Science.gov

Sample records for a-si based solar

  1. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10

  2. Research on the stability of a-Si:H based solar cells by SMART

    NASA Astrophysics Data System (ADS)

    Wronski, C. R.; Maley, N.

    1991-08-01

    Stable Materials Advisory Research Team (SMART) was established to develop a unified approach to address the stability problem in a-Si:H based solar cells. The goal of the coordinated research effort by industrial laboratory and research institution members is to resolve whether a-Si:H based materials are intrinsically unstable and if high efficiency cells can have a 20 year lifetime. This paper reviews ongoing research which addresses both material and device issues in the effort to improve the material properties and solar cell performance. Results are presented for materials and device structures obtained using several deposition techniques with hydrogen content varying from about 20% to 8%. Also several issues are discussed which arose from the wide range of measurements carried out on the same materials in different laboratories.

  3. Annual dependences of generated power and electrical energy for a-Si:H-based solar cells

    NASA Astrophysics Data System (ADS)

    Kryuchenko, Yu. V.; Sachenko, A. V.; Bobyl', A. V.; Kostylev, V. P.; Sokolovskyi, I. O.; Terukov, E. I.; Verbitskii, V. N.; Nikolaev, Yu. A.

    2013-11-01

    The annual dependences of the powers and energies generated by the unit area of a solar cell (SC) are calculated for a-Si:H-based SCs operating at latitudes of 45°N, 50°N, 55°N, and 60°N and in some geographical localities of Russia. Normalization of these dependences gives an idea about the corresponding annual dependences for SCs based on other semiconductors. Combined with the data on the average number of sunny days in a year (or the total duration of sunshine per year) for a specific region in Russia, this information makes it possible, in particular, to judge about the prospects for constructing solar power plants in these regions. As a result, the regions in Russia for which the excess over the average values of electrical energy generated by solar power plants may reach 24% are determined.

  4. Optical losses in multi-junction a-Si:H based solar cells and modules

    NASA Astrophysics Data System (ADS)

    Wiedeman, S.; Morris, J.; Yang, L.

    A comprehensive optical model is described which is applicable to glass/textured CTO/a-Si:H/a-SiGe:H-based multijunction cells and allows the calculation of optical absorption in each layer of the solar cell. The major optical losses which limit the output current density of tandem cells using 1.72-eV/1.50-eV bandgap a-Si:H/a-SiGe:H and an ITO/Ag rear contact to about 20.8 mA/sq cm (sum of both junctions) are identified and discussed. It is shown that improvements in the reflectivity and scattering properties of the rear contact may be expected to result in current densities of 22.3 mA/sq cm in this type of cell using intrinsic layers of limited thickness. The use of low-cost materials, such as soda-lime glass and the aluminum rear contacts typically employed in the manufacture of large-area modules, should reduce the total current density available to 18.5 mA/sq cm.

  5. Influence of base pressure and atmospheric contaminants on a-Si:H solar cell properties

    SciTech Connect

    Woerdenweber, J.; Schmitz, R.; Mueck, A.; Zastrow, U.; Niessen, L.; Gordijn, A.; Carius, R.; Beyer, W.; Rau, U.; Merdzhanova, T.; Stiebig, H.

    2008-11-01

    The influence of atmospheric contaminants oxygen and nitrogen on the performance of thin-film hydrogenated amorphous silicon (a-Si:H) solar cells grown by plasma-enhanced chemical vapor deposition at 13.56 MHz was systematically investigated. The question is addressed as to what degree of high base pressures (up to 10{sup -4} Torr) are compatible with the preparation of good quality amorphous silicon based solar cells. The data show that for the intrinsic a-Si:H absorber layer exists critical oxygen and nitrogen contamination levels (about 2x10{sup 19} atoms/cm{sup 3} and 4x10{sup 18} atoms/cm{sup 3}, respectively). These levels define the minimum impurity concentration that causes a deterioration in solar cell performance. This critical concentration is found to depend little on the applied deposition regime. By enhancing, for example, the flow of process gases, a higher base pressure (and leak rate) can be tolerated before reaching the critical contamination level. The electrical properties of the corresponding films show that increasing oxygen and nitrogen contamination results in an increase in dark conductivity and photoconductivity, while activation energy and photosensitivity are decreased. These effects are attributed to nitrogen and oxygen induced donor states, which cause a shift of the Fermi level toward the conduction band and presumably deteriorate the built-in electric field in the solar cells. Higher doping efficiencies are observed for nitrogen compared to oxygen. Alloying effects (formation of SiO{sub x}) are observed for oxygen contaminations above 10{sup 20} atoms/cm{sup 3}, leading to an increase in the band gap.

  6. Computer analysis of a-Si:H based double junction solar cells

    SciTech Connect

    Palit, N.; Chatterjee, P.

    1997-07-01

    An integrated electrical-optical model has been used to simulate and examine ways of optimizing the performance of double junction solar cells, where both the component cells have a-Si:H absorber layers of identical material quality. In the optical modeling part they take into account both specular interference effects; and diffused reflectances and transmittances due to interface roughness. The model simulates carrier transport in the junction between the two p-i-n subcells with the help of a thin heavily defective recombination layer (RL) having a reduced band gap. Their results reveal that in order to simulate the current-voltage and the quantum efficiency (QE) characteristics of these cells, window losses and light-trapping effects need to be properly accounted for. Results indicate that the highest open-circuit voltage is attained when the majority carrier quasi-Fermi levels on either side of the RL coincide. Also for the highest multijunction cell efficiency the thicknesses of the component subcells are such that the electric field in both are fairly close to one another. Finally, the QE under AM1.5 bias light at the maximum power point has been shown to be extremely sensitive to thickness variations of the component subcells and hence an useful tool for multijunction cell optimization.

  7. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect

    Deng, Xunming; Fan, Qi Hua

    2011-12-31

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  8. Study of Staebler-Wronsky degradation effect in a Si:H based P-I-N solar cells

    NASA Technical Reports Server (NTRS)

    Naseem, Hameed; Herman, A. M.

    1988-01-01

    The objective of this study is to improve the stability and efficiency of thin solar cells with emphasis on a-Si:H devices. The research project was broken down into three main phases. The first involves designing and building a UHV glow discharge system; the second involves making good quality films and eventually efficient cells; the final phase will be analytical.

  9. Study on limiting efficiencies of a-Si:H/μc-Si:H-based single-nanowire solar cells under single and tandem junction configurations

    NASA Astrophysics Data System (ADS)

    Zhai, Xiongfei; Cao, Guoyang; Wu, Shaolong; Shang, Aixue; Li, Xiaofeng

    2015-11-01

    Detailed balance calculations are presented for a-Si:H/μc-Si:H-based single- and tandem-junction single-nanowire solar cells (S- and T-SNSCs). Our study is based on three-dimensional finite-element electromagnetic simulation and thermodynamic balanced analysis, which includes radiative and Auger recombinations simultaneously. We quantify and compare the limiting short-circuit current densities, open-circuit voltages, and light-conversion efficiencies of these highly compact photovoltaic cells, addressing especially the effect of Auger recombination on the open-circuit voltages of SNSCs. Results show that tandem design leads to much higher light-conversion capability than μc-Si:H S-SNSCs, but exhibits superior performance than a-Si:H S-SNSCs only for cells with large radii.

  10. Study on limiting efficiencies of a-Si:H/μc-Si:H-based single-nanowire solar cells under single and tandem junction configurations

    SciTech Connect

    Zhai, Xiongfei; Cao, Guoyang; Wu, Shaolong E-mail: xfli@suda.edu.cn; Shang, Aixue; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-11-02

    Detailed balance calculations are presented for a-Si:H/μc-Si:H-based single- and tandem-junction single-nanowire solar cells (S- and T-SNSCs). Our study is based on three-dimensional finite-element electromagnetic simulation and thermodynamic balanced analysis, which includes radiative and Auger recombinations simultaneously. We quantify and compare the limiting short-circuit current densities, open-circuit voltages, and light-conversion efficiencies of these highly compact photovoltaic cells, addressing especially the effect of Auger recombination on the open-circuit voltages of SNSCs. Results show that tandem design leads to much higher light-conversion capability than μc-Si:H S-SNSCs, but exhibits superior performance than a-Si:H S-SNSCs only for cells with large radii.

  11. Study of the Staebler-Wronski degradation effect in a-Si:H based p-i-n solar cell

    NASA Technical Reports Server (NTRS)

    Naseem, H. A.; Brown, W. D.; Ang, S. S.

    1993-01-01

    Conversion of solar energy into electricity using environmentally safe and clean photovoltaic methods to supplement the ever increasing energy needs has been a cherished goal of many scientists and engineers around the world. Photovoltaic solar cells on the other hand, have been the power source for satellites ever since their introduction in the early sixties. For widespread terrestrial applications, however, the cost of photovoltaic systems must be reduced considerably. Much progress has been made in the recent past towards developing economically viable terrestrial systems, and the future looks highly promising. Thin film solar cells offer cost reductions mainly from their low processing cost, low material cost, and choice of low cost substrates. These are also very attractive for space applications because of their high power densities (power produced per kilogram of solar cell pay load) and high radiation resistance. Amorphous silicon based solar cells are amongst the top candidates for economically viable terrestrial and space based power generation. Despite very low federal funding during the eighties, amorphous silicon solar cell efficiencies have continually been improved - from a low 3 percent to over 13 percent now. Further improvements have been made by the use of multi-junction tandem solar cells. Efficiencies close to 15 percent have been achieved in several labs. In order to be competitive with fossil fuel generated electricity, it is believed that module efficiency of 15 percent or cell efficiency of 20 percent is required. Thus, further improvements in cell performance is imperative. One major problem that was discovered almost 15 years ago in amorphous silicon devices is the well known Staebler-Wronski Effect. Efficiency of amorphous silicon solar cells was found to degrade upon exposure to sunlight. Until now their is no consensus among the scientists on the mechanism for this degradation. Efficiency may degrade anywhere from 10 percent to almost

  12. Evidence of significant down-conversion in a Si-based solar cell using CuInS{sub 2}/ZnS core shell quantum dots

    SciTech Connect

    Gardelis, Spiros Nassiopoulou, Androula G.

    2014-05-05

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS{sub 2}/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  13. Optimization of Phase-Engineered a-Si:H-Based Multi-Junction Solar Cells: Final Technical Report, October 2001-July 2005

    SciTech Connect

    Wronski, C. R.; Collins, R. W.; Podraza, N. J.; Vlahos, V.; Pearce, J. M.; Deng, J.; Albert, M.; Ferreira, G. M.; Chen, C.

    2006-08-01

    The scope of the work under this subcontract has involved investigating engineered improvements in the performance and stability of solar cells in a systematic way, which included the following four tasks: (1) Materials research and device development; (2) Process improvement directed by real time diagnostics; (3) Device loss mechanisms; and (4) Characterization strategies for advanced materials Our work has resulted in new and important insights into the deposition of a-Si:H-based materials, as well as into the nature of the Staebler-Wronski Effect (SWE). Presumably, many of these insights will be used by industrial partners to develop more systematic approaches in optimizing solar cells for higher performance and stability. This effort also cleared up several serious misconceptions about the nature of the p-layer in cells and the SWE in materials and cells. Finally, the subcontract identified future directions that should be pursued for greater understanding and improvement.

  14. High performance a-Si solar cells and new fabrication methods for a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Kuwano, Y.; Ohnishi, M.

    1986-12-01

    The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.

  15. Improvement of parameters in a-Si(p)/c-Si(n)/a-Si(n) solar cells

    NASA Astrophysics Data System (ADS)

    Moustafa Bouzaki, Mohammed; Aillerie, Michel; Ould Saad Hamady, Sidi; Chadel, Meriem; Benyoucef, Boumediene

    2016-10-01

    We analyzed and discussed the influence of thickness and doping concentration of the different layers in a-Si(p)/c-Si(n)/a-Si(n) photovoltaic (PV) cells with the aim of increasing its efficiency while decreasing its global cost. Compared to the efficiency of a standard marketed PV cell, elaborated with a ZnO transparent conductive oxide (TCO) layer but without Back Surface Field (BSF) layer, an optimization of the thickness and dopant concentration of both the emitter a-Si(p) and absorber c-Si(n) layers will gain about 3% in the global efficiency of the cell. The results also reveal that with introduction of the third layer, i.e. the BSF layer, the efficiency always achieves values above 20% and all other parameters of the cell, such as the open-circuit voltage, the short-circuit current and the fill-factor, are strongly affected by the thickness and dopant concentration of the layers. The values of all parameters are given and discussed in the paper. Thereby, the simulation results give for an optimized a-Si(p)/c-Si(n)/a-Si(n) PV cells the possibility to decrease the thickness of the absorber layer down to 50 μm which is lower than in the state-of-the-art. This structure of the cell achieves suitable properties for high efficiency, cost-effectiveness and reliable heterojunction (HJ) solar cell applications.

  16. Plasmonic nano-antenna a-Si:H solar cell.

    PubMed

    Di Vece, Marcel; Kuang, Yinghuan; van Duren, Stephan N F; Charry, Jamie M; van Dijk, Lourens; Schropp, Ruud E I

    2012-12-03

    In this work the effects of plasmonics, nano-focusing, and orthogonalization of carrier and photon pathways are simultaneously explored by measuring the photocurrents in an elongated nano-scale solar cell with a silver nanoneedle inside. The silver nanoneedles formed the support of a conformally grown hydrogenated amorphous silicon (a-Si:H) n-i-p junction around it. A spherical morphology of the solar cell functions as a nano-lens, focusing incoming light directly on the silver nanoneedle. We found that plasmonics, geometric optics, and Fresnel reflections affect the nanostructured solar cell performance, depending strongly on light incidence angle and polarization. This provides valuable insight in solar cell processes in which novel concepts such as plasmonics, elongated nanostructures, and nano-lenses are used.

  17. a-Si:H solar cells: SiH(2)Cl(2) as a source gas and a-SiGe:H alloys

    NASA Astrophysics Data System (ADS)

    Payne, Adam More

    This thesis gives an overview of the reasons why solar cells are a necessity in this world of carbon constrained energy use. The most important factors upon which to work to improve the competitiveness of photovoltaic generated electricity with conventional, fossil fuel based generation are the cost of the solar cell and the cell conversion efficiency. The two main technical thrusts of this thesis--DCS as a source gas and a-SiGe:H alloys--attacked two aspects of these problems. a-SiGe:H is used in multijunction cells to achieve higher efficiencies and DCS can be used to increase the deposition rate of a-Si:H thus decreasing the time it takes to make a solar cell. We review the various experimental methods used to investigate the optical and electronic properties of a-Si:H thin films as well as the methods used to measure solar cell efficiency and determine the effectiveness of the various portions of a solar cell. Using DCS as a source gas helped us increase the deposition rate by factor of 5 while maintaining the film quality; however chlorinated intrinsic films had higher defect densities and lower photoconductivity than standard a-Si:H films. Use of DCS to deposit i-layers of a solar cell led us to the discovery that Cl enhances the doping efficiency of B in a-Si:H. The enhanced doping of a-SiC:H as the p-layer of a solar cell increased the cell's efficiency from 7.1% to 7.8%. A-SiGe:H alloys were investigated over a range of Tauc gaps from 1.7 eV down to 1.0 eV. The optical and electronic properties of these films were investigated as well as their incorporation in solar cells. Different bandgap graded structures were used in the i-layer of a solar cell with the conclusion that the bathtub shaped i-layer yields the highest stabilized efficiency. An attempt was made to fabricate solar cells using cathode-deposited a-SiGe:H alloys as the i-layer in collaboration with Harvard University. The cells fabricated could neither prove nor disprove the effectiveness of

  18. Modeling of a-Si:H alloy solar cells on textured substrates

    SciTech Connect

    Zeman, M.; Berg, J.H. van den; Vosteen, L.L.A.; Willemen, J.A.; Metselaar, J.W.; Schropp, R.E.I.

    1997-07-01

    Computer modeling is used as a tool for determining current matching in hydrogenated amorphous silicon (a-Si:H) alloy tandem cells on textured substrates. The increasing complexity of a-Si:H based solar cells requires continuous extending and testing of the computer models which are used for their simulation. To take light scattering at the textured interfaces of the cell into account the authors developed a multi-rough-interface optical model GENPRO2 which was used for calculating the absorption profiles in the solar cells. The results of a sensitivity study of the parameters of this optical model such as the scattering coefficients of the reflected and transmitted light and the dependence of scattered light on the in-going and out-going angle are presented. In order to simulate multi-junction solar cell as a complete device they implemented a novel model for tunnel/recombination junction (TRJ), which combines the trap assisted tunneling and enhanced carrier transport in the high field region of the TRJ. The current matching conditions were determined both for a-Si:H and a-SiGe:H bottom cells, while the top cell was an a-Si:H cell. They investigated the influence of light scattering at the textured interfaces and of the thickness of the intrinsic layer of the bottom cell on the optimal ratio (i2/i1) between the thicknesses of the bottom (i2) and top (i1) intrinsic layers in the current-matched cell. The results show that increasing amount of scattering at the textured interfaces leads to higher efficiencies and lower ratio (i2/i1) in the current-matched cell. The use of a-SiGe:H material in the bottom cell leads to higher efficiency and 3 to 4 times lower i2/i1 ratio than in case of a-Si:H/a-Si:H cells.

  19. Thermal stability of interconnected a-Si:H solar modules

    NASA Astrophysics Data System (ADS)

    Willing, F.; Bennett, M.; Newton, J.

    Interconnected solar modules with cell structures of glass/transparent-conducting-oxide (TCO)/piNa-Si/aluminum were heat-treated at a series of elevated temperatures in order to accelerate two degradation modes: interdiffusion at the aluminum/a-Si back contact, and conductivity loss at the aluminum/TCO contacts which serve as connections between individual cells in a module. Plots of device lifetime vs. 1/T extrapolated to normal operating temperatures showed that neither degradation mode would significantly effect module stability over the projected lifetime of the device.

  20. Parameter variation of the one-diode model of a-Si and a- Si/μc-Si solar cells for modeling light-induced degradation

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2014-11-01

    For analyzing the long-term behavior of thin film a-Si/μc-Si photovoltaic modules, it is important to observe the light-induced degradation (LID) in dependence of the temperature for the parameters of the one-diode model for solar cells. According to the IEC 61646 standard, the impact of LID on module parameters of these thin film cells is determined at a constant temperature of 50°C with an irradiation of 1000 W/m2 at open circuit conditions. Previous papers examined the LID of thin film a-Si cells with different temperatures and some others are about a-Si/μc-Si. In these previous papers not all parameters of the one-diode model are examined. We observed the serial resistance (Rs), parallel resistance (Rp), short circuit current (Isc), open circuit voltage (Uoc), the maximum power point (MPP: Umpp, Impp and Pmpp) and the diode factor (n). Since the main reason for the LID of silicon-based thin films is the Staebler Wronski effect in the a-Si part of the cell, the temperature dependence of the healing of defects for all parameters of the one-diode model is also taken into account. We are also measuring modules with different kind of transparent conductive oxides: In a-Si thin film solar cells fluorine-doped tin oxide (FTO) is used and for thin film solar cells of a-Si/μc-Si boron- doped zinc oxide is used. In our work we describe an approach for transferring the parameters of a one-diode model for tandem thin film solar cells into the one-diode model for each part of the solar cell. The measurement of degradation and regeneration at higher temperatures is the necessary base for optimization of the different silicon-based thin films in warm hot climate.

  1. Study and Simulation of the Heterojunction Thin Film Solar Cell a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)

    NASA Astrophysics Data System (ADS)

    Toufik, Zarede; Hamza, Lidjici; Mohamed, Fathi; Achour, Mahrane

    2016-08-01

    In this article, we present a study based on numerical simulation of the electrical characteristics of a thin-film heterojunction solar cell (a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)), using the automat for simulation of hetero-structures (AFORS-Het) software. This cell is composed of four main layers of silicon (Si): (i) 5 nm amorphous silicon doped n, (ii) 100 μm crystalline silicon (substrate) doped p, (iii) 5 nm amorphous silicon doped p, and (iv) 3 nm amorphous silicon intrinsic. This cell has a front and rear metal contact of aluminum and zinc oxide (ZnO) front layer transparent conductive oxide of 80 nm thickness. The simulations were performed at conditions of "One Sun" irradiation with air mass 1.5 (AM1.5), and under absolute temperature T = 300 K. The simulation results have shown a high electrical conversion efficiency of about 30.29% and high values of open circuit voltage V oc = 779 mV. This study has also shown that the studied cell has good quality light absorption on a very broad spectrum.

  2. Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots.

    PubMed

    Kim, Jeehwan; Hong, Augustin J; Chandra, Bhupesh; Tulevski, George S; Sadana, Devendra K

    2012-04-10

    The viability of single-walled carbon nanotubes (SWCNTs) as a transparent conducting electrode on a-Si:H based single junction solar cells was explored. A Schottky barrier formed at a SWCNT/a-Si:H interface was removed by introducing high work function gold nanodots at the SWCNT/a-Si:H interface. This allows comparable device performance from SWCNT-electrode-based a-Si:H solar cells to that obtained by using conventional transparent conducting oxides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    PubMed

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-29

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  4. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.

    PubMed

    Fisker, Christian; Pedersen, Thomas Garm

    2013-03-11

    We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

  5. More insights into band gap graded a-SiGe:H solar cells by experimental and simulated data

    SciTech Connect

    Zimmer, J.; Stiebig, H.; Foelsch, J.; Finger, F.; Eickhoff, T.; Wagner, H.

    1997-07-01

    An experimental and numerical study of a-SiGe:H based solar cells with band gap graded i-layer in the shape of a V is presented. The variation of the location of the band gap minimum has strong influence on the solar cell performance. Comparisons of experimental and simulated data of the dark IV-behavior, IV-curves under illumination and the quantum efficiency allow insights into the transport and recombination behavior within the solar cell. The simulations reveal that the position as well as the charge state of the defects determine the device characteristics.

  6. Performance of Hydrogenated a-Si:H Solar Cells with Downshifting Coating: Preprint

    SciTech Connect

    Nemeth, B.; Xu, Y.; Wang, H.; Sun, T.; Lee, B. G.; Duda, A.; Wang, Q.

    2011-05-01

    We apply a thin luminescent downshifting (LDS) coating to a hydrogenated amorphous Si (a-Si:H) solar cell and study the mechanism of possible current enhancement. The conversion material used in this study converts wavelengths below 400 nm to a narrow line around 615 nm. This material is coated on the front of the glass of the a-Si:H solar cell with a glass/TCO/p/i/n/Ag superstrate configuration. The initial efficiency of the solar cell without the LDS coating is above 9.0 % with open circuit voltage of 0.84 V. Typically, the spectral response below 400 nm of an a-Si:H solar cell is weaker than that at 615 nm. By converting ultraviolet (UV) light to red light, the solar cell will receive more red photons; therefore, solar cell performance is expected to improve. We observe evidence of downshifting in reflectance spectra. The cell Jsc decreases by 0.13 mA/cm2, and loss mechanisms are identified.

  7. Further insight on recombination losses in the intrinsic layer of a-Si:H solar cells using computer modeling tools

    NASA Astrophysics Data System (ADS)

    Rubinelli, Francisco A.; Ramirez, Helena; Ruiz, Carlos M.; Schmidt, Javier A.

    2017-05-01

    Recombination losses of a-Si:H based p-i-n solar cells in the annealed state are analyzed with device computer modeling. Under AM1.5 illumination, the recombination rate in the intrinsic layer is shown to be controlled by a combination of losses through defect and tail states. The influence of the defect concentration on the characteristic parameters of a solar cell is analyzed. The impact on the light current-voltage characteristic curve of adopting very low free carrier mobilities and a high density of states at the band edge is explored under red and AM1.5 illumination. The distribution of trapped charge, electric field, and recombination loses inside the intrinsic layer is examined, and their influence on the solar cell performance is discussed. Solar cells with intrinsic layers deposited with and without hydrogen dilution are examined. It is found that the photocurrent at -2 V is not always a good approximation of the saturated reverse-bias photocurrent in a-Si:H p-i-n solar cells at room temperature. The importance of using realistic electrical parameters in solar cell simulations is emphasized.

  8. Measured and simulated temperature dependence of a-Si:H solar cell parameters

    SciTech Connect

    Stiebig, H.; Eickhoff, T.; Zimmer, J.; Beneking, C.; Wagner, H.

    1996-12-31

    In contrast to the successful application of analytic equations to the current-voltage behavior of crystalline silicon solar cells in the dark and under AM1.5 illumination, the description of a-Si:H solar cells parameters requires device modelling concepts taking the full set of semiconductor equations into account. This in particular holds for the explanation of the temperature dependence (225--400K) of experimentally determined a-Si:H p-i-n solar cell parameters. Device modelling calculations show that the observed decrease of the short circuit current at AM1.5 with lower T is much more effected by the additional charge trapped in the tail states and recharging of defect states than by the broadening of the gap. The induced electric field distortion blocks the extraction of photo generated holes. The open circuit voltage V{sub oc} increases with lower T which is caused by the same trapping effect.

  9. Flexible micromorph tandem a-Si/{mu}c-Si solar cells

    SciTech Connect

    Soederstroem, T.; Haug, F.-J.; Terrazzoni-Daudrix, V.; Ballif, C.

    2010-01-15

    The deposition of a stack of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) tandem thin film silicon solar cells (micromorph) requires at least twice the time used for a single junction a-Si:H cell. However, micromorph devices have a higher potential efficiency, thanks to the broader absorption spectrum of {mu}c-Si:H material. High efficiencies can only be achieved by mitigating the nanocracks in the {mu}c-Si:H cell and the light-induced degradation of the a-Si:H cell. As a result, {mu}c-Si:H cell has to grow on a smooth substrate with large periodicity (>1 {mu}m) and the a-Si:H cell on sharp pyramids with smaller feature size ({approx}350 nm) to strongly scatter the light in the weak absorption spectra of a-Si:H material. The asymmetric intermediate reflector introduced in this work uncouples the growth and light scattering issues of the tandem micromorph solar cells. The stabilized efficiency of the tandem n-i-p/n-i-p micromorph is increased by a relative 15% compared to a cell without AIR and 32% in relative compared to an a-Si:H single junction solar cells. The overall process (T<200 deg. C) is kept compatible with low cost plastic substrates. The best stabilized efficiency of a cell deposited on polyethylene-naphthalate plastic substrate is 9.8% after 1000 h of light soaking at V{sub oc}, 1 sun, and 50 deg. C.

  10. Light trapping in a-Si:H thin film solar cells using silver nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, P. H.; Theuring, M.; Vehse, M.; Steenhoff, V.; Agert, C.; Brolo, A. G.

    2017-01-01

    Plasmonic thin film solar cells (modified with metallic nanostructures) often display enhanced light absorption due to surface plasmon resonance (SPR). However, the plasmonic field localization may not be significantly beneficial to improved photocurrent conversion efficiency for all types of cell configurations. For instance, the integration of random metallic nanoparticles (NPs) into thin film solar cells often introduces additional texturing. This texturing might also contribute to enhanced photon-current efficiency. An experimental systematic investigation to decouple both the plasmonic and the texturing contributions is hard to realize for cells modified with randomly deposited metallic nanoparticles. This work presents an experimental and computational investigation of well-defined plasmonic (Ag) nanoparticles, fabricated by nanosphere lithography, integrated to the back contact of hydrogenated amorphous silicon (a-Si:H) solar cells. The size, shape, periodicity and the vertical position of the Ag nanoparticles were well-controlled. The experimental results suggested that a-Si:H solar cells modified with a periodic arrangement of Ag NPs (700 nm periodicity) fabricated just at the top of the metal contact in the back reflector yields the highest improvement in terms of current density (JSC). Finite-difference time-domain (FDTD) simulations also indicated that Ag nanoparticles located at the top of the metal contact in the back reflector is expected to lead to the most efficient light confinement inside the a-Si:H absorber intrinsic layer (i-layer).

  11. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    PubMed Central

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-01-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service. PMID:28772609

  12. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells.

    PubMed

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-03-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young's modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain-subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.

  13. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Schulze, T. F.; Korte, L.; Conrad, E.; Schmidt, M.; Rech, B.

    2010-01-01

    We present temperature-dependent measurements of I-V curves in the dark and under illumination in order to elucidate the dominant transport mechanisms in amorphous silicon-crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. ZnO:Al/(p )a-Si:H/(n)c-Si/(n+)a-Si:H cells are compared with inversely doped structures and the impact of thin undoped a-Si:H buffer layers on charge carrier transport is explored. The solar cell I-V curves are analyzed employing a generalized two-diode model which allows fitting of the experimental data for a broad range of samples. The results obtained from the fitting are discussed using prevalent transport models under consideration of auxiliary data from constant-final-state-yield photoelectron spectroscopy, surface photovoltage, and minority carrier lifetime measurements. Thus, an in-depth understanding of the device characteristics is developed in terms of the electronic properties of the interfaces and thin films forming the heterojunction. It is shown that dark I-V curve fit parameters can unequivocally be linked to the open circuit voltage under illumination which opens a way to a simplified device assessment.

  14. Modelling on c-Si/a-Si:H wire solar cells: some key parameters to optimize the photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Ngo, I.; Gueunier-Farret, M. E.; Alvarez, J.; Kleider, J. P.

    2012-07-01

    Solar cells based on silicon nano- or micro-wires have attracted much attention as a promising path for low cost photovoltaic technology. The key point of this structure is the decoupling of the light absorption from the carriers collection. In order to predict and optimize the performance potential of p- (or n-) doped c-Si/ n-(or p-) doped a-Si:H nanowire-based solar cells, we have used the Silvaco-Atlas software to model a single-wire device. In particular, we have noticed a drastic decrease of the open-circuit voltage (Voc) when increasing the doping density of the silicon core beyond an optimum value. We present here a detailed study of the parameters that can alter the Voc of c-Si(p)/a-Si:H (n) wires according to the doping density in c-Si. A comparison with simulation results obtained on planar c-Si/a-Si:H heterojunctions shows that the drop in Voc, linked to an increase of the dark current in both structures, is more pronounced for radial junctions due to geometric criteria. These numerical modelling results have lead to a better understanding of transport phenomena within the wire.

  15. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  16. Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells

    PubMed Central

    Araújo, Andreia; Barros, Raquel; Mateus, Tiago; Gaspar, Diana; Neves, Nuno; Vicente, António; Filonovich, Sergej A; Barquinha, Pedro; Fortunato, Elvira; Ferraria, Ana M; Botelho do Rego, Ana M; Bicho, Ana; Águas, Hugo; Martins, Rodrigo

    2013-01-01

    We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm−2 and a filling factor of 63%, that is, a 10% increase in the JSC and 20% increase in the efficiency compared to a standard solar cell. PMID:27877602

  17. Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells.

    PubMed

    Araújo, Andreia; Barros, Raquel; Mateus, Tiago; Gaspar, Diana; Neves, Nuno; Vicente, António; Filonovich, Sergej A; Barquinha, Pedro; Fortunato, Elvira; Ferraria, Ana M; Botelho do Rego, Ana M; Bicho, Ana; Águas, Hugo; Martins, Rodrigo

    2013-08-01

    We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm(-2) and a filling factor of 63%, that is, a 10% increase in the JSC and 20% increase in the efficiency compared to a standard solar cell.

  18. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors.

    PubMed

    Morawiec, Seweryn; Mendes, Manuel J; Filonovich, Sergej A; Mateus, Tiago; Mirabella, Salvatore; Aguas, Hugo; Ferreira, Isabel; Simone, Francesca; Fortunato, Elvira; Martins, Rodrigo; Priolo, Francesco; Crupi, Isodiana

    2014-06-30

    Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells' rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 - 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of J(sc) and V(oc) are achieved in comparison to those previously reported in the literature for the same type of devices.

  19. Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Pehlivan, Özlem; Menda, Deneb; Yilmaz, Okan; Kodolbaş, Alp Osman; Ödemir, Orhan; Duygulu, Özgur; Kutlu, Kubilay; Tomak, Mehmet

    2013-09-01

    Large area (72 cm2) doping inversed HIT solar cells (n-a-Si:H/i-a-Si:H/p-c-Si) were investigated by High Resolution Transmission Electron Microscopy (HR-TEM), Spectroscopic Ellipsometry (SE), Fourier Transform Infrared Attenuated Total Reflection spectroscopy (FTIR-ATR) and current-voltage (I-V) measurement. Mixture of microcrystalline and amorphous phase was identified via HR-TEM picture at the interface of i-a-Si:H/p-c-Si heterojunction. Using multilayer and Effective Medium Approximation (EMA) to the SE data, excellent fit was obtained, describing the evolution of microstructure of a-Si:H deposited at 225 °C on p-c-Si. Cody energy gap with combination of FTIR-ATR analyses were consistent with HRTEM and SE results in terms of mixture of microcrystalline and amorphous phase. Presence of such hetero-interface resulted poor open circuit voltage, Voc, of the fabricated solar cell devices, determined by I-V measurement under 1 sun. Moreover, Voc was also estimated from dark I-V analysis, revealing consistent Voc values. Efficiencies of fabricated cells over complete c-Si wafer (72 cm2) were calculated as 4.7 and 9.2 %. Improvement in efficiency was interpreted due to the back surface cleaning and selecting aluminum/silver alloy as front contact.

  20. Probe of field collapse in a-Si:H solar cells

    SciTech Connect

    Wang, Q.; Crandall, R.S.

    1996-12-31

    The authors study the effect of illumination intensity on solar cell performance in a-Si:H solar cells. They find that the fill factor strongly depends on light intensity. As they increase the illumination intensity from low levels to one sun they observe a decrease in fill factor of approximately 15% in as grown cells. The authors attribute this effect to electric field collapse inside the cell. They propose that photogenerated space charge (free and trapped charge) increases with light intensity and causes field collapse. They describe the origin of space charge and the associated capacitance-photocapacitance. They measure the photocapacitance as a barometer to probe the collapsed field. The authors obtain a good agreement between photocapacitance experiments and theory. They also explore the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  1. Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Tian-Tian, Li; Tie, Yang; Jia, Fang; De-Kun, Zhang; Jian, Sun; Chang-Chun, Wei; Sheng-Zhi, Xu; Guang-Cai, Wang; Cai-Chi, Liu; Ying, Zhao; Xiao-Dan, Zhang

    2016-04-01

    Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiO x :H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiO x :H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiO x :H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiO x matrix with higher crystalline volume fraction (I c) and have a lower lateral conductivity. This uniform microstructure indicates that the higher I c can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiO x :H back reflector prepared by the gradient power during deposition. Compared with the sample with SiO x back reflector, with a constant power used in deposition process, the sample with gradient power SiO x back reflector can enhance the total short-circuit current density (J sc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively. Project supported by the Hi-Tech Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant No. 61474065), Tianjin Municipal Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).

  2. Measurement techniques for evaluation of a-Si:H solar cells

    NASA Astrophysics Data System (ADS)

    Bennett, M. S.; Arya, R. R.

    1986-10-01

    Analytical techniques which use I-V data on solar cells to characterize the performance of the cells are reviewed, with emphasis on a-Si:H p-i-n cells with a glass/conducting tin oxide (CTO)/p-i-n/metal structure. Quantum efficiency measurements identify the number of photogenerated electrons delivered to an external load for each photon striking the cell. The dark I-V quantifies the proportion of electrical energy generated by the cell when exposed to light which will be available at the output terminal. The series resistance of cells, and thereby the efficiency of the system, is calculated in terms of the resistances of the undepleted part of the insulator, of the CTO, between the CTO and the p-layer, and between the n-layer and the metal.

  3. Simulation of light-induced degradation of μc-Si in a-Si/μc-Si tandem solar cells by the diode equivalent circuit

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2016-02-01

    Silicon-based thin film tandem solar cells consist of one amorphous (a-Si) and one microcrystalline (μc-Si) silicon solar cell. The Staebler - Wronski effect describes the light- induced degradation and temperature-dependent healing of defects of silicon-based solar thin film cells. The solar cell degradation depends strongly on operation temperature. Until now, only the light-induced degradation (LID) of the amorphous layer was examined in a-Si/μc-Si solar cells. The LID is also observed in pc-Si single function solar cells. In our work we show the influence of the light-induced degradation of the μc-Si layer on the diode equivalent circuit. The current-voltage-curves (I-V-curves) for the initial state of a-Si/pc-Si modules are measured. Afterwards the cells are degraded under controlled conditions at constant temperature and constant irradiation. At fixed times the modules are measured at standard test conditions (STC) (AM1.5, 25°C cell temperature, 1000 W/m2) for controlling the status of LID. After the degradation the modules are annealed at dark conditions for several hours at 120°C. After the annealing the dangling bonds in the amorphous layer are healed, while the degradation of the pc-Si is still present, because the healing of defects in pc-Si solar cells needs longer time or higher temperatures. The solar cells are measured again at STC. With this laboratory measured I-V-curves we are able to separate the values of the diode model: series Rs and parallel resistance Rp, saturation current Is and diode factor n.

  4. Effect of metal/P-doped a-Si:H junctions on the photovoltage of a-Si:H solar cells

    SciTech Connect

    Sakai, Y.; Matsumura, M.; Nakato, Y.; Tsubomura, H.

    1987-10-15

    The open-circuit photovoltages (V/sub oc/) of a-Si:H solar cells having a Glass/TCO/p-i-n a-Si:H/metal structure were examined as a function of the thickness of the n layer. The V/sub oc/ stayed constant at --0.8 V, irrespective of the kind of metals, as far as the thickness of the n layer was larger than 15 nm, but dropped when the n layer got thinner. This effect was the stronger, the smaller the work function of the metal. The decrease of V/sub oc/ is attributed to complete depletion of the n layer, leading to the reduction of the potential gradient in the i layer. The effects of the metal/P-doped a-Si:H junction were further investigated using cells having a Glass/TCO/n-i-n/metal structure and different doping concentrations for the latter n layer. The results obtained supported the above-mentioned conclusion.

  5. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report

    SciTech Connect

    Deng, X.; Jones, S.J.; Liu, T.; Izu, M.

    1998-04-01

    This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

  6. Optical scattering modeling of etched ZnO:Al superstrates and device simulation studies of a-Si:H solar cells with different texture morphologies.

    PubMed

    Yan, Xia; Li, Weimin; Aberle, Armin G; Venkataraj, Selvaraj

    2016-08-20

    Transparent conductive oxide (TCO) materials have been widely used as the front electrodes of thin-film amorphous silicon (a-Si:H) solar cells. To improve the performance of solar cells, textured front TCO is required as the optical layer which effectively scatters the incoming light and thus enhances the photon absorption within the device. One promising TCO material is aluminum-doped zinc oxide (AZO), which is most commonly prepared by magnetron sputtering. After deposition, sputtered AZO films are typically wet-chemically etched using diluted hydrochloric (HCl) or hydrofluoric (HF) acid to obtain rough surface morphologies. In this paper, we report the effects of a textured AZO front electrode on the performance of a-Si:H solar cells based on optical scattering modeling and electrical device simulations, involving four different AZO surface morphologies. The simulated light scattering behaviors indicate that a better textured surface not only scatters more light, but also allows more light get transmitted into the absorber (∼90% of visible light), due to greatly reduced front reflection by the rough surface. Device simulation results show that the two-step AZO texturing process should give improved a-Si:H solar cell performance, with an enhanced short-circuit current density of 16.5  mA/cm2, which leads to a high photovoltaic (PV) efficiency of 9.9%.

  7. Flexible a-Si:H Solar Cells with Spontaneously Formed Parabolic Nanostructures on a Hexagonal-Pyramid Reflector.

    PubMed

    Dong, Wan Jae; Yoo, Chul Jong; Cho, Hyoung Won; Kim, Kyoung-Bo; Kim, Moojin; Lee, Jong-Lam

    2015-04-24

    Flexible amorphous silicon (a-Si:H) solar cells with high photoconversion efficiency (PCE) are demonstrated by embedding hexagonal pyramid nanostructures below a Ag/indium tin oxide (ITO) reflector. The nanostructures constructed by nanoimprint lithography using soft materials allow the top ITO electrode to spontaneously form parabolic nanostructures. Nanoimprint lithography using soft materials is simple, and is conducted at low temperature. The resulting structure has excellent durability under repeated bending, and thus, flexible nanostructures are successfully constructed on flexible a-Si:H solar cells on plastic film. The nanoimprinted pyramid back reflector provides a high angular light scattering with haze reflectance >98% throughout the visible spectrum. The spontaneously formed parabolic nanostructure on the top surface of the a-Si:H solar cells both reduces reflection and scatters incident light into the absorber layer, thereby elongating the optical path length. As a result, the nanopatterned a-Si:H solar cells, fabricated on polyethersulfone (PES) film, exhibit excellent mechanical flexibility and PCE increased by 48% compared with devices on a flat substrate.

  8. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    NASA Astrophysics Data System (ADS)

    Pathirane, M.; Iheanacho, B.; Tamang, A.; Lee, C.-H.; Lujan, R.; Knipp, D.; Wong, W. S.

    2015-10-01

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm-800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  9. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    SciTech Connect

    Pathirane, M. Iheanacho, B.; Lee, C.-H.; Wong, W. S.; Tamang, A.; Knipp, D.; Lujan, R.

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  10. Light-induced degradation in a-Si alloy solar cells at intense illumination

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Guha, S.; Pawlikiewicz, A.; Wolf, D.; Yang, J.

    1991-08-01

    Light-induced degradation has been investigated in a-Si alloy p-i-n solar cell structures as a function of cell deposition temperature and light intensity. Cells are deposited at temperatures ranging between 200°C to 300°C; degradation has been carried out at intensities up to 50 times AM1.5 illumination at 35°C. The cell charcteristics have been measured under AM1.5, blue and red illuminations. The degradation is found to have a power law dependence on the product of square of generation rate and light-soaking time. Most cells show saturation in degradation under 50 times AM1.5 illumination beyond 1000 sec, which is equivalent to approximately 800 hours under AM1.5 intensity. However, somes cells showed continued degradation at the high intensity up to 6×104 sec without any saturation; the cell properties could be restored to their original values after annealing. Computer simulation studies have been carried out to analyze the results on the basis of existing theories.

  11. Characterization of intrinsic a-Si:H films prepared by inductively coupled plasma chemical vapor deposition for solar cell applications.

    PubMed

    Jeong, Chaehwan; Boo, Seongjae; Jeon, Minsung; Kamisako, Koichi

    2007-11-01

    The hydrogenated amorphous silicon (a-Si:H) films, which can be used as the passivation or absorption layer of solar cells, were prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and their characteristics were studied. Deposition process of a-Si:H films was performed by varying the parameters, gas ratio (H2/SiH4), radio frequency (RF) power and substrate temperature, while a working pressure was fixed at 70 m Torr. Their characteristics were studied by measuring thickness, optical bandgap (eV), photosensitivity, bond structure and surface roughness. When the RF power and substrate temperature were 300 watt and 200 degrees C, respectively, optical bandgap and photosensitivity, similar to the intrinsic a-Si:H film, were obtained. The Si-H stretching mode at 2000 cm(-1), which means a good quality of films, was found at all conditions. Although the RF power increased up to 400 watt, average of surface roughness got better, compared to a-Si:H films deposited by the conventional PECVD method. These results show the potential for developing the solar cells using ICP-CVD, which have the relatively less damage of plasma.

  12. Influnce of exposure with Xe radiation on heterojunction solar cell a-SiC/c-Si studied by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Perný, M.; Šály, V.; Packa, J.; Mikolášek, M.; Váry, M.; Huran, J.; Hrubčín, L.; Skuratov, V. A.; Arbet, J.

    2017-04-01

    The photovoltaic efficiency of heterostructures a-SiC/c-Si may be the same or even better in comparison with conventional silicon structures when suitable adjustment of technological parameters is realized. The main advantage of heterojunction formed amorphous SiC thin film and crystalline silicon compared to standard crystalline solar cell lies in high build-in voltage and thus a high open-circuit voltage. Solar cells can be exposed to various influences of hard environment. A deterioration of properties of heterostructures (a-SiC/c-Si) due to irradiation is examined in our paper using impedance spectroscopy method. Xe ions induced damage is reflected in changes of proposed AC equivalent circuit elements. AC equivalent circuit was proposed and verified using numerical simulations. Impedance spectra were also measured at different DC bias voltages due to a more detailed understanding correlation between Xe ions induced damage and transport phenomenon in the heterostructure.

  13. Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings

    NASA Astrophysics Data System (ADS)

    Elshorbagy, Mahmoud H.; Alda, Javier

    2017-01-01

    Ultrathin amorphous silicon hydrogenated (aSi-H) solar cells grown on a one-dimensional (1-D) dielectric subwavelength gratings improve the short circuit current by a factor of more than 51% when compared with conventional, flat ultrathin aSi-H devices. This improvement is possible due to several mechanisms. In addition the increase in exposed area caused by the nanostructured surface, a reliable computational electromagnetic evaluation of the interaction of the solar spectrum with the cell structure demonstrates that absorption at the active layer is enhanced and also reflectivity is decreased. In addition, the absorbed power at the nonactive layers is larger, helping to increase the temperature and mitigate the Staebler-Wronski effect. The detailed analysis of the power flux inside the structure has also shown that funneling and guiding mechanism are at play, increasing the optical path within the active layer that produces a better performance of the cell.

  14. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    NASA Astrophysics Data System (ADS)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-11-01

    The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a battery cycler system, and the behavior of high power LFP batteries in a time sequence of 7.2 h was evaluated. The charging and discharging cycles were obtained and their behavior was discussed. According to the results, Istanbul has the lowest number of peak month's energy, it followed by Ankara, and ultimately Adana has the highest number of peak months and energy storage. It was observed during the tests that values up to 4 A was

  15. Electrical and optical characteristics of a-Si/P3HT inorganic-organic hybrid heterojunction devices for solar cells

    NASA Astrophysics Data System (ADS)

    Marin, William

    Hybrid inorganic-organic heterojunction devices using n-type amorphous silicon (a-Si(n)) and poly(3-hexylthiophene) (P3HT) layers fabricated by sputter and spin coating techniques, respectively, are investigated for potential cost-effective solar cell device structure. Using a-Si electron transfer and P3HT as electron donor-layer, two devices, ITO/PEDOT/P3HT/a-Si/Ag and ITO/a-Si/P3HT/Ag were studied with the latter showing improved photovoltaic response. Optical, electronic and photo-response properties of the devices were studied. Optical and quantum efficiency data exemplify improved photo-effects in the 450-650 nm wavelength range. I-V characteristics of the devices were diode-like and exhibited photovoltaic responses, yielding VOC of 0.46 V and ISC of 0.08 mA cm-2. Impedance spectroscopy data under forward and reverse biased heterojunctions were analyzed which provided global carrier mobility and diffusion times. Junction capacitance studies enabled evaluation of the built-in junction potential, acceptor concentration and showed the modulation of the space-charge region due to light generated carriers.

  16. a-SiCxNy:H thin films for applications in solar cells as passivation and antireflective coatings

    NASA Astrophysics Data System (ADS)

    Swatowska, Barbara; Kluska, Stanisława; Lewińska, Gabriela; Golańska, Julia; Stapiński, Tomasz

    2016-12-01

    Amorphous a-SiCxNy:H thin films may be an alternative to a-Si:N:H coatings which are commonly used in silicon solar cells. This material was obtained by PECVD (13.56 MHz) method. The reaction gases used: silane, methane, nitrogen and ammonia. The structure of the layers were investigated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). IR absorption spectra of a-SiCxNy:H layers confirmed the presence of various hydrogen bonds - it is important for passivation of Si structural defects. The ellipsometric measurements were implemented to determine the thickness of layers d, refractive index n, extinction coefficient k and energy gap Eg. The values of the energy gap of a-SiCxNy:H layers are in the range from 1.89 to 4.34 eV. The correlation between energy gap of materials and refractive index was found. Generally the introduction of N and/or C into the amorphous silicon network rapidly increases the Eg values.

  17. Development of high stable-efficiency, triple-junction a-Si alloy solar cells. Annual subcontract report, July 18, 1994--July 17, 1995

    SciTech Connect

    Deng, X.

    1996-02-01

    This report describes work performed by Energy Conversion Devices, Inc. (ECD) under a 3-year, cost-shared amorphous silicon (a-Si) research program to develop advanced technologies and to demonstrate stable 14%-efficient, triple-junction a-Si alloy solar cells. The technologies developed under the program will then be incorporated into ECD`s continuous roll-to-roll deposition process to further enhance ECD`s photovoltaic manufacturing technology. In ECD`s solar cell design, triple-junction a-Si alloy solar cells are deposited onto stainless-steel substrates coated with Ag/ZnO back-reflector layers. This type of cell design enabled ECD to use a continuous roll- to-roll deposition process to manufacture a-Si PV materials in high volume at low cost. Using this cell design, ECD previously achieved 13.7% initial solar cell efficiency using the following features: (1) a triple-junction, two-band-gap, spectrum-splitting solar cell design; (2) a microcrystalline silicon p-layer; (3) a band-gap-profiled a- SiGe alloy as the bottom cell i-layer; (4) a high-performance AgZnO back-reflector; and (5) a high-performance tunnel junction between component cells. ECD also applied the technology into its 2-MW/yr a- Si production line and achieved the manufacturing of 4-ft{sup 2} PV modules with 8% stable efficiency. During this program, ECD is also further advancing its existing PV technology toward the goal of 14% stable solar cells by performing the following four tasks: (1) improving the stability of the intrinsic a-Si alloy materials; (2) improving the quality of low-band-gap a-SiGe alloy; (3) improving p{sup +} window layers, and (4) developing high stable-efficiency triple-junction a-Si alloy solar cells.

  18. Well-Passivated a-Si:H Back Contacts for Double-Heterojunction Silicon Solar Cells: Preprint

    SciTech Connect

    Page, M. R.; Iwaniczko, E.; Xu, Y.; Wang, Q.; Yan, Y.; Roybal, L.; Branz, H. M.; Wang, T. H.

    2006-05-01

    We have developed hydrogenated amorphous silicon (a Si:H) back contacts to both p- and n-type silicon wafers, and employed them in double-heterojunction solar cells. These contacts are deposited entirely at low temperature (<250 C) and replace the standard diffused or alloyed back-surface-field contacts used in single-heterojunction (front-emitter only) cells. High-quality back contacts require excellent surface passivation, indicated by a low surface recombination velocity of minority-carriers (S) or a high open-circuit voltage (Voc). The back contact must also provide good conduction for majority carriers to the external circuit, as indicated by a high light I-V fill factor. We use hot-wire chemical vapor deposition (HWCVD) to grow a-Si:H layers for both the front emitters and back contacts. Our improved a-Si:H back contacts contribute to our recent achievement of a confirmed 18.2% efficiency in double-heterojunction silicon solar cells on p type textured silicon wafers.

  19. Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures.

    PubMed

    Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm

    2014-05-05

    The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

  20. Enhanced carrier extraction of a-Si/c-Si solar cells by nanopillar-induced optical modulation.

    PubMed

    Zeng, Yang; Liu, Hong; Ye, Qinghao; Shen, Wenzhong

    2014-04-04

    We demonstrate improved short-wavelength internal quantum efficiency (IQE) of a-Si/c-Si heterojunction (HJ) solar cells with a surface nanopillar (NP) array via simulation. The gain in IQE is attributed to the light-field modulation caused by the cavity resonance inside the NPs, in which the light energy is effectively localized within the c-Si bulk rather than the a-Si layer. The average IQE in the short-wavelength range (330-450 nm) is enhanced from 43.94% to 62.88% by the optimal NP array, with a maximum IQE of 80.98% at λ = 400 nm. The resulting current gain is over 38.25% compared to a planar HJ cell in this wavelength range, showing a well suppressed recombination-induced current loss. This light-management scheme may also find applications in other types of cells.

  1. Exploration of nano-element array architectures for substrate solar cells using an a-Si:H absorber

    NASA Astrophysics Data System (ADS)

    Jun Nam, Wook; Ji, Liming; Varadan, Vasundara V.; Fonash, Stephen J.

    2012-06-01

    Architectures involving Ag and transparent conducting oxide (TCO) nano-element arrays for light and photocarrier collection management in substrate solar cells are numerically explored and compared. Some architectures with TCO nano-elements are shown to perform better than the best reported Ag arrays and (1) increase JSC at least 57% over that of a planar 200 nm a-Si:H control, (2) attain absorber utilization <7 mg/W, and (3) have only 224 nm as the longest collection length. Photonic effects are the cause of the light trapping enhancement in these devices. While the computations were done for a-Si:H, the insight provided is equally applicable to other absorbers.

  2. Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers

    NASA Astrophysics Data System (ADS)

    Chen, Le; Wang, Qing-Kang; Shen, Xiang-Qian; Chen, Wen; Huang, Kun; Liu, Dai-Ming

    2015-10-01

    Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain (FDTD) simulation; finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm-800 nm, and the ultimate efficiency increases more than 22% compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances. Project supported by the National High-Tech Research and Development Program of China (Grant No. 2011AA050518), the University Research Program of Guangxi Education Department, China (Grant No. LX2014288), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2013GXNSBA019014).

  3. Hydrogenated amorphous silicon oxide (a-SiOx:H) single junction solar cell with 8.8% initial efficiency by reducing parasitic absorptions

    NASA Astrophysics Data System (ADS)

    Kim, Do Yun; Guijt, Erwin; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-04-01

    Hydrogenated amorphous silicon oxide (a-SiOx:H) solar cells have been successfully implemented to multi-junction thin film silicon solar cells. The efficiency of these solar cells, however, has still been below that of state-of-the-art solar cells mainly due to the low Jsc of the a-SiOx:H solar cells and the unbalanced current matching between sub-cells. In this study, we carry out optical simulations to find the main optical losses for the a-SiOx:H solar cell, which so far was mainly optimized for Voc and fill-factor (FF). It is observed that a large portion of the incident light is absorbed parasitically by the p-a-SiOx:H and n-a-SiOx:H layers, although the use of these layers leads to the highest Voc × FF product. When a more transparent and conductive p-nc-SiOx:H layer is substituted for the p-a-SiOx:H layer, the parasitic absorption loss at short wavelengths is notably reduced, leading to higher Jsc. However, this gain in Jsc by the use of the p-nc-SiOx:H compromises the Voc. When replacing the n-a-SiOx:H layer for an n-nc-SiOx:H layer that has low n and k values, the plasmonic absorption loss at the n-nc-SiOx:H/Ag interfaces and the parasitic absorption in the n-nc-SiOx:H are substantially reduced. Implementation of this n-nc-SiOx:H leads to an increase of the Jsc without a drop of the Voc and FF. When implementing a thinner p-a-SiOx:H layer, a thicker i-a-SiOx:H layer, and an n-nc-SiOx:H layer, a-SiOx:H solar cells with not only high Jsc but also high Voc and FF can be fabricated. As a result, an 8.8% a-SiOx:H single junction solar cell is successfully fabricated with a Voc of 1.02 V, a FF of 0.70, and a Jsc of 12.3 mA/cm2, which is the highest efficiency ever reported for this type of solar cell.

  4. Incorporation of a light and carrier collection management nano-element array into superstrate a-Si:H solar cells

    NASA Astrophysics Data System (ADS)

    Jun Nam, Wook; Ji, Liming; Benanti, Travis L.; Varadan, Vasundara V.; Wagner, Sigurd; Wang, Qi; Nemeth, William; Neidich, Douglas; Fonash, Stephen J.

    2011-08-01

    Superstrate a-Si:H solar cells incorporating a nano-column array for light and photocarrier collection have been fabricated and evaluated. It is found that the short circuit current density (JSC) is significantly increased while the open circuit voltage and fill factor are not detrimentally affected by this architecture. Numerical analysis of JSC matches experiment and shows that the enhanced JSC observed is due to both effective absorber thickness and photonic-plasmonic effects. Further analysis shows that this nano-column architecture can lead to a 42% increase in conversion efficiency over that of the planar control for a 200 nm absorber thickness cell.

  5. Low temperature pulsed electrically detected magnetic resonance on a-Si:H p-i-n solar cells

    NASA Astrophysics Data System (ADS)

    Herring, Thomas; Seipel, Heather; McCamey, Dane; Boehme, Christoph; Taylor, Craig; Hu, Jian; Zhu, Feng; Madan, Arun

    2008-03-01

    Hydrogenated amorphous silicon (a-Si:H) has become one of the most important semiconductor materials, with applications including solar cells and thin film transistors. In spite of this, and more than 30 years of intensive studies of this material, the microscopic nature of various recombination mechanisms in this material are still not well understood. Recently, pulsed electrically and optically detected magnetic resonance (p-EDMR, p-ODMR, respectively) spectroscopy has provided a method for directly and quantitatively observing some of these microscopic processes. Here, we present p-EDMR measurements on a-Si:H p-i-n solar cells at temperatures T <= 40K, with a comparatively low light excitation density. After a short, coherent microwave excitation, we record transients for a range of externally applied magnetic fields. The results show the presence of a number of resonances, which we discuss with regard to previous continuous wave (cw-) ESR and cw-EDMR studies, as well as cw- and p-ODMR measurements.

  6. ZnO/a-Si distributed Bragg reflectors for light trapping in thin film solar cells from visible to infrared range

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Yuan, Qianmin; Zhu, Kaigui

    2016-01-01

    Distributed Bragg reflectors (DBRs) consisting of ZnO and amorphous silicon (a-Si) were prepared by magnetron sputtering method for selective light trapping. The quarter-wavelength ZnO/a-Si DBRs with only 6 periods exhibit a peak reflectance of above 99% and have a full width at half maximum that is greater than 347 nm in the range of visible to infrared. The 6-pair reversed quarter-wavelength ZnO/a-Si DBRs also have a peak reflectance of 98%. Combination of the two ZnO/a-Si DBRs leads to a broader stopband from 686 nm to 1354 nm. Using the ZnO/a-Si DBRs as the rear reflector of a-Si thin film solar cells significantly increases the photocurrent in the spectrum range of 400⿿1000 nm, in comparison with that of the cells with Al reflector. The obtained results suggest that ZnO/a-Si DBRs are promising reflectors of a-Si thin-film solar cells for light trapping.

  7. Underdense a-Si:H film capped by a dense film as the passivation layer of a silicon heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Liu, Wenzhu; Zhang, Liping; Chen, Renfang; Meng, Fanying; Guo, Wanwu; Bao, Jian; Liu, Zhengxin

    2016-11-01

    Underdense hydrogenated amorphous silicon (a-Si:H) prepared by plasma-enhanced chemical vapor deposition was used as a passivation layer in silicon heterojunction (SHJ) solar cells. By reducing the thickness of the underdense a-Si:H passivation layer from 15 nm to 5 nm, the open circuit voltage (Voc) of the corresponding SHJ solar cell increased significantly from 724.3 mV to 738.6 mV. For comparison, a widely used transition-zone a-Si:H passivation layer was also examined, but reducing its thickness from 15 nm to 5 nm resulted in a continuous Voc reduction, from 724.1 mV to 704.3 mV. The highest efficiency was achieved using a 5-nm-thick underdense a-Si:H passivation layer. We propose that this advantageous property of underdense a-Si:H reflects its microstructural characteristics. While the porosity of a-Si:H layer enables H penetration into the amorphous network and the a-Si:H/c-Si interface, a high degree of disorder inhibits the formation of the epitaxial layer at the a-Si:H/c-Si interface during post-doping layer deposition.

  8. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    NASA Astrophysics Data System (ADS)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  9. Manipulating hybrid structures of polymer/a-Si for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Peng, Ying; He, Zhiqun; Diyaf, Adel; Ivaturi, Aruna; Zhang, Zhi; Liang, Chunjun; Wilson, John I. B.

    2014-03-01

    A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200 nm)/i-Si(450 nm)/n-Si(200 nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

  10. Manipulating hybrid structures of polymer/a-Si for thin film solar cells

    SciTech Connect

    Peng, Ying; He, Zhiqun E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun; Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B. E-mail: J.I.B.Wilson@hw.ac.uk

    2014-03-10

    A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200 nm)/i-Si(450 nm)/n-Si(200 nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

  11. Development of wider bandgap n-type a-SiOx:H and μc-SiOx:H as both doped and intermediate reflecting layer for a-Si:H/ a-Si1-xGex:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Po-Wei; Chen, Pei-Ling; Tsai, Chuang-Chuang

    2016-07-01

    In this work, we developed a-SiOx:H(n) and μc-SiOx:H(n) films as n-type layer, intermediate reflecting layer (IRL), and back-reflecting layer (BRL) to improve the light management in silicon thin-film solar cells. In the development of SiOx:H films, by properly adjusting the oxygen content of the films, the optical bandgap of μc-SiOx:H(n) can be increased while maintaining sufficient conductivity. Similar effect was found for a-SiOx:H(n). In a-Si:H single-junction cells, employing a-SiOx:H(n) as the replacement for a-Si:H(n) resulted in a relative efficiency enhancement of 11.4% due to the reduced parasitic absorption loss. We have also found that μc-SiOx:H(n) can replace back ITO layer as BRL, leading to a relative efficiency gain of 7.6%. For a-Si:H/ a-Si1- x Ge x:H tandem cell, employing μc-SiOx:H(n) as IRL increased the current density of top cell. In addition, employing a-SiOx:H(n) as a replacement of a-Si:H(n) in the top cell increased the current density of bottom cell due to the reduction of absorption loss. Combining all the improvements, the a-Si:H/ a-Si1-xGex:H tandem cell with efficiency of 9.2%, V OC = 1.58 V, J SC = 8.43 mA/cm2, and FF = 68.4% was obtained. [Figure not available: see fulltext.

  12. Hump-shaped internal collection efficiency of degraded a-Si:H {ital p-i-n} solar cells

    SciTech Connect

    Smole, F.; Topic, M.; Furlan, J.; Kusian, W.

    1997-07-01

    Measured internal collection efficiency (ICE) characteristics of annealed and degraded a-Si:H p-i-n solar cells were used for an analysis of their internal behavior. Using the numerical simulator ASPIN, simulations were performed in order to fit and explain pronounced hump-shaped voltage-dependent ICE characteristics of degraded structures under weak short-wavelength illumination. Agreement with measured ICE characteristics for a degraded cell was obtained only if in addition to the introduction of light-induced dangling bond defect states, their capture cross sections were also increased, in particular the capture cross section for the charged defect states were increased. This caused a change in the occupancy of defect states at the p-i interface and front part of the i layer under forward biases. Consequently, the electric field in the front part of the cell was sustained under higher forward biases, resulting in recovery of the ICE. {copyright} {ital 1997 American Institute of Physics.}

  13. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  14. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  15. Influence of air exposure duration and a-Si capping layer thickness on the performance of p-BaSi{sub 2}/n-Si heterojunction solar cells

    SciTech Connect

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Takeuchi, Hiroki; Toko, Kaoru; Suemasu, Takashi; Du, Weijie

    2016-08-15

    Fabrication of p-BaSi{sub 2}(20 nm)/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses (d{sub a-Si}) and varying air exposure durations (t{sub air}) prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies (η) reached approximately 4.7% regardless of t{sub air} (varying from 12–150 h) for solar cells with d{sub a-Si} = 5 nm. In contrast, η increased from 5.3 to 6.6% with increasing t{sub air} for those with d{sub a-Si} = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density (J{sub 0}) and diode ideality factor decreased with t{sub air}, resulting in the enhancement of η. The effects of the variation of d{sub a-Si} (0.7, 2, 3, and 5 nm) upon the solar cell performance were examined while keeping t{sub air} = 150 h. The η reached a maximum of 9.0% when d{sub a-Si} was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and J{sub 0} exhibited a tendency to decrease as d{sub a-Si} increased. These results demonstrate that a moderate oxidation of BaSi{sub 2} is a very effective means to enhance the η of BaSi{sub 2} solar cells.

  16. Identifying electronic properties relevant to improving stability in a-Si:H-based cells and overall performance in a-Si,Ge:H-based cells. Annual subcontract report, 18 April 1995--17 April 1996

    SciTech Connect

    Cohen, J.D.

    1997-03-01

    The work done during this second phase of the University of Oregon`s NREL subcontract focused on degradation studies in both pure a-Si:H and a-Si,Ge:H alloys, as well as a detailed study of the interface between these two materials in a-Si:H/a-Si, Ge:H heterostructures. All samples discussed in this report were produced by the glow-discharge method and were obtained either in collaboration with United Solar Systems Corporation or with researchers at Lawrence Berkeley laboratory. First, the results from the a-Si, Ge:H degradation studies support the conclusion that considerable quantities of charged defects exist in nominally intrinsic material. Researchers found that on light-soaking, all the observed defect sub-bands increased; however, their ratios varied significantly. Second, researchers performed voltage pulse stimulated capacitance transient measurements on a-Si:H/a-Si, Ge:H heterostructure samples and found a clear signature of trapped hole emission extending over long times. Finally, researchers began comparison studies of the electronic properties of a-Si:H grown by glow discharge either with 100% silane, or with silane diluted in H{sub 2} or He gas. The results on these samples indicate that the films grown under high hydrogen dilution exhibit roughly a factor of 3 lower deep defect densities than those grown using pure silane.

  17. Theoretical maximum performance evaluation of third generation silicon solar cell consisting of nc-Si:H/a-Si:H quantum wells

    NASA Astrophysics Data System (ADS)

    Tripathi, Brijesh; Sircar, Ratna

    2016-09-01

    The maximum performance of nc-Si:H/a-Si:H quantum well solar cell is theoretically evaluated by studying the spectral absorption of incident radiation with respect to the number of inserted nc-Si:H quantum well layers. Fundamental intrinsic properties of a-Si:H and nc-Si:H materials reported in literature have been used to evaluate the performance parameters. Enhanced spectral absorption is recorded due to insertion of nc-Si:H quantum well layers in the intrinsic region of a-Si:H solar cell. By inserting 50 QW layers of nc-Si:H in the intrinsic region of the a-Si:H solar cell, the short-circuit current density (JSC) increases by ∼100% as compared to the baseline whereas the open-circuit voltage (VOC) decreases by ∼38%. The decrease in VOC is explained on the basis of quasi-Fermi level separation under the illuminated state of solar cell. Theoretical maximum efficiency, having the combined effect of the increase in JSC and decrease in VOC, has increased by ∼24% in comparison with the baseline due to the use of QW as calculated using ideal carrier lifetime value. With a realistic carrier lifetime of the state-of-the-art a-Si:H solar cells, the addition of QWs do not yield any significant gain. From this study, it is concluded that a high carrier lifetime is required to gain a noteworthy benefit from the nc-Si:H/a-Si:H QWs.

  18. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells.

    PubMed

    Baek, Seungsin; Lee, Jeong Chul; Lee, Youn-Jung; Iftiquar, Sk Md; Kim, Youngkuk; Park, Jinjoo; Yi, Junsin

    2012-01-18

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels.

  19. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels. PMID:22257671

  20. Optical and Electrical Characteristics of Hybrid ZnO Nanowire/a-Si:H Solar Cells on Flexible Substrates under Mechanical Bending.

    PubMed

    Pathirane, Minoli K; Wong, William S

    2016-05-01

    Disordered 3-D hybrid ZnO nanowire/a-Si:H thin-film radial-junction solar cells are directly fabricated onto flexible substrates. A 41% reduction in optical reflectivity resulted in a 15% increase in the current density when the substrate is mechanically bent concave-up toward the incoming light. The light scattering of the nanowire devices was enhanced by decreasing the spacing between the nanowire solar cell by bending the substrate.

  1. Enhanced surface recombination in a-Si:H solar cells caused by light stress

    NASA Astrophysics Data System (ADS)

    Kusian, W.; Pfleiderer, H.

    1991-08-01

    The change of the spectral photocurrent characteristics of amorphous silicon pin solar cells with light induced degradation is compared with the effect of slightly doping the ``i-layer''. Both treatments yield similar results. Light stress lets the primary photocurrent, measured with blue light, decrease and the secondary photocurrent, measured with red light, increased. The similar change occurs when a slight n-doping of the ``i-layer'' is replaced by a slight p-doping. A simple interpretation in terms of unfirom fields and preponderant surface recombination is possible and will be outlined. We additionally resort to numerical similations. Degradation is to be simulated by the introduction of stronger recombination. The crombination rate will be distributed in space. We indeed find that enhanced surface recombination plays the key role in guiding the simulation towards our experiment.

  2. Transition metal and rare earth quad-doped photovoltaic phosphate glasses toward raising a-SiC:H solar cell performance

    NASA Astrophysics Data System (ADS)

    Song, P.; Zhang, C. M.; Zhu, P. F.

    2016-01-01

    Efficiency enhancement of a hydrogenated amorphous-silicon carbide (a-SiC:H) solar cell using downshifting and upconversion of photovoltaic (PV) glasses doped with transition metal (TM) ions and rare earth (RE) ions are investigated. P2O5-Li2O-Al2O3-Sb2O3-MnO-Yb2O3-Er2O3 glass doped with Sb3+-Mn2+-Yb3+-Er3+ ions is prepared and the PV glass is placed on an a-SiC:H solar cell. The performance of the cell in combination with the PV glass is simulated and measured, and the results show that the theoretical and experimental efficiencies are both enhanced compared to the bare one. The potential of TM-RE quad-doped glasses for improving the efficiency of a-SiC:H PV modules are explored.

  3. Amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Konagai, M.

    The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided.

  4. Direct pulsed laser interference texturing for light trapping in a-Si:H/μc-Si:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Ring, S.; Neubert, S.; Ruske, F.; Stannowski, B.; Fink, F.; Schlatmann, R.

    2014-05-01

    We present results on direct pulsed laser interference texturing for the fabrication of diffraction gratings in ZnO:Al layers. Micro gratings of 20 micron diameter with a groove period of 860 nm have been written using single pulses of a 355 nm picosecond laser using a home-built two-beam interference setup. The groove depth depends on the local laser intensity, and reaches up to 120 nm. At too high pulse energies, the grooves vanish due to surface melting of the ZnO. The fast scanning stage and the high repetition rate laser of a laser scribe system have been used to write grating textures of several cm2 in ZnO:Al films with a surface coverage of about 80%. A typical laser written grating texture in a ZnO:Al film showed a haze value of about 9% at 700nm. The total transmission of the film was not lowered compared to the film before texturing, while the sheet resistance increased moderately by 15%. A-Si:H/μc-Si:H solar cells with laser textured ZnO:Al front contact layers so far reach an efficiency of 10% and current densities of 11.0 mA/cm2, and 11.2 mA/cm2 for top and bottom cell, respectively. This is an increase of 16% for the bottom cell current as compared to reference cells on planar ZnO:Al. The voltage of the laser textured cells is not reduced compared to the reference cell when slightly overlapping laser pulses of reduced pulse energy are applied. This method allows to write textures in ZnO:Al films that e.g. have been deposited with strongly varying deposition conditions, or cannot be texture etched in HCl. The method can be improved further by using 2D periodic patterns and optimizing the groove pitch, and may be applicable also to other solar cell technologies.

  5. Fabrication of double barrier structures in single layer c-Si-QDs/a-SiOx films for realization of energy selective contacts for hot carrier solar cells

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2017-01-01

    Thin films of c-Si-QDs embedded in an a-SiOx dielectric matrix forming arrays of double barrier structures have been fabricated by reactive rf-magnetron sputtering at ˜400 °C, without post-deposition annealing. The formation of larger size c-Si-QDs of reduced number density in homogeneous distribution within a less oxygenated a-SiOx matrix at higher plasma pressure introduces systematic widening of the average periodic distance between the adjacent `c-Si-QDs in a-SiOx', as obtained by X-ray reflectivity and transmission electron microscopy studies. A wave-like pattern in the J-E characteristics identifies the formation of periodic double-barrier structures along the path of the movement of charge carriers across the QDs and that those are originated by the a-SiOx dielectric matrix around the c-Si-QDs. A finite distribution of the size of c-Si-QDs introduces a broadening of the current density peak and simultaneously originates the negative differential resistance-like characteristics, which have suitable applications in the energy selective contacts that act as energy filters for hot carrier solar cells. A simple yet effective process technology has been demonstrated. Further initiative on tuning the energy selectivity by reducing the size and narrowing the size-distribution of Si-QDs can emerge superior energy selective contacts for hot carrier solar cells, paving ground for accomplishing all-Si solar cells.

  6. The role of high work-function metallic nanodots on the performance of a-Si:H solar cells: offering ohmic contact to light trapping.

    PubMed

    Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K

    2010-12-28

    Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.

  7. Hydrogenated amorphous silicon (a-Si:H) based gamma camera--Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung-Koo; Drewery, John S.; Hong, Wan S.; Jing, Tao; Kaplan, Selig N.; Mireshghi, Ali; Perez-Mendez, Victor

    1994-05-01

    A new gamma camera using a-Si:H photodetectors has been designed for the imaging of heart and other small organs. In this new design the photomultiplier tubes and the position sensing circuitry are replaced by 2D array of a-Si:H p-i-n pixel photodetectors and readout circuitry which are built on a substrate. Without the photomultiplier tubes this camera is light weight, hence can be made portable. To predict the characteristics and the performance of this new gamma camera we did Monte Carlo simulations. In the simulations 128 X 128 imaging array of various pixel sizes were used. 99mTc (140 keV) and 201Tl (70 keV) were used as radiation sources. From the simulations we could obtain the resolution of the camera and the overall system, and the blurring effects due to scattering in the phantom. Using the Wiener filter for image processing, restoration of the blurred image could be achieved. Simulation results of a-Si:H based gamma camera were compared with those of a conventional gamma camera.

  8. Preparation of born-doped a-SiC:H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells.

    PubMed

    Jeong, Chaehwan; Kim, Young-Back; Lee, Suk-Ho; Kim, Jin Hyeok

    2010-05-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) film has been widely used as an emitter p layer in solar cells. For the better p layer, wide optical bandgap, and high electrical conductivity should be obtained from the effective method. We prepared the boron-doped a-SiC:H thin films using inductively coupled plasma chemical vapor deposition (ICP-CVD) method and characteristics on the small-area (2 cm x 2 cm) as well as the large-area films (diameter of 100 mm) were shown on it. As a substrate, the n-type (100) oriented CZ c-Si (5.5 approximately 6.5 omega x cm, 650 microm) wafers were used and cleaned by using the reduced RCA method. A silane (SiH4) of 99.999% purity, H2 and 60% hydrogen diluted ethylene (C2H4) was used as source gas for the deposition of intrinsic a-SiC:H films, and then diborane (B2H6), as the doping gas, is added to C2H4 and SiH4/H2 during the deposition of films. The uniformity of thickness and optical bandgap from large-area as-dep. films was at 1.8% and 0.3%, respectively. Heterojunction solar cell with 2 wt%-AZO/p-a-SiC:H/i-a-Si:H/c-Si/Ag structure was fabricated and characterized with diameter of 152.3 mm in this large-area ICP-CVD system. Conversion efficiency of 9.123% was achieved with a practical area of 100 mm x 100 mm, which can show the potentials to the fabrication of the large-area solar cell using ICP-CVD method.

  9. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    SciTech Connect

    Maslova, O.; Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P.

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  10. The effect of employing the p/i buffer layers and in-situ hydrogen treatment for transparent a-Si:H solar cells.

    PubMed

    Lee, Da Jung; Yun, Sun Jin; Park, Min A; Lim, Jung Wook

    2014-05-01

    In this study, we describe the effects of various thicknesses of triple p/i buffer layers and hydrogen treatment on various performances in the fabrication of transparent a-Si:H solar cells. For the increment of buffer layer thickness, V(oc) increases steadily and J(sc) firstly increases and then decreases. The triple buffer layers also enhance the transmittance as well as conversion efficiency. For hydrogen plasma treatment, overall performances were enhanced with plasma power due to the passivation of dangling bonds at p/i interface. Therefore, the usage of triple buffer layers with proper treatment is beneficial to obtaining transparent a-Si:H solar cells with high quality.

  11. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  12. Experimental study of the factors governing the Staebler-Wronski photodegradation effect in a-Si:H solar cells. Annual subcontract report 1 April 1995--30 June 1996

    SciTech Connect

    Han, D.

    1996-10-01

    This report describes continuing experiments on electroluminescence (EL), field profile, and H-microstructure studies of a-Si:H-based solar cells and materials. By using EL spectroscopy, we observed that both the band-tail width and the defect energy distribution are narrowed by H-dilution. We demonstrated the existence of the `fast` and `slow` defects in the cell performance and identified their energy positions as a {approx}0.9 eV and a {approx}0.75 eV defect EL band. Our results also reinforced the notion that H-dilution eliminates the microstructure that causes the creation of `slow` defects and hence stabilizes rapidly under light illumination. We demonstrated that the internal-electric field profile of a-Si:H p-i-n structures can be measured by the transient-null-current method. For the first time, hot-wire-deposited a-Si:H films were characterized by {sup 1}H nuclear magnetic resonance. Surprisingly, about 90 percent of the H atoms give rise to the 50-kHz line, and only a very small percentage of the H atoms give rise to the 3-kHz-narrower resonance line, which suggests that H-bonding in hot-wire films is very different from that in a-Si:H produced by plasma-enhanced chemical vapor deposition.

  13. Optimum doping level in a-Si:H and a-SiC:H materials

    NASA Astrophysics Data System (ADS)

    Hadjadj, A.; St'ahel, P.; Roca i Cabarrocas, P.; Paret, V.; Bounouh, Y.; Martin, J. C.

    1998-01-01

    The changes in the optical and electrical properties of thick a-Si:H and a-SiC:H films doped with diborane are investigated. In situ spectroscopic ellipsometry measurements reveal that, at a ratio of diborane to silane Cg=[B2H6]/[SiH4]<10-3, the optical properties of both materials are not strongly modified by boron doping. However, in the case of a-Si:H films, an improvement of the morphological and optical properties is observed at Cg=0.45×10-3. The existence of an optimum doping level at Cg<10-3 in the case of an a-Si:H p layer is confirmed by the dependence of the open-circuit voltage of a-Si:H based solar cells on the doping level of the p layer.

  14. Enhancement of a-Si:H solar cell efficiency by Y2O3 : Yb3+, Er3+ near infrared spectral upconverter

    NASA Astrophysics Data System (ADS)

    Markose, Kurias K.; Anjana, R.; Subha, P. P.; Antony, Aldrin; Jayaraj, M. K.

    2016-09-01

    The optical properties of Yb3+/Er3+ doped Y2O3 upconversion phosphor and the enhancement of efficiency of a-Si:H solar cell on incorporation of upconverter are investigated. The Y2O3 host material has high corrosion resistance, thermal stability, chemical stability, low toxicity and relatively low phonon energy (≈ 500 cm-1). Y2O3:Yb3+ (x %): Er3+ (y %) upconversion nanophosphors with different dopant concentrations were synthesized via simple hydrothermal method followed by a heat treatment at 1200°C for 12 hrs. Highly crystalline, quasi-spherical, body centered cubic Y2O3 structure was obtained. The structure, phase and morphology of the nanocrystals were determined using x-ray diffraction and SEM. Following pumping at 980 nm two dominant emission bands were observed at about 550 nm(green) and 660 nm(red), corresponding to 2H11/2, 4S3/2 -> 4I15/2 and 4F9/2 -> 4I15/2 transitions respectively. The dependence of emission intensity on pump power shows that the mechanism involved is two photon absorption. The upconversion phosphor along with a binder is coupled behind the a-Si:H solar cell which absorbs transmitted sub-band-gap photons and emits back the upconverted visible light which can be absorbed by the solar cell. Under suitable intensity of illumination the solar cell short circuit current is found to be increased on adding the upconversion layer.

  15. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  16. Highly conducting and wide band gap phosphorous doped nc-Si-QD/a-SiC films as n-type window layers for solar cells

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-05-01

    Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH4 + CH4)-plasma with PH3 as the doping gas. The effect of PH3 flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si-QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10-2 S cm-1) are obtained, which could be appropriately used as n-type window layers for nc-Si solar cells in n-i-p configuration.

  17. Highly conducting and wide band gap phosphorous doped nc-Si–QD/a-SiC films as n-type window layers for solar cells

    SciTech Connect

    Kar, Debjit; Das, Debajyoti

    2016-05-23

    Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH{sub 4} + CH{sub 4})-plasma with PH{sub 3} as the doping gas. The effect of PH{sub 3} flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si–QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10{sup −2} S cm{sup −1}) are obtained, which could be appropriately used as n-type window layers for nc-Si solar cells in n-i-p configuration.

  18. Response of a Si-diode-based device to fast neutrons.

    PubMed

    Spurný, Frantisek

    2005-02-01

    Semiconductor devices based on a Si-detector are frequently used for charged particle's detection; one application being in the investigation of cosmic radiation fields. From the spectra of energy deposition events in such devices, the total energy deposited by the radiation in silicon can be derived. This contribution presents the results of studies concerning the response of this type of detector to fast neutrons. First, the spectrum of energy deposition was established in fast neutron radiation fields with average energies from 0.5 to 50 MeV. It was found that these spectra vary significantly with the neutron energy. The comparison with the spectra registered in photon beams permitted an estimation of the part of energy deposited that could be attributed to neutrons. It was found that this part increases rapidly with neutron energy. The possibilities to use this type of detector for neutron detection and dosimetry for radiation protection are analysed and discussed.

  19. Polyimide based amorphous silicon solar modules

    NASA Technical Reports Server (NTRS)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-01-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  20. Influence of thin metal as a top electrode on the characteristics of P-I-N a- Si:H solar cells

    SciTech Connect

    Han, M.; Anderson, W.A.; Lahri, R.; Coleman, J.

    1981-04-01

    Hydrogenated amorphous silicon (a-Si:H) p-n junction solar cells have been fabricated which utilize various metals (Cr, Cu, Al, Pd, Ag) as a top electrode. Experimental and theoretical analysis of photovolatic performance in a-Si:H solar cells as a function of resistivity, optical transmittance, and work function of thin metal films are presented. Metal work function changes the effective built-in potential of p-n junction diodes. Furthermore, a lower work function metal forms a good Ohmic contact for substrate --P/sup +/-I-N/sup +/-- electrode cells, and high work function metals improve V/sub oc/ of substrate -N-I-P cells. Typical V/sub o/c values are 760 mV with Cr--, Cu--, and Al--N-I-P--stainless steel (SS), 700 mV with Pd--N-I-P-SS, 600 mV with Pd--P-I-N-SS, and 540 mV with Cr--P-I-N-SS. J/sub sc/ is strongly dependent on transmittance and resistivity of the metal films. Fill factor is independent of the choice of a top electrode. An efficient of 2% has been obtained on a 2 cm/sup 2/ solar cell.

  1. Polarized electroabsorption spectra and light soaking of solar cells based on hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Wang, Qi; Schiff, E. A.; Guha, S.; Yang, J.

    1998-03-01

    We present grazing-incidence measurements of polarized electroabsorption spectra in p-i-n solar cells based on hydrogenated amorphous silicon (a-Si:H). We find a significantly stronger polarization dependence in the present measurements compared with earlier work based on electroabsorption detected using coplanar electrodes on a-Si:H thin films. We do not find any significant dependence of the polarized electroabsorption upon light soaking, although this effect was found in previous work with coplanar electrodes.

  2. Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Cai, Boyuan; Jia, Baohua; Shi, Zhengrong; Gu, Min

    2013-03-01

    Near-field light concentration from plasmonic nanostructures was predicted to significantly improve solar cell conversion efficiency since the inception of plasmonic solar cells. However the challenge remains in designing effective nanostructures for useful near-field enhancement much exceeding the detrimental ohmic loss and light blockage losses in solar cells. We propose and demonstrate ultra-small (a few nanometers) gold nanoparticles integrated in amorphous silicon solar cells between the front electrode and the photoactive layer. Significant enhancements in both the photocurrent (14.1%) and fill factor (12.3%) have been achieved due to the strong plasmonic near-field concentration and the reduced contact resistance, respectively.

  3. Analysis of poly-Si thin film p^+-n-n+ homojunction solar cell and heterojunction solar cell with and without a thin μc-Si layer at the interface of a-Si and poly-Si layers

    NASA Astrophysics Data System (ADS)

    Letha, A. J.; Hwang, H. L.

    2009-05-01

    In this study, new possibilities for higher efficiency poly-Si thin film solar cells are investigated using MEDICI^TM device simulator. The poly-Si p^+-n-n+ thin film solar cell with a thin a-Si p+ layer is found to have higher efficiency than the homojunction p^+-n-n+ cell. Further improvement in efficiency of the heterojunction p^+-n-n+ cell is achieved by introducing a thin μc-Si layer at the interface of a-Si emitter and poly-Si absorber layers. The μc-Si layer at the interface is found to reduce the recombination losses at the interface and improved the fill factor and efficiency of the cell. The photovoltaic parameters of the cell and the absorber layer thickness for optimum efficiency are highly influenced by grain size and passivation at the grain boundary.

  4. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    NASA Astrophysics Data System (ADS)

    Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.

    2017-04-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.

  5. Development of a Si-PM-based high-resolution PET system for small animals.

    PubMed

    Yamamoto, Seiichi; Imaizumi, Masao; Watabe, Tadashi; Watabe, Hiroshi; Kanai, Yasukazu; Shimosegawa, Eku; Hatazawa, Jun

    2010-10-07

    A Geiger-mode avalanche photodiode (Si-PM) is a promising photodetector for PET, especially for use in a magnetic resonance imaging (MRI) system, because it has high gain and is less sensitive to a static magnetic field. We developed a Si-PM-based depth-of-interaction (DOI) PET system for small animals. Hamamatsu 4 × 4 Si-PM arrays (S11065-025P) were used for its detector blocks. Two types of LGSO scintillator of 0.75 mol% Ce (decay time: ∼45 ns; 1.1 mm × 1.2 mm × 5 mm) and 0.025 mol% Ce (decay time: ∼31 ns; 1.1 mm × 1.2 mm × 6 mm) were optically coupled in the DOI direction to form a DOI detector, arranged in a 11 × 9 matrix, and optically coupled to the Si-PM array. Pulse shape analysis was used for the DOI detection of these two types of LGSOs. Sixteen detector blocks were arranged in a 68 mm diameter ring to form the PET system. Spatial resolution was 1.6 mm FWHM and sensitivity was 0.6% at the center of the field of view. High-resolution mouse and rat images were successfully obtained using the PET system. We confirmed that the developed Si-PM-based PET system is promising for molecular imaging research.

  6. Fabrication and testing of mis solar cells on a-Si:F:H. Final report, September 15, 1979-September 15, 1980

    SciTech Connect

    Han, M. K.; Anderson, W. A.

    1980-11-03

    Fabrication techniques and improved a-Si:H film processing have been achieved to produce a short circuit current density of 7.5 mA/cm/sup 2/ and open circuit voltage of 740 mV on large area (2cm/sup 2/) a-Si cells by the deposition of an inexpensive semitransparent metal (Cr) as a top electrode on a N-I-P structure. This corresponds to a 2% efficiency using AMl illumination. A V/sub oc/ of 830 mV and fill factor of 0.54 have also been separately obtained. A relatively simple and inexpensive deposition technique using a one pumpdown vacuum system, Al grid and thin metal film structure have been applied to reduce the cost of a-Si:H cell fabrication. A SEM study of a-Si film quality shows the substrate texture to greatly influence the film morphology. This in turn serves to influence the uniformity of photovoltaic response on completed solar cells. The studies of optical transmittance of various thin metal films promote the utilization of Cr and Cu as a top electrode. Dark and illuminated I-V characteristics show that current conduction mechanisms and recombination pheonomena are not the same under dark and illuminated conditions. Furthermore, spectral response analysis and reverse illuminated saturation current under different illumination levels show photoconductivity and collection efficiency to be a function of illumination level. Significant differences in spectral response are observed when comparing P-I-N, N-I-P and I-N structures. A Schottky barrier lowering effect is proposed to explain some spectral response data. The importance of the top junction region to carrier collection is also discussed.

  7. Amorphous and crystalline silicon based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Schüttauf, J. A.

    2011-10-01

    saturation by H, whereas the decrease at higher temperatures is caused by H effusion. For intrinsic/n-type a-Si:H layer stacks, a record minority carrier lifetime of 13.3 ms is obtained. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed over the whole temperature range, due to the asymmetric Fermi-level dependent defect formation enthalpy in n- and p-type a-Si:H. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is observed that the intrinsic/p-layer stack is limiting device performance. Based on these findings, the solar cells were prepared in a modified order, reaching an efficiency of 16.7% (VOC = 681 mV), versus 15.8% (VOC = 659 mV) in the ‘standard’ order. Finally, transparent conductive oxide (TCO) layers are studied for application into solar cells. It is observed that both types of TCO deposition have no significant influence on the passivation properties of standard a-Si:H layer stacks forming the emitter structure in the used SHJ cells. On flat wafers, a conversion efficiency of 16.7% has been obtained when ITO is used as TCO, versus an efficiency of 16.3% for ZnO:Al; slightly lower due to increased electrical losses.

  8. Spectroscopic Ellipsometry Studies of Thin Film a-Si:H/nc-Si:H Micromorph Solar Cell Fabrication in the p-i-n Superstrate Configuration

    NASA Astrophysics Data System (ADS)

    Huang, Zhiquan

    Spectroscopic ellipsometry (SE) is a non-invasive optical probe that is capable of accurately and precisely measuring the structure of thin films, such as their thicknesses and void volume fractions, and in addition their optical properties, typically defined by the index of refraction and extinction coefficient spectra. Because multichannel detection systems integrated into SE instrumentation have been available for some time now, the data acquisition time possible for complete SE spectra has been reduced significantly. As a result, real time spectroscopic ellipsometry (RTSE) has become feasible for monitoring thin film nucleation and growth during the deposition of thin films as well as during their removal in processes of thin film etching. Also because of the reduced acquisition time, mapping SE is possible by mounting an SE instrument with a multichannel detector onto a mechanical translation stage. Such an SE system is capable of mapping the thin film structure and its optical properties over the substrate area, and thereby evaluating the spatial uniformity of the component layers. In thin film photovoltaics, such structural and optical property measurements mapped over the substrate area can be applied to guide device optimization by correlating small area device performance with the associated local properties. In this thesis, a detailed ex-situ SE study of hydrogenated amorphous silicon (a-Si:H) thin films and solar cells prepared by plasma enhanced chemical vapor deposition (PECVD) has been presented. An SE analysis procedure with step-by-step error minimization has been applied to obtain accurate measures of the structural and optical properties of the component layers of the solar cells. Growth evolution diagrams were developed as functions of the deposition parameters in PECVD for both p-type and n-type layers to characterize the regimes of accumulated thickness over which a-Si:H, hydrogenated nanocrystalline silicon (nc-Si:H) and mixed phase (a

  9. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.

    PubMed

    Lin, Keng-Chu; Wang, Lili; Doane, Tennyson; Kovalsky, Anton; Pejic, Sandra; Burda, Clemens

    2014-12-11

    In order to promote the development of solar cells with varying types of sensitizers including dyes and quantum dots, it is crucial to establish a general experimental analysis that accounts for all important optical and electrical losses resulting from interfacial phenomena. All of these varying types of solar cells share common features where a mesoporous scaffold is used as a sensitizer loading support as well as an electron transport material, which may result in light scattering. The loss of efficiency at interfaces of the sensitizer, the mesoporous TiO2 nanoparticle films, the FTO conductive layer, and the supportive glass substrate should be considered in addition to the photoinduced electron transport properties within a cell. On the basis of optical parameters, one can obtain the internal quantum efficiency (IQE) of a solar cell, an important parameter that cannot be directly measured but must be derived from several key experiments. By integrating an optical loss model with an electrical loss model, many solar cell parameters could be characterized from electro-optical observables including reflectance, transmittance, and absorptance of the dye sensitizer, the electron injection efficiency, and the charge collection efficiency. In this work, an integrated electro-optical approach has been applied to SiPc (Pc 61) dye-sensitized solar cells for evaluating the parameters affecting the overall power conversion efficiency. The absorptance results of the Pc 61 dye-sensitized solar cell provide evidence that the adsorbed Pc 61 forms noninjection layers on TiO2 surfaces when the dye immersion time exceeds 120 min, resulting in shading light from the active layer rather than an increase in photoelectric current efficiency.

  10. Study of gap states in a-Si:H alloys by measurements of photoconductivity and spectral response of MIS solar cells

    SciTech Connect

    Vanier, P.E.; Delahoy, A.E.; Griffith, R.W.

    1981-01-01

    A picture of the density of gap states n(E) in glow discharge a-Si:H is constructed using four different kinds of transport measurement on a large number of samples. The minimum in n(E) lies 0.4 eV below E/sub c/, rather than in the middle of the gap. A distribution of fast recombination centers lies at mid-gap, and two sets of hole traps lie between mid-gap and the valence band. Modifications in n(E) have been studied by the effects of selected impurities on the conversion efficiency and spectral response of MIS and p-i-n solar cells.

  11. Two-dimensional simulation of interdigitated back contact silicon heterojunction solar cells having overlapped p/i and n/i a-Si:H layers

    NASA Astrophysics Data System (ADS)

    Noge, Hiroshi; Saito, Kimihiko; Sato, Aiko; Kaneko, Tetsuya; Kondo, Michio

    2015-08-01

    The performance of interdigitated back contact silicon heterojunction solar cells having overlapped p/i and n/i a-Si:H layers on the back has been investigated by two-dimensional simulation in comparison with the conventional cell structure having a gap between p/i and n/i layers. The results show that narrower overlap width leads to higher short circuit current and conversion efficiency, especially for poor heterojunction interface and thinner silicon substrate of the cells in addition to narrower uncovered width of p/i layer by a metal electrode. This is similar to the gap width dependence in the conventional cells, since both overlap and gap act as dead area for diffused excess carriers in the back contacts.

  12. Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Kow-Ming; Ho, Po-Ching; Yu, Shu-Hung; Hsu, Jui-Mei; Yang, Kuo-Hui; Wu, Chin-Jyi; Chang, Chia-Chiang

    2013-07-01

    One of the essential applications of transparent conductive oxides is as front electrodes for superstrate silicon thin-film solar cells. Textured TCO thin films can improve absorption of sunlight for an a-Si:H absorber during a single optical path. In this study, high-haze and low-resistivity bilayer GZO/SiOx thin films prepared using an atmospheric pressure plasma jet (APPJ) deposition technique and dc magnetron sputtering. The silicon subdioxide nano-film plays an important role in controlling the haze value of subsequent deposited GZO thin films. The bilayer GZO/SiOx (90 sccm) sample has the highest haze value (22.30%), the lowest resistivity (8.98 × 10-4 Ω cm), and reaches a maximum cell efficiency of 6.85% (enhanced by approximately 19% compared to a sample of non-textured GZO).

  13. Progress in a-SiOx:H thin film solar cells with patterned MgF2 dielectric for top cell of multi-junction system

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Won; Sichanugrist, Porponth; Konagai, Makoto

    2016-07-01

    We successfully designed and experimentally demonstrated an application of patterned MgF2 dielectric material at rear Al-doped ZnO (AZO)/Ag interface in thin film amorphous silicon oxide ( a-SiOx:H) solar cells. When it was realized in practical device process, MgF2 coverage with patterned morphology was employed to allow for current flow between the AZO and Ag against highly resistive MgF2 material. On the basis of the suggested structure, we found an improvement in quantum efficiency of the solar cells with the patterned MgF2. In addition, an enhancement of open circuit voltage ( V oc ) and fill factor ( FF) was observed. A remarkable increase in shunt resistance of the cells with the MgF2 would possibly indicate that the highly resistive MgF2 layer can partly suppress physical shunting across top and bottom electrodes caused by very thin absorber thickness of only 100 nm. The approach showed that our best-performing device revealed an essential improvement in conversion efficiency from 7.83 to 8.01% with achieving markedly high V oc (1.013 V) and FF (0.729). [Figure not available: see fulltext.

  14. Transparent conductive oxide layer with monolayer closed-pack Al-doped ZnO spheres and their application to a-Si thin-film solar cells.

    PubMed

    Lo, Shih-Shou; Lin, Chen-Yu; Jan, Der-Jun

    2011-09-15

    We report a new (to the best of our knowledge) transparent conductive oxide (TCO) layer with a monolayer of closed-pack Al-doped ZnO (AZO) spheres partly embedded in an AZO thin film. The average transmittance and haze ratio in the wavelength range of 380-800 nm achieves 65% and 55%, respectively, when AZO spheres with a diameter of 500 nm are embedded in a thickness of 240 nm AZO thin films. The a-Si thin-film solar cell with a regular p-i-n TCO structure is demonstrated. Under air mass 1.5 global illumination, conversion efficiencies of 5.6%, a fill factor of 0.55, V(oc) of 0.81 V, and a J(sc) of 2.44 mA/cm² are obtained. The Letter helps us to open up potential applications of a new TCO in advanced solar cells and light-emitting diodes.

  15. Design of a plasmonic back reflector using Ag nanoparticles with a mirror support for an a-Si:H solar cell

    NASA Astrophysics Data System (ADS)

    Hungerford, Chanse D.; Fauchet, Philippe M.

    2017-07-01

    Plasmonic nanoparticles have unique optical properties and these properties are affected by any surrounding structures, or lack thereof. Nanoparticles are often added to a device without fully assessing the effect that each interface will have on the nanoparticle's response. In this work, we simulate and fabricate devices utilizing hemispherical nanoparticles integrated into the back reflector of an amorphous silicon solar cell. 3D finite difference time domain simulations were used to calculate the optical absorption of a 300nm amorphous silicon layer as a function of the size of the nanoparticles, the distance between the nanoparticles and the active layer, and the distance between the nanoparticles and the mirror. Two transparent conducting oxides, aluminum doped zinc oxide and indium tin oxide, are investigated to determine the importance of the material properties between the nanoparticles and mirror. Silver hemispherical nanoparticles with a diameter of 150nm placed directly on the a-Si:H and a 60nm aluminum doped zinc oxide layer between the nanoparticles and the mirror lead to a maximum absorption increase of 7.2% in the 500nm to 800nm wavelength range. Experimental devices confirmed the trends predicted by theory but did not achieve enhancement, likely due to fabrication challenges. Fabricating a solar cell with the simulated design requires a high quality transparent conductive oxide and high control over the nanoparticle size distribution.

  16. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The study of a new n/p tunnel recombination junction and its application in a-Si:H/μc-Si:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Li, Gui-Jun; Hou, Guo-Fu; Han, Xiao-Yan; Yuan, Yu-Jie; Wei, Chang-Chun; Sun, Jian; Zhao, Yin; Geng, Xin-Hua

    2009-04-01

    This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current-voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.

  17. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    SciTech Connect

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  18. Performance of a SiPM based semi-monolithic scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-10-01

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm3. The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22Na point source and a 1  ×  1  ×  20 mm3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute error

  19. Performance of a SiPM based semi-monolithic scintillator PET detector.

    PubMed

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-09-21

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm(3). The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter (22)Na point source and a 1  ×  1  ×  20 mm(3) LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute

  20. Results of some initial space qualification testing on triple junction a-Si and CuInSe2 thin film solar cells

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.; Anspaugh, Bruce E.

    1993-01-01

    A series of environmental tests were completed on one type of triple junction a-Si and two types of CuInSe2 thin film solar cells. The environmental tests include electron irradiation at energies of 0.7, 1.0, and 2.0 MeV, proton irradiation at energies of 0.115, 0.24, 0.3, 0.5, 1.0, and 3.0 MeV, post-irradiation annealing at temperatures between 20 C and 60 C, long term exposure to air mass zero (AM0) photons, measurement of the cells as a function of temperature and illumination intensity, and contact pull strength tests. As expected, the cells are very resistant to electron and proton irradiation. However, when a selected cell type is exposed to low energy protons designed to penetrate to the junction region, there is evidence of more significant damage. A significant amount of recovery was observed after annealing in several of the cells. However, it is not permanent and durable, but merely a temporary restoration, later nullified with additional irradiation. Contact pull strengths measured on the triple junction a-Si cells averaged 667 grams, and pull strengths measured on the Boeing CuInSe2 cells averaged 880 grams. Significant degradation of all cell types was observed after exposure to a 580 hour photon degradation test, regardless of whether the cells had been unirradiated or irradiated (electrons or protons). Although one cell from one manufacturer lost approximately 60 percent of its power after the photon test, several other cells from this manufacturer did not degrade at all.

  1. Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities

    NASA Astrophysics Data System (ADS)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toi, Kohei; Tsubota, Youichi

    2014-05-01

    Alpha particles are monitored for detecting nuclear fuel material (i.e., plutonium and uranium) at nuclear fuel facilities. Currently, for monitoring the airborne contamination of nuclear fuel, only energy information measured by Si-semiconductor detectors is used to distinguish nuclear fuel material from radon daughters. In some cases, however, such distinguishing is difficult when the radon concentration is high. In addition, a Si-semiconductor detector is generally sensitive to noise. In this study, we developed a new alpha-particle imaging system by combining a Si-PM array, which is insensitive to noise, with a Ce-doped Gd3Al2Ga3O12(GAGG) scintillator, and evaluated our developed system's fundamental performance. The scintillator was 0.1-mm thick, and the light guide was 3.0 mm thick. An 241Am source was used for all the measurements. We evaluated the spatial resolution by taking an image of a resolution chart. A 1.6 lp/mm slit was clearly resolved, and the spatial resolution was estimated to be less than 0.6-mm FWHM. The energy resolution was 13% FWHM. A slight distortion was observed in the image, and the uniformity near its center was within ±24%. We conclude that our developed alpha-particle imaging system is promising for plutonium detection at nuclear fuel facilities.

  2. A Si photocathode protected and activated with a Ti and Ni composite film for solar hydrogen production.

    PubMed

    Lai, Yi-Hsuan; Park, Hyun S; Zhang, Jenny Z; Matthews, Peter D; Wright, Dominic S; Reisner, Erwin

    2015-03-02

    An efficient, stable and scalable hybrid photoelectrode for visible-light-driven H2 generation in an aqueous pH 9.2 electrolyte solution is reported. The photocathode consists of a p-type Si substrate layered with a Ti and Ni-containing composite film, which acts as both a protection and electrocatalyst layer on the Si substrate. The film is prepared by the simple drop casting of the molecular single-source precursor, [{Ti2(OEt)9(NiCl)}2] (TiNipre), onto the p-Si surface at room temperature, followed by cathodic in situ activation to form the catalytically active TiNi film (TiNicat). The p-Si|TiNicat photocathode exhibits prolonged hydrogen generation with a stable photocurrent of approximately -5 mA cm(-2) at 0 V vs. RHE in an aqueous pH 9.2 borate solution for several hours, and serves as a benchmark non-noble photocathode for solar H2 evolution that operates efficiently under neutral-alkaline conditions.

  3. A Si Photocathode Protected and Activated with a Ti and Ni Composite Film for Solar Hydrogen Production

    PubMed Central

    Lai, Yi-Hsuan; Park, Hyun S; Zhang, Jenny Z; Matthews, Peter D; Wright, Dominic S; Reisner, Erwin

    2015-01-01

    An efficient, stable and scalable hybrid photoelectrode for visible-light-driven H2 generation in an aqueous pH 9.2 electrolyte solution is reported. The photocathode consists of a p-type Si substrate layered with a Ti and Ni-containing composite film, which acts as both a protection and electrocatalyst layer on the Si substrate. The film is prepared by the simple drop casting of the molecular single-source precursor, [{Ti2(OEt)9(NiCl)}2] (TiNipre), onto the p-Si surface at room temperature, followed by cathodic in situ activation to form the catalytically active TiNi film (TiNicat). The p-Si|TiNicat photocathode exhibits prolonged hydrogen generation with a stable photocurrent of approximately −5 mA cm−2 at 0 V vs. RHE in an aqueous pH 9.2 borate solution for several hours, and serves as a benchmark non-noble photocathode for solar H2 evolution that operates efficiently under neutral–alkaline conditions. PMID:25650832

  4. 1961-1990 Solar Radiation Data Base

    SciTech Connect

    Not Available

    1990-01-01

    A new 1961-1990 Solar Radiation Data Base for the United States is being compiled at the Solar Energy Research Institute. Using solar radiation and climate data collected by the National Weather Service (NWS) from 1977 to 1990 and improved computer models to fill in missing data, this update will significantly upgrade the current national SOLMET/ERSATZ data base.

  5. High-Efficiency Amorphous Silicon and Nanocrystalline Silicon Based Solar Cells and Modules: Annual Technical Progress Report, 30 January 2006 - 29 January 29, 2007

    SciTech Connect

    Guha, S.; Yang, J.

    2007-07-01

    United Solar used a-Si:H/a-SiGe:H/a-SiGe:H in two manufacturing plants and improved solar efficiency and reduced manufacturing cost by new deposition methods, optimized deposition parameters, and new materials and cell structures.

  6. 2D modeling of silicon based thin film dual and triple junction solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Y. G.; Uehara, K.; Lestrade, M.; Li, Z. Q.; Li, Z. M. S.

    2009-08-01

    Based on Crosslight APSYS, thin film amorphous Si (a-Si:H)/microcrystalline (μc-Si) dual-junction (DJ) and a- Si:H/amorphous SiGe:H (a-SiGe:H)/μc-Si triple-junction (TJ) solar cells are modeled. Basic physical quantities like band diagrams, optical absorption and generation are obtained. Quantum efficiency and I-V curves for individual junctions are presented for current matching analyses. The whole DJ and TJ cell I-V curves are also presented and the results are discussed with respect to the top surface ZnO:Al TCO layer affinity. The interface texture effect is modeled with FDTD (finite difference time domain) module and results for top junction are presented. The modeling results give possible clues to achieve high efficiency for DJ and TJ thin film solar cells.

  7. Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer).

    PubMed

    Liu, Yiming; Sun, Yun; Liu, Wei; Yao, Jianghong

    2014-08-07

    With an amorphous silicon (a-Si:H)/crystalline silicon (c-Si) heterojunction structure, the heterojunction with intrinsic thin-layer (HIT) solar cell has become one of the most promising technologies for c-Si based solar cells. By replacing a-Si:H thin films with appropriate compound semiconductors, we propose novel heterojunction structures which allow c-Si heterojunction solar cells to possess higher power conversion efficiencies than HIT solar cells. Several promising heterojunction candidates and hetero-structures have been proposed in this work, and this kind of novel c-Si compound heterojunction solar cell is denominated HCT (heterojunction with a compound thin-layer). The feasibilities of these novel HCT structures are further investigated by theoretical approaches, and the modeling results demonstrate the device performance improvement. Finally, this paper proclaims the compound selection standards and essentials of achieving high-efficiency HCT solar cells, which are guidelines for the real device implementation.

  8. Phthalocyanine based Schottky solar cells

    NASA Astrophysics Data System (ADS)

    Kwong, Chung Yin; Djurisic, Aleksandra B.; Lam, Lillian S. M.; Chan, Wai Kin

    2003-02-01

    Phthalocyanine (Pc) materials are commonly used in organic solar cells. Four different phthalocyanines, nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), iron phthalocyanine (FePc), and cobalt phthalocyanine (CoPc) have been investigated for organic solar cell applications. The devices consisted of indium tin oxide (ITO) coated lass substrate, Pc layer, and aluminum (al) electrode. It has been found that ITO/CuPc/Al Schottky cell exhibits the best performance. To investigate the influence of the active layer thickness on the cell performance, cells with several different thicknesses were fabricated and optimal value was found. Schottky cell exhibits optimal performance with one ohmic and one barrier contact. However, it is suspected that ITO/CuPc contact is not ohmic. Therefore, we have investigated various ITO surface treatments for improving the performance of CuPc based Schottky solar cell. We have found that cell on ITO treated with HCl and UV-ozone exhibits the best performance. AM1 power conversion efficiency can be improved by 30% compared to cell made with untreated ITO substrate. To improve power conversion efficiency, double or multiplayer structure are required, and it is expected that suitable ITO treatments for those devices will further improve their performance by improving the contact between ITO and phthalocyanine layer.

  9. Measured and Simulated Dark J-V Characteristics of a-Si:H Single Junction p-i-n Solar Cells Irradiated with 40 keV Electrons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth; Woodyard, James R.

    2002-01-01

    The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.

  10. A Si/SiGe quantum well based biosensor for direct analysis of exothermic biochemical reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dong, Tao

    2013-04-01

    A rapid and reliable detection system is needed in the area of label-free calorimetric measurement for monitoring biochemical reactions. In this paper, a thermal biosensor employing a Si/SiGe quantum well is proposed where the infrared radiation energy is carefully considered to increase the sensor's sensitivity. It applies a suspended functional film with a trench across the multilayers. A polydimethylsiloxane cover for the microfluidic channel is bonded with the sensor for the injection and removal of a small volume of solution (down to 500 nL). The resistance change of Si/SiGe quantum well material is read out through the wire bonding connection to the conductive pads of the sensor. A linear detection range from 0.5 to 150 mM and a relative standard deviation less than 1% are demonstrated in the enzymatic reaction test with urea solution. Characterizations on the quantum well film verifies a high temperature coefficient of resistance value and fine crystal lattice, which promises a notable sensitivity. The application of the wafer level transfer bonding process makes the sensor fabrication convenient and cost-effective.

  11. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L; Ning, Puqi; White, Cliff P; Miller , John M.

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at three center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.

  12. Spectral solar radiation data base documentation

    NASA Astrophysics Data System (ADS)

    Riordan, Carol J.; Myers, Daryl R.; Hulstrom, Roland L.

    1990-01-01

    The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the neutral variability in the spectral (color) content to outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume 1 documents the history, approach, content, and format of the data base; Volume 2 contains graphs and field notes for each of the spectral data sets. The data reside on magnetic tape at SERI.

  13. Performance characterization of thin-film-silicon based solar modules under clouded and clear sky conditions in comparison to crystalline silicon modules

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Rasch, R.; Behrens, G.; Hamelmann, F. U.

    2016-07-01

    For a precise prediction of the energy yield of amorphous ( a-Si) and amorphous-microcrystalline tandem ( a-Si/ μc-Si) thinfilm-silicon photovoltaic (PV) modules it is important to know their performance ratio under different light conditions. The efficiency of solar modules is an important value for the monitoring and planning of PV-systems. The efficiency of a-Si solar modules shows no significant changes in the performance ratio at clouded or clear sky conditions. The efficiency of crystalline silicon-based ( c-Si) and a-Si/ μc-Si solar modules shows a lower efficiency for fully clouded conditions without direct irradiation compared to conditions with direct irradiation (clear sky). [Figure not available: see fulltext.

  14. Coherent manipulation of a Si/SiGe-based singlet-triplet qubit

    NASA Astrophysics Data System (ADS)

    Gyure, Mark

    2012-02-01

    Electrically defined silicon-based qubits are expected to show improved quantum memory characteristics in comparison to GaAs-based devices due to reduced hyperfine interactions with nuclear spins. Silicon-based qubit devices have proved more challenging to build than their GaAs-based counterparts, but recently several groups have reported substantial progress in single-qubit initialization, measurement, and coherent operation. We report [1] coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure, forming two levels of a singlet-triplet qubit. We measure a nuclei-induced T2^* of 360 ns, an increase over similar measurements in GaAs-based quantum dots by nearly two orders of magnitude. We also describe the results from detailed modeling of our materials and devices that show this value for T2^* is consistent with theoretical expectations for our estimated dot sizes and a natural abundance of ^29Si. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.[4pt] [1] B. M. Maune et al., ``Coherent Singlet-Triplet Oscillations in a Silicon-based Double Quantum Dot,'' accepted by Nature.

  15. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Bissaldi, E.; Di Venere, L.; Fiandrini, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Simone, D.; Vagelli, V.

    2017-03-01

    The Italian National Institute for Nuclear Physics (INFN) is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs) for the Cherenkov Telescope Array (CTA), a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the `Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it)' for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV) has been carried out. The developed device is a NUV High-Density (NUV-HD) SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK). A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT) for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  16. A SiPM based real time dosimeter for radiotherapic beams

    NASA Astrophysics Data System (ADS)

    Berra, A.; Conti, V.; Lietti, D.; Milan, L.; Novati, C.; Ostinelli, A.; Prest, M.; Romanó, C.; Vallazza, E.

    2015-02-01

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  17. Spectral solar radiation data base documentation

    SciTech Connect

    Riordan, G.J.; Myers, D.R.; Hulstrom, R.L.

    1990-01-01

    The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the natural variability in the spectral (color) content of outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume I of this report documents the history, approach, content and format of the data base; Volume II contains graphs and field notes for each of the spectral data sets. The data reside on magnetic tape at SERI. 18 refs., 29 figs., 5 tabs.

  18. Research on High-Bandgap Materials and Amorphous Silicon-Based Solar Cells, Final Technical Report, 15 May 1994-15 January 1998

    SciTech Connect

    Schiff, E. A.; Gu, Q.; Jiang, L.; Lyou, J.; Nurdjaja, I.; Rao, P.

    1998-12-28

    This report describes work performed by Syracuse University under this subcontract. Researchers developed a technique based on electroabsorption measurements for obtaining quantitative estimates of the built-in potential Vbi in a-Si:H-based heterostructure solar cells incorporating microcrystalline or a-SiC:H p layers. Using this new electroabsorption technique, researchers confirmed previous estimates of Vbi {yields} 1.0 V in a-Si:H solar cells with ''conventional'' intrinsic layers and either microcrystalline or a-SiC:H p layers. Researchers also explored the recent claim that light-soaking of a-Si:H substantially changes the polarized electroabsorption associated with interband optical transitions (and hence, not defect transitions). Researchers confirmed measurements of improved (5') hole drift mobilities in some specially prepared a-Si:H samples. Disturbingly, solar cells made with such materials did not show improved efficiencies. Researchers significantly clarified the relationship of ambipolar diffusion-length measurements to hole drift mobilities in a-Si:H, and have shown that the photocapacitance measurements can be interpreted in terms of hole drift mobilities in amorphous silicon. They also completed a survey of thin BP:H and BPC:H films prepared by plasma deposition using phosphine, diborane, trimethylboron, and hydrogen as precursor gases.

  19. Spectral Solar Radiation Data Base at NREL

    DOE Data Explorer

    The Solar Energy Research Institute (SERI)*, Electric Power Research Institute (EPRI), Florida Solar Energy Center (FSEC), and Pacific Gas and Electric Company (PG&E) cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions (or climates) that is applicable to several different types of solar collectors. Data that are included in the data base were collected at FSEC from October 1986 to April 1988, and at PG&E from April 1987 to April 1988. FSEC operated one EPRI and one SERI spectroradiometer almost daily at Cape Canaveral, which contributed nearly 2800 spectra to the data base. PG&E operated one EPRI spectroradiometer at San Ramon, Calif., as resources permitted, contributing nearly 300 spectra to the data base. SERI collected about 200 spectra in the Denver/Golden, Colo., area form November 1987 to February 1988 as part of a research project to study urban spectral solar radiation, and added these data to the data base. *In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

  20. Nanowire-based All Oxide Solar Cells

    SciTech Connect

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  1. Performance of advanced a-Si/CsI-based flat-panel x-ray detectors for mammography

    NASA Astrophysics Data System (ADS)

    Albagli, Douglas; Hudspeth, Heather; Possin, George E.; Lee, Ji Ung; Granfors, Paul R.; Giambattista, Brian W.

    2003-06-01

    The GE Senographe 2000D, the first full field digital mammography system based on amorphous Silicon (a-Si) flat panel arrays and a Cesium-Iodide (CsI) scintillator, has been in clinical use for several years. The purpose of this paper is to demonstrate and quantify improvements in the detective quantum efficiency (DQE) for both typical screening and ultra-low exposure levels for this technology platform. A new figure of merit, the electronic noise factor, is introduced to explicitly quantify the influence of the electronic noise, conversion factor, modulation transfer function (MTF), and pixel pitch towards the reduction of DQE at low exposure levels. Methods to improve the DQE through an optimization of both the flat panel design and the scintillator deposition process are discussed. The results show a substantial improvement in the DQE(f) at all frequencies and demonstrate the potential for DQE(0) to exceed 80%. The combination of high DQE at ultra low exposures and the inherent fast read-out capability makes this technology platform ideal for both current clinical procedures and advanced applications that may use multiple projections (tomosynthesis) or contrast media to enhance digital mammography.

  2. Opto-electronic properties of P-doped nc-Si–QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    SciTech Connect

    Kar, Debjit; Das, Debajyoti

    2016-07-14

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si–QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si–C bonds in the amorphous matrix and the embedded high density tiny nc-Si–QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si–QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si–QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si–QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si–QD/a-SiC:H films grown at ∼300 °C, demonstrating wide optical gap ∼1.86–1.96 eV and corresponding high electrical conductivity ∼4.5 × 10{sup −1}–1.4 × 10{sup −2} S cm{sup −1}, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  3. Opto-electronic properties of P-doped nc-Si-QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-07-01

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  4. Characterization of a-SiCx:H thin films as an encapsulation material for integrated silicon based neural interface devices

    PubMed Central

    Hsu, Jui-Mei; Tathireddy, Prashant; Rieth, Loren; Normann, A. Richard; Solzbacher, Florian

    2008-01-01

    A fully integrated, wireless neural interface device is being developed to free patients from the restriction and risk of infection associated with a transcutaneous wired connection. This device requires a hermetic, biocompatible encapsulation layer at the interface between the device and the neural tissue to maintain long-term recording/stimulating performance of the device. Hydrogenated amorphous silicon carbide (a-SiCx:H) films deposited by a plasma enhanced chemical vapor deposition using SiH4, CH4, and H2 precursors were investigated as the encapsulation layer for such device. Si-C bond density, measured by Fourier transform infrared absorption spectrometer, suggests that deposition conditions with increased hydrogen dilution, increased temperature, and low silane flow typically result in increase of Si-C bond density. From the variable angle spectroscopic ellipsometry measurement, no dissolution of a-SiCx:H was observed during soaking tests in 90°C phosphate buffered saline. Conformal coating of the a-SiCx:H in Utah electrode array was observed by scanning electron microscope. Electrical properties were studied by impedance spectroscopy to investigate the performance of a-SiCx:H as an encapsulation layer, and the results showed long term stability of the material. PMID:18437249

  5. Current trends in ground based solar magnetometry

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  6. Spectroscopic Ellipsometry Studies of Thin Film a-Si:H Solar Cell Fabrication by Multichamber Deposition in the n-i-p Substrate Configuration

    NASA Astrophysics Data System (ADS)

    Dahal, Lila Raj

    Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with

  7. Detection of Hydrofluoric Acid by a SiO2 Sol-Gel Coating Fiber-Optic Probe Based on Reflection-Based Localized Surface Plasmon Resonance

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Du, Je-Kang

    2011-01-01

    A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO2 sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO2 sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations. PMID:22319388

  8. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode.

    PubMed

    Han, Lihao; Abdi, Fatwa F; Perez Rodriguez, Paula; Dam, Bernard; van de Krol, Roel; Zeman, Miro; Smets, Arno H M

    2014-03-07

    A photoelectrochemical water splitting device (PEC-WSD) was designed and fabricated based on cobalt-phosphate-catalysed and tungsten-gradient-doped bismuth vanadate (W:BiVO4) as the photoanode. A simple and cheap hydrogenated amorphous silicon (a-Si:H) double junction solar cell has been used to provide additional bias. The advantage of using thin film silicon (TF-Si) based solar cells is that this photovoltaic (PV) technology meets the crucial requirements for the PV component in PEC-WSDs based on W:BiVO4 photoanodes. TF-Si PV devices are stable in aqueous solutions, are manufactured by simple and cheap fabrication processes and their spectral response, voltage and current density show an excellent match with the photoanode. This paper is mainly focused on the optimization of the TF-Si solar cell with respect to the remaining solar spectrum transmitted through the W:BiVO4 photoanode. The current matching between the top and bottom cells is studied and optimized by varying the thickness of the a-Si:H top cell. We support the experimental optimization of the current balance between the two sub-cells with simulations of the PV devices. In addition, the impact of the light induced degradation of the a-Si:H double junction, the so-called Staebler-Wronski Effect (SWE), on the performance of the PEC-WSD has been studied. The light soaking experiments on the a-Si:H/a-Si:H double junctions over 1000 hours show that the efficiency of a stand-alone a-Si:H/a-Si:H double junction cell is significantly reduced due to the SWE. Nevertheless, the SWE has a significantly smaller effect on the performance of the PEC-WSD.

  9. Electroabsorption and transport measurements and modeling in amorphous-silicon-based solar cells: Phase I technical progress report, 24 March 1998--23 March 1999

    SciTech Connect

    Schiff, E. A.; Lyou, J.; Kopidakis, N.; Rao, P.; Yuan, Q.

    1999-12-17

    This report describes work done by the Syracuse University during Phase 1 of this subcontract. Researchers performed work in the following areas: (1) In ``Electroabsorption measurements and built-in potentials in a-Si:H-based solar cells and devices'', researchers obtained an estimate of Vbi = 1.17 V in cells with a-SiGe:H absorber layers from United Solar Systems Corp. (2) In ``Solar cell modeling employing the AMPS computer program'', researchers began operating a simple AMPS modeling site and explored the effect of conduction bandtail width on Voc computed analytical approximations and the AMPS program. The quantitative differences between the two procedures are discussed. (3) In ``Drift mobility measurements in a-Si:H made with high hydrogen dilution'', researchers measured electron and hole mobilities in several n/i/Ni (semitransparent) cells from Pennsylvania State University with a-Si absorber layers made under maximal hydrogen dilution and found a modest increase in hole mobility in these materials compared to conventional a-Si:H. (4) In ``Electroabsorption spectroscopy in solar cells'', researchers discovered and interpreted an infrared absorption band near 1.0 eV, which they believe is caused by dopants and defects at the n/i interface of cells, and which also has interesting implications for the nature of electroabsorption and for the doping mechanism in n-type material.

  10. Simulation of a high-efficiency silicon-based heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  11. Biourbanism: Solar based urban and regional design

    SciTech Connect

    Williams, D.

    1999-07-01

    New neighborhoods for an additional one billion people will need to be constructed on the planet within the next 10 years. If the historic patterns of growth continue--the sprawl, the congestion, the draining of swamps, the loss of agricultural land--the requirement for all basic resources will outstrip the availability. While this is of great concern, it is the destruction of an acceptable quality of life--the sense of place--that will be the most difficult and expensive to change. An essential step to reverse the direction of this undesirable future is changing the design and planning of these communities to work with resident solar energies, regional biology, local renewable resources, and sustainable urban planning and design principles. Design can make a difference. This paper develops the view that the solar approach must include urban and regional design and presents solar-based renewable resources example of the design of regions.

  12. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths.

    PubMed

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-10-28

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p(+)-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I-V) curves combined with the temperature dependence of the I-V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole-Frenkel (P-F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM.

  13. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    PubMed

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography.

  14. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector

    SciTech Connect

    Cho, Hyo-Min; Ding, Huanjun; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2015-07-15

    accuracy with an average AUC greater than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. Conclusions: The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography.

  15. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector

    PubMed Central

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2015-01-01

    accuracy with an average AUC greater than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. Conclusions: The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography. PMID:26133636

  16. Fabrication and electrical characterization of Al/DNA-CTMA/ p-type a-Si:H photodiode based on DNA-CTMA biomaterial

    NASA Astrophysics Data System (ADS)

    Siva Pratap Reddy, M.; Puneetha, Peddathimula; Lee, Young-Woong; Jeong, Seong-Hoon; Park, Chinho

    2017-01-01

    In this work, a deoxyribonucleic acid-cetyltrimethylammonium chloride (DNA-CTMA) biomaterial based p-type hydrogenated amorphous silicon ( a-Si:H) photodiode (PD) is fabricated and its electrical characteristics are investigated. The Al/DNA-CTMA/ p-type a-Si:H PD parameters are studied using current-voltage ( I-V), capacitancevoltage-frequency ( C-V-f) and conductance-voltage-frequency ( G/ω-V-f) measurements. The barrier height and the ideality factor of the diode are found to be 0.78 eV and 1.9, respectively. The electrical and photoconductivity properties of the diode are analyzed by using dark I-V and transient photocurrent techniques. The C-V-f and G/ω-V-f measurements indicate that the capacitance and conductance of the diode depend on the voltage and frequency, respectively. The experimental results reveal that the decreases in capacitance and the increases in conductance with an increase in frequency can be explained on the basis of interface states ( N SS ). Series resistance ( R S ) measurements are performed on the diode and discussed here. The obtained electrical parameters confirm that the Al/DNA-CTMA/ p-type a-Si:H PD can be used as an optical sensor for the development of commercial applications that are environmentally benign. [Figure not available: see fulltext.

  17. Interim Solar Radiation Data Manual: 30-Year Statistics from the National Solar Radiation Data Base

    SciTech Connect

    Not Available

    1992-11-01

    The 30-year (1961-1990) statistics contained in this document have been derived from the National Solar Radiation Data Base (NSRDB) produced by the National Renewable Energy Laboratory (NREL). They outline solar radiation sources, as well as 30-year monthly and annual means of 5 solar radiation elements (three surface and two extraterrestrial) and 12 meteorological elements for 239 locations.

  18. Research on battery array based on solar power

    NASA Astrophysics Data System (ADS)

    Li, Junhong

    2017-03-01

    Almost all of the energy of solar power supply system comes from solar energy, which is a kind of pollution-free green energy, using independent photovoltaic system as base station power supply. In this paper, taking the solar power system as the research object, we made MATLAB simulation analysis of the independent solar photovoltaic system battery array. The simulation results showed that the output voltage and the output current of the solar array based on solar power system are affected by the illumination intensity and temperature change. In addition, it also showed that at any temperature and illumination intensity, there will a largest output power.

  19. Design optimization of thin-film/wafer-based tandem junction solar cells using analytical modeling

    NASA Astrophysics Data System (ADS)

    Davidson, Lauren; Toor, Fatima

    2016-03-01

    Several research groups are developing solar cells of varying designs and materials that are high efficiency as well as cost competitive with the single junction silicon (Si) solar cells commercially produced today. One of these solar cell designs is a tandem junction solar cell comprised of perovskite (CH3NH3PbI3) and silicon (Si). Loper et al.1 was able to create a 13.4% efficient tandem cell using a perovskite top cell and a Si bottom cell, and researchers are confident that the perovskite/Si tandem cell can be optimized in order to reach higher efficiencies without introducing expensive manufacturing processes. However, there are currently no commercially available software capable of modeling a tandem cell that is based on a thin-film based bottom cell and a wafer-based top cell. While PC1D2 and SCAPS3 are able to model tandem cells comprised solely of thin-film absorbers or solely of wafer-based absorbers, they result in convergence errors if a thin-film/wafer-based tandem cell, such as the perovskite/ Si cell, is modeled. The Matlab-based analytical model presented in this work is capable of modeling a thin-film/wafer-based tandem solar cell. The model allows a user to adjust the top and bottom cell parameters, such as reflectivity, material bandgaps, donor and acceptor densities, and material thicknesses, in order to optimize the short circuit current, open circuit voltage, and quantum efficiency of the tandem solar cell. Using the Matlab-based analytical model, we were able optimize a perovskite/Si tandem cell with an efficiency greater than 30%.

  20. Solar Activity Predictions Based on Solar Dynamo Theories

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    2009-05-01

    We review solar activity prediction methods, statistical, precursor, and recently the Dikpati and the Choudhury groups’ use of numerical flux-dynamo methods. Outlining various methods, we compare precursor techniques with weather forecasting. Precursors involve events prior to a solar cycle. First started by the Russian geomagnetician Ohl, and then Brown and Williams; the Earth's field variations near solar minimum was used to predict the next solar cycle, with a correlation of 0.95. From the standpoint of causality, as well as energetically, these relationships were somewhat bizarre. One index used was the "number of anomalous quiet days,” an antiquated, subjective index. Scientific progress cannot be made without some suspension of disbelief; otherwise old paradigms become tautologies. So, with youthful naïveté, Svalgaard, Scherrer, Wilcox and I viewed the results through rose-colored glasses and pressed ahead searching for understanding. We eventually fumbled our way to explaining how the Sun could broadcast the state of its internal dynamo to Earth. We noted one key aspect of the Babcock-Leighton Flux Dynamo theory: the polar field at the end of a cycle serves as a seed for the next cycle's growth. Near solar minimum this field usually bathes the Earth, and thereby affects geomagnetic indices then. We found support by examining 8 previous solar cycles. Using our solar precursor technique we successfully predicted cycles 21, 22 and 23 using WSO and MWSO data. Pesnell and I improved the method using a SODA (SOlar Dynamo Amplitude) Index. In 2005, nearing cycle 23's minimum, Svalgaard and I noted an unusually weak polar field, and forecasted a small cycle 24. We discuss future advances: the flux-dynamo methods. As far as future solar activity, I shall let the Sun decide; it will do so anyhow.

  1. Black a-Si:H sputtered films for photovoltaic solar cells. Final technical progress report, May 15, 1979-May 15, 1980

    SciTech Connect

    Messier, R; Tsong, I S.T.

    1980-01-01

    Aa a first step in attempting to understand the many interrelated deposition processes and film characteristics which govern sputter deposited a-Si:H film quality, a number of important basic film characteristics as a function of the preparation parameters total plasma pressure P/sub T/ and H/sub 2/ partial pressure, %H (in Ar), for the range P/sub T/ = 5 to 70mTorr and %H = 0.10, were examined in detail. A series of films were systematically prepared in this region of deposition parameter space, and these films were characterized with respect to surface and internal microstructure, chemical reactivity and etchability, total elemental composition, H-bonding configuration, intrinsic mechanical stress, optical bandgap, and mean density. In general terms, the films are described by a transition of properties dependent upon both P/sub T/ and %H. Films prepared at high P/sub T/ display a distinct columnar morphology with varying extent of intercolumn void or low-density regions. Some of these films have densities as low as approx. 60% that of c-Si, contain H predominantly in the dihydride bonding configuration, and undergo post-deposition oxidation to an extent as great as approx. 10 wt %. Films prepared in the low P/sub T/ regime are without detectable microstructure and chemically stable with no detectable bulk oxidation after many months. In these films, up to 20 at. %H was found almost entirely as monohydride, Ar content was as high as 7 at. %H, and compressive intrinsic stresses were found as large as 5 x 10/sup 9/ dynes/cm/sup 2/. These results are entirely consistent with the general Structure Zone Model (SZM) of physical vapor deposition upon which there are superimposed the chemical effects of H/sub 2/ reactive sputtering. 64 references.

  2. Comparison of Artificial Neural Networks and GIS Based Solar Analysis for Solar Potential Estimation

    NASA Astrophysics Data System (ADS)

    Konakoǧlu, Berkant; Usta, Ziya; Cömert, Çetin; Gökalp, Ertan

    2016-04-01

    Nowadays, estimation of solar potential plays an important role in planning process for sustainable cities. The use of solar panels, which produces electricity directly from the sun, has become popular in accordance with developing technologies. Since the use of solar panels enables the users to decrease costs and increase yields, the use of solar panels will be more popular in the future. Production of electricity is not convenient for all circumstances. Shading effects, massive clouds and rainy weather are some factors that directly affect the production of electricity from solar energy. Hence, before the installation of solar panels, it is crucial to conduct spatial analysis and estimate the solar potential of the place that the solar panel will be installed. There are several approaches to determine the solar potential. Examination of the applications in the literature reveals that the applications conducted for determining the solar potential are divided into two main categories. Solar potential is estimated either by using artificial neural network approach in which statistical parameters such as the duration of sun shine, number of clear days, solar radiation etc. are used, or by spatial analysis conducted in GIS approaches in which spatial parameters such as, latitude, longitude, slope, aspect etc. are used. In the literature, there are several studies that use both approaches but the literature lacks of a study related to the comparison of these approaches. In this study, Karadeniz Technical University campus has been selected as study area. Monthly average values of the number of clear sky days, air temperature, atmospheric pressure, relative humidity, sunshine duration and solar radiation parameters obtained for the years between 2005 and 2015 will be used to perform artificial neural network analysis to estimate the solar potential of the study area. The solar potential will also be estimated by using GIS-based solar analysis modules. The results of

  3. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  4. Performance-improved thin-film a-Si:H/μc-Si:H tandem solar cells by two-dimensionally nanopatterning photoactive layer

    PubMed Central

    2014-01-01

    Tandem solar cells consisting of amorphous and microcrystalline silicon junctions with the top junction nanopatterned as a two-dimensional photonic crystal are studied. Broadband light trapping, detailed electron/hole transport, and photocurrent matching modulation are considered. It is found that the absorptances of both junctions can be significantly increased by properly engineering the duty cycles and pitches of the photonic crystal; however, the photocurrent enhancement is always unevenly distributed in the junctions, leading to a relatively high photocurrent mismatch. Further considering an optimized intermediate layer and device resistances, the optimally matched photocurrent approximately 12.74 mA/cm2 is achieved with a light-conversion efficiency predicted to be 12.67%, exhibiting an enhancement of over 27.72% compared to conventional planar configuration. PMID:24521244

  5. Semiconductor nanostructure-based photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Genqiang; Finefrock, Scott; Liang, Daxin; Yadav, Gautam G.; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2011-06-01

    Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

  6. Semiconductor nanostructure-based photovoltaic solar cells.

    PubMed

    Zhang, Genqiang; Finefrock, Scott; Liang, Daxin; Yadav, Gautam G; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2011-06-01

    Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

  7. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.

    PubMed

    Fujita, Hideaki; Van Dau, Thanh; Shimizu, Kazunori; Hatsuda, Ranko; Sugiyama, Susumu; Nagamori, Eiji

    2011-02-01

    With the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm x 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels. To position the collagen film on the MEMS device, a thermo-sensitive polymer was used as the sacrifice-layer which was selectively removed with O₂ plasma at the positions where the collagen film was glued. The C2C12 myoblasts were seeded on the collagen film, where they proliferated and formed myotubes after induction of differentiation. When C2C12 myotubes were stimulated with electric pulses, contraction of the collagen film-C2C12 myotube complex was observed. When the edge of the Si-MEMS device was observed, displacement of ~8 μm was observed, demonstrating the possibility of locomotive movement when the device is placed on a track of adequate width. Here, we propose that the C2C12-collagen film complex is a new generation actuator for MEMS devices that utilize glucose as fuel, which will be useful in environments in which glucose is abundant such as inside a blood vessel.

  8. Spectral solar radiation data base documentation, volume 1

    NASA Astrophysics Data System (ADS)

    Riordan, Carol J.; Myers, Daryl R.; Hulstrom, Roland L.

    1990-01-01

    The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the natural variability in the spectral (color) content of outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume 1 of this report documents the history, approach, content and format of the data base.

  9. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance

  10. Evaluation of solar thermal storage for base load electricity generation

    NASA Astrophysics Data System (ADS)

    Adinberg, R.

    2012-10-01

    In order to stabilize solar electric power production during the day and prolong the daily operating cycle for several hours in the nighttime, solar thermal power plants have the options of using either or both solar thermal storage and fossil fuel hybridization. The share of solar energy in the annual electricity production capacity of hybrid solar-fossil power plants without energy storage is only about 20%. As it follows from the computer simulations performed for base load electricity demand, a solar annual capacity as high as 70% can be attained by use of a reasonably large thermal storage capacity of 22 full load operating hours. In this study, the overall power system performance is analyzed with emphasis on energy storage characteristics promoting a high level of sustainability for solar termal electricity production. The basic system parameters, including thermal storage capacity, solar collector size, and annual average daily discharge time, are presented and discussed.

  11. Polymer Based Nanocomposites for Solar Energy Conversion

    SciTech Connect

    Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

    2005-01-01

    Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

  12. Characterisation of photovoltaic modules based on thin film solar cells in environmental operating conditions of Algerian Sahara

    NASA Astrophysics Data System (ADS)

    Agroui, K.; Hadj Mahammed, I.; Hadj Arab, A.; Belghachi, A.

    2008-08-01

    This paper summarizes the electrical and thermal characterizations of thin film PV modules based on amorphous triple junctions (3J: a-Si) and Copper Indium Selenide (CIS) thin film solar cells. Tests are operated in outdoor exposure and under natural sunlight of Ghardaia, Algeria) as specific desert climate environment, characterized by high irradiation and temperature levels. Data acquired from Environmental Operating Conditions (EOC) was converted into solar module output characteristics at Standard Test Conditions (STC) by using three method suggested by Anderson and Mermoud as well as the equations already standardized as IEC 60891. Then, based on the investigation results of the conversion equations, differences among the converting methods (range of application, specificity of solar cell material, and experimental test conditions) were studied.

  13. An innovative a-Si:H p-i-n based X-ray medical image detector for low dosage and long exposure applications

    NASA Astrophysics Data System (ADS)

    Fann, Sen-Shyong; Jiang, Yeu-Long; Hwang, Huey-Liang

    2003-05-01

    An innovative hydrogenated amorphous silicon (a-Si:H) p-i-n photodiode based X-ray detector for medical imaging applications was developed in this work, and the improvements of the device were also discussed. The detector consists of an a-Si:H p-i-n photodiode and a stacked dielectric layer, such as silicon nitride (SiN x), deposited on p-layer of this p-i-n diode (n-i-p-SiN x), as the major charge storage element. The detector operates as a capacitor, formed by this dielectric layer, in parallel with a reverse-biased p-i-n diode during the detection cycle. Consequently, the capacitance, for accumulating the photon-converted charges, of the p-i-n diode was enlarged by this stacked dielectric layer without decreasing the active area of the detector. As a result, the dynamic range, linearity and data retention capability of this novel detector are significantly improved. In particular, the photo sensitivity and charge storage capability of this novel detector can be separately optimized, and the drastically improved data retention, due to the high density and long release time of the trapped electrons in p-layer of the p-i-n diode, could facilitate this novel detector to be employed in the low dosage flux and long exposure applications.

  14. A Space Based Solar Power Satellite System

    NASA Astrophysics Data System (ADS)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  15. High-rate deposition of a-SiNx:H for photovoltaic applications by the expanding thermal plasma

    NASA Astrophysics Data System (ADS)

    Kessels, W. M. M.; Hong, J.; van Assche, F. J. H.; Moschner, J. D.; Lauinger, T.; Soppe, W. J.; Weeber, A. W.; Schram, D. C.; van de Sanden, M. C. M.

    2002-09-01

    Driven by the need for improvement of the economical competitiveness of photovoltaic energy, the feasibility of high-rate (>1 nm/s) amorphous silicon nitride (a-SiNx):H deposited by the expanding thermal plasma (ETP) technique has been explored with respect to the application of the a-SiNx:H as functional antireflection coating on crystalline silicon solar cells. First, the deposition rate and the a-SiNx:H film properties, such as refractive index, Si, N, and H atomic density, and hydrogen bonding configurations, have been mapped for various operating conditions. From ellipsometry, elastic recoil detection, and infrared spectroscopy, it has been shown that deposition rates up to 20 nm/s can be reached with a fair film homogeneity and that the refractive index and the N/Si ratio can fully be tuned by the plasma composition while the hydrogen content can be controlled by the substrate temperature. Good antireflection coating performance of the a-SiNx:H has therefore been observed for monocrystalline silicon solar cells. These cells with ETP a-SiNx:H yielded only slightly lower conversion efficiencies than high-quality reference cells due to a much lower degree of surface passivation. This lack of surface passivation has also been shown in a separate study on the surface recombination velocity. Furthermore, it has been tested whether the a-SiNx:H films lead to silicon bulk passivation, which is essential for solar cells based on cheaper, defective silicon stock material such as multicrystalline silicon. It has been proven that bulk passivation of the cells is indeed induced by the high-rate ETP deposited a-SiNx:H after a high-temperature step in which the metal contacts of the cells are processed. These results make the ETP technique an interesting candidate for high-throughput processing of competitive silicon solar cells. copyright 2002 American Vacuum Society.

  16. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    PubMed

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sensitizers for Aqueous-Based Solar Cells.

    PubMed

    Li, Chun-Ting; Lin, Ryan Yeh-Yung; Lin, Jiann T

    2017-03-02

    Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.

  18. Optical Amplifier Based Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to design a safe optical power beaming system for use in space. Research was focused on identification of strategies and structures that would enable achievement near diffraction limited optical beam quality, highly efficient electrical to optical conversion, and high average power in combination in a single system. Efforts centered on producing high efficiency, low mass of the overall system, low operating temperature, precision pointing and tracking capability, compatibility with useful satellite orbits, component and system reliability, and long component and system life in space. A system based on increasing the power handled by each individual module to an optimum and the number of modules in the complete structure was planned. We were concerned with identifying the most economical and rapid path to commercially viable safe space solar power.

  19. Solar chromospheric modeling based on submillimeter limb brightness profile

    SciTech Connect

    Hermans, L.M.; Lindsey, C.

    1986-11-01

    A method of modeling the solar chromosphere is developed, based on submillimeter continuum observations of the solar limb. Submillimeter radiation from the solar limb emanates from the chromosphere in local thermodynamic equilibrium, making it an important chromospheric diagnostic. Also, the use of high-resolution limb profiles allows for atmospheric modeling independent of gravitational hydrostatic equilibrium. The chromospheric model is constructed to match high-resolution solar limb profiles at 30, 50, 100, and 200 microns, determined by an occultation of the solar limb observed from the Kuiper Airborne Observatory during the total solar eclipse of July 31, 1981. This matching is achieved by stretching the solar model atmosphere of Vernazza, Avrett, and Loesser (1981) vertically out of hydrostatic equilibrium, while maintainingn its vertical temperature-optical depth profile. 7 references.

  20. Graphene-Based Bulk-Heterojunction Solar Cells: A Review.

    PubMed

    Singh, Eric; Nalwa, Hari Singh

    2015-09-01

    The current highest power-conversion efficiencies found for different types of solar cell devices range from 20% to 46%, depending on the nature of the photovoltaic materials used and device configuration. Graphene has emerged as an important organic photovoltaic material for photoenergy conversion, where graphene can be used as a transparent electrode, active interfacial layer, electron transport layer, hole transport layer, or electron/hole separation layer in fabricating solar cell devices. This review article briefly discusses some recent advances made in different types of photovoltaic materials, and then summarizes the current status of graphene-based bulk-heterojunction (BHJ) solar cells, including graphene-containing perovskite and tandem solar cell devices. Power-conversion efficiencies currently exceed 10% for heteroatom-doped multilayer graphene-based BHJ solar cells and 15.6% for graphene-containing perovskite-based solar cells. The role of graphene layer thickness, bending, thermal annealing, passivation, heteroatom doping, perovskite materials, and tandem solar cell structure on the photovoltaic performance of graphene-based solar cells is discussed. Besides aiming for high power-conversion efficiency, factors such as long-term environmental stability and degradation, and the cost-effectiveness of graphene-based solar cells for large-scale commercial production are challenging tasks.

  1. Novel Flexible Plastic-Based Solar Cells

    DTIC Science & Technology

    2012-10-19

    Fabrication of newly designed hybrid solar cells that are composed of a electron transport layer ( TiO2 ), a light sensitizing layer (NCs), and a hole...coating and spraying techniques, to produce broad-band light harvesting hybrid solar cells with bulk and layered heterojunction of inorganic...fabrication of hybrid bulk heterojunction photovoltaic cell using a blend film of polymer-inorganic NCs, 2) Fabrication of newly designed hybrid solar

  2. Oriented Connectivity-Based Method for Segmenting Solar Loops

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Newman, T. S.; Gary, G. A.

    2005-01-01

    A method based on oriented connectivity that can automatically segnient arc-like structures (solar loops) from intensity images of the Sun's corona is introduced. The method is a constructive approach that uses model-guided processing to enable extraction of credible loop structures. Since the solar loops are vestiges of the solar magnetic field, the model-guided processing exploits external estimates of this field s local orientations that are derived from a physical magnetic field model. Empirical studies of the method s effectiveness are also presented. The Oriented Connectivity- Based Method is the first automatic method for the segmentation of solar loops.

  3. High-resolution Ground-based European Solar Physics

    NASA Astrophysics Data System (ADS)

    Collados, M.

    2008-12-01

    This communication reviews some of the most challenging topics in high-resolution ground-based Solar Physics. The most powerful European facilities are described, together with their capabilities and skills gained in Europe using them. The reasons for a large-aperture solar telescope are outlined, based on present scientific needs, which have led to the joint project EST (European Solar Telescope), in which the most prestigious European Solar Physics research institutions participate. Some technical challenges of a such a large telescope are mentioned.

  4. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Li, H.; Mashanov, V.; Yang, Y. J.; Cheng, H. H.; Chang, G. E.; Soref, R. A.; Sun, G.

    2013-12-01

    We report an investigation of GeSn-based p-i-n photodiodes with an active GeSn layer that is almost fully strained. The results show that (a) the response of the Ge/GeSn/Ge heterojunction photodiodes is stronger than that of the reference Ge-based photodiodes at photon energies above the 0.8 eV direct bandgap of bulk Ge (<1.55 μm), and (b) the optical response extends to lower energy regions (1.55-1.80 μm wavelengths) as characterized by the strained GeSn bandgap. A cusp-like spectral characteristic is observed for samples with high Sn contents, which is attributed to the significant strain-induced energy splitting of heavy and light hole bands. This work represents a step forward in developing GeSn-based infrared photodetectors.

  5. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer

    SciTech Connect

    Tseng, H. H.; Li, H.; Mashanov, V.; Yang, Y. J.; Cheng, H. H.; Chang, G. E.; Soref, R. A.; Sun, G.

    2013-12-02

    We report an investigation of GeSn-based p-i-n photodiodes with an active GeSn layer that is almost fully strained. The results show that (a) the response of the Ge/GeSn/Ge heterojunction photodiodes is stronger than that of the reference Ge-based photodiodes at photon energies above the 0.8 eV direct bandgap of bulk Ge (<1.55 μm), and (b) the optical response extends to lower energy regions (1.55–1.80 μm wavelengths) as characterized by the strained GeSn bandgap. A cusp-like spectral characteristic is observed for samples with high Sn contents, which is attributed to the significant strain-induced energy splitting of heavy and light hole bands. This work represents a step forward in developing GeSn-based infrared photodetectors.

  6. The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements

    NASA Astrophysics Data System (ADS)

    Gröbner, Julian; Kröger, Ingo; Egli, Luca; Hülsen, Gregor; Riechelmann, Stefan; Sperfeld, Peter

    2017-09-01

    A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI) over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS) was combined from medium-resolution (bandpass of 0.86 nm) measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe) spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm) from a Fourier transform spectroradiometer (FTS) over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere) gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI) is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  7. Deployed Base Solar Power (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    various time intervals. Data Acquisitions and Components:  FieldPoint  Current, Voltage, and Power Transducers  POA Pyranometers  Solar...Tracking Pyranometer  Weather Station  kWh Meter Parameters being monitored:  Solar Module Temperatures  Ambient Temperature  Wind Speed  Wind

  8. Apollony photonic sponge based photoelectrochemical solar cells.

    PubMed

    Ramiro-Manzano, Fernando; Atienzar, Pedro; Rodriguez, Isabelle; Meseguer, Francisco; Garcia, Hermenegildo; Corma, Avelino

    2007-01-21

    We have developed a quasi-fractal colloidal crystal to localize efficiently photons in a very broad optical spectral range; it has been applied to prepare dye sensitized photoelectrochemical solar (PES) cells able to harvest very efficiently photons from the ultraviolet (UV) and the visible (VIS) regions of the solar spectrum.

  9. Efficiency improvement of silicon nanostructure-based solar cells.

    PubMed

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-24

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ~181.1% and a decrease in reflectivity of ~144.3%. The performance of the SNS-based solar cells was found to be optimized (~11.86%) in an SNS with a length of ~300 nm, an aspect ratio of ~5, surface coverage of ~84.9% and a reflectivity of ~6.1%. The ~16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  10. Polymeric fibre optic sensor based on a SiO2 nanoparticle film for humidity sensing on wounds

    NASA Astrophysics Data System (ADS)

    Gomez, David; Morgan, Stephen P.; Hayes Gill, Barrie R.; Korposh, Serhiy

    2016-05-01

    Optical fibre sensors have the potential to be incorporated into wound dressings to monitor moisture and predict healing without the need to remove the dressing. A low cost polymeric optical fibre humidity sensor based on evanescent wave absorption is demonstrated for skin humidity measurement. The sensor is fabricated by coating the fibre with a hydrophilic film based on bilayers of Poly(allylamine hydrochloride) (PAH) and SiO2 mesoporous nanoparticles. The Layer-by-Layer method was used for the deposition of the layers. Multimode polymeric optical fibre with a cladding diameter of 250μm was covered by 7 layers of PAH/SiO2 film on the central region of an unclad fibre with a diameter of 190μm. The length of the sensitive region is 30mm. Experiment results show a decrease in light intensity when relative humidity increases due to refractive index changes of the fibre coating. The sensitivity obtained was 200mV/%RH and the sensor was demonstrated to provide a faster response to changes in the humidity of the skin microenvironment than a commercial sensor.

  11. Iron based photoanodes for solar fuel production.

    PubMed

    Bassi, Prince Saurabh; Gurudayal; Wong, Lydia Helena; Barber, James

    2014-06-28

    In natural photosynthesis, the water splitting reaction of photosystem II is the source of the electrons/reducing equivalents for the reduction of carbon dioxide to carbohydrate while oxygen is formed as the by-product. Similarly, for artificial photosynthesis where the end product is a solar fuel such as hydrogen, a water splitting-oxygen evolving system is required to supply high energy electrons to drive the reductive reactions. Very attractive candidates for this purpose are iron based semiconductors which have band gaps corresponding to visible light and valence band energies sufficient to oxidise water. The most studied system is hematite (Fe2O3) which is highly abundant with many attributes for incorporation into photoelectrochemical (PEC) cells. We review the recent progress in manipulating hematite for this purpose through nanostructuring, doping and surface modifications. We also consider several hybrid iron-based semiconducting systems like ferrites and iron titanates as alternatives to hematite for light driven water splitting emphasizing their advantages with respect to their band levels and charge transport properties.

  12. Iron-Chalcogenide Based Solar Absorbers

    NASA Astrophysics Data System (ADS)

    Kykyneshi, Robert; Jieratum, Vorranutch; Altschul, Emmeline; Ravichandran, Ram; Pelatt, Brian; Yu, Liping; Zunger, Alex; Wager, John; Keszler, Douglas

    2011-10-01

    Earth abundant, non-toxic solar absorbers are greatly desirable to reduce solar cell production cost. FeS2 pyrite, with a band gap of ˜0.9 eV, is well known for outstanding absorption properties, yet significant photoconversion has never been achieved. Our computational and experimental study recognizes the failure mechanism of iron pyrite as an instability with respect to other FexS (0.5solar absorber application discussed.

  13. High-Efficiency Amorphous Silicon and Nanocrystalline Silicon-Based Solar Cells and Modules: Final Technical Progress Report, 30 January 2006 - 29 January 2008

    SciTech Connect

    Guha, S.; Yang, J.

    2008-05-01

    United Solar Ovonic successfully used its spectrum-splitting a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure in their manufacturing plants, achieving a manufacturing capacity of 118 MW in 2007, and set up a very aggressive expansion plan to achieve grid parity.

  14. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  15. Predicting efficiency of solar cells based on transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush

    2017-01-01

    Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.

  16. Spraying spin coating silanization at room temperature of a SiO2 surface for silicon-based integrated light emitters.

    PubMed

    Cherkouk, C; Rebohle, L; Skorupa, W; Strache, T; Reuther, H; Helm, M

    2009-09-15

    A new silanization method for SiO(2) surfaces has been developed for Si-based light emitters which are intended to serve as light sources in smart biosensors relying on fluorescence analysis. This method uses a special silanization chamber and is based on spraying and spin coating (SSC) in nitrogen atmosphere at room temperature for 10 min. It avoids processes like sonication and the use of certain chemicals being harmful to integrated light emitters. The surface of a SiO(2) layer serving as a passivation layer for the light emitters was hydrolyzed to silanols using an in situ-hybridization chamber and catalyzed with MES (2-(N-morpholino)ethanesulfone acid hydrate) buffer solution. Subsequently, the substrates were silanized with the SSC method using two coupling agents as (3-Aminopropyl)trimethoxysilane (APMS), and N'-(3-(trimethoxysilyl)-propyl)-diethylenetriamine (triamino-APMS). The structure of the SiO(2) surface, the APMS and the triamino-APMS layers was controlled and characterized by Infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The results show a covalent binding of the silane coupling agents on the surface. Atomic force microscopy was used to investigate the roughness of the surface. The silanized samples exhibit smooth and densely covered surfaces. Finally, the suitability of the SSC method was verified on real light emitters.

  17. Modeling electron density, temperature distribution in the solar corona based on solar surface magnetic field observations

    NASA Astrophysics Data System (ADS)

    Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.

    2015-12-01

    Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.

  18. Microcontroller-based system for analyzing and characterizing solar panels

    SciTech Connect

    Jabbar, Muhandis Abdul Prawito

    2016-04-19

    A solar cell is one of many alternative energy which is still being developed and it works by converting sunlight into electricity. In order to use a solar cell, a deep knowledge about the solar cell’s characteristics is needed. The current and voltage (I-V) produced when the light hits the solar cell surface with a certain value of intensity and at a certain value of temperature becomes the basic study to determine solar cell characteristics. In the past decade, there were so many developments of devices to characterize solar cells and solar panels. One of them used a MOSFET device for varying electronic load to observe solar cell current and voltage responses. However, many devices which have been developed even device on the market using many expensive tools and quite complex. Therefore in this research, a simple low cost electronic controlled device for solar cell characterization is built based on MOSFET method and a microcontroller but still has high reliability and accuracy.

  19. Research on high-band-gap materials and amorphous-silicon-based solar cells. Annual subcontract report, May 15, 1994--May 14, 1995

    SciTech Connect

    Schiff, E.A.; Gu, Q.; Jiang, L.; Wang, Q.

    1995-12-01

    We have conducted a survey of thin BP:H and BPC:H films prepared by plasma deposition using phosphine, diborane, tri-methylboron, and hydrogen as precursor gases. The objective of this research is to find out whether such films might offer a superior window layer film for application to wide bandgap a-Si solar cells. The research has shown good optical properties in a-BP:H films, but electrical properties acceptable for use in window layers have not been demonstrated yet. We have also found an interesting, conductive and transparent BPC:H film in a remote deposition region of the reactor, but have been unable to transfer deposition of this film to the standard interelectrode region. We have developed our capability to deposit nip sequence amorphous silicon based solar cells, and have demonstrated an open circuit voltage greater than 0.7 V. We have continued our studies of built-in potentials in a-Si based solar cells using the electroabsorption technique, extending our measurements to include cells with wider bandgap intrinsic layers and Schottky barrier test structures. We have made the first time-of-flight drift mobility measurements on a-Si:H prepared by hot wire (HW) deposition. Initial work has shown that light-soaked HW material can have much better ambipolar diffusion lengths than the plasma-deposited material following extended light soaking. We have performed some theoretical work which addresses a difficulty in understanding photocarrier recombination in a-Si:H first identified by Marvin Silver. In particular, electron-hole recombination is much slower than expected from the well-known {open_quotes}diffusion-controlled{close_quotes} models for Onsager (geminate) recombination and Langevin recombination. This slowness is essential to the success of a-Si in solar cells, but is unexplained. We have done work on high field electron drift mobilities in a-Si:H and on the validity of the Einstein relation connecting the diffusion and drift of holes in a-Si:H.

  20. Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356

    SciTech Connect

    Wang, Q.

    2011-05-01

    Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

  1. Fruit based Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ung, M. C.; Sipaut, C. S.; Dayou, J.; Liow, K. S.; Kulip, J.; Mansa, R. F.

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) was first discovered in 1991 by O’regan and Gratzel. This new type of solar cell was reported to have lower production cost with efficiency as high as 12% which is comparable to conventional silicon solar cell. Initially, it uses ruthenium dye as light sensitizer for the operation. However, DSSC with ruthenium dyes are facing environment friendly issues due to the toxic chemicals and costly purification in processing ruthenium dye. Regardless of the poor performance in DSSC, natural dyes which are easy to prepare, cheap and environmental friendly still appear to be an alternative as dye sensitizer. In this study, dye sensitized solar cells (DSSCs) were fabricated using anthocyanin source dyes extracted from several local fruits. All the extracts absorb a wide range of the visible light and ultraviolet spectrum. Therefore, all of the natural dyes show light absorption properties which is important for a dye sensitizer. A DSSC is comprised of conductive substrate, nanoporous semiconductor TiO2 layer, dye sensitizer, electrolyte with redox couple and a counter electrode with catalyst. In this study, the effect of different light source and different counter electrode are been investigated. However, it is vital to know that further research need to do more on the locally Borneo sourced dyes to evaluate and enhance their performance in Dye Sensitized Solar Cell.

  2. Combining mariculture and seawater-based solar ponds

    SciTech Connect

    Lowrey, P.; Ford, R.; Collando, F.; Morgan, J.; Frusti, E. . Dept. of Mechanical Engineering)

    1990-05-01

    Solar ponds have been thoroughly studied as a means to produce electricity or heat, but there may be comparable potential to use solar ponds to produce optimized environments for the cultivation of some aquaculture crops. For this, conventional brine-based solar ponds could be used. This strategy would probably be most suitable at desert sites where concentrated brine was abundant, pond liners might not be needed, and the crop produced could be shipped to market. Generally, a heat exchanger would be required to transfer heat from the solar pond into the culture ponds. Culture ponds could therefore use either fresh or marine water. In contrast, this paper explores seawater-based solar ponds. These are solar ponds which use seawater in the bottom storage zone and fresh water in the upper convective zone. Because the required temperature elevations for mariculture are only about 10{degrees}C, seawater-based solar ponds are conceivable. Seawater-based ponds should be very inexpensive because, by the shore, salt costs would be negligible and a liner might be unnecessary.

  3. Solar concentration by curved-base Fresnel lenses

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of idealized curved base line focusing Fresnel lenses is analyzed. A simple optical model was introduced to study the effects of base curvature and lens f-number. Thin lens ray tracing and the laws of reflection and refraction are used to develop expression for lens transmittance and image plane intensity profiles. The intensity distribution over the solar spectrum, lens dispersion effects, and absorption by the lens material are included in the analysis. Model capabilities include assessment of lens performance in the presence of small transverse tracking errors and the sensitivity of solar image characteristics to focusing.

  4. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    PubMed

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  5. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    NASA Astrophysics Data System (ADS)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  6. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    PubMed

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  7. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    PubMed Central

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-01-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge. PMID:27629362

  8. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion

    DOE PAGES

    Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui; ...

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less

  9. Tantalum-based semiconductors for solar water splitting.

    PubMed

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  10. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    PubMed

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.

  11. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  12. Ground-Based Correlates of Solar Irradiance Variation

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    2001-01-01

    Ground-based instruments cannot directly measure solar irradiance variability at the 0.1% level at which it occurs because of the earth's atmosphere. However, many forms of ground-based solar observations correlate well with solar irradiance variations, and this fact has been used to construct facular-sunspot models which can explain about 90% of the variance of total solar irradiance as observed by spacecraft radiometers. It is not yet clear whether remaining discrepancies are observational or require additional sources in the model. This paper is a selective review of the current status of the use of ground-based data to understand spacecraft observations of solar irradiance and to apply this understanding to periods before space-based measurements were available. New results from the extension of the histogram analysis of NASA/NSO spectromagnetograph observations (Jones et al., 2000, ApJ529, 1070) to the period from Nov. 1992 to Sep. 2000 are reported which confirm that strong mixed polarity magnetic regions (quiet network) are not significantly correlated with total solar irradiance and which show an unexplained linear trend in the residuals of a multiple regression.

  13. Satellite-based surface solar radiation data provided by CM SAF - Solar energy applications

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Müller, Richard W.; Posselt, Rebekka; Stöckli, Reto

    2013-04-01

    The planning of solar power plants requires accurate estimates of the solar energy available at the surface. Satellite observations provide useful information on the cloud coverage, which is one of the main factors modulating the solar surface radiation. This information can be used to estimate the solar surface radiation from satellite. Observations from geostationary satellites allow the retrieval of the surface solar radiation with high temporal (up to hourly) and spatial (approx. 5 km) resolution. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. CM SAF has already released one data set based on geostationary Meteosat satellite covering 1983 to 2005 (doi: 10.5676/EUM_SAF_CM/RAD_MVIRI/V001) and one global data set based on measurements of the polar-orbiting AVHRR instruments covering 1982 to 2009 (doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V001). Here, we present details and applications of the CM SAF surface radiation data generated from the observations of the geostationary Meteosat satellites. The climate data set is available at high spatial (0.03 x 0.03 deg) and temporal (hourly, daily, monthly) resolutions. Besides global radiation, also the direct beam component is provided, which is for instance required for the estimation of the energy generated by solar thermal plants. Based on comparisons with surface observations the accuracy of CM SAF surface solar radiation data is better than 10 W/m2 on a monthly basis and 25 W/m2 on a daily basis. The data sets are well documented (incl. validation using surface observations) and available in netcdf-format at no cost without restrictions at www.cmsaf.eu. Solar energy applications of the data include the Photovoltaic Geographical

  14. Space-Based Solar Power System Architecture

    DTIC Science & Technology

    2012-12-01

    for peak- power tracking they are Xe = 0.60 and Xd = 0.80. The efficiencies of the former are about 5 percent to 7 percent greater than the latter...because peak- power tracking requires a power converter between the arrays and the loads” (Wertz & Larson, 1999, p. 413). With the critical function...that this solar array accomplishes, it should be designed with peak- power tracking , meaning that it will be slightly less efficient but will have the

  15. Silicon based solar cells using a multilayer oxide as emitter

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  16. Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Curtin, Benjamin; Biswas, Rana; Dalal, Vikram

    2009-12-01

    Photonic crystal back-reflectors offer enhanced optical absorption in thin-film solar cells, without undesirable losses. We fabricated metallic photonic crystal back-reflectors using photolithography and reactive-ion etching and deposited a-Si:H solar cells. The photonic crystal has triangular lattice symmetry, a pitch of 760 nm, and was designed with rigorous simulations. Scanning electron microscopy demonstrates excellent long range periodicity and conformal a-Si:H growth. The average light absorption increases by 7%, relative to a flat reference device, with an enhancement factor approaching 6 at near-infrared wavelengths. The photonic crystal back reflector strongly diffracts light and increases optical path lengths of solar photons.

  17. A Solar Position Sensor Based on Image Vision.

    PubMed

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  18. A Solar Position Sensor Based on Image Vision

    PubMed Central

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Rosales, Pedro; Suastegui, José

    2017-01-01

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors’ evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays’ direction as well as the tilt and sensor position. The sensor’s characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors. PMID:28758935

  19. Stable, high-efficiency amorphous-silicon solar cells with low hydrogen content. Final subcontract report, 1 March 1991--31 March 1993

    SciTech Connect

    Hegedus, S.S.; Phillips, J.E.

    1993-08-01

    This report describes a 21-month project to demonstrate amorphous-silicon (a-Si) solar cells with high stabilized conversion efficiency. The objective was to develop a research program spanning material issues (more stable a-Si and better a-SiGe alloys) and device issues (more stable a-Si-based solar cells) with the goal of high stabilized solar cell efficiency. The Institute of Energy Conversion (IEC) produced and analyzed the stability of a-Si films and solar cells with reduced hydrogen content (2--6%). A thermodynamic model of defect formation was developed that describes the high-temperature degraded state of a solar cell. An analysis of bifacial current voltage and quant-efficiency insults for a-SiGe p-i-n devices with transparent front and back contacts provided information about the influence of alloying and band-gap grading on hole and electron collection. IEC also studied the stability of graded and ungraded a-SiGe solar cells using bifacial devices to learn about the relative degradation of hole and electron collection, and concludes that degradation of the photoconductivity of a-SiGe materials does not agree with degradation observed in solar cells.

  20. Solar cell based pyranometers: Evaluation of the diffuse response

    SciTech Connect

    Vignola, F.

    1999-07-01

    The responsivity to diffuse radiation of a solar cell based pyranometer is studied. Diffuse measurements are made using a shade disk for a LiCor Pyranometer and an Eppley PSP pyranometer mounted side by side on an automatic tracker. The difference in the diffuse responsivity varies by 30 to 40% between cloudy conditions and clear skies. This difference is attributed to the spectral dependence of the LiCor pyranometer. A slight sensitivity in the diffuse responsivity was found for both ground based relative humidity measurements and ambient temperature. A simple method to estimate the spectral dependence of the diffuse responsivity of the LiCor pyranometer is presented. Implication of the spectral dependence of the solar cell based pyranometers is discussed for LiCor calibrations and for measurements made by rotating shadowband instruments using solar cell based pyranometers.

  1. Progress Toward an Updated National Solar Radiation Data Base

    SciTech Connect

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-01-01

    Progress is reported on an updated National Solar Radiation Database (NSRDB). Focus on this year's work was on preparing a test-year database for evaluating several solar radiation models that could be used to replace the METSTAT model used in the original 1961-1990 NSRDB. That model is no longer compatible with cloud observations reported by the National Weather Service. We have also included a satellite-based model that will increase the spatial resolution of solar radiation for GIS or mapping applications. Work also included development of improved estimates for aerosols, water vapor, and ozone. High-quality solar measurements were obtained for 33 sites near National Weather Service stations, and model runs were completed for test years 1999 and 2000.

  2. Dynamic Aperture-based Solar Loop Segmentation

    NASA Technical Reports Server (NTRS)

    Lee, Jon Kwan; Newman, Timothy S.; Gary, G. Allen

    2006-01-01

    A new method to automatically segment arc-like loop structures from intensity images of the Sun's corona is introduced. The method constructively segments credible loop structures by exploiting the Gaussian-like shape of loop cross-sectional intensity profiles. The experimental results show that the method reasonably segments most of the well-defined loops in coronal images. The method is only the second published automated solar loop segmentation method. Its advantage over the other published method is that it operates independently of supplemental time specific data.

  3. Efficiency improvement of silicon nanostructure-based solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-01

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  4. Innovative laser based solar cell scribing

    NASA Astrophysics Data System (ADS)

    Frei, Bruno; Schneeberger, Stefan; Witte, Reiner

    2011-03-01

    The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.

  5. Tandem solar cells made from amorphous silicon and polymer bulk heterojunction sub-cells.

    PubMed

    Park, Sung Heum; Shin, Insoo; Kim, Kwang Ho; Street, Robert; Roy, Anshuman; Heeger, Alan J

    2015-01-14

    A tandem solar cell based on a combination of an amorphous silicon (a-Si) and polymer solar cell (PSC) is demonstrated. As these tandem devices can be readily fabricated by low-cost methods, they require only a minor increase in the total manufacturing cost. Therefore, a combination of a-Si and PSC provides a compelling solution to reduce the cost of electricity produced by photovoltaics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Graphene-based transparent electrodes for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Chen, Caiyun; Zhang, Jie; Li, Shaojuan; Sun, Baoquan; Bao, Qiaoliang

    2014-11-01

    The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD) on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO). Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  7. Solar-Reflectance-Based Calibration of Spectral Radiometers

    NASA Technical Reports Server (NTRS)

    Cattrall, Christopher; Carder, Kendall L.; Thome, Kurtis J.; Gordon, Howard R.

    2001-01-01

    A method by which to calibrate a spectral radiometer using the sun as the illumination source is discussed. Solar-based calibrations eliminate several uncertainties associated with applying a lamp-based calibration to field measurements. The procedure requires only a calibrated reflectance panel, relatively low aerosol optical depth, and measurements of atmospheric transmittance. Further, a solar-reflectance-based calibration (SRBC), by eliminating the need for extraterrestrial irradiance spectra, reduces calibration uncertainty to approximately 2.2% across the solar-reflective spectrum, significantly reducing uncertainty in measurements used to deduce the optical properties of a system illuminated by the sun (e.g., sky radiance). The procedure is very suitable for on-site calibration of long-term field instruments, thereby reducing the logistics and costs associated with transporting a radiometer to a calibration facility.

  8. Trojan Tour Enabled by Solar Electric Based Mission Architecture

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M.; Smith, D. B.; Behrens, J.; Bingaman, G.; Horsewood, J.

    2012-10-01

    A Trojan Tour and Rendezvous mission was recommended by the most recent Planetary Science Decadal Survey. We utilize this concept as a basis for re-examining the feasibility of a Solar Electric Propulsion (SEP) mission using a Boeing bus and Advanced Modular Power System (AMPS) for solar power generation. The concept study for the Decadal survey concluded that a SEP mission is not viable because of low solar intensity levels. With the new AMPS Technology that involves a Solar Concentrator array, SEP missions to the outer planets become viable. The mission objective is 1143 Odysseus, a Trojan within the Trojan cloud, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. The REP mission concept flight time was 8 years. Our cruise time is 6 years. The Trojan asteroid exploration spacecraft is based around our flight proven 702HP bus. The bus has been slightly modified for this mission. Two 30 kW FAST solar wings replace the 9 kW 6 panel solar wings. The AMPS array has a 12.5:1 concentration ratio. At Jupiter (5.2 AU), the AMPS array solar cells still see .46 suns, which is high enough that LILT effects are negligible. The science payload instruments, data rates, mass and power requirements are identical to the Trojan Decadal study. The AMPS Technology benefits from over $30M in development investment by DARPA and the AFRL. The investments focused on lightweight structures, advanced deployment systems, linear concentrator arrays, high voltage power systems, and high efficiency solar cells. Additional investment in a flight demonstration mission is needed to reach TRL 7. Utilizing the AMPS technology with the concentrator array, SEP becomes a viable alternative. SEP with the AMPS concentrator also provides efficient on-station maneuvering for science at the Trojan. We seek support for Technology Demonstration Mission through the NASA OCT.

  9. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  10. Graphene-Based Photocatalysts for Solar-Fuel Generation.

    PubMed

    Xiang, Quanjun; Cheng, Bei; Yu, Jiaguo

    2015-09-21

    The production of solar fuel through photocatalytic water splitting and CO2 reduction using photocatalysts has attracted considerable attention owing to the global energy shortage and growing environmental problems. During the past few years, many studies have demonstrated that graphene can markedly enhance the efficiency of photocatalysts for solar-fuel generation because of its unique 2D conjugated structure and electronic properties. Herein we summarize the recent advances in the application of graphene-based photocatalysts for solar-fuel production, including CO2 reduction to hydrocarbon fuel and water splitting to H2. A brief overview of the fundamental principles for splitting of water and reduction of CO2 is given. The different roles of graphene in these graphene-based photocatalysts for improving photocatalytic performance are discussed. Finally, the perspectives on the challenges and opportunities for future research in this promising area are also presented.

  11. Forbush Decrease Prediction Based on Remote Solar Observations

    NASA Astrophysics Data System (ADS)

    Dumbovic, Mateja; Vrsnak, Bojan; Calogovic, Jasa

    2016-04-01

    We study the relation between remote observations of coronal mass ejections (CMEs), their associated solar flares and short-term depressions in the galactic cosmic-ray flux (so called Forbush decreases). Statistical relations between Forbush decrease magnitude and several CME/flare parameters are examined. In general we find that Forbush decrease magnitude is larger for faster CMEs with larger apparent width, which is associated with stronger flares that originate close to the center of the solar disk and are (possibly) involved in a CME-CME interaction. The statistical relations are quantified and employed to forecast expected Forbush decrease magnitude range based on the selected remote solar observations of the CME and associated solar flare. Several verification measures are used to evaluate the forecast method. We find that the forecast is most reliable in predicting whether or not a CME will produce a Forbush decrease with a magnitude >3 %. The main advantage of the method is that it provides an early prediction, 1-4 days in advance. Based on the presented research, an online forecast tool was developed (Forbush Decrease Forecast Tool, FDFT) available at Hvar Observatory web page: http://oh.geof.unizg.hr/FDFT/fdft.php. We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability" and of European social fond under the project "PoKRet".

  12. Photo electrochemical and organic-based solar cells

    SciTech Connect

    Lewis, N.S.; Kamat, P.; Spitler, M.

    1996-09-01

    Research in solar photoconversion has resulted in significant advances in the fields of photoelectrochemistry and dye-sensitized solar cells. Progress is also evident in the understanding of solid state organic systems for energy transduction. It is evident, however, that the examination in this report of the accomplishments in these areas serves to highlight the great extent of research that is necessary to establish a technology base sufficient for practical application. Recommendations are made in this report on the directions that this research should take.

  13. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    PubMed

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  14. Study of hydrogen states in a-Si:H films, dehydrogenization treatments and influence of hydrogen on nanosecond pulse laser crystallization of a-Si:H

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Galkov, M. S.; Safronova, N. A.; Kamaev, G. N.; Antonenko, A. H.; Kochubey, S. A.

    2014-12-01

    Structures based on hydrogenated amorphous silicon (a-Si:H) films deposited on various substrates (including not refractory ones) are widely applied in giant microelectronics devices, such as flat panel displays based on active matrix thin-film transistors and solar cells. The a-Si:H films produced by plasma enhanced chemical vapor deposition (PECVD) methods, contain up to 40% atoms of hydrogen. The influence of hydrogen on the optical and electrical properties of the films and their degradation is important. Therefore, the development of express and non-destructive methods for control of the hydrogen concentration in thin films continues to be an actual task to date. Previously, from a comparative analysis of infrared (IR) spectroscopy and Raman scattering spectroscopy, the ratios of the integral intensities of Raman peaks due to scattering by vibrations of the Si-H and Si-H2 bonds to the intensity of Raman peak of the Si-Si bonds were experimentally determined. Knowing these ratios, it is possible to measure the hydrogen concentration, moreover, separately in Si-H and Si-H2 states. Proposed quantitative method for determining of the hydrogen concentration from analysis of the Raman spectra is an express, non-destructive method and can be used for "in situ" monitoring of the hydrogen. The aim of this work was to determine the polarization dependence of Raman scattering by stretching vibrations of Si-H bonds and find the form of the corresponding Raman tensors. From analysis of Raman intensities in different polarizations the Raman tensors for Si-H and Si-H2 bonds were determined. The regimes for dehydrogenization of thick (up to 1 micron) a-Si:H films were found. The nanosecond pulse XeCl laser with wavelength of 308 nm and pulse duration of 10 ns was used for pulse crystallization of as-deposited and dehydrogenated films. As it was studied earlier, for a-Si:H films with high hydrogen concentration, the threshold for crystallization is very close to threshold of

  15. Charge collection in a-Si:H/a-Si{sub 1-x}C{sub x} multilayers photodetectors

    SciTech Connect

    Jing, T.; Drewray, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Delgado, J.C.; Bertomeu, J.

    1994-04-01

    Amorphous semiconductors have been used as thin film transistor(TFT), solar cell, phototransistors. In this paper we study the charge collected properties of a-Si:H/a-Si{sub 1-x}C:H{sub x} multilayer pin photodiode. In a-Si:H pin photodiode, the photogenerated carriers can be totally collected under strong electric field under reverse bias. However, our measurements show that in the a-Si:H/a-Si{sub l-x}C:H{sub x} multilayer pin photodiode photogenerated electrons and holes drift toward the electrodes under a certain bias, the total collected charge shows no saturation with bias and exhibits a continuous increase with reverse bias. We classify that the device works at two regions. In Region 1, the device behaves like a photodiode. This charge collection efficiency drop from theoretical value may indicate charge capture or confinement at the interfaces and trapping at the a-Si:H potential wells. These charges trapped or confined can be released at the interface and quantum well at higher electric field. In Region 2, above a critical bias voltage, the device works as a breakdown diode with a series photosensitive resistor which contributes higher collection efficiency, namely optical gain greater than unity.

  16. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  17. The relation between solar and seismic activity based on satellite and ground-based data

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Georgieva, K.; Atanasov, D.; Haiakawa, M.

    It has been noted that a significant correlation exists between solar and seismic activity on different time-scales, from centennial (Gleissberg) to the 11-year solar cycle, however the solar activity agent and the mechanism for this influence remained unclear. As two well expressed maxima of the number of earthquakes are observed in the 11-year solar cycle, one coinciding with sunspot maximum, and the other with solar coronal holes maximum, it has been supposed that the agent triggering seismic activity could be the high-speed solar wind. Data from numerous spacecraft monitoring solar wind parameters have been used compiled in OMNI data-base, and it has been found that the number of earthquakes in the days of the arrival of high speed solar wind and the days following right after them is significantly greater than in all other days. Further, we use data for the Earth rotation rate from the International Earth Rotation Service, and for the atmospheric circulation from meteorological stations worldwide. We find that they are both related to seismic activity, and discuss a possible mechanism of solar activity influences on the number of earthquakes through solar wind influences on the Earth and atmospheric dynamics.

  18. Camera-based forecasting of insolation for solar systems

    NASA Astrophysics Data System (ADS)

    Manger, Daniel; Pagel, Frank

    2015-02-01

    With the transition towards renewable energies, electricity suppliers are faced with huge challenges. Especially the increasing integration of solar power systems into the grid gets more and more complicated because of their dynamic feed-in capacity. To assist the stabilization of the grid, the feed-in capacity of a solar power system within the next hours, minutes and even seconds should be known in advance. In this work, we present a consumer camera-based system for forecasting the feed-in capacity of a solar system for a horizon of 10 seconds. A camera is targeted at the sky and clouds are segmented, detected and tracked. A quantitative prediction of the insolation is performed based on the tracked clouds. Image data as well as truth data for the feed-in capacity was synchronously collected at one Hz using a small solar panel, a resistor and a measuring device. Preliminary results demonstrate both the applicability and the limits of the proposed system.

  19. Solar Wind Simulations Based on Ooty IPS Data

    NASA Astrophysics Data System (ADS)

    Muehe, S. C.; Kim, T. K.; Pogorelov, N. V.

    2014-12-01

    The solar wind is a constantly-flowing stream of charged particles that expands from the sun's outer atmosphere into interplanetary space. This plasma carries the sun's magnetic field along with it, where it interacts with and causes disruptions in the earth's magnetic field. Our understanding of the solar wind is vital to efforts toward minimizing the impact of these disturbances on both ground and space-based systems. Using interplanetary scintillation data gathered by the ground-based Ooty Radio Telescope (ORT) in India, we have constructed boundary maps of solar wind velocities at 1 day intervals. For a simple, first approximation, we use what is called the "P-point" method to crudely estimate the solar wind velocity at the point of closest approach to the Sun along each line of sight. Then we trace the P-point values back to a spherical surface at 0.2 AU where we interpolate them to a structured gird. The resulting boundary maps can serve as the initial input to a time-dependent MHD tomography program being developed at the University of Alabama in Huntsville.

  20. The base engine for solar Stirling power

    NASA Astrophysics Data System (ADS)

    Meijer, R. J.; Godett, T. M.

    1984-03-01

    A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described.

  1. The Base Engine for Solar Stirling Power

    NASA Technical Reports Server (NTRS)

    Meijer, R. J.; Godett, T. M.

    1984-01-01

    A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described.

  2. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  3. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  4. A new flexible a-Si PV module and its application to rooftop PV systems

    SciTech Connect

    Ichikawa, Yukimi; Ihara, Takuro; Hama, Toshio

    1994-12-31

    A novel photovoltaic (PV) module for roof top systems, solar roofing, was proposed. Solar roofing is a flexible amorphous silicon (a-Si) PV sheet having the function of roofing. Tempered glass is used as roof covering material. Technical items for roof top systems using solar roofing were discussed. Preliminary studies on module component materials showed feasibility of solar roofing. The authors designed a construction technology for tempered glass covered roofs. Effects of shadows on PV module upon its performance were also analyzed.

  5. Solar water heating system for a lunar base

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  6. Solar radiation concentrators paired with multijunction photoelectric converters in ground-based solar power plants (Part II)

    NASA Astrophysics Data System (ADS)

    Ionova, E. A.; Ulanov, M. V.; Davidyuk, N. Yu.; Sadchikov, N. A.

    2017-04-01

    The present work is devoted to determining the conditions of the joint operation of photoelectric converter-solar concentrator pairs, which are used in solar power plants with concentrators. Three-cascade photoconverters based on A3B5 materials with different distributions of solar radiation in spectral ranges are studied. Concentrators of solar radiation are designed as the Fresnel lenses with silicon-on-glass structure. Refractive lens profile fabricated on the basis of Wacker RT604 silicone rubber is characterized by significant changes in refractive index with temperature. The effect of geometric parameters of the Fresnel lenses and their operating temperature on characteristics of solar radiation concentration in specified spectral intervals have been examined. The parameters of concentrators being paired with a photoelectric converter, which may ensure the efficient functioning of the solar power plant, have been calculated.

  7. Exploring the Feasibility of Providing Electrical Power to Remote Bases Via Space-Based Solar Power Satellites

    DTIC Science & Technology

    2013-06-01

    power per area solar flux W/m^2 1,360 W/m^2 efficiency (% loss) % loss 73% loss useable time % total time 99% mass of solar panels kg...FEASIBILITY OF PROVIDING ELECTRICAL POWER TO REMOTE BASES VIA SPACE-BASED SOLAR POWER SATELLITES by David J. Chow June 2013 Thesis Advisor...TO REMOTE BASES VIA SPACE-BASED SOLAR POWER SATELLITES 5. FUNDING NUMBERS 6. AUTHOR(S) David J. Chow 7. PERFORMING ORGANIZATION NAME(S) AND

  8. Switchable Solar Window Devices Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Ma, Dakang; Munday, Jeremy

    Windows are an interesting target for photovoltaics due to the potential for large area of deployment and because glass is already a ubiquitous component of solar cell devices. Many demonstrations of solar windows in recent years have used photovoltaic devices which are semitransparent in the visible region. Much research has focused on enhancing device absorption in the UV and IR ranges as a means to circumvent the basic tradeoff between efficiency and transparency to visible light. Use of switchable solar window is a less investigated alternative approach; these windows utilize the visible spectrum but can toggle between high transparency and high efficiency as needed. We present a novel switchable solar window device based on Polymer Dispersed Liquid Crystals (PDLC). By applying an electric field to the PDLC layer, the device can be switched from an opaque, light diffusing, efficient photovoltaic cell to a clear, transparent window. In the off state (i.e. scattering state), these devices have the added benefits of increased reflectivity for reduced lighting and cooling costs and haze for privacy. Further, we demonstrate that these windows have the potential for self-powering due to the very low power required to maintain the on, or high transparency, state. Support From: University of Maryland and Maryland Nano-center and its Fablab.

  9. High efficient solar tracker based on a simple shutter structure

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Jia; Liu, Te-Shu; Huang, Kuang-Lung; Lin, Po-Chih

    2013-09-01

    In many photovoltaic (PV) or sunlight-illumination systems, solar trackers are always essential to obtain high energy/flux concentration efficiency, and that would lead to increase cost and extra power consumption due to the complex structure and heavy weight of the trackers. To decrease the cost while without sacrificing efficiency, a Fresnellens concentrator incorporated with a simple and cheap shutter, which consists of high reflective mirrors instead of conventional trackers, is proposed in this paper to provide solar tracking during the daytime. Thus, the time-variant and slant-incident sunlight rays can be redirected to vertically incident upon the surface of the Fresnel lens by appropriately arranging mirrors and swinging them to the proper slant angles with respect to the orientation of sunlight. The computer simulation results show that power concentration efficiency over 90%, as compared with the efficiency of directly normal incident sunlight, can be achieved with the mirror reflectance of 0.97 and for any solar incident angle within +/-75 degrees to the normal of the Fresnel lens. To verify the feasibility and performance of the concentrator with the proposed shutter, a sunlight illumination system based on this novel structure is demonstrated. Both computer simulation and practical measurement results for the prototype of the sunlight illumination system are also given to compare with. The results prove the simple and high efficient shutter applicable to general PV or sunlight-illumination systems for solar tracking.

  10. Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; von Wenckstern, Holger; Lenzner, Jörg; Lorenz, Michael; Grundmann, Marius

    2016-03-01

    UV and deep-UV selective photodiodes from visible-blind to solar-blind were realized based on a Si-doped (InxGa1-x)2O3 thin film with a monotonic lateral variation of 0.0035 < x < 0.83. Such layer was deposited by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. The photo response signal is provided from a metal-semiconductor-metal structure upon backside illumination. The absorption onset was tuned from 4.83 to 3.22 eV for increasing x. Higher responsivities were observed for photodiodes fabricated from indium-rich part of the sample, for which an internal gain mechanism could be identified.

  11. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prediction of Solar Activity Based on Neuro-Fuzzy Modeling

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah; Abdel-Hamid, Rabab; Quassim, Maha

    2005-03-01

    This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure is optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). Initially, the dimension of the time series characteristic attractor is obtained based on the smallest regularity criterion (RC) and the neuro-fuzzy model. Then the performance of the proposed approach, in forecasting yearly sunspot numbers, is favorably compared to that of other published methods. Finally, a comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of the solar activity are presented.

  13. Investigation of electrical, structural, and optical properties of very thin oxide/a-Si:H/c-Si interfaces passivated by cyanide treatment

    NASA Astrophysics Data System (ADS)

    Pincik, Emil; Kobayashi, Hikaru; Jurecka, Stanislav; Jergel, Matej; Gleskova, Helena; Takahashi, Masao; Brunner, Robert; Fujiwara, Naozumi; Mullerova, Jarmila

    2004-12-01

    The paper deals with investigation of electrical, structural and optical properties of very thin oxide/a-Si:H interfaces passivated by chemical treatment by KCN and HCN solutions. The oxide layers were prepared by thermal, chemical and plasma or ion beam assisted oxidations. Interface properties were evaluated by charge version of deep level transient spectroscopy, C-V measurements, X-ray diffraction (in both Bragg-Brentano and grazing incidence modes), optical reflectance (based on genetic algorithm) and photoluminescence. Considerable interest was devoted to distribution of three dominant groups of a-Si:H defect states in the band gap of the semiconductor as well as their response to bias annealing and light soaking experiments. We will present also dominant result - increase of the efficiency of a-Si:H based solar cells after chemical treatment. Finally, we will present the chemical passivation and oxidization as promising techniques suitable for applications in the field of nanotechnology.

  14. A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell

    NASA Technical Reports Server (NTRS)

    Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.

    1989-01-01

    Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.

  15. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  16. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  17. Dye-sensitized solar cells based on WO3.

    PubMed

    Zheng, Haidong; Tachibana, Yasuhiro; Kalantar-Zadeh, Kourosh

    2010-12-21

    In research on alternative photoanode materials for dye-sensitized solar cells (DSCs), there is rarely any report on WO(3), probably due to its acidic surface and more positive (vs NHE) conduction band edge position compared to TiO(2) and ZnO. For the first time, dye-sensitized solar cells based on porous WO(3) nanoparticle films were successfully fabricated with efficiency of up to 0.75%. The multicrystalline structure of WO(3) was examined by Raman spectroscopy and X-ray diffraction analysis. It was found that significant performance enhancement can be obtained from treating the WO(3) nanoparticle film with TiCl(4); the TiCl(4)-treated WO(3) DSCs were recorded with efficiency reaching 1.46%.

  18. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    SciTech Connect

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  19. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    PubMed Central

    Seeboth, Arno; Ruhmann, Ralf; Mühling, Olaf

    2010-01-01

    The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field. PMID:28883374

  20. Improvement in optical and structural properties of ZnO thin film through hexagonal nanopillar formation to improve the efficiency of a Si-ZnO heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Maity, S.; Bhunia, C. T.; Sahu, P. P.

    2016-05-01

    We propose to use ZnO thin film with hexagonal nanopillars deposited on Si substrate to enhance the efficiency of a solar cell. It has been treated chemically and thermally and various crystal orientations have been obtained. X-ray diffraction of ZnO thin film shows relatively high intensity peak at 34.3° angle (0 0 2) compared to other orientations. Photoluminescence measurements also confirm a narrow full width at half maximum peak at 3.3 eV, which is more than that obtained for as-grown (broad emission peak around 3.0 eV). The alignment of nanorod structure made by adding a dopant of 0.15 mole fraction of magnesium increases both photon collection and electron collection efficiency. As a result, the solar cell efficiency is enhanced from 10% to 20%.

  1. In orbit debris-detection based on solar panels

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Romberg, Oliver; Pissarskoi, Alexei; Wiedemann, Carsten; Vörsmann, Peter

    2013-09-01

    The solar generator-based space debris impact detector (SOLID), currently under development at DLR, has a large impact area and offers high orbital flexibility. Once placed in orbit, it will collect space debris and micro-meteoroids impact data for software validation (e.g. MASTER or ORDEM). The verification of SOLID itself will be based on hypervelocity-impact testing (HVI-testing), anticipated to be performed at the Fraunhofer EMI (Ernst-Mach-Institute for High-Speed Dynamics in Freiburg, Germany). This paper presents the current state of SOLID development. Furthermore, the setup of the engineering model as well as corresponding assumptions in the manufacturing process is presented.

  2. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.

    2015-12-01

    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  3. Raster-Based Approach to Solar Pressure Modeling

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W. II

    2013-01-01

    shown on the computer screen is composed of up to millions of pixels. Each of those pixels is associated with a small illuminated area of the spacecraft. For each pixel, it is possible to compute its position, angle (surface normal) from the view direction, and the spacecraft material (and therefore, optical coefficients) associated with that area. With this information, the area associated with each pixel can be modeled as a simple flat plate for calculating solar pressure. The vector sum of these individual flat plate models is a high-fidelity approximation of the solar pressure forces and torques on the whole vehicle. In addition to using optical coefficients associated with each spacecraft material to calculate solar pressure, a power generation coefficient is added for computing solar array power generation from the sum of the illuminated areas. Similarly, other area-based calculations, such as free molecular flow drag, are also enabled. Because the model rendering is separated from other calculations, it is relatively easy to add a new model to explore a new vehicle or mission configuration. Adding a new model is performed by adding OpenGL code, but a future version might read a mesh file exported from a computer-aided design (CAD) system to enable very rapid turnaround for new designs

  4. Orbits design for LEO space based solar power satellite system

    NASA Astrophysics Data System (ADS)

    Addanki, Neelima Krishna Murthy

    2011-12-01

    Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. 7For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft's orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any

  5. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    SciTech Connect

    Russell, Thomas P.

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  6. Global models of Ne and Te at solar maximum based on DE-2 measurements

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.

    1990-01-01

    Newly developed global models of the electron density of (Ne) and (Te) in the F-region at solar maximum, based on Langmuir probe measurements from the Dynamics Explorer-2 satellite, are compared with solar minimum models that were developed earlier from Atmosphere Explorer data. Spherical harmonics are used in both models to describe the variations with geomagnetic latitude and local time, but the solar maximum model also includes longitudinal variations. The solar minimum models were for the fixed altitudes of 300 km and 400 km, while the solar maximum model covers all altitudes between 300 and 1000 km. In this paper, the global patterns of Ne and Te at 400 km at solar maximum and minimum are compared with the IRI model for the corresponding parts of the solar cycle. In most respects, the IRI model describes the empirical models quite well at both solar maximum and solar minimum.

  7. Periodogram Analysis on Solar Activities Based on El Campo Solar Radar Observation Data

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Zhi-ning, Qu; Min, Wang; Guan-nan, Gao; Jun, Lin; Zhi-chun, Duan

    2016-10-01

    Solar radar can transmit radar waves toward the Sun actively at a specific waveband and receive the reflected waves. By analyzing the echoes, we can obtain the information of motion, magnetic field, and other properties of the solar atmosphere. The El Campo solar radar has done regular observations on the solar corona for 8 years from 1961 to 1969, to trace the variation of solar activities. We have made a periodicity analysis on the obtained data with the Lomb-Scargle periodogram algorithm, and found that there are the 200 day and 540 day periods existed in the variation of the measured solar radar cross section. In addition, we have selected the larger radar cross sections (≥ 20σ⊙) to compare with the Dst indexes. Finally, we have summarized the El Campo solar radar experiment and give a prospect for the future development of the solar radar observation.

  8. Space-based solar power conversion and delivery systems study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Even at reduced rates of growth, the demand for electric power is expected to more than triple between now and 1995, and to triple again over the period 1995-2020. Without the development of new power sources and advanced transmission technologies, it may not be possible to supply electric energy at prices that are conductive to generalized economic welfare. Solar power is renewable and its conversion and transmission from space may be advantageous. The goal of this study is to assess the economic merit of space-based photovoltaic systems for power generation and a power relay satellite for power transmission. In this study, satellite solar power generation and transmission systems, as represented by current configurations of the Satellite Solar Station (SSPS) and the Power Relay Satellite (PRS), are compared with current and future terrestrial power generation and transmission systems to determine their technical and economic suitability for meeting power demands in the period of 1990 and beyond while meeting ever-increasing environmental and social constraints.

  9. Wet-chemistry based selective coatings for concentrating solar power

    NASA Astrophysics Data System (ADS)

    Maimon, Eran; Kribus, Abraham; Flitsanov, Yuri; Shkolnik, Oleg; Feuermann, Daniel; Zwicker, Camille; Larush, Liraz; Mandler, Daniel; Magdassi, Shlomo

    2013-09-01

    Spectrally selective coatings are common in low and medium temperature solar applications from solar water heating collectors to parabolic trough absorber tubes. They are also an essential element for high efficiency in higher temperature Concentrating Solar Power (CSP) systems. Selective coatings for CSP are usually prepared using advanced expensive methods such as sputtering and vapor deposition. In this work, coatings were prepared using low-cost wet-chemistry methods. Solutions based on Alumina and Silica sol gel were prepared and then dispersed with black spinel pigments. The black dispersions were applied by spray/roll coating methods on stainless steel plates. The spectral emissivity of sample coatings was measured in the temperature range between 200 and 500°C, while the spectral absorptivity was measured at room temperature and 500°C. Emissivity at wavelengths of 0.4-1.7 μm was evaluated indirectly using multiple measurements of directional reflectivity. Emissivity at wavelengths 2-14 μm was measured directly using a broadband IR camera that acquires the radiation emitted from the sample, and a range of spectral filters. Emissivity measurement results for a range of coated samples will be presented, and the impact of coating thickness, pigment loading, and surface preparation will be discussed.

  10. Solar ponds. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    Federally funded research on the design, performance, and use of solar ponds is discussed on these. Topic areas cover the use of solar ponds in industrial process heat production, roof ponds for passive solar buildings, and solar ponds use in the production of biomass for renewable fuels.

  11. Project SunSHINE: A Student Based Solar Research Program

    NASA Astrophysics Data System (ADS)

    Donahue, R.

    2000-12-01

    Eastchester Middle School (NY) is currently conducting an ongoing, interdisciplinary solar research program entitled Project SunSHINE, for Students Help Investigate Nature in Eastchester. Students are to determine how ultraviolet and visible light levels vary throughout the year at the school's geographic location, and to ascertain if any measured variations correlate to daily weather conditions or sunspot activity. The educational goal is to provide students the opportunity to conduct original and meaningful scientific research, while learning to work collaboratively with peers and teachers in accordance with national mathematics, science and technology standards. Project SunSHINE requires the student researchers to employ a number of technologies to collect and analyze data, including light sensors, astronomical imaging software, an onsite AirWatch Weather Station, Internet access to retrieve daily solar images from the National Solar Observatory's Kitt Peak Vacuum Telescope, and two wide field telescopes for live sunspot observations. The program has been integrated into the science, mathematics, health and computer technology classes. Solar and weather datasets are emailed weekly to physicist Dr. Gil Yanow of the Jet Propulsion Laboratory for inclusion in his global study of light levels. Dr. Yanow credited the Project SunSHINE student researchers last year for the discovery of an inverse relationship between relative humidity and ultraviolet light levels. The Journal News Golden Apple Awards named Project SunSHINE the 1999 New York Wired Applied Technology Award winner. This honor recognizes the year's outstanding educational technology program at both the elementary and secondary level, and included a grant of \\$20,000 to the research program. Teacher training and image processing software for Project SunSHINE has been supplied by The Use of Astronomy in Research Based Science Education (RBSE), a Teacher Enhancement Program funded by the National Science

  12. Development of a Greek solar map based on solar model estimations

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  13. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  14. Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions

    DTIC Science & Technology

    2009-10-23

    power Photovoltaic power collection Wireless energy transmission Space structures Space solar power Solar power satellites...to-Satellite Power Transmission It has been suggested that there may be an advantage to developing space systems that are a group of individual free...this design . Figure 6 shows one notional NRL concept of a space -based solar power system designed to deliver

  15. Roles of Ground-based Solar Observations of Hida Observatory toward the Solar-C Era

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Shibata, K.; Ichimoto, K.; Nagata, S.; Dorotovič, I.; Shahamatnia, E.; Ribeiro, R. A.; Fonseca, J. M.

    2016-04-01

    For the realization of the Solar-C satellite, discussions about scientific themes and preliminary observations are internationally carried out now. At Hida Observatory of Kyoto University, we will play the following roles toward the Solar-C era by utilizing the Domeless Solar Telescope (DST) and the international solar chromospherirc full-disk observation network (CHAIN project) that includes the Solar Magnetic Activity Research Telescope (SMART) with international collaborations, for example, such as the development of image-analysis software by UNINOVA (Portugal) and so on.

  16. ZnO nanotube based dye-sensitized solar cells.

    PubMed

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  17. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    SciTech Connect

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A. Somov, P. A.; Terukov, E. I.

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  18. ZnO nanotube based dye-sensitized solar cells.

    SciTech Connect

    Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J.

    2007-05-25

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  19. Design, construction, and implementation of a ground-based solar spectrograph for the National Student Solar Spectrograph Competition

    NASA Astrophysics Data System (ADS)

    Keeler, E.; Moen, D.; Peck, C.; Zimny, C.; Repasky, K.

    2012-10-01

    A solar spectrograph is an instrument that takes incoming sunlight over a specified portion of the sun's emitted electromagnetic spectrum and separates the light into its constituent frequency components, or spectrum. The components are then sent to a detector that measures intensity, which reveals the location of spectral properties of the light such as absorption and emission lines. The National Student Solar Spectrograph Competition (NSSSC) is a Montana Space Grant Consortium sponsored competition where undergraduate student teams from across the country design, build, and implement a ground-based solar spectrograph to perform any solar related task and demonstrate their spectrographs for the competition in May 2012 in Bozeman, MT. Each team is given a 2,000-dollar budget to build their spectrograph, which cannot be exceeded, and all spectrographs must follow regulations in the NSSSC guidelines. This team designed a spectrograph to be capable of imaging the sun across the visible spectrum using spatial filters and a standard photo detector rather than a traditional charge-coupled device due to budget limitations. The spectrograph analyzes the spectrum of small sections of the sun to determine how the spectrum varies across solar features such as the corona, active regions, and quiet regions. In addition to solar imaging, the spectrograph will also analyze atmospheric absorption of the solar spectrum by comparing the measured spectrum to the theoretical spectrum calculated from the blackbody equation.

  20. Bio-based products from solar energy and carbon dioxide.

    PubMed

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation.

  1. Adaptive control for solar energy based DC microgrid system development

    NASA Astrophysics Data System (ADS)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  2. Penetration at the base of solar convection zone

    NASA Astrophysics Data System (ADS)

    Antia, H. M.; Chitre, S. M.

    1993-08-01

    The extent of overshoot from stellar convection zones into the adjoining stable layers has been recognized to have a nonnegligible influence on evolutionary tracks of stars. Recently, Stothers and Chin (1992) have carried out a detailed model-independent analysis of substantial body of observational data to conclude that the maximum permissible overshoot is 0.2 times the local pressure scale height. In the present work a realistic solar convection zone model is constructed by employing a nonlocal equation for the velocity of convective elements and by including dissipative effects in the calculations. The convection model approach and the analysis of linear eigenmodes are combined to estimate the penetration depths below the base of the convection zone and into the overlying solar atmosphere. It is demonstrated that for an arbitrary extent of overshoot into the underlying stable region, it may not be possible to find a combination of linear modes capable of reproducing the model convective flux profile over the overshoot layers. The acceptable overshoot distance below the base of the convection zone turns out to be 0.2H(p) or less with a probable value of 0.1H(p), which appears to be consistent with helioseismological data.

  3. A Microprocessor-Based, Solar Cell Parameter Measurement System

    DTIC Science & Technology

    1988-06-01

    block nunioer Field C Group, Suu rou. Solar Cells , Space Measurement.i-its Autonomous Control r 19 A~ract ron::,tio- ci reverse irt neecessc’-v and...spacecraft have increased, the development of solar cell technology has kept pace. New materials, dopants, surface preparations, and hardware have...8217 performance after prolonged exposure to the space environment, and. to a lesser extent, the earth environment. B. SOLAR CELL POWER Solar cells are

  4. National Solar Radiation Data Bases (NSRDB): 1961 to 1990 and 1991 to 2005

    DOE Data Explorer

    The National Solar Radiation Data Base 1961-1990 (NSRDB) contains 30 years of solar radiation and supplementary meteorological data from 237 NWS sites in the U.S., plus sites in Guam and Puerto Rico. The updated 1991-2005 National Solar Radiation Database holds solar and meteorological data for 1,454 locations in the United States and its territories. See also the interactive data maps for the 1961 to 1990 data at http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/redbook/atlas/.

  5. Measurements of outflow from the base of solar coronal holes

    NASA Technical Reports Server (NTRS)

    Rottman, G. J.; Orrall, F. Q.; Klimchuk, J. A.

    1982-01-01

    New evidence is presented that EUV emission lines formed at the levels of the base of the corona and the transition region are systematically shifted to shorter wavelengths within coronal holes relative to the rest of the solar disk, and that moreover this shift increases with height in the atmosphere. Measurements were made with a rocket-borne EUV spectrometer having high spectroscopic resolution and stability flown on July 15, 1980. Repeated measurements were made along a chord of the solar disk that crossed a compact coronal hole near sun center identified on gamma 10830 He I spectroheliograms. The maximum measured shift corresponded to a velocity of 12 km/sec in gamma 625 Mg X and 7 km/sec in gamma 629 O V. If these velocities correspond to a true mass flux, they provide important data on the acceleration of coronal plasma in open magnetic field regions. These observed Doppler displacements are a strong and significant signature of coronal holes, now measured on three rocket flights.

  6. Dynamic variations at the base of the solar convection zone

    PubMed

    Howe; Christensen-Dalsgaard; Hill; Komm; Larsen; Schou; Thompson; Toomre

    2000-03-31

    We have detected changes in the rotation of the sun near the base of its convective envelope, including a prominent variation with a period of 1.3 years at low latitudes. Such helioseismic probing of the deep solar interior has been enabled by nearly continuous observation of its oscillation modes with two complementary experiments. Inversion of the global-mode frequency splittings reveals that the largest temporal changes in the angular velocity Omega are of the order of 6 nanohertz and occur above and below the tachocline that separates the sun's differentially rotating convection zone (outer 30% by radius) from the nearly uniformly rotating deeper radiative interior beneath. Such changes are most pronounced near the equator and at high latitudes and are a substantial fraction of the average 30-nanohertz difference in Omega with radius across the tachocline at the equator. The results indicate variations of rotation close to the presumed site of the solar dynamo, which may generate the 22-year cycles of magnetic activity.

  7. Understanding chemically processed solar cells based on quantum dots.

    PubMed

    Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2017-01-01

    Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.

  8. Potential for solar-powered base-load capacity

    NASA Astrophysics Data System (ADS)

    Stoll, Brady; Deinert, Mark

    2013-04-01

    In 2010 nuclear power accounted for 27% of electricity production in Japan. The March 2011 disaster at the Fukushima Daiichi power station resulted in the closure of all of Japans nuclear power plants and it remains an open question as to how many will reopen. Even before the loss of nuclear capacity there were efforts in Japan to foster the use of renewable energy, including large-scale solar power. Nuclear power plants in Japan operated beyond base load with excess energy being stored in large scale pumped hydroelectric storage systems. Here we show how coupling these storage systems to rooftop solar systems in Tokyo could compensate for the loss of nuclear power. Data from a study of rooftop space, and a 34-year data set of average daily irradiance in the Tokyo metropolitan area were used. If current generation PV systems were placed on the available rooftop space in greater Tokyo, this coupled system could provide for 20% of Toyo's nuclear capacity with a capacity factor of 0.99. Using pumped hydroelectric storage with six times this rooftop area could completely provide for TEPCO's nuclear capacity with a capacity factor of 0.98.

  9. Understanding chemically processed solar cells based on quantum dots

    PubMed Central

    Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2017-01-01

    Abstract Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum. PMID:28567179

  10. Al-based front contacts for HCPV solar cell

    NASA Astrophysics Data System (ADS)

    Huo, Pengyun; Rey-Stolle, Ignacio

    2017-09-01

    One of the key design challenges for high efficiency concentrator solar cells is to minimize the impact of ohmic losses associated with the large current densities that these devices handle. Typically, the most critical component of the series resistance is that of the front contact. On the one hand, in order to minimize its metal-semiconductor specific contact resistance, AuGeNi alloys are frequently used at the interface. On the other hand, to minimize the metal sheet resistance in the grid, thick silver layers are used, sometimes even coated with a gold capping layer. Such configuration results in a contact with good performance, but with elevated cost, and sometimes prone to suffering from degradation problems (electromigration, spiking, …) and deteriorated metal sheet conductance due to the interdiffusion between GaAs and the metals in the contact. In this work, we have explored a low cost high performance alternative based on Pd/Ge/Ti/Pd/Al metal stacks. The thicker top Al layer offers low metal resistivity, low cost, and good bondability; the middle Ti/Pd bilayer works as an efficient two-way diffusion barrier; and the interfacial Pd/Ge layer provides very low specific contact resistance to the GaAs contact layer. The results show that a Pd/Ge/Ti/Pd/Al front contact reduces the series resistance and thus can improve the performance of solar cells at ultrahigh concentration levels.

  11. Polyoxometalate-based solar cells for water splitting

    NASA Astrophysics Data System (ADS)

    Cronin, Leroy; Molina, Pedro I.; Miras, Haralampos N.

    2011-10-01

    The design and assembly of redox active polyoxometalate clusters, and their potential as water oxidation catalysts is discussed. The activity of the clusters is placed into context with comparisons to other systems and routes to the design and solution control of the assembly of novel polyoxometalate clusters with the correct characteristics for catalysis is also presented. Building on these features, a potential new polyoxometalate-based device architecture is presented that combines redox active polyoxometalate clusters, using systems that have been shown to be good water oxidation catalysts or structural models for photosystem II, with large cationic dyes to produce microtubular architectures that can be deposited on transparent substrates. The combination of a range of highly redox and catalytically active polyoxometalates with a range of possible cationic dye candidates allows the development of modular device architectures that can be screened and developed as potential new solar fuel cells.

  12. A plasticized polymer-electrolyte-based photoelectrochemical solar cell

    SciTech Connect

    Mao, D.; Ibrahim, M.A.; Frank, A.J.

    1998-01-01

    A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderate light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.

  13. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  14. Solar cells based on organic molecules and polymers

    NASA Astrophysics Data System (ADS)

    Salinas, J. F.; Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Farfán, N.; Santillan, R.

    2009-09-01

    The search of clean, inexpensive and renewable energy sources is one of the most important challenges that the mankind is currently confronting. Recently there has been a notable interest of the scientific community to develop organic photovoltaic (OPV) technology as a mean of renewable energy source since it combines low-cost and easy fabrication. We have fabricated and tested plastic solar devices (OPVs) by using the bulk heterojunction approach. OPVs were prepared by blending 6-Nitro-3-(E)-3-(4-dimethylaminophenyl)allylidene)-2,3 dihydrobenzo[d][1,3,2]-oxazaborole (M1) and (E)-3-(4-Dimethylaminophenyl)allylidene)-2,3-dihydrobenzo[d]-[1,3,2]oxazaborole (M2), which are conjugated and non-linear low molecular weight molecules prepared in our laboratories, and the well known photoconductor polymer MEH-PPV; fullerene PC61BM was the sensitizer. The morphology of thin polymer films prepared by using the spin coating technique was analyzed by Atomic Force Microscopy (AFM). For the electric contact, commercial and transparent indium tin oxide (ITO) deposited on glass slides was used, and a metal alloy of Pb/Bi/Cd/Sn as cathode, was easily deposited on the polymer film by melting the alloy at 75 °C. Open circuit voltages (Voc) of ~ 700 mV and short circuit currents (Jsc) of ~ 0.75 mA/cm2 under solar (AM1.5) illumination were measured for MEH-PPV and M1 based samples. For OPVs cells based on mixtures of either M1 and MEH-PPV or M2 and MEH-PPV there was a large electrical enhancement showing Voc ~ 700 mV and Jsc ~ 2.0 mA/cm2. OPVs cells were also tested under Xe-lamp illumination. Measurements from the I-V curves gave electrical efficiencies close to 1%.

  15. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency.

    PubMed

    Funde, Adinath M; Nasibulin, Albert G; Syed, Hashmi Gufran; Anisimov, Anton S; Tsapenko, Alexey; Lund, Peter; Santos, J D; Torres, I; Gandía, J J; Cárabe, J; Rozenberg, A D; Levitsky, Igor A

    2016-05-06

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  16. A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative.

    PubMed

    Yun, Myoung Hee; Jang, Ji Hoon; Kim, Kyung Min; Song, Hee-eun; Lee, Jeong Chul; Kim, Jin Young

    2013-12-07

    Hybrid solar cells, based on organic and inorganic semiconductors, are a promising way to enhance the efficiency of solar cells because they make better use of the solar spectrum and are straightforward to fabricate. We report on a new hybrid solar cell comprised of hydrogenated amorphous silicon (a-Si:H), [6,6]-phenyl-C71-butyric acid methyl ester ([71]PCBM), and poly-3,4-ethylenedioxythiophene poly styrenesulfonate (PEDOT:PSS). The properties of these PEDOT:PSS/a-Si:H/[71]PCBM devices were studied as a function of the thickness of the a-Si:H layer. It was observed that the open circuit voltage and the short circuit current density of the device depended on the thickness of the a-Si:H layer. Under simulated one sun AM 1.5 global illumination (100 mW cm(-2)), a power conversion efficiency of 2.84% was achieved in a device comprised of a 274 nm-thick layer of a-Si:H; this is the best performance achieved to date for a hybrid solar cell made of amorphous Si and organic materials.

  17. A reversible molecular switch based on pattern-change in chlorobenzene and toluene on a Si(111)-(7x7) surface.

    PubMed

    Lu, Xuekun; Polanyi, John C; Yang, Jody S Y

    2006-04-01

    A reversible molecular switch is proposed, based on an observed change in a physisorbed pattern of chlorobenzene or toluene at Si(111)-(7x7), from "triangles" to "circles". Electronic excitation, at an applied surface voltage of Vs = -2.0 V, caused molecular migration, by one atomic site, from under the tip (switch "off"). Thereafter, the adsorbate pattern reverted thermally from circles to triangles (switch "on") across a measured activation barrier of Ea = 0.3 eV for chlorobenzene and 0.2 eV for toluene.

  18. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.

    PubMed

    Lindgren, Fredrik; Xu, Chao; Niedzicki, Leszek; Marcinek, Marek; Gustafsson, Torbjörn; Björefors, Fredrik; Edström, Kristina; Younesi, Reza

    2016-06-22

    An electrolyte based on the new salt, lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), is evaluated in combination with nano-Si composite electrodes for potential use in Li-ion batteries. The additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are also added to the electrolyte to enable an efficient SEI formation. By employing hard X-ray photoelectron spectroscopy (HAXPES), the SEI formation and the development of the active material is probed during the first 100 cycles. With this electrolyte formulation, the Si electrode can cycle at 1200 mAh g(-1) for more than 100 cycles at a coulombic efficiency of 99%. With extended cycling, a decrease in Si particle size is observed as well as an increase in silicon oxide amount. As opposed to LiPF6 based electrolytes, this electrolyte or its decomposition products has no side reactions with the active Si material. The present results further acknowledge the positive effects of SEI forming additives. It is suggested that polycarbonates and a high LiF content are favorable components in the SEI over other kinds of carbonates formed by ethylene carbonate (EC) and dimethyl carbonate (DMC) decomposition. This work thus confirms that LiTDI in combination with the investigated additives is a promising salt for Si electrodes in future Li-ion batteries.

  19. High temperature solar photon engines. [heat engines for terrestrial and space-based solar power plants

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.

    1978-01-01

    High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.

  20. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-01-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research. PMID:27708359

  1. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-10-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  2. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.

    PubMed

    Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y

    2016-10-06

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  3. Field monitoring of solar domestic hot water systems based on simple tank temperature measurement

    SciTech Connect

    Burch, J.; Xie, Yuantao; Murley, C.S.

    1995-05-01

    By dynamically measuring solar storage tank temperature(s), the solar storage tank effectively becomes a dynamic calorimeter to measure the energy flows in a solar system. The energy flows include solar loop gain, tank losses, and potentially draw extraction. With one-channel temperature loggers storing data over several days to several weeks, this approach provides low-cost, modest-accuracy performance assessment, useful for determination of savings persistence and diagnostics. Analysis is based upon the tank energy balance, identifying solar gain during the day and tank losses at night. These gains and losses can be compared to expectations based upon prior knowledge, and estimated weather conditions. Diagnostics include controller and pump operation, and excessive nighttime losses. With one point temperature logger, solar gain accuracy is expected to be 20 to 50%, depending on draw frequency and volume. Two examples are shown, a properly operating system and a system with excessive nighttime losses.

  4. Linear Fresnel Reflector based Solar Radiation Concentrator for Combined Heating and Power

    NASA Astrophysics Data System (ADS)

    Chatterjee, Aveek; Bernal, Eva; Seshadri, Satya; Mayer, Oliver; Greaves, Mikal

    2011-12-01

    We have designed and realized a test rig to characterize concentrated solar-based CHP (combined heat and power) generator. Cost benefit analysis has been used to compare alternate technologies, which can cogenerate electrical and thermal power. We have summarized the experimental setup and methods to characterize a concentrated solar thermal (CST) unit. In this paper, we demonstrate the performance data of a concentrated solar thermal system.

  5. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    PubMed

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion.

  6. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells

    NASA Astrophysics Data System (ADS)

    Minemoto, Takashi; Murata, Masashi

    2014-08-01

    Device modeling of CH3NH3PbI3-xCl3 perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se2, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se2 solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.

  7. Bulk heterojunction organic solar cells based on merocyanine colorants.

    PubMed

    Kronenberg, Nils M; Deppisch, Manuela; Würthner, Frank; Lademann, Hans W A; Deing, Kaja; Meerholz, Klaus

    2008-12-28

    Traditional low-molecular weight colorants that are widely applied in textile coloration, for printing purposes and nonlinear optics, now afford bulk heterojunction solar cells in combination with soluble C(60) fullerene derivative PCBM with power conversion efficiencies up to 1.7% under standard solar radiation.

  8. Graphene petals as potential electrode for perovskite based solar cells

    NASA Astrophysics Data System (ADS)

    Singh, Shivi

    The recent discovery of perovskites absorbers for high efficiency solar cells has sparked interest of the solar cell community. In the present study formation and growth of perovskite (both single and mixed halide) is analyzed and a procedure is developed to increase reproducibility of these layers. Graphene nano-petals are also studied as a potential electrode for perovskite solar cells, to assist in growth of better quality perovskite layers. X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy are used to study the effect of different parameters on morphological features of perovskite. Different solar cell geometries are also tested, and a working geometry for single stack perovskite solar cell is proposed which uses graphene nano-petals as an electrode.

  9. 76 FR 63614 - Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ...-000] Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes... proceeding of Agua Caliente Solar, LLC's application for market-based rate authority, with an accompanying...

  10. Prediction and evaluation of solar particle events based on precursor information.

    PubMed

    Heckman, G R; Kunches, J M; Allen, J H

    1992-01-01

    Protection from the radiation effects of solar particle events for deep space mission crews requires a warning system to observe solar flares and predict subsequent charged particle fluxes. Such a system relates precursor information observed in each flare to the intensity, delay, and duration of the subsequent Solar Particle Event (SPE) at other locations in the solar system. A warning system of this type is now in operation at the NOAA Space Environment Services Center in Boulder, Colorado for support of space missions. It has been used to predict flare particle fluxes at the earth for flares of Solar Cycle 22. The flare parameters used and the effectiveness of the current warning system, based on Solar Cycle 22 experience, are presented, with an examination of the shortcomings. Needed improvements to the system include more complete observations of solar activity, especially information on the occurrences of solar mass ejections; and consideration of the effects of propagation conditions in the solar corona and interplanetary medium. Requirements for solar observations and forecasting systems on board the spacecraft are discussed.

  11. Spectroscopic and microscopic studies of self-assembled nc-Si/a-SiC thin films grown by low pressure high density spontaneous plasma processing.

    PubMed

    Das, Debajyoti; Kar, Debjit

    2014-12-14

    In view of suitable applications in the window layer of nc-Si p-i-n solar cells in superstrate configuration, the growth of nc-Si/a-SiC composite films was studied, considering the trade-off relation between individual characteristics of its a-SiC component to provide a wide optical-gap and electrically conducting nc-Si component to simultaneously retain enough crystalline linkages to facilitate proper crystallization to the i-nc-Si absorber-layer during its subsequent growth. Self-assembled nc-Si/a-SiC thin films were spontaneously grown by low-pressure planar inductively coupled plasma CVD, operating in electromagnetic mode, providing high atomic-H density. Spectroscopic simulations of ellipsometry and Raman data, and systematic chemical and structural analysis by XPS, TEM, SEM and AFM were performed. Corresponding to optimized inclusion of C essentially incorporated as Si-C bonds in the network, the optical-gap of the a-SiC component widened, void fraction including the incubation layer thickness reduced. While the bulk crystallinity decreased only marginally, Si-ncs diminished in size with narrower distribution and increased number density. With enhanced C-incorporation, formation of C-C bonds in abundance deteriorates the Si continuous bonding network and persuades growth of an amorphous dominated silicon-carbon heterostructure containing high-density tiny Si-ncs. Stimulated nanocrystallization identified in the Si-network, induced by a limited amount of carbon incorporation, makes the material most suitable for applications in nc-Si solar cells. The novelty of the present work is to enable spontaneous growth of self-assembled superior quality nc-Si/a-SiC thin films and simultaneous spectroscopic simulation-based optimization of properties for utilization in devices.

  12. Modelling coronal electron density and temperature profiles based on solar magnetic field observations

    NASA Astrophysics Data System (ADS)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

  13. The SAMEX Vector Magnetograph: A Design Study for a Space-Based Solar Vector Magnetograph

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gary, G. A.; West, E. A.

    1988-01-01

    This report presents the results of a pre-phase A study performed by the Marshall Space Flight Center (MSFC) for the Air Force Geophysics Laboratory (AFGL) to develop a design concept for a space-based solar vector magnetograph and hydrogen-alpha telescope. These are two of the core instruments for a proposed Air Force mission, the Solar Activities Measurement Experiments (SAMEX). This mission is designed to study the processes which give rise to activity in the solar atmosphere and to develop techniques for predicting solar activity and its effects on the terrestrial environment.

  14. Verification of Mars solar radiation model based on Mars Pathfinder data

    SciTech Connect

    Appelbaum, J.; Segalov, T.; Jenkins, P.P.; Landis, G.A.; Baraona, C.R.

    1997-12-31

    The solar radiation model for the Martian surface was developed based on the images taken by the two Viking Landers VL1 and VL2 cameras, and calculation of the solar flux function. This model was used for the design of the Pathfinder`s photovoltaic arrays. The Pathfinder is equipped with various instruments capable of measuring data from which solar radiation quantities may be derived. In the present study the authors use data of the Lander and Rover, and perform correlation calculation to the solar radiation model. This study shows that the solar radiation model predicts with good accuracy the solar radiation on the Martian surface for horizontal photovoltaic arrays and for an optical depth of 0.5 of the Martian atmosphere.

  15. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    PubMed

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  17. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  18. Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide.

    PubMed

    Hanusch, Fabian C; Wiesenmayer, Erwin; Mankel, Eric; Binek, Andreas; Angloher, Philipp; Fraunhofer, Christina; Giesbrecht, Nadja; Feckl, Johann M; Jaegermann, Wolfram; Johrendt, Dirk; Bein, Thomas; Docampo, Pablo

    2014-08-21

    The development of medium-bandgap solar cell absorber materials is of interest for the design of devices such as tandem solar cells and building-integrated photovoltaics. The recently developed perovskite solar cells can be suitable candidates for these applications. At present, wide bandgap alkylammonium lead bromide perovskite absorbers require a high-temperature sintered mesoporous TiO2 photoanode in order to function efficiently, which makes them unsuitable for some of the above applications. Here, we present for the first time highly efficient wide bandgap planar heterojunction solar cells based on the structurally related formamidinium lead bromide. We show that this material exhibits much longer diffusion lengths of the photoexcited species than its methylammonium counterpart. This results in planar heterojunction solar cells exhibiting power conversion efficiencies approaching 7%. Hence, formamidinium lead bromide is a strong candidate as a wide bandgap absorber in perovskite solar cells.

  19. The solar activity by wavelet-based multifractal analysis

    NASA Astrophysics Data System (ADS)

    Maruyama, Fumio

    2016-12-01

    The interest in the relation between the solar activity and climate change is increasing. As for the solar activity, a fractal property of the sunspot series was studied by many works. In general, a fractal property was observed in the time series of dynamics of complex systems. The purposes of this study were to investigate the relationship between the sunspot number, solar radio flux at 10.7 cm (F10.7 cm) and total ozone from a view of multifractality. To detect the changes of multifractality, we examined the multifractal analysis on the time series of the solar activity and total ozone indices. The changes of fractality of the sunspot number and F10.7 cm are very similar. When the sunspot number becomes maximum, the fractality of the F10.7 cm changes from multifractality to monofractality. The changes of fractality of the F10.7 cm and the total ozone are very similar. When the sunspot number becomes maximum, the fractality of the total ozone changes from multifractality to monofractality. A change of fractality of the F10.7 cm and total ozone was observed when the solar activity became maximum. The influence of the solar activity on the total ozone was shown by the wavelet coherence, phase and the similarity of the change of fractality. These findings will contribute to the research of the relationship between the solar activity and climate.

  20. Solar retinopathy in a hospital-based primary care clinic.

    PubMed

    Stokkermans, T J; Dunbar, M T

    1998-10-01

    Most reports of solar retinopathy describe epidemics of patients who go to the eye doctor after viewing a solar eclipse. Rarely is it encountered by the primary eye care provider during a routine eye examination. For 26 months, patients who went to the primary care eye clinic and found to have macular lesions consistent with solar retinopathy were identified from the total clinic population. These patients were documented in a coded log and fundus photographs were obtained (when possible). Twenty-six eyes of twenty patients (0.14% incidence) were determined to have macular lesions consistent with solar retinopathy. Visual acuity was 20/25 or better in 100% of the patients and 85% were 20/20. Patients were predominantly men (75%) of middle age (average age, 43 years; SD, 11 years) with a history relevant for solar retinopathy (80%)--consisting of sungazing, 60%; looking at welding light without eye protection, 15%; substance abuse, 15%; and psychiatric condition, 5%. Forty percent had solar lesions in both eyes. Amsler grid testing revealed a defect in only 20%, and macular threshold visual-field testing was normal in all the eyes tested. This is the first report to characterize solar retinopathy in a primary eye care population. Management includes correct differentiation from other macular disorders, acquisition of a careful detailed history, and provision of patient education regarding the dangers of sungazing.

  1. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    SciTech Connect

    Dubey, R. S.; Saravanan, S.; Kalainathan, S.

    2014-12-15

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm{sup 2} of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells.

  2. Research on the stability, electronic properties, and structure of a-Si:H and its alloys

    SciTech Connect

    Street, R.A.; Jackson, W.B.; Johnson, N.; Nebel, C.; Hack, M.; Santos, P.; Thompson, R.; Tsai, C.C.; Walker, J. )

    1992-12-01

    Objective is to obtain a comprehensive understanding of structure and electronic properties of a-Si:H as they apply to solar cells. First observations were of light enhancement and field suppression of H diffusion in a-Si:H. Theoretical studies were made of hydrogen density of states distribution and its relation to defect metastability. Reduced density of light induced defect is observed in a-Si:H deposited in a remote hydrogen plasma reactor at 400 C. Kinetics of metastable defect creation using forward bias in a p-i-n diode to induce defects were studied and compared to light-induced defect creation in the same devices. Studies were made of transport at high electric field and low temperature. Detailed studies were made of kinetics of dopant metastability in n-type and p-type a-Si:H.

  3. Expected Radiation Hazard at Different Phases of Solar Cycle Based on Statistical Properties of Solar Energetic Particle Fluencies

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L.

    2008-09-01

    Expected radiation hazard from SEP (Solar Energetic Particle) events for space probes in interplanetary space at different distances from the Sun, for satellites in magnetosphere of the Earth on different orbits, for planes on different airlines, and on people and technology on the ground on different altitudes and cutoff rigidities is determined mostly by expected fluency (total flux of SEP during solar flare event) in different energy ranges at different phases of solar cycle. Information on expected total radiation hazard from SEP events (as well as from galactic cosmic ray (CR)) in different phases of solar cycle is necessary for estimation of optimal shielding of electronics and/or people both in space (on satellites at different orbits, on interplanetary missions, and on ISS ¿ International Space Station) as well as in atmosphere (for aircrafts at different altitudes and technology objects and people on the ground level). We estimated probabilities of fluencies on the basis of long time observation of proton flux (both direct measurements on the space detectors and on the base of recalculation from ground stations). Restored amplitude spectrum (distribution of events with given interval of amplitudes of the fluency or for fluencies more than given) enables us estimate probability of dangerous states and extrapolate this distribution for rare events of extremely high amplitudes. Main sources of data for this analysis are: 1) data from the Catalog "A Summary of Major Solar Proton Events" (Shea and Smart, Solar Phys., 1990) for 31 years observations fluencies on the ground and in space, 2) for detailed analysis - data from satellites GOES during 1994-2004, available through Internet.

  4. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    NASA Astrophysics Data System (ADS)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  5. Progress on an Updated National Solar Radiation Data Base for the United States: Preprint

    SciTech Connect

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-09-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000.

  6. PbSe quantum dot based luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2017-03-01

    The results are presented for luminescent solar concentrators (LSCs) fabricated with poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (P(LMA-co-EGDMA)) and Angstrom Bond, Inc. AB9093 acrylic epoxy matrix, high quantum yield (> 70%) PbSe quantum dots (QDs) and silicon photovoltaic (Si PV) cells. LSCs were tested under a lamp with broadband illumination, photon flux-matched to a standard solar spectrum and verified under a calibrated solar lamp source. The P(LMA-co-EGDMA) sample demonstrated the highest power conversion efficiency of any known LSC fabricated with either QDs or Si PV cells, 4.74%. Additionally, increased temperature was shown to reduce efficiency.

  7. PbSe quantum dot based luminescent solar concentrators.

    PubMed

    Waldron, Dennis L; Preske, Amanda; Zawodny, Joseph M; Krauss, Todd D; Gupta, Mool C

    2017-03-03

    The results are presented for luminescent solar concentrators (LSCs) fabricated with poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (P(LMA-co-EGDMA)) and Angstrom Bond, Inc. AB9093 acrylic epoxy matrix, high quantum yield (> 70%) PbSe quantum dots (QDs) and silicon photovoltaic (Si PV) cells. LSCs were tested under a lamp with broadband illumination, photon flux-matched to a standard solar spectrum and verified under a calibrated solar lamp source. The P(LMA-co-EGDMA) sample demonstrated the highest power conversion efficiency of any known LSC fabricated with either QDs or Si PV cells, 4.74%. Additionally, increased temperature was shown to reduce efficiency.

  8. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  9. [Bulk heterojunction solar cell based on porphyrin compounds].

    PubMed

    Zhang, Tian-hui; Zhao, Su-ling; Piao, Ling-yu; Xu, Zheng; Kong, Chao

    2012-01-01

    Three kinds of porphyrins which can abbreviate as TPP, TPPCu and TMPPFeCl were synthesized by one-step method with mixed solvents. Then these porphyrin materials were used as donors to fabricate organic solar cells with PCBM as accepter by the solution processing of spin-coating method. The structure is ITO/porphyrin : PCBM/Al. The photovoltaic characterizations of these devices were investigated. The device based on TPP : PCBM shows the best performance with an open circuit voltage (V(OC)) of 0.52 V, a short circuit current (J(SC)) of 0.98 mA x cm(-2), and fill factor (FF) of 30.1%. Then the influence of different weight ratio of TPP : PCBM was researched. The best weight ratio of TPP : PCBM is 1 : 1. Increasing or decreasing the quatity of TPP would make J(SC) and V(OC) of the device deterioration and have little effect on the FF.

  10. Beamed Energy and the Economics of Space Based Solar Power

    NASA Astrophysics Data System (ADS)

    Keith Henson, H.

    2010-05-01

    For space based solar power to replace fossil fuel, it must sell for 1-2 cents per kWh. To reach this sales price requires a launch cost to GEO of ˜100/kg. Proposed to reach this cost figure at 100 tonne/hour are two stages to GEO where a Skylon-rocket-plane first stage provides five km/sec and a laser stage provides 6.64 km/sec. The combination appears to reduce the cost to GEO to under 100/kg at a materials flow rate of ˜1 million tonnes per year, enough to initially construct 200 GW per year of power satellites. An extended Pro Forma business case indicates that peak investment to profitability might be ˜65 B. Over a 25-year period, production rises to two TW per year to undercut and replace most other sources of energy. Energy on this scale solves other supply problems such as water and liquid fuels. It could even allow removal of CO2 from the air and storage of carbon as synthetic oil in empty oil fields.

  11. Laser scribing system for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Shi, Yaling; Su, Xiaorong; Yan, Shuming; Xu, Hong

    1993-01-01

    In this paper, we describe a laser scribing system for the fabrication of a-Si solar cells. Additionally, we provide a theoretical analysis of the system. The system was used to scribe the TCO and a-Si films.

  12. Solar process heat. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-04-01

    Feasibility, design, cost, and economic potential of solar process heat are discussed. Potential applications to industries using hot water or steam and to heat used for dehydration processes in agriculture are covered. Contains 60 abstracts.

  13. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  14. Long-Term Solar and Cosmic Radiation Data Bases

    DTIC Science & Technology

    1991-01-01

    determine the magnitude of the variations in the cosmic ray intensity caused by solar activity. Neutron monitors, with their much lower energy threshold...expression that neutron monitors are sensors on spacecraft EARTH. Here we will consider cosmic ray detectors to measure two components of cosmic ...A comparison with the solar cycle as illustrated by the sunspot number in Fig. 1. shows that the maximum cosmic ray intensity occurs near sunspot

  15. High Performance InGaN-Based Solar Cells

    DTIC Science & Technology

    2012-05-12

    configuration by shorting together two terminals of the same polarity at the bonding interface. Finally, it will be necessary to have a dichroic...that there may be some advantages for semipolar or nonpolar solar cells due a reduction or elimination of the polarization -related electric fields in... polarization on carrier collection for solar cells with relatively low indium content active regions (e.g. xɘ.15 in InxGai.xN). Screening

  16. Optimization of key building blocks for a large-area radiographic and fluoroscopic dynamic digital x-ray detector based on a-Si:H/CsI:Tl flat panel technology

    NASA Astrophysics Data System (ADS)

    Ducourant, Thierry; Michel, Marc; Vieux, Gerard; Peppler, Tobias; Trochet, J. C.; Schulz, Reiner F.; Bastiaens, Raoul J. M.; Busse, Falko

    2000-04-01

    This paper introduces the key design optimizations which have been carried out recently in Trixell in order to prepare the future family of large area, combined static (Radiography) and dynamic (Fluoroscopy, Cardio...) digital X-ray detectors based on a-Si:H/CsI:Tl flat panel technology. These optimizations have been carried out on a 16' X 12' prototype that has been designed and built in a product-oriented way. We describe the detector technology and give some of its main characteristics, as well as some preliminary measurement results.The heart of the new prototype is a Cesium Iodide scintillating screen, directly evaporated onto a 2 K X 2.5 K pixel, array of amorphous silicon photodiodes and TFTs deposited on a glass substrate. The pixel pitch is 155 micrometer. The detective flat panel is connected to dedicated electronics which provides line addressing, low-noise column readout and multiplexing into a serial electrical signal. This signal is digitized over 14 bits to provide a direct digital image output, available for the host radiology system via an optical fiber. This type of detector (flat panel + electronics) is built into a light and thin (less than 100 mm) packaging which can be easily integrated in various x-ray equipment such as R&F tables, Angiography systems (incl. Cardiology), and mobile C-arm systems.

  17. Core-shell GaN-ZnO moth-eye nanostructure arrays grown on a-SiO2/Si (1 1 1) as a basis for improved InGaN-based photovoltaics and LEDs

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Sandana, V. E.; Gautier, S.; Moudakir, T.; Abid, M.; Ougazzaden, A.; Teherani, F. Hosseini; Bove, P.; Molinari, M.; Troyon, M.; Peres, M.; Soares, Manuel J.; Neves, A. J.; Monteiro, T.; McGrouther, D.; Chapman, J. N.; Drouhin, H.-J.; McClintock, R.; Razeghi, M.

    2015-06-01

    Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (1 1 1) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400-720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN.

  18. A Raster Based Approach To Solar Pressure Modeling

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. Which components are being lit depends on the orientation of the craft with respect to the Sun as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun.To determine solar pressure in the presence overlapping components, a 3D model can be used to determine which components are illuminated. A view (image) of the model as seen from the Sun shows the only contributors to solar pressure. This image can be decomposed into pixels, each of which can be treated as a non-overlapping flat plate as far as solar pressure calculations are concerned. The sums of the pressures and moments on these plates approximate the solar pressure and moments on the entire vehicle.The image rasterization technique can also be used to compute other spacecraft attributes that are dependent on attitude and geometry, including solar array power generation capability and free molecular flow drag.

  19. A wavelet based approach to Solar-Terrestrial Coupling

    NASA Astrophysics Data System (ADS)

    Katsavrias, Ch.; Hillaris, A.; Preka-Papadema, P.

    2016-05-01

    Transient and recurrent solar activity drive geomagnetic disturbances; these are quantified (amongst others) by DST , AE indices time-series. Transient disturbances are related to the Interplanetary Coronal Mass Ejections (ICMEs) while recurrent disturbances are related to corotating interaction regions (CIR). We study the relationship of the geomagnetic disturbances to the solar wind drivers within solar cycle 23 where the drivers are represented by ICMEs and CIRs occurrence rate and compared to the DST and AE as follows: terms with common periodicity in both the geomagnetic disturbances and the solar drivers are, firstly, detected using continuous wavelet transform (CWT). Then, common power and phase coherence of these periodic terms are calculated from the cross-wavelet spectra (XWT) and wavelet-coherence (WTC) respectively. In time-scales of ≈27 days our results indicate an anti-correlation of the effects of ICMEs and CIRs on the geomagnetic disturbances. The former modulates the DST and AE time series during the cycle maximum the latter during periods of reduced solar activity. The phase relationship of these modulation is highly non-linear. Only the annual frequency component of the ICMEs is phase-locked with DST and AE. In time-scales of ≈1.3-1.7 years the CIR seem to be the dominant driver for both geomagnetic indices throughout the whole solar cycle 23.

  20. Design of plasmonic enhanced silicon-based solar cells

    NASA Astrophysics Data System (ADS)

    Hejazi, F.; Ding, S. Y.; Sun, Y.; Bottomley, A.; Ianoul, A.; Ye, W. N.

    2012-10-01

    We report a novel plasmonic solar cell design implemented on an amorphous silicon platform. The enhancement of the scattering and trapping of the light is achieved by embedding nano-metallic cubic particles within the cell's junction. Amorphous silicon cell with a thickness of 1200nm is used. The spectral absorption of the silicon cell is limited to wavelengths larger than 1.1 u. Our proposed solar cell has a p-i-n configuration, with the amorphous silicon as the photo-active layer. Silver cubic nanoparticles are embedded at different locations within the photoactive layers of the solar cell. With the use of an FDTD simulator, we are able to characterize the optical performance of the solar cell. Our results show that the plasmonic properties of the cubic nanoparticles are more attractive for sensing applications compared to the traditional spherical configuration. The geometry of the cubic nanoparticles enables control over plasmon resonances both in the resonant wavelength and the degree of field enhancement. This is done by improving the refractive-index sensitivity on a thin silicon film, as well as increasing the scattering and trapping of light. Our simulations predict that the silver metallic nanoparticles will enhance the solar cell efficiency, by optimizing the plasmonic properties of the silver nanocube monolayer. We have achieved a 67% increase (from 7.5% to 12.5%) in the cell's efficiency by adding plasmonics to traditional amorphous p-i-n solar cell.

  1. Visible-blind and solar-blind ultraviolet photodiodes based on (In{sub x}Ga{sub 1−x}){sub 2}O{sub 3}

    SciTech Connect

    Zhang, Zhipeng; Wenckstern, Holger von; Lenzner, Jörg; Lorenz, Michael; Grundmann, Marius

    2016-03-21

    UV and deep-UV selective photodiodes from visible-blind to solar-blind were realized based on a Si-doped (In{sub x}Ga{sub 1–x}){sub 2}O{sub 3} thin film with a monotonic lateral variation of 0.0035 < x < 0.83. Such layer was deposited by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. The photo response signal is provided from a metal-semiconductor-metal structure upon backside illumination. The absorption onset was tuned from 4.83 to 3.22 eV for increasing x. Higher responsivities were observed for photodiodes fabricated from indium-rich part of the sample, for which an internal gain mechanism could be identified.

  2. A Python-based interface to examine motions in time series of solar images

    NASA Astrophysics Data System (ADS)

    Campos-Rozo, J. I.; Vargas Domínguez, S.

    2017-10-01

    Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.

  3. A Si Integrated Waveguiding Polarimeter

    NASA Astrophysics Data System (ADS)

    Kevorkian, A. P.

    1987-09-01

    The technology and characteristics of a silicon-based polarimeter are presented. This device features guided mode polarization splitting, non-taper solution for guided light detection and electronic signal processing. The overall fabrication process is fully compatible with standard Si technology.

  4. Trojan Tour Enabled by Solar Electric Based Mission Architecture

    NASA Astrophysics Data System (ADS)

    Smith, David B.; Klaus, K.; Behrens, J.; Bingaman, G.; Elsperman, M.; Horsewood, J.

    2013-10-01

    Introduction: A Trojan Tour and Rendezvous mission was one of the missions recommended by the most recent Planetary Science Decadal Survey. To the greatest extent possible, we will utilize this concept as a basis for re-examining the feasibility of a Solar Electric Propulsion (SEP) mission using a Boeing bus and Advanced Modular Power System (AMPS) solar power generation. The concept study for the Decadal survey concluded that s SEP mission is not viable because of low solar intensity levels. Mission Overview: With the advent of the new high power solar array technology, SEP missions to the outer planets become viable. The mission objective is 1143 Odysseus, a Trojan within the Trojan cloud, consistent with the Decadal Survey. Our mission analysis using SEP yielded a 6 year travel time. The Decadal mission concept uses REP (Radioisotope Electric Propulsion) mission objective. For comparison, the REP mission concept flight time was 8 years. For the purposes of our study, the science payload instruments, data rates, mass and power requirements are identical to the Trojan Decadal study. Our investments focus on innovative lightweight structures, advanced solar array deployment systems, high voltage power systems, and high efficiency solar cells. Summary/Conclusion: By using advanced, high power generation solar arrays, SEP becomes a viable alternative for Jupiter system missions. We show that a SEP mission reduces the flight time to the Trojans by 2.5 years. We also show that a proven commercial bus can provide the necessary pointing accuracy and stability required for the Decadal mission concept and its science instrument suite.

  5. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    NASA Astrophysics Data System (ADS)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  6. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.

    PubMed

    Yin, Ling; Zhang, Kang; Luo, Hailin; Cheng, Guanming; Ma, Xuhang; Xiong, Zhiyu; Xiao, Xudong

    2014-09-21

    Two-dimensional graphene has tremendous potential to be used as a transparent conducting electrode (TCE), owing to its high transparency and conductivity. To date graphene films have been applied to several kinds of solar cells except the Cu(In, Ga)Se₂ (CIGS) solar cell. In this work, we present a novel TCE structure consisting of a doped graphene film and a thin layer of poly(methyl methacrylate) (PMMA) to replace the ZnO:Al (AZO) electrode for CIGS. By optimizing the contact between graphene and intrinsic ZnO (i-ZnO), a high power conversion efficiency (PCE) of 13.5% has been achieved, which is among the highest efficiencies of graphene-based solar cells ever reported and approaching those of AZO-based solar cells. Besides, the active area of our solar cells reaches 45 mm(2), much larger than other highly efficient graphene-based solar cells (>10%) reported so far. Moreover, compared with AZO-based CIGS solar cells, the total reflectance of the graphene-based CIGS solar cells is decreased and the quantum efficiency of the graphene-based CIGS is enhanced in the near infrared region (NIR), which strongly support graphene as a competitive candidate material for the TCE in the CIGS solar cell. Furthermore, the graphene/PMMA film can protect the solar cell from moisture, making the graphene-based solar cells much more stable than the AZO-based solar cells.

  7. Solar cells based on GaAs: Thermal behavior study

    NASA Astrophysics Data System (ADS)

    Giudicelli, Emmanuel; Martaj, Nadia; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2015-09-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration.

  8. Solar cells based on GaAs: Thermal behavior study

    NASA Astrophysics Data System (ADS)

    Giudicelli, Emmanuel; Martaj, Nadia; Bennacer, Rachid; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2016-03-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration. At the request of the authors of the paper, an updated version of this article was published on 31 March 2016. In the original article supplied to AIP Publishing an author was omitted as well as a credit line on the last page. These errors have been corrected in the updated republished article.

  9. A quinoxaline-fused tetrathiafulvalene-based sensitizer for efficient dye-sensitized solar cells.

    PubMed

    Amacher, Anneliese; Yi, Chenyi; Yang, Jiabao; Bircher, Martin Peter; Fu, Yongchun; Cascella, Michele; Grätzel, Michael; Decurtins, Silvio; Liu, Shi-Xia

    2014-06-21

    A new quinoxaline-fused tetrathiafulvalene-based sensitizer has been prepared and characterized. The resulting power conversion efficiency of 6.47% represents the best performance to date for tetrathiafulvalene-sensitized solar cells.

  10. Analysis and design optimization of organic dye sensitized solar cell based on simulation

    NASA Astrophysics Data System (ADS)

    Pala, Jay; Mordiya, Meet; Virpariya, Dhruv; Dangodara, Ankita; Gandha, Pinal; Savaliya, Chirag R.; Joseph, Joyce; Shiyani, Tulshi; Dhruv, Davit; Markna, J. H.

    2017-05-01

    In the present communication, simulation of multilayers organic dye-sensitized based solar cells (DSSC) was performed because of its tremendous application in different solar energy harvesting devices and their relatively high efficiency as well as cost effectiveness.J-V and I-V curves ofmultilayer organic dye sensitized solar cell with combination of different dyes were simulated to study the performance in the vicinity of efficiency. On the basis of above parameters, optimum design and operating parameters were derived from the simulation based analysis. It had been jointly shown that a systematic variation of different dye material and its thicknessare highly useful in achieving optimum efficiency of energy harvesting devices.

  11. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    SciTech Connect

    Jyoti, Divya; Mohan, Devendra

    2016-05-06

    Dye-Sensitized solar cells based on TiO{sub 2} nanocrystal and TiO{sub 2} nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  12. Radiative efficiency of lead iodide based perovskite solar cells

    PubMed Central

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate. PMID:25317958

  13. Radiative efficiency of lead iodide based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-08-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

  14. In2O3 based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Liu, Fangzhou; Wong, Man Kwong; Djurišić, Aleksandra B.; Ren, Zhiwei; Shen, Qian; Ng, Annie; Surya, Charles; Chan, Wai Kin

    2016-02-01

    Hybrid organic-inorganic perovskite solar cells have attracted lots of attention in recent years. Growth and properties of perovskite layer and its relationship to photovoltaic performance have been extensively studied. Comparably less attention was devoted to the research of the influence of electron transporting layer (ETL). Conventionally, TiO2 is selected as ETL. However, photocatalytic property of this transparent conductive metal oxide reduces the stability of perovskite solar cells under illumination. To realize the commercialization, the stability of perovskite solar cell must be improved. In this study, we replace TiO2 by In2O3, which is not only transparent and conductive, but also has little photocatalytic effect and it has higher electron mobility than TiO2. Investigation on different solution process methods of In2O3 as ETL is demonstrated.

  15. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): a Review.

    PubMed

    Birel, Özgül; Nadeem, Said; Duman, Hakan

    2017-02-16

    The current review aims to collect short information about photovoltaic performance and structure of porphyrin-based sensitizers used in dye-sensitized solar cells (DSSC). Sensitizer is the key component of the DSSC device. Structure of sensitizer is important to achieve high photovoltaic performance. Porphyrin derivatives are suitable for DSSC applications due to their thermal, electronic and photovoltaic properties. It describes some electrochemical and spectral properties as well as thestructure of porphyrin dyes used in dye based-solar cells.

  16. Genetic Algorithm Based Optimization of Advanced Solar Cell Designs Modeled in SILVACO ATLAS(Trademark)

    DTIC Science & Technology

    2006-09-01

    BASED OPTIMIZATION OF ADVANCED SOLAR CELL DESIGNS MODELED IN SILVACO ATLASTM by James Utsler September 2006 Thesis Co-Advisors...TITLE AND SUBTITLE Genetic Algorithm Based Optimization of Advanced Solar Cell Designs Modeled in SIlvaco ATLASTM 6. AUTHOR(S) James D. Utsler 5...was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic

  17. Solar concentrator technology development for space based applications, volume 1

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  18. Solar concentrator technology development for space based applications, volume 2

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  19. Solar concentrator technology development for space based applications, volume 2

    NASA Astrophysics Data System (ADS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-12-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  20. Solar concentrator technology development for space based applications, volume 1

    NASA Astrophysics Data System (ADS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-12-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  1. Continuous roll-to-roll serpentine deposition for high throughput a-Si PV manufacturing

    SciTech Connect

    Izu, M.; Ovshinsky, H.C.; Deng, X.; Krisko, A.J.; Narasimhan, K.L.; Crucet, R.; Laarman, T.; Myatt, A.; Ovshinsky, S.R.

    1994-12-31

    In order to further improve the economies of scale which are inherent in ECD`s continuous roll-to-roll amorphous silicon alloy solar cell manufacturing process, the authors have developed a concept for a serpentine web plasma CVD deposition process to maximize throughput while keeping the size of the deposition chambers small. When this technique is incorporated into a continuous roll-to-roll PV manufacturing process, it will maximize the throughput for a high volume production plant, reduce the machine cost, improve gas utilization, reduce power consumption, and improve the solar cell stability. To demonstrate the serpentine web deposition concept, the authors have constructed a single loop serpentine deposition chamber to deposit a-Si for n-i-p structure solar cells. During the initial process of optimization, they have produced single-junction a-Si solar cells with 8.6% efficiency, and triple-junction a-Si solar cells with a 9.5% initial efficiency, where the top cell intrinsic layer was deposited in the serpentine deposition chamber.

  2. Amorphous Silicon Carbide Passivating Layers to Enable Higher Processing Temperature in Crystalline Silicon Heterojunction Solar Cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary

    2015-04-06

    "Very efficient crystalline silicon (c-Si) solar cells have been demonstrated when thin layers of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) are used for passivation and carrier selectivity in a heterojunction device. One limitation of this device structure is the (parasitic) absorption in the front passivation/collection a-Si:H layers; another is the degradation of the a-Si:H-based passivation upon temperature, limiting the post-processes to approximately 200°C thus restricting the contacting possibilities and potential tandem device fabrication. To alleviate these two limitations, we explore the potential of amorphous silicon carbide (a-SiC:H), a widely studied material in use in standard a-Si:H thin-film solar cells, which is known for its wider bandgap, increased hydrogen content and stronger hydrogen bonding compared to a-Si:H. We study the surface passivation of solar-grade textured n-type c-Si wafers for symmetrical stacks of 10-nm-thick intrinsic a-SiC:H with various carbon content followed by either p-doped or n-doped a-Si:H (referred to as i/p or i/n stacks). For both doping types, passivation (assessed through carrier lifetime measurements) is degraded by increasing the carbon content in the intrinsic a-SiC:H layer. Yet, this hierarchy is reversed after annealing at 350°C or more due to drastic passivation improvements upon annealing when an a-SiC:H layer is used. After annealing at 350°C, lifetimes of 0.4 ms and 2.0 ms are reported for i/p and i/n stacks, respectively, when using an intrinsic a-SiC:H layer with approximately 10% of carbon (initial lifetimes of 0.3 ms and 0.1 ms, respectively, corresponding to a 30% and 20-fold increase, respectively). For stacks of pure a-Si:H material the lifetimes degrade from 1.2 ms and 2.0 ms for i/p and i/n stacks, respectively, to less than 0.1 ms and 1.1 ms (12-fold and 2-fold decrease, respectively). For complete solar cells using pure a-Si:H i/p and i/n stacks, the open-circuit voltage (Voc

  3. Modeling of Ionospheric Responses to the Solar Flux Change Based on Millstone Hill Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Holt, J. M.

    2002-12-01

    In order to develop ionospheric empirical models of electron density Ne, plasma temperatures (Te and Ti) and ion drifts based on Millstone Hill incoherent scatter radar observations, we investigate an important issue of ionospheric responses to the solar flux changes that have to be quantitatively represented. The representation is associated with selecting a mathematical function where a suitable solar flux index at a proper time ahead the observing time has to be determined. Traditionally, the solar 10.7 cm flux F107 for the previous day is applied, and a linear function is used. However, the non-linear feature of Ne responses to the solar flux was discovered previously. This paper shows the development of the non-linear feature with altitude, season and local time, and also indicates the non-linear feature for the Te and Ti responses. A mathematical function is proposed. We also discuss the use of other solar flux indices, in addition to F107.

  4. Space-Based Solar Power Conversion and Delivery Systems Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The research concerning space-based solar power conversion and delivery systems is summarized. The potential concepts for a photovoltaic satellite solar power system was studied with emphasis on ground output power levels of 5,000 MW and 10,000 MW. A power relay satellite, and certain aspects of the economics of these systems were also studied. A second study phase examined in greater depth the technical and economic aspects of satellite solar power systems. Throughout this study, the focus was on the economics of satellite solar power. The results indicate technical feasibility of the concept, and provide a preliminary economic justification for the first phase of a substantial development program. A development program containing test satellites is recommended. Also, development of alternative solar cell materials (other than silicon) is recommended.

  5. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  6. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    PubMed

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  7. A base-metal conductor system for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.

    1980-01-01

    Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.

  8. Dye-sensitized solar cells based on purple corn sensitizers

    NASA Astrophysics Data System (ADS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  9. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)

    PubMed Central

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470

  10. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  11. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  12. On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells.

    PubMed

    Agarwal, Sumanshu; Seetharaman, Madhu; Kumawat, Naresh K; Subbiah, Anand S; Sarkar, Shaibal K; Kabra, Dinesh; Namboothiry, Manoj A G; Nair, Pradeep R

    2014-12-04

    Perovskite-based solar cells have attracted much recent research interest with efficiency approaching 20%. While various combinations of material parameters and processing conditions are attempted for improved performance, there is still a lack of understanding in terms of the basic device physics and functional parameters that control the efficiency. Here we show that perovskite-based solar cells have two universal features: an ideality factor close to two and a space-charge-limited current regime. Through detailed numerical modeling, we identify the mechanisms that lead to these universal features. Our model predictions are supported by experimental results on solar cells fabricated at five different laboratories using different materials and processing conditions. Indeed, this work unravels the fundamental operation principle of perovskite-based solar cells, suggests ways to improve the eventual performance, and serves as a benchmark to which experimental results from various laboratories can be compared.

  13. PSO based PI controller design for a solar charger system.

    PubMed

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  14. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  15. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  16. PSO Based PI Controller Design for a Solar Charger System

    PubMed Central

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713

  17. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  18. Predicting solar radiation based on available weather indicators

    NASA Astrophysics Data System (ADS)

    Sauer, Frank Joseph

    Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.

  19. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  20. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    PubMed Central

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  1. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    PubMed

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  2. Correlation between interface traps and paramagnetic defects in c-Si/a-Si:H heterojunctions

    NASA Astrophysics Data System (ADS)

    Thoan, N. H.; Jivanescu, M.; O'Sullivan, B. J.; Pantisano, L.; Gordon, I.; Afanas'ev, V. V.; Stesmans, A.

    2012-04-01

    Low-temperature (77 K) capacitance-voltage measurements are proposed as a technique to quantify the densities of traps in c-Si/a-Si:H heterojunction solar cell structures. By comparing the inferred trap densities to the results of electron spin resonance spectroscopy, we found that the dangling bonds of silicon atoms at the surface of the (100)Si substrate (Pb0 centers) and in a-Si:H layer (D-centers) provide the most significant contributions to the density of traps.

  3. Multimetal plasmonic nanomaterials for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, Ramki; Trice, Justin; Sureshkumar, Radhakrishna; Garcia, Hernando

    2008-03-01

    Efficient broadband solar absorbing coatings could significantly enhance the performance of Si solar cells. Here, we present the design of novel SiO2-based nanomaterial coatings based on multimetal plasmonic absorption. By implementing an efficient homogenization procedure based on the tight lower bounds of the Bergman-Milton formulation [Garcia et al. Phys. Rev. B, 75, 045439 (2007)], we have predicted the absorption coefficient of a quaternary nanocomposite consisting of Cu, Ag, and Au nanospheres embedded in a SiO2 host matrix. A simulated annealing algorithm was used to predict nanocomposite properties (particle size and volume fractions) which result in a broadband absorption (350 - 800 nm) that matches the shape of the solar emission. These results show that novel optical materials can be made from multimetal-dielectric nanocomposites.

  4. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  5. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    NASA Astrophysics Data System (ADS)

    Abermann, S.

    2012-10-01

    The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H) triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM) electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  6. Toward Cost-effective Manufacturing of Si Solar Cells: Electrodeposition of High Quality Si Films in a CaCl2-based Molten Salt.

    PubMed

    Yang, Xiao; Ji, Li; Zou, Xingli; Lim, Taeho; Zhao, Ji; Yu, Edward T; Bard, Allen J

    2017-09-13

    Electrodeposition of Si films from a Si-containing electrolyte is a cost-effective approach for the manufacturing of solar cells. Proposals relying on molten salts have suffered from low product quality due to difficulties in impurity control. Here we demonstrate a novel approach to electrodeposit high quality Si films from a CaCl2-based molten salt. Soluble SiIV-O anions generated from solid SiO2 are electrodeposited onto a graphite substrate to form a uniform layer of crystalline Si. Impurities in the deposited Si film are controlled at low concentrations (both B and P are less than 1 ppm). In the photoelectrochemical measurements, the Si film shows p-type semiconductor character and large photocurrent. A p-n junction fabricated from the deposited Si film exhibits clear photovoltaic effects. This study represents a first step to the ultimate goal of developing a cost-effective manufacturing process for Si solar cells based on electrodeposition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    SciTech Connect

    Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

    2012-08-01

    Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

  8. Unexpected Performances of Flat Sb2S3-Based Hybrid Extremely Thin Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Muto, Takuma; Larramona, Gerardo; Dennler, Gilles

    2013-07-01

    We report unexpected results obtained on hybrid extremely thin absorber (ETA) solar cells based on the structure TiO2/Sb2S3/poly(3-hexylthiophene)/hole conducting layer (HCL). We show that we can maintain a large, state-of-the-art short-circuit current by switching from a three-dimensional to a two-dimensional device, that is, by simplifying drastically the device structure. Moreover, we prove that the HCL plays an important role in the solar cell working mechanism, and influences significantly its open-circuit voltage. We believe that these findings suggest new directions for the optimization of solid-state sensitized solar cells.

  9. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  10. National Solar Radiation Data Base, Vol. 2 - Final Technical Report (1961-1990)

    SciTech Connect

    Maxwell, E. L.; Marion, W.; Myers, D.; Rymes, M.; Wilcox, S.

    1995-01-01

    This technical report explains the procedures used during the 4-year production of the National Solar Radiation Data Base (NSRDB) (1961-1990). It is the second volume in a two-volume report on the NSRDB. The first volume, User's Guide-National Solar Radiation Data Base, provides the information needed to use the data base products. Volume 2 concentrates on results from the R&D required to producea solar radiation data base that would represent a significant update of a previous data base (SOLMET). More than 90% of the data in the NSRDB were estimated using a model--the Meteorological/Statistical (METSTAT) model. Much of Volume 2 concerns the METSTAT model and the sources of its input data. In addition, it contains results of comparisons of the NSRBD with the previous SOLMET data base.Results of the model evaluations and data base comparisons favor the use of NSRDB data over SOLMET data to select optimum sites and estimate performance for solar energy systems. The report noted that to improve data on solar radiation, 'measured' data need to become the mainstav of future data bases.

  11. PICARD SOL mission, a ground-based facility for long-term solar radius measurement

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.

    2012-09-01

    For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

  12. Spatial representativeness of ground-based solar radiation measurements

    NASA Astrophysics Data System (ADS)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin

    2013-04-01

    The validation of gridded surface solar radiation (SSR) data, i.e., satellite-derived or climate model calculated, relies on the comparison with ground-based in-situ measurements. Detached from any modeling or temporal averaging biases, the question remains how representative a point measurement is for a larger-scale grid cell. In the present study, we make extensive use of high-resolution (0.03°) SSR data from the Satellite Application Facility on climate monitoring (CM SAF) to study in detail: 1) the spatial variability in SSR over Europe, 2) the sub-grid variability within an example grid of 1° resolution, 3) the representativeness of 143 surface sites (BSRN and GEBA) for their corresponding 1° grid cells, and 4) the point-centered and grid-independent surface sites' representativeness for larger-grid cells up to 3°. These analyses are done on a climatological annual mean basis over the period 2001-2005. Annually, the spatial variability as given in the CM SAF data set is largest in regions of sudden changes in weather conditions and topography, e.g., in Northern Spain, the Alpine region, the Carpathians, and Adriatic coast. The 1° sub-grid variability (mean absolute deviation from grid cell mean, relative to grid cell mean, RMAD) is on average 1.64 % (2.43 Wm-2) over European land, with maximum RMAD of up to 10% in Northern Spain. The surface sites' (GEBA and BSRN) representativeness for larger-grid cells is highly dependent on region and grid size. The difference between the CM SAF value at the GEBA site's location and the grid cell mean (calculated from CM SAF data) can vary from almost 0% to more than 10% for a 1° grid cell, and up to 15% for a 3° grid cell. On average, this spatial sampling error is below 5% even for grid cells of 3° resolution. We show that the latitudinal shift of a point relative to the larger-grid cell center may account for a spatial sampling error of up to +-1.81 Wm-2 (for a maximum distance of +-0.5° within 1° grid cell

  13. Metastability of a-SiOx:H thin films for c-Si surface passivation

    NASA Astrophysics Data System (ADS)

    Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.

    2017-01-01

    The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution

  14. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  15. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  16. Solar Array Root Hinge Based on Shape Memory Alloy (SMA) Actuator

    NASA Astrophysics Data System (ADS)

    Blanc, Alain; Chassoulier, Damien; Champandard, Fabrice; Francois, Xavier

    2013-09-01

    The Solar Array Root Hinge based on Shape Memory Alloy actuator was designed and developed as a generic application for solar array of communication satelliteThe interest of this development was to implement for the first time at TAS level a low-cost, reliable and lightweight actuator technology for solar array deployment.This paper presents :- The design of the root hinge, including SMA actuator description- The development logic based ono Qualification status of the SMA actuatoro Delta design of the SP ACEBUS generic root hinge- The qualification test sequence (functional test, vibrations, TVAC)Results of a deployment test performed on ground at SMA rod, root hinge, then solar array level are presented.

  17. Hot-carrier solar cell NEGF-based simulations

    NASA Astrophysics Data System (ADS)

    Cavassilas, Nicolas; Michelini, Fabienne; Bescond, Marc; Joie, Thibault

    2016-03-01

    Ultra thin absorbers for the hot carrier solar cell applications are promising. Indeed, in these ultimate absorbers electronphonon scattering are reduced and thickness can be lower than the electron mean-free-path. In this case carriers reach contact ballistically. However it is important that the contact permits to extract these carriers. This theoretical study is about the extraction of the photogenerated carriers and particularly the ballistic extraction without any scattering. We show that quantum interaction between the ultra-thin absorber and the contact can be used to enhance the extraction. Particularly, a contact composed of a quantum well into a double barrier permits to increase the current compared to a simple contact. This improvement is due to a quantum resonance. This result is interesting for the hot carrier solar cells but also for all the ultra-thin cells.

  18. Solar Astronomy Data Base: Packaged Information on Diskette

    NASA Technical Reports Server (NTRS)

    Mckinnon, John A.

    1990-01-01

    In its role as a library, the National Geophysical Data Center has transferred to diskette a collection of small, digital files of routinely measured solar indices for use on an IBM-compatible desktop computer. Recording these observations on diskette allows the distribution of specialized information to researchers with a wide range of expertise in computer science and solar astronomy. Every data set was made self-contained by including formats, extraction utilities, and plain-language descriptive text. Moreover, for several archives, two versions of the observations are provided - one suitable for display, the other for analysis with popular software packages. Since the files contain no control characters, each one can be modified with any text editor.

  19. Design of Solar Street Lamp Control System Based on MPPT

    NASA Astrophysics Data System (ADS)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  20. Highly efficient solar cells based on poly(3-butylthiophene) nanowires.

    PubMed

    Xin, Hao; Kim, Felix Sunjoo; Jenekhe, Samson A

    2008-04-23

    Poly(3-butylthiophene) (P3BT) nanowires, prepared by solution-phase self-assembly, have been used to construct highly efficient P3BT/fullerene nanocomposite solar cells. The fullerene/P3BT nanocomposite films showed an electrically bicontinuous nanoscale morphology with average field-effect hole mobilities as high as 8.0 x 10(-3) cm2/Vs due to the interconnected P3BT nanowire network revealed by TEM and AFM imaging. The power conversion efficiency of fullerene/P3BT nanowire devices was 3.0% (at 100 mW/cm2, AM1.5) in air and found to be identical with our similarly tested fullerene/poly(3-hexylthiophene) photovoltaic cells. This discovery expands the scope of promising materials and architectures for efficient bulk heterojunction solar cells.

  1. Rutile TiO2 nanowire-based perovskite solar cells.

    PubMed

    Jiang, Qinglong; Sheng, Xia; Li, Yingxuan; Feng, Xinjian; Xu, Tao

    2014-12-07

    Different lengths of rutile TiO2 nanowires (NW) with wide-open space for effective material filling were used as photoanodes for perovskite solar cells. Cells with 900 nm nanowires as photoanodes exhibit a current density of 22 mA cm(-2) and an efficiency of 11.7%, outperforming the reported TiO2 nanowire-based perovskite solar cells.

  2. A Nitinol-Based Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Choi, Shin John; Lu, Chia-Ao; Feland, John

    1996-01-01

    This document describes a simple, light weight, and scalable mechanism capable of deploying flexible or rigid substrate solar arrays that have been configured in an accordion-like folding scheme. This mechanism is unique in that it incorporates a Shape Memory Alloy (SMA) actuator made of Nitinol. This paper documents the design of the mechanism in full detail while offering to designers a foundation of knowledge by which they can develop future applications with SMA's.

  3. Heliosynthesis: A solar biotechnology based on direct bioconversion of solar energy by photosynthetic cells

    NASA Astrophysics Data System (ADS)

    Gudin, C.

    1982-12-01

    Certain limiting aspects of current technology should be studied, such as the lifetimes of tubing material and the utilization of renewable sources of energy for pumping. Only exocellular or cellular biomass with high specific value, involving small markets and small plant areas (less than 1 ha), will be economically possible for the short term and will allow improvement of this technology. A valorization of the totality of photosynthetic biomass with respect to economics and energy is an absolute necessity. There is an immediate need for genetic studies of microalgae that will allow enhancement or even creation of chemical production satisfying economic and energy needs. Such efforts should permit the rapid establishment of an aggressive and sophisticated solar biotechnology that integrates scientific and technical' developments to meet the new needs of humanity for food, chemicals, and energy, thereby complementing agriculture with a sort of cellular horticulture.

  4. Nanowire-based multifunctional antireflection coatings for solar cells.

    PubMed

    Hiralal, Pritesh; Chien, Chihtao; Lal, Niraj N; Abeygunasekara, Waranatha; Kumar, Abhishek; Butt, Haider; Zhou, Hang; Unalan, Husnu Emrah; Baumberg, Jeremy J; Amaratunga, Gehan A J

    2014-11-06

    Organic (P3HT/PCBM) solar cells are coated with ZnO nanowires as antireflection coatings and show up to 36% enhancement in efficiency. The improvement is ascribed to an effective refractive index which results in Fabry-Perot absorption bands which match the polymer band-gap. The effect is particularly pronounced at high light incidence angles. Simultaneously, the coating is used as a UV-barrier, demonstrating a 50% reduction in the rate of degradation of the polymers under accelerated lifetime testing. The coating also allows the surface of the solar cell to self-clean via two distinct routes. On one hand, photocatalytic degradation of organic material on ZnO is enhanced by the high surface area of the nanowires and quantified by dye degradation measurements. On the other, the surface of the nanowires can be functionalized to tune the water contact angle from superhydrophilic (16°) to superhydrophobic (152°), resulting in self-cleaning via the Lotus effect. The multifunctional ZnO nanowires are grown by a low cost, low temperature hydrothermal method, compatible with process limitations of organic solar cells.

  5. Vegetable-based dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs.

  6. A power pack based on organometallic perovskite solar cell and supercapacitor.

    PubMed

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui

    2015-02-24

    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle.

  7. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  8. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    PubMed Central

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  9. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  10. Solar array design based on shadow analysis for increasing net energy collection in a competition vehicle

    NASA Astrophysics Data System (ADS)

    Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo; Suárez-Castañeda, Nicolás; Gil-Herrera, Ana; Barrera-Velásquez, Jorge

    2015-01-01

    Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel. Solar competition vehicles are some of these challenging PV applications. The design of such solar arrays needs to consider efficiency evaluation in order to optimize space; it is difficult not to install solar modules in areas impacted by shadows. A design procedure for a solar array configuration based on shadow analysis for competition vehicles is presented. The principle is that shadows in moving objects can be simulated, since the vehicle, the earth and the sun are are moving in semipredictable patterns, thus net energy collection can be forecast. The case study presented is the solar array design of a vehicle that participated in the World Solar Challenge 2013. The obtained results illustrate how the employment of the procedure gives insights on important aspects to consider and also delivers qualitative and quantitative information for decision making. In addition, the experience in competition highlights some issues to be considered, modified, or improved in further vehicle designs.

  11. Gold nanoparticles enhanced photocurrent in nanostructure-based bulk heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Saqodi, Mostafa; Xu, Huizhong

    2016-04-01

    In this paper, we report a first hand study of enhanced photocurrent observed in nanostructure-based bulk heterojunction solar cell due to introduction of Au nanoparticles. The bulk heterojunction solar cell was fabricated using chemically synthesized narrow gap, IV-VI group semiconductor nanoparticles (PbS, ~3 nm), wide gap semiconductor ZnO nanowires (~1 μm length, ~50 nm diameter), and gold nanoparticles (~20 nm), by spin-coating method in N2-filled glove box. We have demonstrated that such a bulk heterojunction solar cell can be incorporated with metal nanoparticles (Au) to enhance solar device performance. Three types of solar cell devices were studied. An enhancement in the photocurrent due to introduction of Au nanoparticles was observed, compared to solar cell device without Au nanoparticles. The power conversion efficiency was also increased, possibly due to the plasmonic effects from Au nanoparticles. The fabrication procedures can be readily extended to other nanomaterial systems. Further optimization in the fabrication would be needed to realize high-efficient, stable solar cell devices.

  12. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator.

    PubMed

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-12-04

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid's temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  13. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.

    PubMed

    Halim, Mohammad A

    2012-12-27

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  14. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    PubMed Central

    Halim, Mohammad A.

    2012-01-01

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320

  15. Solar EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir Probe

    SciTech Connect

    Brace, L.H.; Hoegy, W.R.; Theis, R.F. )

    1988-07-01

    The photoelectron current from the Pioneer Venus Langmuir probe has provided measurements of the solar extreme ultraviolet flux at Venus since 1979. This current is the product of the photoelectric yield of the collector and the solar spectrum at wavelengths short enough to cause emission. Calculations show that approximately 51% of the emission is due to Lyman {alpha} (1,216 {angstrom}), 46% is produced by wavelengths between 550 and 1,100 {angstrom}, and less than 3% is due to wavelengths longer than Lyman {alpha}. Thus, the Langmuir probe provides a direct measure of the total solar EUV flux, including most of the wavelengths that produce the Venus ionosphere and heat and excite neutrals in the thermosphere. The measurement technique is described, and the daily average measurements of photocurrent obtained between 1979 and 1987 are presented. The photocurrents exhibit variations related to the solar cycle and solar rotation, as well as a major 7.2-month periodicity. The authors present three indices of EUV based on the measurements: (1) the photoemission current itself, (2) the total EUV flux, and (3) an F{sub 10.7}-like solar index. These are compared with related measurements made simultaneously at Earth. These data may also help solar physicists track the intensity of EUV emission regions on the Sun while they are not visible from the Earth. The EUV flux profile of a solar flare event is also illustrated. In the future the method also could be applied on a comet mission to obtain the incident solar EUV flux, to measure the EUV extinction profiles of the cometary atmosphere, and to sample directly the dust and gas environment of the comet through the ionization the dust and gas produce when they impact the collector.

  16. Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-05-01

    Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

  17. Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-06-01

    Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

  18. Optical absorptions in ZnO/a-Si distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Chen, Zhian; Zhu, Kaigui; Ji, Zhenguo

    2017-01-01

    The distributed Bragg reflectors (DBRs) consisting of alternating layers of ZnO and heavy doped amorphous silicon (a-Si) have been fabricated by magnetron sputtering. It is novel to find that the optical absorptions exist in the stopband of the DBRs, and that many discrete strong optical absorption peaks exist in the wavelength range of visible to near-infrared. The calculated results by FDTD show that the absorptions in the stopband mainly exist in the first a-Si layer, and that the light absorbed by other a-Si layers inside contributes to the two absorption peaks in near-infrared range. The strong absorptions ranged from visible to infrared open new possibilities to the enhancement of the performance of amorphous silicon solar cells.

  19. A comprehensive solar energy system analysis data base in Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    Goddard, J. P.

    1978-01-01

    The history of a comprehensive solar energy system analysis data base developed by NASA/Marshall Space Flight Center and the University of Alabama is presented, along with its current status. The Marshall Information Retrieval and Data Storage (MIRADS) system was chosen for the data base, and feedback systems were arranged to cope with changes in the needs of the program management for the type of data gathered. The final structure of the data base consists of 22 files divided into 6 topical sections: summaries, climatological, utility rates, architectural, equipment, and economics. The data base offers help to the solar industry in two ways: it provides information and it serves as a model for users trying to establish the climatic and socioeconomic variables they should take into account when they examine a potential market for solar energy equipment.

  20. Radiometric models and generation of the U.S. National Solar Radiation Data Base

    SciTech Connect

    Maxwell, E.L.

    1995-09-01

    More than 90% of the solar radiation data in the National Solar Radiation Data Base (NSRDB Vol. 1 1992) were either derived using a METeorological/STATistical (METSTAT) model or were modified using a procedure that involved METSTAT. The impact of modeling on the NSRDB is not unique. All of the data in the SOLar radiation and METeorological (SOLMET) data base and the Typical Meterological Year (TMY) data sets derived from it were affected in one way or another by modeling (SOLMET vol. 2 1979). This paper describes several types of solar radiation models used in producing both the SOLMET and NSRDB data bases. The results of evaluations of METSTAT provide insight into the overall quality of the NSRDB. Differences between the SOLMET and NSRDB data bases are then examined with respect to the different models used in their development. This provides the reader with information regarding the effect of modeling on these data bases and their relative strengths and weaknesses. The paper concludes with a brief description of current research at the National Renewable Energy Laboratory (NREL) involving the use of a simplified version of METSTAT to estimate monthly mean daily-total solar radiation for every point on a uniform grid covering the United States, Mexico, and the Caribbean.

  1. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes.

  2. Understanding Measures of Magnetic Activity Using Physics-based Models of the Solar Interior and Atmosphere

    NASA Astrophysics Data System (ADS)

    Abbett, W. P.; Luhmann, J. G.

    2014-12-01

    Substantial progress has been made over the past decade in the effort to better understand how magnetic flux and energy is generated in the convective interior of the Sun, how it emerges into the solar atmosphere, and how manifestations of solar magnetic activity (such as sunspots, coronal mass ejections, and flares) are connected within a dynamic magnetic environment spanning the solar convection zone-to-corona system. Here, we present a brief overview of recent efforts to model the evolution of active region magnetic fields and sunspots over a range of physical conditions and spatial and temporal scales. We will focus on how dynamic, physics-based numerical models can be used to better understand observed relationships between different measures of solar activity as a function of time (e.g., sunspot activity and morphologies, unsigned magnetic flux measured at the photosphere, coronal X-ray emissivity). We will determine whether local physics-based models of active region evolution can be used to better constrain proxies of solar activity such as the sunspot number, which remains the only direct record available to trace the very long-term influence of the solar dynamo on the earth's environment.

  3. Organic Solar Cells Based on Electrodeposited Polyaniline Films

    NASA Astrophysics Data System (ADS)

    Inoue, Kei; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2012-04-01

    Polyaniline thin films as hole transporting layers were fabricated on transparent indium-tin-oxide electrodes by electrodeposition of aniline in an aqueous H2SO4 electrolyte solution. Emerald-green polyaniline films were obtained, which showed stable redox waves. A mixed solution of polythiophene and fullerene derivative was spin-coated onto the electrodeposited polyaniline film. After the modification of titanium oxide film on the surface of the polythiophene/fullerene layer, an aluminum electrode was fabricated by vacuum deposition. The obtained solar cells generated stable photocurrent and photovoltage under light illumination.

  4. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.

    PubMed

    Lim, Sungoh; Kim, Yohan; Lee, Jeongno; Han, Chul Jong; Kang, Jungwon; Kim, Jiwan

    2014-12-01

    Colloidal quantum dots (QD)-based solar cells with near infrared (NIR) emission have been investigated. Lead sulfide (PbS) QDs, which have narrow band-gap and maximize the absorption of NIR spectrum, were chosen as active materials for efficient solar cells. The inverted structure of indium tin oxide/titanium dioxide/PbS QDs/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/silver (ITO/TiO2/PbS QDs/ PSS/Ag) was applied for favorable electron and hole seperation from the PbS QD. Through the ligand exchange by 1,2-Ethanedithiol (EDT), the interparticle distance of the PbS QDs in thin film became closer and the performance of the PbS QD-based solar cells was improved. Our PbS QD-based inverted solar cells showed open circuit voltages (V(oc)) of 0.33 V, short circuit current density (J(sc)) of 10.89 mA/cm2, fill factor (FF) of 30%, and power conversion efficiency (PCE) of 1.11%. In our PbS QD-based multifunctional solar cell, the NIR light emission intensity was simply detected with photodiode system, which implies the potential of multi-functional diode device for various applications.

  5. Numerical Investigation of Nanofluid-based Solar Collectors

    NASA Astrophysics Data System (ADS)

    Karami, M.; Raisee, M.; Delfani, S.

    2014-08-01

    Solar thermal collectors are applicable in the water heating or space conditioning systems. Due to the low efficiency of the conventional collectors, some suggestions have been presented for improvement in the collector efficiency. Adding nanoparticles to the working fluid in direct absorption solar collector, which has been recently proposed, leads to improvement in the working fluid thermal and optical properties such as thermal conductivity and absorption coefficient. This results certainly in collector efficiency enhancement. In this paper, the radiative transfer and energy equations are numerically solved. Due to laminar and fully developed flow in the collector, the velocity profile is assumed to be parabolic. As can be observed from the results, outlet temperature of collector is lower than that obtained using uniform velocity profile. Furthermore, a suspension of carbon nanohorns in the water is used as the working fluid in the model and its effect on the collector efficiency is investigated. It was found that the presence of carbon nanohorns increases the collector efficiency by about 17% compared to a conventional flat-plate collector. In comparison with the mixture of water and aluminium nanoparticles, a quite similar efficiency is obtained using very lower concentration of carbon nanohorns in the water.

  6. Modeling of stimulated emission based luminescent solar concentrators.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; Argyros, Alexander

    2016-12-26

    The efficiency improvement of luminescent solar concentrators (LSCs) necessary for practical realization is currently hindered by one major loss mechanism: reabsorption of emitted photons by the luminophores. Recently, we explored a promising technique for reducing reabsorption and also improving directional emission in LSCs utilizing stimulated emission, rather than only spontaneous emission, with an inexpensive seed laser. In this work, a model is developed to quantify the gain (i.e. the amount of amplification of a low power seed laser propagating through the solar-pumped concentrator) of stimulated-LSCs (s-LSCs) considering the effects of different important physical parameters. The net optical output power, available for a small PV cell, from the concentrator can also be determined from the model, which indicates the performance of s-LSCs. Finally, the performance of different existing material systems is investigated using literature values of the parameters required for the model, and a set of optimal parameters is suggested for practical realization of such a device.

  7. Solar cells based on inks of n-type colloidal quantum dots.

    PubMed

    Ning, Zhijun; Dong, Haopeng; Zhang, Qiong; Voznyy, Oleksandr; Sargent, Edward H

    2014-10-28

    New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  8. Status of AlGaN based focal plane arrays for UV solar blind detection

    NASA Astrophysics Data System (ADS)

    Reverchon, Jean-Luc; Mazzeo, Giovanni; Dussaigne, Amélie; Duboz, Jean-Yves

    2005-10-01

    The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet solar blind detection in competition with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays. All of the them must be associated to UV blocking filters. These new detectors present both an intrinsic spectral selectivity and an extremely low dark current at room temperature. First we will present the ultimate properties of the AlGaN based devices. These spectral properties are analysed in regards to the sharp cut off required for solar blind detection around 280nm, and we will quantify how the stringent difficulties to achieve solar blind filters can be reduced. We also investigated the electrical capabilities of Schottky diodes or Metal-Semiconductor-Metal (MSM) technologies to detect extremely low UV signal. We will especially present results from a linear array based on a CCD readout multiplexor.

  9. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells.

    PubMed

    Ramuz, Marc P; Vosgueritchian, Michael; Wei, Peng; Wang, Chenggong; Gao, Yongli; Wu, Yingpeng; Chen, Yongsheng; Bao, Zhenan

    2012-11-27

    Carbon allotropes possess unique and interesting physical, chemical, and electronic properties that make them attractive for next-generation electronic devices and solar cells. In this report, we describe our efforts into the fabrication of the first reported all-carbon solar cell in which all components (the anode, active layer, and cathode) are carbon based. First, we evaluate the active layer, on standard electrodes, which is composed of a bilayer of polymer sorted semiconducting single-walled carbon nanotubes and C(60). This carbon-based active layer with a standard indium tin oxide anode and metallic cathode has a maximum power conversion efficiency of 0.46% under AM1.5 Sun illumination. Next, we describe our efforts in replacing the electrodes with carbon-based electrodes, to demonstrate the first all-carbon solar cell, and discuss the remaining challenges associated with this process.

  10. Analysis of thin layer optical properties of A-Si:H P-Type doping CH4 and P-Type without CH4 is deposited PECVD systems

    NASA Astrophysics Data System (ADS)

    Prayogi, Soni; Ayunis; Kresna; Cahyono, Yoyok; Akidah; Darminto

    2017-05-01

    The study of a thin layer growth of hydrogenated amorphous silicon (a-Si: H) using the technique of plasma enhancing chemical vapor deposition (PECVD) has been conducted. Material a-Si: H is one type of materials that is applied as solar cells. In this study, a thin layer of a-Si: H grown on glass substrates by using CH4 and without CH4. Most sources Si gas were used in silane gas (SiH4) 20% dissolved in hydrogen gas (H2). The addition of CH4 gas greatly affects the structure of layer morphology and energy gap in thin layers. Based on the results of characterization using AFM, it was obtained a layer thickness which was added by CH4 100 nm and layer thickness of 45 nm without CH4. While the optical energy band gap were conducted, based on the data from characterization using UV-Vis in the wavelength range of 400-800 nm, it was obtained layer optical energy band gap added by CH4 that was 1,95 eV and layer without CH4 that was 1.89 eV.

  11. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  12. Performance Analysis of Ultra-Thin Silicon Based Tunnel Junctions for Tandem Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, H.; Rostami, A.; Dolatyari, M.; Rostami, G.

    Nowadays silicon solar cells have an efficiency of up to 20 % and in order to increase the efficiency of them, fabrication of multi-junction thin film solar cells with different band gaps is one of the most promising approaches. The silicon based tandem solar cells are third generation new style solar cells with ultra-high efficiency. The sub-cells in a tandem solar cell have different energy band gaps. In order to match the currents between sub-cells, tunnel junctions are used to connect the sub-cells. This work will concentrate on simulating the tunnel junction for application as part of multi-junction solar cell. In this way dopant concentration is changed and the tunnel junction current-voltage characteristics and their Energy band diagram in different dopant levels under equilibrium condition for moderate and usual doping have been calculated. An n++-Si/p++-Si tunnel junction is selected to simulate the overall characteristics of cell by numerical finite element method. We have simulated a symmetric silicon tunnel junction with thickness of 25 nm for n-type and 25 nm for p-type silicon by changing doping value from 1 × 10e20 cm-3 to 2 × 10e20 cm-3. The simulation results show that the doping concentration of 2 × 10e20 cm-3 is suitable for both sides.

  13. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    NASA Astrophysics Data System (ADS)

    Zaher, A.; N'goran, Y.; Thiery, F.; Grieu, S.; Traoré, A.

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking.

  14. High Efficiency Amorphous and Microcrystalline Silicon Based Double-Junction Solar Cells made with Very-High-Frequency Glow Discharge

    SciTech Connect

    Banerjee, Arindam

    2004-10-20

    We have achieved a total-area initial efficiency of 11.47% (active-area efficiency of 12.33%) on a-Si:H/μc-Si:H double-junction structure, where the intrinsic layer bottom cell was made in 50 minutes. On another device in which the bottom cell was made in 30 min, we achieved initial total-area efficiency of 10.58% (active-efficiency of 11.35%). We have shown that the phenomenon of ambient degradation of both μc-Si:H single-junction and a-Si:H/μc-Si:H double-junction cells can be attributed to impurity diffusion after deposition. Optimization of the plasma parameters led to alleviation of the ambient degradation. Appropriate current matching between the top and bottom component cells has resulted in a stable total-area efficiency of 9.7% (active-area efficiency of 10.42%) on an a-Si:H/μc-Si:H double-junction solar cell in which the deposition time for the μc-Si:H intrinsic layer deposition was of 30 min.

  15. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    NASA Astrophysics Data System (ADS)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  16. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.

    PubMed

    Li, Weiwei; Roelofs, W S Christian; Wienk, Martijn M; Janssen, René A J

    2012-08-22

    A series of diketopyrrolopyrrole (DPP)-based small band gap polymers has been designed and synthesized by Suzuki or Stille polymerization for use in polymer solar cells. The new polymers contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation of DPP-based polymers. In optimized solar cells with [6,6]phenyl-C(71)-butyric acid methyl ester ([70]PCBM) as acceptor, the new DPP-polymers provide significantly enhanced external and internal quantum efficiencies for conversion of photons into collected electrons. This provides short-circuit current densities in excess of 16 mA cm(-2), higher than obtained so far, with power conversion efficiencies of 5.8% in simulated solar light. We analyze external and internal photon to collected electron quantum efficiencies for the new polymers as a function of the photon energy loss, defined as the offset between optical band gap and open circuit voltage, and compare the results to those of some of the best DPP-based polymers solar cells reported in the literature. We find that for the best solar cells there is an empirical relation between quantum efficiency and photon energy loss that presently limits the power conversion efficiency in these devices.

  17. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    NASA Technical Reports Server (NTRS)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  18. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    NASA Technical Reports Server (NTRS)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  19. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    NASA Astrophysics Data System (ADS)

    Cohen, O.

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  20. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor

    PubMed Central

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors. PMID:27626422

  1. Multiwavelength analyzer for the determination of diffusion lengths. [in solar cell base region

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.; Davis, G. E.; Jansen, M.

    1983-01-01

    The minority carrier diffusion length Ln in the base or substrate region is an important parameter which governs a solar cell's performance. The present investigation is concerned with the development of a multiwavelength analyzer (MWA) technique for the nondestructive spatial testing of polycrystalline solar cells. The MWA method is based on the utilization of the short-circuit current generated by two or more light-emitting diodes (LEDs) operating at different wavelengths and modulated 180 deg out-of-phase. For a determination of Ln by the MWA technique, it is necessary to know the value of the absorption coefficient.

  2. Ultrafast laser-based tools enhance solar cell efficiencies

    NASA Astrophysics Data System (ADS)

    Colville, Finlay

    2010-02-01

    Opportunities for process equipment incorporating ultrafast laser types within the solar industry are numerous and varied. Historic trends and legacy laser adoption provide some perspective to the challenges facing tool suppliers seeking to enter the marketplace. Understanding the different cell concepts produced is one of the first requirements for tool suppliers, with specific process flows within each production line. Thereafter, it is important to consider the limitations of alternative laser types - especially nanosecond lasers - and what if any cost benefit is available to cell manufacturers when switching to ultrafast laser sources. Opportunities are then enabled by appropriate choice of laser processing conditions and tool supply which yields the greatest return-on-investment to the cell and panel producers.

  3. Thiophene dendrimer-based low donor content solar cells

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Dani M.; Ma, Chang-Qi; Nagiri, Ravi C. R.; Clulow, Andrew J.; Bäuerle, Peter; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul

    2016-09-01

    Low donor content solar cells containing polymeric and non-polymeric donors blended with fullerenes have been reported to give rise to efficient devices. In this letter, we report that a dendrimeric donor can also be used in solution-processed low donor content devices when blended with a fullerene. A third generation dendrimer containing 42 thiophene units (42T) was found to give power conversion efficiencies of up to 3.5% when blended with PC70BM in optimized devices. The best efficiency was measured with 10 mole percent (mol. %) of 42T in PC70BM and X-ray reflectometry showed that the blends were uniform. Importantly, while 42T comprised 10 mol. % of the film, it made up 31% of the film by volume. Finally, it was found that solvent annealing was required to achieve the largest open circuit voltage and highest device efficiencies.

  4. Screenable silver and base metal solar cell contacts

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1980-01-01

    The metallurgical soundness of the all-metal screenable thick film electrode system is established for silver and copper electrodes. Silver fluoride was identified as a successful etchant material and is found most effective in the liquid phase (435-460 C). Best results were achieved with the eutectic alloys of dopants and semiconductors. The air-fired silver inks were strongly adherent, rugged, and solderable, whereas the hydrogen-fired silver inks had very poor adhesion. A two-step firing process was devised in which copper inks containing silver fluoride were activated in a nitrogen atmosphere, with sintering done at the same or higher temperatures in hydrogen. Good solar cells were made using the copper paste back contacts demonstrating that the electrodes are not the limiting factors in efficiency.

  5. Solar-based comparison of adsorption and absorption refrigerating machines

    NASA Astrophysics Data System (ADS)

    Ahachad, M.; Almers, A.; Mimet, A.; Draoui, A.

    2005-12-01

    This article attempts to carry out a computer simulation of an aqua-ammonia vapour absorption system, and an activated carbon ammonia adsorption system, with a 1m2 collector area, under climatic conditions of Tangier, north Morocco. This study is very important in order to point out the conditions that make the performance of one cycle superior to the other. The comparison of the performance of sorption cycle is still a difficult academic challenge because some part of the sorption cycle is still at the R&D stage. The effect of operating variables such as generator temperature, condenser temperature and evaporator temperature on the system performance is investigated. This study shows that, in solar applications, the adsorption system is better than the absorption system for several reasons including its efficiency, and that it is simple to operate.

  6. Design and Optimization of Photopolymer Based Holographic Solar Concentrators

    NASA Astrophysics Data System (ADS)

    Sam, Shaji T. L.; Kumar, Ajith P. T.

    2011-10-01

    Solar energy is the most potential alternative source of energy. One way to effectively tap this potential source is application of concentrating systems cascaded with high efficiency Photovoltaic cells. In the design of a photovoltaic system, the primary goal is to maximize the efficiency of conversion and to minimize the light coupling losses. Wavelength selective and focusing properties of Holographic Optical Elements can be used to design concentrators that enhance the power yield from photovoltaic systems and reduce cost per Watt. The paper discusses our initial efforts and the preliminary studies on optimization of design parameters of phase holograms in Light Logics photopolymer HoloMer 6A, to achieve high efficiency PV concentrating systems. Spectral and angular responses of the optimized elements and diffraction efficiencies were measured at different wavelengths. The best efficiency achieved was 70%.

  7. Shannon Entropy-Based Prediction of Solar Cycle 25

    NASA Astrophysics Data System (ADS)

    Kakad, Bharati; Kakad, Amar; Ramesh, Durbha Sai

    2017-07-01

    A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length T_{cy} is divided into five equal parts of duration T_{cy}/5. Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the nth SC starting from n=10 - 23. We find that the Shannon entropy during the ending phase (P5) of the nth SC can be efficiently used to predict the peak smoothed sunspot number of the (n+1)th SC, i.e. S_{max}^{n+1}. The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.

  8. On-orbit degradation of recent space-based solar instruments and understanding of the degradation processes

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Dominique, M.; BenMoussa, A.; Dammasch, I. E.; Bolsée, D.; Pereira, N.; Damé, L.; Bekki, S.; Hauchecorne, A.

    2017-05-01

    The space environment is considered hazardous to spacecraft, resulting in materials degradation. Understanding the degradation of space-based instruments is crucial in order to achieve the scientific objectives, which are derived from these instruments. This paper discusses the on-orbit performance degradation of recent spacebased solar instruments. We will focus on the instruments of three space-based missions such as the Project for On-Board Autonomy 2 (PROBA2) spacecraft, the Solar Monitoring Observatory (SOLAR) payload onboard the Columbus science Laboratory of the International Space Station (ISS) and the PICARD spacecraft. Finally, this paper intends to understand the degradation processes of these space-based solar instruments.

  9. Satellite-based climate data records of surface solar radiation from the CM SAF

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  10. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  11. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    NASA Astrophysics Data System (ADS)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental

  12. Modelling short-term Solar Spectral Irradiance (SSI) using coronal electron density and temperature profiles based on solar magnetic field observations

    NASA Astrophysics Data System (ADS)

    Gómez, J. M. Rodríguez; Vieira, L. E. Antunes; Lago, A. Dal; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    Some key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the EUV emissions, are determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. We present a physics-based model to reconstruct short-term solar spectral irradiance (SSI) variability. The coronal magnetic field is estimated to employ the Potential Field Source Surface extrapolation (PFSS) based on observational synoptic charts and magnetic flux transport model. The emission is estimated to employ the CHIANTI atomic database 8.0. The performance of the model is compared to the emission observed by TIMED/SORCE.

  13. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  14. Third-generation Cu-In-Ga-(S, Se)-based solar inverters

    NASA Astrophysics Data System (ADS)

    Novikov, G. F.; Gapanovich, M. V.

    2017-02-01

    This paper reviews literature data on thin-film solar cells with absorber layers based on quaternary copper compounds Cu-In-Ga-(S, Se) (CIGS). The paper considers methods of preparation of CIGS layers and discusses the chemical composition, design features, and operating principles of CIGS-based solar cells. The bulk of the recent literature reveals how research in the field is starting to change: important results are being obtained by numerically simulating processes in thin-film solar cells; element concentration gradients in the CIGS structure, spatially nonuniform bandgap energy distribution, and layer grain boundaries are receiving increasing research attention for their respective roles, and the number of kinetic studies is increasing.

  15. A temperature-based model for estimating monthly average daily global solar radiation in China.

    PubMed

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China.

  16. The I-V Measurement System for Solar Cells Based on MCU

    NASA Astrophysics Data System (ADS)

    Fengxiang, Chen; Yu, Ai; Jiafu, Wang; Lisheng, Wang

    2011-02-01

    In this paper, an I-V measurement system for solar cells based on Single-chip Microcomputer (MCU) is presented. According to the test principles of solar cells, this measurement system mainly comprises of two parts—data collecting, data processing and displaying. The MCU mainly used as to acquire data, then the collecting results is sent to the computer by serial port. The I-V measurement results of our test system are shown in the human-computer interaction interface based on our hardware circuit. By comparing the test results of our I-V tester and the results of other commercial I-V tester, we found errors for most parameters are less than 5%, which shows our I-V test result is reliable. Because the MCU can be applied in many fields, this I-V measurement system offers a simple prototype for portable I-V tester for solar cells.

  17. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sneha A.; Baikie, Tom; Muduli, Subas; Potter, Rob; Chen, Shi; Yanan, Fanan; Bishop, Peter; Sien Lim, Swee; Chien Sum, Tze; Mathews, Nripan; White, Tim J.

    2017-08-01

    In this work we have studied the feasibility of highly symmetric guanidinium (GA; CH6N3 +) cation in perovskite based solar cells. It is an alternative to the methyl ammonium (MA; CH3NH3 +) or formamidinium (FA; CH(NH2)2+) ions commonly utilized in the perovskite solar cells, may bring additional advantages due to its triad rotational symmetry and zero dipole moment (μ). We noticed that due to steric factors, GA preferably forms two-dimensional (2D) layer, where GA2PbI4 is favored monoclinic structure (E g = 2.5 eV) and the obtained device efficiency is η = 0.45%. This study provides a guideline for designing guanidinium based perovskite absorbers for solar cell devices. In addition, through further compositional engineering with mixed organic cations using GA may enhance the device performance.

  18. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    PubMed

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  19. Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Wang, Meng; Zhang, Changneng; Fang, Xiaqin; Chen, Shuanghong; Dai, Songyuan

    2011-01-15

    A novel series of hydrophobic room temperature ionic liquids based on six cyclic sulfonium cations were first time synthesized and applied in dye-sensitized solar cells as pure solvents for electrolyte system. The chronoamperograms result showed that the length of substituent on sulfonium cations could inhibit the I{sub 3}{sup -} diffusion and the five-ring structure of sulfonium was benefit for fast triiodide ion diffusion. The electrochemical impendence spectra measurement of dye-sensitized solar cells with these ionic liquid electrolytes was carried out and the result indicated that the cations' structure had indeed influence on the cells' performance especially for the fill factor, which was further proved by the measurement result of I-V curves of these dye-sensitized solar cells. The conclusion was obtained that the electron exchange reaction on Pt counter electrode/electrolyte interface dominated the cells' performance for these ionic liquid electrolyte-based DSCs. (author)

  20. An NMR investigation of H cluster configurations in a-Si:H

    SciTech Connect

    Stephen, J.T.; Rutland, J.M.; Han, D.; Wu, Y.

    1997-07-01

    In this work the characteristics of hydrogen clusters in hot filament assisted CVD and conventional glow discharge a-Si:H films are discussed. Computer simulations of the observed free-induction decays of the {sup 1}H NMR signals indicate that the distribution of the nearest-neighbor distances between H atoms in the H clusters is quite narrow in hot filament assisted CVD a-Si:H whereas the distribution is larger in glow discharge a-Si:H. This is clear evidence of improved structural order in hot filament assisted CVD a-Si:H. The relaxed hydrogenated divacancy and multi-vacancy models reproduce the main features of the observed free-induction decay in hot-wire a-Si:H very well. Computer simulations of the multiple-quantum NMR spectra indicate that a relaxed hydrogenated divacancy configuration leads to good agreement with experimental observations in device quality glow discharge a-Si:H. Results of simulations based on other H cluster configurations are also discussed. These results provide restrictions on the possible models for H clusters in a-Si:H.

  1. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.

    PubMed

    Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao

    2017-09-06

    Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.

  2. Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells.

    PubMed

    Song, Tze-Bin; Yokoyama, Takamichi; Stoumpos, Constantinos C; Logsdon, Jenna; Cao, Duyen H; Wasielewski, Michael R; Aramaki, Shinji; Kanatzidis, Mercouri G

    2017-01-18

    Tin-based halide perovskite materials have been successfully employed in lead-free perovskite solar cells, but the tendency of these materials to form leakage pathways from p-type defect states, mainly Sn(4+) and Sn vacancies, causes poor device reproducibility and limits the overall power conversion efficiencies (PCEs). Here, we present an effective process that involves a reducing vapor atmosphere during the preparation of Sn-based halide perovskite solar cells to solve this problem, using MASnI3, CsSnI3, and CsSnBr3 as the representative absorbers. This process enables the fabrication of remarkably improved solar cells with PCEs of 3.89%, 1.83%, and 3.04% for MASnI3, CsSnI3, and CsSnBr3, respectively. The reducing vapor atmosphere process results in more than 20% reduction of Sn(4+)/Sn(2+) ratios, which leads to greatly suppressed carrier recombination, to a level comparable to their lead-based counterparts. These results mark an important step toward a deeper understanding of the intrinsic Sn-based halide perovskite materials, paving the way to the realization of low-cost and lead-free Sn-based halide perovskite solar cells.

  3. Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells.

    PubMed

    Zhou, Wenke; Zhao, Yicheng; Zhou, Xu; Fu, Rui; Li, Qi; Zhao, Yao; Liu, Kaihui; Yu, Dapeng; Zhao, Qing

    2017-09-07

    Due to light-induced effects in CH3NH3-based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH3NH3-based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH3NH3PbI3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH3NH3PbI3 is 0.62 eV under dark conditions, larger than that of CsPbI2Br (0.45 eV); however, it reduces to 0.07 eV for CH3NH3PbI3 under illumination, smaller than that for CsPbI2Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH3NH3PbI3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.

  4. Conceptual design of a lunar base solar power plant. Lunar base systems study task 3. 3

    SciTech Connect

    Not Available

    1988-08-01

    The best available concepts for a 100 kW Solar Lunar Power Plant based on static and dynamic conversion concepts have been examined. The two concepts which emerged for direct comparison yielded a difference in delivered mass of 35 MT, the mass equivalent of 1.4 lander payloads, in favor of the static concept. The technologies considered for the various elements are either state-of-the-art or near-term. Two photovoltaic cell concepts should receive high priority for development: i.e., amorphous silicon and indium phosphide cells. The amorphous silicon, because it can be made so light weight and rugged; and the indium phosphide, because it shows very high efficiency potential and is reportedly not degraded by radiation. Also the amorphous silicon cells may be mounted on flexible backing that may roll up much like a carpet for compact storage, delivery, and ease of deployment at the base. The fuel cell and electrolysis cell technology is quite well along for lunar base applications, and because both the Shuttle and the forthcoming Space Station incorporate these devices, the status quo will be maintained. Early development of emerging improvements should be implemented so that essential life verification test programs may commence.

  5. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  6. Development of a Quantum Dot Based Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Suter, John David

    Luminescent solar concentrators (LSCs) have been proposed as a lower cost and more aesthetically pleasing alternative to traditional photovoltaic devices. The LSC presented in this thesis will use II-VI semiconducting quantum dots (QDs) as luminescent material. CdSe/ZnSe core/shell QDs; CdSe/ZnS core/shell QDs; and CdxZn1-xSe QDs can be synthesized with high quality (quantum yield >50%) using simple, reproducible methods. Furthermore, two methods of incorporating the QDs into an LSC will be discussed. In the first method, single QD thick monolayers or multilayered QD thin films can be deposited onto an optically clear medium using Langmuir-Blodgett (LB) deposition. However, these QD films have poor optical qualities making them unfit for use in a LSC. Alternatively, QDs can be incorporated into a polymer slide. These highly fluorescent QD-polymer slides act as waveguides directing the photons emitted by the QDs towards the edges of the slide.

  7. Study of the effect of switching speed of the a-SiC/c-Si(p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Evangelos I.; Georgoulas, Nikolaos

    2017-06-01

    A parametric study for a series of technological and geometrical parameters affecting rise time of Al/a-SiC/c-Si(p)/c-Si(n+)/Al thyristor-like switches, is presented here for the first time, using two-dimensional simulation techniques. By varying anode current values in simulation procedure we achieved very good agreement between simulation and experimental results for the rising time characteristics of the switch. A series of factors affecting the rising time of the switches are studied here. Two factors among all others studied here, exerting most significant influence, of more than one order of magnitude on the rising time, are a-SiC and c-Si(p) region widths, validating our earlier presented model for device operation. The above widths can be easily varied on device manufacture procedure. We also successfully simulated the rising time characteristics of our earlier presented simulated improved switch, with forward breakover voltage {V}{BF}=11 {{V}} and forward voltage drop {V}{{F}}=9.5 {{V}} at the ON state, exhibiting an ultra low rise time value of less than 10 ps, which in conjunction with its high anode current density values of 12 A/mm2 and also cheap and easy fabrication techniques, makes this switch appropriate for ESD protection as well as RF MEMS and NEMS applications.

  8. 76 FR 44322 - Copper Mountain Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Copper Mountain Solar 1, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Copper Mountain Solar 1, LLC's application for market-based...

  9. 76 FR 67178 - EGP Stillwater Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Energy Regulatory Commission EGP Stillwater Solar, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of EGP Stillwater Solar, LLC's application for market-based rate authority... filings in the above-referenced proceeding are accessible in the Commission's eLibrary system by clicking...

  10. 75 FR 16097 - NFI Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Energy Regulatory Commission NFI Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing... above-referenced proceeding of NFI Solar, LLC's application for market-based rate authority, with an... proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link in the...

  11. 78 FR 47315 - Solar Partners VIII, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Energy Regulatory Commission Solar Partners VIII, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding, of Solar Partners VIII, LLC's application for market-based rate authority, with an... proceeding(s) are accessible in the Commission's eLibrary system by clicking on the appropriate link in...

  12. 78 FR 18581 - Imperial Valley Solar 1, LLC: Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Energy Regulatory Commission Imperial Valley Solar 1, LLC: Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Imperial Valley Solar 1, LLC's application for market-based rate... filings in the above-referenced proceeding(s) are accessible in the Commission's eLibrary system...

  13. 77 FR 23711 - NRG Solar Alpine LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... Energy Regulatory Commission NRG Solar Alpine LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of NRG Solar Alpine LLC's application for market-based rate authority, with an... proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link in...

  14. 78 FR 34371 - Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Centinela Solar Energy, LLC's application for market-based rate...

  15. 78 FR 29131 - Solar Star California XX, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Solar Star California XX, LLC; Supplemental Notice that Initial Market-Based... above-referenced proceeding, of Solar Star California XX, LLC's application for market-based...

  16. 76 FR 40722 - Mojave Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mojave Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding of Mojave Solar LLC's application for market-based rate authority, with an...

  17. 77 FR 64979 - BITH Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission BITH Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding of BITH Solar 1, LLC's application for market-based rate authority, with...

  18. 78 FR 34372 - Catalina Solar Lessee, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Catalina Solar Lessee, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Catalina Solar Lessee, LLC's application for market-based rate...

  19. 78 FR 46939 - Solar Partners II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Solar Partners II, LLC; Supplemental Notice That Initial Market- Based Rate... notice in the above-referenced proceeding, of Solar Partners II, LLC's application for market-based...

  20. 77 FR 48148 - NRG Solar Borrego I LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission NRG Solar Borrego I LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of NRG Solar Borrego I LLC's application for market-based rate authority, with...

  1. 77 FR 36528 - K Road Modesto Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission K Road Modesto Solar LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of K Road Modesto Solar LLC's application for market-based rate authority, with...

  2. 77 FR 48148 - Helvetia Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Helvetia Solar, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of Helvetia Solar, LLC's application for market-based rate authority, with...

  3. 78 FR 34373 - Campo Verde Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Campo Verde Solar, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Campo Verde Solar, LLC's application for market-based rate authority, with...

  4. 77 FR 58827 - Catalina Solar, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Catalina Solar, LLC; Supplemental Notice that Initial Market- Based Rate...-referenced proceeding, of Catalina Solar, LLC's application for market-based rate authority, with...

  5. 76 FR 41240 - Mesquite Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mesquite Solar 1, LLC; Supplemental Notice That Initial Market- Based... above-referenced proceeding of Mesquite Solar 1, LLC's application for market-based rate authority,...

  6. 78 FR 61999 - Simon Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Simon Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding, of Simon Solar, LLC's application for market-based rate authority, with...

  7. 75 FR 76726 - San Luis Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission San Luis Solar, LLC; Supplemental Notice That Initial Market- Based Rate... notice in the above-referenced proceeding of San Luis ] Solar, LLC's application for market-based...

  8. 76 FR 55377 - Bellevue Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bellevue Solar, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Bellevue Solar, LLC's application for market-based rate authority, with...

  9. 77 FR 37666 - NRG Solar Avra Valley LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission NRG Solar Avra Valley LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of NRG Solar Avra Valley LLC's application for market-based rate...

  10. 78 FR 49508 - Solar Partners I, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Solar Partners I, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Solar Partners I, LLC's application for market-based rate authority, with...

  11. 78 FR 49507 - Genesis Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Genesis Solar, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Genesis Solar, LLC's application for market-based rate authority, with...

  12. 77 FR 41400 - AV Solar Ranch 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission AV Solar Ranch 1, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of AV Solar Ranch 1, LLC's application for market-based rate authority, with...

  13. 77 FR 26538 - Topaz Solar Farms LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Topaz Solar Farms LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Topaz Solar Farms LLC's application for market-based rate authority, with...

  14. 78 FR 62301 - Mountain View Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mountain View Solar, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding, of Mountain View Solar, LLC's application for market-based rate authority, with...

  15. 75 FR 60444 - Arizona Solar One LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Energy Regulatory Commission Arizona Solar One LLC; Supplemental Notice That Initial Market- Based Rate... notice in the above-referenced proceeding of Arizona Solar One LLC's application for market-based rate... authorization, under 18 CFR Part 34, of future issuances of securities and assumptions of liability. Any...

  16. 76 FR 26282 - NRG Solar Roadrunner LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission NRG Solar Roadrunner LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of NRG ] Solar Roadrunner LLC's application for market-based rate authority, with...

  17. 76 FR 30935 - Long Island Solar Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Long Island Solar Farm, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Long Island Solar Farm, LLC's application for market-based rate...

  18. 76 FR 55378 - Yamhill Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Yamhill Solar, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Yamhill Solar, LLC's application for market-based rate authority, with...

  19. 76 FR 3624 - 3C Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 3C Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing... the above-referenced proceeding 3C Solar LLC's application for market-based rate authority, with...

  20. 78 FR 18584 - Spectrum Nevada Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Spectrum Nevada Solar, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Spectrum Nevada Solar, LLC's application for market-based rate...