose-response curves were generated in isolated endothelium-intact and endothelium-denuded rat aortae precontracted with phenylephrine or 5-hydroxytryptamine. Endothelium-denuded aortic rings were pretreated with either dexmedetomidine or the reversible alpha-1 adrenoceptor antagonist phentolamine, followed by post-treatment with the irreversible alpha-1 adrenoceptor blocker phenoxybenzamine. Control rings were treated with phenoxybenzamine alone. All rings were repeatedly washed with Krebs solution to remove all pretreatment drugs, including phenoxybenzamine, phentolamine and dexmedetomidine. Phenylephrine dose-response curves were then generated. The effect of rauwolscine on the dexmedetomidine-mediated change in phenylephrine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells was examined using western blotting. The magnitude of the dexmedetomidine-mediated inhibition of phenylephrine-induced contraction was higher in endothelium-intact aortae than in endothelium-denuded aortae or endothelium-intact aortae treated with Nω-nitro-L-arginine methyl ester. However, dexmedetomidine did not significantly alter 5-hydroxytryptamine-induced contraction. In further experiments, prazosin attenuated dexmedetomidine-induced contraction. Additionally, pretreatment with either dexmedetomidine plus phenoxybenzamine or phentolamine plus phenoxybenzamine produced greater phenylephrine-induced contraction than phenoxybenzamine alone, suggesting that dexmedetomidine protects aortae from the alpha-1 adrenoceptor blockade induced by phenoxybenzamine. Rauwolscine attenuated the dexmedetomidine

  16. Coronary responses to cold air inhalation following afferent and efferent blockade

    PubMed Central

    Gao, Zhaohui; McQuillan, Patrick M.; Leuenberger, Urs A.; Sinoway, Lawrence I.

    2014-01-01

    Cardiac ischemia and angina pectoris are commonly experienced during exertion in a cold environment. In the current study we tested the hypotheses that oropharyngeal afferent blockade (i.e., local anesthesia of the upper airway with lidocaine) as well as systemic β-adrenergic receptor blockade (i.e., intravenous propranolol) would improve the balance between myocardial oxygen supply and demand in response to the combined stimulus of cold air inhalation (−15 to −30°C) and isometric handgrip exercise (Cold + Grip). Young healthy subjects underwent Cold + Grip following lidocaine, propranolol, and control (no drug). Heart rate, blood pressure, and coronary blood flow velocity (CBV, from Doppler echocardiography) were continuously measured. Rate-pressure product (RPP) was calculated, and changes from baseline were compared between treatments. The change in RPP at the end of Cold + Grip was not different between lidocaine (2,441 ± 376) and control conditions (3,159 ± 626); CBV responses were also not different between treatments. With propranolol, heart rate (8 ± 1 vs. 14 ± 3 beats/min) and RPP responses to Cold + Grip were significantly attenuated. However, at peak exercise propranolol also resulted in a smaller ΔCBV (1.4 ± 0.8 vs. 5.3 ± 1.4 cm/s, P = 0.035), such that the relationship between coronary flow and cardiac metabolism was impaired under propranolol (0.43 ± 0.37 vs. 2.1 ± 0.63 arbitrary units). These data suggest that cold air breathing and isometric exercise significantly influence efferent control of coronary blood flow. Additionally, β-adrenergic vasodilation may play a significant role in coronary regulation during exercise. PMID:24816257

  17. Naltrexone treatment for opioid dependence: does its effectiveness depend on testing the blockade?

    PubMed

    Sullivan, Maria A; Bisaga, Adam; Mariani, John J; Glass, Andrew; Levin, Frances R; Comer, Sandra D; Nunes, Edward V

    2013-11-01

    FDA approval of long-acting injectable naltrexone (Vivitrol) for opioid dependence highlights the relevance of understanding mechanisms of antagonist treatment. Principles of learning suggest an antagonist works through extinguishing drug-seeking behavior, as episodes of drug use ("testing the blockade") fail to produce reinforcement. We hypothesized that opiate use would moderate the effect of naltrexone, specifically, that opiate-positive urines precede dropout in the placebo group, but not in the active-medication groups. An 8-week, double-blind, placebo-controlled trial (N=57), compared the efficacy of low (192 mg) and high (384 mg) doses of a long-acting injectable naltrexone (Depotrex) with placebo (Comer et al., 2006). A Cox proportional hazard model was fit, modeling time-to-dropout as a function of treatment assignment and urine toxicology during treatment. Interaction of opiate urines with treatment group was significant. Opiate-positive urines predicted dropout on placebo and low-dose, but less so on high-dose naltrexone, where positive urines were more likely followed by sustained abstinence. Among patients with no opiate-positive urines, retention was higher in both low- and high-dose naltrexone conditions, compared to placebo. Findings confirm that injection naltrexone produces extinction of drug-seeking behavior after episodes of opiate use. Adequate dosage appears important, as low-dose naltrexone resembled the placebo group; opiate positive urines were likely to be followed by dropout from treatment. The observation of high treatment retention among naltrexone-treated patients who do not test the blockade, suggests naltrexone may also exert direct effects on opiate-taking behavior that do not depend on extinction, perhaps by attenuating craving or normalizing dysregulated hedonic or neuroendocrine systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The Use of Beta-Adrenergic Blockade in Preventing Trauma-Induced Hepatomegaly

    PubMed Central

    Barrow, Robert E.; Wolfe, Robert R.; Dasu, Mohan R.; Barrow, Laura N.; Herndon, David N.

    2006-01-01

    Objective: The objective of this study was to test the hypothesis that hepatomegaly in burned children can be attenuated or reversed by blocking lipolysis and reducing free fatty acids delivered to the liver. Summary Background Data: Accelerated lipolysis in severely burned children has been shown to play an important role in the accumulation of hepatic TGs. Severely burned children who survive 10 days or more after injury commonly have enlarged livers often twice or more normal size for their sex, age, and weight. Methods: Ninety-eight children, 2 to 18 years of age, with burns covering more than 40% of their body surface and who received either propranolol (β-adrenergic blockade) or placebo were studied. Liver weights were measured by ultrasonic scanning. Body composition changes were identified by dual-image x-ray absorptiometry and validated by whole-body potassium-40 scintillation counting. Discarded abdominal cutaneous adipose tissue was collected before and after propranolol or placebo for microarray analysis. Results: In 80% of severely burned children studied not receiving propranolol, liver sizes increased by 100% or more while 86% of burned children receiving propranolol showed a decrease or no change in liver size over the same period of time after injury. Gene expression patterns of adipose tissue after propranolol treatment showed that all of the identified genes related to lipid metabolism were down-regulated. Conclusions: Data reported here support the hypothesis that β-adrenergic blockade can reduce delivery of fatty acids to the liver and hepatic congestion commonly found in severely burned children by inhibiting lipolysis and reducing hepatic blood flow. PMID:16371745

  19. Coronary responses to cold air inhalation following afferent and efferent blockade.

    PubMed

    Muller, Matthew D; Gao, Zhaohui; McQuillan, Patrick M; Leuenberger, Urs A; Sinoway, Lawrence I

    2014-07-15

    Cardiac ischemia and angina pectoris are commonly experienced during exertion in a cold environment. In the current study we tested the hypotheses that oropharyngeal afferent blockade (i.e., local anesthesia of the upper airway with lidocaine) as well as systemic β-adrenergic receptor blockade (i.e., intravenous propranolol) would improve the balance between myocardial oxygen supply and demand in response to the combined stimulus of cold air inhalation (-15 to -30°C) and isometric handgrip exercise (Cold + Grip). Young healthy subjects underwent Cold + Grip following lidocaine, propranolol, and control (no drug). Heart rate, blood pressure, and coronary blood flow velocity (CBV, from Doppler echocardiography) were continuously measured. Rate-pressure product (RPP) was calculated, and changes from baseline were compared between treatments. The change in RPP at the end of Cold + Grip was not different between lidocaine (2,441 ± 376) and control conditions (3,159 ± 626); CBV responses were also not different between treatments. With propranolol, heart rate (8 ± 1 vs. 14 ± 3 beats/min) and RPP responses to Cold + Grip were significantly attenuated. However, at peak exercise propranolol also resulted in a smaller ΔCBV (1.4 ± 0.8 vs. 5.3 ± 1.4 cm/s, P = 0.035), such that the relationship between coronary flow and cardiac metabolism was impaired under propranolol (0.43 ± 0.37 vs. 2.1 ± 0.63 arbitrary units). These data suggest that cold air breathing and isometric exercise significantly influence efferent control of coronary blood flow. Additionally, β-adrenergic vasodilation may play a significant role in coronary regulation during exercise. Copyright © 2014 the American Physiological Society.

  20. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer.

    PubMed

    Nolan, Emma; Savas, Peter; Policheni, Antonia N; Darcy, Phillip K; Vaillant, François; Mintoff, Christopher P; Dushyanthen, Sathana; Mansour, Mariam; Pang, Jia-Min B; Fox, Stephen B; Perou, Charles M; Visvader, Jane E; Gray, Daniel H D; Loi, Sherene; Lindeman, Geoffrey J

    2017-06-07

    Immune checkpoint inhibitors have emerged as a potent new class of anticancer therapy. They have changed the treatment landscape for a range of tumors, particularly those with a high mutational load. To date, however, modest results have been observed in breast cancer, where tumors are rarely hypermutated. Because BRCA1-associated tumors frequently exhibit a triple-negative phenotype with extensive lymphocyte infiltration, we explored their mutational load, immune profile, and response to checkpoint inhibition in a Brca1-deficient tumor model. BRCA1-mutated triple-negative breast cancers (TNBCs) exhibited an increased somatic mutational load and greater numbers of tumor-infiltrating lymphocytes, with increased expression of immunomodulatory genes including PDCD1 (PD-1) and CTLA4, when compared to TNBCs from BRCA1-wild-type patients. Cisplatin treatment combined with dual anti-programmed death-1 and anti-cytotoxic T lymphocyte-associated antigen 4 therapy substantially augmented antitumor immunity in Brca1-deficient mice, resulting in an avid systemic and intratumoral immune response. This response involved enhanced dendritic cell activation, reduced suppressive FOXP3(+) regulatory T cells, and concomitant increase in the activation of tumor-infiltrating cytotoxic CD8(+) and CD4(+) T cells, characterized by the induction of polyfunctional cytokine-producing T cells. Dual (but not single) checkpoint blockade together with cisplatin profoundly attenuated the growth of Brca1-deficient tumors in vivo and improved survival. These findings provide a rationale for clinical studies of combined immune checkpoint blockade in BRCA1-associated TNBC. Copyright © 2017, American Association for the Advancement of Science.

  1. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40.

    PubMed

    Messenheimer, David J; Jensen, Shawn M; Afentoulis, Michael E; Wegmann, Keith W; Feng, Zipei; Friedman, David J; Gough, Michael J; Urba, Walter J; Fox, Bernard A

    2017-08-28

    Purpose: Antibodies specific for inhibitory checkpoints PD-1 and CTLA-4 have shown impressive results against solid tumors. This has fueled interest in novel immunotherapy combinations to affect patients who remain refractory to checkpoint blockade monotherapy. However, how to optimally combine checkpoint blockade with agents targeting T-cell costimulatory receptors, such as OX40, remains a critical question.Experimental Design: We utilized an anti-PD-1-refractory, orthotopically transplanted MMTV-PyMT mammary cancer model to investigate the antitumor effect of an agonist anti-OX40 antibody combined with anti-PD-1. As PD-1 naturally aids in immune contraction after T-cell activation, we treated mice with concurrent combination treatment versus sequentially administering anti-OX40 followed by anti-PD-1.Results: The concurrent addition of anti-PD-1 significantly attenuated the therapeutic effect of anti-OX40 alone. Combination-treated mice had considerable increases in type I and type II serum cytokines and significantly augmented expression of inhibitory receptors or exhaustion markers CTLA-4 and TIM-3 on T cells. Combination treatment increased intratumoral CD4(+) T-cell proliferation at day 13, but at day 19, both CD4(+) and CD8(+) T-cell proliferation was significantly reduced compared with untreated mice. In two tumor models, sequential combination of anti-OX40 followed by anti-PD-1 (but not the reverse order) resulted in significant increases in therapeutic efficacy. Against MMTV-PyMT tumors, sequential combination was dependent on both CD4(+) and CD8(+) T cells and completely regressed tumors in approximately 30% of treated animals.Conclusions: These results highlight the importance of timing for optimized therapeutic effect with combination immunotherapies and suggest the testing of sequencing in combination immunotherapy clinical trials. Clin Cancer Res; 1-13. ©2017 AACR. ©2017 American Association for Cancer Research.

  2. Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock.

    PubMed

    Elhassan, Ihab O; Hannoush, Edward J; Sifri, Ziad C; Jones, Eyone; Alzate, Walter D; Rameshwar, Pranela; Livingston, David H; Mohr, Alicia M

    2011-08-01

    Severe injury is accompanied by sympathetic stimulation that induces bone marrow (BM) dysfunction by both suppression of hematopoietic progenitor cell (HPC) growth and loss of cells via HPC mobilization to the peripheral circulation and sites of injury. Previous work demonstrated that beta-blockade (BB) given prior to tissue injury both reduces HPC mobilization and restores HPC colony growth within the BM. This study examined the effect and timing of BB on BM function in a hemorrhagic shock (HS) model. Male Sprague-Dawley rats underwent HS via blood withdrawal, maintaining the mean arterial blood pressure at 30-40 mm Hg for 45 min, after which the extracted blood was reinfused. Propranolol (10 mg/kg) was given either prior to or immediately after HS. Blood pressure, heart rate, BM cellularity, and death were recorded. Bone marrow HPC growth was assessed by counting colony-forming unit-granulocyte-, erythrocyte-, monocyte-, megakaryocyte (CFU-GEMM), burst-forming unit-erythroid (BFU-E), and colony-forming unit-erythroid (CFU-E) cells. Administration of BB prior to injury restored HPC growth to that of naïve animals (CFU-GEMM 59 ± 11 vs. 61 ± 4, BFU-E 68 ± 9 vs. 73 ± 3, and CFU-E 81 ± 35 vs. 78 ± 14 colonies/plate). Beta-blockade given after HS increased the growth of CFU-GEMM, BFU-E, and CFU-E significantly and improved BM cellularity compared with HS alone. The mortality rate was not increased in the groups receiving BB. Administration of propranolol either prior to injury or immediately after resuscitation significantly reduced post-shock BM suppression. After HS, BB may improve BM cellularity by decreasing HPC mobilization. Therefore, the early use of BB post-injury may play an important role in attenuating the BM dysfunction accompanying HS.

  3. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    SciTech Connect

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  4. Merchant Shipping in a Chinese Blockade of Taiwan

    DTIC Science & Technology

    2007-01-01

    8:14:41 AM Color profile: Disabled Composite Default screen privateers, and blockade runners risking death in conflicts to which they had no...particular vessel at any given time, then, can be a challenging endeavor in- volving a maze of corporate relationships and contractual legalese. But more

  5. A new regime of Pauli-spin blockade

    SciTech Connect

    Perron, Justin K.; Stewart, M. D.; Zimmerman, Neil M.

    2016-04-07

    Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured in the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to “reverse PSB” in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.

  6. Accurate Coulomb blockade thermometry up to 60 kelvin.

    PubMed

    Meschke, M; Kemppinen, A; Pekola, J P

    2016-03-28

    We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%.

  7. A new regime of Pauli-spin blockade

    NASA Astrophysics Data System (ADS)

    Perron, Justin K.; Stewart, M. D.; Zimmerman, Neil M.

    2016-04-01

    Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured in the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to "reverse PSB" in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.

  8. Sodium intake, RAAS-blockade and progressive renal disease.

    PubMed

    de Borst, Martin H; Navis, Gerjan

    2016-05-01

    Pharmacological blockade of the renin-angiotensin-aldosterone system (RAAS) by angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the current standard treatment to prevent progressive renal function loss in patients with chronic kidney disease. Yet in many patients the renal protective effect of RAAS-blockade is incomplete. Short-term clinical studies have demonstrated that dietary sodium restriction potentiates the antiproteinuric effect of RAAS-blockade. More recently, it was shown that this effect is accompanied by a lower risk of end-stage renal disease and adverse cardiovascular outcomes. The modulation of RAAS-blockade efficacy by sodium intake is likely multifactorial, and is mediated by effects of sodium on local tissue RAAS in kidney, vasculature and brain, and by effects on the immune system. Despite the evidence showing the beneficial effects of even a moderate sodium restriction (∼2.5g/d), it remains difficult to realize in clinical practice. In an analysis based on 24-h urinary sodium excretion data from more than 10,000 CKD patients and renal transplant recipients, we found that sodium intake in these patients is on average 3.8g/d, closely resembling the global general population (3.95g/d). Behavioral approaches including the use of online dietary coaching (ehealth) and feedback using data from 24-h urine collections may be useful to successfully lower dietary sodium intake, aiming to improve cardio-renal outcomes in patients with CKD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    ERIC Educational Resources Information Center

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  10. Safety guideline: skin antisepsis for central neuraxial blockade.

    PubMed

    Obstetric Anaesthetists' Association; Campbell, J P; Plaat, F; Checketts, M R; Bogod, D; Tighe, S; Moriarty, A; Koerner, R

    2014-11-01

    Concise guidelines are presented that recommend the method of choice for skin antisepsis before central neuraxial blockade. The Working Party specifically considered the concentration of antiseptic agent to use and its method of application. The advice presented is based on previously published guidelines, laboratory and clinical studies, case reports, and on the known properties of antiseptic agents.

  11. Peripheral metabolic effects of endocannabinoids and cannabinoid receptor blockade.

    PubMed

    Engeli, Stefan

    2008-01-01

    The endocannabinoid system consists of endogenous arachidonic acid derivates that activate cannabinoid receptors. The two most prominent endocannabinoids are anandamide and 2-arachidonoyl glycerol. In obesity, increased concentrations of circulating and tissue endocannabinoid levels have been described, suggesting increased activity of the endocannabinoid system. Increased availability of endocannabinoids in obesity may over-stimulate cannabinoid receptors. Blockade of cannabinoid type 1 (CB1) receptors was the only successful clinical development of an anti-obesity drug during the last decade. Whereas blockade of CB1 receptors acutely reduces food intake, the long-term effects on metabolic regulation are more likely mediated by peripheral actions in liver, skeletal muscle, adipose tissue, and the pancreas. Lipogenic effects of CB1 receptor signalling in liver and adipose tissue may contribute to regional adipose tissue expansion and insulin resistance in the fatty liver. The association of circulating 2-arachidonoyl glycerol levels with decreased insulin sensitivity strongly suggests further exploration of the role of endocannabinoid signalling for insulin sensitivity in skeletal muscle, liver, and adipose tissue. A few studies have suggested a specific role for the regulation of adiponectin secretion from adipocytes by endocannabinoids, but that has to be confirmed by more experiments. Also, the potential role of CB1 receptor blockade for the stimulation of energy expenditure needs to be studied in the future. Despite the current discussion of safety issues of cannabinoid receptor blockade, these findings open a new and exciting perspective on endocannabinoids as regulators of body weight and metabolism.

  12. CTLA-4 Blockade-Based Immunotherapy in Prostate Cancer

    DTIC Science & Technology

    2006-01-01

    V, Bok R, Small EJ. Prostate-specific antigen kinetics as a measure of the biologic effect of granulocyte- macrophage colony-stimulating factor in...Kwon ED, Truong T, Choi EM, Greenberg NM, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade

  13. Metabolic effects of pharmacological adrenergic blockade in phaeochromocytoma.

    PubMed

    Krentz, A J; Hale, P J; Horrocks, P M; Heslop, K E; Johnston, D G; Wright, A D; Nattrass, M

    1991-02-01

    Twelve-hour hormonal and metabolic profiles were performed in a 68-year-old woman with a benign adrenal phaeochromocytoma (a) prior to adrenergic blockade, (b) after the establishment of pharmacological alpha-blockade with phenoxybenzamine, (c) after combined alpha and beta-blockade with phenoxybenzamine and propranolol, and (d) after successful surgery and withdrawal of medication. Pretreatment, (a) vs (d), significant elevations (12-h mean +/- SD) were observed in the concentrations of noradrenaline (44.9 +/- 14.4 vs 2.3 +/- 0.7 nmol/l, P less than 0.01), glucose (6.9 +/- 1.9 vs 5.0 +/- 1.0 mmol/l, P less than 0.05), glycerol (0.22 +/- 0.02 vs 0.07 +/- 0.01 mmol/l, P less than 0.01), non-esterified fatty acids (0.71 +/- 0.28 vs 0.34 +/- 0.08 mmol/l, P less than 0.01), and total ketone bodies (0.08 +/- 0.03 vs 0.03 +/- 0.02 mmol/l, P less than 0.01). Alpha-blockade, (b) vs (a), was associated with an increase in noradrenaline levels (P less than 0.01) but not with any significant alterations in intermediary metabolite concentrations. Following the establishment of combined alpha and beta-blockade, (c) vs (b), plasma noradrenaline returned to its pretreatment level while the concentrations of glycerol, fatty acids and ketone bodies were normalized. A completely physiological 12-h blood glucose profile, however, was observed only post-operatively. No significant differences were observed in mean plasma insulin levels between the four studies. These results indicate impaired regulation of multiple aspects of carbohydrate, lipid and ketone body metabolism in our patient.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    SciTech Connect

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; Gang Huang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  15. Intracellular trafficking of GABA(A) receptors.

    PubMed

    Barnes, E M

    2000-02-11

    Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.

  16. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  17. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  18. Attenuator And Conditioner

    SciTech Connect

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  19. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade.

    PubMed

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello; Secher, Niels H; Bangsbo, Jens

    2009-04-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged knee-extensor exercise (18 W) during control conditions and with cisatracurium blockade, as well as with cisatracurium blockade with prior glycopyrrone infusion. Thigh blood flow and vascular conductance in control and with cisatracurium infusion were similar at rest and during passive movement of the leg, but higher (P < 0.05) during exercise with cisatracurium than in control (3.83 +/- 0.42 vs. 2.78 +/- 0.21 l/min and 26.9 +/- 3.4 vs. 21.8 +/- 2.0 ml.min(-1).mmHg(-1) at the end of exercise). Thigh oxygen uptake was similar in control and with cisatracurium infusion both at rest and during exercise, being 354 +/- 33 and 406 +/- 34 ml/min, at the end of exercise. Combined infusion of cisatracurium and glycopyrrone caused a similar increase in blood flow as cisatracurium infusion alone. The current results demonstrate that neuromuscular blockade leads to enhanced thigh blood flow and vascular conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperemia or for the enhanced blood flow during neuromuscular blockade. The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibers.

  20. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function

    PubMed Central

    Ferré, Sergi; Quiroz, César; Orru, Marco; Guitart, Xavier; Navarro, Gemma; Cortés, Antonio; Casadó, Vicent; Canela, Enric I.; Lluis, Carme; Franco, Rafael

    2011-01-01

    A very significant density of adenosine A2A receptors (A2ARs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs). In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl cyclase (AC). Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striatopallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs) and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders. PMID:21731559

  1. Fiber Optic Attenuators

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mike Buzzetti designed a fiber optic attenuator while working at Jet Propulsion Laboratory, intended for use in NASA's Deep Space Network. Buzzetti subsequently patented and received an exclusive license to commercialize the device, and founded Nanometer Technologies to produce it. The attenuator functions without introducing measurable back-reflection or insertion loss, and is relatively insensitive to vibration and changes in temperature. Applications include cable television, telephone networks, other signal distribution networks, and laboratory instrumentation.

  2. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.

  3. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  4. Impact of β-adrenoceptor blockade on systemic inflammation and coagulation disturbances in rats with acute traumatic coagulopathy.

    PubMed

    Xu, Lin; Yu, Wen-kui; Lin, Zhi-liang; Tan, Shan-jun; Bai, Xiao-wu; Ding, Kai; Li, Ning

    2015-02-12

    Sympathetic hyperactivity occurs early in acute traumatic coagulopathy (ATC) and is closely related to its development. β-adrenoceptor antagonists are known to alleviate adverse sympathetic effects and improve outcome in various diseases. We investigated whether β-blockers have protective effects against inflammation and endothelial and hemostatic disorders in ATC. ATC was induced in male Sprague-Dawley rats by trauma and hemorrhagic shock. Rats were randomly assigned to the sham, ATCC (ATC control), and ATCB (ATC with beta-adrenoceptor blockade) groups. Rats were injected intraperitoneally with propranolol or vehicle at baseline. Heart rate variability (HRV) and markers of inflammation, coagulation, and endothelial activation were measured, and Western blotting analysis of nuclear factor (NF)-κB was done after shock. Separate ATCC and ATCB groups were observed to compare overall mortality. HRV showed enhanced sympathetic tone in the ATCC group, which was reversed by propranolol. Propranolol attenuated the induction of pro-inflammatory cytokines TNF-α and IL-6, as well as fibrinolysis markers plasmin antiplasmin complex and tissue-type plasminogen activator. The increased serum syndecan-1 and soluble thrombomodulin were inhibited by propranolol, and the NF-κB expression was also decreased by propranolol pretreatment. But propranolol did not alter overall mortality in rats with ATC after shock. Beta-adrenoceptor blockade can alleviate sympathetic hyperactivity and exert anti-inflammatory, anti-fibrinolysis, and endothelial protective effects, confirming its pivotal role in the pathogenesis of ATC. Its mechanism in ATC should be explored further.

  5. Prominent bifid T waves observed in the QT prolongation caused by complete atrioventricular blockade in a hypokalemic diabetic patient.

    PubMed

    Oka-Manabe, S; Maruyama, T; Urae, R; Amamoto, T; Niho, Y

    1999-07-01

    A 63-year-old diabetic man was admitted with general fatigue. Electrocardiogram (ECG) on admission showed complete atrioventricular (AV) blockade associated with prominent bifid T waves. The second component of the bifid T waves was distinguished from U waves by the beat-to-beat varying bifidity and the nadir between the two components located at > or = 1 mm above the isoelectric line. Range of absolute QT interval was 535 to 650 ms. Hypokalemia (3.6 mEq/L) was noted at admission. Partial restoration of the potassium level (3.9 mEq/L) prior to temporary ventricular demand pacing obscured the bifid T waves and attenuated the QT prolongation and dispersion to some extent (absolute QT interval ranging 520 to 620 ms). It was concluded that marked bradycardia caused by complete AV blockade (ie, a junctional escaped rhythm at a rate of 42 beats/min), hypokalemia, and underlying diabetes mellitus contributed in concert to the QT prolongation and dispersion leading to the prominent bifid T waves.

  6. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole.

    PubMed

    Sayeed, Iqbal; Parvez, Suhel; Winkler-Stuck, Kirstin; Seitz, Gordon; Trieu, Isabelle; Wallesch, Claus-Werner; Schönfeld, Peter; Siemen, Detlef

    2006-03-01

    The dopamine-D2-agonist pramipexole (PPX) was tested for blocking mitochondrial permeability transition (PT) in order to give a possible explanation for its neuroprotective effect seen in PPX-treated Parkinson's disease patients. Patch-clamp techniques for studying single-channel currents in the inner mitochondrial membrane and large-amplitude swelling of energized mitochondria were used to study PPX action on the permeability transition pore (PTP), a key player in the mitochondrial route of the apoptotic cascade. Identity of the PTP was proven by measuring the concentration-response relation for cyclosporin A-blockade (IC50=26 nM). PPX inhibits the PTP reversibly with an IC50 of 500 nM, which is close to the values determined earlier as plasma concentrations after PPX medication in patients. Interaction of PPX with the PTP is further supported by demonstrating that it abolished Ca2+-triggered swelling in functionally intact mitochondria. Blockade of the PTP by PPX was attenuated by increasing concentrations of inorganic phosphate and by acidification. We suggest that PPX could exert part of its neuroprotective effect by inhibition of the PTP and thus, probably, blocking of the mitochondrial pathway of the apoptosis cascade.

  7. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy.

    PubMed

    Swart, Maarten; Verbrugge, Inge; Beltman, Joost B

    2016-01-01

    In healthy individuals, immune-checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune-checkpoint blockade of cytotoxic T lymphocyte antigen-4 and programed death-1 emerged as promising strategies to activate antitumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune-checkpoint blockade in the context of the cancer-immunity cycle, aimed at increasing response rates to the single treatments. Specifically, we discuss combinations that promote antigen release and presentation, that further amplify T cell activation, that inhibit trafficking of regulatory T cells or MSDCs, that stimulate intratumoral T cell infiltration, that increase cancer recognition by T cells, and that stimulate tumor killing.

  8. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy

    PubMed Central

    Pfirschke, Christina; Engblom, Camilla; Rickelt, Steffen; Cortez-Retamozo, Virna; Garris, Christopher; Pucci, Ferdinando; Yamazaki, Takahiro; Colame, Vichnou Poirier; Newton, Andita; Redouane, Younes; Lin, Yi-Jang; Wojtkiewicz, Gregory; Iwamoto, Yoshiko; Mino-Kenudson, Mari; Huynh, Tiffany G.; Hynes, Richard O.; Freeman, Gordon J.; Kroemer, Guido; Zitvogel, Laurence; Weissleder, Ralph; Pittet, Mikael J.

    2016-01-01

    SUMMARY Checkpoint blockade immunotherapies can be extraordinarily effective, but may benefit only the minority of patients whose tumors are pre-infiltrated by T cells. Here, using lung adenocarcinoma mouse models, including genetic models, we show that autochthonous tumors that lacked T cell infiltration and resisted current treatment options could be successfully sensitized to host antitumor T cell immunity when using appropriately selected immunogenic drugs (e.g. oxaliplatin combined with cyclophosphamide for treatment against tumors expressing oncogenic Kras and lacking Trp53). The antitumor response was triggered by direct drug actions on tumor cells, relied on innate immune sensing through toll-like receptor 4 signaling, and ultimately depended on CD8+ T cell antitumor immunity. Furthermore, instigating tumor infiltration by T cells sensitized tumors to checkpoint inhibition and controlled cancer durably. These findings indicate that the proportion of cancers responding to checkpoint therapy can be feasibly and substantially expanded by combining checkpoint blockade with immunogenic drugs. PMID:26872698

  9. Lifting the Franck-Condon blockade in driven quantum dots

    NASA Astrophysics Data System (ADS)

    Haughian, Patrick; Walter, Stefan; Nunnenkamp, Andreas; Schmidt, Thomas L.

    2016-11-01

    Electron-vibron coupling in quantum dots can lead to a strong suppression of the average current in the sequential tunneling regime. This effect is known as Franck-Condon blockade and can be traced back to an overlap integral between vibron states with different electron numbers which becomes exponentially small for large electron-vibron coupling strength. Here, we investigate the effect of a time-dependent drive on this phenomenon, in particular the effect of an oscillatory gate voltage acting on the electronic dot level. We employ two different approaches: perturbation theory based on nonequilibrium Keldysh Green's functions and a master equation in Born-Markov approximation. In both cases, we find that the drive can lift the blockade by exciting vibrons. As a consequence, the relative change in average current grows exponentially with the drive strength.

  10. Counting atoms using interaction blockade in an optical superlattice.

    PubMed

    Cheinet, P; Trotzky, S; Feld, M; Schnorrberger, U; Moreno-Cardoner, M; Fölling, S; Bloch, I

    2008-08-29

    We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to the Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of 87Rb.

  11. Conductance of a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  12. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade

    PubMed Central

    Emens, Leisha A

    2013-01-01

    Breast cancer is immunogenic, and infiltrating immune cells in primary breast tumors convey important clinical prognostic and predictive information. Furthermore, the immune system is critically involved in clinical responses to some standard cancer therapies. Early breast cancer vaccine trials have established the safety and bioactivity of breast cancer immunotherapy, with hints of clinical activity. Novel strategies for modulating regulators of immunity, including regulatory T cells, myeloid-derived suppressor cells and immune checkpoint pathways (monoclonal antibodies specific for the cytotoxic T-lymphocyte antigen-4 or programmed death), are now available. In particular, immune checkpoint blockade has enormous therapeutic potential. Integrative breast cancer immunotherapies that strategically combine established breast cancer therapies with breast cancer vaccines, immune checkpoint blockade or both should result in durable clinical responses and increased cures. PMID:23253225

  13. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy

    PubMed Central

    Swart, Maarten; Verbrugge, Inge; Beltman, Joost B.

    2016-01-01

    In healthy individuals, immune-checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune-checkpoint blockade of cytotoxic T lymphocyte antigen-4 and programed death-1 emerged as promising strategies to activate antitumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune-checkpoint blockade in the context of the cancer-immunity cycle, aimed at increasing response rates to the single treatments. Specifically, we discuss combinations that promote antigen release and presentation, that further amplify T cell activation, that inhibit trafficking of regulatory T cells or MSDCs, that stimulate intratumoral T cell infiltration, that increase cancer recognition by T cells, and that stimulate tumor killing. PMID:27847783

  14. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  15. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient.

    PubMed

    Murray, Michael J; DeBlock, Heidi; Erstad, Brian; Gray, Anthony; Jacobi, Judi; Jordan, Che; McGee, William; McManus, Claire; Meade, Maureen; Nix, Sean; Patterson, Andrew; Sands, M Karen; Pino, Richard; Tescher, Ann; Arbour, Richard; Rochwerg, Bram; Murray, Catherine Friederich; Mehta, Sangeeta

    2016-11-01

    blockade to improve the accuracy of intravascular-volume assessment in mechanically ventilated patients. 5) We make no recommendation concerning the use of electroencephalogram-derived parameters as a measure of sedation during continuous administration of neuromuscular-blocking agents. 6) We make no recommendation regarding nutritional requirements specific to patients receiving infusions of neuromuscular-blocking agents. 7) We make no recommendation concerning the use of one measure of consistent weight over another when calculating neuromuscular-blocking agent doses in obese patients. 8) We make no recommendation on the use of neuromuscular-blocking agents in pregnant patients. 9) We make no recommendation on which muscle group should be monitored in patients with myasthenia gravis receiving neuromuscular-blocking agents. Finally, in situations in which evidence was lacking or insufficient but expert consensus was unanimous, the Task Force developed six good practice statements. 1) If peripheral nerve stimulation is used, optimal clinical practice suggests that it should be done in conjunction with assessment of other clinical findings (e.g., triggering of the ventilator and degree of shivering) to assess the degree of neuromuscular blockade in patients undergoing therapeutic hypothermia. 2) Optimal clinical practice suggests that a protocol should include guidance on neuromuscular-blocking agent administration in patients undergoing therapeutic hypothermia. 3) Optimal clinical practice suggests that analgesic and sedative drugs should be used prior to and during neuromuscular blockade, with the goal of achieving deep sedation. 4) Optimal clinical practice suggests that clinicians at the bedside implement measure to attenuate the risk of unintended extubation in patients receiving neuromuscular-blocking agents. 5) Optimal clinical practice suggests that a reduced dose of an neuromuscular-blocking agent be used for patients with myasthenia gravis and that the dose should

  16. α-Adrenoceptor blockade modifies neurally induced atrial arrhythmias

    PubMed Central

    Richer, Louis-Philippe; Vinet, Alain; Kus, Teresa; Cardinal, René; Ardell, Jeffrey L.; Armour, John Andrew

    2008-01-01

    Our objective was to determine whether neuronally induced atrial arrhythmias can be modified by α-adrenergic receptor blockade. In 30 anesthetized dogs, trains of five electrical stimuli (1 mA; 1 ms) were delivered immediately after the P wave of the ECG to mediastinal nerves associated with the superior vena cava. Regional atrial electrical events were monitored with 191 atrial unipolar electrodes. Mediastinal nerve sites were identified that reproducibly initiated atrial arrhythmias. These sites were then restimulated following 1 h (time control, n = 6), or the intravenous administration of naftopidil (α1-adrenergic blocker: 0.2 mg/kg, n = 6), yohimbine (α2-adrenergic blocker: 1 mg/kg, n = 6) or both (n = 8). A ganglionic blocker (hexamethonium: 1 mg/kg) was tested in four dogs. Stimulation of mediastinal nerves sites consistently elicited atrial tachyarrhythmias. Repeat stimulation after 1 h in the time-control group exerted a 19% decrease of the sites still able to induce atrial tachyarrhythmias. Hexamethonium inactivated 78% of the previously active sites. Combined α-adrenoceptor blockade inactivated 72% of the previously active sites. Bradycardia responses induced by mediastinal nerve stimulation were blunted by hexamethonium, but not by α1,2-adrenergic blockade. Naftopidil or yohimbine alone eliminated atrial arrhythmia induction from 31% and 34% of the sites (similar to time control). We conclude that heterogeneous activation of the intrinsic cardiac nervous system results in atrial arrhythmias that involve intrinsic cardiac neuronal α-adrenoceptors. In contrast to the global suppression exerted by hexamethonium, we conclude that α-adrenoceptor blockade targets intrinsic cardiac local circuit neurons involved in arrhythmia formation and not the flow-through efferent projections of the cardiac nervous system. PMID:18716036

  17. Study on Neuromuscular Blockade Action of Verapamil in Albino Rats

    PubMed Central

    Nagaral, Jayashree; GH, Shashikala; K, Jagadeesh; Kumar K, Sharath; GS, Jayanth; PK, Chennaveerappa; Patil, Rajani

    2013-01-01

    Background: Calcium Channel Blockers (CCBs) are now widely employed in the treatment of cardiovascular diseases and peri operative hypertension. It has been reported that calcium channel blockers inhibit neuromuscular transmission. They have been shown to increase the neuromuscular blockade produced by neuromuscular blocking agents in in-vitro muscle nerve preparations. The present study is undertaken to demonstrate the effect of calcium channel blocker, verapamil on neuromuscular transmission in albino rats. Objectives: To study the neuromuscular blockade action of verapamil in albino rats. Methods: Twenty four albino rats of either sex weigh 150-250gms are selected and are randomly divided into 4 equal groups. The experimental rats are divided into four groups of 6 rats each and they are given the following treatment. Group 1(Control) - Normal saline (1ml/ kg), Group 2 (Standard) - Pancuronium (0.04 mg/kg) Group 3-Verapamil (2.5mg/kg), Group 4-given Verapamil (10mg/kg). The time of onset of hind limb paralysis and total duration of recovery are noted using inclined screen method. Results: Analysis of the results of group 3 that was received 2.5mg/kg of Verapamil, there was no onset of paralysis, in group 4 that received injection Verapamil 10mg/kg, showed neuromuscular blockade activity. The mean onset of hind limb paralysis was delayed compared to standard group and the mean duration of hind limb paralysis was shorter than standard group. It was statistically significant (P≤ 0.05). Interpretation and conclusion: It is generally held that external calcium is not necessary for the contraction of mammalian skeletal muscle, the demonstration of inward calcium currents that can be abolished by CCBs in these muscles prompted to re-examine the effect of Verapamil on the neuromuscular transmission. The present study allows us to determine the neuromuscular blockade activity of Verapamil. PMID:24086855

  18. Serum Immunoglobulin A Cross-Strain Blockade of Human Noroviruses

    PubMed Central

    Lindesmith, Lisa C.; Beltramello, Martina; Swanstrom, Jesica; Jones, Taylor A.; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S.

    2015-01-01

    Background. Human noroviruses are the leading cause of acute viral gastroenteritis, justifying vaccine development despite a limited understanding of strain immunity. After genogroup I (GI).1 norovirus infection and immunization, blockade antibody titers to multiple virus-like particles (VLPs) increase, suggesting that GI cross-protection may occur. Methods. Immunoglobulin (Ig)A was purified from sera collected from GI.1-infected participants, and potential neutralization activity was measured using a surrogate neutralization assay based on antibody blockade of ligand binding. Human and mouse monoclonal antibodies (mAbs) were produced to multiple GI VLPs to characterize GI epitopes. Results. Immunoglobulin A purified from day 14 post-GI.1 challenge sera blocked binding of GI.1, GI.3, and GI.4 to carbohydrate ligands. In some subjects, purified IgA preferentially blocked binding of other GI VLPs compared with GI.1, supporting observations that the immune response to GI.1 infection may be influenced by pre-exposure history. For other subjects, IgA equivalently blocked multiple GI VLPs. Only strain-specific mAbs recognized blockade epitopes, whereas strain cross-reactive mAbs recognized nonblockade epitopes. Conclusions. These studies are the first to describe a functional role for serum IgA in norovirus immunity and the first to characterize human monoclonal antibodies to GI strains, expanding our understanding of norovirus immunobiology. PMID:26180833

  19. Clinical utility of sympathetic blockade in cardiovascular disease management.

    PubMed

    Park, Chan Soon; Lee, Hae-Young

    2017-04-01

    A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.

  20. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  1. Immune Checkpoint Blockade Biology in Mouse Models of Glioblastoma.

    PubMed

    Yeo, Alan T; Charest, Alain

    2017-09-01

    Glioblastoma Multiforme (GBM) is a highly malignant primary brain cancer that is associated with abysmal prognosis. The median survival of GBM patients is ∼15 months and there have not been any significant advance in therapies in over a decade, leaving treatment options limited. There is clearly an unmet need for GBM treatment. Immunotherapies are treatments based on usurping the power of the host's immune system to recognize and eliminate cancer cells. They have recently proven to be a successful strategy for combating a variety of cancers. Of the various types of immunotherapies, checkpoint blockade approaches have thus far produced significant clinical responses in several cancers including melanoma, non small-cell lung cancer, renal cancer, and prostate cancer. This review focuses on the biological rationale for using checkpoint blockade immunotherapeutic approaches in primary brain cancer and an up-to-date summary of current and ongoing checkpoint inhibitors-based clinical trials for malignant glioma. In addition, we expand on new concepts for further improving checkpoint blockade treatments, with a particular focus on the advantages of using genetically engineered mouse models for studies of immunotherapies in GBM. J. Cell. Biochem. 118: 2516-2527, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Beta-adrenergic blockade and atrio--ventricular conduction impairment.

    PubMed

    Giudicelli, J F; Lhoste, F; Boissier, J R

    1975-04-01

    Atrio--ventricular conduction and its modifications induced by six Beta-adrenergic blocking agents have been investigated in the dog. Premature atrial stimuli (St2) were applied at variable intervals following regular stimuli (St1) ensuring atrial pacing; atrial (AERP), nodoventricular (NERP) and global (GERP) effective refractory periods as well as global functional refractory period (GFRP) were determined before and after administration of each of the six drugs. When Beta-blockade was produced with d,1-propranolol which hwas membrane stabilizing effects (MSE) but no intrinsic sympathomimetic activity (ISA) or with sotalol, which has neither MSE nor ISA, all parameters were significantly increased. When Beta-blockade was achieved with pindolol or practolol, which have only a poor Beta-adrenolytic potency and no ISA. Alprenolol showed intermediate effects. Thus, it appears that Beta-blockade and not MSE, is responsible for the onset of A-V conduction impairment but that ISA, probably through a metabolic mechanism, affords protection against this impairment. On the other hand, measurement of ventricular effective refractory period (VERP) has shown that at the Purkinje-free junction, it is MSE which is mainly involved in conduction impairment.

  3. PD-1 blockade expands intratumoral T memory cells

    PubMed Central

    Ribas, Antoni; Shin, Daniel Sanghoon; Zaretsky, Jesse; Frederiksen, Juliet; Cornish, Andrew; Avramis, Earl; Seja, Elizabeth; Kivork, Christine; Siebert, Janet; Kaplan-Lefko, Paula; Wang, Xiaoyan; Chmielowski, Bartosz; Glaspy, John A.; Tumeh, Paul C.; Chodon, Thinle; Pe’er, Dana; Comin-Anduix, Begoña

    2016-01-01

    Tumor responses to PD-1 blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated and single cell infiltrates were analyzed by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid-derived suppressor cells (moMDSCs) significantly increased in patients’ biopsies taken on treatment. The percentage of cells with a T regulatory phenotype, monocytes, and NK cells did not change while on PD-1 blockade therapy. CD8+ T memory cells were the most prominent phenotype that expanded intratumorally on therapy. However, the frequency of CD4+ T effector memory cells significantly decreased on treatment, whereas CD4+ T effector cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 were detected in two patients with regressing melanoma. In conclusion, PD-1 blockade increases the frequency of T cells, B cells, and MDSCs in tumors, with the CD8+ T effector memory subset being the major T-cell phenotype expanded in patients with a response to therapy. PMID:26787823

  4. Angular momentum blockade in nanoscale high-Tc superconducting grains

    NASA Astrophysics Data System (ADS)

    Mancarella, Francesco; Balatsky, Alexander; Wallin, Mats; Rosengren, Anders; Nordita-Condensed Matter Collaboration; KTH-Theoretical Physics Collaboration

    2014-03-01

    We discuss the angular momentum blockade in small d-wave SC grains in an external magnetic field. We find abrupt changes in angular momentum state of the condensate (''angular momentum blockade'') as a result of the variation of the external field. The effect represents a direct analog of the Coulomb blockade. We use the Ginzburg-Landau theory to illustrate how the field turns a d-wave order parameter (OP) into a(dx2 -y2 + idxy)-OP. We derive the volume magnetic susceptibility as a function of the field, and corresponding small jumps in magnetization at critical values of the field that should be experimentally observable in SC grains. The observation of these jumps requires a small grain, since their extent is inversely proportional to the number of Cooper pairs in the sample. The general source of instability of the pure d-wave gap is the presence of gap nodes, completely lifted by the secondary OP component. A d + id' -state is chiral and hence has an orbital moment carried by Cooper pairs. We consider fields H <

  5. Shape-sensitive Pauli blockade in a bent carbon nanotube

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Pályi, András

    2015-01-01

    Motivated by a recent experiment [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012), 10.1038/nnano.2012.160], we theoretically study the Pauli blockade transport effect in a double quantum dot embedded in a bent carbon nanotube. We establish a model for the Pauli blockade, taking into account the strong g -factor anisotropy that is linked to the local orientation of the nanotube axis in each quantum dot. We provide a set of conditions under which our model is approximately mapped to the spin-blockade model of Jouravlev and Nazarov [O. N. Jouravlev and Y. V. Nazarov, Phys. Rev. Lett. 96, 176804 (2006), 10.1103/PhysRevLett.96.176804]. The results we obtain for the magnetic anisotropy of the leakage current, together with their qualitative geometrical explanation, provide a possible interpretation of previously unexplained experimental results. Furthermore, we find that in a certain parameter range, the leakage current becomes highly sensitive to the shape of the tube, and this sensitivity increases with increasing g -factor anisotropy. This mutual dependence of the electron transport and the tube shape allows for mechanical control of the leakage current, and for characterization of the tube shape via measuring the leakage current.

  6. Preclinical and clinical characterization of the selective 5-HT1A receptor antagonist DU-125530 for antidepressant treatment

    PubMed Central

    Scorza, MC; Lladó-Pelfort, L; Oller, S; Cortés, R; Puigdemont, D; Portella, MJ; Pérez-Egea, R; Alvarez, E; Celada, P; Pérez, V; Artigas, F

    2012-01-01

    BACKGROUND AND PURPOSE The antidepressant efficacy of selective 5-HT reuptake inhibitors (SSRI) and other 5-HT-enhancing drugs is compromised by a negative feedback mechanism involving 5-HT1A autoreceptor activation by the excess 5-HT produced by these drugs in the somatodendritic region of 5-HT neurones. 5-HT1A receptor antagonists augment antidepressant-like effects in rodents by preventing this negative feedback, and the mixed β-adrenoceptor/5-HT1A receptor antagonist pindolol improves clinical antidepressant effects by preferentially interacting with 5-HT1A autoreceptors. However, it is unclear whether 5-HT1A receptor antagonists not discriminating between pre- and post-synaptic 5-HT1A receptors would be clinically effective. EXPERIMENTAL APPROACH We characterized the pharmacological properties of the 5-HT1A receptor antagonist DU-125530 using receptor autoradiography, intracerebral microdialysis and electrophysiological recordings. Its capacity to accelerate/enhance the clinical effects of fluoxetine was assessed in a double-blind, randomized, 6 week placebo-controlled trial in 50 patients with major depression (clinicaltrials.gov identifier NCT01119430). KEY RESULTS DU-125530 showed equal (low nM) potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT1A receptors in rat and human brain. It antagonized suppression of 5-hydroxytryptaminergic activity evoked by 8-OH-DPAT and SSRIs in vivo. DU-125530 augmented SSRI-induced increases in extracellular 5-HT as effectively as in mice lacking 5-HT1A receptors, indicating a silent, maximal occupancy of pre-synaptic 5-HT1A receptors at the dose used. However, DU-125530 addition to fluoxetine did not accelerate nor augment its antidepressant effects. CONCLUSIONS AND IMPLICATIONS DU-125530 is an excellent pre- and post-synaptic 5-HT1A receptor antagonist. However, blockade of post-synaptic 5- HT1A receptors by DU-125530 cancels benefits obtained by enhancing pre-synaptic 5-hydroxytryptaminergic

  7. Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli.

    PubMed

    Bondarenko, Evgeny; Beig, Mirza I; Hodgson, Deborah M; Braga, Valdir A; Nalivaiko, Eugene

    2015-05-15

    The dorsomedial hypothalamus (DMH) and the perifornical area (DMH/PeF) is one of the key regions of central autonomic processing. Previous studies have established that this region contains neurons that may be involved in respiratory processing; however, this has never been tested in conscious animals. The aim of our study was to investigate the involvement of the DMH/PeF area in mediating respiratory responses to stressors of various intensities and duration. Adult male Wistar rats (n = 8) received microinjections of GABAA agonist muscimol or saline into the DMH/PeF bilaterally and were subjected to a respiratory recording using whole body plethysmography. Presentation of acoustic stimuli (500-ms white noise) evoked transient responses in respiratory rate, proportional to the stimulus intensity, ranging from +44 ± 27 to +329 ± 31 cycles/min (cpm). Blockade of the DMH/PeF almost completely abolished respiratory rate and tidal volume responses to the 40- to 70-dB stimuli and also significantly attenuated responses to the 80- to 90-dB stimuli. Also, it significantly attenuated respiratory rate during the acclimatization period (novel environment stress). The light stimulus (30-s 2,000 lux) as well as 15-min restraint stress significantly elevated respiratory rate from 95 ± 4.0 to 236 ± 29 cpm and from 117 ± 5.2 to 189 ± 13 cpm, respectively; this response was abolished after the DMH/PeF blockade. We conclude that integrity of the DMH/PeF area is essential for generation of respiratory responses to both stressful and alerting stimuli.

  8. Vortex attenuation flight experiments

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Hastings, E. C., Jr.; Champine, R. A.; Tymczyszyn, J. J.

    1977-01-01

    Flight tests evaluating the effects of altered span loading, turbulence ingestion, combinations of mass and turbulence ingestion, and combinations of altered span loading turbulance ingestion on trailed wake vortex attenuation were conducted. Span loadings were altered in flight by varying the deflections of the inboard and outboard flaps on a B-747 aircraft. Turbulence ingestion was achieved in flight by mounting splines on a C-54G aircraft. Mass and turbulence ingestion was achieved in flight by varying the thrust on the B-747 aircraft. Combinations of altered span loading and turbulence ingestion were achieved in flight by installing a spoiler on a CV-990 aircraft and by deflecting the existing spoilers on a B-747 aircraft. The characteristics of the attenuated and unattenuated vortexes were determined by probing them with smaller aircraft. Acceptable separation distances for encounters with the attenuated and unattenuated vortexes are presented.

  9. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  10. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  11. Cat carotid body chemoreceptor responses before and after nicotine receptor blockade with alpha-bungarotoxin.

    PubMed

    Mulligan, E; Lahiri, S

    1987-01-01

    The nature of nicotine receptors in the carotid body was studied in anesthetized, paralyzed and artificially ventilated cats. Chemoreceptor discharge in single or few-fiber preparations of the carotid sinus nerve was measured during isocapnic hypoxia, hyperoxic hypercapnia and in response to nicotine injections before and after administration of alpha-bungarotoxin (10 cats) and after alpha-bungarotoxin plus mecamylamine (7 cats) which binds to neuromuscular-type nicotine cholinergic receptors. alpha-Bungarotoxin caused a slight enhancement of the chemoreceptor response to hypoxia without affecting the chemoreceptor stimulation by nicotine. Mecamylamine (1-5 mg, i.v.), a ganglionic-type nicotinic receptor blocker, had no further effect on the response to hypoxia while it completely abolished the chemoreceptor stimulation by nicotine. Thus the nicotinic receptors in the cat carotid body which elicit excitation of chemosensory fibers appear to be of the ganglionic-type. Blockade of neuromuscular and ganglionic types of nicotinic receptors in the carotid body by alpha-bungarotoxin and mecamylamine does not attenuate the chemosensory responses to either hypoxia or hypercapnia. These nicotinic receptors therefore, do not appear to play an essential role in hypoxic or hypercapnic chemoreception in the cat carotid body.

  12. Pharmacologic Blockade of αvβ1 Integrin Ameliorates Renal Failure and Fibrosis In Vivo.

    PubMed

    Chang, Yongen; Lau, Wei Ling; Jo, Hyunil; Tsujino, Kazuyuki; Gewin, Leslie; Reed, Nilgun Isik; Atakilit, Amha; Nunes, Ane Claudia Fernandes; DeGrado, William F; Sheppard, Dean

    2017-02-20

    Activated fibroblasts are deemed the main executors of organ fibrosis. However, regulation of the pathologic functions of these cells in vivo is poorly understood. PDGF receptor β (PDGFRβ) is highly expressed in activated pericytes, a main source of fibroblasts. Studies using a PDGFRβ promoter-driven Cre system to delete αv integrins in activated fibroblasts identified these integrins as core regulators of fibroblast activity across solid organs, including the kidneys. Here, we used the same PDGFRβ-Cre line to isolate and study renal fibroblasts ex vivo We found that renal fibroblasts express three αv integrins, namely αvβ1, αvβ3, and αvβ5. Blockade of αvβ1 prevented direct binding of fibroblasts to the latency-associated peptide of TGF-β1 and prevented activation of the latent TGF-β complex. Continuous administration of a recently described potent small molecule inhibitor of αvβ1, compound 8, starting the day of unilateral ureteral obstruction operation, inhibited collagen deposition in the kidneys of mice 14 days later. Compound 8 also effectively attenuated renal failure, as measured by BUN levels in mice fed an adenine diet known to cause renal injury followed by fibrosis. Inhibition of αvβ1 integrin could thus hold promise as a therapeutic intervention in CKD characterized by renal fibrosis.

  13. Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine.

    PubMed

    Pilat, Dominika; Piotrowska, Anna; Rojewska, Ewelina; Jurga, Agnieszka; Ślusarczyk, Joanna; Makuch, Wioletta; Basta-Kaim, Agnieszka; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Currently, the low efficacy of antinociceptive drugs for the treatment of neuropathic pain is a major therapeutic problem. Here, we show the potential role of interleukin (IL)-18 signaling in this phenomenon. IL-18 is an important molecule that performs various crucial functions, including the alteration of nociceptive transmission in response to neuropathic pain. We have studied the changes in the mRNA and protein levels (qRT-PCR and Western blot analysis, respectively) of IL-18, IL-18-binding protein (IL-18BP) and the IL-18 receptor (IL-18R) over time in rats following chronic constriction injury (CCI) of the sciatic nerve. Our study demonstrated that the spinal levels of IL-18BP were slightly downregulated at days 7 and 14 in the rats subjected to CCI. In contrast, the IL-18 and IL-18R mRNA expression and protein levels were elevated in the ipsilateral spinal cord on days 2, 7 and 14. Moreover, in rats exposed to a single intrathecal administration of IL-18BP (50 and 100 ng) 7 or 14 days following CCI, symptoms of neuropathic pain were attenuated, and the analgesia pursuant to morphine and buprenorphine (0.5 and 2.5 μg) was enhanced. In summary, the restoration of the analgesic activity of morphine and buprenorphine via the blockade of IL-18 signaling suggests that increased IL-18 pathway may account for the decreased analgesic efficacy of opioids for neuropathic pain.

  14. Adenosine 2A receptors modulate reward behaviours for methamphetamine.

    PubMed

    Chesworth, Rose; Brown, Robyn M; Kim, Jee Hyun; Ledent, Catherine; Lawrence, Andrew J

    2016-03-01

    Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards. © 2015 Society for the Study of Addiction.

  15. Ultrasound attenuation in ferrofluids.

    PubMed

    Shliomis, Mark; Mond, Michael; Morozov, Konstantin

    2008-08-15

    The absorption of acoustic energy by internal degrees of freedom of short chains is proposed as a new viable mechanism of ultrasound attenuation in ferrofluids. It is demonstrated that even though the volume fraction of the chains may be quite small, such an effect may reach the order of magnitude of viscous damping. In addition, by investigating the statistical properties of dimers in ferrofluids, it is shown that an applied magnetic field modifies the sound attenuation in a highly anisotropic manner. The proposed mechanism provides new insight into the fundamental issue of colloidal response, and, in particular, may lead to its utilization in novel experimental concepts.

  16. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  17. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    PubMed

    Kiyatkin, E A

    2010-05-05

    metabolic activity. This treatment (approximately 60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures

    PubMed Central

    Kiyatkin, Eugene A.

    2010-01-01

    activity. This treatment (∼60 min) had minimal effects on the latencies of drinking, but increased its total duration, with licking interrupted by pauses and retreats. This behavioral attenuation was coupled with weaker than in control locomotor activation and diminished temperature fluctuations in each recording location. Therefore, attenuation of normal behavioral and physiological responses to appetitive stimuli appears to underlie modest inhibiting effects of opiate receptor blockade on motivated behavior and consumption. PMID:20167257

  19. Drug interactions at GABA(A) receptors.

    PubMed

    Korpi, Esa R; Gründer, Gerhard; Lüddens, Hartmut

    2002-06-01

    Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.

  20. Tritium Attenuation by Distillation

    SciTech Connect

    Wittman, N.E.

    2001-07-31

    The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

  1. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  2. Behavioural evidence for a functional interaction between central 5-HT2 and 5-HT1A receptors.

    PubMed Central

    Backus, L. I.; Sharp, T.; Grahame-Smith, D. G.

    1990-01-01

    1. The possibility of 5-HT2 receptor modulation of central 5-HT1A receptor function has been examined using the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-HT1A receptor active drugs in rats. 2. The 5-HT2/5-HTIC antagonist ritanserin (0.1-2 mg kg-1) increased the 5-HT behavioural syndrome induced by submaximally effective doses of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) and gepirone. 3. Pretreatment with the 5-HT2/5-HT1C antagonist ICI 170,809 (0.25-5 mg kg-1) also enhanced the behavioural syndrome induced by 8-OH-DPAT or 5-MeODMT. 4. The 5-HT2/alpha 1-adrenoceptor antagonist ketanserin in a low dose (0.25 mg kg-1) significantly increased the 5-HT behavioural syndrome induced by 8-OH-DPAT or 5-MeODMT, while in a higher dose (2.5 mg kg-1) this drug decreased the response. Experiments with prazosin indicate that the higher dose of ketanserin might reduce the 5-HT behavioural syndrome through blockade of alpha 1-adrenoceptors. 5. Ritanserin and ICI 170,809 had no effect on apomorphine-induced stereotypy or hyperactivity, indicating that these drugs do not produce non-specific behavioural activation. 6. Ritanserin and ICI 170,809 inhibited quipazine-induced wet dog shakes at doses similar to those enhancing the 5-HT behavioural syndrome. 7. We suggest that ritanserin, ICI 170,809 and ketanserin enhance 5-HT1A agonist-induced behaviour through blockade of an inhibitory 5-HT2 receptor regulating or coupled to 5-HT1A receptor-mediated function. PMID:2145051

  3. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  4. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats.

    PubMed

    Bachtell, Ryan K; Self, David W

    2009-10-01

    Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.

  5. [The hemodynamic effect of thoracic sympathetic ganglion blockade in the anesthetized adult mongrel dogs].

    PubMed

    Yamagami, H

    1994-03-01

    Hemodynamic alterations with the thoracic sympathetic ganglion blockade were elucidated in the anesthetized open-chest dogs, under controlled ventilation with 100% oxygen and receiving fentanyl, pentobarbital and pancuronium administration, and the effect of blockade was assessed by increase in skin-surface temperature at the specific regions of the upper extremity. All dogs with thoracic sympathetic ganglion blockade revealed the increased skin temperature in blocked extremities and decreased skin temperature in the contralateral side with simultaneous compensatory vasoconstriction ("Borrowing-Lending phenomenon"). Four groups were classified according to the side and range of blockade: A-group (right Th7.8 ganglion, N = 17), B-group (left-Th7.8 ganglion, N = 8), C-group (right Th2.3 ganglion, N = 13) and D-group (left-Th2.3 ganglion, N = 10). The hemodynamic variables after the middle thoracic sympathetic ganglion blockade showed no remarkable changes but heart-rate, mean arterial blood pressure and cardiac output decreased significantly with the upper right-side thoracic sympathetic ganglion blockade, and the inhibited circulatory state lasted twenty minutes after blockade. No significant skin temperature changes were observed after blockade among four groups. The results suggest that the patient after upper thoracic sympathetic ganglion blockade should be cared with these circulatory changes in mind.

  6. Blood flow, sympathetic activity and pain relief following lumbar sympathetic blockade or surgical sympathectomy.

    PubMed

    Walsh, J A; Glynn, C J; Cousins, M J; Basedow, R W

    1985-02-01

    The physiological effects of local anaesthetic (bupivacaine), neurolytic (phenol) blockade and surgical ablation of the lumbar sympathetic chain were assessed in patients with peripheral vascular disease or sympathetic dystrophy. Local anaesthetic blockade in 49 patients resulted in significant decrease in pain, plantar sweating and in the vasoconstrictor ice response of the foot, as well as a significant increase in skin temperature and foot blood flow. Subsequent neurolytic blockade in 31 of these patients achieved an effective denervation as assessed by the same physiological measurements. The magnitude of changes in blood flow and sympathetic activity were similar for local anaesthetic and neurolytic blockade as well as in six patients who underwent surgical sympathectomy.

  7. The Naval Blockade: A Study of Factors Necessary for Effective Utilization

    DTIC Science & Technology

    1987-06-05

    PERU AND BOLIVIA BY CHILE 1879-1884 THE SPANISH AMERICAN WAR 1898 , . THE DECLARATION OF LONDON 1909 WORLD WAR I: THE BRITISH BLOCKADE OF...operations ashore can have on the blockade at sea. THE BLOCKADE DP PERU AND BOLIVIA BY CHILE 1B79-1S84 Beginning in 1379, Chile used a vastly superior...fleet to blockade the coasts of Peru and Bolivia . This Chilean Fleet had two British built battleships, giving it sea power greatly superior to that

  8. Effect of beta-adrenoceptor blockade on postexercise oxygen consumption and triglyceride/fatty acid cycling.

    PubMed

    Børsheim, E; Bahr, R; Høstmark, A T; Knardahl, S

    1998-04-01

    /FA cycling are not attenuated by selective beta1- or nonselective beta-adrenoceptor blockade after an acute prolonged exercise protocol.

  9. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  10. Neuromuscular blockade: what was, is and will be.

    PubMed

    Schepens, Tom; Cammu, Guy

    2014-01-01

    Non-depolarizing neuromuscular blocking agents (NMBAs) produce neuromuscular blockade by competing with acetylcholine at the neuromuscular junction, whereas depolarizing NMBAs open receptor channels in a manner similar to that of acetylcholine. Problems with NMBAs include malignant hyperthermia caused by succinylcholine, anaphylaxis with the highest incidence for succinylcholine and rocuronium, and residual neuromuscular blockade. To reverse these blocks, anticholinesterases can act indirectly by increasing the amount of acetylcholine in the neuromuscular junction; sugammadex is the only selective relaxant binding agent (SRBA) in clinical use. At all levels of blockade, recovery after sugammadex is faster than after neostigmine. Sugammadex potentially also has some other advantages over neostigmine that are related to neostigmine's increase in the amount of acetylcholine and the necessity of co-administering anticholinergics. However, hypersensitivity reactions, including anaphylaxis, have occurred in some patients and healthy volunteers after sugammadex and remain an issue for the FDA. In the near future, we may see the emergence of new SRBAs and of easier-to-use technologies that can routinely monitor neuromuscular transmissions in daily practice. The nature of the effect of sugammadex on freeing nicotinic acetylcholine receptors located outside the neuromuscular junction from NMBAs is unknown. Moreover, it is uncertain whether the full removal of the competing antagonists (by SRBAs) at the neuromuscular junction impacts the efficiency of acetylcholine transmission. In a recent pilot study in healthy volunteers, we demonstrated increased electromyographic diaphragm activity after sugammadex, compared to neostigmine. Further research is needed to elucidate the role of NMBAs and their reversal agents in the central control of breathing, respiratory muscle activity, and respiratory outcomes.

  11. Influence of extradural blockade and ephedrine on transcutaneous oxygen tension.

    PubMed

    Odoom, J A; Sih, I L; Bovill, J G; van der Broek, B; Oosting, J

    1986-10-01

    The influence of lumbar extradural blockade with 0.5% pain bupivacaine on transcutaneous oxygen tension (PtcO2) and skin temperature was studied in 20 patients, 10 scheduled for vascular surgery and 10 for urological surgery. At the time of maximum extent of blockade, mean arterial pressure (MAP) had decreased significantly (P less than 0.001) from 96.6 +/- 18.8 mm Hg to 69.5 +/- 10.1 (mean +/- SD) in the vascular group and from 88.0 +/- 14.7 mm Hg to 71.1 +/- 12 mm Hg in the urological group. In the vascular group PtcO2 decreased significantly in the ischaemic (P less than 0.01) and non-ischaemic (P less than 0.001) limbs. In the urological group, there was a significant (P less than 0.001) decrease in PtcO2 in both limbs. There was no change in cutaneous temperature in the ischaemic limbs (vascular group), but the temperature in the non-ischaemic limbs increased significantly (P less than 0.01). In the urological group, the cutaneous temperature increased significantly (P less than 0.001) in both limbs. When ephedrine 10 mg was administered i.v., MAP increased significantly (P less than 0.001) in both groups to pre-blockade values. This was accompanied in both groups by significant increases in PtcO2' but not by a change in skin temperature. There was a significant correlation between change in MAP and change in PtcO2 in both groups after ephedrine.

  12. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    PubMed Central

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2–neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. PMID:18606863

  13. Challenges to antagonist blockade during sustained-release naltrexone treatment.

    PubMed

    Kunøe, Nikolaj; Lobmaier, Philipp; Vederhus, John Kåre; Hjerkinn, Bjørg; Gossop, Michael; Hegstad, Solfrid; Kristensen, Øistein; Waal, Helge

    2010-09-01

    Naltrexone is a competitive opioid antagonist that effectively blocks the action of heroin and other opioid agonists. Sustained-release naltrexone formulations are now available that provide long-acting opioid blockade. This study investigates the use of heroin and other opioids among opioid-dependent patients receiving treatment with long-acting naltrexone implants, their subjective experience of drug 'high' after opioid use, and factors associated with opioid use. Participants (n = 60) were opioid-dependent patients receiving treatment with naltrexone implants. Outcome data on substance use, drug 'high', depression and criminal activity were collected over a 6-month period. Blood samples were taken to monitor naltrexone plasma levels, and hair samples to verify self-reported opioid use. More than half [n = 34 or 56%; 95% confidence interval (CI) 44-68%)] the patients challenged the blockade with illicit opioids during the 6-month treatment period; 44% (n = 26; 95% CI 32-56%) were abstinent from opioids. Mean opioid use was reduced from 18 [standard deviation (SD)13] days during the month preceding treatment to 6 days (SD 11) after 6 months. Of the respondents questioned on opioid 'high' (n = 31), nine patients (30%; 95% CI 16-47%) reported partial drug 'high' following illicit opioid use, and three (12%; 95% CI 3-26%) reported full 'high'. Opioid use was associated with use of non-opioid drugs and criminal behaviour. Challenging naltrexone blockade with heroin on at least one occasion is common among sustained-release naltrexone patients, but only a minority of patients use opioids regularly. Challenges represent a warning sign for poor outcomes and often occur in the context of polydrug use and social adjustment problems.

  14. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  15. Negative regulation of inflammatory responses by immunoglobulin A receptor (FcαRI) inhibits the development of Toll-like receptor-9 signalling-accelerated glomerulonephritis.

    PubMed

    Watanabe, T; Kanamaru, Y; Liu, C; Suzuki, Y; Tada, N; Okumura, K; Horikoshi, S; Tomino, Y

    2011-11-01

    Myeloid FcαRI, a receptor for immunoglobulin (Ig)A, mediates cell activation or inhibition depending on the type of ligand interaction, which can be either multivalent or monovalent. Anti-inflammatory signalling is triggered by monomeric targeting using anti-FcαRI Fab or IgA ligand binding, which inhibits immune and non-immune-mediated renal inflammation. The participation of Toll-like receptors (TLRs) in kidney pathology in experimental models and various forms of human glomerular nephritis has been discussed. However, little is known about negative regulation of innate-immune activation. In the present study, we generated new transgenic mice that express FcαRI(R209L) /FcRγ chimeric protein and showed that the monovalent targeting of FcαRI exhibited inhibitory effects in an in vivo model of TLR-9 signalling-accelerated nephritis. Mouse monoclonal anti-FcαRI MIP8a Fab improved urinary protein levels and reduced the number of macrophages and immunoglobulin deposition in the glomeruli. Monovalent targeting using MIP8a Fab attenuates the TLR-9 signalling pathway and is associated with phosphorylation of extracellular signal-related protein kinases [extracellular signal-regulated kinase (ERK), P38, c-Jun N-terminal kinase (JNK)] and the activation of nuclear factor (NF)-κB. The inhibitory mechanism involves recruitment of tyrosine phosphatase Src homology 2 domain-containing phosphatase-1 (SHP-1) to FcαRI. Furthermore, cell transfer studies with macrophages pretreated with MIP8a Fab showed that blockade of FcαRI signalling in macrophages prevents the development of TLR-9 signalling-accelerated nephritis. These results suggest a role of anti-FcαRI Fab as a negative regulator in controlling the magnitude of the innate immune response and a new type of anti-inflammatory drug for treatment of kidney disease. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  16. Classical Coulomb blockade of a silicon nanowire dot

    NASA Astrophysics Data System (ADS)

    Huang, Shaoyun; Fukata, Naoki; Shimizu, Maki; Yamaguchi, Tomohiro; Sekiguchi, Takashi; Ishibashi, Koji

    2008-05-01

    Single electron transistors (SETs) have been fabricated with an individual n-type single-crystal silicon nanowire (SiNW) that was grown by a catalytic chemical vapor deposition technique, and their transport properties have been measured in low temperatures. The SiNW-SET in the present work exhibited well pronounced Coulomb oscillations in a wide gate voltage range from -10to10V, featuring in uniform peak height, uniform full width at half maximum, and equidistant peak spacing. The charging energy turned out to be 64μeV. The temperature dependence of Coulomb oscillations revealed that the dot worked within the classical Coulomb blockade model.

  17. [Prolonged phase II neuromuscular blockade following succinylcholine administration].

    PubMed

    Jurkolow, G; Fuchs-Buder, T; Lemoine, A; Raft, J; Rocq, N; Meistelman, C

    2014-03-01

    Patients who are given a single dose of succinylcholine normally undergo a short-acting depolarizing phase I neuromuscular block but rarely a phase II block. Prolonged neuromuscular blockade occurs after a single dose of succinylcholine in case of genetically determined abnormal plasma butyrylcholinesterase activity. It is mandatory to use monitoring to detect this side effect. We report a case of a patient with abnormal plasma butyrylcholinesterase activity undergoing a six-hour prolonged neuromuscular phase II block, after a single dose of succinylcholine.

  18. [Central blockades in Pediatrics: A review of current literature].

    PubMed

    Eizaga Rebollar, R; García Palacios, M V; Morales Guerrero, J; Torres Morera, L M

    2016-02-01

    Pediatric neuraxial anesthesia is an effective tool that can be used as a supplement or alternative to general anesthesia. However, there have always been doubts about its usefulness and risk-benefit ratio. The purpose of this review is to describe the current role of central blockades in pediatric patients, upgrade practical and safety aspects, and review the latest technological advances applied to this procedure. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Quantum confinement and Coulomb blockade in isolated nanodiamond crystallites

    NASA Astrophysics Data System (ADS)

    Bolker, Asaf; Saguy, Cecile; Tordjman, Moshe; Kalish, Rafi

    2013-07-01

    We present direct experimental evidence of quantum confinement effects in single isolated nanodiamonds by scanning tunneling spectroscopy. For grains smaller than 4.5 nm, the band gap was found to increase with decreasing nanodiamond size and a well-defined, evenly spaced, 12-peak structure was observed on the conduction band side of the conductance curves. We attribute these peaks to the Coulomb blockade effect, reflecting the 12-fold degeneracy of the first electron-energy level in the confined nanodiamond. The present results shed light on the size dependence of the electronic properties of single nanodiamonds and are of major importance for future nanodiamond-based applications.

  20. Stationary and transient leakage current in the Pauli spin blockade.

    PubMed

    Qassemi, F; Coish, W A; Wilhelm, F K

    2009-05-01

    We study the effects of cotunneling and a nonuniform Zeeman splitting on the stationary and transient leakage current through a double quantum dot in the Pauli spin blockade regime. We find that the stationary current due to cotunneling vanishes at low temperature and large applied magnetic field, allowing for the dynamical (rapid) preparation of a pure spin ground state, even at large voltage bias. Additionally, we analyze current that flows between blocking events, characterized, in general, by a fractional effective charge e*. This charge can be used as a sensitive probe of spin-relaxation mechanisms and can be used to determine the visibility of Rabi oscillations.

  1. Autonomic Blockade Reverses Endothelial Dysfunction in Obesity-Associated Hypertension.

    PubMed

    Gamboa, Alfredo; Figueroa, Rocío; Paranjape, Sachin Y; Farley, Ginnie; Diedrich, Andre; Biaggioni, Italo

    2016-10-01

    Impaired nitric oxide (NO) vasodilation (endothelial dysfunction) is associated with obesity and thought to be a factor in the development of hypertension. We previously found that NO synthesis inhibition had similar pressor effects in obese hypertensives compared with healthy control during autonomic blockade, suggesting that impaired NO vasodilation is secondary to sympathetic activation. We tested this hypothesis by determining the effect of autonomic blockade (trimethaphan 4 mg/min IV) on NO-mediated vasodilation (increase in forearm blood flow to intrabrachial acetylcholine) compared with endothelial-independent vasodilation (intrabrachial sodium nitroprusside) in obese hypertensive subjects (30blockade increased basal forearm blood flow (from 3.9±0.7 to 5.2±1.2 mL/100 mL per minute, P=0.078). As expected, NO-mediated vasodilation was blunted on the intact day compared with NO-independent vasodilation; forearm blood flow increased from 3.6±0.6 to 10.1±1.1 with the highest dose of nitroprusside, but only from 3.7±0.4 to 7.2±0.8 mL/100 mL per minute with the highest dose of acetylcholine, P<0.05. In contrast, forearm blood flow responses to acetylcholine were restored by autonomic blockade and were no longer different to nitroprusside (from 6.2±1.1 to 11.4±1.6 mL/100 mL per minute and from 5.2±0.9 to 12.5±0.9, respectively, P=0.58). Our results support the concept that sympathetic activation contributes to the impairment in NO-mediated vasodilation seen in obesity-associated hypertension and provides further rationale to explore it as a therapeutic target. © 2016 American Heart Association, Inc.

  2. GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo.

    PubMed

    Heck, Nicolas; Kilb, Werner; Reiprich, Petra; Kubota, Hisahiko; Furukawa, Tomonori; Fukuda, Atsuo; Luhmann, Heiko J

    2007-01-01

    The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the agonist muscimol via cortical surface Elvax implants induced prominent alterations in the cortical architecture when compared with untreated or sham-operated controls. BMI- and muscimol-treated animals revealed heterotopic cell clusters in the upper layers and a complete loss of the cortical lamination in the region underlying the Elvax implant. Immunocytochemical staining for glial fibrillary acidic protein, N-methyl-D-aspartate receptors, and GABA demonstrated that heterotopia was not provoked by glial proliferation and confirmed the presence of both glutamatergic and GABAergic neurons. In organotypic neocortical slices from embryonic day 18-19 embryos, application of BMI and to a lesser extent also muscimol induced an increase in the migration speed and an accumulation of neurons in the upper cortical layers. Spontaneous intracellular calcium ([Ca2+]i) oscillations in neocortical slices from newborn rats were abolished by BMI (5 and 20 microM) and muscimol (1 and 10 microM), indicating that both compounds interfere with [Ca2+]i signaling required for normal neuronal migration. Electrophysiological recordings from migrating neurons in newborn rat neocortical slices indicate that long-term application of muscimol causes a pronounced reduction (1 microM muscimol) or blockade (10 microM) in the responsiveness of postsynaptic GABA-A receptors due to a pronounced receptor desensitization. Our results indicate that modulation of GABA-A receptors by compounds acting as agonists or antagonists may profoundly influence the neuronal migration process in the developing cerebral cortex.

  3. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia.

  4. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  5. The serotonin 5-Hydroxytryptaphan1A receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin, stimulates sympathetic-dependent increases in venous tone during hypovolemic shock.

    PubMed

    Tiniakov, Ruslan; Scrogin, Karie E

    2006-11-01

    Adjuvant treatment of hypovolemic shock with vasoconstrictors is controversial due to their propensity to raise arterial resistance and exacerbate ischemia. A more advantageous therapeutic approach would use agents that also promote venoconstriction to augment perfusion pressure through increased venous return. Recent studies indicate that 5-hydroxytryptophan (5-HT)(1A) receptor agonists increase blood pressure by stimulating sympathetic drive when administered after acute hypotensive hemorrhage. Given that venous tone is highly dependent upon sympathetic activation of alpha(2)-adrenergic receptors, we hypothesized that the 5-HT(1A) receptor agonist, (+)8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), would increase venous tone in rats subject to hypovolemic shock through sympathetic activation of alpha(2)-adrenergic receptors. Systemic administration of 8-OH-DPAT produced a sustained rise in blood pressure (+44 +/- 3 mm Hg 35 min after injection, P < 0.01 versus saline) and mean circulatory filling pressure (+4.2 +/- 0.7 mm Hg, P < 0.01 versus saline) in conscious rats subjected to hypovolemic shock. An equipressor infusion of epinephrine failed to influence mean circulatory filling pressure (MCFP). Ganglionic blockade, alpha(1)-, or peripheral alpha(2)-adrenergic receptor blockade prevented the rise in MCFP observed with 8-OH-DPAT, but only alpha(1)-adrenergic receptor blockade diminished the pressor effect of the drug (P < 0.01). 8-OH-DPAT raises blood pressure in rats in hypovolemic shock through both direct vascular activation and sympathetic activation of alpha(1)-adrenergic receptors. The sympathoexcitatory effect of 8-OH-DPAT contributes to elevated venous tone through concurrent activation of both alpha(1)- and alpha(2)-adrenergic receptors. The data suggest that 5-HT(1A) receptor agonists may provide an advantageous alternative to currently therapeutic interventions used to raise perfusion pressure in hypovolemic shock.

  6. B and T lymphocyte attenuator tempers early infection immunity.

    PubMed

    Sun, Yonglian; Brown, Nicholas K; Ruddy, Matthew J; Miller, Mendy L; Lee, Youjin; Wang, Yang; Murphy, Kenneth M; Pfeffer, Klaus; Chen, Lieping; Kaye, Jonathan; Fu, Yang-Xin

    2009-08-01

    Coinhibitory pathways are thought to act in later stages of an adaptive immune response, but whether coinhibition contributes to early innate immunity is unclear. We show that engagement of the newly discovered coinhibitory receptor B and T lymphocyte attenuator (BTLA) by herpesvirus entry mediator (HVEM) is critical for negatively regulating early host immunity against intracellular bacteria. Both HVEM(-/-) and BTLA(-/-), but not LIGHT(-/-), mice are more resistant to listeriosis compared with wild-type mice, and blockade of the BTLA pathway promotes, while engagement inhibits, early bacterial clearance. Differences in bacterial clearance were seen as early as 1 day postinfection, implicating the initial innate response. Therefore, innate cell function in BTLA(-/-) mice was studied. We show that innate cells from BTLA(-/-) mice secrete significantly more proinflammatory cytokines upon stimulation with heat-killed Listeria. These results provide the first evidence that a coinhibitory pathway plays a critical role in regulating early host innate immunity against infection.

  7. Adenosine A2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE).

    PubMed

    Barros-Barbosa, Aurora R; Ferreirinha, Fátima; Oliveira, Ângela; Mendes, Marina; Lobo, M Graça; Santos, Agostinho; Rangel, Rui; Pelletier, Julie; Sévigny, Jean; Cordeiro, J Miguel; Correia-de-Sá, Paulo

    2016-12-01

    Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.

  8. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT1 receptor blockade and PPARγ activation

    PubMed Central

    Wang, Juan; Pang, Tao; Hafko, Roman; Benicky, Julius; Sanchez-Lemus, Enrique; Saavedra, Juan M.

    2014-01-01

    Sartans (Angiotensin II AT1 Receptor Blockers, ARBs) are powerful neuroprotective agents in vivo and protect against IL-1β neurotoxicity in vitro. The purpose of this research was to determine the extent of sartan neuroprotection against glutamate excitotoxicity, a common cause of neuronal injury and apoptosis. The results show that sartans are neuroprotective, significantly reducing glutamate-induced neuronal injury and apoptosis in cultured rat primary cerebellar granule cells (CGCs). Telmisartan was the most potent sartan studied, with an order of potency telmisartan > candesartan > losartan > valsartan. Mechanisms involved reduction of pro-apoptotic caspase-3 activation, protection of the survival PI3K/Akt/GSK-3β pathway, and prevention of glutamate-induced ERK1/2 activation. NMDA receptor stimulation was essential for glutamate-induced cell injury and apoptosis. Participation of AT1A receptor was supported by glutamate-induced upregulation of AT1A gene expression and AT1 receptor binding. Conversely, AT1B or AT2 receptor played no role. Glutamate-induced neuronal injury and the neuroprotective effect of telmisartan were decreased, but not abolished, in CGCs obtained from AT1A knock-out mice. This indicates that although AT1 receptors are necessary for glutamate to exert its full neurotoxic potential, part of the neuroprotective effect of telmisartan is independent of AT1 receptor blockade. PPARγ activation was also involved in the neuroprotective effects of telmisartan, as telmisartan enhanced PPARγ nuclear translocation, and the PPARγ antagonist GW9662 partially reversed the neuroprotective effects of telmisartan. The present results substantiate the therapeutic use of sartans, in particular telmisartan, in neurodegenerative diseases and traumatic brain disorders where glutamate neurotoxicity plays a significant role. PMID:24316465

  9. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγ activation.

    PubMed

    Wang, Juan; Pang, Tao; Hafko, Roman; Benicky, Julius; Sanchez-Lemus, Enrique; Saavedra, Juan M

    2014-04-01

    Sartans (Angiotensin II AT(1) Receptor Blockers, ARBs) are powerful neuroprotective agents in vivo and protect against IL-1β neurotoxicity in vitro. The purpose of this research was to determine the extent of sartan neuroprotection against glutamate excitotoxicity, a common cause of neuronal injury and apoptosis. The results show that sartans are neuroprotective, significantly reducing glutamate-induced neuronal injury and apoptosis in cultured rat primary cerebellar granule cells (CGCs). Telmisartan was the most potent sartan studied, with an order of potency telmisartan > candesartan > losartan > valsartan. Mechanisms involved reduction of pro-apoptotic caspase-3 activation, protection of the survival PI3K/Akt/GSK-3β pathway and prevention of glutamate-induced ERK1/2 activation. NMDA receptor stimulation was essential for glutamate-induced cell injury and apoptosis. Participation of AT(1A) receptor was supported by glutamate-induced upregulation of AT(1A) gene expression and AT(1) receptor binding. Conversely, AT(1B) or AT(2) receptors played no role. Glutamate-induced neuronal injury and the neuroprotective effect of telmisartan were decreased, but not abolished, in CGCs obtained from AT(1A) knock-out mice. This indicates that although AT(1) receptors are necessary for glutamate to exert its full neurotoxic potential, part of the neuroprotective effect of telmisartan is independent of AT(1) receptor blockade. PPARγ activation was also involved in the neuroprotective effects of telmisartan, as telmisartan enhanced PPARγ nuclear translocation and the PPARγ antagonist GW9662 partially reversed the neuroprotective effects of telmisartan. The present results substantiate the therapeutic use of sartans, in particular telmisartan, in neurodegenerative diseases and traumatic brain disorders where glutamate neurotoxicity plays a significant role. Published by Elsevier Ltd.

  10. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Lin, Heng-Teng; Chen, Yu-Wen; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-04-05

    This study aimed to assess the local anesthetic effects of chlorpheniramine in spinal anesthesia and is compared with mepivacaine, a widely-used local anesthetic. Spinal anesthesia with chlorpheniramine and mepivacaine was constructed in a dosage-dependent fashion after the rats were injected intrathecally. The spinal block effect of chlorpheniramine in motor function, nociception, and proprioception was compared to that of mepivacaine. We revealed that intrathecal chlorpheniramine and mepivacaine exhibited a dose-dependent spinal block of motor function, nociception, and proprioception. On the 50% effective dose (ED50) basis, the ranks of potencies in motor function, nociception, and proprioception were chlorpheniramine>mepivacaine (P<0.01 for the differences). On the equianesthetic basis (ED25, ED50, ED75), the duration of spinal anesthesia with chlorpheniramine was greater than that of mepivacaine (P<0.01 for the differences). Instead of mepivacaine, chlorpheniramine produced a greater duration of sensory blockade than the motor blockade. These preclinical data showed that chlorpheniramine has a better sensory-selective action over motor block to produce more potent and long-lasting spinal anesthesia than mepivacaine.

  11. Evaluation of the safety of epinephrine in digital nerve blockade

    PubMed Central

    Chapeskie, Henry; Juliao, Alexis; Payne, Sonja; Koichopolos, Jennifer

    2016-01-01

    Abstract Objective To evaluate the safety profile of lidocaine containing 1:200 000 to 1:100 000 epinephrine with concurrent tourniquet use in patients undergoing toe surgery. Design A retrospective case series analysis of toe procedures performed under digital blockade with adjuvant vasopressor from January 25, 2009, to May 31, 2014, was conducted. Exclusion criteria were limited to procedures performed without adjuvant vasopressor use. Setting A single clinic in Ontario. Participants A total of 1334 toe procedures performed in 937 patients. Main outcome measures The primary study outcome was the incidence of postoperative digital necrosis. Secondary outcomes included other postoperative complications including infection, reperfusion injury, persistent granulation, and damage to the nail matrix. Results In total, 1334 toe procedures were included in this study, of which 45 involved patients with a pre-existing diagnosis of diabetes mellitus. The overall incidence of postoperative complications was low (4.6%). No cases of digital ischemia or gangrenous necrosis were observed. Subgroup analysis of patients with and without diabetes showed no statistically significant difference in the rate of complications. Conclusion This study demonstrates the safety of adjuvant vasopressor use in digital nerve blockade of the toes within a large, diverse population. This study adds to a growing base of evidence on the safety of lidocaine with 1:200 000 to 1:100 000 epinephrine for digital anesthesia.

  12. Hipocrates: a robust system for the control of neuromuscular blockade.

    PubMed

    Mendonça, Teresa; Magalhães, Hugo; Lago, Pedro; Esteves, Simão

    2004-08-01

    Development of an automatic system (software package Hipocrates) for the control of neuromuscular blockade by continuous infusion of the non-depolarising types of muscle relaxant drugs presently used in anaesthesia, namely atracurium, cisatracurium, vecuronium and rocuronium. Hipocrates incorporates control strategies based upon classical, adaptive and robust control, as well as a wide range of noise reduction techniques and on-line adaptation to patient-specific characteristics. Therefore, the system provides strong robustness to inter- and intra-individual variability of the patients responses or unexpected circumstances and adaptation to the individual requirements. The control system is easy to set up and to use in a clinical environment. It consists of a portable PC computer, a Datex AS/3 NMT sensor and a B/Braun compact perfusion pump. In the simulation mode the software package incorporates sophisticated generation of pharmacokinetic/pharmacodynamic models driven by simulated drug administration regimes (bolus, continuous infusion and a combination of both). Hipocrates is an advanced standalone application for the control of neuromuscular blockade with a friendly graphic interface. It has been extensively validated, and it can be used on patients undergoing surgery as well as for simulation studies. Therefore Hipocrates also provides an excellent environment for education and training purposes.

  13. Emerging role of checkpoint blockade therapy in lymphoma

    PubMed Central

    Galanina, Natalie; Kline, Justin; Bishop, Michael R.

    2017-01-01

    Following the successful application of immune checkpoint blockade therapy (CBT) in refractory solid tumors, it has recently gained momentum as a promising modality in the treatment of relapsed lymphoma. This significant therapeutic advance stems from decades of research that elucidated the role of immune regulation pathways and the mechanisms by which tumors can engage these critical pathways to escape immune detection. To date, two main pathways, the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1), have emerged as key targets of CBT demonstrating unprecedented activity particularly in heavily pretreated relapsed/refractory Hodgkin lymphoma and some forms of non-Hodgkin disease. Herein we provide a brief discussion of checkpoint blockade in the context of lymphoma biology with a specific focus on novel checkpoint inhibitors and their therapeutic activity. We discuss current clinical trials and the landscape of CBT to underscore both the remarkable progress and foreseeable limitations of this novel treatment strategy. In particular, we build upon state-of-the-art knowledge and clinical insights gained from the early trials to review potential approaches to how CBT may be integrated with other treatment modalities, including chemoimmunotherapy to improve patient outcomes in the future. Finally, as the role of CBT evolves to potentially become a cornerstone of therapy in refractory/relapsed lymphoma, we briefly emphasize the importance of predictive biomarkers in an effort to select appropriate patients who are most likely to derive benefit from CBT. PMID:28203344

  14. Inactivation gating determines nicotine blockade of human HERG channels.

    PubMed

    Wang, H Z; Shi, H; Liao, S J; Wang, Z

    1999-09-01

    We have previously found that nicotine blocked multiple K+ currents, including the rapid component of delayed rectifier K+ currents (IKr), by interacting directly with the channels. To shed some light on the mechanisms of interaction between nicotine and channels, we performed detailed analysis on the human ether-à-go-go-related gene (HERG) channels, which are believed to be equivalent to the native I(Kr) when expressed in Xenopus oocytes. Nicotine suppressed the HERG channels in a concentration-dependent manner with greater potency with voltage protocols, which favor channel inactivation. Nicotine caused dramatic shifts of the voltage-dependent inactivation curve to more negative potentials and accelerated the inactivation process. Conversely, maneuvers that weakened the channel inactivation gating considerably relieved the blockade. Elevating the extracellular K+ concentration from 5 to 20 mM increased the nicotine concentration (by approximately 100-fold) needed to achieve the same degree of inhibition. Moreover, nicotine lost its ability to block the HERG channels when a single mutation was introduced to a residue located after transmembrane domain 6 (S631A) to remove the rapid channel inactivation. Our data suggest that the inactivation gating determines nicotine blockade of the HERG channels.

  15. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    PubMed

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p < 0.01). Groups III and IV had a significantly lower Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  16. Functional improvement of dystrophic muscle by myostatin blockade.

    PubMed

    Bogdanovich, Sasha; Krag, Thomas O B; Barton, Elisabeth R; Morris, Linda D; Whittemore, Lisa-Anne; Ahima, Rexford S; Khurana, Tejvir S

    2002-11-28

    Mice and cattle with mutations in the myostatin (GDF8) gene show a marked increase in body weight and muscle mass, indicating that this new member of the TGF-beta superfamily is a negative regulator of skeletal muscle growth. Inhibition of the myostatin gene product is predicted to increase muscle mass and improve the disease phenotype in a variety of primary and secondary myopathies. We tested the ability of inhibition of myostatin in vivo to ameliorate the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). Blockade of endogenous myostatin by using intraperitoneal injections of blocking antibodies for three months resulted in an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx mouse muscle along with a significant decrease in muscle degeneration and concentrations of serum creatine kinase. The functional improvement of dystrophic muscle by myostatin blockade provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD, and circumvents the major problems associated with conventional gene therapy in these disorders.

  17. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    PubMed

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade.

  18. Interaction blockade for bosons in an asymmetric double well

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.; Andersen, Mikkel F.; Brand, Joachim

    2017-07-01

    The interaction blockade phenomenon isolates the motion of a single quantum particle within a multiparticle system, in particular for coherent oscillations in and out of a region affected by the blockade mechanism. For identical quantum particles with Bose statistics, the presence of the other particles is still felt by a bosonic stimulation factor √{N } that speeds up the coherent oscillations, where N is the number of bosons. Here we propose an experiment to observe this enhancement factor with a small number of bosonic atoms. The proposed protocol realizes an asymmetric double-well potential with multiple optical tweezer laser beams. The ability to adjust bias independently of the coherent coupling between the wells allows the potential to be loaded with different particle numbers while maintaining the resonance condition needed for coherent oscillations. Numerical simulations with up to three bosons in a realistic potential generated by three optical tweezers predict that the relevant avoided level crossing can be probed and the expected bosonic enhancement factor observed.

  19. CTLA4 blockade broadens the peripheral T cell receptor repertoire

    PubMed Central

    Robert, Lidia; Tsoi, Jennifer; Wang, Xiaoyan; Emerson, Ryan; Homet, Blanca; Chodon, Thinle; Mok, Stephen; Huang, Rong Rong; Cochran, Alistair J.; Comin-Anduix, Begonya; Koya, Richard C.; Graeber, Thomas G.; Robins, Harlan; Ribas, Antoni

    2014-01-01

    Purpose To evaluate the immunomodulatory effects of CTLA-4 blockade with tremelimumab in peripheral blood mononuclear cells (PBMC). Experimental Design We used next generation sequencing to study the complementarity determining region 3 (CDR3) from the rearranged T cell receptor (TCR) variable beta (V-beta) in PBMC of 21 patients, at baseline and 30–60 days after receiving tremelimumab. Results After receiving tremelimumab there was a median of 30% increase in unique productive sequences of TCR V-beta CDR3 in 19 out of 21 patients, and a median decrease of 30% in only 2 out of 21 patients. These changes were significant for richness (p=0.01) and for Shannon index diversity (p=0.04). In comparison, serially collected PBMC from four healthy donors did not show a significant change in TCR V-beta CDR3 diversity over one year. There was a significant difference in the total unique productive TCR V-beta CDR3 sequences between patients experiencing toxicity with tremelimumab compared to patients without toxicity (p=0.05). No relevant differences were noted between clinical responders and non-responders. Conclusions CTLA4 blockade with tremelimumab diversifies the peripheral T cell pool, representing a pharmacodynamic effect of how this class of antibodies modulates the human immune system. PMID:24583799

  20. IL-10 Signaling Blockade Controls Murine West Nile Virus Infection

    PubMed Central

    Bai, Fengwei; Wang, Penghua; Kamanaka, Masahito; Connolly, Tarah M.; Gate, David; Montgomery, Ruth R.; Flavell, Richard A.; Fikrig, Erol

    2009-01-01

    West Nile virus (WNV), a mosquito-borne single-stranded RNA flavivirus, can cause significant human morbidity and mortality. Our data show that interleukin-10 (IL-10) is dramatically elevated both in vitro and in vivo following WNV infection. Consistent with an etiologic role of IL-10 in WNV pathogenesis, we find that WNV infection is markedly diminished in IL-10 deficient (IL-10−/−) mice, and pharmacologic blockade of IL-10 signaling by IL-10 neutralizing antibody increases survival of WNV-infected mice. Increased production of antiviral cytokines in IL-10−/− mice is associated with more efficient control of WNV infection. Moreover, CD4+ T cells produce copious amounts of IL-10, and may be an important cellular source of IL-10 during WNV infection in vivo. In conclusion, IL-10 signaling plays a negative role in immunity against WNV infection, and blockade of IL-10 signaling by genetic or pharmacologic means helps to control viral infection, suggesting a novel anti-WNV therapeutic strategy. PMID:19816558

  1. Angiopoietin-2 Blockade Promotes Survival of Corneal Transplants

    PubMed Central

    Zhang, Liwei; Li, Guangyu; Sessa, Roberto; Kang, Gyeong Jin; Shi, Meng; Ge, Shaokui; Gong, Anna Jiang; Wen, Ying; Chintharlapalli, Sudhakar; Chen, Lu

    2017-01-01

    Purpose Corneal transplantation remains the last hope for vision restoration, and lymphangiogenesis (LG) is a primary mediator of transplant rejection. This study was to investigate the specific role of angiopoietin-2 (Ang-2) in transplantation-associated LG and graft rejection. Methods Orthotopic corneal transplantation was performed between fully mismatched C57BL/6 (donor) and BALB/c (recipient) mice to assess the effects of Ang-2 blockade via neutralizing antibody. Grafts were evaluated in vivo by ophthalmic slit-lamp biomicroscopy and anterior segment optical coherence tomography (OCT) up to 8 weeks after surgery. Additionally, whole-mount corneas were analyzed for lymphatic and blood vessels and macrophages by immunofluorescent microscopy, and draining lymph nodes were assessed for donor-derived cells by flow cytometry. Results Anti-Ang-2 treatment significantly suppressed LG and graft rejection. In this study, we achieved 75% suppression of LG and 80% graft survival. Our approach also inhibited donor-derived cell trafficking to draining lymph nodes and affected macrophage morphologic phenotypes in the grafted corneas. Additionally, Ang-2 blockade also reduced central corneal thickening, a parameter strongly associated with graft rejection. Conclusions Ang-2 is critically involved in corneal transplant rejection and anti-Ang-2 treatment significantly improves the outcomes of corneal grafts. Moreover, we have shown that anterior segment OCT offers a new tool to monitor murine corneal grafts in vivo. This study not only reveals new mechanisms for transplant rejection, but also offers a novel strategy to treat it. PMID:28061513

  2. Predictors of responses to immune checkpoint blockade in advanced melanoma.

    PubMed

    Jacquelot, N; Roberti, M P; Enot, D P; Rusakiewicz, S; Ternès, N; Jegou, S; Woods, D M; Sodré, A L; Hansen, M; Meirow, Y; Sade-Feldman, M; Burra, A; Kwek, S S; Flament, C; Messaoudene, M; Duong, C P M; Chen, L; Kwon, B S; Anderson, A C; Kuchroo, V K; Weide, B; Aubin, F; Borg, C; Dalle, S; Beatrix, O; Ayyoub, M; Balme, B; Tomasic, G; Di Giacomo, A M; Maio, M; Schadendorf, D; Melero, I; Dréno, B; Khammari, A; Dummer, R; Levesque, M; Koguchi, Y; Fong, L; Lotem, M; Baniyash, M; Schmidt, H; Svane, I M; Kroemer, G; Marabelle, A; Michiels, S; Cavalcanti, A; Smyth, M J; Weber, J S; Eggermont, A M; Zitvogel, L

    2017-09-19

    Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs. Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we retrospectively observed, in eight cohorts enrolling 190 MMel patients treated with ipilimumab, that PD-L1 expression on peripheral T cells was prognostic on overall and progression-free survival. Moreover, detectable CD137 on circulating CD8(+) T cells was associated with the disease-free status of resected stage III MMel patients after adjuvant ipilimumab + nivolumab (but not nivolumab alone). These biomarkers should be validated in prospective trials in MMel.The clinical management of metastatic melanoma requires predictors of the response to checkpoint blockade. Here, the authors use immunological assays to identify potential prognostic/predictive biomarkers in circulating blood cells and in tumor-infiltrating lymphocytes from patients with resected stage III melanoma.

  3. OX40L blockade protects against inflammation-driven fibrosis

    PubMed Central

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-01-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40–OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation. PMID:27298374

  4. Control algorithms for dynamic attenuators

    SciTech Connect

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  5. Control algorithms for dynamic attenuators

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  6. Antidepressant, Antipsychotic, and Hallucinogen Drugs for the Treatment of Psychiatric Disorders: A Convergence at the Serotonin-2A Receptor.

    PubMed

    Howland, Robert H

    2016-07-01

    Antidepressant, atypical antipsychotic, and hallucinogen drugs mediate their actions in part by interactions with the serotonin-2A (5HT2A) receptor. Serotonergic hallucinogen drugs, such as psilocybin, bind most potently as agonists at the 5HT2A receptor, producing profound changes in perception, mood, and cognition. Some of these drugs have been or are currently being investigated in small Phase 2 studies for depression, alcoholism, smoking cessation, anxiety, and posttraumatic stress disorder. However, unlike the synergistic effects of combining antidepressant and atypical antipsychotic drugs, the potential therapeutic effects of hallucinogen drugs may be attenuated by the concurrent use of these medications because antidepressant and atypical antipsychotic drugs desensitize and/or down-regulate 5HT2A receptors. This finding has important implications for optimizing the potential therapeutic use of hallucinogen drugs in psychiatry. [Journal of Psychosocial Nursing and Mental Health Services, 54(7), 21-24.]. Copyright 2016, SLACK Incorporated.

  7. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    PubMed Central

    2011-01-01

    of the A2A agonist are due to A2A receptor desensitization. When the A2A antagonist and agonist were centrally injected into injured SC, only SCH58261 appeared neuroprotective, while CGS21680 was ineffective. Conclusions Our results indicate that the A2A antagonist protects against SCI by acting on centrally located A2A receptors. It is likely that blockade of A2A receptors reduces excitotoxicity. In contrast, neuroprotection afforded by the A2A agonist may be primarily due to peripheral effects. PMID:21486435

  8. The antidepressant bupropion is a negative allosteric modulator of serotonin type 3A receptors.

    PubMed

    Pandhare, Akash; Pappu, Aneesh Satya; Wilms, Henrik; Blanton, Michael Paul; Jansen, Michaela

    2017-02-01

    The FDA-approved antidepressant and smoking cessation drug bupropion is known to inhibit dopamine and norepinephrine reuptake transporters, as well as nicotinic acetylcholine receptors (nAChRs) which are cation-conducting members of the Cys-loop superfamily of ion channels, and more broadly pentameric ligand-gated ion channels (pLGICs). In the present study, we examined the ability of bupropion and its primary metabolite hydroxybupropion to block the function of cation-selective serotonin type 3A receptors (5-HT3ARs), and further characterized bupropion's pharmacological effects at these receptors. Mouse 5-HT3ARs were heterologously expressed in HEK-293 cells or Xenopus laevis oocytes for equilibrium binding studies. In addition, the latter expression system was utilized for functional studies by employing two-electrode voltage-clamp recordings. Both bupropion and hydroxybupropion inhibited serotonin-gated currents from 5-HT3ARs reversibly and dose-dependently with inhibitory potencies of 87 μM and 112 μM, respectively. Notably, the measured IC50 value for hydroxybupropion is within its therapeutically-relevant concentrations. The blockade by bupropion was largely non-competitive and non-use-dependent. Unlike its modulation at cation-selective pLGICs, bupropion displayed no significant inhibition of the function of anion-selective pLGICs. In summary, our results demonstrate allosteric blockade by bupropion of the 5-HT3AR. Importantly, given the possibility that bupropion's major active metabolite may achieve clinically relevant concentrations in the brain, our novel findings delineate a not yet identified pharmacological principle underlying its antidepressant effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  10. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice.

    PubMed

    Dall'Igna, Oscar P; Fett, Paulo; Gomes, Marcio W; Souza, Diogo O; Cunha, Rodrigo A; Lara, Diogo R

    2007-01-01

    Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.

  11. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  12. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  13. Beta-adrenoceptor blockade and atrio-ventricular conduction in dogs. Role of intrinsic sympathomimetic activity.

    PubMed

    Giudicelli, J F; Lhoste, F

    1982-01-01

    1 Atrio-ventricular conduction and its modifications induced by six beta-adrenoceptor blocking agents and isoprenaline have been investigated in the anaesthetized dog using the extrastimulus technique and measuring atrial (AERP), nodal (NERP), global (GERP) effective refractory periods as well as global functional refractory period (GFRP). 2 When beta-adrenoceptor blockade was produced by (+/-)-propranolol (beta 1 + beta 2-adrenoceptor blockade) which is devoid of intrinsic sympathomimetic activity (ISA) but has membrane stabilizing effects (MSE), sotalol (beta 1 + beta 2-adrenoceptor blockade, no ISA, no MSE) and atenolol (beta 1-adrenoceptor blockade, no ISA, no MSE), all parameters were significantly increased. When beta-adrenoceptor blockade was achieved with pindolol (beta 1 + beta 2-adrenoceptor blockade) and practolol (beta 1-adrenoceptor blockade) which have ISA but no MSE, all parameters remained unchanged, as was also the case with (+)-propranolol, which has MSE but neither ISA nor beta-adrenolytic properties. 3 Isoprenaline at high doses significantly reduced the refractory periods but when infusion was stopped, marked but reversible conduction depression was observed. 4 It thus appears that beta-adrenoceptor blockade but not MSE is responsible for the onset of atrial and AV-conduction impairment and that ISA affords protection against this impairment.

  14. Chemoimmunotherapy by combining oxaliplatin with immune checkpoint blockades reduced tumor burden in colorectal cancer animal model.

    PubMed

    Wang, Weiwei; Wu, Ling; Zhang, Jiansheng; Wu, Huiguo; Han, Enkun; Guo, Qiang

    2017-05-20

    Colorectal cancer (CRC) is among one of the top common cancers worldwide. Developing novel comprehensive treatment strategies is critical for improving survival of late stage CRC patients. Recent advances in immune checkpoint blockades provided a novel strategy for treating cancers via stimulating the antitumor immune response. However, the effects of immune checkpoint blockades were limited in CRC due to intrinsic resistance. Oxaliplatin (OXA) based chemotherapy was the foundation of CRC adjuvant chemotherapy. Here, we investigated the potential roles of OXA in inducing immunogenicity and synergizing with immune checkpoints in CRC. Immunogenicity of OXA was tested in CRC cell lines. Immune checkpoint blockades sensitive and resistant CRC models were used to study the potential synergistic roles of OXA with immune checkpoint blockades. We found CT26 mouse model was sensitive to immune checkpoint blockades, while MC38 mouse model was resistant. OXA could induce immunogenic cell death in several human and mouse CRC cell lines. Short term OXA treatment increased immune cell infiltration in MC38 mouse model and therefore enhanced the efficacy of immune checkpoint in MC38 mouse model. As a response to the OXA and immune checkpoint blockades combination, inhibitory immune checkpoints were down-regulated in MC38 tumors, while immune enhancing cytokines were up-regulated. Short term OXA treatment induced antitumor immune response in an immune checkpoint blockades resistant mouse model, therefore synergized with immune checkpoint blockades. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Continuous positive pressure ventilation during epidural blockade--effects on cardiac output distribution.

    PubMed

    Elowsson, P; Norlén, K; Jakobson, S

    2001-01-01

    It has been shown that when cardiac output (CO) decreases during continuous positive pressure ventilation (CPPV), its regional distribution adapts with a favouring of vital organs. Does epidural blockade modify this adaptation? Regional blood flows were assessed by the microsphere technique (15 microm) in 17 anaesthetised pigs during spontaneous breathing and CPPV with 8 cm H2O end-expiratory pressure (CPPV8) before and after epidural blockade. The block was induced at either the Th6-7 (Thep) or the L6-S1 (Lep) level with 1 ml of lidocaine 40 mg x ml(-1). When Lep was combined with CPPV8, mean arterial pressure and CO decreased significantly, and they decreased even more when combined with Thep. In contrast, the relative perfusion of the central nervous system, heart and kidneys remained stable during the four conditions studied. The adrenal perfusion during CPPV8 was obviated by epidural blockade. The absolute and relative perfusion of the skeletal muscle decreased during epidural blockade. The administered doses of epidural lidocaine did not affect blood flow in the spinal cord. The locally mediated nutritive vasoregulation of vital organs outweighed the sympathetic blockade induced by epidural blockade. During Thep blockade the animals were less capable of responding to the haemodynamic changes induced by CPPV8, probably due to the blockade of the cardiac part of the sympathetic nervous system.

  16. Adaptation to hypobaric hypoxia involves GABA A receptors in the pons.

    PubMed

    Hsieh, Yee-Hsee; Dick, Thomas E; Siegel, Ruth E

    2008-02-01

    Survival in low-oxygen environments requires adaptation of sympathorespiratory control networks located in the brain stem. The molecular mechanisms underlying adaptation are unclear. In naïve animals, acute hypoxia evokes increases in phrenic (respiratory) and splanchnic (sympathetic) nerve activities that persist after repeated challenges (long-term facilitation, LTF). In contrast, our studies show that conditioning rats to chronic hypobaric hypoxia (CHH), an environment characteristic of living at high altitude, diminishes the response to hypoxia and attenuates LTF in a time-dependent manner. Phrenic LTF decreases following 7 days of CHH, and both sympathetic and phrenic LTF disappear following 14 days of CHH. Previous studies demonstrated that GABA is released in the brain stem during hypoxia and depresses respiratory activity. Furthermore, the sensitivity of brain stem neurons to GABA is increased following prolonged hypoxia. In this study, we demonstrate that GABA(A) receptor expression changes along with the CHH-induced physiological changes. Expression of the GABA(A) receptor alpha4 subunit mRNA increases two-fold in animals conditioned to CHH for 7 days. In addition, de novo expression of delta and alpha6, a subunit normally found exclusively in the cerebellum, is observed after 14 days. Consistent with these changes, diazepam-insensitive binding sites, characteristic of GABA(A) receptors containing alpha4 and alpha6 subunits, increase in the pons. Immunohistochemistry revealed that CHH-induced GABA(A) receptor subunit expression is localized in regions of sympathorespiratory control within the pons. Our findings suggest that a GABA(A) receptor mediated-mechanism participates in adaptation of the sympathorespiratory system to hypobaric hypoxia.

  17. [TNF blockade in rheumatoid arthritis can cause severe fibrosing alveolitis. Six case reports].

    PubMed

    Tengstrand, Birgitta; Ernestam, Sofia; Engvall, Inga-Lill; Rydvald, Ylva; Hafström, Ingiäld

    TNF-blockade has been increasingly used in the treatment of rheumatoid arthritis (RA). However, the safety is unclear and an increased risk of both tuberculosis and other infections has been identified. Recently severe fibrosing alveolitis has also been reported in RA-patients treated with TNF-blockade. We report a further six RA patients, who during treatment with infliximab or etanercept developed fulminant lung fibrosis with alveolitis. For four of the patients, the fibrosing alveolitis was fatal. All patients were RF positive and above 60 years and five had mild fibrosis associated with RA before TNF-blockade treatment. Duration of TNF-blockade treatment was for three patients only two months and for the other three, 20-51 months. Age above 60 years and previous lung fibrosis appear to be risk factors for developing fibrosing alveolitis in RA patients treated with TNF-blockade.

  18. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    PubMed

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-03-02

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT2AR activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT2AR blockade does not seem to affect the amygdala-striatal projection.

  19. Cardiac beta-adrenoceptor blockade: the quest for selectivity.

    PubMed

    Barrett, A M

    1985-01-01

    In the search for improved drugs much attention has been focussed on the need for greater selectivity of action. Knowing that all drugs are poisons, the pharmacologist must attempt to define the required effect more narrowly but remain aware of potential unwanted effects. These may come as a result of the primary pharmacological effect or be due to other properties of the drug molecule manifesting themselves in clinical use. This paper illustrates the process of drug discovery and development with special reference to beta-adrenoceptor antagonists. Starting from the role of noradrenaline in sympathetic transmission, many compounds have been synthesized with therapeutic aims in mind. From a series of bronchodilators, dichloro-isoprenaline emerged which unexpectedly blocked stimulation of beta-receptors. This compound proved unsatisfactory leading to the introduction of the first clinically successful beta-blocker, pronethalol. Concern about potential carcinogenic effects led to its being replaced by propanolol. Failure to recognise the full range of clinical contra-indications resulted in propranolol causing severe cardio-vascular and bronchial adverse reactions. Soon it was recognized that propranolol was a powerful local anaesthetic potentially acting as a myocardial depressant. More serious was the recognition that in certain circumstances high levels of sympathetic tone were an adaptive response to pathophysiological change and that interruption by beta-blockade was inevitably serious for the patient. Attempts to identify the properties responsible for unwanted effects directed attention to comparison with non-local anaesthetic water soluble compounds still retaining beta-blocking activity. One such compound, practolol, also proved to exhibit a higher affinity for beta-receptors in the heart than elsewhere leading to the concept of cardioselective beta-blockade. The pharmacology of this agent is reviewed but it proved to have unacceptable side effects in

  20. BENEFICIAL EFFECTS OF MINERALOCORTICOID RECEPTOR BLOCKADE IN EXPERIMENTAL NON-ALCOHOLIC STEATOHEPATITIS

    PubMed Central

    Pizarro, Margarita; Solís, Nancy; Quintero, Pablo; Barrera, Francisco; Cabrera, Daniel; Santiago, Pamela Rojasde; Arab, Juan Pablo; Padilla, Oslando; Roa, Juan Carlos; Moshage, Han; Wree, Alexander; Inzaugarat, Eugenia; Feldstein, Ariel E.; Fardella, Carlos E.; Baudrand, Rene; Riquelme, Arnoldo; Arrese, Marco

    2015-01-01

    Background Therapeutic options to treat Non-alcoholic steatohepatitis (NASH) are limited. Mineralocorticoid receptor (MR) activation could play a role in hepatic fibrogenesis and its modulation could be beneficial for NASH. Aim To investigate whether eplerenone, a specific MR antagonist, ameliorates liver damage in experimental NASH. Methods C57bl6 mice were fed a choline-deficient-amino-acid–defined (CDAA) diet for 22 weeks with or without eplerenone supplementation. Serum levels of aminotransferases and aldosterone were measured and hepatic steatosis, inflammation, and fibrosis scored histologically. Hepatic triglyceride content (HTC) and hepatic mRNA levels of pro-inflammatory pro-fibrotic, oxidative stress-associated genes and of MR were also assessed. Results CDAA diet effectively induced fibrotic NASH, and increased the hepatic expression of pro-inflammatory, pro-fibrotic and oxidative stress-associated genes. Hepatic MR mRNA levels significantly correlated with the expression of pro-inflammatory and pro-fibrotic genes and were significantly increased in hepatic stellate cells obtained from CDAA-fed animals. Eplerenone administration was associated to a reduction in histological steatosis and attenuation of liver fibrosis development, which was associated to a significant decrease in the expression of collagen-α1, collagen type III, alpha 1 and Matrix metalloproteinase-2. Conclusion The expression of MR correlates with inflammation and fibrosis development in experimental NASH. Specific MR blockade with eplerenone has hepatic anti-steatotic and anti-fibrotic effects. These data identifies eplerenone as a potential novel therapy for NASH. Considering its safety and FDA-approved status, human studies are warranted PMID:25646700

  1. Naltrexone treatment for opioid dependence: Does its effectiveness depend on testing the blockade?

    PubMed Central

    Sullivan, Maria A.; Bisaga, Adam; Mariani, John J.; Glass, Andrew; Levin, Frances R.; Comer, Sandra D.; Nunes, Edward V.

    2013-01-01

    Background FDA approval of long-acting injectable naltrexone (Vivitrol) for opioid dependence highlights the relevance of understanding mechanisms of antagonist treatment. Principles of learning suggest an antagonist works through extinguishing drug-seeking behavior, as episodes of drug use (“testing the blockade”) fail to produce reinforcement. We hypothesized that opiate use would moderate the effect of naltrexone, specifically, that opiate-positive urines precede dropout in the placebo group, but not in the active-medication groups. Methods An 8-week, double-blind, placebo-controlled trial (N=57), compared the efficacy of low (192-mg) and high (384-mg) doses of a long-acting injectable naltrexone (Depotrex) with placebo (Comer et al., 2006). A Cox proportional hazard model was fit, modeling time-to-dropout as a function of treatment assignment and urine toxicology during treatment. Results Interaction of opiate urines with treatment group was significant. Opiate-positive urines predicted dropout on placebo and low-dose, but less so on high-dose naltrexone, where positive urines were more likely followed by sustained abstinence. Among patients with no opiate-positive urines, retention was higher in both low- and high-dose naltrexone conditions, compared to placebo. Conclusions Findings confirm that injection naltrexone produces extinction of drug-seeking behavior after episodes of opiate use. Adequate dosage appears important, as low-dose naltrexone resembled the placebo group; opiate positive urines were likely to be followed by dropout from treatment. The observation of high treatment retention among naltrexone-treated patients who do not test the blockade, suggests naltrexone may also exert direct effects on opiate-taking behavior that do not depend on extinction, perhaps by attenuating craving or normalizing dysregulated hedonic or neuroendocrine systems. PMID:23827259

  2. Angiotensin II type 1 receptor blockade suppresses light-induced neural damage in the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Nagai, Norihiro; Tsubota, Kazuo

    2014-06-01

    Exposure to light contributes to the development and progression of retinal degenerative diseases. However, the mechanisms underlying light-induced tissue damage are not fully understood. Here, we examined the role of angiotensin II type 1 receptor (AT1R) signaling, which is part of the renin-angiotensin system, in light-induced retinal damage. Light-exposed Balb/c mice that were treated with the AT1R blockers (angiotensin II receptor blockers; ARBs) valsartan, losartan, and candesartan before and after the light exposure exhibited attenuated visual function impairment, compared to vehicle-treated mice. This effect was dose-dependent and observed across the ARB class of inhibitors. Further evaluation of valsartan showed that it suppressed a number of light-induced retinal effects, including thinning of the photoreceptor cell layer caused by apoptosis, shortening of the photoreceptor cell outer segment, and increased levels of reactive oxygen species (ROS). The role of ROS in retinal pathogenesis was investigated further using the antioxidant N-acetyl-l-cysteine (NAC). Treatment of light-exposed mice with NAC before the light exposure suppressed the visual function impairment and photoreceptor cell histological changes due to apoptosis. Moreover, treatment with valsartan or NAC suppressed the induction of c-fos (a component of the AP-1 transcription factor) and the upregulation of fasl (a proapoptotic molecule whose transcript is regulated downstream of AP-1). Our results suggest that AT1R signaling mediates light-induced apoptosis, by increasing the levels of ROS and proapoptotic molecules in the retina. Thus, AT1R blockade may represent a new therapeutic approach for preventing light-induced retinal neural tissue damage. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  4. Impact of β-Adrenoceptor Blockade on Systemic Inflammation and Coagulation Disturbances in Rats with Acute Traumatic Coagulopathy

    PubMed Central

    Xu, Lin; Yu, Wen-kui; Lin, Zhi-liang; Tan, Shan-jun; Bai, Xiao-wu; Ding, Kai; Li, Ning

    2015-01-01

    Background Sympathetic hyperactivity occurs early in acute traumatic coagulopathy (ATC) and is closely related to its development. β-adrenoceptor antagonists are known to alleviate adverse sympathetic effects and improve outcome in various diseases. We investigated whether β-blockers have protective effects against inflammation and endothelial and hemostatic disorders in ATC. Material/Methods ATC was induced in male Sprague-Dawley rats by trauma and hemorrhagic shock. Rats were randomly assigned to the sham, ATCC (ATC control), and ATCB (ATC with beta-adrenoceptor blockade) groups. Rats were injected intraperitoneally with propranolol or vehicle at baseline. Heart rate variability (HRV) and markers of inflammation, coagulation, and endothelial activation were measured, and Western blotting analysis of nuclear factor (NF)-κB was done after shock. Separate ATCC and ATCB groups were observed to compare overall mortality. Results HRV showed enhanced sympathetic tone in the ATCC group, which was reversed by propranolol. Propranolol attenuated the induction of pro-inflammatory cytokines TNF-α and IL-6, as well as fibrinolysis markers plasmin antiplasmin complex and tissue-type plasminogen activator. The increased serum syndecan-1 and soluble thrombomodulin were inhibited by propranolol, and the NF-κB expression was also decreased by propranolol pretreatment. But propranolol did not alter overall mortality in rats with ATC after shock. Conclusions Beta-adrenoceptor blockade can alleviate sympathetic hyperactivity and exert anti-inflammatory, anti-fibrinolysis, and endothelial protective effects, confirming its pivotal role in the pathogenesis of ATC. Its mechanism in ATC should be explored further. PMID:25676919

  5. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization

    PubMed Central

    Da Costa Dias, Bianca; Jovanovic, Katarina; Gonsalves, Danielle; Moodley, Kiashanee; Reusch, Uwe; Knackmuss, Stefan; Weinberg, Marc S.; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Neuronal loss is a major neuropathological hallmark of Alzheimer's disease (AD). The associations between soluble Aβ oligomers and cellular components cause this neurotoxicity. The 37 kDa/67 kDa laminin receptor (LRP/LR) has recently been implicated in Aβ pathogenesis. In this study the mechanism underlying the pathological role of LRP/LR was elucidated. Försters Resonance Energy Transfer (FRET) revealed that LRP/LR and Aβ form a biologically relevant interaction. The ability of LRP/LR to form stable associations with endogenously shed Aβ was confirmed by pull down assays and Aβ-ELISAs. Antibody blockade of this association significantly lowered Aβ42 induced apoptosis. Furthermore, antibody blockade and shRNA mediated downregulation of LRP/LR significantly hampered Aβ42 internalization. These results suggest that LRP/LR is a receptor for Aβ42 internalization, mediating its endocytosis and contributing to the cytotoxicity of the neuropeptide by facilitating intra-cellular Aβ42 accumulation. These findings recommend anti-LRP/LR specific antibodies and shRNAs as potential therapeutic tools for AD treatment. PMID:24990253

  6. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine.

    PubMed

    Doré, Andrew S; Robertson, Nathan; Errey, James C; Ng, Irene; Hollenstein, Kaspar; Tehan, Ben; Hurrell, Edward; Bennett, Kirstie; Congreve, Miles; Magnani, Francesca; Tate, Christopher G; Weir, Malcolm; Marshall, Fiona H

    2011-09-07

    Methylxanthines, including caffeine and theophylline, are among the most widely consumed stimulant drugs in the world. These effects are mediated primarily via blockade of adenosine receptors. Xanthine analogs with improved properties have been developed as potential treatments for diseases such as Parkinson's disease. Here we report the structures of a thermostabilized adenosine A(2A) receptor in complex with the xanthines xanthine amine congener and caffeine, as well as the A(2A) selective inverse agonist ZM241385. The receptor is crystallized in the inactive state conformation as defined by the presence of a salt bridge known as the ionic lock. The complete third intracellular loop, responsible for G protein coupling, is visible consisting of extended helices 5 and 6. The structures provide new insight into the features that define the ligand binding pocket of the adenosine receptor for ligands of diverse chemotypes as well as the cytoplasmic regions that interact with signal transduction proteins.

  7. Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise.

    PubMed

    Fernandes, Igor A; Mattos, João D; Campos, Monique O; Machado, Alessandro C; Rocha, Marcos P; Rocha, Natalia G; Vianna, Lauro C; Nobrega, Antonio C L

    2016-06-01

    Handgrip-induced increases in blood flow through the contralateral artery that supplies the cortical representation of the arm have been hypothesized as a consequence of neurovascular coupling and a resultant metabolic attenuation of sympathetic cerebral vasoconstriction. In contrast, sympathetic restraint, in theory, inhibits changes in perfusion of the cerebral ipsilateral blood vessels. To confirm whether sympathetic nerve activity modulates cerebral blood flow distribution during static handgrip (SHG) exercise, beat-to-beat contra- and ipsilateral internal carotid artery blood flow (ICA; Doppler) and mean arterial pressure (MAP; Finometer) were simultaneously assessed in nine healthy men (27 ± 5 yr), both at rest and during a 2-min SHG bout (30% maximal voluntary contraction), under two experimental conditions: 1) control and 2) α1-adrenergic receptor blockade. End-tidal carbon dioxide (rebreathing system) was clamped throughout the study. SHG induced increases in MAP (+31.4 ± 10.7 mmHg, P < 0.05) and contralateral ICA blood flow (+80.9 ± 62.5 ml/min, P < 0.05), while no changes were observed in the ipsilateral vessel (-9.8 ± 39.3 ml/min, P > 0.05). The reduction in ipsilateral ICA vascular conductance (VC) was greater compared with contralateral ICA (contralateral: -0.8 ± 0.8 vs. ipsilateral: -2.6 ± 1.3 ml·min(-1)·mmHg(-1), P < 0.05). Prazosin was effective to induce α1-blockade since phenylephrine-induced increases in MAP were greatly reduced (P < 0.05). Under α1-adrenergic receptor blockade, SHG evoked smaller MAP responses (+19.4 ± 9.2, P < 0.05) but similar increases in ICAs blood flow (contralateral: +58.4 ± 21.5 vs. ipsilateral: +54.3 ± 46.2 ml/min, P > 0.05) and decreases in VC (contralateral: -0.4 ± 0.7 vs. ipsilateral: -0.4 ± 1.0 ml·min(-1)·mmHg(-1), P > 0.05). These findings indicate a role of sympathetic nerve activity in the regulation of cerebral blood flow distribution during SHG.

  8. Inelastic Photon Scattering via the Intracavity Rydberg Blockade.

    PubMed

    Grankin, A; Brion, E; Boddeda, R; Ćuk, S; Usmani, I; Ourjoumtsev, A; Grangier, P

    2016-12-16

    Electromagnetically induced transparency (EIT) in a ladder system involving a Rydberg level is known to yield giant optical nonlinearities for the probe field, even in the few-photon regime. This enhancement is due to the strong dipole-dipole interactions between Rydberg atoms and the resulting excitation blockade phenomenon. In order to study such highly correlated media, ad hoc models or low-excitation assumptions are generally used to tackle their dynamical response to optical fields. Here, we study the behavior of a cavity Rydberg-EIT setup in the nonequilibrium quantum field formalism, and we obtain analytic expressions for elastic and inelastic components of the cavity transmission spectrum, valid up to higher excitation numbers than previously achieved. This allows us to identify and interpret a polaritonic resonance structure, to our knowledge unreported so far.

  9. Entanglement of two individual neutral atoms using Rydberg blockade.

    PubMed

    Wilk, T; Gaëtan, A; Evellin, C; Wolters, J; Miroshnychenko, Y; Grangier, P; Browaeys, A

    2010-01-08

    We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 microm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.

  10. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices.

    PubMed

    Lotkhov, Sergey V

    2013-06-14

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ~ 20 mK for films with sheet resistivities as high as ~7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current.

  11. Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Bovenzi, N.; Breitkreiz, M.; Baireuther, P.; O'Brien, T. E.; Tworzydło, J.; Adagideli, I.; Beenakker, C. W. J.

    2017-07-01

    A Weyl semimetal with broken time-reversal symmetry has a minimum of two species of Weyl fermions, distinguished by their opposite chirality, in a pair of Weyl cones at opposite momenta ±K that are displaced in the direction of the magnetization. Andreev reflection at the interface between a Weyl semimetal in the normal state (N) and a superconductor (S) that pairs ±K must involve a switch of chirality, otherwise it is blocked. We show that this "chirality blockade" suppresses the superconducting proximity effect when the magnetization lies in the plane of the NS interface. A Zeeman field at the interface can provide the necessary chirality switch and activate Andreev reflection.

  12. Sustained Neuromuscular Blockade after Vecuronium Use in a Premature Infant

    PubMed Central

    Sahni, Mitali; Richardson, C. Joan; Jain, Sunil K.

    2015-01-01

    Background Prolonged use of neuromuscular blocking agents (NMBAs) is very common in critically ill children both in pediatric and neonatal intensive care units. There are no guidelines available for use of NMBAs in children or neonates in the US, and the data for their safety in this age group is limited. Case Description Our case describes prolonged neuromuscular blockade following concurrent use of a NMBA along with aminoglycosides and steroids in the setting of renal failure in a premature infant. Conclusion Prolonged use of NMBAs in preterm infants should be avoided if possible or should be restricted to the shortest possible duration and the smallest possible physiologically effective dose. Concurrent use of NMBAs with aminoglycoside and steroids should be avoided, especially in the setting of renal failure. PMID:26495168

  13. Deterministic spin-wave interferometer based on the Rydberg blockade

    SciTech Connect

    Wei Ran; Deng Youjin; Pan Jianwei; Zhao Bo; Chen Yuao

    2011-06-15

    The spin-wave (SW) N-particle path-entangled |N,0>+|0,N> (NOON) state is an N-particle Fock state with two atomic spin-wave modes maximally entangled. Attributed to the property that the phase is sensitive to collective atomic motion, the SW NOON state can be utilized as an atomic interferometer and has promising application in quantum enhanced measurement. In this paper we propose an efficient protocol to deterministically produce the atomic SW NOON state by employing the Rydberg blockade. Possible errors in practical manipulations are analyzed. A feasible experimental scheme is suggested. Our scheme is far more efficient than the recent experimentally demonstrated one, which only creates a heralded second-order SW NOON state.

  14. Inelastic Photon Scattering via the Intracavity Rydberg Blockade

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Boddeda, R.; Ćuk, S.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2016-12-01

    Electromagnetically induced transparency (EIT) in a ladder system involving a Rydberg level is known to yield giant optical nonlinearities for the probe field, even in the few-photon regime. This enhancement is due to the strong dipole-dipole interactions between Rydberg atoms and the resulting excitation blockade phenomenon. In order to study such highly correlated media, ad hoc models or low-excitation assumptions are generally used to tackle their dynamical response to optical fields. Here, we study the behavior of a cavity Rydberg-EIT setup in the nonequilibrium quantum field formalism, and we obtain analytic expressions for elastic and inelastic components of the cavity transmission spectrum, valid up to higher excitation numbers than previously achieved. This allows us to identify and interpret a polaritonic resonance structure, to our knowledge unreported so far.

  15. Neuroleptic-induced catalepsy: a D2 blockade phenomenon?

    PubMed

    Klemm, W R

    1985-12-01

    Typical neuroleptics, such as haloperidol, are cataleptogenic. But since such drugs block both D1 and D2 receptors, it is not clear if there is a differential receptor role in catalepsy. To test this issue in a mouse model of catalepsy, these experiments tested molindone, a D2-blocking neuroleptic with almost no ability to block D1 receptors. If D1 receptor blockade is necessary for catalepsy, molindone should not cause catalepsy. But molindone was cataleptogenic, albeit less potent than haloperidol. There was also a "training effect" with haloperidol, but not saline or molindone, in that the catalepsy produced by 5 mg/kg of haloperidol was much greater when tests were performed repeatedly at short intervals after injection. Concurrent administration of apomorphine (4 or 8 mg/kg) markedly potentiated haloperidol catalepsy, but had no effect on molindone catalepsy. Such results are not readily interpretable solely in terms of current concepts of D1 and D2 receptors.

  16. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    NASA Astrophysics Data System (ADS)

    Lotkhov, Sergey V.

    2013-06-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ˜ 20 mK for films with sheet resistivities as high as ˜7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current.

  17. Edge-state blockade of transport in quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Niklas, Michael; Platero, Gloria; Kohler, Sigmund

    2016-03-01

    We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits a topological phase transition. The connection to a strongly biased electron source and drain enables transport. We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with the numerical solution of a full quantum master equation.

  18. Blockade of Insect Odorant Receptor Currents by Amiloride Derivatives

    PubMed Central

    2013-01-01

    Insect odorant receptors (ORs) function as heteromeric odorant-gated ion channels consisting of a conserved coreceptor, Orco, and an odorant-sensitive tuning subunit. Although some OR modulators have been identified, an extended library of pharmacological tools is currently lacking and would aid in furthering our understanding of insect OR complexes. We now demonstrate that amiloride and several derivatives, which have been extensively used as blockers for various ion channels and transporters, also block odorant-gated currents from 2 OR complexes from the malaria vector mosquito Anopheles gambiae. In addition, both heteromeric and homomeric ORs were susceptible to amiloride blockade when activated by VUAA1, an agonist that targets the Orco channel subunit. Amiloride derivatives therefore represent a valuable class of channel blockers that can be used to investigate the pharmacological and biophysical properties of insect OR function. PMID:23292750

  19. Rescue of long-term memory after reconsolidation blockade

    PubMed Central

    Trent, Simon; Barnes, Philip; Hall, Jeremy; Thomas, Kerrie L.

    2015-01-01

    Memory reconsolidation is considered to be the process whereby stored memories become labile on recall, allowing updating. Blocking the restabilization of a memory during reconsolidation is held to result in a permanent amnesia. The targeted knockdown of either Zif268 or Arc levels in the brain, and inhibition of protein synthesis, after a brief recall results in a non-recoverable retrograde amnesia, known as reconsolidation blockade. These experimental manipulations are seen as key proof for the existence of reconsolidation. However, here we demonstrate that despite disrupting the molecular correlates of reconsolidation in the hippocampus, rodents are still able to recover contextual memories. Our results challenge the view that reconsolidation is a separate memory process and instead suggest that the molecular events activated initially at recall act to constrain premature extinction. PMID:26238574

  20. Abdominal compartment syndrome successfully treated with neuromuscular blockade

    PubMed Central

    Chiles, Kris T; Feeney, Colin M

    2011-01-01

    A 48 year old male admitted to the intensive care unit after a cardiac arrest complicated by a stroke intra-operatively during automatic implantable cardioverter defibrillator placement. He post-operatively developed a rigid abdomen, elevated peak and plateau pressures, hypoxia and renal insufficiency. He was diagnosed with abdominal compartment syndrome with an intra-abdominal compartment pressure of 40mmHg. The patient was administered 10 mg of intravenous cisatracuriumbesylate in preparation for bedside surgical abdominal decompression. Cisatracurium eliminated the patients need for surgical intervention by reducing his abdominal compartment pressures to normal and improving his hypoxia and renal function. This case illustrates that neuromuscular blockade should be attempted in patients with abdominal compartment syndrome prior to surgical intervention. PMID:22013257

  1. Interleukin-1 blockade in refractory giant cell arteritis.

    PubMed

    Ly, Kim-Heang; Stirnemann, Jérôme; Liozon, Eric; Michel, Marc; Fain, Olivier; Fauchais, Anne-Laure

    2014-01-01

    Giant cell arteritis is a primary large-vessel vasculitis characterized by an arterial wall inflammation associated with intimal hyperplasia leading to arterial occlusion. Glucocorticoids remain the mainstay of giant cell arteritis treatment. However, relapses and glucocorticoid-related complications are frequent and therapeutic options for refractory giant cell arteritis are quite limited. Like tumor necrosis factor-α and interleukin-6, interleukin-1β is also highly expressed in inflamed arterial walls of patients with giant cell arteritis and may contribute in the pathogenesis of this disease. We report treatment of three cases of refractory giant cell arteritis successfully treated with anakinra, an interleukin-1 blockade therapy. Anakinra was effective for all patients, yielding improvement in their inflammation biomarkers and/or in their symptoms, as well as a disappearance of arterial inflammation in PET/CT for two of them. Copyright © 2013. Published by Elsevier SAS.

  2. Real-world experience with neuromuscular blockade reversal.

    PubMed

    Groudine, Scott B; Minkowitz, Harold S; Valentine, Danny L

    2017-11-01

    Neuromuscular blocking agents are used in many surgical procedures and have enabled new surgical advances. The expanded landscape of neuromuscular blockade (NMB) reversal drugs allows for fast and complete NMB reversal and the reduction of postoperative complications from residual block. In the United States, neostigmine/glycopyrrolate and sugammadex are the primary agents for pharmacologic antagonism of neuromuscular blocking agents. Whereas neostigmine and an anticholinergic have been available for decades, sugammadex has only recently become available. We present real-world cases in a variety of surgical procedures and clinical settings in which the use of NMB reversal agents played a significant role in the patients’ clinical outcome. Online access: http://courses.elseviercme.com/nmb/711.

  3. Conductance of a superconducting Coulomb-blockaded Majorana nanowire

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Sau, Jay D.; Das Sarma, S.

    2017-08-01

    In the presence of an applied magnetic field introducing Zeeman spin splitting, a superconducting (SC) proximitized one-dimensional (1D) nanowire with spin-orbit coupling can pass through a topological quantum phase transition developing zero-energy topological Majorana bound states (MBSs) on the wire ends. One of the promising experimental platforms in this context is a Coulomb-blockaded island, where by measuring the two-terminal conductance one can in principle investigate the MBS properties. Here, we theoretically study the tunneling transport of a single electron across the superconducting Coulomb-blockaded nanowire at finite temperature in order to obtain the generic conductance equation. By considering all possible scenarios where only MBSs are present at the ends of the nanowire, we compute the nanowire conductance as a function of the magnetic field, the temperature, and the gate voltage. In the simplest 1D topological SC model, the oscillations of the conductance peak spacings (OCPSs) arising from the Majorana overlap from the two wire ends manifest an increasing oscillation amplitude with increasing magnetic field (in disagreement with a recent experimental observation). We develop a generalized finite-temperature master-equation theory including not only multiple subbands in the nanowire, but also the possibility of ordinary Andreev bound states in the nontopological regime. Inclusion of all four effects (temperature, multiple subbands, Andreev bound states, and MBSs) provides a complete picture of the tunneling transport properties of the Coulomb-blockaded nanowire. Based on this complete theory, we indeed obtain OCPSs whose amplitudes decrease with increasing magnetic field in qualitative agreement with recent experimental results, but this happens only for rather high temperatures with multisubband occupancy and the simultaneous presence of both Andreev bound states and MBSs in the system. Thus, the experimentally observed OCPSs manifesting

  4. Suppression of inflammatory events associated to intestinal ischemia-reperfusion by 5-HT1A blockade in mice.

    PubMed

    Bertoni, Simona; Arcaro, Valentina; Vivo, Valentina; Rapalli, Alberto; Tognolini, Massimiliano; Cantoni, Anna Maria; Saccani, Francesca; Flammini, Lisa; Domenichini, Giuseppe; Ballabeni, Vigilio; Barocelli, Elisabetta

    2014-03-01

    Intestinal ischemia and reperfusion (I/R) is a potentially life-threatening disease, ensuing from various clinical conditions. Experimentally, either protective or detrimental roles have been attributed to 5-HT in the functional and morphological injury caused by mesenteric I/R. Recently, we proved the involvement of 5-HT2A receptors in the intestinal dysmotility and leukocyte recruitment induced by 45min occlusion of the superior mesenteric artery (SMA) followed by 24h reperfusion in mice. Starting from these premises, the aim of our present work was to investigate the role played by endogenous 5-HT in the same experimental model where 45min SMA clamping was followed by 5h reflow. To this end, we first observed that ischemic preconditioning before I/R injury (IPC+I/R) reverted the increase in 5-HT tissue content and in inflammatory parameters induced by I/R in mice. Second, the effects produced by intravenous administration of 5-HT1A ligands (partial agonist buspirone 10mgkg(-1), antagonist WAY100135 0.5-5mgkg(-1)), 5-HT2A antagonist sarpogrelate (10mgkg(-1)), 5-HT3 antagonist alosetron (0.1mgkg(-1)), 5-HT4 antagonist GR125487 (5mgkg(-1)) and 5-HT re-uptake inhibitor fluoxetine (10mgkg(-1)) on I/R-induced inflammatory response were investigated in I/R mice and compared to those obtained in sham-operated animals (S). Our results confirmed the significant role played by 5-HT2A receptors not only in the late but also in the early I/R-induced microcirculatory dysfunction and showed that blockade of 5-HT1A receptors protected against the intestinal leukocyte recruitment, plasma extravasation and reactive oxygen species formation triggered by SMA occlusion and reflow. The ability of α7 nicotinic receptor (α7nAchR) antagonist methyllycaconitine (5mgkg(-1)) to counteract the beneficial action provided by buspirone on I/R-induced neutrophil infiltration suggests that the anti-inflammatory effect produced by 5-HT1A receptor antagonism could be partly ascribed to the

  5. Adenosine A1 and A2A receptors are not upstream of caffeine's dopamine D2 receptor-dependent aversive effects and dopamine-independent rewarding effects

    PubMed Central

    Sturgess, Jessica E; Ting-A-Kee, Ryan A; Podbielski, Dominik; Sellings, Laurie HL; Chen, Jiang-Fan; van der Kooy, Derek

    2010-01-01

    Caffeine is widely consumed throughout the world, yet little is known about the mechanisms underlying its rewarding and aversive properties. We show that pharmacological antagonism of dopamine not only blocks conditioned place aversions to caffeine, but reveals dopamine blockade-induced conditioned place preferences. These aversions are mediated by the dopamine D2 receptor since knockout mice showed conditioned place preferences to doses of caffeine that C57Bl/6 mice found aversive. Further, these aversions appear to be centrally-mediated since a quaternary analogue to caffeine failed to produce conditioned place aversions. While the adenosine A2A receptor is important for caffeine's physiological effects, this receptor seems only to modulate the appetitive and aversive effects of caffeine. A2A receptor knockout mice showed stronger dopamine-dependent aversions to caffeine than C57Bl/6 animals, which partially obscured the dopamine- and A2A receptor-independent preferences. Additionally, the A1 receptor, alone or in combination with the A2A receptor, does not seem to be important for caffeine's rewarding or aversive effects. Finally, excitotoxic lesions of the tegmental pedunculopontine nucleus revealed that this brain region is not involved in dopamine blockade-induced caffeine reward. This data provides surprising new information on the mechanism of action of caffeine, indicating that adenosine receptors do not mediate caffeine's appetitive and aversive effects. We show that caffeine has an atypical reward mechanism, independent of the dopaminergic system and the tegmental pedunculopontine nucleus and provide additional evidence in support of a role for the dopaminergic system in aversive learning. PMID:20576036

  6. Acute renal effects of endothelin-A blockade: interspecies differences.

    PubMed

    Cernacek, P; Strmen, J; Levy, M

    1998-01-01

    The acute renal effects of LU135252 (LU), a selective endothelin-A (ETA) receptor antagonist, were studied in conscious rats after i.p. administration of 1-10 mg/kg LU, and in clearance studies in anesthetized dogs during left intrarenal infusion of 0.01-0.1 mg/kg/min. In the rat (n = 12), LU (10 mg/kg i.p.) decreased diuresis (-36%), excretion of Na (-55%) and Cl (-38%) but not of K and creatinine, as measured in 8-h collections in metabolic cages. Excretion of oral NaCl load (5% of body weight) during 4 h decreased from 68 +/- 2% (vehicle) to 50.5 +/- 5% (LU; n = 12, p < 0.01). Blood pressure was not affected. In contrast, left intrarenal LU infusion at 0.01, 0.03 and 0.1 mg/kg/min in the dog (n = 4) had no effect on renal hemodynamics or excretory function, whereas it mildly decreased blood pressure. In addition, intrarenal LU (0.03 mg/kg/ min; n = 6) had no effect on the renal response to volume expansion (7% bw) by 0.9% NaCl i.v. These markedly different effects of acute ETA blockade were observed at similar systemic plasma levels of LU in the two species. It is concluded that in the rat, but not in the dog, acute blockade of ETA receptors can impair renal excretory function, most likely at the tubule level. This interspecies difference in the role of endogenous ET in the regulation of renal function is probably due to a different ET receptor profile and distribution in rat and dog kidneys.

  7. Influence of antiseptics on microcirculation after neuronal and receptor blockade.

    PubMed

    Goertz, Ole; Hirsch, Tobias; Ring, Andrej; Muehlberger, Thomas; Steinau, Hans U; Tilkorn, Daniel; Lehnhardt, Marcus; Homann, Heinz H

    2011-08-01

    The topical application of the antiseptics octenidine and polyhexanide on wounds seems to improve microcirculation. These two antiseptics were tested in combination with neuronal inhibition and sympathethic receptor blockade to verify these findings, explore the influence of β blockers on these microcirculative effects, and find out the principle of operation. Investigations were carried out on a standardised cremaster muscle model in rats (n = 66). The tested antiseptics, octenidine and polyhexanide were investigated alone (n = 12) and in combination with bupivacaine (n = 12), metoprolol (n = 12), phentolamine (n = 12) and surgical denervation (n = 12). Physiological saline was used for control (n = 6). The arteriolar diameter and functional capillary density (FCD) were investigated via trans-illumination microscopy before, as well as 60 and 120 minutes after application. Polyhexanide caused a significant increase in arteriolar diameter (86·5 ± 3·8 µm versus 100·0 ± 3·6 µm) and, like octenidine (7·2 ± 0·7 n/0·22 mm(2) versus 11·6 ± 0·6 n/0·22 mm(2) ), in FCD (9·2 ± 0·5 versus 12·6 ± 0·9) as well. When the antiseptics are used in combination with bupivacaine, metoprolol, phentolamine or surgical sympathectomy, these effects were eliminated or inverted. Assessing the results of the different blockades in combination with polyhexanide, we surmise that the antiseptic polyhexanide acts on the microcirculation mainly by blocking α receptors. This study shows that polyhexanide and octenidine improve muscular perfusion. Interestingly, the benefit of polyhexanide and octenidine on muscular perfusion is eliminated when the antiseptics are combined with other vasoactive agents, especially β blockers. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  8. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  9. Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy

    PubMed Central

    Rojas, Juan J; Sampath, Padma; Hou, Weizhou; Thorne, Steve H

    2015-01-01

    Purpose Recent data from randomized clinical trials with oncolytic viral therapies and with cancer immunotherapies have finally recapitulated the promise these platforms demonstrated in pre-clinical models. Perhaps the greatest advance with oncolytic virotherapy has been the appreciation of the importance of activation of the immune response in therapeutic activity. Meanwhile, the understanding that blockade of immune checkpoints (with antibodies that block the binding of PD1 to PDL1 or CTLA4 to B7-2) is critical for an effective anti-tumor immune response has revitalized the field of immunotherapy. The combination of immune activation using an oncolytic virus and blockade of immune checkpoints is therefore a logical next step. Experimental Design Here we explore such combinations and demonstrate their potential to produce enhanced responses in mouse tumor models. Different combinations and regimens were explored in immunocompetent mouse models of renal and colorectal cancer. Bioluminescence imaging and immune assays were used to determine the mechanisms mediating synergistic or antagonistic combinations. Results Interaction between immune checkpoint inhibitors and oncolytic virotherapy was found to be complex, with correct selection of viral strain, antibody and timing of the combination being critical for synergistic effects. Indeed, some combinations produced antagonistic effects and loss of therapeutic activity. A period of oncolytic viral replication and directed targeting of the immune response against the tumor were required for the most beneficial effects, with CD8+ and NK, but not CD4+ cells mediating the effects. Conclusions These considerations will be critical in the design of the inevitable clinical translation of these combination approaches. PMID:26187615

  10. Why not treat human cancer with interleukin-1 blockade?

    PubMed Central

    2010-01-01

    The clinical successes of targeting angiogenesis provide a basis for trials of interleukin-1 (IL-1) blockade and particularly anti-IL-1β as an add-on therapy in human metastatic disease. In animal studies for over 20 years, IL-1 has been demonstrated to increase adherence of tumor cells to the endothelium in vitro, and administration of IL-1 to mice increases the number of metastatic colonies and tumor growth. Importantly, reducing endogenous IL-1 activity, particularly IL-1β, with the naturally occurring IL-1 receptor antagonist (IL-1Ra) reduces both metastasis as well as tumor burden. Inhibition of IL-1 activity prevents in vivo blood vessel formation induced by products released from hypoxic macrophages or vascular endothelial cell growth factor itself. Mice deficient in IL-1β do not form blood vessels in matrigels embedded with vascular endothelial cell growth factor or containing products of macrophages. Recombinant IL-1Ra (anakinra) has been administered to over 1,000 patients with septic shock resulting in a consistent reduction in all-cause 28-day mortality. Approved for treatment of rheumatoid arthritis, anakinra has a remarkable safety record. Anakinra resulted in decreased blood vessels in the pannus of affected joints in patients with rheumatoid arthritis. Neutralizing monoclonal antibodies to IL-1β and a soluble receptor to IL-1 are approved for treating chronic inflammatory diseases. Given the availability of three therapeutic agents for limiting IL-1 activity, the safety of blocking IL-1, and the clear benefit of blocking IL-1 activity in animal models of metastasis and angiogenesis, clinical trials of IL-1 blockade should be initiated, particularly as an add-on therapy of patients receiving antiangiogenesis-based therapies. PMID:20422276

  11. Beta Blockade and Clinical Outcomes in Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Chang, Melody M.; Raval, Ronak N.; Southerland, Jessie J.; Adewumi, Dare A.; Bahjri, Khaled A.; Samuel, Rajeev K.; Woods, Rafeek O.; Ajayi, Olaide O.; Lee, Bryan S.; Hsu, Frank P. K.; Applegate II, Richard L.; Dorotta, Ihab R.

    2016-01-01

    Background: Aneurysmal subarachnoid hemorrhages are frequently complicated by hypertension and neurogenic myocardial stunning. Beta blockers may be used for management of these complications. We sought to investigate sympathetic nervous system modulation by beta blockers and their effect on radiographic vasospasm, delayed cerebral infarction, discharge destination and death. Methods: Retrospective chart review of 218 adults admitted to the ICU between 8/2004 and 9/2010 was performed. Groups were identified relevant to beta blockade: 77 were never beta blocked (No/No), 123 received post-admission beta blockers (No/Yes), and 18 were continued on their home beta blockers (Yes/Yes). Records were analyzed for baseline characteristics and the development of vasospasm, delayed cerebral infarction, discharge destination and death, expressed as adjusted odds ratio. Results: Of the 218 patients 145 patients developed vasospasm, 47 consequently infarcted, and 53 died or required care in a long-term facility. When compared to No/No patients, No/Yes patients had significantly increased vasospasm (OR 2.11 (1.06-4.16)). However, these patients also had significantly fewer deaths or need for long term care (OR 0.17 (0.05-0.64)), with decreased tendency for infarcts (OR 0.70 (0.32-1.55)). When compared to No/No patients, Yes/Yes patients demonstrated a trend toward increased vasospasm (OR 1.61 (0.50-5.29)) that led to infarction (OR 1.51 (0.44-5.13)), but with decreased mortality or need for long term care in a facility (OR 0.13 (0.01-1.30)). Conclusion: Post-admission beta blockade in aneurysmal subarachnoid hemorrhage patients was associated with increased incidence of vasospasm. However, despite the increased occurrence of vasospasm, beta blockers were associated with improved discharge characteristics and fewer deaths. PMID:28217182

  12. Attenuation of Cavity Bay Noise

    DTIC Science & Technology

    2012-10-01

    amplification, known as peaking. Overall, the palliative devices based on resonant arrays have demonstrated high levels of attenuation which are...when the resonant frequency condition is met. The attenuation from a Helmholtz type resonator is achieved through frictional losses, vortex shedding...3 the λ/4 condition can be fulfilled and therefore porous mesh devices may not be able to provide a high level of attenuation . Resonant arrays

  13. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  14. Chopping-Wheel Optical Attenuator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1988-01-01

    Star-shaped rotating chopping wheel provides adjustable time-averaged attenuation of narrow beam of light without changing length of optical path or spectral distribution of light. Duty cycle or attenuation factor of chopped beam controlled by adjusting radius at which beam intersects wheel. Attenuation factor independent of wavelength. Useful in systems in which chopping frequency above frequency-response limits of photodetectors receiving chopped light. Used in systems using synchronous detection with lock-in amplifiers.

  15. 5-hydroxytryptamine-mediated neurotransmission modulates spontaneous and vagal-evoked glutamate release in the nucleus of the solitary tract effect of uptake blockade.

    PubMed

    Hosford, Patrick S; Mifflin, Steve W; Ramage, Andrew G

    2014-05-01

    The effect of blockade of either 5-hydroxytryptamine (5-HT)/serotonin transporter (SERT) with citalopram or the organic cation transporter 3 (OCT3)/plasma membrane monoamine transporter (PMAT) with decynium-22 (D-22) on spontaneous and evoked release of 5-HT in the nucleus tractus solitarius (NTS) was investigated in rat brainstem slices treated with gabazine. 5-HT release was measured indirectly by changes in the frequency and amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) [in the presence of tetrodotoxin (TTX)] and evoked EPSCs. Blockade of 5-HT3 receptors with granisetron reduced, whereas the 5-HT3 agonist phenylbiguanide increased, the frequency of mEPSCs. 5-HT decreased mEPSC frequency at low concentrations and increased frequency at high concentrations. This inhibition was blocked by the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635), which was ineffective on its own, whereas the excitation was reversed by granisetron. The addition of citalopram or D-22 caused inhibition, which was prevented by 5-HT1A blockade. Thus, in the NTS, the spontaneous release of 5-HT is able to activate 5-HT3 receptors, but not 5-HT1A receptors, as the release in their vicinity is removed by uptake. The ineffectiveness of corticosterone suggests that the low-affinity, high-capacity transporter is PMAT, not OCT3. For evoked 5-HT release, only D-22 caused an increase in the amplitude of EPSCs, with a decrease in the paired pulse ratio, and increased the number of spontaneous EPSCs after 20-Hz stimulation. Thus, for the evoked release of 5-HT, the low-affinity, high-capacity transporter PMAT, but not 5-HT transporter (5-HTT)/SERT, is important in the regulation of changes in 5-HT extracellular concentration.

  16. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells

    PubMed Central

    Rao, Velidi H.; Rai, Vikrant; Stoupa, Samantha

    2015-01-01

    Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways. PMID:26254334

  17. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Rai, Vikrant; Stoupa, Samantha; Agrawal, Devendra K

    2015-09-15

    Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways. Copyright © 2015 the American Physiological Society.

  18. Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1beta administration.

    PubMed

    Whitaker, Keith W; Reyes, Teresa M

    2008-03-01

    Loss of appetite and cachexia is an obstacle in the treatment of chronic infection and cancer. Proinflammatory cytokines released from activated immune cells and acting in the central nervous system (CNS) are prime candidates for mediating these metabolic changes, potentially affecting both energy intake as well as energy expenditure. The effect of intravenous administration of two proinflammatory cytokines, interleukin (IL)-1beta (15 microg/kg) and tumor necrosis factor (TNF)-alpha (10 microg/kg), on food and water intake, locomotor activity, oxygen consumption (VO2), and respiratory exchange ratio (RER) was evaluated. The two cytokines elicited a comparable decrease in food intake and activated similar numbers of cells in the paraventricular nucleus of the hypothalamus (PVH), a region that plays a critical role in the regulation of appetite and metabolism (determined via expression of the immediate early gene, c-fos). However, only IL-1beta reduced locomotion and RER, and increased VO2, while TNF-alpha was without effect. To examine the role of the melanocortins in mediating IL-1beta- induced metabolic changes, animals were pretreated centrally with a melanocortin receptor antagonist, HS014. Pretreatment with HS014 blocked the effect of IL-1beta on food intake and RER at later time points (beyond 8 h post injection), as well as the hypoactivity and increased metabolic rate. Further, HS014 blocked the induction of Fos-ir in the PVH. These data highlight the importance of the melanocortin system, particularly within the PVH, in mediating a broad range of metabolic responses to IL-1beta.

  19. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  20. Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation.

    PubMed

    Andäng, Michael; Hjerling-Leffler, Jens; Moliner, Annalena; Lundgren, T Kalle; Castelo-Branco, Gonçalo; Nanou, Evanthia; Pozas, Ester; Bryja, Vitezslav; Halliez, Sophie; Nishimaru, Hiroshi; Wilbertz, Johannes; Arenas, Ernest; Koltzenburg, Martin; Charnay, Patrick; El Manira, Abdeljabbar; Ibañez, Carlos F; Ernfors, Patrik

    2008-01-24

    Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.

  1. Effects of Long-term Blockade of Vasopressin Receptor Types 1a and 2 on Cardiac and Renal Damage in a Rat Model of Hypertensive Heart Failure.

    PubMed

    Ikeda, Tomoyuki; Iwanaga, Yoshitaka; Watanabe, Heitaro; Morooka, Hanako; Akahoshi, Yasumitsu; Fujiki, Hiroyuki; Miyazaki, Shunichi

    2015-11-01

    The effects of chronic blockade of vasopressin type 1a receptors (V1aR) and the additive effects of a type 2 receptor (V2R) antagonist on the treatment of hypertension-induced heart failure and renal injury remain to be unknown. In this study, Dahl salt-sensitive hypertensive rats were chronically treated with a vehicle (CONT), a V1aR antagonist (OPC21268; OPC), a V2R antagonist (tolvaptan; TOLV), or a combination of OPC21268 and tolvaptan (OPC/TOLV) from the pre-hypertrophic stage (6 weeks). No treatment altered blood pressure during the study. Significant improvements were seen in median survival for the OPC and TOLV, and the OPC/TOLV showed a further improvement in Kaplan-Meier analysis. Echocardiography showed suppressed left ventricular hypertrophy in the OPC and OPC/TOLV at 11 weeks with improved function in all treatment groups by 17 weeks. In all treatment groups, improvements were seen in the following: myocardial histological changes, creatinine clearance, urinary albumin excretion, and renal histopathologic damage. Also, key mRNA levels were suppressed (eg, endothelin-1 and collagen). In conclusion, chronic V1aR blockade ameliorated disease progression in this rat model, with additive benefits from the combination of V1aR and V2R antagonists. It was associated with protection of both myocardial and renal damage, independent of blood pressure.

  2. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging

    PubMed Central

    Parikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin

    2012-01-01

    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of trkA receptors by cholinergic neurons in the nucleus basalis of Meynert/ substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. TrkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release ACh. The capacity of cortical synapses to release acetylcholine (ACh) in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. PMID:23228124

  3. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  4. Serotonin-1A receptor function in the dorsal raphe nucleus following chronic administration of the selective serotonin reuptake inhibitor sertraline.

    PubMed

    Rossi, Dania V; Burke, Teresa F; McCasland, Melissa; Hensler, Julie G

    2008-05-01

    Serotonin-1A (5-HT(1A) receptors in the dorsal raphe nucleus (DRN) function as somatodendritic autoreceptors, and therefore play a critical role in controlling serotonergic cell firing and serotonergic neurotransmission. We hypothesized that a decrease in the capacity of 5-HT(1A) receptors to activate G proteins was a general mechanism by which 5-HT(1A) receptors in the DRN are desensitized following chronic administration of selective serotonin reuptake inhibitors (SSRIs). Using in vivo microdialysis, we found that the ability of the 5-HT(1A) receptor agonist 8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) (0.025 mg/kg, s.c.) to decrease extracellular 5-HT levels in striatum was attenuated following chronic treatment of rats with the SSRIs sertraline or fluoxetine. This apparent desensitization of somatodendritic 5-HT(1A) autoreceptor function was not accompanied by a decrease in 5-HT(1A) receptor sites in the coupled, high-affinity agonist state as measured by the binding of [3H]8-OH-DPAT. In marked contrast to what was observed following chronic administration of fluoxetine, 5-HT(1A) receptor-stimulated [(35)S]GTPgammaS binding in the DRN was not altered following chronic sertraline treatment. Thus, desensitization of 5-HT(1A) somatodendritic autoreceptor function following chronic sertraline administration appears not to be due to a decrease in the capacity 5-HT(1A) receptors to activate G proteins in the DRN. Our findings suggest that the SSRIs may not be a homogeneous class of antidepressant drug with regard to the mechanism by which the function of somatodendritic 5-HT(1A) autoreceptors is regulated.

  5. Potentiation of the time-dependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635.

    PubMed

    Mitchell, P J; Redfern, P H

    1997-11-01

    Acute and chronic antidepressant drug treatments respectively decrease and increase the aggressive behaviour of resident rats during encounters with unfamiliar conspecifics. We have now examined the effect of the 5-hydroxytryptamine1A receptor antagonist, WAY-100635, on fluoxetine-, paroxetine- or venlafaxine-induced changes in aggression. WAY-100635 (0.1 mg/kg), which did not modify behaviour when given alone, potentiated the venlafaxine (5.54 mg/kg)-induced reduction in aggression after acute treatment and, during chronic treatment, accelerated the fluoxetine (0.34 mg/kg/day)-induced increase in aggression, from day 5 to day 2. A similar change in time course was seen with paroxetine (0.33 mg/kg/day), although the increase in aggression was smaller. Venlafaxine (5.54 mg/kg/day, alone or co-administered with WAY-100635) increased aggression by day 2. During chronic treatment, therefore, venlafaxine, at the dose used, had a more rapid onset of action than either fluoxetine or paroxetine, whereas the fluoxetine- and paroxetine-, but not the venlafaxine-, induced increase in aggression was accelerated by WAY-100635. These studies further support the hypothesis that selective blockade of the 5-hydroxytryptamine1A receptor augments the effects of antidepressant drugs in an animal model predictive of antidepressant activity, presumably by concomitant blockade of the somatodendritic 5-hydroxytryptamine1A autoreceptor-mediated negative feedback system of serotonergic neurones.

  6. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice

    PubMed Central

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S.; Baek, Jeong-Hwa

    2014-01-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss. [BMB Reports 2014; 47(9): 506-511] PMID:24393528

  7. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss.

  8. 5-HT(1A) receptors and memory.

    PubMed

    Meneses, Alfredo; Perez-Garcia, Georgina

    2007-01-01

    The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.

  9. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Fang, Jingyue; Chang, Shengli; Qin, Shiqiao; Zhang, Xueao; Xu, Hui

    2017-02-01

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode.

  10. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  11. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  12. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  13. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  14. Potential output pathways for agonistic-like responses resulting from the GABA(A) blockade of the torus semicircularis dorsalis in weakly electric fish, Gymnotus carapo.

    PubMed

    Teixeira Duarte, Terence; Hoffmann, Anette; de Souza Fim Pereira, Aparecida; Aparecida Lopes Corrêa, Sônia

    2006-05-30

    The purpose of this study is to examine the pathways involved in the electromotor (electric organ discharge interruptions) and skeletomotor responses (defense-like) observed by blockade of GABAergic control of the torus semicircularis dorsalis (TSd) of the awake weakly electric fish Gymnotus carapo, described in a former study. Microinjection of NMDA (5 mM) into the pacemaker nucleus (PM) through a guide cannula previously implanted caused a prolonged interruption of the electric organ discharge (EOD) intermingled with reduction in frequency, similar to that described for TSd GABA(A) blockade, but without noticeable skeletomotor effects. The EOD alterations elicited by bicuculline microinjections (0.245 mM) into the TSd could be blocked or attenuated by a previous microinjection of AP-5 (0.5 mM), an NMDA antagonist, into the PM. Labeled terminals are found in the nucleus electrosensorius (nE) after injection of the biotinylated dextran amine (BDA) tracer into the TSd and into the sublemniscal prepacemaker nucleus (SPPn) subsequent to the tracer injection into the nE. Defense-like responses but not EOD interruptions are observed after microinjections of NMDA (5 mM) into the rhombencephalic reticular formation (RF), where labeled terminals are seen after BDA injection into the TSd and somata are filled after injection of the tracer into the spinal cord. In this last structure, marked fibers are seen subsequent to injection of BDA into the RF. These results suggest that two distinct pathways originate from the torus: one for EOD control, reaching PM through nE and SPPn, and the other one for skeletomotor control reaching premotor reticular neurons. Both paths could be activated by toral GABA(A) blockade.

  15. Synergistic interaction between opioid receptor blockade and alpha-adrenergic stimulation on luteinizing hormone-releasing hormone (LHRH) secretion in vitro.

    PubMed

    Clough, R W; Hoffman, G E; Sladek, C D

    1990-02-01

    The effects of opioid receptor blockade, alpha-adrenergic receptor stimulation and concomitant opioid blockade and adrenergic stimulation on LHRH neurosecretion was examined in tissue culture using perifused preoptic area-mediobasal hypothalamic (POA-MBH) explants. Blockade of opioid receptors using naloxone (NAL) resulted in increased (p less than 0.05) LHRH secretion from POA-MBH explants obtained from intact postpubertal female rats. After washout of the NAL-medium, basal release rate was reset to a lower baseline. Subsequent exposure of POA-MBH explants to phenylephrine (PHEN), an alpha-adrenergic agonist, resulted in a slight but statistically insignificant increase in LHRH release from adult explants. The attenuated response to PHEN may have been due to a sustained inhibition of LHRH release following the NAL exposure since PHEN not preceded by NAL resulted in a marked stimulation of LHRH release. In three separate experiments, the LHRH response in postpubertal rat explants to simultaneous PHEN and NAL was greater and more prolonged than the responses to either of the substances alone. This study demonstrates that the stimulatory effects of PHEN are much more profound in the presence of opioid receptor blockage. The observations of the stimulatory effects of PHEN and NAL potentiating each other also suggest that separate mechanisms of LHRH control by each class of neurotransmitter are present. Similar to the postpubertal rat explants, explants obtained from prepubertal rats increased LHRH release in response to NAL and showed a sustained inhibition of LHRH release following washout of NAL. Explants obtained from prepubertal rats also significantly increased LHRH release in response to PHEN.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion.

    PubMed

    Christopher, Michael; Rantzau, Christian; Chen, Zhi-Ping; Snow, Rodney; Kemp, Bruce; Alford, Frank P

    2006-11-01

    AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.

  17. Adeno-Associated Virus Transfer of a Gene Encoding SNAP-25 Resistant to Botulinum Toxin A Attenuates Neuromuscular Paralysis Associated with Botulism

    DTIC Science & Technology

    2008-04-02

    ideal system to evaluate such therapies is the blockade of neuromuscular transmission by botulinum neurotoxin type A (BoNT/A). Its light chain Zn 2...Brief Communications Adeno-Associated Virus Transfer of a Gene Encoding SNAP-25 Resistant to Botulinum Toxin A Attenuates Neuromuscular Paralysis...the neuromuscular paralysis induced by botulinum neurotoxin type A (BoNT/A) as a prototype disease. Furthermore, because human botulism, occasionally

  18. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy

    PubMed Central

    Beavis, Paul A.; Henderson, Melissa A.; Giuffrida, Lauren; Mills, Jane K.; Sek, Kevin; Cross, Ryan S.; Davenport, Alexander J.; John, Liza B.; Mardiana, Sherly; Slaney, Clare Y.; Johnstone, Ricky W.; Trapani, Joseph A.; Stagg, John; Loi, Sherene; Kats, Lev; Gyorki, David; Kershaw, Michael H.; Darcy, Phillip K.

    2017-01-01

    Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types. PMID:28165340

  19. Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation.

    PubMed

    Hsu, Chun-Chieh; Lien, Jin-Cherng; Chang, Chia-Wen; Chang, Chien-Hsin; Kuo, Sheng-Chu; Huang, Tur-Fu

    2013-02-01

    Phagocytes release inflammatory mediators to defense harmful stimuli upon bacterial invasion, however, excessive inflammatory reaction leads to tissue damage and manifestation of pathological states. Therefore, targeting on uncontrolled inflammation seems feasible to control numerous inflammation-associated diseases. Under the drug screening process of synthetic diphenylpyrazole derivatives, we discovered compound yuwen02f1 possesses anti-inflammatory effects in decreasing the release of pro-inflammatory cytokines including TNFα and IL-6, nitric oxide, reactive oxygen species (ROS) as well as inhibiting migration of LPS-stimulated phagocytes. In addition, we observed that the molecular mechanism of yuwen02f1-mediated anti-inflammation is associated with decreasing phosphorylation of MAPK molecules including ERK1/2, JNK and p38, and attenuating translocation of p47(phox) and p67(phox) to the cell membrane. Yuwen02f1 also reverses IκBα degradation and attenuates the expression of NFκB-related downstream inducible enzymes like iNOS and COX-2. Furthermore, we found that yuwen02f1 attenuates some pathological syndromes of LPS-induced sepsis and adjuvant-induced arthritis in mice, as evidenced by decreasing the cytokine production, reversing thrombocytopenic syndrome, protecting the mice from tissue injury in septic mice, and attenuating paw edema in arthritic mice as well. These results suggest that yuwen02f1 is a potential anti-inflammatory agent for alleviating syndromes of acute and chronic inflammatory diseases as evidenced by attenuating the generation of cytokines and down-regulating the expression of iNOS and COX-2 through the blockade of ROS generation and NADPH oxidase, NFκB and MAPK activation pathways in LPS-stimulated phagocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Activation of GABA-A Receptor Ameliorates Homocysteine-Induced MMP-9 Activation by ERK Pathway

    PubMed Central

    TYAGI, NEETU; GILLESPIE, WILLIAM; VACEK, JONATHAN C.; SEN, UTPAL; TYAGI, SURESH C.; LOMINADZE, DAVID

    2010-01-01

    Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase-9 (MMP-9), which degrades the matrix and leads to blood–brain barrier dysfunction. Hcy competitively binds to γ-aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA-A receptor in Hcy-induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP-9 activity via the extracellular signal-regulated kinase (ERK) signaling pathway and by inhibition of GABA-A receptors, thus behaving as an inhibitory neurotransmitter. Hcy-induced reactive oxygen species production was detected using the fluorescent probe, 2′–7′-dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate-oxidase-4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP-9, measured by gelatin zymography. The GABA-A receptor agonist, muscimol ameliorated the Hcy-mediated MMP-9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase-4 (TIMP-4). Treatment of the endothelial cell with muscimol restored the levels of TIMP-4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy-induced MMP-9 via ERK signaling pathway. These results suggest that Hcy competes with GABA-A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation. PMID:19308943

  1. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

    PubMed Central

    Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A.

    2015-01-01

    BACKGROUND Somatic mutations have the potential to encode “non-self” immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade. METHODS We conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti–programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency. Pembrolizumab was administered intravenously at a dose of 10 mg per kilogram of body weight every 14 days in patients with mismatch repair–deficient colorectal cancers, patients with mismatch repair–proficient colorectal cancers, and patients with mismatch repair–deficient cancers that were not colorectal. The coprimary end points were the immune-related objective response rate and the 20-week immune-related progression-free survival rate. RESULTS The immune-related objective response rate and immune-related progression-free survival rate were 40% (4 of 10 patients) and 78% (7 of 9 patients), respectively, for mismatch repair–deficient colorectal cancers and 0% (0 of 18 patients) and 11% (2 of 18 patients) for mismatch repair–proficient colorectal cancers. The median progression-free survival and overall survival were not reached in the cohort with mismatch repair–deficient colorectal cancer but were 2.2 and 5.0 months, respectively, in the cohort with mismatch repair–proficient colorectal cancer (hazard ratio for disease progression or death, 0.10 [P<0.001], and hazard ratio for death, 0.22 [P = 0.05]). Patients with mismatch repair–deficient noncolorectal cancer had responses similar to those of patients with mismatch repair–deficient colorectal cancer (immune-related objective response rate, 71% [5 of 7 patients]; immune-related progression-free survival rate, 67% [4 of 6 patients]). Whole-exome sequencing revealed a mean of 1782 somatic mutations per tumor in

  2. Predictors of hyperkalemia risk following hypertension control with aldosterone blockade.

    PubMed

    Khosla, Nitin; Kalaitzidis, Rigas; Bakris, George L

    2009-01-01

    Aldosterone antagonists have proven efficacy for management of resistant hypertension and proteinuria reduction; however, they are not widely used due to risk of hyperkalemia. This study assesses the risk factors for hyperkalemia in patients with chronic kidney disease (CKD) and resistant hypertension whose blood pressure (BP) is reduced to a guideline goal. This is a two-center study conducted in university-based hypertension clinics directed by clinical hypertension specialists. Forty-six patients with resistant hypertension and stages 2 or 3 CKD (mean estimated glomerular filtration rate (eGFR) 56.5 + or - 16.2 ml/min/1.73 m(2)) were evaluated for safety and efficacy of aldosterone blockade added to preexisting BP-lowering regimens. All patients were on three mechanistically complementary antihypertensive agents including a diuretic and a renin-angiotensin system blocker. Patients were evaluated after a median of 45 treatment days. The primary endpoint was change in systolic BP. Secondary endpoints included change in serum potassium, creatinine, eGFR, diastolic BP and tolerability. The mean age of the patients studied was 64.9 + or - 10.7 years, all were obese and 86% had type 2 diabetes, with 82% being African-American. Addition of aldosterone antagonism yielded a further mean reduction in systolic BP of 14.7 + or - 5.1 mm Hg (p = 0.001). Females with BMI >30 and those with a baseline systolic BP >160 mm Hg were more likely to have a greater BP reduction to aldosterone antagonism. In total, 39% of the patients had a >30% decrease in eGFR when the BP goal was achieved. The mean increase in serum potassium was 0.4 mEq/l above baseline (p = 0.001), with 17.3% manifesting hyperkalemia, i.e. serum potassium >5.5 mEq/l. Predictors of hyperkalemia included a baseline eGFR of < or = 45 ml/min/1.73 m(2) in whom serum potassium was >4.5 mEq/l on appropriately dosed diuretics. Contributing risks in this subgroup included a systolic BP reduction of >15 mm Hg associated

  3. Angiotensin II AT1 receptor blockade by telmisartan reduces impairment of spatial maze performance induced by both acute and chronic stress.

    PubMed

    Wincewicz, Dominik; Braszko, Jan J

    2015-09-01

    Despite recognition of stress as a causation of severe neuropsychological dysfunctions, no casual and clinically effective anti-stress therapeutic strategy has yet been found. We have previously shown that blockade of initial stress response by angiotensin receptor blockers alleviates the negative effect of prolonged stress on cognitive non-spatial functions of rats. Here we aimed to find whether telmisartan reduces stress-related memory decline in spatial hippocampal-dependent learning tasks conditioned upon differences in level of stress induced by aversive nature of memory tests. Male Wistar rats were exposed to chronic restraint stress for three weeks and daily treated with either vehicle or telmisartan (1 mg/kg). Afterwards rats were tested in three spatial learning and memory paradigms: Morris water maze (MWM), radial arm maze (RAM), and Barnes maze (BM). Stressed animals demonstrated significantly impaired performance in all the tests, which was normalized in the animals stressed and treated with telmisartan. Interestingly, despite the fact that MWM and RAM are more stressful, which affects animal behavior, therefore considered less sensitive than BM, more significant effect of telmisartan was found in MWM and RAM than BM. AT1 angiotensin receptor blockade attenuates negative effect of both acute and chronic stress on spatial memory. © The Author(s) 2014.

  4. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  6. [Genetic Mutation Accumulation and Clinical Outcome of Immune Checkpoint Blockade Therapy].

    PubMed

    Takahashi, Masanobu

    2016-06-01

    Immune checkpoint blockade therapy has recently attracted great attention in the area of oncology. In Japan, since 2014, an anti-PD-1 antibody nivolumab and anti-CTLA-4 antibody ipilimumab have been available for the treatment of patients with malignant melanoma, and nivolumab has been available for patients with non-small cell lung cancer. Clinical trials using these drugs and other immune checkpoint inhibitors are currently in progress worldwide. The immune checkpoint blockade therapy is a promising new cancer therapy; however, not all patients with cancer can benefit from this therapy. Recent evidence shows that markers reflecting the extent of genetic mutation accumulation, including mutation burden, non-synonymous mutation that produces neoantigen, and microsatellite instability, possibly serve as promising marker to predict who can benefit from the immune checkpoint blockade therapy. Here, I introduce the recent evidence and discuss the correlation between genetic mutation accumulation and clinical outcome of immune checkpoint blockade therapy.

  7. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength

    PubMed Central

    Summermatter, Serge; Bouzan, Anais; Pierrel, Eliane; Melly, Stefan; Stauffer, Daniela; Gutzwiller, Sabine; Nolin, Erin; Dornelas, Christina; Fryer, Christy; Leighton-Davies, Juliet; Glass, David J.

    2016-01-01

    ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy. PMID:27956698

  8. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength.

    PubMed

    Summermatter, Serge; Bouzan, Anais; Pierrel, Eliane; Melly, Stefan; Stauffer, Daniela; Gutzwiller, Sabine; Nolin, Erin; Dornelas, Christina; Fryer, Christy; Leighton-Davies, Juliet; Glass, David J; Fournier, Brigitte

    2017-03-01

    Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy.

  9. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    NASA Astrophysics Data System (ADS)

    Brogi, Bharat Bhushan; Chand, Shyam; Ahluwalia, P. K.

    2015-06-01

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ɛ + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  10. Rocket engine nozzle attenuator

    NASA Astrophysics Data System (ADS)

    Lewis, David A.

    1993-01-01

    The function of a rocket engine nozzle is to expand the hot engine exhaust gases down to ambient pressure, transforming thermal energy to directed kinetic energy in order to produce thrust. Considering nozzle design, there is an optimum nozzle shape and length, the bell-shaped or contour nozzle. The reason for this specific contour is that the nozzle must be designed in such a manner that the expansion shock waves emanating from the nozzle throat region coincide, and thus diminish the compression effects accompanying the reorientation of flow in the center region of the expansion section. A rocket nozzle must absorb a variety of loads caused by such shocks due to thermal expansion and contraction, as well as shocks from sudden pressurization at startup, and flight accelerations. A rocket engine nozzle is provided which is capable of attenuating nozzle vibrations generated therein during use. The nozzle includes an annular closed chamber surrounding the nozzle adjacent to its gas exhaust end. Within the chamber is a dense but unrestricted particulate mass capable of undergoing frictional movement within the chamber.

  11. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  12. A surgeon's assessment of inadequate neuromuscular antagonism in a case of prolonged neuromuscular blockade.

    PubMed

    Lamberg, James J; Answine, Joseph F

    2013-04-01

    Evaluation of the degree of neuromuscular blockade by the surgeon using clinical criteria alone is unreliable. We report a case of prolonged neuromuscular blockade lasting 5.5 h, where an additional intra-operative dose of neuromuscular relaxant was given at the request of the surgical team. Possible causes of prolonged neuromuscular antagonism are discussed, as is the importance of neuromuscular assessment prior to the administration of additional neuromuscular blocking agents when receiving a surgeon request for additional neuromuscularblockade.

  13. Evaluation of contraindications and efficacy of oral Beta blockade before computed tomographic coronary angiography.

    PubMed

    de Graaf, Fleur R; Schuijf, Joanne D; van Velzen, Joëlla E; Kroft, Lucia J; de Roos, Albert; Sieders, Allard; Jukema, J Wouter; Schalij, Martin J; van der Wall, Ernst E; Bax, Jeroen J

    2010-03-15

    Multidetector computed tomographic coronary angiography (CTA) image quality is inversely related to the heart rate (HR). As a result beta-blocking medication is routinely administered before investigation. In the present study, the use, contraindications, and efficacy of prescan beta blockade with regard to HR reduction and CTA image quality were assessed. In 537 patients referred for CTA, the baseline HR and blood pressure were measured on arrival, and contraindications for beta blockade were noted. Unless contraindicated, a single dose of metoprolol was administered orally 1 hour before data acquisition in patients with a HR of > or =65 beats/min according to a predefined medication protocol. After 1 hour, the HR was remeasured. A total of 283 patients (53%) had a HR of > or =65 beats/min. In this group, beta blockade was contraindicated in 46 patients (16%). Metoprolol was administered to the remaining 237 patients. However, 26 patients (11%) received suboptimal (lower dose than prescribed by protocol) beta blockade because of contraindications. Of the 211 patients receiving optimal beta blockade, 57 (27%) did not achieve the target HR. Of the patients with contraindications to beta blockade, 43 (60%) did not achieve the target HR. Compared to patients with optimal HR control, those receiving no or suboptimal beta blockade because of contraindications had significantly fewer examinations of good image quality (40% vs 74%, p <0.001), and significantly more examinations of poor image quality (20% vs 6%, p <0.001). In conclusion, most patients require HR reduction before CTA. Contraindications to beta blockade are present in a substantial proportion of patients. This results in suboptimal HR control and image quality, indicating the need for alternative approaches for HR reduction.

  14. Absence of excess peripheral muscle fatigue during beta-adrenoceptor blockade.

    PubMed Central

    Cooper, R G; Stokes, M J; Edwards, R H; Stark, R D

    1988-01-01

    1. In eight normal volunteers, the adductor pollicis (AP) was fatigued using intermittent trains of programmed, supramaximal stimulation at 1, 10, 20, 50, 100 and 1 Hz. Activity protocols were performed both with and without circulatory occlusion, both without and during propranolol 80 mg thrice daily in order to investigate the effects of beta-adrenoceptor blockade on 'peripheral' fatigue mechanisms. 2. The degree of beta-adrenoceptor blockade was assessed by the reduction of exercise tachycardia during cycle ergometry, e.g. pulse rates at 210 watts were reduced from 190 +/- 15 to 127 +/- 5 beats min-1 (mean +/- 1 s.d.) indicating that beta-adrenoceptor blockade was substantial and highly significant (P less than 0.001). 3. Before, during and following fatiguing activity with circulatory occlusion force declines were identical during and without beta-adrenoceptor blockade. During and following activity without occlusion, there were slight declines in force which were questionably significantly different at 20 Hz (P less than 0.05). 4. The compound muscle action potential (CMAP) amplitude, measured from the skin surface over the muscle, was unaltered by beta-adrenoceptor blockade before, during or after activity whether with or without circulatory occlusion. 5. The maximal relaxation rate (MRR) was not significantly reduced in previously unfatigued muscle during beta-adrenoceptor blockade. During activity, both with and without circulatory occlusion, there was no evidence that MRR was reduced significantly more during beta-adrenoceptor blockade. 6. The absence of a convincing effect of beta-adrenoceptor blockade on peripheral fatigue mechanisms may indicate that central mechanisms are involved or that impairments of peripheral force production, of a specific nature or as a result of exacerbation of limitations of circulatory oxygen transport, though small are detected during voluntary exercise and give rise to increases in motor unit recruitment and/or firing rates

  15. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade

    PubMed Central

    Deng, Aihua; Arndt, Mary Ann K.; Satriano, Joseph; Singh, Prabhleen; Rieg, Timo; Thomson, Scott; Tang, Tong

    2010-01-01

    The 5/6th nephrectomy or ablation/infarction (A/I) preparation has been used as a classic model of chronic kidney disease (CKD). We observed increased kidney oxygen consumption (QO2) and altered renal hemodynamics in the A/I kidney that were normalized after combined angiotensin II (ANG II) blockade. Studies suggest hypoxia inducible factor as a protective influence in A/I. We induced hypoxia-inducible factor (HIF) and HIF target proteins by two different methods, cobalt chloride (CoCl2) and dimethyloxalyglycine (DMOG), for the first week after creation of A/I and compared the metabolic and renal hemodynamic outcomes to combined ANG II blockade. We also examined the HIF target proteins expressed by using Western blots and real-time PCR. Treatment with DMOG, CoCl2, and ANG II blockade normalized kidney oxygen consumption factored by Na reabsorption and increased both renal blood flow and glomerular filtration rate. At 1 wk, CoCl2 and DMOG increased kidney expression of HIF by Western blot. In the untreated A/I kidney, VEGF, heme oxygenase-1, and GLUT1 were all modestly increased. Both ANG II blockade and CoCl2 therapy increased VEGF and GLUT1 but the cobalt markedly so. ANG II blockade decreased heme oxygenase-1 expression while CoCl2 increased it. By real-time PCR, erythropoietin and GLUT1 were only increased by CoCl2 therapy. Cell proliferation was modestly increased by ANG II blockade but markedly after cobalt therapy. Metabolic and hemodynamic abnormalities were corrected equally by ANG II blockade and HIF therapies. However, the molecular patterns differed significantly between ANG II blockade and cobalt therapy. HIF induction may prove to be protective in this model of CKD. PMID:20881034

  16. Dual Blockade of the Renin-angiotensin-aldosterone System in Type 2 Diabetic Kidney Disease.

    PubMed

    Feng, Yan-Huan; Fu, Ping

    2016-01-05

    To examine the efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system (RAAS) among patients with type 2 diabetic kidney disease. We searched the major literature repositories, including the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE, for randomized clinical trials published between January 1990 and October 2015 that compared the efficacy and safety of the use of dual blockade of the RAAS versus the use of monotherapy, without applying any language restrictions. Keywords for the searches included "diabetic nephropathy," "chronic kidney disease," "chronic renal insufficiency," "diabetes mellitus," "dual therapy," "combined therapy," "dual blockade," "renin-angiotensin system," "angiotensin-converting enzyme inhibitor," "angiotensin-receptor blocker," "aldosterone blockade," "selective aldosterone blockade," "renin inhibitor," "direct renin inhibitor," "mineralocorticoid receptor blocker," etc. The selected articles were carefully reviewed. We excluded randomized clinical trials in which the kidney damage of patients was related to diseases other than diabetes mellitus. Combination treatment with an angiotensin-converting enzyme inhibitor supplemented by an angiotensin II receptor blocking agent is expected to provide a more complete blockade of the RAAS and a better control of hypertension. However, existing literature has presented mixed results, in particular, related to patient safety. In view of this, we conducted a comprehensive literature review in order to explain the rationale for dual blockade of the RAAS, and to discuss the pros and cons. Despite the negative results of some recent large-scale studies, it may be immature to declare that the dual blockade is a failure because of the complex nature of the RAAS surrounding its diversified functions and utility. Further trials are warranted to study the combination therapy as an evidence-based practice.

  17. [Continuous epidural blockade for frostbite of the lower extremities (author's transl)].

    PubMed

    Schlarb, K

    1980-06-01

    We describe the case of a patient suffering from freezing of the lower extremities, for which continuous epidural-blockade, over a period of four days, was conducted. By this means it was possible to relieve the vessel-spasm caused by the freezing and the patient was spared bilateral upper-thigh amputation. As the lower extremities are concerned in many cases of freezing, a continuous epidural-blockade as described here, seems to be the therapy to choose.

  18. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    NASA Astrophysics Data System (ADS)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current-voltage (I d-V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d-V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  19. Simulation of the Coulomb blockade microscopy of quantum dots

    NASA Astrophysics Data System (ADS)

    Wach, E.; Szafran, B.

    2017-09-01

    We perform numerical simulation of the Coulomb blockade microscopy on single and double quantum dots (QDs) weakly coupled to the reservoirs of the two-dimensional electron gas. The model describes the screening of the Coulomb charge at the tip of the atomic force microscope by deformation of the electron gas in the QD and in the reservoirs by a self-consistent iteration of DFT equations for the coupled subsystems. We discuss the reaction of the electrons to the tip and the shape of the effective tip potential, which in general becomes short range, strongly dependent on the tip position and asymmetric with a longer tail at the side of the QD. We determine the ground state under influence of the charged probe and obtain charge stability maps of QD as functions of the tip position. We evaluate the charging lines and compare them with the ones obtained for the perturbative conditions for which the charge density is assumed unaffected by the tip.

  20. Immune Checkpoint Blockade and Hematopoietic Stem Cell Transplant.

    PubMed

    Merryman, Reid W; Armand, Philippe

    2017-02-01

    Allogeneic hematopoietic stem cell transplant (HSCT) relies primarily upon graft-versus-tumor activity for cancer eradication. Relapse remains the principal cause of treatment failure after HSCT, implying frequent immune escape, which in at least some cases, appears to be mediated by increased expression of inhibitory immune checkpoints. In an attempt to restore anti-tumor immunity, checkpoint blockade therapy (CBT) targeting PD-1 and CLTA-4 has been used in conjunction with both allogeneic and autologous HSCT. Clinical experience in this setting is limited to several small clinical trials and case series, but together they suggest that treatment with CBT can effectively amplify anti-tumor immune responses. However, intrinsic to its mechanism is also the risk that CBT in the HSCT setting may also cause significant immune toxicity. Fatal immune-related adverse events and graft-versus-host disease have been observed, but in most cases, immune side effects appear to be reversible with steroids and CBT discontinuation. As clinical investigation continues, improved understanding of immune checkpoint biology will be critical to optimize safe and efficacious treatment strategies.

  1. Therapeutic blockade of Foxp3 in experimental breast cancer models.

    PubMed

    Moreno Ayala, Mariela A; Gottardo, María Florencia; Imsen, Mercedes; Asad, Antonela S; Bal de Kier Joffé, Elisa; Casares, Noelia; Lasarte, Juan José; Seilicovich, Adriana; Candolfi, Marianela

    2017-07-29

    Regulatory T cells (Tregs) impair the clinical benefit of cancer immunotherapy. To optimize the antitumor efficacy of therapeutic dendritic cell (DC) vaccines, we aimed to inhibit Foxp3, a transcription factor required for Treg function. Mice bearing established syngeneic LM3 and 4T1 breast tumors were treated with antitumor DC vaccines and a synthetic peptide (P60) that has been shown to inhibit Foxp3. Treatment with P60 improved the therapeutic efficacy of DC vaccines in these experimental models. In addition, monotherapy with P60 inhibited tumor growth in immunocompetent as well as in immuno-compromised animals bearing established tumors. We found expression of Foxp3 in human and murine breast tumor cells. P60 inhibited IL-10 secretion in breast cancer cells that expressed Foxp3. Our results suggest that Foxp3 blockade improves the therapeutic efficacy of DC vaccines by inhibition of Tregs and through a direct antitumor effect. This strategy could prove useful to neutralize the immunosuppressive microenvironment and to boost antitumor immunity in breast cancer.

  2. Observation of the Photon-Blockade Breakdown Phase Transition

    NASA Astrophysics Data System (ADS)

    Fink, J. M.; Dombi, A.; Vukics, A.; Wallraff, A.; Domokos, P.

    2017-01-01

    Nonequilibrium phase transitions exist in damped-driven open quantum systems when the continuous tuning of an external parameter leads to a transition between two robust steady states. In second-order transitions this change is abrupt at a critical point, whereas in first-order transitions the two phases can coexist in a critical hysteresis domain. Here, we report the observation of a first-order dissipative quantum phase transition in a driven circuit quantum electrodynamics system. It takes place when the photon blockade of the driven cavity-atom system is broken by increasing the drive power. The observed experimental signature is a bimodal phase space distribution with varying weights controlled by the drive strength. Our measurements show an improved stabilization of the classical attractors up to the millisecond range when the size of the quantum system is increased from one to three artificial atoms. The formation of such robust pointer states could be used for new quantum measurement schemes or to investigate multiphoton phases of finite-size, nonlinear, open quantum systems.

  3. Primary combined androgen blockade in localized disease and its mechanism.

    PubMed

    Namiki, Mikio; Kitagawa, Yasuhide; Mizokami, Atsushi; Koh, Eitetsu

    2008-04-01

    In spite of clinical practice guidelines such as NCI-PDQ - in which primary androgen deprivation therapy (PADT) is not recommended as the primary treatment for localized prostate cancer - many patients have been treated with PADT. One of the reasons is that urologists themselves permit patients' desire because they know the effectiveness of PADT for some patients in their experiences. In this review we demonstrate basic mechanisms and the clinical efficacy of primary combined androgen blockade (PCAB) for localized or locally advanced prostate cancer. Then we discuss which patients are candidates for PCAB, and show that more than 30% of low- or intermediate-risk localized prostate cancers could be controlled in the long term with only PCAB. Short-term or intermittent PADT could not be recommended because of the possibilities of changing the character of the cancer cells by incomplete androgen ablation. We propose algorithms for the treatment of localized prostate cancer not only in low- and intermediate-risk groups but also in the high-risk group.

  4. Novel pharmacological approaches for the antagonism of neuromuscular blockade.

    PubMed

    Pic, Lisa C

    2005-02-01

    Gamma cyclodextrin and purified plasma cholinesterase are 2 novel pharmacological agents being investigated as to their suitability for antagonism of neuromuscular blockade. Both of these agents are devoid of cholinergic stimulation and the accompanying side effects because their action is independent of acetylcholinesterase inhibition. Gamma cyclodextrin antagonizes the steroidal neuromuscular blocker rocuronium via the chemical encapsulation of the molecule forming a "host-guest" complex through van der Waals and hydrophobic interactions in the plasma. Encapsulation decreases plasma drug concentrations, shifting the neuromuscular blocking drug molecules from the neuromuscular junction back to the plasma compartment resulting in a rapid recovery of the neuromuscular function. Org 25969, a modified gamma cyclodextrin, will antagonize profound neuromuscular block induced by rocuronium in approximately 2 minutes. A commercial preparation of purified human plasma cholinesterase has been shown to be effective in reversing succinylcholine or mivacurium-induced block. Administration of exogenous plasma cholinesterase also has been shown to be effective in antagonizing mivacurium-induced neuromuscular block, cocaine toxicity, and organophosphate poisoning.

  5. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators.

    PubMed

    Lörch, Niels; Nigg, Simon E; Nunnenkamp, Andreas; Tiwari, Rakesh P; Bruder, Christoph

    2017-06-16

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  6. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators

    NASA Astrophysics Data System (ADS)

    Lörch, Niels; Nigg, Simon E.; Nunnenkamp, Andreas; Tiwari, Rakesh P.; Bruder, Christoph

    2017-06-01

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  7. Tumor necrosis factor blockade and the risk of viral infection

    PubMed Central

    Kim, Seo Young; Solomon, Daniel H.

    2011-01-01

    Tumor necrosis factor (TNF)-α blockers have been widely used to treat rheumatoid arthritis and other inflammatory diseases. An increased risk of tuberculosis and opportunistic infections with TNF-α blockers has been well reported because of the primary role of TNF-α in host defense and immune response. However, little is known about the association between TNF-α blockers and viral infections. Because interferon-γ and TNF-α play critical roles in the control of viral infection, depletion of TNF by treatment with TNF-α blockade may facilitate the risk of or reactivation of viral infection. Several large observational studies have recently found an increased risk of herpes zoster in patients receiving TNF-α blockers for rheumatoid arthritis. This review draws attention to several important viral infections such as human immunodeficiency, varicella-zoster and Epstein-Barr viruses, cytomegalovirus, and human papillomavirus in patients receiving TNF-α blocking therapy, their implications in clinical practice, and possible preventative approach with vaccination. PMID:20142812

  8. CXCR4 blockade induces atherosclerosis by affecting neutrophil function.

    PubMed

    Bot, Ilze; Daissormont, Isabelle T M N; Zernecke, Alma; van Puijvelde, Gijs H M; Kramp, Birgit; de Jager, Saskia C A; Sluimer, Judith C; Manca, Marco; Hérias, Veronica; Westra, Marijke M; Bot, Martine; van Santbrink, Peter J; van Berkel, Theo J C; Su, Lishan; Skjelland, Mona; Gullestad, Lars; Kuiper, Johan; Halvorsen, Bente; Aukrust, Paul; Koenen, Rory R; Weber, Christian; Biessen, Erik A L

    2014-09-01

    The SDF-1α/CXCR4 dyad was previously shown by us and others to be instrumental in intimal hyperplasia as well as early stage atherosclerosis. We here sought to investigate its impact on clinically relevant stages of atherosclerosis in mouse and man. Immunohistochemical analysis of CXCR4 expression in human atherosclerotic lesions revealed a progressive accumulation of CXCR4(+) cells during plaque progression. To address causal involvement of CXCR4 in advanced stages of atherosclerosis we reconstituted LDLr(-/-) mice with autologous bone marrow infected with lentivirus encoding SDF-1α antagonist or CXCR4 degrakine, which effects proteasomal degradation of CXCR4. Functional CXCR4 blockade led to progressive plaque expansion with disease progression, while also promoting intraplaque haemorrhage. Moreover, CXCR4 knockdown was seen to augment endothelial adhesion of neutrophils. Concordant with this finding, inhibition of CXCR4 function increased adhesive capacity and reduced apoptosis of neutrophils and resulted in hyperactivation of circulating neutrophils. Compatible with a role of the neutrophil CXCR4 in end-stage atherosclerosis, CXCR4 expression by circulating neutrophils was lowered in patients with acute cardiovascular syndromes. In conclusion, CXCR4 contributes to later stages of plaque progression by perturbing neutrophil function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. CXCR4 blockade induces atherosclerosis by affecting neutrophil function

    PubMed Central

    Bot, Ilze; Daissormont, Isabelle T.M.N.; Zernecke, Alma; van Puijvelde, Gijs H.M.; Kramp, Birgit; de Jager, Saskia C.A.; Sluimer, Judith C.; Manca, Marco; Hérias, Veronica; Westra, Marijke M.; Bot, Martine; van Santbrink, Peter J.; van Berkel, Theo J.C.; Su, Lishan; Skjelland, Mona; Gullestad, Lars; Kuiper, Johan; Halvorsen, Bente; Aukrust, Paul; Koenen, Rory R.; Weber, Christian; Biessen, Erik A.L.

    2015-01-01

    Aims The SDF-1α/CXCR4 dyad was previously shown by us and others to be instrumental in intimal hyperplasia as well as early stage atherosclerosis. We here sought to investigate its impact on clinically relevant stages of atherosclerosis in mouse and man. Methods and results Immunohistochemical analysis of CXCR4 expression in human atherosclerotic lesions revealed a progressive accumulation of CXCR4+ cells during plaque progression. To address causal involvement of CXCR4 in advanced stages of atherosclerosis we reconstituted LDLr−/− mice with autologous bone marrow infected with lentivirus encoding SDF-1α antagonist or CXCR4 degrakine, which effects proteasomal degradation of CXCR4. Functional CXCR4 blockade led to progressive plaque expansion with disease progression, while also promoting intraplaque haemorrhage. Moreover, CXCR4 knockdown was seen to augment endothelial adhesion of neutrophils. Concordant with this finding, inhibition of CXCR4 function increased adhesive capacity and reduced apoptosis of neutrophils and resulted in hyperactivation of circulating neutrophils. Compatible with a role of the neutrophil CXCR4 in end-stage atherosclerosis, CXCR4 expression by circulating neutrophils was lowered in patients with acute cardiovascular syndromes. Conclusion In conclusion, CXCR4 contributes to later stages of plaque progression by perturbing neutrophil function. PMID:24816217

  10. Coulomb-blockade effect in nonlinear mesoscopic capacitors

    NASA Astrophysics Data System (ADS)

    Alomar, M. I.; Lim, Jong Soo; Sánchez, David

    2016-10-01

    We consider an interacting quantum dot working as a coherent source of single electrons. The dot is tunnel coupled to a reservoir and capacitively coupled to a gate terminal with an applied ac potential. At low frequencies, this is the quantum analog of the R C circuit with a purely dynamical response. We investigate the quantized dynamics as a consequence of ac pulses with large amplitude. Within a Keldysh-Green function formalism we derive the time-dependent current in the Coulomb blockade regime. Our theory thus extends previous models that considered either noninteracting electrons in nonlinear response or interacting electrons in the linear regime. We prove that the electron emission and absorption resonances undergo a splitting when the charging energy is larger than the tunnel broadening. For very large charging energies, the additional peaks collapse and the original resonances are recovered, though with a reduced amplitude. Quantization of the charge emitted by the capacitor is reduced due to Coulomb repulsion and additional plateaus arise. Additionally, we discuss the differential capacitance and resistance as a function of time. We find that to leading order in driving frequency the current can be expressed as a weighted sum of noninteracting currents shifted by the charging energy.

  11. Long term Survival with CTLA-4 blockade Using Tremelimumab

    PubMed Central

    Eroglu, Zeynep; Kim, Dae Won; Wang, Xiaoyan; Camacho, Luis H.; Chmielowski, Bartosz; Seja, Elizabeth; Villanueva, Arturo; Ruchalski, Kathleen; Glaspy, John A.; Kim, Kevin B.; Hwu, Wen-Jen; Ribas, Antoni

    2016-01-01

    Purpose One of the hallmarks of cancer immunotherapy is the long duration of responses, evident with cytokines like interleukin-2 or a variety of cancer vaccines. However, there is limited information available on very long term outcomes of patients treated with anti-CTLA-4 antibodies. Tremelimumab is an anti-CTLA-4 antibody of Ig G2 istoype initially tested in patients with advanced melanoma over 12 years ago. Methods We reviewed the outcomes of patients with advanced melanoma enrolled in four phase 1 and 2 tremelimumab trials at two sites to determine response rates and long-term survival. Results A total of 143 patients were enrolled at two institutions from 2002 to 2008. Tremelimumab administration varied between a single dose of 0.01 mg/kg and 15 mg/kg every 3 months. Median overall survival was 13 months (95% CI, 10–16.6), ranging from less than a month to 12+ years. An objective response rate of 15.6% was observed, with median duration of response of 6.5 years, range of 3 to 136+ months. The Kaplan-Meier estimated 5 year survival rate was 20% (95% CI, 13–26%), with 10 and 12.5 year survival rates of 16% (95% CI, 9–23%). Conclusions CTLA-4 blockade with tremelimumab can lead to very long duration of objective anti-tumor responses beyond 12 years. PMID:26364516

  12. Mefloquine gap junction blockade and risk of pregnancy loss.

    PubMed

    Nevin, Remington Lee

    2012-09-01

    Obstetric use of the antimalarial drug mefloquine has historically been discouraged during the first trimester and immediately before conception owing to concerns of potential fetal harm. With the rise of resistance to the antimalarial drug sulfadoxine-pyrimethamine (SP), mefloquine is now being considered as a replacement for SP for universal antenatal administration to women from malaria-endemic regions. Recent recommendations have also suggested that mefloquine may be used cautiously among pregnant travelers who cannot otherwise avoid visiting these areas. Mefloquine has been demonstrated to cause blockade of gap junction protein alpha 1 (GJA1) gap junction intercellular communication (GJIC), and recent evidence suggests that GJA1 GJIC is critical to successful embryonic implantation and early placental development. During routine use, mefloquine accumulates in organ and peripheral tissue, crosses the blood-placental barrier, and may plausibly accumulate in developing decidua and trophoblast at concentrations sufficient to interfere with GJA1 GJIC and, thus, cause deleterious effects on fetal outcomes. This conclusion is supported by epidemiological evidence that demonstrates use of the drug during early development is associated with an increased risk of miscarriage and stillbirth. Confirmatory studies are pending, but the available experimental and epidemiological evidence support renewed adherence, where feasible, to existing mefloquine package insert guidance that women avoid the drug during the periconceptional period.

  13. Coulomb Blockade Oscillations in Coupled Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Mincheol; Lee, Seongjae; Park, Kyoung Wan

    2000-03-01

    The system we consider in this work is parallel coupled single-electron transistors (SETs) at strong coupling. For weak coupling, the transport characteristics of our coupled SETs are the same as those of the single SET, with the stability diagram exhibiting usual Coulomb diamonds. When the coupling becomes sufficiently strong, however, electron-hole binding and transport become important. In contrast to the previous works carried out in the cotunneling-dominating Coulomb