Science.gov

Sample records for a-si alloy production

  1. Large-area triple-junction a-Si alloy production scaleup. Annual subcontract report, 17 March 1993--18 March 1994

    SciTech Connect

    Oswald, R.; Morris, J.

    1994-11-01

    The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact, maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.

  2. Structural and electronic studies of a-SiGe:H alloys

    SciTech Connect

    Paul, W. )

    1993-04-01

    This report describes work to produce alloys of a-Si[sub 1-x]Ge[sub x]:H of improved photoelectronic quality by plasma-enhanced chemical vapor deposition (PECVD). The goal was to discover optimum preparation conditions for the end-component, a-Ge:H, to establish whether modification of the usual practice of starting from a-Si:H preparation conditions was advisable. Such modification, found to be necessary, gave films of a-Ge:H with efficiency-mobility-lifetime products ([eta][mu][tau]) 10[sup 2] to 10[sup 3] higher than were earlier available, in homogeneous environmentally stable material. Both a-Ge:H and a-Si[sub 1-x]Ge[sub x]:H of large x were studied in detail. Alloy material was shown to have [eta][mu][tau] 10[sup 2] larger than found earlier. However, just as the [eta][mu][tau] of a-Si:H decreases when Ge is added, so also the [eta][mu][tau] of these alloys with Si addition. By contrast, the ambipolar diffusion lengths, L[sub o] which are governed by the hole mobility, vary by only a factor of two over the whole alloy series. Using the experimental finding of a small valence band offset between a-Si:H and a-Ge:H compositional fluctuations on a 10-mm scale are suggested to explain the behavior of [eta][mu][tau] and L[sub o] The implications for eventual improvement of the alloys are profound, but require direct experimental tests of the postulated compositional fluctuations.

  3. Development of high stable-efficiency, triple-junction a-Si alloy solar cells. Annual subcontract report, July 18, 1994--July 17, 1995

    SciTech Connect

    Deng, X.

    1996-02-01

    This report describes work performed by Energy Conversion Devices, Inc. (ECD) under a 3-year, cost-shared amorphous silicon (a-Si) research program to develop advanced technologies and to demonstrate stable 14%-efficient, triple-junction a-Si alloy solar cells. The technologies developed under the program will then be incorporated into ECD`s continuous roll-to-roll deposition process to further enhance ECD`s photovoltaic manufacturing technology. In ECD`s solar cell design, triple-junction a-Si alloy solar cells are deposited onto stainless-steel substrates coated with Ag/ZnO back-reflector layers. This type of cell design enabled ECD to use a continuous roll- to-roll deposition process to manufacture a-Si PV materials in high volume at low cost. Using this cell design, ECD previously achieved 13.7% initial solar cell efficiency using the following features: (1) a triple-junction, two-band-gap, spectrum-splitting solar cell design; (2) a microcrystalline silicon p-layer; (3) a band-gap-profiled a- SiGe alloy as the bottom cell i-layer; (4) a high-performance AgZnO back-reflector; and (5) a high-performance tunnel junction between component cells. ECD also applied the technology into its 2-MW/yr a- Si production line and achieved the manufacturing of 4-ft{sup 2} PV modules with 8% stable efficiency. During this program, ECD is also further advancing its existing PV technology toward the goal of 14% stable solar cells by performing the following four tasks: (1) improving the stability of the intrinsic a-Si alloy materials; (2) improving the quality of low-band-gap a-SiGe alloy; (3) improving p{sup +} window layers, and (4) developing high stable-efficiency triple-junction a-Si alloy solar cells.

  4. Microscopic origins of metastable effects in a-Si:H and deep defect characterization in a-Si,Ge:H alloys

    SciTech Connect

    Cohen, J.D. )

    1992-07-01

    This report describes works to use transient photocapacitance and photocurrent measurements to determine the deep defect distribution and processes in low-band-gap a-Si,Ge:H alloys. Samples for these studies were produced by the photochemical vapor deposition (photo-CVD) growth method and were obtained through a collaboration with researchers at the University of Delaware. This report discusses how a detailed comparison between the photocapacitance and photocurrent spectra can be used to separately examine the majority and minority carrier processes. The results are as follows: (1) The midgap defect densities in the alloy regime near 1.3 eV can be as low as 5 {times} 10{sup 16} cm{sup {minus}3} in such photo-CVD samples. (2) There exists a second defect band roughly 0.4 eV below E{sub c} of a similar magnitude to the midgap defect density that exhibits significant lattice relaxation behavior in its electron trapping dynamics. (3) The hole {mu}{tau} products determined for the lowest defect sample are roughly 5 {times} 10{sup {minus}10} cm{sup 2}/V, comparable with the highest hole {mu}{tau} products reported in sandwich geometry measurements for alloys in this composition range. (4) The hole {mu}{tau} is found to be roughly inversely proportional to the midgap defect density for the samples studied. This is consistent with the fact that the effective minority carrier lifetime for such measurements is limited by the deep state trapping time.

  5. Comprehensive research on the stability and electronic properties of a-Si:H and a-SiGe:H alloys and devices. Final subcontract report, 10 March 1991--30 August 1994

    SciTech Connect

    Dalal, V.

    1995-04-01

    This report describes work on the growth of a-Si:H and a-(Si,Ge):H materials and devices using well-controlled growth techniques. The a-Si:H materials were grown at higher temperatures (300{degrees}-375{degrees}C) using electron-cyclotron-resonance (ECR) plasma techniques with a remote H beam. These films have excellent electronic quality and show significant improvements in stability compared with glow-discharge-produced a-Si:H materials. Several problems were encountered during the fabrication of devices in these materials, and we were able to overcome them by a systematic work on buffer layers in these cells. We also studied alternative designs for improving the stability of a-Si:H cells and produced graded-gap a-Si:H cells using glow-discharge that are more stable than comparable standard, ungraded glow discharge devices. Finally, systematic work was done to produce good-quality a-(Si,Ge):H films, using triode radio frequency (RF) glow-discharge with ion bombardment during growth. Diagnostic devices were made using these films, and the properties of the material, such as Urbach energies and hole mobility-lifetime products, were measured in these devices. We found a systematic increase in the Urbach energies, and a corresponding decrease in the hole and electron {mu}{tau} products, as the Ge content of the alloys increases.

  6. Modeling of a-Si:H alloy solar cells on textured substrates

    SciTech Connect

    Zeman, M.; Berg, J.H. van den; Vosteen, L.L.A.; Willemen, J.A.; Metselaar, J.W.; Schropp, R.E.I.

    1997-07-01

    Computer modeling is used as a tool for determining current matching in hydrogenated amorphous silicon (a-Si:H) alloy tandem cells on textured substrates. The increasing complexity of a-Si:H based solar cells requires continuous extending and testing of the computer models which are used for their simulation. To take light scattering at the textured interfaces of the cell into account the authors developed a multi-rough-interface optical model GENPRO2 which was used for calculating the absorption profiles in the solar cells. The results of a sensitivity study of the parameters of this optical model such as the scattering coefficients of the reflected and transmitted light and the dependence of scattered light on the in-going and out-going angle are presented. In order to simulate multi-junction solar cell as a complete device they implemented a novel model for tunnel/recombination junction (TRJ), which combines the trap assisted tunneling and enhanced carrier transport in the high field region of the TRJ. The current matching conditions were determined both for a-Si:H and a-SiGe:H bottom cells, while the top cell was an a-Si:H cell. They investigated the influence of light scattering at the textured interfaces and of the thickness of the intrinsic layer of the bottom cell on the optimal ratio (i2/i1) between the thicknesses of the bottom (i2) and top (i1) intrinsic layers in the current-matched cell. The results show that increasing amount of scattering at the textured interfaces leads to higher efficiencies and lower ratio (i2/i1) in the current-matched cell. The use of a-SiGe:H material in the bottom cell leads to higher efficiency and 3 to 4 times lower i2/i1 ratio than in case of a-Si:H/a-Si:H cells.

  7. Light-induced degradation in a-Si alloy solar cells at intense illumination

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Guha, S.; Pawlikiewicz, A.; Wolf, D.; Yang, J.

    1991-08-01

    Light-induced degradation has been investigated in a-Si alloy p-i-n solar cell structures as a function of cell deposition temperature and light intensity. Cells are deposited at temperatures ranging between 200°C to 300°C; degradation has been carried out at intensities up to 50 times AM1.5 illumination at 35°C. The cell charcteristics have been measured under AM1.5, blue and red illuminations. The degradation is found to have a power law dependence on the product of square of generation rate and light-soaking time. Most cells show saturation in degradation under 50 times AM1.5 illumination beyond 1000 sec, which is equivalent to approximately 800 hours under AM1.5 intensity. However, somes cells showed continued degradation at the high intensity up to 6×104 sec without any saturation; the cell properties could be restored to their original values after annealing. Computer simulation studies have been carried out to analyze the results on the basis of existing theories.

  8. Structural and electronic studies of a-SiGe:H alloys. Final subcontract report, 1 January 1991--28 February 1993

    SciTech Connect

    Paul, W.

    1993-04-01

    This report describes work to produce alloys of a-Si{sub 1-x}Ge{sub x}:H of improved photoelectronic quality by plasma-enhanced chemical vapor deposition (PECVD). The goal was to discover optimum preparation conditions for the end-component, a-Ge:H, to establish whether modification of the usual practice of starting from a-Si:H preparation conditions was advisable. Such modification, found to be necessary, gave films of a-Ge:H with efficiency-mobility-lifetime products ({eta}{mu}{tau}) 10{sup 2} to 10{sup 3} higher than were earlier available, in homogeneous environmentally stable material. Both a-Ge:H and a-Si{sub 1-x}Ge{sub x}:H of large x were studied in detail. Alloy material was shown to have {eta}{mu}{tau} 10{sup 2} larger than found earlier. However, just as the {eta}{mu}{tau} of a-Si:H decreases when Ge is added, so also the {eta}{mu}{tau} of these alloys with Si addition. By contrast, the ambipolar diffusion lengths, L{sub o} which are governed by the hole mobility, vary by only a factor of two over the whole alloy series. Using the experimental finding of a small valence band offset between a-Si:H and a-Ge:H compositional fluctuations on a 10-mm scale are suggested to explain the behavior of {eta}{mu}{tau} and L{sub o} The implications for eventual improvement of the alloys are profound, but require direct experimental tests of the postulated compositional fluctuations.

  9. Microscopic origins of metastable effects in a-Si:H and deep defect characterization in a-Si,Ge:H alloys. Annual subcontract report, 1 February 1992--31 January 1993

    SciTech Connect

    Cohen, J.D.

    1993-08-01

    This report describes work to evaluate low-mobility-gap a-Si,Ge:H alloy films. Results are based on junction capacitance techniques of admittance spectroscopy, transient photocapacitance (and photocurrent), and drive-level capacitance profiling. Eight a-Si,Ge:H alloy samples grown by photo-CVD encompassed the range of optical gaps from 1.3 to 1.6 eV, and corresponding Ge fractions from about 20 to 60 at%. We employed junction capacitance techniques to determine deep defect energies and densities, Urbach band-tail energies, and {mu}{tau} products for holes. Electron microprobe analysis provided accurate Ge fractions for our samples, thus enabling us to establish clear trends in measured electronic properties vs Ge fraction. We concluded that these photo-CVD samples exhibited equal or superior properties in terms of band-tail widths, and stable defect densities compared to any reported results on a-Si,Ge:H samples grown by glow discharge. By assigning defect energy levels from analysis of transient subband-gap photocapacitance and photocurrent spectra, we found clear evidence for two distinct defect subbands, one at roughly midgap and the other in the upper half of the gap. The trapping lifetime related {mu}{tau} products for holes decreased in direct proportion to the density of mid-gap defects in these samples. This appears to be the case regardless of whether we are dealing with stable defects or defects created by light-soaking.

  10. Microscopic origins of metastable effects in a-Si:H and deep defect characterization in a-Si,Ge:H alloys. Final subcontract report, February 1, 1991--January 31, 1994

    SciTech Connect

    Cohen, J.D.

    1994-09-01

    This research supported by NREL Subcontract XG-1-10063-1 over the past three years has involved, first of all, a fairly complete characterization of a two series of a-Si{sub 1-x}Ge{sub x}:H samples: a series of 9 films grown at the University of Delaware by the photo-CVD method (for 0.29 {<=} {times} {<=} 0.62) and series of 6 films grown at U.S.S.C. by the glow discharge method (for 0.20 {<=} {times} {<=} 0.50). Both these series of samples seem to represent what is close to the {open_quotes}state-of-the-art{close_quotes} in current a-Si,Ge:H alloys. The authors detailed comparison of the properties of the glow discharge material with the photo-CVD samples show remarkable similarities rather than significant differences. In particular, measurements of these samples: (1) allowed the assignment of defect energy levels from a detailed analysis of transient sub-band-gap photocapacitance and photocurrent spectra. (2) The authors found the density of deep defects to increase exponentially with the germanium content. (3) The authors found that the trapping lifetimes related {mu}{tau} products for holes decrease in direct proportion to the density of midgap defects in these samples, at least up to Ge fractions of 50at.%. (4) The authors have also made significant progress toward identifying both the optical and thermal defect transitions in the a-Si,Ge:H alloys.

  11. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report

    SciTech Connect

    Deng, X.; Jones, S.J.; Liu, T.; Izu, M.

    1998-04-01

    This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

  12. Fabrication of Source/Drain Electrodes for a-Si:H Thin-Film Transistors Using a Single Cu Alloy Target

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, C. Y.; Nam, H. S.; Lee, J. G.; Yang, H. J.; Ho, W. J.; Jeong, J. Y.; Koo, D. H.

    2011-11-01

    A Cu alloy/Cu alloy oxide bilayer structure was formed on an n +-a-Si:H substrate using a single Cu alloy target. It was employed for the source/drain electrodes in the fabrication of a-Si:H thin-film transistors with good electrical performance, high thermal stability, and good adhesion. Transmission electron microscopy and electron energy-loss spectroscopy analyses revealed that the initial sputtering of the Cu alloy in O2/Ar allowed for preferential oxidation of Si and the formation of a SiO x /Cu-supersaturated a-Si:H bilayer at the copper oxide-a-Si:H interface. This bilayer turned into an SiO x /Cu3Si bilayer after annealing at 300°C. It provided a stable contact structure with low contact resistance.

  13. Microscopic origins of metastable effects in a-Si:H and deep defect characterization in a-Si,Ge:H alloys. Annual subcontract report, 1 February 1991--31 January 1992

    SciTech Connect

    Cohen, J.D.

    1992-07-01

    This report describes works to use transient photocapacitance and photocurrent measurements to determine the deep defect distribution and processes in low-band-gap a-Si,Ge:H alloys. Samples for these studies were produced by the photochemical vapor deposition (photo-CVD) growth method and were obtained through a collaboration with researchers at the University of Delaware. This report discusses how a detailed comparison between the photocapacitance and photocurrent spectra can be used to separately examine the majority and minority carrier processes. The results are as follows: (1) The midgap defect densities in the alloy regime near 1.3 eV can be as low as 5 {times} 10{sup 16} cm{sup {minus}3} in such photo-CVD samples. (2) There exists a second defect band roughly 0.4 eV below E{sub c} of a similar magnitude to the midgap defect density that exhibits significant lattice relaxation behavior in its electron trapping dynamics. (3) The hole {mu}{tau} products determined for the lowest defect sample are roughly 5 {times} 10{sup {minus}10} cm{sup 2}/V, comparable with the highest hole {mu}{tau} products reported in sandwich geometry measurements for alloys in this composition range. (4) The hole {mu}{tau} is found to be roughly inversely proportional to the midgap defect density for the samples studied. This is consistent with the fact that the effective minority carrier lifetime for such measurements is limited by the deep state trapping time.

  14. Research on the stability, electronic properties, and structure of a-Si:H and its alloys

    SciTech Connect

    Street, R.A.; Jackson, W.B.; Johnson, N.; Nebel, C.; Hack, M.; Santos, P.; Thompson, R.; Tsai, C.C.; Walker, J. )

    1992-12-01

    Objective is to obtain a comprehensive understanding of structure and electronic properties of a-Si:H as they apply to solar cells. First observations were of light enhancement and field suppression of H diffusion in a-Si:H. Theoretical studies were made of hydrogen density of states distribution and its relation to defect metastability. Reduced density of light induced defect is observed in a-Si:H deposited in a remote hydrogen plasma reactor at 400 C. Kinetics of metastable defect creation using forward bias in a p-i-n diode to induce defects were studied and compared to light-induced defect creation in the same devices. Studies were made of transport at high electric field and low temperature. Detailed studies were made of kinetics of dopant metastability in n-type and p-type a-Si:H.

  15. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-11-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  16. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  17. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOEpatents

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  18. Self-consistent analysis of mobility-lifetime products and subgap absorption on different PECVD a-Si:H films

    SciTech Connect

    Jiao, L.; Semoushikina, S.; Lee, Y.; Wronski, C.R.

    1997-07-01

    The photoconductivity and subband gap absorption measurements over a wide range of generation rate(G) have been carried out on diluted and undiluted a-Si:H. It is found that in these high quality films there are significant differences in the functional dependence of mobility-lifetime ({micro}{tau}) products on G. In addition to the different values of subgap absorption ({alpha}) there are also distinct differences in the dependence of {alpha} on photon energy (E) as well as G. It is difficult to self consistently analyze the results on the undiluted film with the previously used three gaussian distribution, particularly at high generation rates. Self consistent analysis is obtained when the (+/0) transitions of negative charged defects and the (0/{minus}) transitions of positive charged defects are introduced respectively closer to the valence and conduction bands. This new gap state distribution is a better representation for the defect pool model and potential fluctuation model.

  19. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999

    SciTech Connect

    Izu, M.

    1999-11-09

    This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

  20. Influence of Filament and Substrate Temperatures on Structural and Optoelectronic Properties of Narrow Gap a-SiGe:H Alloys Deposited by Hot-Wire CVD: Preprint

    SciTech Connect

    Xu, Y.; Nelson, B. P.; Gedvilas, L. M.; Reedy, R. C.; Williamson, D. L.

    2003-04-01

    We have found that narrow-bandgap--1.25< Tauc Gap< 1.50 eV--amorphous silicon germanium (a-SiGe:H) alloys grown by hot-wire chemical vapor deposition (CVD) can be improved by lowering both substrate and filament temperatures. We systematically studied films deposited using a one-tungsten filament, decreasing filament temperature (Tf) from our standard temperature of 2150ý down to 1750ýC, and fixing all other deposition parameters. By decreasing Tf at the fixed substrate temperature (Ts) of 180ýC, the Ge-H bonding increases, whereas the Si-H2 bonding is eliminated. Films with higher Ge-H bonding and less Si-H2 have improved photoconductivity. For the series of films deposited using the same germane gas fraction at 35%, the energy where the optical absorption is 1x104 (E04) drops from 1.54 to 1.41 eV with decreasing Tf. This is mainly due to the combination of an increasing Ge solid fraction (x) in the film, and an improved homogeneity and compactness due to significant reduction of microvoids, which was confirmed by small-angle X-ray scattering (SAXS). We also studied a series of films grown by decreasing the Ts from our previous standard temperature of 350ýC down to 125ýC, fixing all other deposition parameters including Tf at 1800ýC. By decreasing Ts, both the total hydrogen content and the Ge-H bonding increased, but the Si-H2 bonding is not measurable in the Ts range of 180ý-300ýC. The E04 increases from 1.40 to 1.51 eV as Ts decreased from 350ý to 125ýC, mainly due to the increased total hydrogen content. At the same time, the photo-to-dark conductivity ratio increases almost three orders of magnitude over this range of Ts.

  1. Research on the stability, electronic properties, and structure of a-Si:H and its alloys. Annual subcontract report, 1 June 1991--31 May 1992

    SciTech Connect

    Street, R.A.; Jackson, W.B.; Johnson, N.; Nebel, C.; Hack, M.; Santos, P.; Thompson, R.; Tsai, C.C.; Walker, J.

    1992-12-01

    Objective is to obtain a comprehensive understanding of structure and electronic properties of a-Si:H as they apply to solar cells. First observations were of light enhancement and field suppression of H diffusion in a-Si:H. Theoretical studies were made of hydrogen density of states distribution and its relation to defect metastability. Reduced density of light induced defect is observed in a-Si:H deposited in a remote hydrogen plasma reactor at 400 C. Kinetics of metastable defect creation using forward bias in a p-i-n diode to induce defects were studied and compared to light-induced defect creation in the same devices. Studies were made of transport at high electric field and low temperature. Detailed studies were made of kinetics of dopant metastability in n-type and p-type a-Si:H.

  2. Processing and Applications of Depleted Uranium Alloy Products

    DTIC Science & Technology

    1976-09-01

    Content for Uranium Alloys in 10ŗ M KCL. . 33 9 Plane Strain Threshold for Stress Corrosion Crack Propagation for U-0.75 Ti ....... 33 10 Cold- Wall Steel...impurity elements are copper, iron , and nickel primarily from container rust during handling, and such inadvertently included components such as...chemistry shown in Table 2. The major impurity elements in this product are associated with the purity of the UF4 and magnesium, and primarily are iron

  3. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    PubMed

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer.

  4. Study of gap states in a-Si:H alloys by measurements of photoconductivity and spectral response of MIS solar cells

    SciTech Connect

    Vanier, P.E.; Delahoy, A.E.; Griffith, R.W.

    1981-01-01

    A picture of the density of gap states n(E) in glow discharge a-Si:H is constructed using four different kinds of transport measurement on a large number of samples. The minimum in n(E) lies 0.4 eV below E/sub c/, rather than in the middle of the gap. A distribution of fast recombination centers lies at mid-gap, and two sets of hole traps lie between mid-gap and the valence band. Modifications in n(E) have been studied by the effects of selected impurities on the conversion efficiency and spectral response of MIS and p-i-n solar cells.

  5. Post-annealing effects on the electrochemical performance of a Si/TiSi2 heteronanostructured anode material prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seon; Lee, Taeg-Woo; Park, Jung-Bae; Lim, Sung-Hwan; Lee, Sung-Man

    2017-03-01

    A change in the microstructure of Ti-Si alloys synthesized by high-energy mechanical milling through post-annealing significantly enhances their electrochemical performances as anode materials for lithium-ion batteries (LIBs). The microstructures of ball-milled and post-annealed powders are investigated using high-resolution transmission electron microscopy (HR-TEM). The Si phase is uniformly distributed on the silicide (TiSi2) matrix. The individual Si domains of the mechanical alloying (MA) sample consist of amorphous and crystalline regions with a diffuse interface between the two phases. When MA powder is annealed at 600 °C, the Si phase has a well-developed nanocrystalline microstructure: a multi-grain structure with random orientation of nanometric crystal domains. Annealing at 600 °C causes a significant improvement in electrochemical performance parameters like cycling stability and rate capability. However, when annealed at 800 °C, the electrochemical performances deteriorate due to an increase in the size of Si domains.

  6. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  7. The effects of a SiO2 coating on the corrosion parameters cpTi and Ti-6Al-7Nb alloy

    PubMed Central

    Basiaga, Marcin; Walke, Witold; Paszenda, Zbigniew; Karasiński, Paweł; Szewczenko, Janusz

    2014-01-01

    The aim of this paper was to evaluate the usefulness of the sol-gel method application, to modificate the surface of the Ti6Al7Nb alloy and the cpTi titanium (Grade 4) with SiO2 oxide, applied on the vascular implants to improve their hemocompatibility. Mechanical treatment was followed by film deposition on surface of the titanium samples. An appropriate selection of the process parameters was verified in the studies of corrosion, using potentiodynamic and impedance method. A test was conducted in the solution simulating blood vessels environment, in simulated body fluid at t = 37.0 ± 1 °C and pH = 7.0 ± 0.2. Results showed varied electrochemical properties of the SiO2 film, depending on its deposition parameters. Correlations between corrosion resistance and layer adhesion to the substrate were observed, depending on annealing temperature. PMID:25482412

  8. The effects of a SiO2 coating on the corrosion parameters cpTi and Ti-6Al-7Nb alloy.

    PubMed

    Basiaga, Marcin; Walke, Witold; Paszenda, Zbigniew; Karasiński, Paweł; Szewczenko, Janusz

    2014-01-01

    The aim of this paper was to evaluate the usefulness of the sol-gel method application, to modificate the surface of the Ti6Al7Nb alloy and the cpTi titanium (Grade 4) with SiO2 oxide, applied on the vascular implants to improve their hemocompatibility. Mechanical treatment was followed by film deposition on surface of the titanium samples. An appropriate selection of the process parameters was verified in the studies of corrosion, using potentiodynamic and impedance method. A test was conducted in the solution simulating blood vessels environment, in simulated body fluid at t = 37.0 ± 1 °C and pH = 7.0 ± 0.2. Results showed varied electrochemical properties of the SiO2 film, depending on its deposition parameters. Correlations between corrosion resistance and layer adhesion to the substrate were observed, depending on annealing temperature.

  9. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  10. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  11. Atomic scale modelling of hexagonal structured metallic fission product alloys.

    PubMed

    Middleburgh, S C; King, D M; Lumpkin, G R

    2015-04-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)-making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance.

  12. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  13. Production of FR Tubing from Advanced ODS Alloys

    SciTech Connect

    Maloy, Stuart Andrew; Lavender, Curt; Omberg, Ron; Lewandowski, John

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  14. Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry

    2003-01-01

    The objective of this viewgraph representation is to evaluate the effects of thermal exposure on the mechanical properties of both production mature and developmental Al-Li alloys. The researchers find for these alloys, the data clearly shows that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a signficant deficit in mechanical properties at higher exposure temperatures in all cases. Topics considered include: Al-Li alloys composition, key characteristics of Al-Li alloys and thermal exposure matrix.

  15. Welding of NOREM iron-base hardfacing alloy wire products: Procedures for gas tungsten arc welding

    SciTech Connect

    Phillps, M.K.; Findlan, S.J. . Nondestructive Evaluation Center)

    1992-09-01

    New wire products have been successfully fabricated and procedures developed for automatic gas tungsten arc welding of wear-resistant NOREM iron-base alloys. Research demonstrated that sound multilayer welds on carbon and stainless steel substrates can be obtained without the use of preheating. These developments point to the advantages of NOREM alloys for field applications, such as valve refurbishing.

  16. Selecting copper and copper alloys; Part 2: Cast products

    SciTech Connect

    Peters, D.T. ); Kundig, K.J.A. , Randolph, NJ )

    1994-06-01

    This article provides an introduction to the properties, characteristics, and applications of cast coppers and copper alloys. An overview of alloy families is presented since it is impractical to describe all 130 standard grades in detail. However, additional technical information is readily available from the Copper Development Assn. Inc. (CDA) and the resources listed in the references and bibliography at the end of the article. Copper casting alloys are primarily selected for either their corrosion resistance, or their combination of corrosion resistance and mechanical properties. The materials also feature good castability, high machinability, and, compared with other corrosion-resistant alloys, reasonable cost. Additional benefits include biofouling resistance--important in marine applications--and a spectrum of attractive colors. Many of the alloys also have favorable tribological properties, which explains their widespread use for sleeve bearings, wear plates, gears, and other wear-prone components.

  17. Ni-Si Alloys for the S-I Reactor-Hydrogen Production Process Interface

    SciTech Connect

    Joseph W. Newkirk; Richard K. Brow

    2010-01-21

    The overall goal of this project was to develop Ni-Si alloys for use in vessels to contain hot, pressurized sulfuric acid. The application was to be in the decomposition loop of the thermochemical cycle for production of hydrogen.

  18. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  19. Sintered rare earth-iron Laves phase magnetostrictive alloy product and preparation thereof

    DOEpatents

    Malekzadeh, Manoochehr; Pickus, Milton R.

    1979-01-01

    A sintered rare earth-iron Laves phase magnetostrictive alloy product characterized by a grain oriented morphology. The grain oriented morphology is obtained by magnetically aligning powder particles of the magnetostrictive alloy prior to sintering. Specifically disclosed are grain oriented sintered compacts of Tb.sub.x Dy.sub.1-x Fe.sub.2 and their method of preparation. The present sintered products have enhanced magnetostrictive properties.

  20. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-04-01

    V-4Cr-4-Ti alloy has been recently selected for use in the manufacture of a portion of the DIII-D Radiative Divertor modification, as part of an overall DIII-D vanadium alloy deployment effort developed by General Atomics (GA) in conjunction with the Argonne and Oak Ridge National Laboratories (ANL or ORNL). The goal of this work is to produce a production-scale heat of the alloy and fabricate it into product forms for the manufacture of a portion of the Radiative Divertor (RD) for the DIII-D tokamak, to develop the fabrications technology for manufacture of the vanadium alloy radiative Divertor components, and to determine the effects of typical tokamak environments in the behavior of the vanadium alloy. The production of a {approx}1300-kg heat of V-4Cr-4Ti alloy is currently in progress at Teledyne Wah Chang of Albany, oregon (TWCA) to provide sufficient material for applicable product forms. Two unalloyed vanadium ingots for the alloy have already been produced by electron beam melting of raw processes vanadium. Chemical compositions of one ingot and a portion of the second were acceptable, and Charpy V-Notch (CVN) impact test performed on processed ingot samples indicated ductile behavior. Material from these ingots are currently being blended with chromium and titanium additions, and will be vacuum-arc remelted into a V-4Cr-4Ti alloy ingot and converted into product forms suitable for components of the DIII-D RD structure. Several joining methods selected for specific applications in fabrication of the RD components are being investigated, and preliminary trials have been successful in the joining of V-alloy to itself by both resistance and inertial welding processes and to Inconel 625 by inertial welding.

  1. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-04-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.

  2. [Using Raman spectrum analysis to research corrosive productions occurring in alloy of ancient bronze wares].

    PubMed

    Jia, La-jiang; Jin, Pu-jun

    2015-01-01

    The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually.

  3. Laser forming of structures of zinc oxide on a surface of products from copper alloys

    NASA Astrophysics Data System (ADS)

    Abramov, D. V.; Gorudko, T. N.; Koblov, A. N.; Nogtev, D. S.; Novikova, O. A.

    Laser formation of a protective zinc oxide layer on a surface of products from copper alloys is present. This layer is formed with using of carbon nanotubes. Destructions of the basic material are avoided or minimized at laser nanostructuring of product surfaces. Such laser processing can be made repeatedly. Offered covering have self-clearing and water-repellent properties.

  4. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  5. Development of alloy 718 tubular product for nuclear reactor internals

    SciTech Connect

    1981-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides mixing and flow direction of the core outlet flow. Alloy 718 tubes are the major components used in the UIS to provide this flow direction. The UIS is located directly above the reactor core and is exposed to a severe environment. This environment consists of high temperature sodium, alternating temperatures induced by mixing high temperature core assembly outlet flow with cooler core assembly outlet flow and rapid changes in temperature of the core outlet flow. The paper presents the UIS configuration, functions and environmental conditions that led to the selection of Alloy 718 as the material used to protect the basic UIS structure and to provide flow direction. The paper describes the tube fabrication process, the development of a finish sanding procedure and the results of high temperature thermal cycle testing.

  6. Production of Ni100-x-yMnxGay magnetic shape memory alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hatchard, T. D.; Thorne, J. S.; Farrell, S. P.; Dunlap, R. A.

    2008-11-01

    Powdered samples of a variety of compositions of the off-stoichiometric magnetic shape memory alloy Ni2MnGa have been prepared by mechanical alloying from elemental precursors. As-milled powders are highly disordered and show very weak ferromagnetic order. Annealing produces a well-ordered L21 Heusler phase with high saturation magnetization. Annealing results in a consistent loss of Ga of about 1-4 at.% (of total sample composition). Structural and magnetic properties of a range of compositions have been measured and are reported in the present work. A magnetically oriented metal-polymer composite has been prepared by mixing the powdered sample in epoxy and curing under an externally applied magnetic field. The magnetic anisotropy energy of the composite sample has been measured and found to be about 20% of the value expected for a single crystal of similar composition. Possibilities for increasing the magnetic anisotropy of metal-polymer composites are discussed. Results are discussed in terms of the effects of structural and chemical order on the resulting magnetic properties in the context of a model based on indirect exchange interactions.

  7. Production Of Tandem Amorphous Silicon Alloy Solar Cells In A Continuous Roll-To-Roll Process

    NASA Astrophysics Data System (ADS)

    Izu, Masat; Ovshinsky, Stanford R.

    1983-09-01

    A roll-to-roll plasma deposition machine for depositing multi-layered amorphous alloys has been developed. The plasma deposition machine (approximately 35 ft. long) has multiple deposition areas and processes 16-inch wide stainless steel substrate continuously. Amorphous photovoltaic thin films (less than 1pm) having a six layered structure (PINPIN) are deposited on a roll of 16-inch wide 1000 ft. long stainless steel substrate, continu-ously, in a single pass. Mass production of low-cost tandem amorphous solar cells utilizing roll-to-roll processes is now possible. A commercial plant utilizing this plasma deposition machine for manufacturing tandem amorphous silicon alloy solar cells is now in operation. At Energy Conversion Devices, Inc. (ECD), one of the major tasks of the photovoltaic group has been the scale-up of the plasma deposition process for the production of amorphous silicon alloy solar cells. Our object has been to develop the most cost effective way of producing amorphous silicon alloy solar cells having the highest efficiency. The amorphous silicon alloy solar cell which we produce has the following layer structure: 1. Thin steel substrate. 2. Multi-layered photovoltaic amorphous silicon alloy layers (approximately 1pm thick; tandem cells have six layers). 3. ITO. 4. Grid pattern. 5. Encapsulant. The deposition of the amorphous layer is technologically the key process. It was clear to us from the beginning of this scale-up program that amorphous silicon alloy solar cells produced in wide width, continuous roll-to-roll production process would be ultimate lowest cost solar cells according to the following reasons. First of all, the material cost of our solar cells is low because: (1) the total thickness of active material is less than 1pm, and the material usage is very small; (2) silicon, fluorine, hydrogen, and other materials used in the device are abundant and low cost; (3) thin, low-cost substrate is used; and (4) product yield is high. In

  8. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  9. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  10. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  11. oxide and FeNi alloy: product dependence on the reduction ability

    NASA Astrophysics Data System (ADS)

    Cao, Jungang; Qin, Yuyang; Li, Minglun; Zhao, Shuyuan; Li, Jianjun

    2014-12-01

    Based on the sol-gel combustion method, stoichiometric Fe3+, Mn2+, Ni2+ ions and citric acid were chosen as the initial reactants for the preparation of magnetic particles. Due to the different reduction ability of metal ions, completely different magnetic products (MnFe2O4 oxide and FeNi alloy) were obtained by heating the flakes at 600 °C under nitrogen atmosphere. MnFe2O4 particles exhibit superparamagnetic behavior at room temperature, and martensitic phase transformation is observed magnetically at 125 K for FeNi alloy particles.

  12. Protection of temperature sensitive biomedical products using molecular alloys as phase change material.

    PubMed

    Mondieig, Denise; Rajabalee, Fazil; Laprie, Alain; Oonk, Harry A J; Calvet, Thereza; Cuevas-Diarte, Miguel Angel

    2003-04-01

    In this paper we present an example of the application of molecular alloys for thermal protection of biomedical products during transport or storage. Particularly, thermal protection of blood elements have been considered at different temperatures. All steps from basic research to marketing have been addressed. The high latent heat of fusion of the components allows us to propose molecular alloys as materials for thermal energy storage and also for thermal protection over a large range of temperatures, which can be used in many industrial sectors.

  13. Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry

    2002-01-01

    Aluminum-Lithium (AL-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional aluminum alloys. For example, the application of an Al-Li alloy to the space shuttle external cryogenic fuel tank contributed to the weight savings that enabled successful deployment of International Space Station components. The composition and heat treatment of this alloy were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. As most aerospace structural hardware is weight sensitive, a reusable cryotank will be designed to the limits of the materials mechanical properties. Therefore, this effort was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of one relatively production mature alloy and two developmental alloys C458 and L277. Tensile and fracture toughness behavior was evaluated after exposure to temperatures as high as 3oooF for up to IO00 hrs. Microstructural changes were also evaluated to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Characterizing the effect of thermal exposure on the properties of Al-Li alloys is important to defining a service limiting temperature, exposure time, and end-of-life properties.

  14. Production of Magnesium and Aluminum-Magnesium Alloys from Recycled Secondary Aluminum Scrap Melts

    NASA Astrophysics Data System (ADS)

    Gesing, Adam J.; Das, Subodh K.; Loutfy, Raouf O.

    2016-02-01

    An experimental proof of concept was demonstrated for a patent-pending and trademark-pending RE12™ process for extracting a desired amount of Mg from recycled scrap secondary Al melts. Mg was extracted by electrorefining, producing a Mg product suitable as a Mg alloying hardener additive to primary-grade Al alloys. This efficient electrorefining process operates at high current efficiency, high Mg recovery and low energy consumption. The Mg electrorefining product can meet all the impurity specifications with subsequent melt treatment for removing alkali contaminants. All technical results obtained in the RE12™ project indicate that the electrorefining process for extraction of Mg from Al melt is technically feasible. A techno-economic analysis indicates high potential profitability for applications in Al foundry alloys as well as beverage—can and automotive—sheet alloys. The combination of technical feasibility and potential market profitability completes a successful proof of concept. This economical, environmentally-friendly and chlorine-free RE12™ process could be disruptive and transformational for the Mg production industry by enabling the recycling of 30,000 tonnes of primary-quality Mg annually.

  15. Examination of Corrosion Products and the Alloy Surface After Crevice Corrosion of a Ni-Cr-Mo- Alloy

    SciTech Connect

    X. Shan; J.H. Payer

    2006-06-09

    The objective of this study is to investigate the composition of corrosion products and the metal surface within a crevice after localized corrosion. The analysis provides insight into the propagation, stifling and arrest processes for crevice corrosion and is part of a program to analyze the evolution of localized corrosion damage over long periods of time, i.e. 10,000 years and longer. The approach is to force the initiation of crevice corrosion by applying anodic polarization to a multiple crevice assembly (MCA). Results are reported here for alloy C-22, a Ni-Cr-Mo alloy, exposed to a high temperature, concentrated chloride solution. Controlled crevice corrosion tests were performed on C-22 under highly aggressive, accelerated condition, i.e. 4M NaCl, 100 C and anodic polarization to -0.15V-SCE. The crevice contacts were by either a polymer tape (PTFE) compressed by a ceramic former or by a polymer (PTFE) crevice former. Figure 1 shows the polarization current during a crevice corrosion test. After an incubation period, several initiation-stifle-arrest events were indicated. The low current at the end of the test indicated that the metal surface had repassivated.

  16. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    SciTech Connect

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  17. Welding of NOREM iron-base hardfacing alloy wire products: Procedures for gas tungsten arc welding. Interim report

    SciTech Connect

    Phillps, M.K.; Findlan, S.J.

    1992-09-01

    New wire products have been successfully fabricated and procedures developed for automatic gas tungsten arc welding of wear-resistant NOREM iron-base alloys. Research demonstrated that sound multilayer welds on carbon and stainless steel substrates can be obtained without the use of preheating. These developments point to the advantages of NOREM alloys for field applications, such as valve refurbishing.

  18. Effect of product form upon fatigue-crack growth behavior in Alloy 718: additional results

    SciTech Connect

    James, L A

    1980-08-01

    A previous study had characterized the fatigue-crack growth behavior of four wrought product forms (sheet, plate, bar and forging) from a single heat of Alloy 718 and concluded that there were no consistent trends in the crack growth rate results that could be attributed to product form variability. The present study adds one additional product form (gas-tungsten-arc weldments) from the same heat, and compares the behavior to that exhibited by the wrought product forms. Two different precipitation heat-treatments were employed at each of five test temperatures (24, 316, 427, 538, and 649{sup 0}C).

  19. The effect of product form upon fatigue-crack growth behavior in Alloy 718: Additional results

    SciTech Connect

    James, L.A.

    1980-08-01

    A previous study had characterized the fatigue-crack growth behavior of four wrought product forms (sheet, plate, bar and forging) from a single heat of Alloy 718 and concluded that there were no consistent trends in the crack growth rate results that could be attributed to product form variability. The present study adds one additional product form (gas-tungsten-arc weldments) from the same heat, and compares the behavior to that exhibited by the wrought product forms. Two different precipitation heat-treatments were employed at each of five test temperatures. 11 refs., 5 figs., 3 tabs.

  20. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    SciTech Connect

    Gelles, D.S.

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  1. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    PubMed

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools.

  2. Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes

    NASA Astrophysics Data System (ADS)

    Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi

    2016-06-01

    Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.

  3. The huastec region: a second locus for the production of bronze alloys in ancient mesoamerica.

    PubMed

    Hosler, D; Stresser-Pean, G

    1992-08-28

    Chemical analyses of 51 metal artifacts, one ingot, and two pieces of intermediate processed material from two Late Post Classic archeological sites in the Huastec area of Eastern Mesoamerica point to a second production locus for copper-arsenic-tin alloys, copper-arsenic-tin artifacts, and probably copper-tin and copper-arsenic bronze artifacts. Earlier evidence had indicated that these bronze alloys were produced exclusively in West Mexico. West Mexico was the region where metallurgy first developed in Mesoamerica, although major elements of that technology had been introduced from the metallurgies of Central and South America. The bronze working component of Huastec metallurgy was transmitted from the metalworking regions of West Mexico, most likely through market systems that distributed Aztec goods.

  4. IMPROVED PRODUCTION OF POWDER METALLURGY ITEMS.

    DTIC Science & Technology

    POWDER METALLURGY, *POWDER ALLOYS , MATERIAL FORMING, PRODUCTION, NICKEL ALLOYS , CHROMIUM ALLOYS , COBALT ALLOYS , SINTERING, FORGING, PARTICLE SIZE...HIGH TEMPERATURE, SCIENTIFIC RESEARCH, HOT WORKING, HEAT TREATMENT, MICROSTRUCTURE, HARDNESS, MOLYBDENUM ALLOYS , TITANIUM ALLOYS , ZIRCONIUM ALLOYS , CARBON ALLOYS .

  5. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells.

    PubMed

    Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials.

  6. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    NASA Astrophysics Data System (ADS)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2017-04-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  7. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    NASA Astrophysics Data System (ADS)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2016-12-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  8. Production of Fe from Fe2O3 using a dry Mechanical Alloying Process

    SciTech Connect

    Waanders, F.B.; Mulaba-Bafubiandi, A.F.

    2005-04-26

    Mechanical alloying has been, and is still being employed extensively to synthesize a variety of alloy phases. The primary interest is to produce materials for scientific research and technological applications for magnetic recording media and permanent magnetic field devices. In the present investigation however the aim was not to produce a special alloy phases but to prove the viability of the production of iron from naturally occurring hematite, using mechanical alloying. Discard fines from the biggest hematite producer, Kumba Resources, Sishen, South Africa, were obtained and mixed with aluminum powder in the ratio of 25 at.% Al, balance hematite. About 50 g of the hematite-Al mixture, to be mechanically milled, was dry milled in a planetary ball milling equipment. The milling times varied between 30 min. and 30 hours and samples for Moessbauer spectroscopy, SEM analyses and Malvern sizing were obtained for each milling interval. Milling of the fine hematite with the much coarser Al resulted in a mixture with a particle size distribution of d0.5 = 54{mu}m to be extracted from the mill after 30 min. The Moessbauer spectra yielded 93% Fe2O3 and a 7% intermetallic Fe-Al component for this milling period. A final particle size of d0.5 = 20{mu}m for the milled product was obtained after milling for up to 30 h. However, within an hour all the hematite was completely converted to iron ({approx_equal} 86%) and two intermetallic Fe-Al compounds of combined intensity {approx_equal} 14%. The intensity ratio of the two intermetallic Fe-Al alloys that were observed as two doublets, changed after 3 h milling time and the averaged Moessbauer parameters for the two doublets are reported as: D1 = ({delta} = 0.50 {+-} 0.03 mm.s-1 and {delta} = 0.24 {+-} 0.03 mm.s-1) and D2 = ({delta} = 2.07 {+-} 0.03 mm.s-1 and {delta} = 0.98 {+-} 0.03 mm.s-1) respectively.

  9. Continuous roll-to-roll serpentine deposition for high throughput a-Si PV manufacturing

    SciTech Connect

    Izu, M.; Ovshinsky, H.C.; Deng, X.; Krisko, A.J.; Narasimhan, K.L.; Crucet, R.; Laarman, T.; Myatt, A.; Ovshinsky, S.R.

    1994-12-31

    In order to further improve the economies of scale which are inherent in ECD`s continuous roll-to-roll amorphous silicon alloy solar cell manufacturing process, the authors have developed a concept for a serpentine web plasma CVD deposition process to maximize throughput while keeping the size of the deposition chambers small. When this technique is incorporated into a continuous roll-to-roll PV manufacturing process, it will maximize the throughput for a high volume production plant, reduce the machine cost, improve gas utilization, reduce power consumption, and improve the solar cell stability. To demonstrate the serpentine web deposition concept, the authors have constructed a single loop serpentine deposition chamber to deposit a-Si for n-i-p structure solar cells. During the initial process of optimization, they have produced single-junction a-Si solar cells with 8.6% efficiency, and triple-junction a-Si solar cells with a 9.5% initial efficiency, where the top cell intrinsic layer was deposited in the serpentine deposition chamber.

  10. Production of Dense Compact Billet From Ti-Alloy Powder Using Equal Channel Angular Extrusion

    DTIC Science & Technology

    2007-04-06

    dry lubricant 2 175 RT 95.3 dry lubricant 3 262 RT 95.6 dry lubricant 4 21 100 95.4 dry lubricant 5 43 100 96 dry lubricant 6 175 100 96.2 dry...175 98.1 371 3 262 98.2 426 4 350 98.3 412 ECAE compaction with Al tubes 5 350 97.4 415 6 393 97.8 419 7 436 97.6 438 8* 480 98.6 431 ECAE...PRODUCTION OF DENSE COMPACT BILLET FROM Ti-ALLOY POWDER USING EQUAL CHANNEL ANGULAR EXTRUSION Final Report 4 /06/2007

  11. Effect of the surface state of the Ti-Ni alloy products on the shape memory effect parameters

    NASA Astrophysics Data System (ADS)

    Prokoshkin, S. D.; Ryklina, E. P.; Chernavina, A. A.; Abramov, V. Ya.; Krestnikov, N. S.

    2009-12-01

    The depth profiles of the structure, composition, and properties of the oxide layer that forms on the surface of Ti-Ni alloy products during postdeformation annealing (PDA) are studied. These parameters depend substantially on the holding temperature and time during PDA. The application of low-temperature thermomechanical treatment improves the state of surface as compared to quenching due to a decrease in the oxide-layer depth by more than an order of magnitude. The state of the surface of Ti-Ni alloy products significantly affects the characteristic martensite transformation temperatures and the shape memory effect parameters. This effect is more pronounced as the sample thickness (diameter) decreases. It is impossible to predict this effect on the entire set of the functional properties of the alloy products because of its ambiguity. Therefore, the oxide layer should be removed by etching to obtain reliable and reproducible results.

  12. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  13. MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS

    SciTech Connect

    Fox, K.

    2008-02-20

    The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

  14. Evaluation of particulate matter emissions from manganese alloy production using life-cycle assessment.

    PubMed

    Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen

    2017-01-01

    Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain.

  15. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.

    PubMed

    Siwek, Hanna; Lukaszewski, Mariusz; Czerwiński, Andrzej

    2008-07-07

    CO(2) reduction and CO adsorption on noble metals (Pt, Rh, Pd) and their alloys (Pt-Rh, Pd-Pt, Pd-Rh, Pd-Pt-Rh) prepared as thin rough deposits have been studied by chronoamperometry (CA), cyclic voltammetry (CV) and the electrochemical quartz crystal microbalance (EQCM). The influence of alloy surface composition on the values of surface coverage, eps (electron per site) and potential of the oxidation of CO(2) reduction and CO adsorption products is shown. The oxidation of the adsorbate on Pt-Rh alloys proceeds more easily (at lower potentials) than on pure metals. On the other hand, in the case of Pd-Pt and Pd-Rh alloys the adsorbate oxidation is more difficult and requires higher potentials than on Pt or Rh. The analysis of the EQCM signal is presented for the case of adsorption and oxidation of carbon oxide adsorption products on the electrodes studied. The comparison of adsorption parameters and the EQCM response obtained for platinum group metals and alloys leads to the conclusion that reduced CO(2) cannot be totally identified with adsorbed CO.

  16. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    SciTech Connect

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  17. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    SciTech Connect

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top size

  18. Fission Product Release from Molten U/Al Alloy Fuel: A Vapor Transpiration Model

    SciTech Connect

    Whitkop, P.G.

    2001-06-26

    This report describes the application of a vapor transportation model to fission product release data obtained for uranium/aluminum alloy fuel during early Oak Ridge fuel melt experiments. The Oak Ridge data validates the vapor transpiration model and suggests that iodine and cesium are released from the molten fuel surface in elemental form while tellurium and ruthenium are released as oxides. Cesium iodide is postulated to form in the vapor phase outside of the fuel matrix. Kinetic data indicates that cesium iodide can form from Cs atoms and diatomic iodine in the vapor phase. Temperatures lower than those capable of melting fuel are necessary in order to maintain a sufficient I2 concentration. At temperatures near the fuel melting point, cesium can react with iodine atoms to form CsI only on solid surfaces such as aerosols.

  19. Large-scale production of Si{sub 0.8}Ge{sub 0.2} thermoelectric alloys by mechanical alloying

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Loughin, S.; Centurioni, D.X.

    1993-10-01

    Advanced processing techniques were combined with refinements in composition to produce homogeneous, production-scale quantities of n- and p-type Si{sub 0.8}Ge{sub 0.2} alloys with improved thermoelectric properties. Two p-type compacts of Si{sub 0.8}Ge{sub 0.2} doped with 0.8 atom% boron and one n-type compact doped with 0.8 m/o GaP and a P/Ga ratio of 2.38 were prepared by mechanical alloying. Resulting powders were consolidated into 7.62 cm diameter compacts by vacuum hot pressing. Transport and thermoelectric properties were measured. As-pressed samples were found to have low carrier mobility. Metallographic analysis revealed a sub-micron grain size which would suggest a high density of grain boundary potential barriers. A heat treatment was applied and the measurements were repeated. The post-treatment p-type samples showed a 33% grain growth and an integrated average figure of merit of 0.6{times}10{sup {minus}3} K{sup {minus}1} over the 573--1273 K range. This paper presents the details of fabrication method and compares the thermoelectric properties with the properties of similar alloys manufactured by traditional vacuum casting and hot pressing.

  20. Energetics of gaseous and volatile fission products in molten U-10Zr alloy: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Tian, Jie; Jiang, Tao; Yang, Yanqiu; Hu, Sheng; Peng, Shuming; Yan, Liuming

    2015-11-01

    Gaseous and volatile fission products have a number of adverse effects on the safety and efficiency of the U-10Zr alloy fuel. The theoretical calculations were applied to investigate the energetics related to the formation, nucleation, and degassing of gaseous and volatile fission products (Kr, Xe and I) in molten U-10Zr alloy. The molecular dynamics (MD) simulations were applied to generate equilibrium configurations. The density functional theory (DFT) calculations were used to build atomistic models including molten U-10Zr alloy as well as its fission products substituted systems. The vacancy formation in liquid U-10Zr alloy were studied using DFT calculations, with average Gibbs free formation energies at 8.266 and 6.333 eV for U- and Zr-vacancies, respectively. And the interaction energies were -1.911 eV, -2.390 eV, and -1.826 eV for the I-I, Xe-Xe, and Kr-Kr interaction in lattice when two of the adjacent uranium atoms were substituted by gaseous atoms. So it could be concluded that the interaction between I, Kr, and Xe in lattice is powerful than the interaction between these two atoms and the other lattice atoms in U-10Zr.

  1. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    SciTech Connect

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-10-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide {approximately}800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding.

  2. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  3. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  4. Continuous production of granular or powder Ti, Zr and Hf or their alloy products

    DOEpatents

    White, Jack C.; Oden, Laurance L.

    1993-01-01

    A continuous process for producing a granular metal selected from the group consisting of Ti, Zr or Hf under conditions that provide orderly growth of the metal free of halide inclusions comprising: a) dissolving a reducing metal selected from the group consisting of Na, Mg, Li or K in their respective halide salts to produce a reducing molten salt stream; b) preparing a second molten salt stream containing the halide salt of Ti, Zr or Hf; c) mixing and reacting the two molten streams of steps a) and b) in a continuous stirred tank reactor; d) wherein steps a) through c) are conducted at a temperature range of from about 800.degree. C. to about 1100.degree. C. so that a weight percent of equilibrium solubility of the reducing metal in its respective halide salt varies from about 1.6 weight percent at about 900.degree. C. to about 14.4 weight percent at about 1062.degree. C.; and wherein a range of concentration of the halide salt of Ti, Zn or Hf in molten halides of Na, Mg, Li or K is from about 1 to about 5 times the concentration of Na, Mg, Li or K; e) placing the reacted molten stream from step c) in a solid-liquid separator to recover an impure granular metal product by decantation, centrifugation, or filtration; and f) removing residual halide salt impurity by vacuum evaporator or inert gas sweep at temperatures from about 850.degree. C. to 1000.degree. C. or cooling the impure granular metal product to ambient temperature and water leaching off the residual metal halide salt.

  5. Commercialization of multijunction a-Si modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Chen, L.-F.; Oswald, R.; Newton, J.; Rajan, K.; Romero, R.; Willing, F.; Yang, L.

    1997-02-01

    Solarex has just completed building a plant in James City County, Virginia that has the capacity to produce 10 MW per year of multijunction amorphous silicon PV modules. The plant will start commercial production of 8.6 ft2 tandem modules in early 1997. The tandem device structure consists of two stacked p-i-n junctions, a front junction containing amorphous silicon and a back junction containing an amorphous silicon germanium alloy. All amorphous silicon alloys are deposited using plasma-enhanced chemical vapor deposition, and the large-area monolithic modules are interconnected using computerized laser scribing coupled with a machine vision system. The principle products will be monolithic modules (26″×48″) with nominal stabilized power ratings of 56, 50 and 43 peak watts. All modules will be fabricated using a glass-EVA-glass encapsulation to ensure long-term reliability. These products are expected to be widely used in both remote and grid-tied applications.

  6. Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen

    SciTech Connect

    K. Coulter

    2008-03-31

    Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

  7. Examination of an alternative method for the pyrometallurgical production of copper-chromium alloys

    NASA Astrophysics Data System (ADS)

    Brenk, J.; Hassan-Pour, S.; Spiess, P.; Friedrich, B.

    2016-07-01

    In this paper an alternative to the usual route for the production of copper-chromium alloys by Hot Isostatic Pressing (HIP) followed by Vacuum Arc Remelting (VAR) is investigated. Therefore the HIP is replaced by an aluminothermic reduction. As oxidizing agents for this aluminothermic reduction (ATR) chromium oxide (Cr2O3) and copper oxide (CuO) are used. These oxidants are mixed in a stoichiometric relation with aluminium (Al) to get the following aluminothermic reactions going: As ATRs always are exothermic reductions, it is important to control the heat output of the reaction. A common simplification for the heat calculation in the field of ATR is the “Shemshushny Factor” (Sh-Factor). This factor determines the rate of energy input per reactant mass: To avoid a secondary melt phase after ATR, inline casting is used to directly obtain vacuum arc remeltable electrodes out of the liquid melt of the ATR. The second part of this work deals with the remelting of these electrodes via VAR. The first VAR trials aim at finding process parameters for remelting a copper-chromium ingot. As demixing is to avoid, it is necessary to control process parameters within a small range to obtain a shallow melt pool.

  8. Silicon purification using a Cu-Si alloy source

    NASA Technical Reports Server (NTRS)

    Powell, R. C.; Tejedor, P.; Olson, J. M.

    1986-01-01

    Production of 99.9999% pure silicon from 98% pure metallurgical grade (MG) silicon by a vapor transport filtration process (VTP) is described. The VTF process is a cold wall version of an HCl chemical vapor transport technique using a Si:Cu3Si alloy as the silicon source. The concentration, origin, and behavior of the various impurities involved in the process were determined by chemically analyzing alloys of different purity, the slag formed during the alloying process, and the purified silicon. Atomic absorption, emission spectrometry, inductively coupled plasma, spark source mass spectrometry, and secondary ion mass spectroscopy were used for these analyses. The influence of the Cl/H ratio and the deposition temperature on the transport rate was also investigated.

  9. Production of Gas-Solid Structures in Aluminum and Nickel Alloys by Gasar Processing

    SciTech Connect

    Apprill, J.M.; Baldwin, M.D.; Maguire, M.C.; Miszkiel, M.E.; Shapovalov, V.I.

    1999-01-06

    Experimental data on directional and bulk solidification of hydrogen-charged samples of aluminum alloy A356 and nickel alloy Inconel 718 are discussed. The solidification structure of the porous zone is shown to be dependent on many process variables. Of these variables, hydrogen content in the melt prior to solidification, and furnace atmospheric pressure during solidification play the decisive role. Also important are the furnace atmosphere composition, the solidification velocity, and the temperature distribution of the liquid metal inside the mold.

  10. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, W. II; Miller, P.E.

    1997-12-16

    A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

  11. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, II, William; Miller, Philip E.

    1997-01-01

    A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.

  12. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.

    PubMed Central

    Kreiss, K; Mroz, M M; Zhen, B; Wiedemann, H; Barna, B

    1997-01-01

    OBJECTIVES: To describe relative hazards in sectors of the beryllium industry, risk factors of beryllium disease and sensitisation related to work process were sought in a beryllium manufacturing plant producing pure metal, oxide, alloys, and ceramics. METHODS: All 646 active employees were interviewed; beryllium sensitisation was ascertained with the beryllium lymphocyte proliferation blood test on 627 employees; clinical evaluation and bronchoscopy were offered to people with abnormal test results; and industrial hygiene measurements related to work processes taken in 1984-93 were reviewed. RESULTS: 59 employees (9.4%) had abnormal blood tests, 47 of whom underwent bronchoscopy. 24 new cases of beryllium disease were identified, resulting in a beryllium disease prevalence of 4.6%, including five known cases (29/632). Employees who had worked in ceramics had the highest prevalence of beryllium disease (9.0%). Employees in the pebble plant (producing beryllium metal) who had been employed after 1983 also had increased risk, with a prevalence of beryllium disease of 6.4%, compared with 1.3% of other workers hired in the same period, and a prevalence of abnormal blood tests of 19.2%. Logistic regression modelling confirmed these two risk factors for beryllium disease related to work processes and the dependence on time of the risk at the pebble plant. The pebble plant was not associated with the highest gravimetric industrial hygiene measurements available since 1984. CONCLUSION: Further characterisation of exposures in beryllium metal production may be important to understanding how beryllium exposures confer high contemporary risk of beryllium disease. PMID:9326165

  13. Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts

    NASA Astrophysics Data System (ADS)

    Hu, Di; Xiao, Wei; Chen, George Z.

    2013-04-01

    Metal oxide precursors (ca. 90 wt pct Ti, 6 wt pct Al, and 4 wt pct V) were prepared with a hollow structure in various shapes such as a sphere, miniature golf club head, and cup using a one-step solid slip-casting process. The precursors were then electro-deoxidized in molten calcium chloride [3.2 V, 1173 K (900 °C)] against a graphite anode. After 24 hours of electrolysis, the near-net-shape Ti-6Al-4V product maintained its original shape with controlled shrinkage. Oxygen contents in the Ti-6Al-4V components were typically below 2000 ppm. The maximum compressive stress and modulus of electrolytic products obtained in this work were approximately 243 MPa and 14 GPa, respectively, matching with the requirement for medical implants. Further research directions are discussed for mechanical improvement of the products via densification during or after electrolysis. This simple, fast, and energy-efficient near-net-shape manufacturing method could allow titanium alloy components with desired geometries to be prepared directly from a mixture of metal oxides, promising an innovative technology for the low-cost production of titanium alloy components.

  14. ELLIPSOMETRIC STUDY OF a-Si:H NUCLEATION, GROWTH, AND INTERFACES

    NASA Astrophysics Data System (ADS)

    Collins, R. W.

    Recent in situ and spectroscopic ellipsometry investigations of hydrogenated amorphous silicon (a-Si:H) nucleation behavior, microstructural evolution, and interface formation are reviewed. An outline of the commonly applied experimental techniques and data analysis is also presented. In situ ellipsometry reveals a nuclei formation and convergence sequence in the first 50Å of a-Si:H growth by rf plasma deposition from silane on c-Si and metal substrates. This sequence provides evidence of favorable growth chemistry that results in material with a low density of structural defects. The influence of deposition parameters and processes on the nucleation and subsequent microstructural evolution of a-Si:H is covered in detail. Among the other topics discussed include: nucleation of microcrystalline Si, evolution of surface roughness on a-Si:H, inert and reactive gas plasma modification of a-Si:H, and formation of a-Si:H heterostructures with SiO2, wide band gap alloys, and Bdoped a-Si:H.

  15. Photovoltaic semiconductor materials based on alloys of tin sulfide, and methods of production

    DOEpatents

    Lany, Stephan

    2016-06-07

    Photovoltaic thin-film materials comprising crystalline tin sulfide alloys of the general formula Sn.sub.1-x(R).sub.xS, where R is selected from magnesium, calcium and strontium, as well as methods of producing the same, are disclosed.

  16. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  17. EFFECT OF JP-5 SULFUR CONTENT ON HOT CORROSION OF SUPER ALLOYS IN MARINE ENVIRONMENT.

    DTIC Science & Technology

    SULFUR, AVIATION FUELS), (*NICKEL ALLOYS , CORROSION), (*COBALT ALLOYS , CORROSION), (*CORROSION, AVIATION FUELS), ENVIRONMENTAL TESTS, SEA WATER...GAS TURBINE BLADES, AIRCRAFT ENGINES, CORROSION RESISTANT ALLOYS , COMBUSTION PRODUCTS, CHROMIUM ALLOYS , MOLYBDENUM ALLOYS , TUNGSTEN ALLOYS , ALUMINUM... ALLOYS , ALUMINUM COATINGS, ANALYSIS OF VARIANCE, TITANIUM ALLOYS , EXPERIMENTAL DATA, STATISTICAL ANALYSIS

  18. Production of chromium base alloys by ball milling in hydrogen iodide

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1975-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol% ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1540 C. Hot pressed Cr + ThO2 had a DBTT of 500 C as compared with -8 to 24 C for the hot rolled Cr + ThO2 and with 140 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  19. Sintering of the reaction products of combustion of alloys in nitrogen

    SciTech Connect

    Maksimov, Y.M.; Raskolenko, L.G.; Zepakova, O.K.; Ziatdinov, M.K.

    1986-05-01

    An investigation of the mechanism of compacting of Fe-V alloy with a sigma-phase structure, a low porosity composite material consisting of alpha-iron and a filler of delta-vanadium nitride, is made after the synthesis surge. Alloys containing 50 wt.% Fe were prepared by sintering in a vacuum furnace of powders of type VEL-1 vandium and special purity carbonyl iron. The mechanism of compacting was studied on specimens in hardened water. Metallographic investigations were made on MIM-7 and PMT-3 instruments and the phase analysis on a DRON-2 instrument. Rapid compacting in combustion of sigma-FeV in nitrogen is determined by combining of the solid-liquid drops formed in the combustion front and consisting of molten iron and vanadium nitrides.

  20. Induction heat treatment and technique of bioceramic coatings production on medical titanium alloys

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Fomina, Marina A.; Poshivalova, Elena Y.; Krasnikov, Aleksandr V.; Petrova, Natalia N.; Zakharevich, Andrey M.; Skaptsov, Alexander A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2015-03-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, physico-mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  1. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-04-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  2. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    PubMed

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  3. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar.

    PubMed

    Li, Dalin; Koike, Mitsuru; Wang, Lei; Nakagawa, Yoshinao; Xu, Ya; Tomishige, Keiichi

    2014-02-01

    Nickel-iron/magnesium/aluminum bimetallic catalysts were prepared by the calcination and reduction of nickel-magnesium-iron-aluminum hydrotalcite-like compounds. Characterization suggests that, at iron/nickel≤0.5, both nickel and iron species are homogeneously distributed in the hydrotalcite precursor and incorporated into the Mg(Ni, Fe, Al)O periclase after calcination, giving rise to uniform nickel-iron alloy nanoparticles after reduction. Ni-Fe/Mg/Al (Fe/Ni=0.25) exhibits the best catalytic performance for the steam reforming of tar derived from the pyrolysis of biomass. It is suggested that the uniform nickel-iron alloy nanoparticles and the synergy between nickel and iron are responsible for the high catalytic performance. Moreover, the Ni-Fe/Mg/Al catalyst exhibits much better regenerability toward oxidation-reduction treatment for the removal of deposited coke than that of conventional Ni-Fe/α-Al2 O3 . This property can be attributed to the better regeneration of Ni-Fe alloy nanoparticles through the formation and reduction of Mg(Ni, Fe, Al)O.

  4. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-02-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  5. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.

    PubMed

    Trinidad, Javier; Arruebarrena, Gurutze; Marco, Iñigo; Hurtado, Iñaki; Sáenz de Argandoña, Eneko

    2013-12-01

    The increasing interest on magnesium alloys relies on their biocompatibility, bioabsorbility and especially on their mechanical properties. Due to these characteristics, magnesium alloys are becoming a promising solution to be used, as temporary implants. However, magnesium alloys must overcome their poor corrosion resistance. This article analyses the corrosion behaviour in phosphate-buffered saline solution of three commercial magnesium alloys (AZ31B, WE43 and ZM21) as well as the influence of fluoride treatment on their corrosion behaviour. It is shown that the corrosion rate of all the alloys is decreased by fluoride treatment. However, fluoride treatment affects each alloy differently.

  6. Establishment of a Plasma Melting Manufacturing Process for Production of Nickel-Base Alloys.

    DTIC Science & Technology

    1975-05-01

    surrounding the arc with cold walls capable of wi thstanc’ing high heat flux and/or surrounding the arc with a cold liquid or gas. The gas is forced to flow...considerations, contractural obligations, or notice on a specific document. This final report was submitted by Carnegie-Mellon Institute of Research...argon gas plasmarc has been shown to be a useful high heat source for melt-consolidatm i of super alloy and types of scrap including reactive metal

  7. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  8. Identifying electronic properties relevant to improving stability in a-Si:H-based cells and overall performance in a-Si,Ge:H-based cells. Annual subcontract report, 18 April 1995--17 April 1996

    SciTech Connect

    Cohen, J.D.

    1997-03-01

    The work done during this second phase of the University of Oregon`s NREL subcontract focused on degradation studies in both pure a-Si:H and a-Si,Ge:H alloys, as well as a detailed study of the interface between these two materials in a-Si:H/a-Si, Ge:H heterostructures. All samples discussed in this report were produced by the glow-discharge method and were obtained either in collaboration with United Solar Systems Corporation or with researchers at Lawrence Berkeley laboratory. First, the results from the a-Si, Ge:H degradation studies support the conclusion that considerable quantities of charged defects exist in nominally intrinsic material. Researchers found that on light-soaking, all the observed defect sub-bands increased; however, their ratios varied significantly. Second, researchers performed voltage pulse stimulated capacitance transient measurements on a-Si:H/a-Si, Ge:H heterostructure samples and found a clear signature of trapped hole emission extending over long times. Finally, researchers began comparison studies of the electronic properties of a-Si:H grown by glow discharge either with 100% silane, or with silane diluted in H{sub 2} or He gas. The results on these samples indicate that the films grown under high hydrogen dilution exhibit roughly a factor of 3 lower deep defect densities than those grown using pure silane.

  9. Direct production of nanostructured copper-nickel (Cu-Ni) alloy particles

    SciTech Connect

    Apaydin, Ramazan Oguzhan; Ebin, Burcak; Gurmen, Sebahattin

    2013-12-16

    Copper-Nickel (CuNi) nanostructured alloy particles were produced by Ultrasonic Spray Pyrolysis and Hydrogen Reduction Method (USP-HR) from high purity copper and nickel nitrate aqueous solutions. The effect of the precursor solution in the range of 0.1 and 0.5 mol/L on the morphology and crystallite size of CuNi nanoparticles were investigated under 2 h running time, 700 °C operating temperature and 0.5 L/min H{sub 2} flow rate. Particle size, morphology, composition and crystallite structure were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD). Particle characterization studies show that nanostructured alloy particles have cubic crystal structure and they are in submicron size range with spherical morphology. The crystallite sizes of the particles calculated with Scherrer formula are 40 and 34 nm and average particles sizes observed from the SEM images are 300 and 510 nm for each experiment respectively.

  10. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  11. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  12. Effect of the production technology of bolts from Ti-Al-Mo-V alloy on the heterogeneity of their texture and susceptibility to the fracture

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Fesenko, V. A.; Medvedev, P. N.

    2016-10-01

    The paper considers the formation of crystallographic texture inhomogeneity along the length of bolts from titanium alloy due to the difference of the deformation scheme used by production of bolt head and bolt rod. As a result stresses arise which can cause shear fracture of the bolt.

  13. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  14. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.

    1995-01-01

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  15. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  16. Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Pehlivan, Özlem; Menda, Deneb; Yilmaz, Okan; Kodolbaş, Alp Osman; Ödemir, Orhan; Duygulu, Özgur; Kutlu, Kubilay; Tomak, Mehmet

    2013-09-01

    Large area (72 cm2) doping inversed HIT solar cells (n-a-Si:H/i-a-Si:H/p-c-Si) were investigated by High Resolution Transmission Electron Microscopy (HR-TEM), Spectroscopic Ellipsometry (SE), Fourier Transform Infrared Attenuated Total Reflection spectroscopy (FTIR-ATR) and current-voltage (I-V) measurement. Mixture of microcrystalline and amorphous phase was identified via HR-TEM picture at the interface of i-a-Si:H/p-c-Si heterojunction. Using multilayer and Effective Medium Approximation (EMA) to the SE data, excellent fit was obtained, describing the evolution of microstructure of a-Si:H deposited at 225 °C on p-c-Si. Cody energy gap with combination of FTIR-ATR analyses were consistent with HRTEM and SE results in terms of mixture of microcrystalline and amorphous phase. Presence of such hetero-interface resulted poor open circuit voltage, Voc, of the fabricated solar cell devices, determined by I-V measurement under 1 sun. Moreover, Voc was also estimated from dark I-V analysis, revealing consistent Voc values. Efficiencies of fabricated cells over complete c-Si wafer (72 cm2) were calculated as 4.7 and 9.2 %. Improvement in efficiency was interpreted due to the back surface cleaning and selecting aluminum/silver alloy as front contact.

  17. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  18. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  19. Fe-Zn Alloy Coating on Galvannealed (GA) Steel Sheet to Improve Product Qualities

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Guin, Akshya Kumar; Raju, Pankaj; Manna, Manindra; Dutta, Monojit; Venugopalan, T.

    2014-09-01

    Galvannealed steel sheets (GA) have become the mainstream steel sheet for automobile applications because of their superior corrosion resistance, paintability, and weldability. To impart specific properties, different coatings on GA steel sheet were reported to improve properties further. In this context, we have developed an electroplating process (flash coating) for bright and adherent Fe-Zn alloy coating on GA steel sheet to enhance performances such as weldability, frictional behavior, phosphatability, and defect coverage. A comparative study with bare GA steel sheet was carried out for better elastration. The electroplating time was reduced below 10 s for practical applicability in an industrial coating line by modulating the bath composition. Electroplating was performed at current density of 200-500 A/m2 which yielded with higher cathode current efficiency of 85-95%. The performance results show that Fe-10 wt.% Zn-coated GA steel sheet (coating time 7 s) has better spot weldability, lower dynamic coefficient of friction (0.06-0.07 in lubrication), and better corrosion resistance compared to bare GA steel sheet. Uniform phosphate coating with globular crystal size of 2-5 µm was obtained on Fe-Zn flash-coated GA steel sheet. Hopeite was the main phosphate compound (77.9 wt.%) identified along with spencerite (13.6 wt.%) and phosphophyllite (8.5 wt.%).

  20. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase D, January 1-March 31, 1981

    SciTech Connect

    Bruno, M.J.

    1981-04-01

    Operation of the bench AF-reactor on burden with all reducing carbon exterior to the ore pellet resulted in low metal alloy product yields and prematurely terminated runs, indicating the need for intimate contact between alumina and carbon to produce oxycarbide liquid prior to reaction with solid silicon carbide. Carbon solubility tests made on 60Al-40Si alloys at 2200/sup 0/C in graphite crucibles indicated continued reaction to form SiC for one hour. Efficiency of reduction to SiC ranged from 68 to 100%. The A-C two-electrode submerged arc reactor pilot, SAR-II, was successfully operated on both alumina-clay-coke and alumina-silicon carbide-coke (from the VSR prereduction) burdens. Metal alloy was produced and tapped in each of four runs. The pilot crystallizer was operated to evalute the two-stage (stop and go) crystallization technique on obtaining high yields of Al in Al-Si eutectic, with a limit of 1.0% Fe and 0.1% Ti in the alloy product. 18 figures, 19 tables. (DLC)

  1. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  2. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  3. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.

  4. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  5. Oxidation products of Inconel alloys 600 and 690 in hydrogenated steam environments and their role in stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Ferguson, J. Bryce

    Inconel Alloys 600 and 690 are used extensively in components of Nuclear Pressurized Water Reactors (PWR) in the primary water loop which consists of H2 supersaturated steam. Alloy 600 has been found to crack intergranularly when exposed to primary water conditions. Alloy 690 was designed as a replacement and is generally regarded as immune to cracking. There is no consensus as to the mechanism which is responsible for cracking or the lack thereof in these alloys. In this work thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments ( PH2O and PH2 ) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries where Cr2O3 has formed from the leaching of Cr from the matrix leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous non-protective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions which can easily rupture the gelatinous film. The leaching of matrix Cr to form non-protective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment also explains crack propagation in inconel alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O 3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and pre-cracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the material at the grain boundaries.

  6. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  7. The structure of a-Si 1-xSn x:H thin films

    NASA Astrophysics Data System (ADS)

    Edwards, A. M.; Fairbanks, M. C.; Newport, R. J.

    1990-12-01

    The doping of a-Si:H with Sn is known to modify the electrical and optical properties of the material. The optical band gap decreases as the doping level is increased, however, there is no insulator-metal transition of the type observed, for example, when transition metals are used as dopants. In order to increase the understanding of the conductivity processes that occur in a-Si:metal:H alloys we have measured the atomic scale structure of a series of a-Si 1- xSn x:H thin-films using EXAFS. Samples were prepared by RF reactive co-sputtering and both Si and Sn K-edge EXAFS examined. The results indicate that the Sn atoms are substituted randomly into the a-Si tetrahedral random network. Both Si and Sn atoms retain fourfold co-ordination over the composition range studied (0⩽ x⩽0.18). In contrast to results obtained using transition metal dopants there is no local modification of the tetrahedral random network.

  8. Improvement of parameters in a-Si(p)/c-Si(n)/a-Si(n) solar cells

    NASA Astrophysics Data System (ADS)

    Moustafa Bouzaki, Mohammed; Aillerie, Michel; Ould Saad Hamady, Sidi; Chadel, Meriem; Benyoucef, Boumediene

    2016-10-01

    We analyzed and discussed the influence of thickness and doping concentration of the different layers in a-Si(p)/c-Si(n)/a-Si(n) photovoltaic (PV) cells with the aim of increasing its efficiency while decreasing its global cost. Compared to the efficiency of a standard marketed PV cell, elaborated with a ZnO transparent conductive oxide (TCO) layer but without Back Surface Field (BSF) layer, an optimization of the thickness and dopant concentration of both the emitter a-Si(p) and absorber c-Si(n) layers will gain about 3% in the global efficiency of the cell. The results also reveal that with introduction of the third layer, i.e. the BSF layer, the efficiency always achieves values above 20% and all other parameters of the cell, such as the open-circuit voltage, the short-circuit current and the fill-factor, are strongly affected by the thickness and dopant concentration of the layers. The values of all parameters are given and discussed in the paper. Thereby, the simulation results give for an optimized a-Si(p)/c-Si(n)/a-Si(n) PV cells the possibility to decrease the thickness of the absorber layer down to 50 μm which is lower than in the state-of-the-art. This structure of the cell achieves suitable properties for high efficiency, cost-effectiveness and reliable heterojunction (HJ) solar cell applications.

  9. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  10. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  11. Method for the production of strongly adhesive films on titanium and titanium alloys with a metallization process

    NASA Technical Reports Server (NTRS)

    Hahn, H. J.

    1986-01-01

    A process for the spray-application of a strongly adhesive, thick antifriction layer on titanium and titanium alloys is proposed. The titanium/titanium alloy component to be coated is first subjected to cleaning in a pickling bath with reducing additives and sand-blasting, then coated with an intermediate layer of nickel, after which the final layer is applied. The formation of TiNi at the interface ensures strong bonding of the antifriction layer.

  12. A New Method for Low Cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems

    SciTech Connect

    Fang, Z. Zak; Chandran, Ravi; Koopman, Mark

    2016-02-29

    This project investigated an innovative manufacturing process intended to minimize the cost of production of titanium materials and components, and increase the adoption of Ti components for energy consuming applications, such as automobiles. A key innovation of the proposed manufacturing approach is a novel Ti powder sintering technology for making titanium materials with ultrafine grain microstructure in the as-sintered state with minimum, or an absence, of post-sintering processes. The new sintering technology is termed Hydrogen Sintering and Phase Transformations (HSPT), and constitutes a promising manufacturing technology that can be used to produce titanium (Ti) materials and components in a near-net-shape form, thus also minimizing machining costs. Our objective was to meet, or possibly surpass, the mechanical property levels for ASTM B348 Grade 5 for wrought Ti-6Al-4V. Although specific applications call for varying mechanical property requirements, ASTM B348 was created for the demanding applications of the aerospace industry, and is the established standard for Ti-6Al-4V. While the primary goal was to meet, or exceed this standard, the team also had the goal of demonstrating this could be done at a significantly lower cost of production. Interim goals of the project were to fully develop this novel sintering process, and provide sufficient baseline testing to make the method practical and attractive to industry. By optimizing the process parameters for the sintering of titanium hydride (TiH2) powders in a hydrogen atmosphere and controlling the phase transformations during and after sintering, the HSPT process was expected to reduce the energy consumption, and thus cost, of making Ti alloys and fabricating Ti components. The process was designed such that no high temperature melting is required for producing Ti alloys; little or no post-sintering processing is needed for producing desired microstructures (and therefore enhanced mechanical

  13. Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys.

    PubMed

    Lugovskoy, Alex; Lugovskoy, Svetlana

    2014-10-01

    Hydroxyapatite (HA) is a bioactive material that is widely used for improving the osseointegration of titanium dental implants. Titanium can be coated with HA by various methods, such as chemical vapor deposition (CVD), thermal spray, or plasma spray. HA coatings can also be grown on titanium surfaces by hydrothermal, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO), or microarc oxidation (MAO), is an electrochemical method that enables the production of a thick porous oxide layer on the surface of a titanium implant. If the electrolyte in which PEO is performed contains calcium and phosphate ions, the oxide layer produced may contain hydroxyapatite. The HA content can then be increased by subsequent hydrothermal treatment. The HA thus produced on titanium surfaces has attractive properties, such as a high porosity, a controllable thickness, and a considerable density, which favor its use in dental and bone surgery. This review summarizes the state of the art and possible further development of PEO for the production of HA on Ti implants.

  14. Utilization of amorphous silicon carbide (a-Si:C:H) as a resistive layer in gas microstrip detectors

    SciTech Connect

    Hong, W.S.; Cho, H.S.; Perez-Mendez, V.; Gong, W.G.

    1995-04-01

    Thin semiconducting films of hydrogenated amorphous silicon (a-Si:H) and its carbon alloy (a-Si:C:H) were applied to gas microstrip detectors in order to control gain instabilities due to charges on the substrate. Thin ({approximately}100nm) layers of a-Si:H or p-doped a-Si:C:H were placed either over or under the electrodes using the plasma enhanced chemical vapor deposition (PECVD) technique to provide the substrate with a suitable surface conductivity. By changing the carbon content and boron doping density, the sheet resistance of the a-Si:C:H coating could be successfully controlled in the range of 10{sup 12} {approximately} 10{sup 17} {Omega}/{four_gradient}, and the light sensitivity, which causes the resistivity to vary with ambient light conditions, was minimized. An avalanche gain of 5000 and energy resolution of 20% FWHM were achieved and the gain remained constant over a week of operation. A-Si:C:H film is an attractive alternative to ion-implanted or semiconducting glass due to the wide range of resistivities possible and the feasibility of making deposits over a large area at low cost.

  15. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.

    PubMed

    Zhao, Xiaoli; Niinomi, Mitsuo; Nakai, Masaaki

    2011-11-01

    Nowadays, there is a significant research focus on the development of bio-implant materials that have not only a low Young's modulus but also other unique characteristics such as a changeable Young's modulus and the ability to prevent calcium phosphate formation. Taking advantage of deformation-induced phases is an effective way to obtain the changeable Young's modulus. This study investigated the relationship between the various deformation-induced products and the mechanical properties-including Young's modulus, microstructure, and tensile properties-of Ti-30Zr-(5,6,7)mass%Mo alloys subjected to solution treatment (ST) and cold-rolling (CR). After ST, each alloy is composed of a β phase and a small amount of athermally formed ω phase, and exhibits a low Young's modulus. During CR, deformation-induced phase transformation occurs in all the alloys. The change in Young's modulus due to CR is highly dependent on the types of deformation-induced products. The decrease in Young's modulus due to CR is related to the deformation-induced α' phase transformation accompanying with the disappearance of athermal ω phase, and the increase in Young's modulus is attributed to the deformation-induced ω phase, which mainly exists in {332}β mechanical twins.

  16. Electrospun a-Si using Liquid Silane/Polymer Inks

    SciTech Connect

    Doug Schulz

    2010-12-09

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  17. Electrospun a-Si using Liquid Silane/Polymer Inks

    SciTech Connect

    D.L. Schulz; J.M. Hoey; J. Smith; J. Lovaasen; C. Braun; X. Dai; K. Anderson; A. Elangovan; X. Wu; S. Payne; K. Pokhodnya; I. Akhatov; L. Pederson; P. Boudjouk

    2010-12-01

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  18. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10

  19. Correlation of the energy product with evolution of the nanostructure in Y,Dy,Nd-(Fe,Co)-B magnetic alloy

    SciTech Connect

    Wu, Y.Q; Tang, W.; Kramer, M.J.; Dennis, K.W.; Oster, N.; McCallum, R.W.; Anderson, I.E.

    2009-07-24

    The devitrification behavior of nanocrystalline MRE{sub 2}(Fe,Co){sub 14}B+ZrC (MRE = Nd+Y+Dy) was studied using differential scanning calorimetry (DSC), synchrotron high temperature x-ray diffraction, and analytical transmission electron microscopy (TEM) techniques. Alloy ribbons were melt spun at 25 m/s to obtain an amorphous structure. Optimum hard magnetic properties (B{sub r} = 7.2 kG, H{sub c} = 12.7 kOe and (BH){sub max} = 10.8 MG Oe) were obtained in ribbons annealed at 750 C for 15 min. A reduced annealing temperature of 638 C and holding time from 0 to 11 min were chosen based on DSC analysis. Large changes in both microstructure and hard magnetic properties were found in a narrow window of annealing time, 4.5-6 min, resulting in a dramatic increase in energy product, remanence and coercivity: 0.96 MG Oe, 5.2 kG, 2.7 kOe to 5.7 MG Oe, 7.2 kG, 8.5 kOe for (BH){sub max}, B{sub r} and H{sub c}, respectively. Energy dispersive x-ray spectroscopy and energy filtered TEM analyses indicate that Zr- and C-rich particles ({approx} 5 nm) and thin grain boundary layers (1-2 nm thick) are formed surrounding 2-14-1 hard phase grains when the annealing time is over 6 min. Further annealing resulted in a more distinct hard phase surrounded by a nonmagnetic grain boundary phase {approx} 1 nm in thickness. The thin grain boundary layer phase starts to disappear with annealing time over 11 min. The partitioning behavior of various elements at different annealing conditions appears to be associated with significant changes in magnetic properties, leading to an improved optimum microstructure.

  20. Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant.

    PubMed

    Boudissa, Soraya M; Lambert, Jean; Müller, Caroline; Kennedy, Greg; Gareau, Lise; Zayed, Joseph

    2006-05-15

    In Montreal (Canada), the mean annual atmospheric Mn concentrations between 1981 and 1990 were stable, followed by a decrease of almost 50% from 1990 to 1992. The reason for such a decrease in Mn is probably the shutdown of a large manganese alloy production plant in Beauharnois, approximately 25 km from Montreal. The objective of this study is to assess the level of air and soil contamination by Mn in the vicinity of this ferroalloy plant more than 10 years after its closure. Air and soil were sampled over 5 days at two and three sites, respectively. Site 1 was located 10 m NE of the closed plant, in the direction of the prevailing SW-NE winds. Sites 2 and 3 were at 50 and 800 m SE from the plant. Air samples were collected in order to determine total (MnT) and respirable (MnR). Soil samples were taken in the surface and subsurface strata. The results show that site 1 is extremely polluted with a mean Mn concentration in surface strata of 2,66,000+/-45,000 ppm and 2,83,000+/-23,000 ppm in the subsurface strata, while the average MnT and MnR are 21.9+/-13.7 and 3.5+/-3.9 microg/m(3), respectively. The explanation for this contamination is direct deposition on the soil of solid Mn-rich residue and atmospheric erosion of Mn particles. The situation should be remediated by the public authority with high priority.

  1. Molecular hydrogen in a-Si: H

    NASA Astrophysics Data System (ADS)

    Carlos, W. E.; Taylor, P. C.

    1982-01-01

    Recently Conradi and Norberg have proposed that a small density of molecular hydrogen in a-Si: H films provides the relaxation mechanism which is responsible for a minimum in the proton spin-lattice relaxation time T1 at about 30 K. Although we are unable to observe an NMR line attributable to the H2, we are able to observe the conversion of the H2 molecules from the ortho state to the para state at 4.2 K. The process is bimolecular with a rate constant of 0.010 h-1. The existence of a large number of sites able to trap such a small molecule may provide an important insight into the defect structure of these films.

  2. Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Yeniyol, Sinem; Oktay, Enver

    2016-04-01

    In this study, beta-type Ti-35Nb-10Cu alloy foams were produced by powder metallurgy method for dental implant applications. 35% Nb was added to stabilize the beta-Ti phase with low Young's modulus. Cu addition enhanced sinterability and gave precipitation hardening capacity to the alloy. Sintered specimens were precipitation hardened in order to enhance the mechanical properties. Electrochemical corrosion behavior of the specimens was examined by electrochemical impedance spectroscopy in artificial saliva. Electrochemical impedance spectroscopy results indicated that the oxide film on the surface of foam is a bi-layer structure consisting of outer porous layer and inner barrier layer. Impedance values of barrier layer were higher than porous layer. Corrosion resistance of specimens decreased at high fluoride concentrations and at low pH of artificial saliva. Corrosion resistance of alloys was slightly decreased with aging. Mechanical properties, microstructure, and surface roughness of the specimens were also examined.

  3. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    PubMed Central

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-01-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials. PMID:27580744

  4. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    NASA Astrophysics Data System (ADS)

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-09-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.

  5. Molybdenum carbide supported nickel-molybdenum alloys for synthesis gas production via partial oxidation of surrogate biodiesel

    NASA Astrophysics Data System (ADS)

    Shah, Shreya; Marin-Flores, Oscar G.; Norton, M. Grant; Ha, Su

    2015-10-01

    In this study, NiMo alloys supported on Mo2C are synthesized by wet impregnation for partial oxidation of methyl oleate, a surrogate biodiesel, to produce syngas. When compared to single phase Mo2C, the H2 yield increases from 70% up to >95% at the carbon conversion of ∼100% for NiMo alloy nanoparticles that are dispersed over the Mo2C surface. Supported NiMo alloy samples are prepared at two different calcination temperatures in order to determine its effect on particle dispersion, crystalline phase and catalytic properties. The reforming test data indicate that catalyst prepared at lower calcination temperature shows better nanoparticle dispersion over the Mo2C surface, which leads to higher initial performance when compared to catalysts synthesized at higher calcination temperature. Activity tests using the supported NiMo alloy on Mo2C that are calcined at the lower temperature of 400 °C shows 100% carbon conversion with 90% H2 yield without deactivation due to coking over 24 h time-on-stream.

  6. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    NASA Astrophysics Data System (ADS)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  7. Optimization of the procedure for determining integral texture parameters of products from zirconium-based alloys using the orientation distribution function

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu A.; Isaenkova, M. G.; Krymskaya, O. A.; Fesenko, V. A.; Babich, Y. A.

    2016-04-01

    Integral texture Kearns parameters, or f-parameters, are the one of the characteristics that is controlled during the tube production of Zr-based alloys now. These parameters define the anisotropy of physical and mechanical properties of the products. f-parameters are the sum of effective fractions of basal normals aligned in a selected sample direction. However, so far there is no standardized procedure for their calculation. The widespread availability of X-ray diffractometers, the high statistical significance of the results and the software development for texture analysis causes the optimality of the f-parameters determination by complete pole figures (0001) calculated through orientation distribution function (ODF). Accuracy analysis of the ODF extraction by several incomplete pole figures using LaboTex software was carried out in this paper. The comparison of the calculated data was performed with experimental complete pole figures (0001) obtained by «sewing» method. Various texture types, different number and combinations of incomplete pole figures were considered. For this purpose, 6 incomplete pole figures - - were registered for each of three mutually perpendicular surfaces of the CANDU-tube sample. By comparison of experimental and calculated by ODF complete pole figures as well as f-parameters, procedures of their determination were optimized for products from Zr-based alloys.

  8. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  9. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  10. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  11. Computer-assisted infrared spectra interpretation for amorphous silicon alloys

    NASA Astrophysics Data System (ADS)

    Kavak, Hamide; Esen, Ramazan

    2005-12-01

    A computer program for the structural interpretation of the infrared (IR) spectra is developed and tested. The interpretation of the IR spectra is made by using an hybrid system which includes library search and rule-based interpretation methods together. The computer programs were written in Pascal Codes. The prototype IR library of silicon alloys includes amorphous silicon (a-Si), amorphous silicon dioxide (a-SiOx), amorphous silicon nitride (a-Si3N4) and amorphous silicon carbide (a-SiC) references. The known spectra of these compounds were fed into the system as an unknown samples. The performance of the developed program was evaluated on a test set of 157 spectra and the percentages of successful identification ranged between 78% and 99% for different alloys.

  12. Kinetics of a-Si:H bulk defect and a-Si:H/c-Si interface-state reduction

    NASA Astrophysics Data System (ADS)

    de Wolf, Stefaan; Ballif, Christophe; Kondo, Michio

    2012-03-01

    Low-temperature annealing of hydrogenated amorphous silicon (a-Si:H) is investigated. An identical energy barrier is found for the reduction of deep defects in the bulk of a-Si:H films and at the interface such layers form with crystalline Si (c-Si) surfaces. This finding gives direct physical evidence that the defects determining a-Si:H/c-Si interface recombination are silicon dangling bonds and that also kinetically this interface has no unique features compared to the a-Si:H bulk.

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  15. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  16. Defects in a-Si and a-Si:H: A numerical study

    NASA Astrophysics Data System (ADS)

    Knief, Simone; von Niessen, Wolfgang; Koslowski, Thorsten

    1998-08-01

    We present a numerical study of the electronic properties of various structural models of amorphous silicon and hydrogenated amorphous silicon. Starting from an ideal random network, dangling bonds, floating bonds, double bonds, microvoids, hydrogenated dangling bonds, and hydrogenated floating bonds are introduced. The concentrations of these defects can be varied independently, the amount of disorder introduced to the system is therefore strictly controllable. Two continuous random networks, the vacancy model of Duffy, Boudreaux, and Polk and the bond switching model of Wooten, Winer, and Weaire (WWW model) are investigated. For the relaxation of the structures the potentials of Keating and of Stillinger and Weber are employed. The electronic structure is described by a tight-binding Hamiltonian; the localized or extended character of the eigenstates is investigated via a scaling approach. The vacancy model shows a band gap for small defect concentrations but this fills up with increasing disorder. Similar behavior is found for the case of the other models. In general defects introduce states into the gap region of a-Si, where the dangling bonds lead to the largest density of states in the gap region for a given defect concentration. This model turns out to be unique. For small system sizes an impurity band results that dramatically changes its character for large systems above 4000 atoms to a nearly uniform density of states as observed experimentally. In a-Si:H the dangling and floating bonds are removed and a mobility gap results with a width in good agreement with experiment. The experimentally observed tailing of the band into the gap region (first linear, then exponential) is well described only for the a-Si:H model derived from the vacancy model and for very large system sizes above 4000 atoms. The WWW model does not lead to this tail behavior. Localized states are found at all band edges but states at the bottom of the conduction band are more strongly

  17. Magnesium and magnesium alloys

    SciTech Connect

    Avedesian, M.; Baker, H.

    1998-12-31

    This new handbook is the most comprehensive publication of engineering information on commercial magnesium alloys under one cover in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the industrial practices currently used throughout the world, as well as the properties of the products critical to their proper application. Contents include: general characteristics; physical metallurgy; melting, refining, alloying, recycling, and powder production; casting; heat treatment; forging, rolling, and extrusion; semisolid processing; forming; joining; cleaning and finishing; selection, application, and properties of grades and alloys; design considerations; mechanical behavior and wear resistance; fatigue and fracture-mechanics; high-temperature strength and creep; corrosion and stress-corrosion cracking; specification.

  18. PILOT EVALUATION OF VANADIUM ALLOYS.

    DTIC Science & Technology

    ARCS, SHEETS, ROLLING(METALLURGY), HIGH TEMPERATURE, SCIENTIFIC RESEARCH, COMPRESSIVE PROPERTIES, DUCTILITY, CREEP, OXIDATION, COATINGS , SILICIDES , HARDNESS, WELDING, EXTRUSION, TANTALUM ALLOYS, MOLYBDENUM ALLOYS....VANADIUM ALLOYS, * NIOBIUM ALLOYS, MECHANICAL PROPERTIES, MECHANICAL PROPERTIES, TITANIUM ALLOYS, ZIRCONIUM ALLOYS, CARBON ALLOYS, MELTING, ELECTRIC

  19. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  20. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  1. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  2. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    SciTech Connect

    J. Arps; K. Coulter

    2006-09-30

    In the past quarter, we have conducted additional characterization and permeation tests on different Pd alloy membranes including PdCuTa ternary alloy materials. We attempted to address some discrepancies between SwRI{reg_sign} and CSM relating to PdCu stoichiometry by preparing a range of PdCu membranes with compositions from {approx}58-65 at% Pd (bal. Cu). While some difficulties in cutting and sealing these thin membranes at CSM continue, some progress has been made in identifying improved membrane support materials. We have also completed an initial cost analysis for large-scale vacuum deposition and fabrication of thin Pd ally membranes and project that the process can meet DOE cost targets. Minimal progress was made in the past quarter relating to the testing of prototype membrane modules at Idatech. In the past quarter Idatech was acquired by a UK investment firm, which we believe may have impacted the ability of key technical personnel to devote sufficient time to support this effort. We are hopeful their work can be completed by the end of the calendar year.

  3. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  4. Tungsten and tungsten-alloy powder metallurgy: Powder production and applications-excluding lamps. November 1971-July 1989 (Citations from the US Patent data base). Report for November 1971-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys including various applications of these materials. The hydrogen reduction of tungsten compounds together with alloying-element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of various cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains 60 citations fully indexed and including a title list.)

  5. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  6. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  7. Absorption in a-Si/SiO2 Superlattices

    NASA Astrophysics Data System (ADS)

    Kilpelä, O.; Karppinen, M.; Novikov, S.; Sokolov, V.; Yliniemi, S.

    a-Si/SiO2 superlattices were grown on quartz by MBD (Molecular Beam Deposition) using in situ oxidation by an RF-plasma source. The a-Si layer thicknesses were varied from 0.5-2.5nm while the SiO2 layer thicknesses (1.0nm) were kept constant. Optical transmission and reflection measurements were performed on these samples at room temperature. The recorded spectra were then analyzed with a commercial optical thin film analysis program. The band gaps were derived from constant-n and non-constant-n forms of Tauc and Cody laws. The observed blueshift of the band gap, with decreasing a-Si layer thickness, is attributed to quantum confinement in the a-Si sublayers.

  8. Electron cyclotron resonance microwave plasma deposition of a-Si:H and a-SiC:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1991-01-01

    The paper reports electron cyclotron resonance (ECR) deposition of a-Si:H and a-SiC:H thin films using SiH4, CH4, and hydrogen mixed gas plasmas. The ECR deposition conditions were investigated in the pressure region of 0.1 to 100 mtorr, and the film properties were characterized by light and dark conductivity measurements, XRD, Raman spectroscopy, optical transmission, and IR spectroscopy. In addition, the hydrogen dilution effect on ECR-deposited a-SiC:H was investigated.

  9. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  10. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  11. Material properties and device evaluations of ECR-deposited a-Si:H and a-SiC:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Essick, J. M.

    1991-01-01

    Device-quality a-Si:H and a-SiC:H films have been deposited using electron cyclotron resonance (ECR) microwave plasmas of SiH4, CH4, and H2 mixtures. Typical material properties of ECR-deposited, photosensitive a-Si:H films are: (1) high photosensitivity up to 2 x 106 with a photoconductivity of 10 exp -5 to 10 exp -4/(Ohm-cm), (2) a Tauc gap of 1.75 to 1.85 eV, (3) an Urbach slope of 50-60 meV determined by the constant photocurrent method, and (4) an integrated defect density of 1-2 x 10 exp 16/cu cm determined by junction capacitance measurements. Highly conductive, p-type a-SiC:H films have been produced by ECR plasmas with a conductivity of 0.2/(Ohm-cm).

  12. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  13. Comparison of crystallization kinetics in a-Si/Cu and a-Si/Al bilayer recording films under thermal annealing and pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Her, Yung-Chiun; Chen, Chih-Wei; Wu, Chun-Lin

    2006-06-01

    Under thermal annealing, the crystallization temperatures of a-Si in a-Si/Cu and a-Si/Al bilayer recording films were significantly reduced to around 485 and 357 °C, respectively, and the activation energies for crystallization were reduced to about 3.3 eV. The formation of Cu3Si phase prior to crystallization of a-Si was found to occur at around 175 °C in a-Si/Cu, while no Al silicide was observed in a-Si/Al before crystallization of a-Si. The reaction exponents for a-Si/Cu and a-Si/Al were determined to be around 1.8 and 1.6, respectively, corresponding to a crystallization process in which grain growth occurs with nucleation, and the nucleation rate decreases with the progress of grain growth. Under pulsed laser irradiation, the precipitation of Cu3Si phases and crystallization of a-Si were observed in a-Si/Cu, while the crystallization and reamorphization of a-Si took place sequentially in a-Si/Al. The reaction exponents for a-Si/Cu and a-Si/Al, determined to be about 2.0 and 2.2, respectively, are slightly higher than those under thermal annealing, indicating that the crystallization processes of a-Si/Cu and a-Si/Al under pulsed laser irradiation are similar to those under thermal annealing. However, the decrease of nucleation rate with the progress of grain growth is slower. At the same time, the activation energies for crystallization of a-Si/Cu and a-Si/Al, estimated to be about 0.18 and 0.22 eV, respectively, are nearly an order of magnitude lower than those under thermal annealing. This may be explained by the explosive crystallization of a-Si by mechanical impact, with a high power pulsed laser.

  14. Charge collection in a-Si:H/a-Si{sub 1-x}C{sub x} multilayers photodetectors

    SciTech Connect

    Jing, T.; Drewray, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Delgado, J.C.; Bertomeu, J.

    1994-04-01

    Amorphous semiconductors have been used as thin film transistor(TFT), solar cell, phototransistors. In this paper we study the charge collected properties of a-Si:H/a-Si{sub 1-x}C:H{sub x} multilayer pin photodiode. In a-Si:H pin photodiode, the photogenerated carriers can be totally collected under strong electric field under reverse bias. However, our measurements show that in the a-Si:H/a-Si{sub l-x}C:H{sub x} multilayer pin photodiode photogenerated electrons and holes drift toward the electrodes under a certain bias, the total collected charge shows no saturation with bias and exhibits a continuous increase with reverse bias. We classify that the device works at two regions. In Region 1, the device behaves like a photodiode. This charge collection efficiency drop from theoretical value may indicate charge capture or confinement at the interfaces and trapping at the a-Si:H potential wells. These charges trapped or confined can be released at the interface and quantum well at higher electric field. In Region 2, above a critical bias voltage, the device works as a breakdown diode with a series photosensitive resistor which contributes higher collection efficiency, namely optical gain greater than unity.

  15. Tin induced a-Si crystallization in thin films of Si-Sn alloys

    SciTech Connect

    Neimash, V. E-mail: oleks.goushcha@nuportsoft.com; Poroshin, V.; Goushcha, A. O. E-mail: oleks.goushcha@nuportsoft.com; Shepeliavyi, P.; Yukhymchuk, V.; Melnyk, V.; Kuzmich, A.; Makara, V.

    2013-12-07

    Effects of tin doping on crystallization of amorphous silicon were studied using Raman scattering, Auger spectroscopy, scanning electron microscopy, and X-ray fluorescence techniques. Formation of silicon nanocrystals (2–4 nm in size) in the amorphous matrix of Si{sub 1−x}Sn{sub x}, obtained by physical vapor deposition of the components in vacuum, was observed at temperatures around 300 °C. The aggregate volume of nanocrystals in the deposited film of Si{sub 1−x}Sn{sub x} exceeded 60% of the total film volume and correlated well with the tin content. Formation of structures with ∼80% partial volume of the nanocrystalline phase was also demonstrated. Tin-induced crystallization of amorphous silicon occurred only around the clusters of metallic tin, which suggested the crystallization mechanism involving an interfacial molten Si:Sn layer.

  16. First-principles simulations of vibrational decay and lifetimes in a -Si:H and a -Si:D

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2017-03-01

    Phonon lifetime in materials is an important observable that conveys basic information about structure, dynamics, and anharmonicity. Recent vibrational transient-grating measurements, using picosecond infrared pulses from free-electron lasers, have demonstrated that the vibrational-population decay rates of localized high-frequency stretching modes (HSMs) in hydrogenated and deuterated amorphous silicon (a -Si:H/D) increase with temperature and the vibrational energy redistributes among the bending modes of Si in a -Si:H/D. Motivated by this observation, we address the problem from first-principles density-functional calculations and study the time evolution of the vibrational-population decay in a -Si:H/D, the average decay times, and the possible decay channels for the redistribution of vibrational energy. The average lifetimes of the localized HSMs in a -Si:H and a -Si:D are found to be approximately 51-92 ps and 50-78 ps, respectively, in the temperature range of 25-200 K, which are consistent with experimental data. A weak temperature dependence of the vibrational-population decay rates has been observed via a slight increase of the decay rates with temperature, which can be attributed to stimulated emission and increased anharmonic coupling between the normal modes at high temperature.

  17. Study and Simulation of the Heterojunction Thin Film Solar Cell a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)

    NASA Astrophysics Data System (ADS)

    Toufik, Zarede; Hamza, Lidjici; Mohamed, Fathi; Achour, Mahrane

    2016-08-01

    In this article, we present a study based on numerical simulation of the electrical characteristics of a thin-film heterojunction solar cell (a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)), using the automat for simulation of hetero-structures (AFORS-Het) software. This cell is composed of four main layers of silicon (Si): (i) 5 nm amorphous silicon doped n, (ii) 100 μm crystalline silicon (substrate) doped p, (iii) 5 nm amorphous silicon doped p, and (iv) 3 nm amorphous silicon intrinsic. This cell has a front and rear metal contact of aluminum and zinc oxide (ZnO) front layer transparent conductive oxide of 80 nm thickness. The simulations were performed at conditions of "One Sun" irradiation with air mass 1.5 (AM1.5), and under absolute temperature T = 300 K. The simulation results have shown a high electrical conversion efficiency of about 30.29% and high values of open circuit voltage V oc = 779 mV. This study has also shown that the studied cell has good quality light absorption on a very broad spectrum.

  18. Powder metallurgy of vanadium and its alloys (review)

    SciTech Connect

    Radomysel'skii, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-10-01

    This article reviews the current powder metallurgy technology of vanadium and its alloys. Data are given on sintering, compacting, electrowinning and other current production techniques, as well as on the corrosion behavior and mechanical and physical properties of alloys produced by these different methods. The use of vanadium alloys as reactor and jet engine materials is also briefly discussed.

  19. The Fatigue of Powder Metallurgy Alloys.

    DTIC Science & Technology

    1982-01-08

    characteristics of an ingot metallurgy product, 7075 -T76. In all alloys high closure levels are observed atR=0.05 in the near threshold region, an...of two aluminum P/M alloys, X7090 and X7091. For comparison purposes, the ingot metallurgy (I/M) alloy 7075 -76 has also been tested. The results of...described in this report were obtained in extruded form from L Alcoa via Lockheed-California Company. These alloys are: P/M X7090-T6 P/M X7091-T7E69 I/M 7075

  20. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  1. A Study of Tungsten-Technetium Alloys

    NASA Technical Reports Server (NTRS)

    Maltz, J. W.

    1965-01-01

    Technetium is a sister element to rhenium and has many properties that are similar to rhenium. It is predicted that technetium will have about the same effects on tungsten as rhenium in regard to increase in workability, lowered ductile to brittle transition temperature, and improved ductility. The objectives of the current work are to recover technetium from fission product wastes at Hanford Atomic Products Operation and reduce to purified metal; prepare W-Tc alloys containing up to 50 atomic% Tc; fabricate the alloy ingots to sheet stock, assessing the effect of technetium on workability; and perform metallurgical and mechanical properties evaluation of the fabricated alloys. Previous reports have described the separation and purification of 800 g of technetium metal powder, melting of technetium and W-Tc alloys, and some initial observation of the alloy material.

  2. Photoemission study of Au on a-Si:H

    NASA Astrophysics Data System (ADS)

    Pi, Tun-Wen; Yang, A.-B.; Olson, C. G.; Lynch, D. W.

    1990-11-01

    We report a high-resolution photoemission study of Au evaporated on rf-sputtered a-Si:H at room temperature. Three regions of coverage can be classified according to the behavior of the valence-band and core-level spectra: an unreacted region with an equivalent thickness of 2 Å, followed by an intermixed Au/a-Si overlayer (~9 Å), and a dual-phase region at higher coverage. Au adatoms are dispersed in the unreacted region. They subsequently cluster in the intermixed region, where they attach to Si atoms that are not hydrogen bonded, suggesting that the intermixed Si is mainly from those that have dangling bonds. In the dual-phase region, two sets of Au 4f core levels evolve with higher binding energy, one from Au intermixed with Si, and the lower one exhibiting pure gold character. The interface eventually ends up with the sequence: a-Si:H(sub.)+(pure Au mixed with intermixed Au/Si)+(vac). This is unlike the case of Au on c-Si, which has a pure gold layer sandwiched by intermixed Au/Si complexes along the surface normal. Traces of silicon atoms on top of composite surfaces appear even at the highest coverage, 205 Å, of the gold deposit. The applicability of the four models previously used for the Au/c-Si interface is also briefly discussed.

  3. Hardfacing with cobalt and nickel alloys

    SciTech Connect

    Wu, J.B.C. ); Redman, J. , Los Angles, CA )

    1994-09-01

    The use of cobalt or nickel alloys for added wear resistance was initiated in the early 1900s with the development of the cobalt-chromium-tungsten family of alloys. The cobalt alloys were called the Stellite'' because of their bright, shiny, nontarnished appearance. Further development and characterization of this alloy system established its usage in unlubricated metal-to-metal contact or erosion by high-velocity fluid or solid particulate impingement. Initially, the alloys were used as solid castings but later were applied by welding to tougher or more ductile substrates, hence the birth of the hardfacing industry. Many of the original Stellite compositions are still in use, but many others, including the nickel and iron alloys, have been developed for special applications or for use by newer application procedures. Examining the microstructural features and wear properties of these families of hardfacing alloys can help in choosing the right alloy for the job. Various cobalt and nickel alloys, their available product forms and the corresponding hardfacing methods, are reviewed in this article.

  4. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  5. Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles

    NASA Astrophysics Data System (ADS)

    Apaydın, Ramazan Oğuzhan; Ebin, Burçak; Gürmen, Sebahattin

    2016-07-01

    Nanostructured copper-nickel (CuNi) and copper-nickel-indium (CuNiIn) alloy particles were produced from aqueous solutions of copper, nickel nitrates and indium sulfate by hydrogen reduction-assisted ultrasonic spray pyrolysis. The effects of reduction temperatures, at 973 K, 1073 K, and 1173 K (700 °C, 800 °C, and 900 °C), on the morphology and crystalline structure of the alloy particles were investigated under the conditions of 0.1 M total precursor concentration and 0.5 L/min H2 volumetric flow rate. X-ray diffraction studies were performed to investigate the crystalline structure. Particle size and morphology were investigated by scanning electron microscope and energy-dispersive spectroscopy was applied to determine the chemical composition of the particles. Spherical nanocrystalline binary CuNi alloy particles were prepared in the particle size range from 74 to 455 nm, while ternary CuNiIn alloy particles were obtained in the particle size range from 80 to 570 nm at different precursor solution concentrations and reduction temperatures. Theoretical and experimental chemical compositions of all the particles are nearly the same. Results reveal that the precursor solution and reduction temperature strongly influence the particle size of the produced alloy particles.

  6. Final Assessment of Preindustrial Solid-State Route for High-Performance Mg-System Alloys Production: Concluding the EU Green Metallurgy Project

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Plaza, Gerardo Garces; Giger, Franz; Kim, Shae K.

    2013-10-01

    The Green Metallurgy Project, a LIFE+ project co-financed by the European Union Commission, has now been completed. The purpose of the Green Metallurgy Project was to establish and assess a preindustrial process capable of using nanostructured-based high-performance Mg-Zn(Y) magnesium alloys and fully recycled eco-magnesium alloys. In this work, the Consortium presents the final outcome and verification of the completed prototype construction. To compare upstream cradle-to-grave footprints when ternary nanostructured Mg-Y-Zn alloys or recycled eco-magnesium chips are produced during the process cycle using the same equipment, a life cycle analysis was completed following the ISO 14040 methodology. During tests to fine tune the prototype machinery and compare the quality of semifinished bars produced using the scaled up system, the Buhler team produced interesting and significant results. Their tests showed the ternary Mg-Y-Zn magnesium alloys to have a highest specific strength over 6000 series wrought aluminum alloys usually employed in automotive components.

  7. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1976-11-01

    ii TABLE OF CONTENTS ABSTRACT .......................... Introduction ........................ Continuous Rheocasting ...ferrous alloys is fully and reliably operational. The Continuous Rheocaster works dependably in production runs in which typically up to 500 pounds... Rheocast stainless steel and the initiation of large scale Thixocasting runs to test actual die life. More than 3000 pounds of Rheocast stainless

  8. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1977-01-01

    months of the contract period were modified and improved. A new technique was developed for the production of Rheocast ingots of low temperature alloys...important variables in a continuous slurry producer, a Rheocasting apparatus, were identified and the relationship between these variables and the

  9. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  10. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  11. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase C for the period 1980 January 1-1980 March 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    Pilot reactor VSR-3 was operated with 75 to 120 SCFH O/sub 2/ to supply part of the process heat requirements by combustion of coke. No alloy was made and burden bridging persistently stopped operations. Burning larger coke particles, -3/8 in. +6 mesh, with O/sub 2/ injected through a larger diameter tuyere orifice resulted in oxygen attack on the reactor graphite liner. Updated thermochemical data for Al/sub 2/O/sub 3/ significantly changed the calculated reflux loading for a one-atm blast furnace, predicting almost total reflux and no alloy recovery. Based on these calculations and the experimental problems with combustion heated operation, VSR-3 was modified to study an alternate reduction concept - the blast-arc - which utilizes combustion heat to reduce SiO/sub 2/ to SiC at 1600/sup 0/C, and electrical heat to complete the reduction of Al/sub 2/O/sub 3/ and the production of alloy. Design, fabrication, and installation of most of the pilot crystallizer sytem was completed.

  12. Alloy 718 for Oilfield Applications

    NASA Astrophysics Data System (ADS)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  13. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  14. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  15. Thermal stability of interconnected a-Si:H solar modules

    NASA Astrophysics Data System (ADS)

    Willing, F.; Bennett, M.; Newton, J.

    Interconnected solar modules with cell structures of glass/transparent-conducting-oxide (TCO)/piNa-Si/aluminum were heat-treated at a series of elevated temperatures in order to accelerate two degradation modes: interdiffusion at the aluminum/a-Si back contact, and conductivity loss at the aluminum/TCO contacts which serve as connections between individual cells in a module. Plots of device lifetime vs. 1/T extrapolated to normal operating temperatures showed that neither degradation mode would significantly effect module stability over the projected lifetime of the device.

  16. Nickel alloys in the oral environment.

    PubMed

    Wataha, John C; Drury, Jeanie L; Chung, Whasun O

    2013-07-01

    The use of nickel casting alloys for long-term restorations in dentistry has long been controversial. A 'tug-of-war' between economic, engineering and biological considerations is central to this controversy; nickel-casting alloys have low costs and favorable physical properties, but are corrosion-prone in the oral environment. Clinicians and researchers have questioned the safety of nickel-containing dental alloys because several nickel compounds are known to cause adverse biological effects in vivo and in vitro in contexts outside of dentistry. The debate revolves around the extent to which corrosion products from oral restorations cause intraoral or systemic biological problems. Current evidence suggests that nickel alloys may be used successfully and safely in dentistry if clinical risks are taken into account. However, these alloys may cause significant clinical problems, primarily allergenic and inflammatory, if the risks are ignored.

  17. Coagulated silica - a-SiO2 admixture in cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Rovnaníková, Pavla; Pavlík, Zbyšek

    2016-07-01

    Amorphous silica (a-SiO2) in fine-grained form possesses a high pozzolanic activity which makes it a valuable component of blended binders in concrete production. The origin of a-SiO2 applied in cement-based composites is very diverse. SiO2 in amorphous form is present in various amounts in quite a few supplementary cementing materials (SCMs) being used as partial replacement of Portland cement. In this work, the applicability of a commercially produced coagulated silica powder as a partial replacement of Portland cement in cement paste mix design is investigated. Portland cement CEM I 42.5R produced according to the EU standard EN 197-1 is used as a reference binder. Coagulated silica is applied in dosages of 5 and 10 % by mass of cement. The water/binder ratio is kept constant in all the studied pastes. For the applied silica, specific surface area, density, loss on ignition, pozzolanic activity, chemical composition, and SiO2 amorphous phase content are determined. For the developed pastes on the basis of cement-silica blended binder, basic physical properties as bulk density, matrix density, and total open porosity are accessed. Pore size distribution is determined using MIP analysis. Initial and final setting times of fresh mixtures are measured by automatic Vicat apparatus. Effect of silica admixture on mechanical resistivity is evaluated using compressive strength, bending strength, and dynamic Young's modulus measurement. The obtained data gives evidence of a decreased workability of paste mixtures with silica, whereas the setting process is accelerated. On the other hand, reaction activity of silica with Portland cement minerals results in a slight decrease of porosity and improvement of mechanical resistivity of cement pastes containing a-SiO2.

  18. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  19. Corrosion behavior of stainless steel-zirconium alloy waste forms.

    SciTech Connect

    Abraham, D. P.

    1999-01-13

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The baseline waste form for spent fuels from the EBR-II reactor is a stainless steel-15 wt.% zirconium (SS-15Zr) alloy. This article briefly reviews the microstructure of various SS-Zr waste form alloys and presents results of immersion corrosion and electrochemical corrosion tests performed on these alloys. The electrochemical tests show that the corrosion behavior of SS-Zr alloys is comparable to those of other alloys being considered for the Yucca Mountain geologic repository. The immersion tests demonstrate that the SS-Zr alloys are resistant to selective leaching of fission product elements and, hence, suitable as candidates for high-level nuclear waste forms.

  20. Electrical and optical properties of hydrogenated amorphous silicon-germanium (a-Si1 - xGexH) films prepared by reactive ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Bhan, Mohan Krishan; Malhotra, L. K.; Kashyap, Subhash C.

    1989-09-01

    Thin films of hydrogenated amorphous silicon-germanium (a-Si1-xGex: H) alloys have been prepared by reactive ion beam sputtering of a composite target of silicon and germanium. The dependence of the deposition rate, conductivity-temperature variation, optical absorption coefficient, refractive index, imaginary part of the dielectric constant, hydrogen content, and infrared (IR) absorption spectra on germanium content (x) are reported and analyzed. For a typical composition—a-Si28Ge72:H (x=0.72), the effect of beam voltage, H2:Ar flow ratio, and substrate temperature on the material properties have also been investigated. For the films prepared with increasing x, the expected behavior of a decrease in both hydrogen content and band gap and an increase in the electrical conductivity have been observed. The films prepared at x>0.80 are found to be more homogeneous than the films deposited at 0.0a-Si1-xGex: H network in the latter case. The a-Si28Ge72:H films exhibiting minimum conductivity (1.7×10-7 Ω-1 cm-1) have been obtained for an H2:Ar flow ratio of 10:1 and a beam voltage and substrate temperature of 1500 V and 300 °C, respectively. These films contain a hydrogen concentration of 10.2 at. % and show an optical band gap of 1.25 eV. The IR studies have shown that a-Si28Ge72:H films prepared both at low beam voltages and at low substrate temperatures show the unusual preferential attachment of hydrogen to Ge rather than to Si.

  1. Research of annealing mode for high accuracy stamped parts production from titanium alloy 83Ti-5Al-5Cr-5Mo after tooling

    NASA Astrophysics Data System (ADS)

    Balaykin, A. V.; Nosova, E. A.; Galkina, N. V.

    2016-11-01

    The aim of the work is to solve question of accuracy increase in tolled and annealed parts made from forged rod of titanium alloy. Plate pieces were cut from cross-section, annealed at 800°C during 1, 2, 3, 4 and 5 hours. The criterion combining minimum bending radius and spring back angle was found. This criterion shows the maximum values after tooling and annealing for 3 hours.

  2. Use of a Si(Li) detector as β spectrometer.

    PubMed

    Dryák, P; Kovář, P

    2014-05-01

    The aim of this work is to demonstrate the capability of a Si(Li) detector for the measurement of β spectra, despite the energy absorption in air and in the Be window. A simple source holder fixes the source on the symmetry axis at 3mm from the detector window. The β-sources are produced by evaporation on a plastic backing plate. Absorbing materials between the source and the sensitive volume of the detector are 3 mm of air, a Be window, 0.1 μm Si and 20 nm of gold. A model of the detector was created for β spectra simulation using the MCNP 4A code. Experimental spectra of (14)C, (147)Pm, (204)Tl, (90)Sr/(90)Y were compared with simulated spectra.

  3. Plasmonic nano-antenna a-Si:H solar cell.

    PubMed

    Di Vece, Marcel; Kuang, Yinghuan; van Duren, Stephan N F; Charry, Jamie M; van Dijk, Lourens; Schropp, Ruud E I

    2012-12-03

    In this work the effects of plasmonics, nano-focusing, and orthogonalization of carrier and photon pathways are simultaneously explored by measuring the photocurrents in an elongated nano-scale solar cell with a silver nanoneedle inside. The silver nanoneedles formed the support of a conformally grown hydrogenated amorphous silicon (a-Si:H) n-i-p junction around it. A spherical morphology of the solar cell functions as a nano-lens, focusing incoming light directly on the silver nanoneedle. We found that plasmonics, geometric optics, and Fresnel reflections affect the nanostructured solar cell performance, depending strongly on light incidence angle and polarization. This provides valuable insight in solar cell processes in which novel concepts such as plasmonics, elongated nanostructures, and nano-lenses are used.

  4. MBE growth of GaP on a Si substrate

    SciTech Connect

    Sobolev, M. S. Lazarenko, A. A.; Nikitina, E. V.; Pirogov, E. V.; Gudovskikh, A. S.; Egorov, A. Yu.

    2015-04-15

    It is shown that single-crystal GaP buffer layers can be formed on a Si substrate by molecular-beam epitaxy, with the “migration-enhanced epitaxy” procedure applied in the stage in which the nucleating layer is formed. When a GaP layer is produced on a p-type silicon substrate, a p-n junction is created in a natural way between the p-Si substrate and the surface n-Si layer produced by the diffusion of phosphorus into the substrate during the course of the epitaxial growth of GaP. This p-n junction can be used as the first junction of a silicon-based multijunction photovoltaic converter.

  5. Hydrogenated Amorphous Silicon (a-Si:H) Colloids

    SciTech Connect

    Harris, Justin T.; Hueso, Jose L.; Korgel, Brian A.

    2010-12-14

    Colloidal particles of hydrogenated amorphous silicon (a-Si:H) were synthesized by decomposition of trisilane (Si{sub 3}H{sub 8}) in supercritical n-hexane (sc-hexane) at temperatures ranging from 380 to 550 °C. The reaction temperature, pressure and Si{sub 3}H{sub 8} concentration have a significant influence on the average particle size, Si bond order and hydrogen content. The particle diameter could be varied from 170 nm to 1.7 μm, with hydrogen loadings between 10% and 58%. Raman spectroscopy of the particles revealed significant differences in Si bond order that correlated with hydrogen content, with the lowest reaction temperatures yielding particles with the least structural order and most associated hydrogen. Particles synthesized at temperatures higher than 420 °C had sufficient bond order to allow crystallization under the Raman laser probe.

  6. Comparison of Three Primary Surface Recuperator Alloys

    SciTech Connect

    Matthews, Wendy; More, Karren Leslie; Walker, Larry R

    2010-01-01

    Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 C ({approx}1200 F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 C ({approx}1200 F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25+Nb (AL 20-25+Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this

  7. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-06-16

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  8. Hydrogen storage systems from waste Mg alloys

    NASA Astrophysics Data System (ADS)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  9. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  10. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  11. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  12. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  13. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  14. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  15. Rhenium alloying of tungsten heavy alloys

    SciTech Connect

    German, R.M.; Bose, A.; Jerman, G.

    1989-01-01

    Alloying experiments were performed using rhenium additions to a classic 90 mass % tungsten heavy alloy. The mixed-powder system was liquid phase sintered to full density at 1500 C in 60 min The rhenium-modified alloys exhibited a smaller grain size, higher hardness, higher strength, and lower ductility than the unalloyed system. For an alloy with a composition of 84W-6Re-8Ni-2Fe, the sintered density was 17, 4 Mg/m{sup 3} with a yield strength of 815 MPa, tensile strength of 1180 MPa, and elongation to failure of 13%. This property combination results from the aggregate effects of grain size reduction and solid solution hardening due to rhenium. In the unalloyed system these properties require post-sintering swaging and aging; thus, alloying with rhenium is most attractive for applications where net shaping is desired, such as by powder injection molding.

  16. Production of Palladium-Silver Thin Film Alloys and Measurements of Phase Diagrams of the PALLADIUM(1-X)SILVER(X)HYDROGEN System.

    NASA Astrophysics Data System (ADS)

    Villalobos-Velasco, Jaime

    1988-06-01

    PdAg Alloy thin films of different compositions were fabricated by crosscondensation of two atomic fluxes on temperature controlled quartz crystal substrates. The fluxes were generated by thermal evaporation of pure materials produced by two electron-beam-guns (e-guns). The process took place under clean high vacuum conditions. Film thickness, growth rate and composition were precisely computer-controlled utilizing three quartz crystal mass monitors (QCM) and a combination of shutters. Criteria for quality of the films were accuracy and homogeneity of thickness and alloy composition. Hydrogen pressure and temperature were carefully controlled for the performance of the hydrogen cycling process in order to study the interaction of hydrogen with the metal alloy thin film structures. All process variables were automatically monitored and controlled to eliminate inaccuracies inherent in manual control. Software and hardware were developed for repeatability of the process parameters and variables to ensure reproduction of the evaporation and hydrogen-cycling processes. Phase diagrams consisting of pressure concentration relations from repeated hydrogen cycling processes were measured using the QCM technique. Results on palladium hydride obtained using the volumetric technique were combined with results from the QCM on similar systems for the development of an empirical method to extract the stress effect inherent in the QCM produced by the expansion of the volume of the palladium host lattice upon hydrogen adsorption. As a consequence bulk behavior of the phase diagrams for thin films thicker than 2500 A were predicted. The results describe the evolution of the phase diagrams of palladium thin films as their thicknesses approach bulk. The evolution of features of the phase diagrams as the incorporation of silver in the palladium host structure changes from 0 to 30% is also described. A reduction of the hydrogen solubility of the PdAg structure occurs as the silver

  17. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zheng, Zhou; Xu, Jing; Wang, Yan

    2014-04-01

    In this paper, the effects of milling duration and composition on the microstructure and magnetic properties of equi-atomic FeSiBAlNi and FeSiBAlNiNb high entropy alloys during mechanical alloying have been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy and alternating gradient magnetometry. The amorphous high entropy alloys have been successfully fabricated using the mechanical alloying method. The results show that the Nb addition prolongs the milling time for the formation of the fully FeSiBAlNi amorphous phase and decreases the glass forming ability. However, FeSiBAlNiNb amorphous high entropy alloy has the higher thermal stability and heat resisting properties. Moreover, the as-milled FeSiBAlNi(Nb) powders are soft-magnetic materials indicated by their low coercivity. The saturation magnetization of the as-milled FeSiBAlNi(Nb) powders decreases with prolonging of the milling time and shows the lowest value when the amorphous high entropy alloys are formed. It suggests that the as-milled products with solid solution phases show the better soft-magnetic properties than those with fully amorphous phases. The Nb addition does not improve the soft-magnetic properties of the FeSiBAlNi high entropy alloys. Rather, both amorphous high entropy alloys have similar soft-magnetic properties after a long milling time.

  18. Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi

    2017-03-01

    The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.

  19. Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi

    2016-12-01

    The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂(c/a)/∂C. An alloying element that has a large value of ∂(c/a)/∂C effectively enhances the wear property.

  20. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  1. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  2. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  3. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  4. Welding the four most popular aluminum alloys

    SciTech Connect

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  5. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  6. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  7. Production of semi-solid feedstock of A356 alloy and A356-5TiB2 in-situ composite by cooling slope casting

    NASA Astrophysics Data System (ADS)

    Kumar, S. Deepak; Acharya, Mihira; Mandal, A.; Chakraborty, M.

    2015-02-01

    Cooling Slope casting process has gained significant importance for manufacturing of semi-solid feedstock Al alloys and composites which find applications in automotive and aerospace industries. The primary objective of this research is to generate the semi-solid feedstock suitable for thixoforming process. The current work discusses the phenomena involved in the evolution of microstructure of the semi-solid feed stock by Cooling Slope casting process and the effect of various parameters. The process parameters like the angle and length of inclined plate affect the size and morphology of α-Al phase. The Cooling slope process resulted in the formation of fine grain size of about 38 μm of α-Al phase, compared to that of 98 μm processed conventionally. Further, the pouring temperature played a crucial role in the generation of semi-solid microstructures in case of both the alloy and composites. Moreover, fine TiB2 particles of size 0.2-0.5 μm are uniformly distributed in the almost spherical α-Al grains and at the grain boundaries in the composite feed stock. Cooling slope casting route is a suitable and economical route for semi-solid slurry generation by effectively varying the process parameters.

  8. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    SciTech Connect

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was {approximately}400 MHz and the noise charge {approximately}1000 electrons at a 1 {mu}sec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of {approximately}0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  9. Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces

    NASA Astrophysics Data System (ADS)

    de Wolf, Stefaan; Demaurex, Bénédicte; Descoeudres, Antoine; Ballif, Christophe

    2011-06-01

    Light-induced degradation (LID) of crystalline silicon (c-Si) surfaces passivated with hydrogenated amorphous silicon (a-Si:H) is investigated. The initial passivation decays on polished c-Si(100) surfaces on a time scale much faster than usually associated with bulk a-Si:H LID. This phenomenon is absent for the a-Si:H/c-Si(111) interface. We attribute these differences to the allowed reconstructions on the respective surfaces. This may point to a link between the presence of so-called “fast” states and (internal) surface reconstruction in bulk a-Si:H.

  10. Hydrogen-plasma-induced Rapid, Low-Temperature Crystallization of μm-thick a-Si:H Films

    PubMed Central

    Zhou, H. P.; Xu, M.; Xu, S.; Liu, L. L.; Liu, C. X.; Kwek, L. C.; Xu, L. X.

    2016-01-01

    Being a low-cost, mass-production-compatible route to attain crystalline silicon, post-deposition crystallization of amorphous silicon has received intensive research interest. Here we report a low-temperature (300 °C), rapid (crystallization rate of ~17 nm/min) means of a-Si:H crystallization based on high-density hydrogen plasma. A model integrating the three processes of hydrogen insertion, etching, and diffusion, which jointly determined the hydrogenation depth of the excess hydrogen into the treated micrometer thick a-Si:H, is proposed to elucidate the hydrogenation depth evolution and the crystallization mechanism. The effective temperature deduced from the hydrogen diffusion coefficient is far beyond the substrate temperature of 300 °C, which implies additional driving forces for crystallization, i.e., the chemical annealing/plasma heating and the high plasma sheath electric field. The features of LFICP (low-frequency inductively coupled plasma) and LFICP-grown a-Si:H are also briefly discussed to reveal the underlying mechanism of rapid crystallization at low temperatures. PMID:27600866

  11. Controlling quality of ferroalloys and alloying additives in the manufacture of nickel alloys for nuclear applications

    SciTech Connect

    Stryker, R.S.

    1981-01-01

    Nickel alloys supplied to the nuclear industry must meet strict requirements for quality and traceability of constituents. Ensuring that end products meet those requirements involves careful control of the raw materials used in melting the alloys. Especially important is an effective system of quality control for purchasing and consuming ferroalloys and alloying additives. Development and operation of such a system requires (1) adequate specifications, (2) good relations with suppliers, (3) an approved-suppliers list, (4) formal receiving inspection, and (5) backup surveillance during processing.

  12. Alloy 10: A 1300F Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 13000 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, Allied Signal's Alloy 10, is a promising candidate for gas turbine engines to be used on smaller, regional aircraft. For this application, compressor/turbine disks must withstand temperatures of 1300 F for several hundred hours over the life of the engine. In this paper, three key properties of Alloy 10--tensile, 0.2% creep, and fatigue crack growth--will be assessed at 1300 F.

  13. Method for Production of Powders

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1997-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  14. The recyclability of lead alloys

    SciTech Connect

    Worcester, A.W.; Sankovitch, M.J.

    1997-12-01

    In 1996, the production of battery lead and alloys from the recycle industry was 3 times the Primary lead production in the United States. The Buick Resource Recovery Center of the Doe Run Lead Company at a capacity of 90,000 tons per year is one of 25 plants recycling lead metal in the United States. This plant was commissioned in 1991 and has been running with a 0.30 Lost Time Accident rate per 200,000 hours of work. The paper delineates and ranks the cost of treating various impurities found in lead.

  15. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  16. Surface alloying of Mg alloys after surface nanocrystallization.

    PubMed

    Zhang, Ming-Xing; Shi, Yi-Nong; Sun, Haiqing; Kelly, Patrick M

    2008-05-01

    Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.

  17. Reference Alloy Waste Form Fabrication and Initiation of Reducing Atmosphere and Reductive Additives Study on Alloy Waste Form Fabrication

    SciTech Connect

    S.M. Frank; T.P. O'Holleran; P.A. Hahn

    2011-09-01

    This report describes the fabrication of two reference alloy waste forms, RAW-1(Re) and RAW-(Tc) using an optimized loading and heating method. The composition of the alloy materials was based on a generalized formulation to process various proposed feed streams resulting from the processing of used fuel. Waste elements are introduced into molten steel during alloy fabrication and, upon solidification, become incorporated into durable iron-based intermetallic phases of the alloy waste form. The first alloy ingot contained surrogate (non-radioactive), transition-metal fission products with rhenium acting as a surrogate for technetium. The second alloy ingot contained the same components as the first ingot, but included radioactive Tc-99 instead of rhenium. Understanding technetium behavior in the waste form is of particular importance due the longevity of Tc-99 and its mobility in the biosphere in the oxide form. RAW-1(Re) and RAW-1(Tc) are currently being used as test specimens in the comprehensive testing program investigating the corrosion and radionuclide release mechanisms of the representative alloy waste form. Also described in this report is the experimental plan to study the effects of reducing atmospheres and reducing additives to the alloy material during fabrication in an attempt to maximize the oxide content of waste streams that can be accommodated in the alloy waste form. Activities described in the experimental plan will be performed in FY12. The first aspect of the experimental plan is to study oxide formation on the alloy by introducing O2 impurities in the melt cover gas or from added oxide impurities in the feed materials. Reducing atmospheres will then be introduced to the melt cover gas in an attempt to minimize oxide formation during alloy fabrication. The second phase of the experimental plan is to investigate melting parameters associated with alloy fabrication to allow the separation of slag and alloy components of the melt.

  18. Synthesis of molybdenum disilicide by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Srinivasan, S.R.; Petrovic, J.J.; Maggiore, C.J.

    1991-01-01

    We have used mechanical alloying (MA), a high-energy ball-milling process, to prepare MoSi{sub 2} and MoSi{sub 2}-based alloys starting from mixtures of the pure elements. This synthesis route has the potential for preparing oxygen-free MoSi{sub 2} and the flexibility for close control of second-phase additions. MA, first developed for producing oxide-dispersions in Ni-based superalloys, takes advantage of the atomic-level mixing accomplished by the intense mechanical working of the alloy constituents. All the alloying reactions during the process occur in the solid-state. This technique is thus well-suited for synthesizing high melting point materials such as MoSi{sub 2}. The product of the MA process is a highly homogeneous and fine-grained powder. Its purity is determined by the purity of the starting materials and possible impurities introduced during processing. However, a careful control of the MA process enables a minimization of the impurities. We also report here the consolidation of the mechanically alloyed powder and the characterization of the MoSi{sub 2} alloys by optical and transmission electron microscopy, x-ray diffraction, and mechanical property measurements. 21 refs., 9 figs.

  19. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  20. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  1. Manufacturing development of low activation vanadium alloys

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  2. Calculations and First Results Obtained with a SiC Prototype of the SPES Direct Target

    SciTech Connect

    Barbui, Marina; Andrighetto, Alberto; Antonucci, C.; Biasetto, Lisa; Carturan, S.; Cervellera, F.; Cevolani, S.; Cinausero, Marco; Colombo, P.; Dainelli, A.; Di Bernardo, P.; Giacchini, Mauro; Gramegna, Fabiana; Lollo, M.; Maggioni, G.; Manzolaro, Mattia; Meneghetti, G.; Petrovich, C.; Piga, L.; Prete, Gianfranco; Re, Maurizio; Rizzi, Valentina; Stracener, Daniel W; Tonezzer, Michele; Zafiropoulos, D.; Zanonato, P.

    2008-01-01

    In the framework of the SPES project at LNL [A. Bracco, A. Pisent (Ed.), REP 181/02, LNL-INFN, 2002], the realization of a direct ISOL Target for a mid-term radioactive ion beam facility is in progress. Using a primary proton beam of energy 40 MeV and intensity 0.2 mA, a high number of fission products will be obtained in the SPES multi-foil uranium carbide target, keeping a low power density deposition in the refractory matrix [A. Andrighetto, S. Cevolani, C. Petrovich, Eur. Phys J. A 25 (2005) 41]. The exotic species produced by Uranium fission in the target are collected in the ion source after the diffusion and the effusion processes. When short lived isotopes are produced it is very important to optimize the release properties of the target. To this purpose the RIBO code (radioactive ion beam optimiser) [M. Santana Leitner, A Monte Carlo Code to Optimize the Production of Radioactive Ion Beams by the ISOL Technique, PhD. Thesis, UPC-ETSEIB/CERN] has been used in order to estimate the target release efficiency for some neutron-rich nuclei. A SiC prototype of the target was recently produced at LNL and tested at ORNL using a 42 MeV proton beam. The yield of some aluminum isotopes was measured as a function of the target temperature. Some preliminary results of the data analysis will be presented.

  3. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  4. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  5. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    NASA Astrophysics Data System (ADS)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510°C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to

  6. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  7. Development of radiation detectors based on hydrogenated amorphous silicon and its alloys

    SciTech Connect

    Hong, Wan-Shick

    1995-04-01

    Hydrogenated amorphous silicon and related materials have been applied to radiation detectors, utilizing their good radiation resistance and the feasibility of making deposits over a large area at low cost. Effects of deposition parameters on various material properties of a-Si:H have been studied to produce a material satisfying the requirements for specific detection application. Thick(-~50 μm), device quality a-Si:H p-i-n diodes for direct detection of minimum ionizing particles have been prepared with low internal stress by a combination of low temperature growth, He-dilution of silane, and post annealing. The structure of the new film contained voids and tiny crystalline inclusions and was different from the one observed in conventional a-Si:H. Deposition on patterned substrates was attempted as an alternative to controlling deposition parameters to minimize substrate bending and delamination of thick a-Si:H films. Growth on an inversed-pyramid pattern reduced the substrate bending by a factor of 3 ≈ 4 for the same thickness film. Thin (0.1 ≈ 0.2 μm) films of a-Si:H and a-SiC:H have been applied to microstrip gas chambers to control gain instabilities due to charges on the substrate. Light sensitivity of the a-Si:H sheet resistance was minimized and the surface resistivity was successfully` controlled in the range of 1012 ≈ 1017 Ω/(four gradient) by carbon alloying and boron doping. Performance of the detectors with boron-doped a-Si:C:H layers was comparable to that of electronic-conducting glass. Hydrogen dilution of silane has been explored to improve electrical transport properties of a-Si:H material for high speed photo-detectors and TFT applications.

  8. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    PubMed

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed.

  9. Noble metal alloys for metal-ceramic restorations.

    PubMed

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  10. High-temperature alloys: Single-crystal performance boost

    NASA Astrophysics Data System (ADS)

    Schütze, Michael

    2016-08-01

    Titanium aluminide alloys are lightweight and have attractive properties for high-temperature applications. A new growth method that enables single-crystal production now boosts their mechanical performance.

  11. Evaluation of the corrosion resistance of Fe-Al-Cr alloys in simulated low NOx environments

    SciTech Connect

    Deacon, R.M.; DuPont, J.N.; Kiely, C.J.; Marder, A.R.; Tortorelli, P.F.

    2009-08-15

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has led researchers to examine the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In this work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 and 700{sup o}C for short (100 h) and long (5000 h) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance during short term exposures. For longer test times, increasing the aluminum concentration improved alloy corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in slower corrosion kinetics. A general classification of the scales developed on these alloys is presented.

  12. Atomistic study of the structural and electronic properties of a-Si:H/c-Si interfaces.

    PubMed

    Santos, Iván; Cazzaniga, Marco; Onida, Giovanni; Colombo, Luciano

    2014-03-05

    We investigate the structural and electronic properties of the interface between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) by combining tight-binding molecular dynamics and DFT ab initio electronic structure calculations. We focus on the c-Si(100)(1×1)/a-Si:H, c-Si(100)(2×1)/a-Si:H and c-Si(111)/a-Si:H interfaces, due to their technological relevance. The analysis of atomic rearrangements induced at the interface by the interaction between H and Si allowed us to identify the relevant steps that lead to the transformation from c-Si(100)(1×1)/a-Si:H to c-Si(100)(2×1)/a-Si:H. The interface electronic structure is found to be characterized by spatially localized mid-gap states. Through them we have identified the relevant atomic structures responsible for the interface defect states, namely: dangling-bonds, H bridges, and strained bonds. Our analysis contributes to a better understanding of the role of such defects in c-Si/a-Si:H interfaces.

  13. Parameter variation of the one-diode model of a-Si and a- Si/μc-Si solar cells for modeling light-induced degradation

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2014-11-01

    For analyzing the long-term behavior of thin film a-Si/μc-Si photovoltaic modules, it is important to observe the light-induced degradation (LID) in dependence of the temperature for the parameters of the one-diode model for solar cells. According to the IEC 61646 standard, the impact of LID on module parameters of these thin film cells is determined at a constant temperature of 50°C with an irradiation of 1000 W/m2 at open circuit conditions. Previous papers examined the LID of thin film a-Si cells with different temperatures and some others are about a-Si/μc-Si. In these previous papers not all parameters of the one-diode model are examined. We observed the serial resistance (Rs), parallel resistance (Rp), short circuit current (Isc), open circuit voltage (Uoc), the maximum power point (MPP: Umpp, Impp and Pmpp) and the diode factor (n). Since the main reason for the LID of silicon-based thin films is the Staebler Wronski effect in the a-Si part of the cell, the temperature dependence of the healing of defects for all parameters of the one-diode model is also taken into account. We are also measuring modules with different kind of transparent conductive oxides: In a-Si thin film solar cells fluorine-doped tin oxide (FTO) is used and for thin film solar cells of a-Si/μc-Si boron- doped zinc oxide is used. In our work we describe an approach for transferring the parameters of a one-diode model for tandem thin film solar cells into the one-diode model for each part of the solar cell. The measurement of degradation and regeneration at higher temperatures is the necessary base for optimization of the different silicon-based thin films in warm hot climate.

  14. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production.

    PubMed

    Lin, Yongjing; Battaglia, Corsin; Boccard, Mathieu; Hettick, Mark; Yu, Zhibin; Ballif, Christophe; Ager, Joel W; Javey, Ali

    2013-01-01

    An amorphous Si thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photocathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0.93 V vs RHE and saturation photocurrent of 11.6 mA/cm(2) are measured. Importantly, the a-Si photocathodes exhibit impressive photocurrent of ~6.1 mA/cm(2) at a large positive bias of 0.8 V vs RHE, which is the highest for all reported photocathodes at such positive potential. Ni-Mo alloy is demonstrated as an alternative low-cost catalyst with onset potential and saturation current similar to those obtained with platinum. This low-cost photocathode with high photovoltage and current is a highly promising photocathode for solar hydrogen production.

  15. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  16. Ductile transplutonium metal alloys

    SciTech Connect

    Conner, W.V.

    1983-04-19

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  17. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  18. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  19. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  20. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  1. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  2. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  3. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  4. Alloying effect on K X-ray intensity ratios, K X-ray production cross-sections and radiative Auger ratios in superalloys constitute from Al, Ni and Mo elements

    NASA Astrophysics Data System (ADS)

    Aylikci, N. Kup; Tiraşoğlu, E.; Karahan, İ. H.; Aylikci, V.; Eskil, M.; Cengiz, E.

    2010-11-01

    In this study, σ production cross-sections, Kβ/ Kα, KLM/ Kα and KMM/ Kβ RAE intensity ratios of Ni and σ,σ production cross-sections, Kβ1,3/ Kα, Kβ2,4/ Kα, Kβ2,4/ Kβ1,3, KLM/ Kα and KMM/ Kβ RAE intensity ratios of Mo have been measured in pure metals and in superalloy specimens. The samples were excited by 59.5 keV γ-rays from a 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The effect of alloying on the fluorescence parameters of Ni and Mo, phase structure, and corrosion behavior were investigated. The X-ray fluorescence parameters of Ni and Mo in superalloys indicate significant differences with respect to the pure metals. These differences are attributed to the reorganization of valence shell electrons and/or charge transfer phenomena in superalloys.

  5. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  6. Iron/Phosphorus Alloys for Continuous Casting

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  7. Alloys in energy development

    SciTech Connect

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  8. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  9. Silicon germanium semiconductive alloy and method of fabricating same

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2008-01-01

    A silicon germanium (SiGe) semiconductive alloy is grown on a substrate of single crystalline Al.sub.2O.sub.3. A {111} crystal plane of a cubic diamond structure SiGe is grown on the substrate's {0001} C-plane such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium.

  10. Electron cyclotron resonance deposition of amorphous silicon alloy films and devices

    SciTech Connect

    Shing, Y.H. )

    1992-10-01

    This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.

  11. Process for alloying uranium and niobium

    DOEpatents

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  12. Corrosion protection of aerospace grade magnesium alloy Elektron 43(TM) for use in aircraft cabin interiors

    NASA Astrophysics Data System (ADS)

    Baillio, Sarah S.

    Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.

  13. Subtask 12D2: Baseline impact properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the baseline impact properties of vanadium-base alloys as a function of compositional variables. Up-to-date results on impact properties of unirradiated V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented and reviewed in this paper, with an emphasis on the most promising class of alloys, i.e., V-(4-5)Cr-(3-5)Ti containing 400-1000 wppm Si. Database on impact energy and ductile-brittle transition temperature (DBTT) has been established from Charpy impact tests on small laboratory as well as production-scale heats. DBTT is influenced most significantly by Cr contents and, to a lesser extent, by Ti contents of the alloys. When combined contents of Cr and Ti were {le}10 wt.%, V-Cr-Ti alloys exhibit excellent impact properties, i.e., DBTT<-200{degrees}C and upper shelf energies of {approx}120-140 J/cm{sup 2}. Impact properties of the production-scale heat of the U.S. reference alloy V-4Cr- 4Ti were as good as those of the laboratory-scale heats. Optimal impact properties of the reference alloy were obtained after annealing the as-rolled products at 1000{degrees}C-1050{degrees}C for 1-2 h in high-quality vacuum. 17 refs., 6 figs., 2 tabs.

  14. Structural properties of a-Si films and their effect on aluminum induced crystallization

    SciTech Connect

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet; Turan, Rasit; Canli, Sedat

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AIC is diminished, leading larger poly-Si grain size.

  15. Switching characteristic and capacitance analysis of a-Si:H pinpin photodiodes for visible range telecommunications

    NASA Astrophysics Data System (ADS)

    Fantoni, A.; Fernandes, M.; Louro, P.; Vieira, M.

    2016-05-01

    The device under study is an a-SiC:H/a-Si:H pinpin photodiodes produced by PECVD (Plasma Enhanced Chemical Vapour Deposition) and has a structure that consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure with low conductivity doped layers. This device structure has been demonstrated useful in optical communications that use the WDM technique to encode multiple signals in the visible light range. We present in this work experimental results about C-V measurements of the device under complex conditions of illumination. Also it is presented an analysis based on the transient response of the device when illuminated by a pulsed light, with and without optical bias superposition. Rising and decaying times of the collected photocurrent will be outlined under the different conditions. A simulation study outlines the role played by each pin substructure on the response speed and gives some hint on the possible optimization of this device.

  16. Optical emission diagnostics of electron cyclotron resonance and glow discharge plasmas for a-Si:H and a-SiC:H film depositions

    NASA Technical Reports Server (NTRS)

    Yang, C. L.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    It is demonstrated that the steady-state and kinetic characteristics of ECR (electron cyclotron resonance) and RF glow discharge plasmas can be readily monitored by OES (optical emission spectroscopy) in real time during a-Si:H and a-SiC:H film depositions using an OMA detection system. The ECR and RF glow discharge plasmas used for a-Si:H and a-SiC:H film depositions were studied by monitoring the emission of SiH(asterisk), H(asterisk), H(asterisk)2, and CH(asterisk) excited states. The OES of the ECR plasma shows a strong emission at 434 nm from H(asterisk), which is not detectable in the glow discharge plasma. Steady-state OES studies have established preliminary correlations between SiH(asterisk) and CH(asterisk) emission intensities and the film deposition rate. Transient OES spectra of SiH4 and CH4 plasmas have shown different kinetics in SiH(asterisk) and CH(asterisk) emission intensities. Transient studies of the SiH(asterisk) emission intensity have indicated that additional mechanisms for producing the SiH(asterisk) species become evident in hydrogen-diluted silane plasmas.

  17. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  18. Refractory alloy technology for space nuclear power applications

    SciTech Connect

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  19. Thermo-Mechanical Processing Parameters for the INCONEL ALLOY 740

    SciTech Connect

    Ludtka, G.M.; Smith, G.

    2007-11-19

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and the Special Metals Corporation (SMC) to determine the mechanical property response of the IN740 alloy to help establish thermo-mechanical processing parameters for the use of this alloy in supercritical and ultra-critical boiler tubes with the potential for other end uses. SMC had developed an alloy, commercially known as INCONEL alloy 740, which exhibited various beneficial physical, mechanical, and chemical properties. As part of SMC's on-going efforts to optimize this alloy for targeted boiler applications there was a need to develop an understanding of the thermo-mechanical response of the material, characterize the resulting microstructure from this processing, and possibly, utilize models to develop the appropriate processing scheme for this product.

  20. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  1. Security assessment of magnesium alloys used as biodegradable implant material.

    PubMed

    Sun, X; Cao, Z Y; Liu, J G; Feng, C

    2015-01-01

    The security risk of magnesium alloys used as biodegradable implant material was evaluated in this study. Dose-response assessment was conducted by using toxicological data from authoritative public health agencies (World Health Organization) and assuming 1~3 years of uniform corrosion. Through modification calculation, the tolerable corrosion rate of biodegradable magnesium alloys in vivo was proposed, which theoretically ensured the bio-safety of the degradation products. The tolerable limits corresponding to various component elements in magnesium alloys were considered separately, although there are deficits in the toxicological data of some component elements. The influence of corrosion on the strength of magnesium alloys was evaluated, which would contribute to the rationally utilization of magnesium alloys as degradable implant materials. This study illustrates that not only toxicological calculations but also mechanical performance should be taken into consideration when developing novel degradable metallic implant.

  2. The Mg impurity in nitride alloys

    SciTech Connect

    Zvanut, M. E.; Willoughby, W. R.; Sunay, U. R.; Koleske, D. D.; Allerman, A. A.; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2014-02-21

    Although several magnetic resonance studies address the Mg acceptor in GaN, there are few reports on Mg doping in the alloys, where hole production depends strongly on the Al or In content. Our electron paramagnetic resonance (EPR) measurements of the p-type alloys suggest that the Mg impurity retains the axial symmetry, characteristic of a p-type dopant in both alloys; however, In and Al produce additional, different characteristics of the acceptor. In InGaN, the behavior is consistent with a lowering of the acceptor level and increasing hole density as In concentration increases. For AlGaN, the amount of neutral Mg decreases with increasing Al content, which is attributed to different kinetics of hydrogen diffusion thought to occur in samples with higher Al mole fraction.

  3. Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V

    NASA Astrophysics Data System (ADS)

    Casari, Daniele; Ludwig, Thomas H.; Merlin, Mattia; Arnberg, Lars; Garagnani, Gian Luca

    2015-02-01

    In the present work, the impact behavior of unmodified A356 alloys with the addition of Ni or V in as-cast and T6 heat-treated conditions was assessed. Charpy V-notched specimens obtained from sand and permanent mold casting showed low total absorbed energy average values ( W t < 2 J). SEM analysis of fracture profiles and surfaces indicated a Si-driven crack propagation with a predominant transgranular fracture mode. Occasionally, intergranular contributions to fracture were detected in the permanent mold cast alloys due to the locally finer microstructure. Concurrent mechanisms related to the chemical composition, solidification conditions and heat treatment were found to control the impact properties of the alloys. While the trace element Ni exerted only minor effects on the impact toughness of the A356 alloy, V had a strong influence: (i) V-containing sand cast alloys absorbed slightly higher impact energies compared to the corresponding A356 base alloys; (ii) in the permanent mold cast alloys, V in solid solution led to a considerable loss of ductility, which in turn decreased the total absorbed energy.

  4. Thermal stability of hydrogen and sulfur atoms in a-SiSx:H films

    NASA Astrophysics Data System (ADS)

    Itoh, Takashi; Nitta, Shoji; Wang, S. L.; Taylor, P. C.

    1996-11-01

    The thermal stability of hydrogen and sulfur atoms in a-SiSx:H films is studied using gas effusion spectra and electron spectroscopy for chemical analysis. Two evolution peaks of hydrogen are found above 400 °C in gas effusion spectra of a-SiSx:H films. Sulfur atoms are evolved only above 550 °C. The stability of sulfur and the relationship of dangling bonds to sulfur effusion are discussed.

  5. Analytic model of nanoparticle formation and growth in a SiH4-Ar plasma

    NASA Astrophysics Data System (ADS)

    Gordiets, B. F.; Bertran, E.

    2009-05-01

    A kinetic model of formation and growth of nanoparticles in a low-pressure plasma-chemical reactor with an rf capacitive discharge in a SiH4-Ar mixture is presented. Analytic formulas are derived for calculating the concentration of monomers, as well as the concentration and average size of nanoparticles. The results are compared with the results of numerical calculations and experimental data for nanoparticles in a SiH4-Ar plasma.

  6. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  7. 77 FR 66954 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of... on carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review is October 1... certain alloy steel wire rod. The product is currently classified under the Harmonized Tariff Schedule...

  8. 77 FR 73015 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... conducting an administrative review of the antidumping duty order on circular welded non-alloy steel pipe... merchandise subject to the order is circular welded non-alloy steel pipe and tube. The product is...

  9. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  10. Electrical Resistivity of Ten Selected Binary Alloy Systems.

    DTIC Science & Technology

    1981-04-01

    alloys --* Aluminum Alloys --*Copper alloys --*Gold alloys --*Nickel Alloys --*Silver alloys --*Iron alloys --*Palladium alloys ... aluminum -magnesium, and copper-zinc) are given for 27 compositions: 0 (pure element).* For aluminum -copper, aluninu.-eagnes tur, end copper-zinc alloy ...available data and infor- mation. The ten binary alloy systems selected are the systems of aluminum - copper, aluminum -magnesium, copper-gold,

  11. On the cytocompatibility of biodegradable Fe-based alloys.

    PubMed

    Schinhammer, Michael; Gerber, Isabel; Hänzi, Anja C; Uggowitzer, Peter J

    2013-03-01

    Biodegradable iron-based alloys are potential candidates for application as temporary implant material. This study summarizes the design strategy applied in the development of biodegradable Fe-Mn-C-Pd alloys and describes the key factors which make them suitable for medical applications. The study's in vitro cytotoxicity tests using human umbilical vein endothelial cells revealed acceptable cytocompatibility based on the alloys' eluates. An analysis of the eluates revealed that Fe is predominantly bound in insoluble degradation products, whereas a considerable amount of Mn is in solution. The investigation's results are discussed using dose-response curves for the main alloying elements Fe and Mn. They show that it is mainly Mn which limits the cytocompatibility of the alloys. The study also supplies a summary of the alloying elements' influence on metabolic processes. The results and discussion presented are considered important and instructive for future alloy development. The Fe-based alloys developed show an advantageous combination of microstructural, mechanical and biological properties, which makes them interesting as degradable implant material.

  12. Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates

    PubMed Central

    2014-01-01

    We propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film's average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance. Experimental results show that Au-Ag BNNPs fabricated on a glass substrate exhibit resonant peaks at 437 and 540 nm and a 14-fold increase in average forward scattering over the wavelength range of 300 to 1,100 nm in comparison with bare glass. When deposited on a 100-nm-thin a-Si film, Au-Ag BNNPs increase the average absorption and forward scattering by 19.6% and 95.9% compared to those values for Au NPs on thin a-Si and plain a-Si without MNPs, respectively, over the 300- to 1,100-nm range. PMID:24725390

  13. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    PubMed

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  14. Metastability of a-SiOx:H thin films for c-Si surface passivation

    NASA Astrophysics Data System (ADS)

    Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.

    2017-01-01

    The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution

  15. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  16. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1986-01-14

    ftoc*o~ow7 and Idenify’ by block nam. bor) Electron mobility , Lattice Relaxation, Bond Length, Bond Energy, Mixing Enthalpies, Band Structure, Core...including: (1) generalization of Brooks’ formula for alloy-scattering limited electron mobility to including multiple bands and indirect gaps, (2...calculation of SiGe alloys band structure, electron mobility and core-exciton binding energy and • :linewidth, (3) comprehensive calculation of bond

  17. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  18. Study of hydrogen states in a-Si:H films, dehydrogenization treatments and influence of hydrogen on nanosecond pulse laser crystallization of a-Si:H

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Galkov, M. S.; Safronova, N. A.; Kamaev, G. N.; Antonenko, A. H.; Kochubey, S. A.

    2014-12-01

    Structures based on hydrogenated amorphous silicon (a-Si:H) films deposited on various substrates (including not refractory ones) are widely applied in giant microelectronics devices, such as flat panel displays based on active matrix thin-film transistors and solar cells. The a-Si:H films produced by plasma enhanced chemical vapor deposition (PECVD) methods, contain up to 40% atoms of hydrogen. The influence of hydrogen on the optical and electrical properties of the films and their degradation is important. Therefore, the development of express and non-destructive methods for control of the hydrogen concentration in thin films continues to be an actual task to date. Previously, from a comparative analysis of infrared (IR) spectroscopy and Raman scattering spectroscopy, the ratios of the integral intensities of Raman peaks due to scattering by vibrations of the Si-H and Si-H2 bonds to the intensity of Raman peak of the Si-Si bonds were experimentally determined. Knowing these ratios, it is possible to measure the hydrogen concentration, moreover, separately in Si-H and Si-H2 states. Proposed quantitative method for determining of the hydrogen concentration from analysis of the Raman spectra is an express, non-destructive method and can be used for "in situ" monitoring of the hydrogen. The aim of this work was to determine the polarization dependence of Raman scattering by stretching vibrations of Si-H bonds and find the form of the corresponding Raman tensors. From analysis of Raman intensities in different polarizations the Raman tensors for Si-H and Si-H2 bonds were determined. The regimes for dehydrogenization of thick (up to 1 micron) a-Si:H films were found. The nanosecond pulse XeCl laser with wavelength of 308 nm and pulse duration of 10 ns was used for pulse crystallization of as-deposited and dehydrogenated films. As it was studied earlier, for a-Si:H films with high hydrogen concentration, the threshold for crystallization is very close to threshold of

  19. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  20. Application of a-Si:H radiation detectors in medical imaging

    SciTech Connect

    Lee, Hyoung-Koo

    1995-06-01

    Monte Carlo simulations of a proposed a-Si:H-based current-integrating gamma camera were performed. The analysis showed that the intrinsic resolution of such a camera was 1 ~2.5 mm, which is somewhat better than that of a conventional gamma camera, and that the greater blurring, due to the detection of scattered γ-rays, could be reduced considerably by image restoration techniques. This proposed gamma camera would be useful for imaging shallow organs such as the thyroid. Prototype charge-storage a-Si:H pixel detectors for such a camera were designed, constructed and tested. The detectors could store signal charge as long as 5 min at -26C. The thermal generation current in reverse biased a-Si:H p-i-n photodetectors was investigated, and the Poole-Frenkel effect was found to be the most significant source of the thermal generation current. Based on the Poole-Frenkel effect, voltage- and time-dependent thermal generation current was modeled. Using the model, the operating conditions of the proposed a-Si:H gamma camera, such as the operating temperature, the operating bias and the γ-scan period, could be predicted. The transient photoconductive gain mechanism in various a-Si:H devices was investigated for applications in digital radiography. Using the a-Si:H photoconductors in n-i-n configuration in pixel arrays, enhancement in signal collection (more than 200 times higher signal level) can be achieved in digital radiography, compared to the ordinary p-i-n type a-Si:H x-ray imaging arrays.

  1. Microstructural Homogeneity and Hot Deformation of Various Friction-Stir-Processed 5083 Al Alloys

    NASA Astrophysics Data System (ADS)

    García-Bernal, M. A.; Mishra, R. S.; Hernández-Silva, D.; Sauce-Rangel, V. M.

    2016-12-01

    Diverse studies on FSP of 5083 Al alloys have been conducted, and some have made comparisons with previous studies of similar alloys, but many times such comparisons could be invalid because of differences in the parameters used during FSP, above all, tool profile. Five 5083 Al alloys produced by different production routes were friction-stir-processed and compared among themselves and with other two superplastic forming (SPF) grade 5083 Al alloys. Results suggest that the grain size refinement is independent of the original microstructure and that there is a relationship between the size of the second phase before and after FSP. The combination of continuous casting 5083 Al alloys + FSP had an outstanding behavior in hot deformation in comparison with rolled or extruded 5083 Al alloys + FSP, and even SPF 5083 Al alloys.

  2. Microstructural Homogeneity and Hot Deformation of Various Friction-Stir-Processed 5083 Al Alloys

    NASA Astrophysics Data System (ADS)

    García-Bernal, M. A.; Mishra, R. S.; Hernández-Silva, D.; Sauce-Rangel, V. M.

    2017-01-01

    Diverse studies on FSP of 5083 Al alloys have been conducted, and some have made comparisons with previous studies of similar alloys, but many times such comparisons could be invalid because of differences in the parameters used during FSP, above all, tool profile. Five 5083 Al alloys produced by different production routes were friction-stir-processed and compared among themselves and with other two superplastic forming (SPF) grade 5083 Al alloys. Results suggest that the grain size refinement is independent of the original microstructure and that there is a relationship between the size of the second phase before and after FSP. The combination of continuous casting 5083 Al alloys + FSP had an outstanding behavior in hot deformation in comparison with rolled or extruded 5083 Al alloys + FSP, and even SPF 5083 Al alloys.

  3. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, Uday B.; Sadoway, Donald R.

    1997-01-01

    A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.

  4. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  5. Method and apparatus for production of powders

    NASA Technical Reports Server (NTRS)

    Stolzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1995-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  6. Method and Apparatus for Production of Powders

    NASA Technical Reports Server (NTRS)

    Storltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1998-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  7. The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer

    SciTech Connect

    Brehm, M.; Grydlik, M.; Groiss, H.; Hackl, F.; Schaeffler, F.; Fromherz, T.; Bauer, G.

    2011-06-15

    For the prototypical SiGe/Si(001) Stranski-Krastanow (SK) growth system, the influence of intermixing caused by the deposition of a Si cap layer at temperatures T{sub cap} between 300 deg. C and 700 deg. C is studied both for the SiGe wetting layer (WL) and the SiGe islands. Systematic growth experiments were carried out with an ultrahigh resolution of down to 0.005 monolayers (ML) of deposited Ge. The properties of the samples were investigated via photoluminescence (PL) spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy. We studied in detail the influence of T{sub cap} in the three main coverage regions of SiGe SK growth, which are (i) the WL build-up regime, (ii) the island nucleation regime, where most of the Ge is supplied via material transfer from the WL, and (iii) the saturation regime, where the WL thickness remains initially stable. At T{sub cap} = 300 deg. C, we found that both the WL and the island are essentially preserved in composition and shape, whereas at 500 deg. C the WL becomes heavily alloyed during capping, and at 700 deg. C the islands also become alloyed. At T{sub cap} = 500 deg. C we found enhanced WL intermixing in the presence of dome-shaped islands, whereas at T{sub cap} 700 deg. C the WL properties become dominated by the dissolution of pyramid-shaped islands upon capping. At Ge coverages above {approx_equal}6 ML, we found an unexpected thickening of the WL, almost independently of T{sub cap}. This finding suggests that the density and the volume of the dome-shaped islands have an upper limit, beyond which excess Ge from the external source again becomes incorporated into the WL. Finally, we compared PL spectra with AFM-based evaluations of the integral island volumes in order to determine in a straightforward manner the average composition of the SiGe islands.

  8. Effects of Thermal Exposure on Properties of Al-Li Alloys

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Wells, Doug; Stanton, William; Lawless, Kirby; Russell, Carolyn; Wagner, John; Domack, Marcia; Babel, Henry; Farahmand, Bahram; Schwab, David; Jones, Clyde S. (Technical Monitor)

    2002-01-01

    This paper presents viewgraphs on the effects of thermal exposure on the mechanical properties of both developmental and production mature Al-Li alloys. The topics include: 1) Aluminum-Lithium Alloys Composition and Features; 2) Key Characteristics of Al-Li Alloys; 3) Research Approach; 4) Available and Tested Material; and 5) Thermal Exposure Matrix. The alloy temperatures, gage thickness and product forms show that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a significant deficit in mechanical properties at higher exposure temperatures in all cases.

  9. Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Tian-Tian, Li; Tie, Yang; Jia, Fang; De-Kun, Zhang; Jian, Sun; Chang-Chun, Wei; Sheng-Zhi, Xu; Guang-Cai, Wang; Cai-Chi, Liu; Ying, Zhao; Xiao-Dan, Zhang

    2016-04-01

    Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiO x :H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiO x :H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiO x :H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiO x matrix with higher crystalline volume fraction (I c) and have a lower lateral conductivity. This uniform microstructure indicates that the higher I c can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiO x :H back reflector prepared by the gradient power during deposition. Compared with the sample with SiO x back reflector, with a constant power used in deposition process, the sample with gradient power SiO x back reflector can enhance the total short-circuit current density (J sc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively. Project supported by the Hi-Tech Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant No. 61474065), Tianjin Municipal Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).

  10. Laser Peening of Alloy 22 Welds

    SciTech Connect

    Stevens, D W; Hackel, L A; Lingenfelter, A C

    2002-10-03

    Stress corrosion cracking (SCC) of near-surface Alloy 22 metal can be propagated by yield-point levels (45 ksi) of residual weld tensile stresses. This is a serious concern for welds in the Alloy 22 canister employed in the Yucca Mountain Project (YMP) Waste Package, particularly in closure welds that cannot be stress relieved by conventional heat treating. This work shows that compressive shock waves, driven into a weldment by laser peening, replaces its detrimental tensile stresses of 30-80 ksi with compressive stresses of 2-25 ksi or better that retard SCC. This benefit occurs in the top 1.5 mm (or more) of the material without appreciable heating. It was also found that quenching after solution annealing and shot peening during production of Alloy 22 plate imparts compressive stresses of 35-105 ksi near the surface, a very large buffer against SCC. This means that if seam-welded hollow canisters likewise gain compressive stresses upon post-weld annealing and quenching, and if closure welds are laser peened, all surfaces of the canister would be under compression, thereby precluding SCC of the Alloy 22 canister. Laser peening may plastically deform as much as the top 10% of the metal (about 2 mm out of the 25-mm plate thickness), thereby changing the rate of general corrosion of waste package outer barrier. Long-term corrosion tests of laser peened Alloy 22 welds should be conducted. Present results show that laser peening, currently under development at LLNL using high-energy lasers, induces compressive residual stress on the near surface of the weld. This laser peening process is showing significant retardation of SCC and should be further characterized and assessed to preclude SCC in Alloy 22 canisters.

  11. Study of microstructural and optical properties of a-Si:H thin films

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Müllerová, Jarmila

    2010-12-01

    Undoped amorphous silicon thin films pasivated by hydrogen (a-Si:H) are important for a number of industrial and research applications, especially for optoelectronics, photovoltaics, optical communications, senzorics, laser technology and so on. We experimentally studied properties of the a-Si:H thin films prepared by the plasma-enhanced chemical vapour deposition (PECVD) method. Sample microstructure properties and the effect of the microstructure on optical properties of the a-Si:H thin films deposited by PECVD on glass were analysed. The spectral refractive index, extinction coefficient, and surface morphology were analysed for the series of a-Si:H samples prepared in different technological conditions from H diluted silane plasma. Surface morphology of studied samples was described by the atomic force microscopy (AFM) method. Optical properties of a-Si:H thin films were analysed by numerical optimization of the microstructural and dispersion model of optical parameters relative to the experimental spectral reflectance. The results show that at dilution between 20 and 30 the transition between amorphous and polycrystalline phase occurs. The sample becomes a mixture of amorphous and polycrystalline phase with nano-sized grains and voids with decreasing hydrogen concentration.

  12. Half-Corbino short-channel amorphous In-Ga-Zn-O thin-film transistors with a-SiOx or a-SiOx/a-SiNx passivation layers

    NASA Astrophysics Data System (ADS)

    Zhao, Chumin; Fung, Tze-Ching; Kanicki, Jerzy

    2016-06-01

    We investigated the electrical properties and stability of short-channel half-Corbino amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). In the linear region, the fabricated half-Corbino a-IGZO TFT with a channel length of 4.5 μm achieves a geometrical factor (fg) of ∼2.7, a threshold voltage (VT) of ∼2.4 V, a field-effect mobility (μeff) of ∼15 cm2/Vs, a subthreshold swing (SS) of ∼320 mV/dec and an off-current (IOFF) < 10-13 A. In the saturation region, asymmetric electrical characteristics such as drain current were observed under different drain bias conditions. The electrical properties asymmetry of half-Corbino a-IGZO TFTs was explained by various geometrical factors owing to the short-channel effect. The reduced VT and increased SS at VDS = 15 V is explained by the drain-induced Schottky barrier lowering. In addition, the bias-temperature stress (BTS) was performed for half-Corbino a-IGZO TFTs with both amorphous silicon oxide (a-SiOx) single layer and a-SiOx/amorphous silicon nitride (a-SiNx) bilayer passivation (PV) structures. The device with bilayer PV shows a threshold voltage shift (ΔVT) of +2.07 and -0.5 V under positive (PBTS = +15 V) and negative BTS (NBTS = -15 V) at 70 °C for 10 ks, respectively. The origins of ΔVT during PBTS and NBTS for half-Corbino a-IGZO TFTs with single and bilayer PV structures were studied. To improve the device electrical stability, the bilayer PV structure should be used.

  13. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  14. Equal-Channel Angular Extrusion of a Low-Density High-Entropy Alloy Produced by High-Energy Cryogenic Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Hammond, Vincent H.; Atwater, Mark A.; Darling, Kristopher A.; Nguyen, Hoang Q.; Kecskes, Laszlo J.

    2014-10-01

    In this study, we demonstrate the feasibility of forming a bulk consolidated, low-density high-entropy alloy, namely AlFeMgTiZn, which shows reasonable mechanical properties and high hardness. The fabrication of the high-entropy alloy from powdered precursors via high-energy mechanical alloying as a function of milling time is presented. In turn, the evolution of the alloy microstructure with postmilling anneal treatment is elucidated. Last, the severe plastic deformation processing methodology, i.e., equal-channel angular extrusion, chosen for consolidation, is described and shown to result in a bulk product with good results.

  15. Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys.

    PubMed

    Han, I; Demir, L

    2010-01-01

    The total mass attenuation coefficients (mu/rho) for pure Au and Au99Be1, Au88Ge12, Au95Zn5 alloys were measured at 59.5 and 88.0 keV photon energies. The samples were irradiated with 241Am and 109Cd radioactive point source using transmission arrangement. The gamma- rays were counted by a Si(Li) detector with resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (sigmat and sigmae), effective atomic and electron densities (Zeff and Nel) were determined using the obtained mass attenuation coefficients for investigated Au alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule.

  16. Ab initio calculation of vibrational properties of a-Si:H with inner voids

    NASA Astrophysics Data System (ADS)

    Nakhmanson, S. M.; Drabold, D. A.

    1998-05-01

    We have performed an ab initio calculation of vibrational properties of hydrogenated amorphous silicon (a-Si:H) using a molecular dynamics method. A Wooten, Winer, Weaire (WWW) 216 atom model for pure amorphous silicon (a-Si) updated by Djordjevic, Thorpe and Wooten has been employed as a ``base'' for our a-Si:H models with voids that were made by removing a cluster of silicon atoms out of the bulk and terminating the resulting dangling bonds with hydrogens. Our calculation shows that the presence of voids leads to localized low energy (30-50 cm-1) states in vibrational spectrum of the system. The nature and localization properies of these states are carefully analysed by various visualization techniques. Web resources: http://www.phy.ohiou.edu/ ĩnakhmans/Professional/Bubbles/bubpr.htm

  17. Photo and electroluminescence from PECVD grown a-Si:H/SiO 2 multilayers

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V.; Malinin, A.; Sokolov, V.; Kilpelä, O.; Sinkkonen, J.

    2001-06-01

    Multilayers (ML) of a-Si:H/SiO 2 have been grown using plasma enhanced chemical vapor deposition. Room-temperature photoluminescence (PL) and electroluminescence (EL) in the range 1.35-1.8 eV has been observed in as-deposited and annealed samples. A noticeable redshift of the PL peak has been detected by increasing the a-Si:H layer thickness in the range 0.7-2.1 nm, as well as the annealing temperature (700-1200°C). The strong correlation between PL and EL spectra indicates that light emission from a-Si:H/SiO 2 ML can be attributed to the same luminescence centers in Si layers and nanoclusters. The luminescence mechanism can be interpreted in terms of quantum and spatial confinement of carriers.

  18. Optical absorptions in ZnO/a-Si distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Chen, Zhian; Zhu, Kaigui; Ji, Zhenguo

    2017-01-01

    The distributed Bragg reflectors (DBRs) consisting of alternating layers of ZnO and heavy doped amorphous silicon (a-Si) have been fabricated by magnetron sputtering. It is novel to find that the optical absorptions exist in the stopband of the DBRs, and that many discrete strong optical absorption peaks exist in the wavelength range of visible to near-infrared. The calculated results by FDTD show that the absorptions in the stopband mainly exist in the first a-Si layer, and that the light absorbed by other a-Si layers inside contributes to the two absorption peaks in near-infrared range. The strong absorptions ranged from visible to infrared open new possibilities to the enhancement of the performance of amorphous silicon solar cells.

  19. Si6H12/Polymer Inks for Electrospinning a-Si Nanowire Lithium Ion Battery Anodes

    SciTech Connect

    Schulz, Douglas L.; Hoey, Justin; Smith, Jeremiah; Elangovan, Arumugasamy; Wu, Xiangfa; Akhatov, Iskander; Payne, Scott; Moore, Jayma; Boudjouk, Philip; Pederson, Larry; Xiao, Jie; Zhang, Jiguang

    2010-08-04

    Amorphous silicon nanowires 'a-SiNWs' have been prepared by electrospinning a liquid silane-based precursor. Cyclohexasilane 'Si6H12' was admixed with poly-methyl methacrylate (PMMA) in toluene giving an ink that was electrospun into the Si6H12/PPMA wires with diameters of 50-2000 nm. Raman spectroscopy revealed that thermal treatment at 350 C transforms this deposit into a-SiNWs. These materials were coated with a thin carbon layer and then tested as half-cells where a reasonable plateau in electrochemical cycling was observed after an initial capacity fade. Additionally, porous a-SiNWs were realized when the thermally decomposable binder polypropylene carbonate/polycyclohexene carbonate was used as the polymer carrier.

  20. Growth temperature effect on a-Si:H thin films studied by constant photocurrent method

    NASA Astrophysics Data System (ADS)

    Wadibhasme, N. A.; Dusane, R. O.

    2013-02-01

    Hydrogenated amorphous silicon (a-Si:H) thin films are synthesized by tuning different process parameters among which substrate temperature of film growth plays an important role in monitoring the device quality of the film. In this paper we have used the constant photocurrent method (CPM) to study the effect of growth temperature on the electronic and optical parameters of a-Si:H films at different photon energies. This technique primarily measures the absorption coefficient which is a result of different electronic transitions that contribute to the photocurrent. The nature of absorption coefficient changes with growth temperature that explicitly provides the information about the density of defect states present in the mid gap of a-Si:H.

  1. Selective dissolution in binary alloys

    NASA Astrophysics Data System (ADS)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  2. Flexible micromorph tandem a-Si/{mu}c-Si solar cells

    SciTech Connect

    Soederstroem, T.; Haug, F.-J.; Terrazzoni-Daudrix, V.; Ballif, C.

    2010-01-15

    The deposition of a stack of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) tandem thin film silicon solar cells (micromorph) requires at least twice the time used for a single junction a-Si:H cell. However, micromorph devices have a higher potential efficiency, thanks to the broader absorption spectrum of {mu}c-Si:H material. High efficiencies can only be achieved by mitigating the nanocracks in the {mu}c-Si:H cell and the light-induced degradation of the a-Si:H cell. As a result, {mu}c-Si:H cell has to grow on a smooth substrate with large periodicity (>1 {mu}m) and the a-Si:H cell on sharp pyramids with smaller feature size ({approx}350 nm) to strongly scatter the light in the weak absorption spectra of a-Si:H material. The asymmetric intermediate reflector introduced in this work uncouples the growth and light scattering issues of the tandem micromorph solar cells. The stabilized efficiency of the tandem n-i-p/n-i-p micromorph is increased by a relative 15% compared to a cell without AIR and 32% in relative compared to an a-Si:H single junction solar cells. The overall process (T<200 deg. C) is kept compatible with low cost plastic substrates. The best stabilized efficiency of a cell deposited on polyethylene-naphthalate plastic substrate is 9.8% after 1000 h of light soaking at V{sub oc}, 1 sun, and 50 deg. C.

  3. Tissue Response to Base-Metal Dental Alloys.

    DTIC Science & Technology

    RESPONSE(BIOLOGY), *CASTING ALLOYS, *BASE METAL, * DENTAL PROSTHESES, TISSUES(BIOLOGY), COMPATIBILITY, NICKEL ALLOYS, BERYLLIUM, DENTISTRY, CANCER, HISTOLOGY, DENTAL IMPLANTOLOGY , COBALT ALLOYS, CHROMIUM ALLOYS.

  4. Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries.

    PubMed

    Jung, Ji-Won; Ryu, Won-Hee; Shin, Jungwoo; Park, Kyusung; Kim, Il-Doo

    2015-07-28

    Amorphous silicon (a-Si) has been intensively explored as one of the most attractive candidates for high-capacity and long-cycle-life anode in Li-ion batteries (LIBs) primarily because of its reduced volume expansion characteristic (∼280%) compared to crystalline Si anodes (∼400%) after full Li(+) insertion. Here, we report one-dimensional (1-D) electrospun Si-based metallic glass alloy nanofibers (NFs) with an optimized composition of Si60Sn12Ce18Fe5Al3Ti2. On the basis of careful compositional tailoring of Si alloy NFs, we found that Ce plays the most important role as a glass former in the formation of the metallic glass alloy. Moreover, Si-based metallic glass alloy NFs were wrapped by reduced graphene oxide sheets (specifically Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO), which can prevent the direct exposure of a-Si alloy NFs to the liquid electrolyte and stabilize the solid-electrolyte interphase (SEI) layers on the surfaces of rGO sheets while facilitating electron transport. The metallic glass nanofibers exhibited superior electrochemical cell performance as an anode: (i) Si60Sn12Ce18Fe5Al3Ti2 NFs show a high specific capacity of 1017 mAh g(-1) up to 400 cycles at 0.05C with negligible capacity loss as well as superior cycling performance (nearly 99.9% capacity retention even after 2000 cycles at 0.5C); (ii) Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO reveals outstanding rate behavior (569.77 mAh g(-1) after 2000 cycles at 0.5C and a reversible capacity of around 370 mAh g(-1) at 4C). We demonstrate the potential suitability of multicomponent a-Si alloy NFs as a long-cycling anode material.

  5. Titanium by design: TRIP titanium alloy

    NASA Astrophysics Data System (ADS)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  6. Finding the Alloy Genome

    NASA Astrophysics Data System (ADS)

    Hart, Gus L. W.; Nelson, Lance J.; Zhou, Fei; Ozolins, Vidvuds

    2012-10-01

    First-principles codes can nowadays provide hundreds of high-fidelity enthalpies on thousands of alloy systems with a modest investment of a few tens of millions of CPU hours. But a mere database of enthalpies provides only the starting point for uncovering the ``alloy genome.'' What one needs to fundamentally change alloy discovery and design are complete searches over candidate structures (not just hundreds of known experimental phases) and models that can be used to simulate both kinetics and thermodynamics. Despite more than a decade of effort by many groups, developing robust models for these simulations is still a human-time-intensive endeavor. Compressive sensing solves this problem in dramatic fashion by automatically extracting the ``sparse model'' of an alloy in only minutes. This new paradigm to model building has enabled a new framework that will uncover, automatically and in a general way across the periodic table, the important components of such models and reveal the underlying ``genome'' of alloy physics.

  7. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    SciTech Connect

    Henager, Charles H.; Jiang, Weilin

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  8. Directed vapor deposition of amorphous and polycrystalline electronic materials: Nonhydrogenated a-Si

    SciTech Connect

    Groves, J.F.; Jones, S.H.; Globus, T.; Hsiung, L.M.; Wadley, H.

    1995-10-01

    A novel directed vapor deposition (DVD) process for creating amorphous and polycrystalline electronic materials is reported. Initial experimental results for DVD of nonhydrogenated a-Si indicate that growth rates at least between 0.02 and 1.0 {micro}m/min can be achieved. In this process, evaporated silicon is efficiently entrained in a previously formed low pressure supersonic He jet. The silicon is evaporated using a high energy, high voltage, electron beam. The collimated jet of He entrained with silicon is used to deposit thin films of a-Si at room temperature on glass substrates. Initial TEM microstructure analysis and optical absorption analysis is presented.

  9. Surface roughness evolution in the growth of a-Si: H thin films studied by ellipsometry

    NASA Astrophysics Data System (ADS)

    Canillas, A.; Campmany, J.; Andújar, J. L.; Bertran, E.; Morenza, J. L.

    1991-07-01

    In situ real time ellipsometry at 3.4 eV photon energy has been used to analyze the deposition of hydrogenated amorphous silicon (a-Si:H) thin films obtained by RF glow discharge decomposition of silane gas. The study is focused on the evolution of the microstructure during the films growth. The results are explained considering a theoretical model which assumes a homogeneous growth of the a-Si:H below a surface roughness layer which increases 0.5-0.7 nm in thickness during the first 400 nm of film growth. The bulk layer microstructure appears to be homogeneous within 1% of density variations.

  10. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  11. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  12. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  13. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  14. Deriving the Metal and Alloy Networks of Modern Technology.

    PubMed

    Ohno, Hajime; Nuss, Philip; Chen, Wei-Qiang; Graedel, Thomas E

    2016-04-05

    Metals have strongly contributed to the development of the human society. Today, large amounts of and various metals are utilized in a wide variety of products. Metals are rarely used individually but mostly together with other metals in the form of alloys and/or other combinational uses. This study reveals the intersectoral flows of metals by means of input-output (IO) based material flow analysis (MFA). Using the 2007 United States IO table, we calculate the flows of eight metals (i.e., manganese, chromium, nickel, molybdenum, niobium, vanadium, tungsten, and cobalt) and simultaneously visualize them as a network. We quantify the interrelationship of metals by means of flow path sharing. Furthermore, by looking at the flows of alloys into metal networks, the networks of the major metals iron, aluminum, and copper together with those of the eight alloying metals can be categorized into alloyed-, nonalloyed-(i.e., individual), and both mixed. The result shows that most metals are used primarily in alloy form and that functional recycling thereby requires identification, separation, and alloy-specific reprocessing if the physical properties of the alloys are to be retained for subsequent use. The quantified interrelation of metals helps us consider better metal uses and develop a sustainable cycle of metals.

  15. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  16. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.

    PubMed

    Bhattarai, Shanta Raj; Khalil, Khalil Abdel-Razek; Dewidar, Montasser; Hwang, Pyoung Han; Yi, Ho Keun; Kim, Hak Yong

    2008-08-01

    Porous metals are attractive due to its unique physical, mechanical, and new bone tissue ingrowth properties. In the present study, the production of highly porous Ti-6Al-4V parts by powder metallurgical technology and subsequently it's uses in in vitro bone tissue engineering is described. A space-holder method using carbamide with different particle size to produce parts with porosities between 35 and 70% were applied. The compressive strength and Young's modulus of porous Ti-6Al-4V were determined. Results indicated that stress and Young's modulus decrease with increasing porosity and pore size. The porous parts are characterized by scanning electron microscopy. Furthermore, study was to investigate the effects of three different porosities of porous Ti-6Al-4V (35, 50, and 70%) on proliferation, differentiation, and cell-matrix interaction of mouse osteoblast-like cells, MC-3T3. Results showed that the cell proliferation was significantly (p < 0.05) higher on 70% porous Ti-6Al-4V. However, synthesis of different types of extra cellular matrix proteins was also more abundant on 70% porous Ti-6Al-4V than 35 and 50% porous Ti-6Al-4V disk except some specific proteins. An increase in alkaline phosphate activity was significantly (p < 0.05) higher on 70 and 50% porous Ti-6Al-4V disk after 12 days of MC-3T3 cells incubation. Above all, results indicated that porosity (nearly 70%) of porous Ti-6Al-4V topography affects proliferation and differentiation of osteoblast-like MC-3T3 cells. The results showed that this novel process is a promise to fabricate porous biomaterials for bone implants.

  17. Dendritic growth in a supercooled alloy melt

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1987-01-01

    A simple model which describes the growth of an 'array' of dendrites into a supercooled, binary, alloy melt is presented. Solute diffusion is calculated by superposing the solutions given by Flemings and Zener, and also, by superposing the solutions given by Ivantsov and Flemings. A general expression for the transport solution is suggested from which all other dendrite growth models presented earlier may be obtained as special cases. It is shown that both 'free' and 'constrained' growth may be described by a single transport solution, which indicates that (1) both thermal and solutal effects will be important during 'free' growth in dilute alloys, (2) only solutal effects are predominant during 'free' growth in concentrated alloys and during 'constrained' growth. An examination of the relevant dimensionless parameters also suggests that all dendrite growth models, regardless of the assumptions used to determine the tip radius (marginal stability, minimum undercooling, maximum velocity, minimum entropy production) should predict the experimentally observed extrema in tip radius and growth velocity in dilute alloys, during 'free' dendritic growth. Experimental data in binary H2O-NaCl and succinonitrile-acetone solutions are shown to be in good agreement with the model.

  18. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage

  19. Development of Formulations for a-SiC and Manganese CMP and Post-CMP Cleaning of Cobalt

    NASA Astrophysics Data System (ADS)

    Lagudu, Uma Rames Krishna

    We have investigated the chemical mechanical polishing (CMP) of amorphous SiC (a-SiC) and Mn and Post CMP cleaning of cobalt for various device applications. During the manufacture of copper interconnects using the damascene process the polishing of copper is followed by the polishing of the barrier material (Co, Mn, Ru and their alloys) and its post CMP cleaning. This is followed by the a-SiC hard mask CMP. Silicon carbide thin films, though of widespread use in microelectronic engineering, are difficult to process by CMP because of their hardness and chemical inertness. The earlier part of the SiC work discusses the development of slurries based on silica abrasives that resulted in high a-SiC removal rates (RRs). The ionic strength of the silica dispersion was found to play a significant role in enhancing material removal rate, while also providing very good post-polish surface-smoothness. For example, the addition of 50 mM potassium nitrate to a pH 8 aqueous slurry consisting of 10 wt % of silica abrasives and 1.47 M hydrogen peroxide increased the RR from about 150 nm/h to about 2100 nm/h. The role of ionic strength in obtaining such high RRs was investigated using surface zeta-potentials measurements and X-ray photoelectron spectroscopy (XPS). Evidently, hydrogen peroxide promoted the oxidation of Si and C to form weakly adhered species that were subsequently removed by the abrasive action of the silica particles. The effect of potassium nitrate in increasing material removal is attributed to the reduction in the electrostatic repulsion between the abrasive particles and the SiC surface because of screening of surface charges by the added electrolyte. We also show that transition metal compounds when used as additives to silica dispersions enhance a-SiC removal rates (RRs). Silica slurries containing potassium permanganate gave RRs as high as 2000 nm/h at pH 4. Addition of copper sulfate to this slurry further enhanced the RRs to ˜3500 nm/h at pH 6

  20. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  1. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  2. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  3. Investigations of ultra-thin single layer a-Si:H films

    SciTech Connect

    Koehler, S.A.

    1997-07-01

    Measurements are presented as direct evidence of tail states in ultra-thin a-Si:H single layer films. Including tail states in computer simulations completely removes the staircase structure in the differential optical spectra, previously associated with the quantum confinement of carriers.

  4. Hydrogen plasma induced modification of photoluminescence from a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Bommali, R. K.; Ghosh, S.; Vijaya Prakash, G.; Gao, K.; Zhou, S.; Khan, S. A.; Srivastava, P.

    2014-02-01

    Low temperature (250-350 °C) hydrogen plasma annealing (HPA) treatments have been performed on amorphous hydrogenated silicon nitride (a-SiNx:H) thin films having a range of compositions and subsequent modification of photoluminescence (PL) is investigated. The PL spectral shape and peak positions for the as deposited films could be tuned with composition and excitation energies. HPA induced modification of PL of these films is found to depend on the N/Si ratio (x). Upon HPA, the PL spectra show an emergence of a red emission band for x ≤ 1, whereas an overall increase of intensity without change in the spectral shape is observed for x > 1. The emission observed in the Si rich films is attributed to nanoscale a-Si:H inclusions. The enhancement is maximum for off-stoichiometric films (x ˜ 1) and decreases as the compositions of a-Si (x = 0) and a-Si3N4 (x = 1.33) are approached, implying high density of non-radiative defects around x = 1. The diffusion of hydrogen in these films is also analyzed by Elastic Recoil Detection Analysis technique.

  5. Optical losses in multi-junction a-Si:H based solar cells and modules

    NASA Astrophysics Data System (ADS)

    Wiedeman, S.; Morris, J.; Yang, L.

    A comprehensive optical model is described which is applicable to glass/textured CTO/a-Si:H/a-SiGe:H-based multijunction cells and allows the calculation of optical absorption in each layer of the solar cell. The major optical losses which limit the output current density of tandem cells using 1.72-eV/1.50-eV bandgap a-Si:H/a-SiGe:H and an ITO/Ag rear contact to about 20.8 mA/sq cm (sum of both junctions) are identified and discussed. It is shown that improvements in the reflectivity and scattering properties of the rear contact may be expected to result in current densities of 22.3 mA/sq cm in this type of cell using intrinsic layers of limited thickness. The use of low-cost materials, such as soda-lime glass and the aluminum rear contacts typically employed in the manufacture of large-area modules, should reduce the total current density available to 18.5 mA/sq cm.

  6. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Schulze, T. F.; Korte, L.; Conrad, E.; Schmidt, M.; Rech, B.

    2010-01-01

    We present temperature-dependent measurements of I-V curves in the dark and under illumination in order to elucidate the dominant transport mechanisms in amorphous silicon-crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. ZnO:Al/(p )a-Si:H/(n)c-Si/(n+)a-Si:H cells are compared with inversely doped structures and the impact of thin undoped a-Si:H buffer layers on charge carrier transport is explored. The solar cell I-V curves are analyzed employing a generalized two-diode model which allows fitting of the experimental data for a broad range of samples. The results obtained from the fitting are discussed using prevalent transport models under consideration of auxiliary data from constant-final-state-yield photoelectron spectroscopy, surface photovoltage, and minority carrier lifetime measurements. Thus, an in-depth understanding of the device characteristics is developed in terms of the electronic properties of the interfaces and thin films forming the heterojunction. It is shown that dark I-V curve fit parameters can unequivocally be linked to the open circuit voltage under illumination which opens a way to a simplified device assessment.

  7. In-situ characterization of growth and interfaces in a-Si:H devices

    SciTech Connect

    Collins, R.W.; Wronski, C.R.; An, I.; Li, Y. )

    1992-12-01

    This report describes the in-situ characterization of growth and interfaces in amorphous silicon (a-Si:H) devices. The growth of a-Si:H by plasma-enhanced chemical vapor deposition (PECVD) is complex and involves many gas-phase and solid-surface chemical and physical processes, which are influenced by charged particle bombardment, ultraviolet light exposure, etc. The research consisted of two broad components. The first involved preparing a-Si:H by optimum'' PECVD and exposing the film to atomic hydrogen in-situ at the growth temperature. The processes of H-diffusion and incorporation in the exposed film were studied by spectroscopic ellipsometry, giving a picture of the processes by which the chemical potential in the film equilibrates with that in the gas phase. The properties of thin films were then prepared by alternating optimum'' PECVD growth and hydrogen exposure. Film properties were then studied again. The second component of the research is discussed only briefly in this report, as it is an outgrowth of previous work on single-wavelength ellipsometry. With the new spectroscopic capability developed at Penn State, it is now possible to quantify the nucleation and growth process of a-Si:H films.

  8. Processing of Refractory Metal Alloys for JOYO Irradiations

    SciTech Connect

    RF Luther; ME Petrichek

    2006-02-21

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang.

  9. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  10. Chemistry related to the procurement of vanadium alloys

    SciTech Connect

    Smith, H.M.; Chung H.M.; Tsai, H.C.

    1997-08-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats.

  11. On the Modeling of Plastic Deformation of Magnesium Alloys

    SciTech Connect

    Ertuerk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-17

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  12. On the Modeling of Plastic Deformation of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Ertürk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-01

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  13. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  14. Local network structure of a-SiC:H and its correlation with dielectric function

    SciTech Connect

    Kageyama, Shota; Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-12-21

    The microscopic disordered structures of hydrogenated amorphous silicon carbide (a-Si{sub 1−x}C{sub x}:H) layers with different carbon contents have been determined based on the correlations between the dielectric function in the ultraviolet/visible region and the local bonding states studied by high-sensitivity infrared attenuated total reflection spectroscopy. We find that the microscopic structure of the a-Si{sub 1−x}C{sub x}:H layers fabricated by plasma-enhanced chemical vapor deposition shows a sharp structural transition at a boundary of x = 6.3 at. %. In the regime of x ≤ 6.3 at. %, (i) the amplitude of the a-SiC:H dielectric function reduces and (ii) the SiH{sub 2} content increases drastically with x, even though most of the C atoms are introduced into the tetrahedral sites without bonding with H. In the regime of x > 6.3 at. %, on the other hand, (i) the amplitude of the dielectric function reduces further and (ii) the concentration of the sp{sup 3} CH{sub n} (n = 2,3) groups increases. Moreover, we obtained the direct evidence that the sp{sup 2} C bonding state in the a-SiC matrix exists in the configuration of C = CH{sub 2} and the generation of the graphite-like C = CH{sub 2} unit suppresses the band gap widening significantly. At high C contents of x > 6.3 at. %, the a-SiC:H layers show quite porous structures due to the formation of microvoids terminated with the SiH{sub 2}/CH{sub n} groups. By taking the SiH{sub 2}/CH{sub n} microvoid generation in the network and the high-energy shift of the dielectric function by the local bonding states into account, the a-SiC:H dielectric function model has been established. From the analysis using this model, we have confirmed that the a-SiC:H optical properties in the ultraviolet/visible region are determined almost completely by the local network structures.

  15. Thin-film amorphous silicon alloy research partnership, Phase I. Annual technical progress report, February 2, 1995--February 1, 1996

    SciTech Connect

    Guha, S.

    1996-04-01

    The principal objective of this R&D program is to expand, enhance and accelerate knowledge and capabilities for the development of high-performance, two-terminal multifunction amorphous silicon (a-Si) alloy modules. The near-term goal of the program is to achieve 12% stable module efficiency by 1998 using the multifunction approach. This report describes research on back reflectors of Ag/TiO{sub 2}/ZnO.

  16. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    SciTech Connect

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  17. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  18. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  19. Microporosity in casting alloys.

    PubMed

    Lewis, A J

    1975-06-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. Samples from each series were sectioned longitudinally, mounted, polished and examined microscopically for evidence of microporosity.

  20. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  1. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  2. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  3. Fundamental studies of defect generation in amorphous silicon alloys grown by remote plasma-enhanced chemical-vapor deposition (Remote PECVD)

    SciTech Connect

    Lucovsky, G.; Nemanich, R.J.; Bernholc, J.; Whitten, J.; Wang, C.; Davidson, B.; Williams, M.; Lee, D.; Bjorkman, C.; Jing, Z. )

    1993-01-01

    We demonstrated that the remote PECVD process can be used to deposit heavily doped n-type and p-type a-Si:H thin films. We optimized conditions for depositing undoped, near-intrinsic and heavily doped thin films of [mu]c(microcrystalline)-Si by remote PECVD. We extended the remote PECVD process to the deposition of undoped and doped a-Si,C:H and [mu]c-Si,C alloy films. We analyzed transport data for the dark conductivity in undoped and doped a-Si:H, a-Si,C:H, [mu]c-Si and [mu]c-Si,C films. We studied the properties of doped a-Si:H and [mu]c-Si in MOS capacitors using [approximately]10 [Omega]-cm p-type crystalline substrates and thermally grown Si0[sub 2] dielectric layers. We collaborated with a group at RWTH in Aachen, Germany, and studied the contributions of process induced defect states to the recombination of photogenerated electron pairs. We applied a tight-binding model to Si-Bethe lattice structures to investigate the effects of bond angle, and dihedral angle disorder. We used ab initio and empirical calculations to study non-random bonding arrangements in a-Si,O:H and doped a-Si:H films.

  4. Promising CuNi&.sbnd;CrSi alloy for first wall ITER applications

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-10-01

    Precipitation-hardened CuNiCrSi alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of CuNiCrSi alloy at 250-300°C is observed. Mechanical properties of CuNiCrSi alloy neutron irradiated to a dose of ˜0.2 dpa at 293°C are investigated. Embrittlement of CuNiCrSi alloy can be avoided by annealing.

  5. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  6. Formation of titanium carbide layer by laser alloying with a light-transmitting resin

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takuto; Hagino, Hideki

    2017-01-01

    The weight reduction of mechanical components is becoming increasingly important, especially in the transportation industry, as fuel efficiency continues to improve. Titanium and titanium alloys are recognized for their outstanding potential as lightweight materials with high specific strength. Yet they also have poor tribological properties that preclude their use for sliding parts. Improved tribological properties of titanium would expand the application of titanium into different fields. Laser alloying is an effective process for improving surface properties such as wear resistance. The process has numerous advantages over conventional surface modification techniques. Many researchers have reported the usefulness of laser alloying as a technique to improve the wear resistance of titanium. The process has an important flaw, however, as defects such as cracks or voids tend to appear in the laser-alloyed zone. Our group performed a novel laser-alloying process using a light-transmitting resin as a source for the carbon element. We laser alloyed a surface layer of pure titanium pre-coated with polymethyl methacrylate (PMMA) and investigated the microstructure and wear properties. A laser-alloyed zone was formed by a reaction between the molten titanium and thermal decomposition products of PMMA at the interface between the substrate and PMMA. The cracks could be eliminated from the laser-alloyed zone by optimizing the laser alloying conditions. The surface of the laser-alloyed zone was covered with a titanium carbide layer and exhibited a superior sliding property and wear resistance against WC-Co.

  7. Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers

    NASA Astrophysics Data System (ADS)

    Beaudoin, M.; Meunier, M.; Arsenault, C. J.

    1993-01-01

    Optical-absorption measurements are presented for multilayer structures of hydrogenated amorphous silicon and hydrogenated amorphous silicon nitride (a-Si:H/a-SiNx:H) produced by glow discharge. Small-angle x-ray-scattering measurements show that these multilayers are very periodic and confirm that the interfaces are abrupt. Optical band-gap measurements are presented for two sets of samples. Samples for the first set have constant barrier thickness and a fixed number of layer repeats while for the second set the composition and total thickness are kept constant. Even for very thin well layer thicknesses, no blueshift in the optical band gap is observed for the second set whereas the first set displays this effect quite well. This can be explained if the blueshift in the second set is due to an artifact of the Tauc law rather than quantum confinement effects as suggested by Collins and Huang [Phys. Rev. B 34, 2910 (1986)]. This interpretation is further supported by a Cody law [Solar Energy Mater. 8, 231 (1982)] analysis for which no blueshift in the optical band gap is observed for either set of samples. We conclude that optical band-gap measurements cannot be used as proof for the quantum confinement of carriers in these structures.

  8. A technique for determining Urbach edge, midgap states and electric field in a-Si:H and a-(Si,Ge):H devices

    NASA Technical Reports Server (NTRS)

    Dalal, Vikram L.; Knox, Ralph D.; Moradi, Behnam

    1990-01-01

    A technique for measuring the Urbach energy of valence band tail states and midgap defect densities in a-Si:H and a-(Si,Ge):H devices is described. The Urbach energy is determined by measuring the quantum efficiency (QE) of delocalized holes in the devices, whereas the midgap state density (DOS) is estimated by measuring the QE of localized holes. The distinction between delocalized and localized holes is obtained from the behavior of the QE upon the application of reverse bias to the device. The QE of holes localized in midgap states increases significantly upon the application of reverse bias because of Frenkel-Poole tunneling, whereas the QE of holes in tail states does not show such an increase. It is shown that upon light soaking the Urbach edge does not change, but the midgap DOS does increase significantly. A primary consequence of the increase in DOS is a decrease in electric field in the low-field middle i region of the p-i-n cell. The decrease in electric field is experimentally estimated by fitting the increase in the reverse bias QE to Frenkel-Poole tunneling.

  9. Modern Refractory Alloys Based on Titanium Gamma-Aluminide: Prospects of Development and Application

    NASA Astrophysics Data System (ADS)

    Nochovnaya, N. A.; Panin, P. V.; Kochetkov, A. S.; Bokov, K. A.

    2014-11-01

    The recent scientific and engineering level of refractory intermetallic alloys based on equiatomic titanium gamma-aluminide (TiAl) for aircraft engines and power plants is reviewed. The main tendencies and prospects of development of such alloys, processes of their production and treatment are described.

  10. In vitro corrosion of dental Ag-based alloys in polyvinylpyrrolidone iodine solution.

    PubMed

    Ochi, Morio; Endo, Kazuhiko; Ohno, Hiroki; Takasusuki, Norio; Matsubara, Hideki; Maida, Takeo

    2005-09-01

    The corrosion and tarnish behaviors of three Ag-based alloys (Ag-Pd-Cu-Au alloy, Ag-In alloy, and Ag-Sn-Zn alloy) in polyvinylpyrrolidone iodine (povidone-iodine) solution were examined. The degree of tarnish was evaluated by visible-ray spectrocolorimetry. Corrosion potential measurements and analyses of corrosion products by X-ray diffractometry were carried out to elucidate the corrosion mechanism. The corrosion rate of the three Ag-based alloys in povidone-iodine solution at its practical concentration used as a gargle solution was so fast that the alloys tarnished within 10 seconds of immersion with the formation of AgI. Thermodynamic consideration and the results of surface analysis by X-ray diffractometry revealed that the main anodic and cathodic reactions were Ag + I(-)-->AgI + e- and I2 + 2e(-)-->2I- respectively.

  11. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  12. Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Quatinetz, M.

    1975-01-01

    An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.

  13. Mechanical alloying of brittle materials

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; McDermott, B.; Koch, C. C.

    1988-12-01

    Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 K i.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.

  14. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  15. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  16. Separation processes during binary monotectic alloy production

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1984-01-01

    Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.

  17. Development of wider bandgap n-type a-SiOx:H and μc-SiOx:H as both doped and intermediate reflecting layer for a-Si:H/ a-Si1-xGex:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Po-Wei; Chen, Pei-Ling; Tsai, Chuang-Chuang

    2016-07-01

    In this work, we developed a-SiOx:H(n) and μc-SiOx:H(n) films as n-type layer, intermediate reflecting layer (IRL), and back-reflecting layer (BRL) to improve the light management in silicon thin-film solar cells. In the development of SiOx:H films, by properly adjusting the oxygen content of the films, the optical bandgap of μc-SiOx:H(n) can be increased while maintaining sufficient conductivity. Similar effect was found for a-SiOx:H(n). In a-Si:H single-junction cells, employing a-SiOx:H(n) as the replacement for a-Si:H(n) resulted in a relative efficiency enhancement of 11.4% due to the reduced parasitic absorption loss. We have also found that μc-SiOx:H(n) can replace back ITO layer as BRL, leading to a relative efficiency gain of 7.6%. For a-Si:H/ a-Si1- x Ge x:H tandem cell, employing μc-SiOx:H(n) as IRL increased the current density of top cell. In addition, employing a-SiOx:H(n) as a replacement of a-Si:H(n) in the top cell increased the current density of bottom cell due to the reduction of absorption loss. Combining all the improvements, the a-Si:H/ a-Si1-xGex:H tandem cell with efficiency of 9.2%, V OC = 1.58 V, J SC = 8.43 mA/cm2, and FF = 68.4% was obtained. [Figure not available: see fulltext.

  18. Tungsten carbide laser alloying of a low alloyed steel

    NASA Astrophysics Data System (ADS)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  19. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  20. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  1. Solid-phase crystallization of Si1- x - y Sn x C y ternary alloy layers and characterization of their crystalline and optical properties

    NASA Astrophysics Data System (ADS)

    Yano, Shota; Yamaha, Takashi; Shimura, Yosuke; Takeuchi, Wakana; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-01-01

    The solid phase crystallization of Si1- x - y Sn x C y ternary alloy layers on an insulator has been examined. Amorphous Si1- x - y Sn x C y layers with a Sn content of 0-20% and a C content of 0-10% were deposited on quartz substrates using a radio-frequency magnetron sputtering method and annealed at temperatures from 400 to 800 °C to induce the solid-phase crystallization. The crystalline properties of the Si1- x - y Sn x C y layers and the influences of Sn and C introduction on their crystalline structures were investigated. It was found that Sn introduction effectively reduces the crystallization temperature of a Si1- x - y Sn x C y layer to 400 °C, while a Si1- y C y binary alloy layer is hardly crystallized even at 800 °C. In addition, X-ray photoelectron spectroscopy measurement revealed that the Sn introduction effectively enhances the introduction of C atoms into substitutional sites in the ternary alloys. The substitutional C content in a polycrystalline Si1- x - y Sn x C y layer was estimated to be as high as 7.2%, which exceeds the thermal equilibrium solid solubility of C in a Si matrix. The absorption spectra of Si1- x - y Sn x C y ternary alloys were also investigated.

  2. DESIGN DATA STUDY FOR COATED COLUMBIUM ALLOYS

    DTIC Science & Technology

    ANTIOXIDANTS, * COATINGS , * NIOBIUM ALLOYS, *REFRACTORY COATINGS , *SILICON COATINGS , ALLOYS, ALUMINUM, DEFORMATION, ELASTIC PROPERTIES, HIGH...TEMPERATURE, OXIDATION, PLASTIC PROPERTIES, REENTRY VEHICLES, REFRACTORY MATERIALS, SHEETS, SILICIDES , VACUUM APPARATUS, VAPOR PLATING, ZIRCONIUM ALLOYS

  3. Materials data handbook, Inconel alloy 718

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  4. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  5. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  6. Dynamic switching mechanism of conduction/set process in Cu/a-Si/Si memristive device

    NASA Astrophysics Data System (ADS)

    Gao, Ligang; Lee, Shin Buhm; Hoskins, Brian; Yoo, Hyang Keun; Kang, Bo Soo

    2013-07-01

    The conduction/set processes of resistive switching have been systemically investigated for Cu/a-Si/Si electrochemical memristive devices. Experimental results indicate that the set process was driven by two different mechanisms, depending on the programming pulse amplitude: a purely electrical dielectric breakdown and a thermally assisted dielectric breakdown. For the latter process, we observe that the set time decreased exponentially with the increase in the programming pulse amplitude, whereas the former process shows amplitude independence. Through the temperature-dependent set transition characteristics, we argue that the filament growth in set process could be dominated by cation transport in the dielectric film. The thermal activation energy of Cu hopping in a-Si is extracted to be 0.16 eV.

  7. Measured and simulated temperature dependence of a-Si:H solar cell parameters

    SciTech Connect

    Stiebig, H.; Eickhoff, T.; Zimmer, J.; Beneking, C.; Wagner, H.

    1996-12-31

    In contrast to the successful application of analytic equations to the current-voltage behavior of crystalline silicon solar cells in the dark and under AM1.5 illumination, the description of a-Si:H solar cells parameters requires device modelling concepts taking the full set of semiconductor equations into account. This in particular holds for the explanation of the temperature dependence (225--400K) of experimentally determined a-Si:H p-i-n solar cell parameters. Device modelling calculations show that the observed decrease of the short circuit current at AM1.5 with lower T is much more effected by the additional charge trapped in the tail states and recharging of defect states than by the broadening of the gap. The induced electric field distortion blocks the extraction of photo generated holes. The open circuit voltage V{sub oc} increases with lower T which is caused by the same trapping effect.

  8. Development of materials and process technology for dual alloy disks

    NASA Technical Reports Server (NTRS)

    Marder, J. M.; Kortovich, C. S.

    1981-01-01

    Techniques for the preparation of dual alloy disks were developed and evaluated. Four material combinations were evaluated in the form of HIP consolidated and heat treated cylindrical and plate shapes in terms of elevated temperature tensile, stress rupture and low cycle fatigue properties. The process evaluation indicated that the pe-HIP AF-115 rim/loose powder Rene 95 hub combination offered the best overall range of mechanical properties for dual disk applications. The feasibility of this dual alloy concept for the production of more complex components was demonstrated by the scale up fabrication of a prototype CFM-56 disk made from this AF-115/Rene 95 combination. The hub alloy ultimate tensile strength was approximately 92 percent of the program goal of 1520 MPa (220 ksi) at 480 C (900 F) and the rim alloy stress rupture goal of 300 hours at 675 C (1250 F)/925 MPa (134 ksi) was exceeded by 200 hours. The low cycle fatigue properties were equivalent to those exhibited by HIP and heat treated alloys. There was an absence of rupture notch sensitivity in both alloys. The joint tensile properties were approximately 85 percent of the weaker of the two materials (Rene 95) and the stress rupture properties were equivalent to those of the weaker of the two materials (Rene 95).

  9. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-08

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity.

  10. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  11. Corrosion performance of structural alloys.

    SciTech Connect

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  12. Process for the production of hydrogen from water

    DOEpatents

    Miller, William E.; Maroni, Victor A.; Willit, James L.

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  13. Resistance switching in a SiC nanowire/Au nanoparticle network

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Kohno, H.

    2009-07-01

    Resistance switching in a semiconductor nanowire/metal nanoparticle system is demonstrated. SiC nanowires grown on a Si substrate and decorated with Au nanoparticles are measured using W microprobes in a scanning electron microscope, where one probe is grounded and the other is biased. HIGH and LOW states can be toggled by applying a negative or positive pulse voltage. The switching mechanism is attributed to a charge transfer between the SiC nanowires and the Au nanoparticles.

  14. A new flexible a-Si PV module and its application to rooftop PV systems

    SciTech Connect

    Ichikawa, Yukimi; Ihara, Takuro; Hama, Toshio

    1994-12-31

    A novel photovoltaic (PV) module for roof top systems, solar roofing, was proposed. Solar roofing is a flexible amorphous silicon (a-Si) PV sheet having the function of roofing. Tempered glass is used as roof covering material. Technical items for roof top systems using solar roofing were discussed. Preliminary studies on module component materials showed feasibility of solar roofing. The authors designed a construction technology for tempered glass covered roofs. Effects of shadows on PV module upon its performance were also analyzed.

  15. Titanium-tantalum alloy development

    SciTech Connect

    Cotton, J.D.; Bingert, J.F.; Dunn, P.S.; Butt, D.P.; Margevicius, R.W.

    1996-04-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The course of the alloy development to-date, along with processing and property data, are presented in this overview.

  16. Characterization Techniques for Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter '2 Characterization Techniques for Amorphous Alloys' with the content:

  17. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  18. Machine Casting of Ferrous Alloys.

    DTIC Science & Technology

    possible today. Extensive work was conducted on casting of semi-solid alloys when highly fluid (’ Rheocasting ’) and when thixotropically gelled...Thixocasting’). In initial phases of the program, copper base alloys and cast iron alloys were prepared with special non-dendritic Rheocast structure by batch...processing. Compatibility studies were carried out to select materials suitable for preparing cast iron with the Rheocast structure. Design

  19. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  20. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  1. H2O incorporation in the phosphorene/a-SiO2 interface: a first-principles study

    NASA Astrophysics Data System (ADS)

    Scopel, Wanderlã L.; Souza, Everson S.; Miwa, R. H.

    2017-02-01

    Based on first-principles calculations, we investigate (i) the energetic stability and electronic properties of single-layer phosphorene (SLP) adsorbed on an amorphous SiO2 surface (SLP/a-SiO2), and (ii) the further incorporation of water molecules at the phosphorene/a-SiO2 interface. In (i), we find that the phosphorene sheet binds to a-SiO2 through van der Waals interactions, even in the presence of oxygen vacancies on the surface. The SLP/a-SiO2 system presents a type-I band alignment, with the valence (conduction) band maximum (minimum) of the phosphorene lying within the energy gap of the a-SiO2 substrate. The structure and the surface-potential corrugations promote the formation of electron-rich and electron-poor regions on the phosphorene sheet and at the SLP/a-SiO2 interface. Such charge density puddles are strengthened by the presence of oxygen vacancies in a-SiO2. In (ii), because of the amorphous structure of the surface, we consider a number of plausible geometries for H2O embedded in the SLP/a-SiO2 interface. There is an energetic preference for the formation of hydroxyl (OH) groups on the a-SiO2 surface. Meanwhile, in the presence of oxygenated water or interstitial oxygen in the phosphorene sheet, we observe the formation of metastable OH bonded to the phosphorene, and the formation of energetically stable P-O-Si chemical bonds at the SLP/a-SiO2 interface. Further x-ray absorption spectra simulations are performed, which aim to provide additional structural/electronic information on the oxygen atoms forming hydroxyl groups or P-O-Si chemical bonds at the interface region.

  2. Performance of Hydrogenated a-Si:H Solar Cells with Downshifting Coating: Preprint

    SciTech Connect

    Nemeth, B.; Xu, Y.; Wang, H.; Sun, T.; Lee, B. G.; Duda, A.; Wang, Q.

    2011-05-01

    We apply a thin luminescent downshifting (LDS) coating to a hydrogenated amorphous Si (a-Si:H) solar cell and study the mechanism of possible current enhancement. The conversion material used in this study converts wavelengths below 400 nm to a narrow line around 615 nm. This material is coated on the front of the glass of the a-Si:H solar cell with a glass/TCO/p/i/n/Ag superstrate configuration. The initial efficiency of the solar cell without the LDS coating is above 9.0 % with open circuit voltage of 0.84 V. Typically, the spectral response below 400 nm of an a-Si:H solar cell is weaker than that at 615 nm. By converting ultraviolet (UV) light to red light, the solar cell will receive more red photons; therefore, solar cell performance is expected to improve. We observe evidence of downshifting in reflectance spectra. The cell Jsc decreases by 0.13 mA/cm2, and loss mechanisms are identified.

  3. On the formation of blisters in annealed hydrogenated a-Si layers.

    PubMed

    Serényi, Miklós; Frigeri, Cesare; Szekrényes, Zsolt; Kamarás, Katalin; Nasi, Lucia; Csik, Attila; Khánh, Nguyen Quoc

    2013-02-15

    Differently hydrogenated radio frequency-sputtered a-Si layers have been studied by infrared (IR) spectroscopy as a function of the annealing time at 350°C with the aim to get a deeper understanding of the origin of blisters previously observed by us in a-Si/a-Ge multilayers prepared under the same conditions as the ones applied to the present a-Si layers. The H content varied between 10.8 and 17.6 at.% as measured by elastic recoil detection analysis. IR spectroscopy showed that the concentration of the clustered (Si-H)n groups and of the (Si-H2)n (n ≥ 1) polymers increased at the expense of the Si-H mono-hydrides with increasing annealing time, suggesting that there is a corresponding increase of the volume of micro-voids whose walls are assumed from literature to be decorated by the clustered mono-hydride groups and polymers. At the same time, an increase in the size of surface blisters was observed. Also, with increasing annealing time, the total concentration of bonded H of any type decreases, indicating that H is partially released from its bonds to Si. It is argued that the H released from the (Si-H)n complexes and polymers at the microvoid surfaces form molecular H2 inside the voids, whose size increases upon annealing because of the thermal expansion of the H2 gas, eventually producing plastic surface deformation in the shape of blisters.

  4. Electron cyclotron resonance deposition of a-Si:H and a-C:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Yang, C. L.; Allevato, C. E.; Pool, F. S.

    1989-01-01

    Amorphous silicon (a-Si:H) and amorphous carbon (a-C:H) films have been deposited by electron cyclotron resonance (ECR) microwave plasma enhanced CVD. A high deposition rate of 25 A/sec and a light-to-dark conductivity ratio of 500,000 for a-Si:H films have been achieved by the ECR process using a pure silane plasma. ECR microwave plasmas have been analyzed by in situ optical emission spectroscopy (OES) and have shown a strong H-asterisk emission at 434 nm indicating higher chemical reactivity than RF plasmas. The linear correlation between the film deposition rate and the SiH-asterisk emission intensity of ECR silane plasma suggests that SiH-asterisk species are related to the neutral radicals which are responsible for the a-Si:H film deposition. Hard and soft a-C:H films have been deposited by ECR with and without RF bias power, respectively. The RF bias to the substrate is found to play a critical role in determining the film structure and the carbon bonding configuration of ECR deposited a-C:H films. Raman spectra of these films indicate that ECR deposition conditions can be optimized to produce diamond films.

  5. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  6. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  7. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  8. Characterization of Low Melting Temperature, Low-Ag, Bi-Containing, Pb-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Kosiba, Eva

    Restrictions of lead in solder lead to adoption of SAC305 in consumer products. While high reliability applications use SnPb, supply constraints are driving the adoption of a replacement. SAC305 has reliability concerns related to elevated process temperatures and the formation of Ag3Sn. Reliability performance of three low-Ag, Bi-containing, low melting temperature alloys were compared to SAC305. All three alloys under test performed as well or better for consumer applications. Drop testing and accelerated thermal cycling revealed no differences that would preclude use of these alloys in production. They allow for the use of lower Tg printed wire boards materials, which have been shown reliable. These alloys show promise for high reliability applications. In accelerated thermal cycling, all alloys outperformed the circuit boards. Bi precipitation resulted in less degradation to the bulk microstructure. Bi did not impact the IMC formation or growth, a small amount of Ag mitigated growth of Cu3Sn.

  9. The history of development of molybdenum alloys for structural applications

    SciTech Connect

    Wadsworth, J.; Wittenauer, J.P.

    1993-02-01

    Molybdenum was first isolated as an element in 1893 and found initial commercial application as a filament support for incandescent lamps in 1910. The advent of arc melting practice in the 1940s led to an increase in availability of Mo sheet, bar, and plate products. Alloy development programs were heavily supported starting in the 1950s and several key alloys emerged over the next twenty years that remain in use to the present time such as Mo-TZM, unalloyed Mo, and Mo-Re. In recent years, improved understanding of the role of oxygen and carbide distributions at grain boundaries have led to increased reliability and use of Mo in aerospace products. Current developmental programs in areas of propulsion and energy conversion will ensure the prominent position of Mo as a high-temperature structural material. This paper highlights some of these key developments in the evolution of Mo alloys.

  10. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  11. A promising new class of high-temperature alloys: eutectic high-entropy alloys.

    PubMed

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-08-27

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

  12. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    PubMed Central

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  13. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Mandal, Aparajita; Kole, Arindam; Dasgupta, Arup; Chaudhuri, Partha

    2016-11-01

    Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel-Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  14. Production of aluminum-silicon alloy and ferrosilicon and commercial-purity aluminum by the direct-reduction process. Third annual technical report, 1980 January 1-1980 December 31

    SciTech Connect

    Bruno, M.J.

    1981-01-01

    Progress on the program to demonstrate the technical feasibility of a pilot-sized Direct Reduction Process for producing aluminium and aluminium-silicon alloy is reported for Phase C. Progress is reported on reduction including the following tasks: supply burden material; burden beneficiation; effects of pilot operating parameters; pilot modifications; reactor scale-up design; calculating heat and mass balance; processing mathematical modeling; effects of process variables; information on supportive analytical, phase identification, and mechanical engineering data. Progress on alloy purification is reported in the following tasks: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; and supportive mechanical engineering. Progress on purification to commercial grade aluminum is reported on: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; support pilot operations; and supportive expended man-hours. Plans for Phase D are noted. (MCW)

  15. Radiation Effects in Refractory Alloys

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (<5%) even for high neutron exposures (>>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  16. The mechanism of corrosion of palladium-silver binary alloys in artificial saliva.

    PubMed

    Joska, L; Marek, M; Leitner, J

    2005-05-01

    Palladium dental casting alloys are alternatives to gold alloys. The aim of this study was to determine the electrochemical behaviour and the corrosion mechanism of binary silver-palladium alloys. Seven binary silver-palladium alloys and pure palladium and silver were tested in a model saliva solution. Electrochemical tests included corrosion potential, polarization resistance, and potentiodynamic polarization measurements. The corrosion products, which may be theoretically formed, were determined by thermodynamic calculation. The behaviour of silver and silver-rich alloys was dominated by the preferential formation of a thiocyanate surface layer, which controlled the free corrosion potential. Palladium dissolved in the form of a thiocyanate complex, but the surface became passivated by either palladium oxide or solid palladium thiocyanate layer, the thermodynamic calculations indicating preference for the oxide. Palladium-rich alloys showed evidence of silver depletion of the surface, resulting in behaviour similar to palladium. Examination of binary silver-palladium alloys has made possible determination of the role of the components of the alloys and model saliva in the corrosion behaviour. The findings are applicable to the more complex commercial dental alloys containing silver and palladium as major components.

  17. Alloy Design Challenge: Development of Low Density Superalloys for Turbine Blade Applications

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2009-01-01

    New low density single crystal (LDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust to weight ratio over current production alloys. An innovative alloying strategy was identified to achieve high temperature creep resistance, alloy density reductions, microstructural stability, and cyclic oxidation resistance. The approach relies on the use of molybdenum (Mo) as a potent solid solution strengthener for the nickel (Ni)-base superalloy; Mo has a density much closer to Ni than other refractory elements, such as rhenium (Re) or tungsten (W). A host of testing and microstructural examinations was conducted on the superalloy single crystals, including creep rupture testing, microstructural stability, cyclic oxidation, and hot corrosion. The paper will provide an overview of the single crystal properties that were generated in this new superalloy design space. The paper will also demonstrate the feasibility of this innovative approach of low density single crystal superalloy design. It will be shown that the best LDS alloy possesses the best attributes of three generations of single crystal alloys: the low density of first-generation single crystal alloys, the excellent oxidation resistance of second-generation single crystal alloys, and a creep strength which exceeds that of second and third generation alloys.

  18. Facile and fast fabrication of superhydrophobic surface on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin; Zhang, Xiaoxu; Zhang, Peng

    2013-04-01

    Superhydrophobic surface has many special functions and is widely investigated by researchers. Magnesium alloy is one of the lightest metal materials among the practice metals. It plays an important role in automobile, airplane and digital product for reducing devices weight. But due to the low standard potential, magnesium alloy has a high chemical activity and easily be corroded. That seriously impedes the application of magnesium alloy. In the process of fabrication a superhydrophobic surface on magnesium alloy, there are two ineluctable problems that must be solved: (1) high chemical activity and (2) the chemical activity is inhomogeneous on surface. In this study, we solved those problems by using the two characters to gain a rough surface on magnesium alloy and obtained a superhydrophobic surface after following modification process. The results show that the as-prepared superhydrophobic surface has obvious anti-corrosion effect in typically corrosive solution and naturally humid air. The delay-icing and self-cleaning effects are also investigated. The presented method is low-cost, fast and has great potential value in large-scale industry production.

  19. Superior metallic alloys through rapid solidification processing (RSP) by design

    SciTech Connect

    Flinn, J.E.

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  20. Effects of boron addition on a-Si(90)Ge(10):H films obtained by low frequency plasma enhanced chemical vapour deposition.

    PubMed

    Pérez, Arllene M; Renero, Francisco J; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-29

    Optical, structural and electric properties of (a-(Si(90)Ge(10))(1-y)B(y):H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10(-3) to 10(1) Ω(-1) cm(-1) when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  1. An Experimental Investigation of Fe-Si Alloy Corrosion in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Lauretta, Dante S.; Buseck, Peter R.

    2001-01-01

    We have performed an experimental study of Fe-Si alloy corrosion under dust-rich nebular conditions. The reaction products are silica and fayalite. Additional information is contained in the original extended abstract.

  2. An Electron Microscopy Investigation of the Transient Stage Oxidation Products in an Fe-22Cr Alloy with Ce and La Additions Exposed to Dry Air at 800 [degrees]C

    SciTech Connect

    Zhu, Jingxi; Fernandez Diaz, Laura M; Holcomb, Gordon R; Jablonski, Paul; Cowen, Christopher; Laughlin, David E; Alman, Dave; Seetharaman, Sridhar

    2011-01-01

    In this study, the effects of Ce (270 ppm) and La (120 ppm) mischmetal additions on the transient oxidation of an Fe-22Cr alloy were investigated. The oxidation process was imaged in situ using a confocal scanning laser microscope. The oxidation microstructures were studied by scanning electron microscopy, energy dispersive X-ray analysis, and transmission electron microscopy with the help of focused ion beam in situ lift-out specimen preparation. The Ce and La, referred to as reactive elements, were found in nonmetallic inclusion particles in the forms of oxides, sulfides, and phosphates. An affected zone formed around rare earth (RE)-containing inclusion particles at the alloy free surface during the transient oxidation. This zone consisted of an internal Cr-oxide formed beneath the particle as well as a thinner external oxide scale on the surface compared with the surroundings. The relation of this microstructure to oxidation kinetics is discussed. With time, the RE elements diffused into the scale from the RE particles on the alloy surface during the high-temperature exposure. A diffusion mechanism is presented to describe these observations.

  3. An Electron Microscopy Investigation of the Transient Stage Oxidation Products in an Fe-22Cr Alloy with Ce and La Additions Exposed to Dry Air at 1073 K (800 °C)

    SciTech Connect

    Jingxi Zhu; Laura Fernandez-Diaz; Gordon Holcomb; Paul Jablonski; Christopher Cowen; David Lauglin; and Sridhar Seetharaman

    2010-10-01

    In this study, the effects of Ce (270 ppm) and La (120 ppm) mischmetal additions on the transient oxidation of an Fe-22Cr alloy were investigated. The oxidation process was imaged in situ using a confocal scanning laser microscope. The oxidation microstructures were studied by scanning electron microscopy, energy dispersive X-ray analysis, and transmission electron microscopy with the help of focused ion beam in situ lift-out specimen preparation. The Ce and La, referred to as reactive elements, were found in nonmetallic inclusion particles in the forms of oxides, sulfides, and phosphates. An affected zone formed around rare earth (RE)-containing inclusion particles at the alloy free surface during the transient oxidation. This zone consisted of an internal Cr-oxide formed beneath the particle as well as a thinner external oxide scale on the surface compared with the surroundings. The relation of this microstructure to oxidation kinetics is discussed. With time, the RE elements diffused into the scale from the RE particles on the alloy surface during the high-temperature exposure. A diffusion mechanism is presented to describe these observations.

  4. Hot corrosion of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  5. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    NASA Astrophysics Data System (ADS)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  6. Laser induced crystallization of hydrogenated amorphous silicon-carbon alloys

    NASA Astrophysics Data System (ADS)

    Summonte, C.; Rizzoli, R.; Servidori, M.; Milita, S.; Nicoletti, S.; Bianconi, M.; Desalvo, A.; Iencinella, D.

    2004-10-01

    Laser induced crystallization of hydrogenated amorphous silicon carbon alloy (a-Si1-xCx:H) films has been investigated by means of synchrotron x-ray diffraction. The a-Si1-xCx:H films were deposited on (100) silicon wafers by very high frequency plasma enhanced chemical vapor deposition at 100MHz in hydrogen diluted silane-methane gas mixtures. The substrate was kept at 250°C or 350°C and the stoichiometry was changed from x =0.20 to 0.63. The structural characterization of the as-grown films has been carried out by Rutherford backscattering (hydrogen concentration) and infrared spectroscopy (film ordering). The films were irradiated by a KrF excimer laser (248nm ) with varying energy density and number of pulses. After irradiation, the formation of SiC crystallites has been revealed by synchrotron x-ray diffraction. Besides SiC nanocrystals, the formation of crystalline Si and graphite is observed for under- (x <0.50) and over-stoichiometric (x>0.50) samples, respectively. The essential role played by hydrogen concentration and hydrogen bonding configuration in determining the melting threshold and the consequent SiC grain formation is highlighted.

  7. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  8. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  9. Precipitation in a rapidly solidified and aged Ni-Al-Mo alloy

    NASA Technical Reports Server (NTRS)

    Nash, P.; Glasgow, T. K.

    1987-01-01

    The early stages of decomposition of a highly supersaturated nickel-base alloy have been studied using TEM, SEM, and X-ray diffraction. The material was produced as a metastable solid solution by chill-block melt-spinning. On aging, the material exhibited a number of decomposition products appearing in series or concomitantly. Some of the decomposition products of this alloy, Ni4Mo, Ni3Mo, and Ni2Mo, are related to those found in Ni-Mo binary alloys. Alpha-Mo formed during solidification was distinguished from that formed by precipitation in the solid state by orientation relationships.

  10. Tensile properties of V-(4-5)Cr-(4-5)Ti alloys

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Busch, D.; Smith, D.L.

    1996-04-01

    The current focus of the U.S program of research on V-base alloys is on V-(4-5)Cr(4-5)Ti that contains 500-1000 wppm Si. in this paper, we present experimental results on baseline tensile properties of two laboratory-scale heats of this alloy and of a 500-kg production heat of V-4Cr-4Ti (heat 832665) that were measured at 23-700 C. Both the production- and laboratory scale heats of the reference alloy V-4Cr-4Ti exhibited excellent tensile properties at temperatures up to {approx}650{degrees}C.

  11. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  12. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  13. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  14. Slag remelt purification of irradiated vanadium alloys

    SciTech Connect

    Carmack, W.J.; Smolik, G.R.; McCarthy, K.A.; Gorman, P.K.

    1995-07-01

    This paper describes theoretical and scoping experimental efforts to investigate the decontamination potential of a slag remelting process for decontaminating irradiated vanadium alloys. Theoretical calculations, using a commercial thermochemical computer code HSC Chemistry, determined the potential slag compositions and slag-vanadium alloy ratios. The experiment determined the removal characteristics of four surrogate transmutation isotopes (Ca, Y - to simulate Sc, Mn, and Ar) from a V-5Ti-5Cr alloy with calcium fluoride slag. An electroslag remelt furnace was used in the experiment to melt and react the constituents. The process achieved about a 90 percent removal of calcium and over 99 percent removal of yttrium. Analyses indicate that about 40 percent of the manganese may have been removed. Argon analyses indicates that 99.3% of the argon was released from the vanadium alloy in the first melt increasing to 99.7% during the second melt. Powder metallurgy techniques were used to incorporate surrogate transmutation products in the vanadium. A powder mixture was prepared with the following composition: 90 wt % vanadium, 4.7 wt % titanium, 4.7 wt % chromium, 0.35 wt % manganese, 0.35 wt % CaO, and 0.35 wt % Y{sub 2}O{sub 3}. This mixture was packed into 2.54 cm diameter stainless steel tubes. Argon was introduced into the powder mixture by evacuating and backfilling the stainless steel containers to a pressure of 20 kPa (0.2 atm). The tubes were hot isostatically pressed at 207 MPa (2000 atm) and 1473 K to consolidate the metal. An electroslag remelt furnace (crucible dimensions: 5.1 cm diameter by 15.2 cm length) was used to process the vanadium electrodes. Chemical analyses were performed on samples extracted from the slags and ingots. Ingot analyses results are shown below. Values are shown in percent removal of the four targeted elements of the initial compositions.

  15. The Effects of Chemical Wash Additives on the Corrosion of Aerospace Alloys in Marine Environments

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis; Calle, Luz Marina; Curran, Joseph; Hodge, Tim; Barile, Ronald; Heidersbach, Robert; Steinrock, T. (Technical Monitor)

    2002-01-01

    This paper presents the methodology for comparing the relative effectiveness of four chemical products used for rinsing airplanes and helicopters. The products were applied on a weekly basis to a series of flat alloy panels exposed to an oceanfront marine environment for one year. The results are presented along with comparisons of exposures of the same alloys that were not washed, were washed with seawater, or washed with de-ionized water.

  16. Casting Porosity-Free Grain Refined Magnesium Alloys

    SciTech Connect

    Schwam, David

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  17. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  18. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  19. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  20. Electron cyclotron resonance deposition of amorphous silicon alloy films and devices. Final subcontract report, 1 April 1991--31 March 1992

    SciTech Connect

    Shing, Y.H.

    1992-10-01

    This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.

  1. DEVELOPMENT OF PROTECTIVE COATINGS FOR TANTALUM-BASE ALLOYS

    DTIC Science & Technology

    PHASE STUDIES, PHYSICAL PROPERTIES, REFRACTORY MATERIALS, SILICIDES , SILICON COATINGS , SILICON COMPOUNDS, TANTALUM, TENSILE PROPERTIES, TITANIUM COMPOUNDS, TUNGSTEN ALLOYS, VANADIUM ALLOYS, VAPOR PLATING, ZINC COATINGS ....TANTALUM ALLOYS, ALLOYS, ALUMINUM COATINGS , ALUMINUM COMPOUNDS, BORON COMPOUNDS, CERAMIC COATINGS , CHROMIUM COMPOUNDS, COATINGS , FLAME SPRAYING...HAFNIUM ALLOYS, HAFNIUM COMPOUNDS, HARDNESS, HEAT RESISTANT ALLOYS, INTERMETALLIC COMPOUNDS, METAMATHEMATICS, NIOBIUM ALLOYS, OSCILLOGRAPHS, OXIDES

  2. Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent.

    PubMed

    Nguyen, Cao Cuong; Seo, Daniel M; Chandrasiri, K W D K; Lucht, Brett L

    2016-12-20

    Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.

  3. On the formation of blisters in annealed hydrogenated a-Si layers

    PubMed Central

    2013-01-01

    Differently hydrogenated radio frequency-sputtered a-Si layers have been studied by infrared (IR) spectroscopy as a function of the annealing time at 350°C with the aim to get a deeper understanding of the origin of blisters previously observed by us in a-Si/a-Ge multilayers prepared under the same conditions as the ones applied to the present a-Si layers. The H content varied between 10.8 and 17.6 at.% as measured by elastic recoil detection analysis. IR spectroscopy showed that the concentration of the clustered (Si-H)n groups and of the (Si-H2)n (n ≥ 1) polymers increased at the expense of the Si-H mono-hydrides with increasing annealing time, suggesting that there is a corresponding increase of the volume of micro-voids whose walls are assumed from literature to be decorated by the clustered mono-hydride groups and polymers. At the same time, an increase in the size of surface blisters was observed. Also, with increasing annealing time, the total concentration of bonded H of any type decreases, indicating that H is partially released from its bonds to Si. It is argued that the H released from the (Si-H)n complexes and polymers at the microvoid surfaces form molecular H2 inside the voids, whose size increases upon annealing because of the thermal expansion of the H2 gas, eventually producing plastic surface deformation in the shape of blisters. PMID:23413996

  4. Calibration of Elekta aSi EPIDs used as transit dosimeter.

    PubMed

    Cilla, S; Fidanzio, A; Greco, F; Sabatino, D; Russo, A; Gargiulo, L; Azario, L; Piermattei, A

    2011-02-01

    The transit in vivo dosimetry performed by the Electronic Portal Imaging Device (EPID), avoids the problem of solid-state detector positioning on the patient. Moreover, the dosimetric characterization of the recent Elekta aSi EPIDs in terms of signal stability and linearity enables these detectors adaptable for the transit in vivo dosimetry with 6, 10 and 15 MV photon beams. However, the implementation of the EPID transit dosimetry requires several measurements. Recently, the present authors have developed an in vivo dosimetry method for the 3D CRT based on correlation functions defined by the ratios between the transit signal, s(t) (w,L), by the EPID and the phantom mid-plane dose, D(m)(w,L), at the Source to Axis Distance (SAD) as a function of the phantom thickness, w, and the square field dimensions, L. When the phantom mid-plane was positioned at distance d from the SAD, the ratios st(w,L)/s't(d,w,L), were used to take into account the variation of the scattered photon contributions on the EPID as a function of, d and L. The aim of this paper was the implementation of a procedure that uses generalized correlation functions obtained by nine Elekta Precise linac beams. The procedure can be used by other Elekta Precise linacs equipped with the same aSi EPIDs assuring the stabilities of the beam output factors and the EPID signals. The calibration procedure of the aSi EPID here reported avoids measurements in solid water equivalent phantoms needed to implement the in vivo dosimetry method in the radiotherapy center. A tolerance level ranging between ±5% and ±6% (depending on the type of tumor) was estimated for the comparison between the reconstructed isocenter dose, D(iso) and the computed dose D(iso,TPS) by the treatment planning system (TPS).

  5. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  6. Lightweight Disk Alloy Development

    DTIC Science & Technology

    1991-04-01

    2001 (1982). 45. K C. Russell and J. W Eddington , JI Mat. Sci., 6, 20 (1972). 46. M. J. Lequeux, Ph.D. Thesis, Univ. de Paris-Sud (1979). 47. P S ...AD-A237 064 UGHTWEIGHT DISK ALLOY DEVELOPMENT S . M. Russel, C. C. Law and M. J. Blackburn Uted Te lowkles Corpoaton Prat & Whtney Govnment Enes...Space Propulo P. 0. Box 109600 West Palm Beach, FL 33410-9600 P. C. Clapp and D. M. Pease Istitute of Materials Science 9 ELECT Fg AW 11il S E Final

  7. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F.; Brager, Howard R.; Paxton, Michael M.

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  8. Stable palladium alloys for diffusion of hydrogen

    NASA Technical Reports Server (NTRS)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  9. Interaction Of Hydrogen With Metal Alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1993-01-01

    Report describes experiments on interaction of hydrogen with number of metal alloys. Discusses relationship between metallurgical and crystallographic aspects of structures of alloys and observed distributions of hydrogen on charging. Also discusses effect of formation of hydrides on resistances of alloys to hydrogen. Describes attempt to correlate structures and compositions of alloys with their abilities to resist embrittlement by hydrogen.

  10. THEORY OF DIFFUSION IN ORDERING ALLOYS

    DTIC Science & Technology

    interstitial atoms through the interstices Diffusion of interstitial atoms in alloys with a body - centered cubic lattice Diffusion of...sites of the alloy The case of an alloy with body - centered cubic lattic structure The case of an alloy with a face-centered cubic lattic

  11. Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator.

    PubMed

    Luke, Kevin; Okawachi, Yoshitomo; Lamont, Michael R E; Gaeta, Alexander L; Lipson, Michal

    2015-11-01

    We demonstrate broadband frequency comb generation in the mid-infrared (MIR) from 2.3 to 3.5 μm in a Si(3)N(4) microresonator. We engineer the dispersion of the structure in the MIR using a Sellmeier equation we derive from experimental measurements performed on Si(3)N(4) films from the UV to the IR. We use deposition-anneal cycling to decrease absorption losses due to vibrational transitions in the MIR and achieve a Q-factor of 1.0×10(6). To our knowledge, this is the highest Q reported in this wavelength range for any on-chip resonator.

  12. A forward bias method for lag correction of an a-Si flat panel detector

    SciTech Connect

    Starman, Jared; Tognina, Carlo; Partain, Larry; Fahrig, Rebecca

    2012-01-15

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the

  13. Photoinduced dehydrogenation of defects in undoped a-si:H using positron annihilation spectroscopy.

    PubMed

    Zou, X; Chan, Y C; Webb, D P; Lam, Y W; Hu, Y F; Beling, C D; Fung, S; Weng, H M

    2000-01-24

    We report changes in variable-energy positron annihilation spectroscopy measurements on undoped hydrogenated amorphous silicon films after light soaking. The change, seen predominantly in the high momentum band of the annihilation radiation, is not reversed by thermal annealing. We suggest, following recent models of the Staebler-Wronski effect, that light exposure induces hydrogen trapped in vacancylike defects to become mobile in the Si network. The observations place constraints on models of hydrogen motion fitting macroscopic Staebler-Wronski effect kinetics and may help to achieve a definitive description of metastability in a-Si:H.

  14. Simulation and Measurement of Absorbed Dose from 137 Cs Gammas Using a Si Timepix Detector

    NASA Technical Reports Server (NTRS)

    Stoffle, Nicholas; Pinsky, Lawrence; Empl, Anton; Semones, Edward

    2011-01-01

    The TimePix readout chip is a hybrid pixel detector with over 65k independent pixel elements. Each pixel contains its own circuitry for charge collection, counting logic, and readout. When coupled with a Silicon detector layer, the Timepix chip is capable of measuring the charge, and thus energy, deposited in the Silicon. Measurements using a NIST traceable 137Cs gamma source have been made at Johnson Space Center using such a Si Timepix detector, and this data is compared to simulations of energy deposition in the Si layer carried out using FLUKA.

  15. ALLOY COATINGS AND METHOD OF APPLYING

    DOEpatents

    Eubank, L.D.; Boller, E.R.

    1958-08-26

    A method for providing uranium articles with a pro tective coating by a single dip coating process is presented. The uranium article is dipped into a molten zinc bath containing a small percentage of aluminum. The resultant product is a uranium article covered with a thin undercoat consisting of a uranium-aluminum alloy with a small amount of zinc, and an outer layer consisting of zinc and aluminum. The article may be used as is, or aluminum sheathing may then be bonded to the aluminum zinc outer layer.

  16. Cobalt-Free Permanent Magnet Alloys.

    DTIC Science & Technology

    1984-10-01

    CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE October 1984 13. NUMBER OF PAGES 62 14. MONITORING AGENCY NAME & ADDRESS(II different from...1:2u c-d ole: its 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different , froal Ripp t).. - le. SUPPLEMENTARY NOTES 0 • 19. KEY...Curie Temperature in the Nickel ii Substituted Y2 Fe 1 7 Alloys. 4 Fluid Convection Cathode set-up used for 15 powder production. 5 Sketch of fluid

  17. Study of high performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1985-01-01

    The nickel-manganese experimental electrolyte was hydrogen peroxide treated and carbon purified for removal of residual sodium saccharin and related organic decomposition products from the plating of previous test panels. The saccharin additive was used to reduce stress where high concentrations of manganese and high pulse peak current densities were used. A large quantity of nickel-manganese alloy plates containing 0.35 to 0.40 percent by weight manganese was electroformed for testing to supply data for a mechanical property data table. The aluminum billet required for the machining of the subscale SSME main combustion chamber was acquired.

  18. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  19. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, Lynn; Malone, Tina; Gentz, Steven J. (Technical Monitor)

    2000-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  20. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, L.; Malone, T.

    2001-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  1. Dynamic mechanical deformation of a SiC[sub p]/Al-Li (8090) composite

    SciTech Connect

    Vaidya, R.U.; Zurek, A.K.

    1993-01-01

    The deformation behavior in compression of a silicon carbide particle-reinforced aluminum-lithium (8090) matrix composite, at strain rates in the range of 10[sup [minus]3] to 6500 s[sup [minus]1], was investigated, and compared with that of unreinforced alloy samples. Dynamics strengthening in these composites was found to change depending on the direction of testing. These differences were attributed to differences in the orientation of the reinforcing particles. 4 refs, 5 figs.

  2. Dynamic mechanical deformation of a SiC{sub p}/Al-Li (8090) composite

    SciTech Connect

    Vaidya, R.U.; Zurek, A.K.

    1993-06-01

    The deformation behavior in compression of a silicon carbide particle-reinforced aluminum-lithium (8090) matrix composite, at strain rates in the range of 10{sup {minus}3} to 6500 s{sup {minus}1}, was investigated, and compared with that of unreinforced alloy samples. Dynamics strengthening in these composites was found to change depending on the direction of testing. These differences were attributed to differences in the orientation of the reinforcing particles. 4 refs, 5 figs.

  3. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  4. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    SciTech Connect

    Demiroğlu, D.; Tatar, B.; Kazmanli, K.; Urgen, M.

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height Φ{sub B}, diode ideality factor η were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  5. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  6. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  7. Iridium alloy clad vent set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    1991-01-01

    Qualification studies have been successfully conducted to demonstrate iridium alloy Clad Vent Set (CVS) manufacturing readiness for the General Purpose Heat Source (GPHS) program at the Oak Ridge Y-12 Plant. These studies were joint comparison evaluations of both the Y-12 Plant and EG&G Mound G-MAT) products. Note: EG&G-MAT formerly manufactured the iridium alloy CVS. The comparison evaluations involved work in a number of areas; however, only the CVS cup metallurgical evalution will be presented here. The initial metallurgical comparisons in conjunction with follow-up metallurgical work showed the Y-12 Plant CVS product to be comparable to the fully qualified (for Galileo and Ulysses missions) EG&G-MAT product. This allowed the Y-12 Plant to commence pilot production of CVS components for potential use in the CRAF and CASSINI missions.

  8. Joint properties of cast Fe-Pt magnetic alloy laser welded to gold alloys.

    PubMed

    Watanabe, Ikuya; Nguyen, Khoi; Benson, P Andrew; Tanaka, Yasuhiro

    2006-01-01

    This study investigated the joint properties of a cast Fe-Pt magnetic alloy (Fe-36 at % Pt) laser welded to three gold alloys. The gold alloys used were ADA Type II and Type IV gold alloys, and an Ag-based (Ag-Au) gold alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared for each alloy. After the cast Fe-Pt plates were heat treated, they were butted against each of the three alloys and then laser welded with Nd:YAG laser at 200 V. Homogeneously welded specimens were also prepared for each alloy. Tensile testing was conducted at a crosshead speed of 1 mm/min. Failure load (N) and elongation (%) were recorded. After tensile testing, the fractured surfaces were examined with the use of SEM. The failure-load values of the group of alloys welded homogeneously were ranked in the order of: Ag-Au alloy > Type IV alloy > Type II alloy > Fe-Pt alloy. The Type IV alloy welded to Fe-Pt alloy had the highest failure-load value among the three alloys tested. The elongation results tended to follow a similar pattern. The results of this study indicated that Type IV gold alloy is a suitable alloy for metal frameworks to which cast Fe-Pt magnetic alloy is laser welded.

  9. Improved power efficiency in phosphorus doped n-a-SiNxOy/p-Si heterojunction light emitting diode

    NASA Astrophysics Data System (ADS)

    Lin, Zewen; Chen, Kunji; Zhang, Pengzhan; Xu, Jun; Li, Wei; Yang, Huafeng; Huang, Xinfan

    2017-02-01

    The higher up to 60% internal quantum efficiency of photoluminescence (PL) from amorphous silicon oxynitride (a-SiNxOy) films has been reported in our previous work. In present work, the improved power efficiency visible light emitting diode (LED) has been realized based on phosphorus doped n-a-SiNxOy/p-Si heterojunction structure, which is at least three times higher than that of ITO/a-SiNxOy/p-Si (called MIS) LED. The n-a-SiNxOy films were doped by using phosphine (PH3) gas during the deposition by plasma enhanced chemical vapor deposition technique and the electron concentration is about 2.4 × 1015 cm-3 at room temperature obtained from Hall-effect measurements. The light emitting (electroluminescence (EL)) peak energy is coincided with that of PL of a-SiNxOy, which suggests that the EL emission is also originated from the radiative recombination via N-Si-O bonding defect states in n-a-SiNxOy layers. The transport mechanism and optical performance of the device have been investigated with the characteristics of current-voltage (I-V) and light output-voltage (L-V), in terms of the energy band diagram of n-a-SiNxOy/p-Si heterojunction structure. The power law like L ˜ Im of light output-current (L ˜ I) characteristic in n-a-SiNxOy/p-Si heterojunction has also been observed, which exhibits a superlinear behaviour with a slope of 1.35 in the low current range and becomes almost linear with a slope of 1.05 in the high current range, due to the saturation of nonradiative recombination centers.

  10. Threshold Voltage Instability in A-Si:H TFTS and the Implications for Flexible Displays and Circuits

    DTIC Science & Technology

    2008-12-01

    in MOSFETs , experiments in our lab have localized the degradation of a-Si:H to the gate dielectric/a-Si:H channel interface [Shringarpure, et al...the Flexible Display Center is a bottom gate inverted staggered structure fabricated with a low temperature (180°C) process compatible with flexible...substrates, e.g., stainless steel and heat stabilized polyethylene naphthalate [O’Rourke, et al., 2008]. The gate dielectric is silicon nitride

  11. Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots.

    PubMed

    Kim, Jeehwan; Hong, Augustin J; Chandra, Bhupesh; Tulevski, George S; Sadana, Devendra K

    2012-04-10

    The viability of single-walled carbon nanotubes (SWCNTs) as a transparent conducting electrode on a-Si:H based single junction solar cells was explored. A Schottky barrier formed at a SWCNT/a-Si:H interface was removed by introducing high work function gold nanodots at the SWCNT/a-Si:H interface. This allows comparable device performance from SWCNT-electrode-based a-Si:H solar cells to that obtained by using conventional transparent conducting oxides.

  12. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  13. DISPERSION STRENGTHENED NICKEL-BASE ALLOYS.

    DTIC Science & Technology

    The swaged cone of extruded Nichrome-thoria alloys prepared by the thermal decomposition of thorium nitrate onto alloy powder indicated descreased... swaging of these dispersion-strengthened Nichrome alloys was dependent on the presence of a mild steel jacket on the alloy rod as a result of the canned...extrusion practice. Efforts to cold swage the alloy materials without this jacket were unsuccessful. (Author)

  14. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability.

    PubMed

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-02

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  15. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    NASA Astrophysics Data System (ADS)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  16. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  17. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  18. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    PubMed Central

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-01-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance. PMID:28150732

  19. Present Status of Vanadium Alloys for Fusion Applications

    SciTech Connect

    Muroga, Takeo; Chen, J. M.; Chernov, V. M.; Kurtz, Richard J.; Le Flem, M.

    2014-12-01

    Vanadium alloys are advanced options for low activation structural materials. After more than two decades of research, V-4Cr-4Ti has been emerged as the leading candidate, and technological progress has been made in reducing the number of critical issues for application of vanadium alloys to fusion reactors. Notable progress has been made in fabricating alloy products and weld joints without degradation of properties. Various efforts are also being made to improve high temperature strength and creep-rupture resistance, low temperature ductility after irradiation, and corrosion resistance in blanket conditions. Future research should focus on clarifying remaining uncertainty in the operating temperature window of V-4Cr-4Ti for application to near to middle term fusion blanket systems, and on further exploration of advanced materials for improved performance for longer-term fusion reactor systems.

  20. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  1. The realization of optical switching generated from the combination of Ag/a-Si/p-Si memristor and silicon waveguide

    NASA Astrophysics Data System (ADS)

    Li, Dongyang; Guo, Anran; Song, Qinjian; Guo, Guohui; Jiang, Yadong; Li, Wei

    2016-10-01

    Much attention has been attracted by applications of memristor in data storage, unconventional computing and logic circuit since 2008, but very few have been focused on applications in optical switches and optical modulators. Here, by combining a silicon waveguide with a memristor of Ag/a-Si/p-Si structure, a novel optical switch (OS) for use at 1.55μm has been set up. The device consists of a bottom p-Si waveguide, an upper a-Si layer and a top Ag electrode, i.e. a sandwich structure named as Ag/a-Si/p-Si. The light transmitting through the silicon waveguide can be modulated by changing optical parameters of a-Si dielectric layer in which the formation and annihilation of Ag filament can be adjusted by an alternately electrical field between Ag and p-Si electrodes. The distribution of optical power dependence on the thicknesses of a-Si layer and Ag layer as well as the geometric size of waveguide have been studied by numerical analysis. Finally, based on Ag/a-Si/p-Si sandwich structure and the simulated results, we have proposed a new and improved OS.

  2. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors.

    PubMed

    Morawiec, Seweryn; Mendes, Manuel J; Filonovich, Sergej A; Mateus, Tiago; Mirabella, Salvatore; Aguas, Hugo; Ferreira, Isabel; Simone, Francesca; Fortunato, Elvira; Martins, Rodrigo; Priolo, Francesco; Crupi, Isodiana

    2014-06-30

    Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells' rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 - 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of J(sc) and V(oc) are achieved in comparison to those previously reported in the literature for the same type of devices.

  3. Laser treatment of a-SiC:H thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Mincu, Niculae E.; Stanciu, Catrinel A.; Dinescu, Gheorghe H.; Aldea, E.; Sandu, Viorel; Andrei, A.; Dinescu, Maria; Ferrari, A.; Balucani, M.; Lamedica, G.

    1998-07-01

    Amorphous and hydrogenated (a-SiC:H) as well as crystalline silicon carbide are widespread materials for optoelectronic applications. In this paper, we studied the effect of laser/RF plasma jet treatment of a-SiC:H thin films deposited by Plasma Enhanced Chemical Vapor Deposition, on Si wafers. A Nd:YAG laser ((lambda) equals 1.06 micrometers , tFWHM equals 14 ns, E0 equals 0.015 J/pulse) was used with a fluence of 4 mJ/cm2 incident on the sample, the number of pulses being varied. Plasma treatments were performed in a plasma jet generated by a capacity coupled RF discharge in N2. Different analysis techniques were used to investigate the films, before and after the irradiation: X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. We followed the modification of their structure and composition as an effect of the laser/plasma treatment. A comparison with the excimer and also with the RF treatments was performed.

  4. A wide-gap a-SiC:H PV-powered electrochromic window coating

    SciTech Connect

    Gao, W.; Lee, S.H.; Xu, Y.; Benson, D.K.; Deb, S.K.; Branz, H.M.

    1998-09-01

    The authors report on the first monolithic, amorphous-silicon-based, photovoltaic-powered electrochromic window coating. The coating employs a wide bandgap a-Si{sub 1{minus}x}C{sub x}:H n-i-p photovoltaic (PV) cell as a semitransparent power supply, and a Li{sub y}WO{sub 3}/LiAlF{sub 4}/V{sub 2}O{sub 5} electrochromic (EC) device as an optical-transmittance modulator. The EC device is deposited directly on top of a PV cell that coats a glass substrate. The a-Si{sub 1{minus}x}C{sub x}:H PV cell has a Tauc gap of 2.2 eV and a transmittance of 60--80% over a large portion of the visible light spectrum. The authors reduced the thickness of the device to about 600 {angstrom} while maintaining a 1-sun open-circuit voltage of 0.9 V and short-circuit current of 2 mA/cm{sup 2}. The prototype 16 cm{sup 2} PV/EC device modulates the transmittance by more than 60% over a large portion of the visible spectrum. The coloring and bleaching times of the EC device are approximately 1 minute under normal operating conditions ({+-} 1 volt). A brief description of photoelectrochromic windows study is also given.

  5. Relaxation phenomena of image sensors made from a-Si:H

    NASA Astrophysics Data System (ADS)

    Hoheisel, M.; Brutscher, N.; Wieczorek, H.

    1989-11-01

    Image sensors made from amorphous silicon ( a-Si:H ) are under development. Their elements consist of back-to-back Schottky diodes. For practical operation, long-term stability is of great importance. We investigated dark conductivity and photoconductivity, capacitance-voltage characteristics, and response behavior after switching off illumination. Even after light soaking for many hours, no change in photocurrent occurred, whereas dark current, capacitance, and response time increased. These changes are metastable and can be reversed by annealing above 200 °C. Contrary to the Staebler-Wronski effect, [Appl. Phys. Lett. 31, 292 (1977)], the dark-current increase disappears at room temperature after several hours. We investigated the time dependence of this relaxation and calculated the energetic depth of the states involved. The contact between a-Si:H and indium-tin-oxide is described as a Schottky-Bardeen-metal-insulator-semiconductor junction. Its properties are strongly dependent on interface states, in particular on the position of the neutrality energy of the interface states with respect to the Fermi energy. We show that besides the well-known Staebler-Wronski effect, a new degradation process is observed. We suggest a model where holes are trapped in interface states about 1.0-1.4 eV above the valence band. Their thermal emission governs the relaxation behavior of the dark current.

  6. Nonequilibrium occupancy of tail states and defects in a-Si:H: Implications for defect structure

    NASA Astrophysics Data System (ADS)

    Schumm, G.; Jackson, W. B.; Street, R. A.

    1993-11-01

    A detailed investigation of the electron and hole occupancy of tail states in undoped amorphous silicon (a-Si:H) as well as changes in the dangling-bond occupancy as a function of excitation intensity was carried out using light-induced electron-spin-resonance (LESR) measurements. For very thick films the band-tail electron and hole densities are not proportional. Over a wide range of excitation conditions the excess hole density is constant, suggesting the presence of charged defects with a density that is 5-10 times larger than the neutral defect density in annealed or as-grown a-Si:H. Light soaking increases mainly the neutral defect density. The dependence of the excess hole density on film thickness and absorption profiles indicates that this effect is a bulk property, which may be masked in thinner films by the comparatively high interface defect density. Model calculations of nonequilibrium occupation statistics confirm the experimental results. For a defect distribution that includes charged defects, the calculations suggest a very small positive LESR signature of the dangling bond, in spite of the high density of charged defects in the material, as a necessary consequence of the asymmetries observed between electron and hole capture rates and tail-state distributions. The calculations demonstrate that the lack of this signature does not imply a defect structure that contains predominantly neutral defects.

  7. Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane

    NASA Astrophysics Data System (ADS)

    Knapp, T. J.; Mohr, R. T.; Li, Yize Stephanie; Thorgrimsson, Brandur; Foote, Ryan H.; Wu, Xian; Ward, Daniel R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    2016-04-01

    We report the fabrication and characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. In the past, all gate-defined quantum dots in Si/SiGe heterostructures were formed on top of strain-graded virtual substrates. The strain grading process necessarily introduces misfit dislocations into a heterostructure, and these defects introduce lateral strain inhomogeneities, mosaic tilt, and threading dislocations. The use of a SiGe nanomembrane as the virtual substrate enables the strain relaxation to be entirely elastic, eliminating the need for misfit dislocations. However, in this approach the formation of the heterostructure is more complicated, involving two separate epitaxial growth procedures separated by a wet-transfer process that results in a buried non-epitaxial interface 625 nm from the quantum dot. We demonstrate that in spite of this buried interface in close proximity to the device, a double quantum dot can be formed that is controllable enough to enable tuning of the inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of an applied magnetic field.

  8. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  9. Structural applications of mechanical alloying; Proceedings of the ASM International Conference, Myrtle Beach, SC, Mar. 27-29, 1990

    SciTech Connect

    Froes, F.H.; Debarbadillo, J.J. Inco Alloys International, Inc., Huntington, WV )

    1990-01-01

    The present conference on mechanically alloyed (MA) products discusses their aerospace and industrial applications, the design and isothermal forging of Ni-base oxide dispersion-strengthened (ODS) superalloys, the microstructure and tensile properties of ODS ferritic alloys, the high temperature corrosion resistance of MA refractory products, the mechanical properties of novel MA Fe-based ODS alloys, and dispersoids in MA metals. Also discussed are MA Al-alloys for aircraft applications, the microstructure and properties of MA Al-Mn, the MA processing of the Ti-Al system, the origin of the strength of MA Al alloys, the interaction of Al with SiC during MA processing, the synthesis of chromium silicide via MA, and the MA production of 'TiC-steel'.

  10. Fundamental studies of defect generation in amorphous silicon alloys grown by remote plasma-enhanced chemical-vapor deposition (Remote PECVD). Annual subcontract report, 1 September 1990--31 August 1991

    SciTech Connect

    Lucovsky, G.; Nemanich, R.J.; Bernholc, J.; Whitten, J.; Wang, C.; Davidson, B.; Williams, M.; Lee, D.; Bjorkman, C.; Jing, Z.

    1993-01-01

    We demonstrated that the remote PECVD process can be used to deposit heavily doped n-type and p-type a-Si:H thin films. We optimized conditions for depositing undoped, near-intrinsic and heavily doped thin films of {mu}c(microcrystalline)-Si by remote PECVD. We extended the remote PECVD process to the deposition of undoped and doped a-Si,C:H and {mu}c-Si,C alloy films. We analyzed transport data for the dark conductivity in undoped and doped a-Si:H, a-Si,C:H, {mu}c-Si and {mu}c-Si,C films. We studied the properties of doped a-Si:H and {mu}c-Si in MOS capacitors using {approximately}10 {Omega}-cm p-type crystalline substrates and thermally grown Si0{sub 2} dielectric layers. We collaborated with a group at RWTH in Aachen, Germany, and studied the contributions of process induced defect states to the recombination of photogenerated electron pairs. We applied a tight-binding model to Si-Bethe lattice structures to investigate the effects of bond angle, and dihedral angle disorder. We used ab initio and empirical calculations to study non-random bonding arrangements in a-Si,O:H and doped a-Si:H films.

  11. The aqueous corrosion behavior of technetium - Alloy and composite materials

    SciTech Connect

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M.; Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K.

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  12. The role of nickel in radiation damage of ferritic alloys

    SciTech Connect

    Osetskiy, Yury N.; Anento, Napoleon; Serra, Anna; Terentyev, Dmitry

    2014-11-26

    According to the modern theory damage evolution under neutron irradiation depends on the fraction of self interstitial atoms (SIAs) produced in the form of one-dimensionally (1-D) glissile clusters. These clusters, having a low interaction cross-section with other defects, sink mainly on grain boundaries and dislocations creating the so-called production bias. It is known empirically that addition of certain alloying elements affect many radiation effects, including swelling, however the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling of SIA clusters mobility in bcc Fe-Ni alloys with Ni content from 0.8 to 10 at.%. We have found that Ni interacts strongly with periphery of clusters affecting their mobility. The total effect is defined by all Ni atoms interacting with the cluster at the same time and can be significant even in low-Ni alloys. Thus 1nm (37SIAs) cluster is practically immobile at T < 500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhance cluster immobilization. Furthermore, this effect should have quite broad consequences in swelling rate, matrix damage accumulation, radiation induced hardening, etc. and the results obtained help in better understanding and prediction of radiation effects in Fe-Ni ferritic alloys.

  13. The role of nickel in radiation damage of ferritic alloys

    DOE PAGES

    Osetskiy, Yury N.; Anento, Napoleon; Serra, Anna; ...

    2014-11-26

    According to the modern theory damage evolution under neutron irradiation depends on the fraction of self interstitial atoms (SIAs) produced in the form of one-dimensionally (1-D) glissile clusters. These clusters, having a low interaction cross-section with other defects, sink mainly on grain boundaries and dislocations creating the so-called production bias. It is known empirically that addition of certain alloying elements affect many radiation effects, including swelling, however the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling of SIA clusters mobility in bcc Fe-Ni alloys with Ni content frommore » 0.8 to 10 at.%. We have found that Ni interacts strongly with periphery of clusters affecting their mobility. The total effect is defined by all Ni atoms interacting with the cluster at the same time and can be significant even in low-Ni alloys. Thus 1nm (37SIAs) cluster is practically immobile at T < 500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhance cluster immobilization. Furthermore, this effect should have quite broad consequences in swelling rate, matrix damage accumulation, radiation induced hardening, etc. and the results obtained help in better understanding and prediction of radiation effects in Fe-Ni ferritic alloys.« less

  14. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  15. Ion beam synthesis of SiGe alloy layers

    SciTech Connect

    Im, Seongil

    1994-05-01

    Procedures required for minimizing structural defects generated during ion beam synthesis of SiGe alloy layers were studied. Synthesis of 200 mm SiGe alloy layers by implantation of 120-keV Ge ions into <100> oriented Si wafers yielded various Ge peak concentrations after the following doses, 2 x 1016cm-2, 3 x 1016cm-2 (mid), and 5 x 1016cm-2 (high). Following implantation, solid phase epitaxial (SPE) annealing in ambient N2 at 800C for 1 hr. resulted in only slight redistribution of the Ge. Two kinds of extended defects were observed in alloy layers over 3 x l016cm-2cm dose at room temperature (RT): end-of-range (EOR) dislocation loops and strain-induced stacking faults. Density of EOR dislocation loops was much lower in alloys produced by 77K implantation than by RT implantation. Decreasing the dose to obtain 5 at% peak Ge concentration prevents strain relaxation, while those SPE layers with more than 7 at% Ge peak show high densities of misfit- induced stacking faults. Sequential implantation of C following high dose Ge implantation (12 at% Ge peak concentration in layer) brought about a remarkable decrease in density of misfit-induced stacking faults. For peak implanted C > 0.55 at%, stacking fault generation in the epitaxial layer was suppressed, owing to strain compensation by C atoms in the SiGe lattice. A SiGe alloy layer with 0.9 at% C peak concentration under a 12 at% Ge peak exhibited the best microstructure. Results indicate that optimum Ge/C ratio for strain compensation is between 11 and 22. The interface between amorphous and regrown phases (a/c interface) had a dramatic morphology change during its migration to the surface. Initial <100> planar interface decomposes into a <111> faceted interface, changing the growth kinetics; this is associated with strain relaxation by stacking fault formation on (111) planes in the a/c interface.

  16. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect

    Paul D. Jablonski; Christopher J. Cowen; John S. Sears

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  17. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect

    Jablonski, Paul D.; Cowen, Christopher J.; Sears, John S.

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. Finally, however, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  18. Electrical and structural properties of In-implanted Si1–xGex alloys

    DOE PAGES

    Feng, Ruixing; Kremer, F.; Sprouster, D. J.; ...

    2016-01-14

    Here, we report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si1–xGex alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si1–xGex alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with density functional theory calculations ofmore » two In atoms in a Si1–xGex supercell that demonstrated that In–In pairing was energetically favorable for x ≲ 0.7 and energetically unfavorable for x ≳ 0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si1–xGex alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si1–xGex alloys, and this combination of dopant and substrate represents an effective doping protocol.« less

  19. The erosion-corrosion of copper-based and nickel-based alloys in warm polluted Arabian Gulf seawater

    SciTech Connect

    Carew, J.A.; Islam, M.

    1994-12-31

    This paper presents the results of an investigation of the erosion-corrosion behavior of copper-nickel alloys (90:10 Cu/Ni and 7030 Cu/Ni), nickel-copper alloy UNS N04400 and nickel-based alloys (UNS N06022, N06030 and UNS S32550) used as heat exchanger tubes, in warm flowing Arabian Gulf seawater containing up to 5 ppm of sulphide ions. Visual and optical examinations of the internal surfaces of the tubes were carried out to compare the susceptibilities to erosion-corrosion attack of the different alloys, taking into consideration the nature of the product films formed.

  20. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum