Science.gov

Sample records for a-si photovoltaic manufacturing

  1. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Annual subcontractor report, 1 April 1992--31 March 1993

    SciTech Connect

    Izu, M.

    1993-12-01

    This report describes work done under a 3-year program to advance ECD`s roll-to-roll, triple-junction photovoltaic manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Accomplishments during Phase 1 included: (1) ECD successfully incorporated a high-performance Ag/metal-oxide back-reflector system into its continuous roll-to-roll commercial production operation. (2) High-quality a-Si-Ge narrow-band-gap solar cells were incorporated into the manufacturing. (3) ECD demonstrated the continuous roll-to-roll production of high-efficiency, triple-junction, two-band-gap solar cells consistently and uniformly throughout a 762-m (2500-ft) run with high yield. (4) ECD achieved 11.1% initial sub-cell efficiency of triple-junction, two-band-gap a-Si alloy solar cells in the production line. (5) The world`s first 0.37-m{sup 2} (4-ft{sup 2}) PV modules were produced utilizing triple-junction spectrum-splitting solar cells manufactured in the production line. (6) As a result of process optimization to reduce the layer thickness and to improve the gas utilization, ECD achieved a 77% material cost reduction for germane and 58% reduction for disilane. Additionally, ECD developed a new low-cost module that saves approximately 30% in assembly material costs.

  2. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Semiannual technical progress report, 1 April 1992--30 September 1992

    SciTech Connect

    Izu, M.

    1993-04-01

    This report describes work performed by ECD to advance its roll-to-roll, triple-junction photovoltaic manufacturing technologies; to reduce the module production costs; to increase the stabilized module performance; and to expand the commercial capacity utilizing ECD technology. The 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1/W{sub p}. Major efforts during Phase I are (1) the optimization of the high-performance back-reflector system, (2) the optimization of a-Si-Ge narrow band-gap solar cell, and (3) the optimization of the stable efficiency of the module. The goal is to achieve a stable 8% efficient 0.3-m {times} 1.2-m (1-ft {times} 4-ft) module. Also, the efforts include work on a proprietary, high-deposition-rate, microwave plasma, CVD manufacturing technology; and on the investigation of material cost reduction.

  3. Photovoltaic manufacturing technology

    SciTech Connect

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  4. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  5. Photovoltaic Manufacturing Technology Phase 1

    SciTech Connect

    Stern, M.J. )

    1991-11-01

    This report documents Utility Power Group's (UPG) contract under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) project. Specifically, the report contains the results of a manufacturing technology cost analysis based on an existing PV module production facility. It also projects the cost analysis of a future production facility based on a larger module area, a larger production rate, and the elimination of several technical obstacles. With a coordinated 18-month engineering effort, the technical obstacles could be overcome. Therefore, if solutions to the financial obstacles concerning production expansion were found, UPG would be able to manufacture PV modules at a cost of under $1.25 per watt by 1994.

  6. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Izu, M. )

    1992-03-01

    This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

  7. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  8. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  9. Economics of Future Growth in Photovoltaics Manufacturing

    SciTech Connect

    Basore, Paul A.; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade's record of growth in the photovoltaics manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.

  10. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  11. Multijunction photovoltaic device and method of manufacture

    DOEpatents

    Arya, Rejeewa R.; Catalano, Anthony W.; Bennett, Murray

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  12. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect

    Easoz, J.R.; Herlocher, R.H. )

    1991-12-01

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  13. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Somberg, H. )

    1991-11-01

    This report describes existing integrated processes for solar cell manufacturing and lists as the primary opportunity for improvement the following areas: low-cost silicon sheets with improved characteristics; improved large-scale and automated solar cell processes that can lead to cell efficiencies in the range of 14% (encapsulated) for direct-cast wafers; improved handling and lamination of large-area modules for the emerging utility market. The proposed solutions can lead to finished module costs on the order of $1.55 per square meter or a selling price of less than $2.00/Watt. The problems that may be considered generic to the industry and that have been addressed in this work are as follows: gettering and passivation of silicon wafers; spray-on passivation layers; dual antireflection coatings; ink-jet printing of metallizations; and automated handling of large-area modules and associated vertical lamination. 14 refs.

  14. Photovoltaic industry manufacturing technology. Final report

    SciTech Connect

    Vanecek, D.; Diver, M.; Fernandez, R.

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  15. Solid state laser applications in photovoltaics manufacturing

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  16. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  17. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    ERIC Educational Resources Information Center

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  18. Deposition of a-Si:H devices in a RTR system for photovoltaic and macroelectronic applications

    SciTech Connect

    Scholz, M.; Peros, D.; Boehm, M.

    1999-07-01

    This work presents first results of potential manufacturing processes for integrated series connected hydrogenated amorphous silicon (a-Si:H) thin film solar modules and/or pin-diode/TFT based macroelectronic circuits on flexible tapes. A RTR (Reel-To-Reel) deposition system on laboratory scale has been built. The system consists of seven metal sealed UHV stainless steel chambers to obtain ultra high vacuum as a basis for high quality a-Si:H layers. In order to support continuous movement of the tape in the RTR process the chambers cannot be isolated from each other. The necessary pressure difference between the sputtering chambers and the PECVD (Plasma Enhanced Chemical Vapor Deposition) chambers is provided by pressure stages. They are optimized for high molecular flow resistance without any influence on the moving substrate tape. The back metal contacts and the semitransparent TCO (Transparent Conductive Oxide) contacts are deposited by rf magnetron sputtering, the a-Si:H film system is deposited by PECVD. Parallel to the film deposition a Nd:YAG laser patterning system is coupled into one chamber. This allows for instance a total manufacturing of integrated series connected solar modules in one system without breaking the vacuum. The present investigations focus on the deposition of doped and intrinsic high quality a-Si:H based layers in neighboring chambers. The quality of semiconducting films deposited in adjacent chambers is studied with regard to potential contamination effects.

  19. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  20. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  1. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  2. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  3. Progress update on the US photovoltaic manufacturing technology project

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P.

    1997-10-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is helping the U.S. photovoltaic (PV) industry extend its world leadership role in manufacturing and stimulate the commercial development of PV modules and systems. Initiated in 1990, PVMaT is being carried out in several directed and staggered phases to support industry`s continued progress. Thirteen subcontracts awarded in FY 1996 under Phase 4A emphasize improvement and cost reduction in the manufacture of full-system PV products. Areas of work in Phase 4A included, but were not limited to, issues such as improving module-manufacturing processes; system and system-component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements. These Phase 4A, product-driven manufacturing research and development (R&D) activities are now completing their second phase. Progress under these Phase 4A and remaining Phase 2B subcontracts from the earlier PVMaT solicitation are summarized in this paper. Evaluations of the success of this project have been carried out in FY 1995 and late FY 1996. This paper examines the 1997 cost/capacity data that have been collected from active PVMaT manufacturers.

  4. Photovoltaic Manufacturing Technology report, Phase 1

    SciTech Connect

    Mason, A.V.; Lillington, D.R.

    1992-10-01

    This report describes subcontracted research by Spectrolab, Inc., to address tasks outlined in the National Renewable Energy Laboratory's (NREL) Letter of solicitation RC-0-10057. These tasks include the potential of making photovoltaics (PV) a more affordable energy source, as set forth in the goal of the PVMaT project. Spectrolab believes that the DOE cost goals can be met using three different types of cells: (1) silicon concentrator cells, (2) high efficiency GaAs concentrator cells, and (3) mechanically stacked multijunction cells.

  5. Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology

    NASA Astrophysics Data System (ADS)

    Izu, M.; Ovshinsky, S. R.; Deng, X.; Krisko, A.; Ovshinsky, H. C.; Narasimhan, K. L.; Young, R.

    1994-06-01

    Energy Conversion Devices, Inc. (ECD) has designed and constructed a 2 Megawatt (mW) manufacturing line that produces triple-junction spectrum-splitting a-Si alloy solar cells in a continuous roll-to-roll process. This manufacturing line has reliably and consistently produced high efficiency solar cells. We have demonstrated the production of 4ft 2 triple-junction two band-gap a-Si alloy PV production modules with 8% stable aperture area efficiency. The production line has successfully incorporated: 1) a band-gap profiled a-Si-Ge narrow band-gap solar cell deposited in a continuous roll-to-roll process using a proprietary gas distribution manifold and cathode configuration; and 2) a textured Ag/ZnO back-reflector deposited in a continuous roll-to-roll sputtering machine with production subcell yields greater than 99%.

  6. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  7. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  8. Silicon Film[trademark] photovoltaic manufacturing technology

    SciTech Connect

    Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. )

    1993-04-01

    This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

  9. Benefits from the U.S. photovoltaic manufacturing technology project

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P.

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  10. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    NASA Astrophysics Data System (ADS)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-11-01

    The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a battery cycler system, and the behavior of high power LFP batteries in a time sequence of 7.2 h was evaluated. The charging and discharging cycles were obtained and their behavior was discussed. According to the results, Istanbul has the lowest number of peak month's energy, it followed by Ankara, and ultimately Adana has the highest number of peak months and energy storage. It was observed during the tests that values up to 4 A was

  11. Continuous roll-to-roll serpentine deposition for high throughput a-Si PV manufacturing

    SciTech Connect

    Izu, M.; Ovshinsky, H.C.; Deng, X.; Krisko, A.J.; Narasimhan, K.L.; Crucet, R.; Laarman, T.; Myatt, A.; Ovshinsky, S.R.

    1994-12-31

    In order to further improve the economies of scale which are inherent in ECD`s continuous roll-to-roll amorphous silicon alloy solar cell manufacturing process, the authors have developed a concept for a serpentine web plasma CVD deposition process to maximize throughput while keeping the size of the deposition chambers small. When this technique is incorporated into a continuous roll-to-roll PV manufacturing process, it will maximize the throughput for a high volume production plant, reduce the machine cost, improve gas utilization, reduce power consumption, and improve the solar cell stability. To demonstrate the serpentine web deposition concept, the authors have constructed a single loop serpentine deposition chamber to deposit a-Si for n-i-p structure solar cells. During the initial process of optimization, they have produced single-junction a-Si solar cells with 8.6% efficiency, and triple-junction a-Si solar cells with a 9.5% initial efficiency, where the top cell intrinsic layer was deposited in the serpentine deposition chamber.

  12. Photovoltaic manufacturing: Present status, future prospects, and research needs

    SciTech Connect

    Wolden, C.A.; Fthenakis, V.; Kurtin, J.; Baxter, J.; Repins, I.; Shasheen, S.; Torvik, J.; Rocket, A.; Aydil, E.

    2011-03-29

    In May 2010 the United States National Science Foundation sponsored a two-day workshop to review the state-of-the-art and research challenges in photovoltaic (PV) manufacturing. This article summarizes the major conclusions and outcomes from this workshop, which was focused on identifying the science that needs to be done to help accelerate PV manufacturing. A significant portion of the article focuses on assessing the current status of and future opportunities in the major PV manufacturing technologies. These are solar cells based on crystalline silicon (c-Si), thin films of cadmium telluride (CdTe), thin films of copper indium gallium diselenide, and thin films of hydrogenated amorphous and nanocrystalline silicon. Current trends indicate that the cost per watt of c-Si and CdTe solar cells are being reduced to levels beyond the constraints commonly associated with these technologies. With a focus on TW/yr production capacity, the issue of material availability is discussed along with the emerging technologies of dye-sensitized solar cells and organic photovoltaics that are potentially less constrained by elemental abundance. Lastly, recommendations are made for research investment, with an emphasis on those areas that are expected to have cross-cutting impact.

  13. Structural and photovoltaic properties of a-Si (SNc)/c-Si heterojunction fabricated by EBPVD technique

    NASA Astrophysics Data System (ADS)

    Demiroǧlu, D.; Tatar, B.; Kazmanli, K.; Urgen, M.

    2013-12-01

    In last two decades sculptured thin films are very attractive for researches. Some properties of these thin films, like high porosity correspondingly high large surface area, controlled morphology; bring into prominence on them. Sculptured thin films have wide application areas as electronics, optics, mechanics, magnetic and chemistry. Slanted nano-columnar (SnC) thin films are a type of sculptured thin films. In this investigation SnC thin films were growth on n-type crystalline Si(100) and p-type crystalline Si(111) via ultra-high vacuum electron beam evaporation technique. The structural and morphological properties of the amorphous silicon thin films were investigated by XRD, Raman and FE-SEM analysis. According to the XRD and Raman analysis the structure of thin film was amorphous and FE-SEM analysis indicated slanted nano-columns were formed smoothly. Slanted nano-columns a-Si/c-Si heterojunction were prepared as using a photovoltaic device. In this regard we were researched photovoltaic properties of these heterojunction with current-voltage characterization under dark and illumination conditions. Electrical parameters were determined from the current-voltage characteristic in the dark conditions zero-bias barrier height ΦB0 = 0.83-1.00eV; diode ideality factor η = 11.71-10.73; series resistance Rs = 260-31.1 kΩ and shunt resistance Rsh = 25.71-63.5 MΩ SnC a-Si/n-Si and SnC a-Si/p-Si heterojunctions shows a pretty good photovoltaic behavior about 103- 104 times. The obtained photovoltaic parameters are such as short circuit current density Jsc 83-40 mA/m2, open circuit voltage Voc 900-831 mV.

  14. Amorphous silicon photovoltaic manufacturing technology, phase 2A

    NASA Astrophysics Data System (ADS)

    Duran, G.; Mackamul, K.; Metcalf, D.

    1995-01-01

    Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase 1. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase 1 into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.

  15. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure.

    PubMed

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-06-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure" (Kichou et al., 2016) [1].

  16. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    PubMed

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV.

  17. Manufacturing cost analysis for photovoltaic concentrator tracking structures

    NASA Astrophysics Data System (ADS)

    Heller, B.; Pass, N.; Blackwell, R.

    1983-11-01

    Detailed manufacturing, transportation and installation costs are developed for the current design of three different photovoltaic concentrator tracking structures at a production rate of 10 to the 5th power/sq m per year. These costs are combined with array field performance estimates to obtain cost per watt and levelized energy costs for 500 kW fields. Installed structure costs for the three arrays (including G and A and profit but not module FOB costs) range from $166 to $208/sqm, or $1.04 to $1.28/W sub ap in 1982 dollars. The pedestal tracking structure has a lower cost than the post/frame or pylon/torque tube arrays.

  18. Thermal stability of photovoltaic a-Si:H determined by neutron reflectometry

    SciTech Connect

    Qviller, A. J. Haug, H.; You, C. C.; Hasle, I. M.; Marstein, E. S.; Frommen, C.; Hauback, B. C.; Dennison, A. J. C.; Vorobiev, A.; Østreng, E.; Fjellvåg, H.; Hjörvarsson, B.

    2014-12-08

    Neutron and X-ray reflectometry were used to determine the layer structure and hydrogen content of thin films of amorphous silicon (a-Si:H) deposited onto crystalline silicon (Si) wafers for surface passivation in solar cells. The combination of these two reflectometry techniques is well suited for non-destructive probing of the structure of a-Si:H due to being able to probe buried interfaces and having sub-nanometer resolution. Neutron reflectometry is also unique in its ability to allow determination of density gradients of light elements such as hydrogen (H). The neutron scattering contrast between Si and H is strong, making it possible to determine the H concentration in the deposited a-Si:H. In order to correlate the surface passivation properties supplied by the a-Si:H thin films, as quantified by obtainable effective minority carrier lifetime, photoconductance measurements were also performed. It is shown that the minority carrier lifetime falls sharply when H has been desorbed from a-Si:H by annealing.

  19. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  20. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    SciTech Connect

    Peters, E.M.; Masso, J.D.

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  1. Experience Scaling Up Manufacturing of Emerging Photovoltaic Technologies

    SciTech Connect

    Braun, G. W.; Skinner, D. E.

    2007-01-01

    This report examines two important generic photovoltaic technologies at particularly revealing stages of development, i.e., the stages between R&D and stable commercial production and profitable sales. Based on two historical cases, it attempts to shed light on the difference between: (1) costs and schedules validated by actual manufacturing and market experience, and (2) estimated costs and schedules that rely on technology forecasts and engineering estimates. The amorphous Silicon case also identifies some of the costs that are incurred in meeting specific market requirements, while the Cadmium Telluride case identifies many of the operational challenges involved in transferring R&D results to production. The transition between R&D and commercial success takes a great deal of time and money for emerging energy conversion technologies in general. The experience reported here can be instructive to those managing comparable efforts, and to their investors. It can also be instructive to R&D managers responsible for positioning such new technologies for commercial success.

  2. Manufacturing and photoelectrical properties of P-doped a-Si:H thin films deposited by PECVD

    NASA Astrophysics Data System (ADS)

    Liao, Naiman; Li, Wei; Jiang, Yadong; Kuang, Yuejun; Qi, Kangcheng; Wu, Zhiming; Li, Shibin

    2007-12-01

    The effect of gas temperature (T g) on surface morphology, surface roughness, photoelectrical performances of a-Si:H thin films deposited by PECVD at 250°C substrate temperature has been investigated by atomic force microscopy, spectrometric ellipsometry and semiconductor characterization system, respectively. It is found that the surface morphology and density (ρ) as well as the photoelectrical properties such as refractive index (n), dark conductivity (σ), temperature coefficient of resistance (TCR) and activation energy (E a) remarkably depend on T g of SiH 4 fed in reaction chamber. The higher the T g, the larger the clusters of a-Si:H thin films deposited. Also, refractive index of a-Si:H thin films increase as T g rises and the relationship between T g enhancement of n and the densification of the films is observed. It is indicated that σ varies by two orders of magnitude but TCR decreases by 1.6 %/°C, and E a gradually decreases linearly from 289.0 to 138.1 meV with T g varying from room temperature to 160°C. The results of present study suggest that T g in PECVD chamber plays an important role in the deposition of a-Si:H thin films and directly affects the surface morphology and photoelectrical properties of films. Control of surface morphology, photoelectrical properties of a-Si:H thin films through changing T g can be usefully applied to the manufacturing of photoelectrical devices.

  3. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report

    SciTech Connect

    Moskowitz, P.D.; Zweibel, K.

    1992-10-01

    Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  4. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes

    SciTech Connect

    Moskowitz, P.D.; Zweibel, K.

    1992-01-01

    Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  5. Large lateral photovoltaic effect in µc-SiOx:H/a-Si:H/c-Si p-i-n structure

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Chen, Jianhui; Liu, Jihong; Zhang, Xinhui; Wang, Shufang; Fu, Guangsheng

    2016-03-01

    In this paper, we report on a large lateral photovoltaic effect (LPE) in a hydrogenated microcrystal silicon-oxygen (µc-SiOx:H)-based p-i-n structure. Compared with LPE in a hydrogenated amorphous silicon (a-Si:H)-based p-i-n structure, this structure showed an abnormal current-voltage (I-V) curve with a lower photoelectric conversion efficiency, but exhibited a much higher LPE with the highest position sensitivity of 64.3 mV/mm. We ascribe this to the enhancement of the lateral gradient of excess transmitted carriers induced by increasing both Schottky barrier and p-type layer body conductivity. Our results suggest that this µc-SiOx:H-based p-i-n structure may be a promising candidate for position-sensitive detectors (PSDs). Moreover, our results may also imply that solar cell devices with abnormal I-V curves (or low efficiency) could find their new applications in other aspects.

  6. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  7. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    SciTech Connect

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  8. Economics of Future Growth in Photovoltaics Manufacturing; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Basore, Paul; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade’s record of growth in the photovoltaic manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.

  9. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH's concentrator module

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. )

    1991-11-01

    This final technical report documents ENTECH's Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  10. US manufacturers of commercially available stand-alone photovoltaic lighting systems

    SciTech Connect

    McNutt, P

    1994-05-01

    This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

  11. Recent progress in the photovoltaic manufacturing technology project (PVMaT)

    SciTech Connect

    Witt, C.E.; Mitchell, R.L.; Thomas, H. ); Herwig, L.O. ); Ruby, D.S. ); Sellers, R.

    1994-12-09

    The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

  12. Photovoltaic manufacturing technology, Phase 1. Final technical report, 1 May 1991--10 May 1991

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS ``Eureka`` facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the ``Eureka`` facility to Chronar`s ``batch`` plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  13. Capital intensity of photovoltaics manufacturing: Barrier to scale and opportunity for innovation

    SciTech Connect

    Powell, Douglas M.; Fu, Ran; Horowitz, Kelsey; Basore, Paul A.; Woodhouse, Michael; Buonassisi, Tonio

    2015-09-07

    In this study, using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation.

  14. Photovoltaic manufacturing technology (PVMaT) improvements for ENTECH{close_quote}s fourth-generation concentrator systems

    SciTech Connect

    ONeill, M.J.; McDanal, A.J.

    1997-02-01

    This paper describes recent improvements in manufacturing technology for fourth-generation photovoltaic concentrator systems. The fourth-generation systems are firmly based on prior generations of a field-proven, high-efficiency, stable photovoltaic technology. The fourth-generation manufacturing process has been streamlined and validated through pilot runs and field deployments. Future plans include a 1.5 MW installation in 1998, as part of the Solar Enterprise Zone (SEZ) program in Nevada. {copyright} {ital 1997 American Institute of Physics.}

  15. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    SciTech Connect

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  16. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  17. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  18. Toxicology of tetramethyltin and other organometals used in photovoltaic cell manufacture

    NASA Astrophysics Data System (ADS)

    Hamilton, L. D.; Medeiros, W. H.; Moskowitz, P. D.; Rybicka, K.

    1988-07-01

    In photovoltaic cell fabrication, organometals (alkyl metals) may be used in such processes as metalorganic chemical vapor deposition, transparent contact oxide deposition, doping, and ion implantation. Although these compounds offer potential performance advantages over earth metals and possibly greater safety in handling than metal hydrides, they are not without risk to health and property. Most organometals can ignite spontaneously in air. Some also react violently with water. Oxidation by-products from these reactions are hazardous to health. Of the organometals used in photovoltaic cell fabrication, only the toxicology of organotins (triethyl-, trimethyl- and tetramethyltin) was studied extensively. In mammalian systems, tetramethyltin is rapidly dealkylated to trimethyltin. Although tin was classified by some investigators as an essential trace element, the effects of organotin compounds on humans are poorly known. Animal studies show that the most prominent effects of trimethyltin are on the central nervous system. Several observations of poisoning were reported; effects ranged from reversible neurologic disorders to death. Limited available data suggest that humans respond to single acute doses and more alarmingly to repeated sub-toxic doses, suggesting a cumulative effect. Toxicologic properties of diethyltelluride also were evaluated in animal experiments. The compound had toxic effects on the blood, liver, kidney, heart, and skin. Based on these studies and others of related compounds (e.g., methylmercury, tributyltin) extreme caution should be exercised in using organometal compounds in photovoltaic cell manufacturing.

  19. Study of locally manufactured motor vehicle batteries in stand alone home photovoltaic systems

    SciTech Connect

    Fernandez, S.

    1999-07-01

    Analysis of voltage, current, specific gravity, and temperature was performed on locally manufactured lead acid batteries operating in stand alone home photovoltaic (SAHPV) systems in the Dominican Republic. While voltage, charge/discharge current, and specific gravity of most batteries were within reasonable limits, there were indications of batteries spending an excessive time discharged and some incidents of overcharge. During charging above 1 amp, ambient temperatures were 6 to 13 C above the optimal operating temperature (25 C) and battery temperatures were 9 to 20 C above 25 C. Examination of worn out batteries from these SAHPV systems revealed that the majority had deteriorated positive plates and/or sulfation, while a smaller number showed signs of spalling. High temperature was determined to be a significant factor contributing to the premature failure of locally manufactured lead acid batteries operating in these systems.

  20. Photovoltaic Czochralski silicon manufacturing technology improvements. Annual subcontract report, 1 April 1993--31 March 1994

    SciTech Connect

    Jester, T.

    1995-03-01

    This report describes work performed under a 3-year, 3-phase, cost-share contract to demonstrate significant cost reductions and improvements in manufacturing technology. The objective of the program is to reduce costs in photovoltaic manufacturing by approximately 10% per year. The work was focused in three main areas: (1) silicon crystal growth and thin wafer technology; (2) silicon cell processing; and (3) silicon module fabrication and environmental, safety, and health issues. During this reporting period, several significant improvements were achieved. The crystal growing operation improved significantly with an increase in growth capacity due to larger crucibles, higher polysilicon packing density, and high pull speeds. Wafer processing with wire saws progressed rapidly, and the operation is completely converted to wire saw wafer processing. The wire saws yield almost 50% more wafers per inch in production, thus improving manufacturing volume by 50% without any additional expense in crystal growth. Cell processing improvements focused on better understanding the contact paste and firing processes. Module designs for lower material and labor costs began with the focus on a new junction box, larger modules with larger cells, and a less costly framing technique. In addition, chlorofluorocarbon (CFC) usage was completely eliminated in the Siemens manufacturing facility during this period, resulting in significant reductions in the cost of caustic waste treatment.

  1. Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.

    2010-09-01

    In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.

  2. Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308

    SciTech Connect

    van Hest, M.; Ginley, D.

    2013-06-01

    Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

  3. Properties of a-SiGe Thin Films on Glass by Co-Sputtering for Photovoltaic Absorber Application.

    PubMed

    Shahahmadi, S A; Yeganeh, B; Huda, N; Asim, N; Hafidz, M; Alam, M M; Alothman, Z A; Sopian, K; Amin, N

    2015-11-01

    Non-hydrogenated amorphous Silicon-Germanium (a-SiGe) thin films were deposited at two different base pressures by RF magnetron co-sputtering. Moreover, an ex-situ thermal annealing was carried out to investigate the material properties to be suitable as the bottom cell of multi-junction solar cells. Compositional study of the films using EDX showed Ge-rich thin films with 75 atomic% of Ge. XRD reflection study implied that all samples were entirely amorphous in nature. However, a significant improvement of morphology possibly due to low base pressure was observed while thermal annealing caused peening and reduction of surface inhomogeneity in both as-sputtered films. UV-VIS-IR analysis confirmed the FESEM results. The highest transmittance was observed in the as-deposited sample grown at 4 x 10(-5) Torr, which however reduced after thermal annealing. Tauc's model was implied for band gap determination and band gap energy as low as 1.07 eV was found in the annealed sample grown at lower base pressure (4 x 10(-6) Torr). Electrical properties of films were investigated by Hall effect measurement system and results found the reduction of resistivity with the same trend of optical band gap energy.

  4. Properties of a-SiGe Thin Films on Glass by Co-Sputtering for Photovoltaic Absorber Application.

    PubMed

    Shahahmadi, S A; Yeganeh, B; Huda, N; Asim, N; Hafidz, M; Alam, M M; Alothman, Z A; Sopian, K; Amin, N

    2015-11-01

    Non-hydrogenated amorphous Silicon-Germanium (a-SiGe) thin films were deposited at two different base pressures by RF magnetron co-sputtering. Moreover, an ex-situ thermal annealing was carried out to investigate the material properties to be suitable as the bottom cell of multi-junction solar cells. Compositional study of the films using EDX showed Ge-rich thin films with 75 atomic% of Ge. XRD reflection study implied that all samples were entirely amorphous in nature. However, a significant improvement of morphology possibly due to low base pressure was observed while thermal annealing caused peening and reduction of surface inhomogeneity in both as-sputtered films. UV-VIS-IR analysis confirmed the FESEM results. The highest transmittance was observed in the as-deposited sample grown at 4 x 10(-5) Torr, which however reduced after thermal annealing. Tauc's model was implied for band gap determination and band gap energy as low as 1.07 eV was found in the annealed sample grown at lower base pressure (4 x 10(-6) Torr). Electrical properties of films were investigated by Hall effect measurement system and results found the reduction of resistivity with the same trend of optical band gap energy. PMID:26726682

  5. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark David (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2014-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  6. Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2012-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  7. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2013-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.

  8. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2013-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substrate particles to the at least one first conductor; converting the plurality of substrate particles into a plurality of diodes; forming at least one second conductor coupled to the plurality of spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer, with the lenses and the suspending polymer having different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.

  9. Photovoltaic manufacturing technology (PVMaT). Annual subcontract report, March 31, 1994--June 30, 1995

    SciTech Connect

    Holley, W A

    1996-01-01

    This report describes work performed under a subcontract to the National Renewable Energy Laboratory under the Photovoltaic Manufacturing Technology Project. The objectives of this subcontract are to (1) define the problem of yellowing/browning of EVA-based encapsulants; (2) determine probable mechanisms and the role of various parameters such as heat, UV exposure, module construction, EVA interfaces, and EVA thickness, in the browning of EVA-based encapsulants; (3) develop stabilization strategies for various module constructions to protect the encapsulant from degradative failure; (4) conduct laboratory, accelerated outdoor, and field testing of encapsulant, laminated test coupons, and full modules to demonstrate the functional adequacy of the stabilization strategies; and (5) implement these strategies. This report summarizes the accomplishments related to the above goals for the reporting period.

  10. Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001

    SciTech Connect

    Ellison, T.

    2002-04-01

    This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

  11. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    SciTech Connect

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-07-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

  12. Cadmium telluride photovoltaic manufacturing technology. Annual subcontract report, 7 January 1994--6 January 1995

    SciTech Connect

    Weisiger, D.; Albright, S.P.; Brines, J.; Thompson, R.

    1995-11-01

    This report describes work performed by Golden Photon, Inc. (GPI), to conduct research under the PVMaT program, Phase 2B. The objective of the research is to advance GPI`s manufacturing technology, reduce module production costs, increase average module performance, and identify ways to expand production capacity. More specifically, the tasks established for Phase I were to design and install leasehold improvements for the 2-MW production line; to improve and develop product design, efficiency, and marketability; to ensure uninterrupted qualified supplies and raw materials for production; to address environmental, health, and safety issues encountered during production of photovoltaic modules; and to reduce the cost of manufacturing modules. During the first half of this reporting period, the development, design, and debugging of cell interconnection equipment critical to start-up was completed. During the second and third quarters, the primary focus was on the substrate deposition steps (tin oxide, cadmium sulfide, and cadmium telluride) and cell interconnection steps (division). In general, process development, engineering, and quality teams continued to focus on identifying, baselining, and improving (through redesign) actual process equipment operation parameters to meet the required PV panel specifications and improve process throughput rates and yields.

  13. Photovoltaic device with increased light absorption and method for its manufacture

    SciTech Connect

    Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  14. Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures

    SciTech Connect

    Coggeshall, C.; Margolis, R. M.

    2010-03-01

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

  15. Amorphous silicon photovoltaic manufacturing technology, Phase 2A. Semiannual subcontract report, 1 May 1993--31 October 1993

    SciTech Connect

    Duran, G.; Mackamul, K.; Metcalf, D.; Volltrauer, H.

    1994-04-01

    Utility Power Group (UPG) and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS), continued work to develop their manufacturing lines. UPG focused on the automation of encapsulation and termination processes developed in Phase 1. APS focused on completion of the encapsulation and module design tasks while continuing process quality control, and automation projects. The goal is to produce 55-W (stabilized) EP50 modules in a new facility.

  16. High-throughput manufacturing of thin-film CdS/CdTe photovoltaic modules. Annual subcontract report, 16 September 1996--15 January 1998

    SciTech Connect

    Sandwisch, D.W.

    1998-08-01

    Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. Solar Cells, Inc., has developed this technology and is scaling its pilot production capabilities to a multi-megawatt level. The Photovoltaic Manufacturing Technology (PVMaT) subcontract supports these efforts. Activities during the third phase of the program concentrated on process development, equipment design and testing, quality assurance, ES and H programs, and large-scale next-generation coating-system prototype development. These efforts broadly addressed the issues of the manufacturing process for producing thin-film, monolithic CdS/CdTe photovoltaic modules.

  17. Laser processing of organic photovoltaic cells with a roll-to-roll manufacturing process

    NASA Astrophysics Data System (ADS)

    Petsch, Tino; Haenel, Jens; Clair, Maurice; Keiper, Bernd; Scholz, Christian

    2011-03-01

    Flexible large area organic photovoltaic (OPV) is currently one of the fastest developing areas of organic electronics. New light absorbing polymer blends combined with new transparent conductive materials provide higher power conversion efficiencies while new and improved production methods are developed to achieve higher throughput at reduced cost. A typical OPV is formed by TCO layers as the transparent front contact and polymers as active layer as well as interface layer between active layer and front contact. The several materials have to be patterned in order to allow for a row connection of the solar cell. 3D-Micromac used ultra-short pulsed lasers to evaluate the applicability of various wavelengths for the selective ablation of the indium tin oxide (ITO) layer and the selective ablation of the bulk hetero junction (BHJ) consisting of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) on top of a Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) without damaging the ITO. These lasers in combination with high performance galvanometer scanning systems achieve superior scribing quality without damaging the substrate. With scribing speeds of 10 m/s and up it is possible to integrate this technology into a roll-to-roll manufacturing tool. The functionality of an OPV usually also requires an annealing step, especially when using a BHJ for the active layer consisting of P3HT:PCBM, to optimize the layers structure and therewith the efficiency of the solar cell (typically by thermal treatment, e.g. oven). The process of laser annealing was investigated using a short-pulsed laser with a wavelength close to the absorption maximum of the BHJ.

  18. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, 1 January 1996--31 December 1996

    SciTech Connect

    Wohlgemuth, J.

    1997-10-01

    This report describes Solarex`s accomplishments during this phase of the Photovoltaic Manufacturing Technology (PVMaT) program. During this reporting period, Solarex researchers converted 79% of production casting stations to increase ingot size and operated them at equivalent yields and cell efficiencies; doubled the casting capacity at 20% the cost of buying new equipment to achieve the same capacity increase; operated the wire saws in a production mode with higher yields and lower costs than achieved on the ID saws; purchased additional wire saws; developed and qualified a new wire-guide coating material that doubles the wire-guide lifetime and produces significantly less scatter in wafer thickness; ran an Al paste back-surface-field process on 25% of all cells in manufacturing; completed environmental qualification of modules using cells produced by an all-print metallization process; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; substituted RTV adhesive for the 3M Very High Bond tape after several field problems with the tape; demonstrated the operation of a prototype unit to trim/lead attach/test modules; demonstrated the use of light soldering for solar cells; demonstrated the operation of a wafer pull-down system for cassetting wet wafers; and presented three PVMaT-related papers at the 25th IEEE Photovoltaic Specialists Conference.

  19. Eco green flexible hybrid photovoltaic-thermoelectric solar cells with nanoimprint technology and roll-to-roll manufacturing

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Choi, Sang H.

    2010-04-01

    This paper explores the technical and commercial feasibility of nanotechnology based, high-efficiency, photovoltaic-thermoelectric hybrid solar cells as an environmentally-friendly, renewable energy source for residential and commercial buildings. To convert as much as possible of the usable photovoltaic (58% of the Energy Density) and thermoelectric (42% of the Energy Density) solar spectrum into electricity, a hybrid multilayer system is presented which comprises of 1) carbon nanotube (CNT) embedded in conducting polymers such as P3HT (poly(3-hexylthiophene) or P3OT (poly3-octylthiophene), 2) 3D gold nanostructures exhibiting plasmonic resonances for energy conversion, 3) nanoantenna architecture to capture IR energy, 4) a composite of Bi2Te3, SiGe nanocrystals and Au nanoshells as thermoelectric energy conversion layer, 5) configuration of the above items engineered in the form of meta-material designs that by virtue of their 3D structures ensure that incident light is neither reflected nor transmitted, but is rather all absorbed, 6) a multilayer arrangement of the above layers in a fractal architecture to capture all the wavelengths from 200 to 3000 nm8 and the matching electronic interface for each layer. The roll-to-roll manufacturing method presented will enable economical large-scale production of solar panels. This potentially transformational technology has the ability to replace the Si solar cell technology by reducing costs from 0.18/KWh to 0.003/KWh while introducing a more environmentally-friendly manufacturing process.

  20. Amorphous silicon photovoltaic manufacturing technology - Phase 2A. Annual subcontract report, May 1, 1993--April 30, 1994

    SciTech Connect

    Duran, G.; Mackamul, K.; Metcalf, D.

    1995-01-01

    Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase I. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase I into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.

  1. Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    SciTech Connect

    Stoddard, Nathan G

    2014-01-14

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  2. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G.

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  3. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH`s concentrator module. Final technical report, 9 January 1991--14 April 1991

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R.

    1991-11-01

    This final technical report documents ENTECH`s Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  4. Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology. Semiannual subcontract report, 1 April 1993--30 September 1993

    SciTech Connect

    Izu, M

    1994-06-01

    This report describes work for this reporting period under a 3-year program to advance Energy Conversion Device`s (ECD) roll-to-roll, triple-junction photovoltaic (PV) manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial production capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Major accomplishments during this reporting period include (1) the design, construction. amd testomg of a continuous roll-to-roll multipurpose amorphous silicon alloy solar cell deposition machine that incorporates improvements necessary to obtain higher efficiency solar cells; (2) development of a photothermal deflection spectroscopy (PDS) technique for evaluating back-reflector systems; (3) the development of an improved textured Ag/ZnO back-reflector system demonstrating 25% gain in J{sub sc} over previous textured Al back-reflector systems; and (4) the design of a serpentine web continuous roll-to-roll deposition chamber.

  5. In situ optical diagnostic for monitoring or control of sodium diffusion in photovoltaics manufacturing

    SciTech Connect

    Li, Jian; Levi, Dean; Contreras, Miguel; Glynn, Stephen

    2015-09-15

    A method of fabricating a photovoltaic device 100, includes the steps of providing a glass substrate 102, depositing a molybdenum layer 104 on a surface of the glass substrate, directing light through the glass substrate to the near-substrate region of the molybdenum layer 206, detecting an optical property of the near-substrate region of the molybdenum layer after interaction with the incident light 208 and determining a density of the near-substrate region of the molybdenum layer from the detected optical property 210. A molybdenum deposition parameter may be controlled based upon the determined density of the near-substrate region of the molybdenum layer 218. A non-contact method measures a density of the near-substrate region of a molybdenum layer and a deposition chamber 300.

  6. Spectroscopic ellipsometry as a process control tool for manufacturing cadmium telluride thin film photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Smith, Westcott P.

    In recent decades, there has been concern regarding the sustainability of fossil fuels. One of the more promising alternatives is Cadmium Telluride (CdTe) thin-film photovoltaic (PV) devices. Improved quality measurement techniques may aid in improving this existing technology. Spectroscopic ellipsometry (SE) is a common, non-destructive technique for measuring thin films in the silicon wafer industry. SE results have also been tied to properties believed to play a role in CdTe PV device efficiency. A study assessing the potential of SE for use as a quality measurement tool had not been previously reported. Samples of CdTe devices produced by both laboratory and industrial scale processes were measured by SE and Scanning Electron Microscopy (SEM). Mathematical models of the optical characteristics of the devices were developed and fit to SE data from multiple angles and locations on each sample. Basic statistical analysis was performed on results from the automated fits to provide an initial evaluation of SE as a quantitative quality measurement process. In all cases studied, automated SE models produced average stack thickness values within 10% of the values produced by SEM, and standard deviations for the top bulk layer thickness were less than 1% of the average values.

  7. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995

    SciTech Connect

    Wohlgemuth, J.

    1996-02-01

    The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

  8. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates: Final technical report, July 5, 1995--December 31, 1999

    SciTech Connect

    Jeffrey, F.

    2000-03-28

    Iowa Thin Film Technologies is completing a three-phase program that has increased throughput and decreased costs in nearly all aspects of its thin-film photovoltaic manufacturing process. The overall manufacturing costs have been reduced by 61 percent through implementation of the improvements developed under this program. Development of the ability to use a 1-mil substrate, rather than the standard 2-mil substrate, results in a 50 percent cost-saving for this material. Process development on a single-pass amorphous silicon deposition system has resulted in a 37 percent throughput improvement. A wide range of process and machine improvements have been implemented on the transparent conducting oxide deposition system. These include detailed parameter optimization of deposition temperatures, process gas flows, carrier gas flows, and web speeds. An overall process throughput improvement of 275 percent was achieved based on this work. The new alignment technique was developed for the laser scriber and printer systems, which improved registration accuracy from 100 microns to 10 microns. The new technique also reduced alignment time for these registration systems significantly. This resulted in a throughput increase of 75 percent on the scriber and 600 percent on the printer. Automated techniques were designed and implemented for the module assembly processes. These include automated busbar attachment, roll-based lamination, and automated die cutting of finished modules. These processes were previously done by hand labor. Throughput improvements ranged from 200 percent to 1200 percent, relative to hand labor rates. A wide range of potential encapsulation materials were evaluated for suitability in a roll lamination process and for cost-effectiveness. A combination material was found that has a cost that is only 10 percent of the standard EVA/Tefzel cost and is suitable for medium-lifetime applications. The 20-year lifetime applications still require the more expensive

  9. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996

    SciTech Connect

    Wohlgemuth, J

    1997-01-01

    Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.

  10. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  11. Black a-Si:H sputtered films for photovoltaic solar cells. Final technical progress report, May 15, 1979-May 15, 1980

    SciTech Connect

    Messier, R; Tsong, I S.T.

    1980-01-01

    Aa a first step in attempting to understand the many interrelated deposition processes and film characteristics which govern sputter deposited a-Si:H film quality, a number of important basic film characteristics as a function of the preparation parameters total plasma pressure P/sub T/ and H/sub 2/ partial pressure, %H (in Ar), for the range P/sub T/ = 5 to 70mTorr and %H = 0.10, were examined in detail. A series of films were systematically prepared in this region of deposition parameter space, and these films were characterized with respect to surface and internal microstructure, chemical reactivity and etchability, total elemental composition, H-bonding configuration, intrinsic mechanical stress, optical bandgap, and mean density. In general terms, the films are described by a transition of properties dependent upon both P/sub T/ and %H. Films prepared at high P/sub T/ display a distinct columnar morphology with varying extent of intercolumn void or low-density regions. Some of these films have densities as low as approx. 60% that of c-Si, contain H predominantly in the dihydride bonding configuration, and undergo post-deposition oxidation to an extent as great as approx. 10 wt %. Films prepared in the low P/sub T/ regime are without detectable microstructure and chemically stable with no detectable bulk oxidation after many months. In these films, up to 20 at. %H was found almost entirely as monohydride, Ar content was as high as 7 at. %H, and compressive intrinsic stresses were found as large as 5 x 10/sup 9/ dynes/cm/sup 2/. These results are entirely consistent with the general Structure Zone Model (SZM) of physical vapor deposition upon which there are superimposed the chemical effects of H/sub 2/ reactive sputtering. 64 references.

  12. Core-shell GaN-ZnO moth-eye nanostructure arrays grown on a-SiO2/Si (1 1 1) as a basis for improved InGaN-based photovoltaics and LEDs

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Sandana, V. E.; Gautier, S.; Moudakir, T.; Abid, M.; Ougazzaden, A.; Teherani, F. Hosseini; Bove, P.; Molinari, M.; Troyon, M.; Peres, M.; Soares, Manuel J.; Neves, A. J.; Monteiro, T.; McGrouther, D.; Chapman, J. N.; Drouhin, H.-J.; McClintock, R.; Razeghi, M.

    2015-06-01

    Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (1 1 1) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400-720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN.

  13. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  14. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  15. Large-area, triple-junction a-Si alloy production scale-up

    SciTech Connect

    Oswald, R.; O'Dowd, J. . Thin Film Div.)

    1993-04-01

    This report describes Solarex's work to advance its photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. Solarex will meet these objectives by improving the deposition and quality of the transport front contact; optimizing the laser patterning process; scaling up the semiconductor deposition process; improving the back-contact deposition; and scaling up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 1 portion of this subcontract, Solarex focused on scaling up components of the chemical vapor deposition system for deposition of the system contact, scaling up laser scribing techniques; triple-junction recipes for module production; and metal-oxide back contacts. The goal of these efforts is to adopt all portions of the manufacturing line to handle substrates larger than 0.37 m[sup 2].

  16. Efficiency and Throughput Advances in Continuous Roll-To-Roll a{_}Si Alloy PV Manufacturing Technology: Phase II Annual Subcontract Technical Report; June 1999--August 2000

    SciTech Connect

    Ellison, T.

    2000-12-07

    This report describes the project by Energy Conversion Devices, Inc. (ECD) and its American joint venture, United Solar Systems Corp. (United Solar), to develop and commercialize a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology. This low material cost, roll-to-roll production technology has the economies of scale to meet the cost goals necessary for widespread use of PV. ECD developed and built the present 5-MW United Solar manufacturing plant in Troy, Michigan, and is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. ECD and United Solar are addressing issues to reduce the cost and to improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development tasks that would reduce the module manufacturing cost in the present 5-MW production facility and would also be applicable to future larger-scale manufacturing facilities. These development tasks are: Task 5: Improved substrate heating and monitoring systems; Task 6: The development of new on-line diagnostic systems; Task 7: Development of new back-reflector deposition technology; Task 8: Development of improved RF PECVD reactor cathode and gas distribution configurations; and Task 8A: Development of new pinch valve technology.

  17. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999

    SciTech Connect

    Izu, M.

    1999-11-09

    This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

  18. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  19. Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994

    SciTech Connect

    Wohlgemuth, J.

    1995-09-01

    This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

  20. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995

    SciTech Connect

    Wohlgemuth, J

    1996-06-01

    The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

  1. Manufacturing technologies for photovoltaics and possible means of their development in Russia (Review). Part 1: General approach to the development of photoelectric converters and basic silicon technologies

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Popel', O. S.

    2015-11-01

    The state and key tendencies of the development of basic technologies for manufacture of photoelectric converters (PECs) in the world are considered, and their advantages and disadvantages are discussed. The first part of the review gives short information on the development of photovoltaics in the world and planes of the development of solar power plants in Russia. Total power of photoelectric plants operating in various countries in 2015 exceeded 150 GW and increased in the last ten years with a rate of approximately 50% per year. Russia made important state decisions on the support of the development of renewable power engineering and developed mechanisms, which were attractive for business, on the stimulation of building of the network of solar power plants with a total power to 1.5 GW in the country to 2020. At the same time, the rigid demands are made with respect to the localization of the production of components of these plants that opens new abilities for the development of the domestic production of photovoltaics manufacture. Data on the efficiency of PECs of various types that are attained in the leading laboratories of the world are given. Particular emphasis has been placed on the consideration of basic silicon technologies of PEC manufacture, which had the widest commercial application. The basic methods for production of polycrystalline silicon and making single-crystal and multicrystal silicon are described. Fundamentals of making techniques for plates, PECs, and photoelectric modules based on single-crystal and polycrystalline silicon are considered. The second part will be devoted to modifications of manufacturing techniques for photoelectric converters, enhancement methods for contact structures, and recommendations of authors with respect to the choice of prospective technologies for the expansion of PEC production in Russia. It will involve formulations and substantiations of the most promising lines of the development of photoelectric

  2. Development of high stable-efficiency, triple-junction a-Si alloy solar cells. Annual subcontract report, July 18, 1994--July 17, 1995

    SciTech Connect

    Deng, X.

    1996-02-01

    This report describes work performed by Energy Conversion Devices, Inc. (ECD) under a 3-year, cost-shared amorphous silicon (a-Si) research program to develop advanced technologies and to demonstrate stable 14%-efficient, triple-junction a-Si alloy solar cells. The technologies developed under the program will then be incorporated into ECD`s continuous roll-to-roll deposition process to further enhance ECD`s photovoltaic manufacturing technology. In ECD`s solar cell design, triple-junction a-Si alloy solar cells are deposited onto stainless-steel substrates coated with Ag/ZnO back-reflector layers. This type of cell design enabled ECD to use a continuous roll- to-roll deposition process to manufacture a-Si PV materials in high volume at low cost. Using this cell design, ECD previously achieved 13.7% initial solar cell efficiency using the following features: (1) a triple-junction, two-band-gap, spectrum-splitting solar cell design; (2) a microcrystalline silicon p-layer; (3) a band-gap-profiled a- SiGe alloy as the bottom cell i-layer; (4) a high-performance AgZnO back-reflector; and (5) a high-performance tunnel junction between component cells. ECD also applied the technology into its 2-MW/yr a- Si production line and achieved the manufacturing of 4-ft{sup 2} PV modules with 8% stable efficiency. During this program, ECD is also further advancing its existing PV technology toward the goal of 14% stable solar cells by performing the following four tasks: (1) improving the stability of the intrinsic a-Si alloy materials; (2) improving the quality of low-band-gap a-SiGe alloy; (3) improving p{sup +} window layers, and (4) developing high stable-efficiency triple-junction a-Si alloy solar cells.

  3. Photovoltaics industry profile

    NASA Astrophysics Data System (ADS)

    1980-10-01

    A description of the status of the U.S. photovoltaics industry is given. Principal end user industries are identified, domestic and foreign market trends are discussed, and industry organized and U.S. government organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included.

  4. Life-cycle nitrogen trifluoride emissions from photovoltaics.

    PubMed

    Fthenakis, Vasilis; Clark, Daniel O; Moalem, Mehran; Chandler, Phil; Ridgeway, Robert G; Hulbert, Forrest E; Cooper, David B; Maroulis, Peter J

    2010-11-15

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF₃, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF₃ in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF₃ and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF₃ at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF₃ in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO₂(eq)/kWh, which can be displaced within the first 1-4 months of the PV system life.

  5. PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth

    SciTech Connect

    Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

    1999-11-16

    This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection

  6. Silicon-Film{trademark} photovoltaic manufacturing technology. Semiannual subcontract report, 15 October 1993--15 April 1994

    SciTech Connect

    Collins, S.R.; Hall, R.B.

    1994-09-01

    This report describes work to develop an advanced, low-cost manufacturing process for a now utility-scale, flat-plate module. This process starts with the production of continuous sheets of thin-film, polycrystalline silicon using the Silicon-Film{trademark} process. Sheets are cut into wafers that are nominally 15 cm on a side. Fifty-six of these wafers are then fabricated into solar cells that are strung together into a 170-W module. Twelve of these modules form a 2-kW array. The program has three main components: (1) development of a Silicon-Film{trademark} wafer machine that is capable of manufacturing waters that are 225 cm{sup 2} in size at a rate of 3.0 MW/yr, with a total product cost reduction of 70%; (2) development of an advanced solar cell manufacturing process that is capable of turning the Silicon-Film{trademark} wafer into a 3.25-W solar cell; and (3) development of an advanced module design based on these large-area silicon solar cells with an average power of 170 W for 56 solar cells and 113 W for 36 solar cells.

  7. Large-area, triple-junction a-Si alloy production scale-up. Semiannual technical progress report, 17 March 1992--18 September 1992

    SciTech Connect

    Oswald, R.; O`Dowd, J.

    1993-04-01

    This report describes Solarex`s work to advance its photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. Solarex will meet these objectives by improving the deposition and quality of the transport front contact; optimizing the laser patterning process; scaling up the semiconductor deposition process; improving the back-contact deposition; and scaling up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 1 portion of this subcontract, Solarex focused on scaling up components of the chemical vapor deposition system for deposition of the system contact, scaling up laser scribing techniques; triple-junction recipes for module production; and metal-oxide back contacts. The goal of these efforts is to adopt all portions of the manufacturing line to handle substrates larger than 0.37 m{sup 2}.

  8. PVMaT improvements in the Solarex photovoltaic module manufacturing technology: Annual subcontract report: May 5, 1998 -- April 30, 1999

    SciTech Connect

    Wohlgemuth, J.

    2000-01-10

    This report describes work done by Solarex during the first year of this subcontract. The objective of this three-year PVMaT program is to continue the advancement of Solarex PV manufacturing technologies to design and implement a process that produces polycrystalline silicon PV modules that can be sold profitably for $2.00 per peak watt or less and that will increase the production capacity of the Frederick plant to at least 25 megawatts per year. Accomplishments during the first year of the program include: (1) Verification of the process to produce SiF{sub 4}, the precursor to silicon feedstock. (2) Design of a silicon feedstock pilot facility using the SiNaF process. (3) Development of and transfer to manufacturing of a process to use thinner wire in the wire saw. (4) Completion of a production trial with recycled SiC. (5) Laboratory development of a selective emitter process using rapid thermal processing. (6) Fabrication of high-efficiency polycrystalline cells using silicon nitride from three different sources. (7) Development of a new encapsulation formulation and laboratory demonstration of a 6-minute lamination cycle. (8) Implementation of an automated laminator. (9) Laboratory demonstration of automated handling of ceramics.

  9. 76 FR 79218 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... the commercialization of next generation photovoltaic systems. Patricia A. Brink, Director of Civil.... Photovoltaic Manufacturing Consortium, Inc. Notice is hereby given that, on November 14, 2011, pursuant to.... (``the Act''), U.S. Photovoltaic Manufacturing Consortium, Inc. (``USPVMC'') has filed...

  10. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, 8 December 1993--30 June 1994

    SciTech Connect

    Wohlgemuth, J.

    1995-03-01

    This report describes work done under a 3-year program to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. The accomplishments described in this report are as follows: (1) the authors designed modifications to casting stations, ceramic molds, and sizing saws to allow for casting and sizing of larger ingots; (2) they demonstrated the casting of ingots with 17% larger volume; (3) the selected and purchased a new wire saw from HCT Shaping Systems; (4) they demonstrated wafering of eight bricks (2,400 wafers or {approximately}4.4 kilowatts at the cell level) in a 6.5-h run; (5) they demonstrated 14% average cell efficiency in the laboratory using an aluminum paste back surface field; (6) the Automation and Robotics Research Institute (ARRI) completed a modeling study of the Solarex module assembly process; (7) they identified and qualified three new lower-cost back sheet materials through accelerated environmental tests; and (8) they designed and built a test structure for mounting frameless modules, and selected two adhesives and began testing their ability to hold modules to the structure.

  11. Photovoltaic manufacturing cost and throughput improvements for thin-film CIGS-based modules: Phase 1 technical report, July 1998--July 1999

    SciTech Connect

    Wiedeman, S.; Wendt, R.G.

    2000-03-01

    The primary objectives of the Global Solar Energy (GSE) Photovoltaic Manufacturing Technology (PVMaT) subcontract are directed toward reducing cost and expanding the production rate of thin-film CuInGaSe{sub 2} (CIGS)-based PV modules on flexible substrates. Improvements will be implemented in monolithic integration, CIGS deposition, contact deposition, and in-situ CIGS control and monitoring. In Phase 1, GSE has successfully attacked many of the highest risk aspects of each task. All-laser, selective scribing processes for CIGS have been developed, and many end-of-contract goals for scribing speed have been exceeded in the first year. High-speed ink-jet deposition of insulating material in the scribes now appears to be a viable technique, again exceeding some end-of-contract goals in the first year. Absorber deposition of CIGS was reduced corresponding to throughput speeds of up to 24-in/min, also exceeding an end-of-contract goal. Alternate back-contact materials have been identified that show potential as candidates for replacement of higher-cost molybdenum, and a novel, real-time monitoring technique (parallel-detector spectroscopic ellipsometry) has shown remarkable sensitivity to relevant properties of the CIGS absorber layer for use as a diagnostic tool. Currently, one of the bilayers has been baselined by GSE for flexible CIGS on polymeric substrates. Resultant back-contacts meet sheet-resistance goals and exhibit much less intrinsic stress than Mo. CIGS has been deposited, and resultant devices are comparable in performance to pure Mo back-contacts. Debris in the chamber has been substantially reduced, allowing longer roll-length between system cleaning.

  12. Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Peharz, Gerhard; Kuna, Ladislav; Leiner, Claude

    2015-03-01

    The laser-generation of micro-optical volume elements is a promising approach to decrease the optical shadowing of front side metal contacts of solar cells. Focusing a femtosecond laser beam into the volume of the encapsulation material causes a local modification its optical constants. Suchlike fabricated micro-optical elements can be used to decrease the optical shadowing of the front side metallization of c-Si solar cells. Test samples comprising of a sandwich structure of a glass sheet with metallic grid-lines, an Ethylene-vinyl acetate (EVA) encapsulant and another glass sheet were manufactured in order to investigate the optical performance of the volume optics. Transmission measurements show that the shadowing of the metalling grid-lines is substantially decreased by the micro-optical volume elements created in the EVA bulk right above the grid-fingers. A detailed investigation of the optical properties of these volume elements was performed: (i) experimentally on the basis of goniometric measurements, as well as (ii) theoretically by applying optical modelling and optimization procedures. This resulted in a better understanding of the effectiveness of the optical volume elements in decreasing the optical shadowing of metal grid lines on the active cell surfaces. Moreover, results of photovoltaic mini-modules with incorporated micro-optical volume elements are presented. Results of optical simulation and Laser Beam Induced Current (LBIC) experiments show that the losses due to the grid fingers can be reduced by about 50%, when using this fs-laser structuring approach for the fabrication of micro-optical volume elements in the EVA material.

  13. The future of amorphous silicon photovoltaic technology

    SciTech Connect

    Crandall, R; Luft, W

    1995-06-01

    Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

  14. Improvement of parameters in a-Si(p)/c-Si(n)/a-Si(n) solar cells

    NASA Astrophysics Data System (ADS)

    Moustafa Bouzaki, Mohammed; Aillerie, Michel; Ould Saad Hamady, Sidi; Chadel, Meriem; Benyoucef, Boumediene

    2016-10-01

    We analyzed and discussed the influence of thickness and doping concentration of the different layers in a-Si(p)/c-Si(n)/a-Si(n) photovoltaic (PV) cells with the aim of increasing its efficiency while decreasing its global cost. Compared to the efficiency of a standard marketed PV cell, elaborated with a ZnO transparent conductive oxide (TCO) layer but without Back Surface Field (BSF) layer, an optimization of the thickness and dopant concentration of both the emitter a-Si(p) and absorber c-Si(n) layers will gain about 3% in the global efficiency of the cell. The results also reveal that with introduction of the third layer, i.e. the BSF layer, the efficiency always achieves values above 20% and all other parameters of the cell, such as the open-circuit voltage, the short-circuit current and the fill-factor, are strongly affected by the thickness and dopant concentration of the layers. The values of all parameters are given and discussed in the paper. Thereby, the simulation results give for an optimized a-Si(p)/c-Si(n)/a-Si(n) PV cells the possibility to decrease the thickness of the absorber layer down to 50 μm which is lower than in the state-of-the-art. This structure of the cell achieves suitable properties for high efficiency, cost-effectiveness and reliable heterojunction (HJ) solar cell applications.

  15. Photovoltaic industry progress through 1984

    SciTech Connect

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  16. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell.

    PubMed

    Kim, Jeehwan; Hong, Ziruo; Li, Gang; Song, Tze-bin; Chey, Jay; Lee, Yun Seog; You, Jingbi; Chen, Chun-Chao; Sadana, Devendra K; Yang, Yang

    2015-01-01

    Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically <10%, insufficient for achieving grid parity. Here we demonstrate an efficient double-junction photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells. PMID:25736823

  17. Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  18. Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  19. Photovoltaics (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  20. Large-area, triple-junction a-Si alloy production scale-up. Semiannual subcontract report, 17 March 1994--18 September 1994

    SciTech Connect

    Oswald, R.; Morris, J.

    1995-03-01

    This report describes work performed under a 3-year subcontract to advance Solarex`s photovoltaic (PV) manufacturing technologies, reduce its hydrogenated amorphous silicon (a-Si:H) module production costs, increase module performance, and expand the Solarex commercial production capacity. During the period covered by this report, Solarex focused on (1) improving deposition of the front contact, (2) investigating alternate feed stocks for the front contact, (3) maximizing throughput and area utilization for all laser scribes, (4) optimizing a-Si:H deposition equipment to achieve uniform deposition over large areas, (5) optimizing the triple-junction module fabrication process, (6) evaluating the materials to deposit the rear contact, and (7) optimizing the combination of isolation scribe and encapsulant to pass the wet high-potential test.

  1. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  2. Thin film photovoltaic panel and method

    DOEpatents

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  3. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  4. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  5. Process Development for Nanostructured Photovoltaics

    SciTech Connect

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  6. Photovoltaic Subcontract Program

    SciTech Connect

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  7. High throughput manufacturing of thin-film CdTe photovoltaic modules. Annual subcontract report, 16 November 1993--15 November 1994

    SciTech Connect

    Sandwisch, D W

    1995-11-01

    This report describes work performed by Solar Cells, Inc. (SCI), under a 3-year subcontract to advance SCI`s PV manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. SCI will meet these objectives in three phases by designing, debugging, and operating a 20-MW/year, automated, continuous PV manufacturing line that produces 60-cm {times} 120-cm thin-film CdTe PV modules. This report describes tasks completed under Phase 1 of the US Department of Energy`s PV Manufacturing Technology program.

  8. Photovoltaics for commercial solar power applications; Proceedings of the Meeting, Cambridge, MA, Sept. 18, 19, 1986

    NASA Astrophysics Data System (ADS)

    Adler, David

    1986-01-01

    Papers are presented on efficient multijunction monolithic cascade solar cells, high efficiency silicon solar cells, point contact silicon cells, and space solar cell research. Also considered are photovoltaic power plants, the reliability of photovoltaic modules, the continuous fabrication of amorphous silicon solar cells on polymer substrates, and the density of states of amorphous silicon. Other topics include breaking the efficiency-stability-production barrier in amorphous photovoltaics, the development of flexible a-SiC/a-Si heterojunction solar cells and stable a-SiC/a-Si tandem cells with blocking barriers, and performance aspects for thin-film-silicon-hydrogen solar cells.

  9. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect

    1997-05-01

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  10. National Center for Photovoltaics at NREL

    ScienceCinema

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2016-07-12

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  11. Semiconductors: In Situ Processing of Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    1998-01-01

    The possible processing of semiconductor photovoltaic devices is discussed. The requirements for lunar PV cells is reviewed, and the key challenges involved in their manufacturing are investigated. A schematic diagram of a passivated emitter and rear cell (PERC) is presented. The possible fabrication of large photovoltaic arrays in space from lunar materials is also discussed.

  12. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  13. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates. Annual technical progress report, July 5, 1996--December 31, 1997

    SciTech Connect

    Jeffrey, F.

    1998-08-01

    Iowa Thin Film Technologies, Inc.`s (ITF) goal is to develop the most cost effective PV manufacturing process possible. To this end the authors have chosen a roll based manufacturing process with continuous deposition and monolithic integration. Work under this program is designed to meet this goal by improving manufacturing throughput and performance of the manufactured devices. Significant progress was made during Phase 2 of this program on a number of fronts. A new single pass tandem deposition machine was brought on line which allows greatly increased and improved throughput for rolls of tandem material. The TCO deposition process was improved resulting in an increase in throughput by 20%. A new alignment method was implemented on the printing process which improves throughput six fold while improving alignment from 100 {micro}m to 10 {micro}m. A roll based lamination procedure was developed and implemented on selected products which improves throughput from 20 sq. ft./hr. to 240 sq. ft./hr. A wide range of lower cost encapsulants were evaluated. A promising material was selected initially to be introduced in 5 year lifetime type products. The sum of these improvements bring the overall cost reduction resulting from this program to 49%.

  14. Amorphous silicon photovoltaic modules and test devices design, fabrication and testing

    NASA Astrophysics Data System (ADS)

    Vanleeuwen, M.

    1985-10-01

    In July of 1984, Hughes and JPL initiated a contract for Hughes to design, fabricate and test 10 thin film Amorphous Silicon (a-Si) photovoltaic power modules. These modules were to be 1 ft x 4 ft in size. They were to be preceded by the delivery of 10 a-Si 4 in. square test devices. This effort is very timely since thin film PV development has progressed to the point where intermediate load power applications are on the horizon. It is important to know if current a-Si submodule design and manufacturing processes yield a product that is compatible with the packaging needed to meet a 20 to 30 year life span expectancy. The term submodule is assigned to an interconnected assembly of 28 a-Si cells deposited on a 1 foot square glass superstrate. These assemblies are equipped with electrical terminations, i.e., copper tabs at the four corners of the inverted submodules. It is these submodules that are to be interconnected and packaged into power modules, as opposed to the interconnected individual crystalline cells packaged into todays PV modules. A discussion of the fabrication methods and results follows.

  15. Amorphous silicon photovoltaic modules and test devices design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Vanleeuwen, M.

    1985-01-01

    In July of 1984, Hughes and JPL initiated a contract for Hughes to design, fabricate and test 10 thin film Amorphous Silicon (a-Si) photovoltaic power modules. These modules were to be 1 ft x 4 ft in size. They were to be preceded by the delivery of 10 a-Si 4 in. square test devices. This effort is very timely since thin film PV development has progressed to the point where intermediate load power applications are on the horizon. It is important to know if current a-Si submodule design and manufacturing processes yield a product that is compatible with the packaging needed to meet a 20 to 30 year life span expectancy. The term submodule is assigned to an interconnected assembly of 28 a-Si cells deposited on a 1 foot square glass superstrate. These assemblies are equipped with electrical terminations, i.e., copper tabs at the four corners of the inverted submodules. It is these submodules that are to be interconnected and packaged into power modules, as opposed to the interconnected individual crystalline cells packaged into todays PV modules. A discussion of the fabrication methods and results follows.

  16. Photovoltaic energy systems: Program summary

    NASA Astrophysics Data System (ADS)

    1980-01-01

    The DOE Photovoltaic Energy Systems Program is designed to expand as rapidly as possible the commercial use of photovoltaic systems through a program of research, process development in support of the manufacturing industry, tests and applications, and general support of market development. The objective of the Photovoltaic Energy Systems Program is to reduce system costs to a competitive level in both distributed and centralized grid-connected applications. The program is also examining the technical, institutional, legal, environmental and social issues involved in fostering widespread adoption of photovoltaic energy systems. Activities of the program are divided into the following subprograms: advanced research and development; technology development; systems engineering and standards; test and applications; commercialization; and planning, assessment, and integration. Summary sheets for each of the contractors in this program are presented. The summaries include project title, contractor, contract number, funding, principal investigator, and a brief description of the contract.

  17. Photovoltaic Materials

    SciTech Connect

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  18. Solar Photovoltaics Technology: The Revolution Begins . . .

    NASA Astrophysics Data System (ADS)

    Kazmerski, Lawrence

    2009-11-01

    The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is at a tipping point in the complex worldwide energy outlook. The emphasis of this presentation is on R&D advances (cell, materials, and module options), with indications of the limitations and strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next- generation PV (organics, nanotechnologies, non-conventional junction approaches) are evaluated. Recent advances in concentrators with efficiencies headed toward 50%, new directions for thin films (20% and beyond), and materials/device technology issues are discussed in terms of technology progress. Insights into technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, solar hydrogen. . . ) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. Issues relating to manufacturing are explored-especially with the requirements for the next-generation technologies. This presentation provides insights into how this technology has developed-and where the R&D investments should be made and we can expect to be by this mid-21st century.

  19. Large-area triple-junction a-Si alloy production scaleup. Annual subcontract report, 17 March 1993--18 March 1994

    SciTech Connect

    Oswald, R.; Morris, J.

    1994-11-01

    The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact, maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.

  20. US photovoltaic patents: 1991--1993

    SciTech Connect

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  1. US photovoltaic patents: 1991-1993

    NASA Astrophysics Data System (ADS)

    Pohle, L.

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class 'Batteries, Thermoelectric and Photoelectric' and the subclasses 'Photoelectric,' 'Testing,' and 'Applications.' The search also located patents that contained the words 'photovoltaic(s)' or 'solar cell(s)' and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  2. Photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Groth, H.

    1982-11-01

    The utilization of photovoltaic generators in measuring and signalling installations, communication systems, water pumping, and electric power plants is discussed. The advantages of solar generators over conventional power supply equipment are outlined.

  3. PHOTOVOLTAICS AND THE ENVIRONMENT 1998. REPORT ON THE WORKSHOP PHOTOVOLTAICS AND THE ENVIRONMENT 1999

    SciTech Connect

    FTHENAKIS,V.; ZWEIBEL,K.; MOSKOWITZ,P.

    1999-02-01

    The objective of the workshop ``Photovoltaics and the Environment'' was to bring together PV manufacturers and industry analysts to define EH and S issues related to the large-scale commercialization of PV technologies.

  4. A photovoltaic industry overview - The results of a survey on photovoltaic technology industrialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.

    1981-01-01

    The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.

  5. Recycling Of Cis Photovoltaic Waste

    DOEpatents

    Drinkard, Jr., William F.; Long, Mark O.; Goozner; Robert E.

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  6. Photovoltaic cell and production thereof

    DOEpatents

    Narayanan, Srinivasamohan; Kumar, Bikash

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  7. Basic research challenges in crystalline silicon photovoltaics

    SciTech Connect

    Werner, J.H.

    1995-08-01

    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at the horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.

  8. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  9. Photovoltaics and the Environment

    SciTech Connect

    Fthenakis, Vasilis

    2005-09-21

    Over the past five years, solar energy usage has grown by about 43 percent a year, giving rise to a billion-dollar industry in photovoltaics (PV) or getting electricity from light. The word photovoltaics combines the Greek phos, or light, with the “volt” of electricity. PV technologies have distinct environmental advantages over conventional power technologies, such as: no noise, no emissions, no need for fuel and power lines. Compared to burning coal, a gigawatt-hour of PV-generated electricity would prevent the release of about 1,000 tons of carbon dioxide, eight of sulfur dioxide, four of nitrogen oxides, and 0.4 tons of particulates. However, manufacturing the solar cells that transform light to electricity requires the use of some toxic and flammable substances. Addressing the environmental, health, and safety concerns of the PV industry to minimize risk while ensuring economic viability and public support is the work of the National Photovoltaic Environmental Health, & Safety Assistance Center at BNL.

  10. Quo Vadis photovoltaics 2011

    NASA Astrophysics Data System (ADS)

    Jäger-Waldau, A.

    2011-10-01

    Since more than 10 years photovoltaics is one of the most dynamic industries with growth rates well beyond 40% per annum. This growth is driven not only by the progress in materials knowledge and processing technology, but also by market introduction programmes in many countries around the world. Despite the negative impacts on the economy by the financial crisis since 2009, photovoltaics is still growing at an extraordinary pace and had in 2010 an extraordinary success, as both production and markets doubled. The open question is what will happen in 2011 and the years after as the situation is dominated by huge manufacturing overcapacities and an increasing unpredictability of policy support. How can the PV industry continue their cost reduction to ensure another 10 to 20 years of sustained and strong growth necessary to make PV to one of the main pillars of a sustainable energy supply in 2030. Despite the fact, that globally the share of electricity from photovoltaic systems is still small, at local level it can be already now above 30% of the demand at certain times of the year. Future research in PV has to provide intelligent solutions not only on the solar cell alone, but also on the module and the system integration level in order to permit a 5 to 10% share of electricity in 2020.

  11. Photovoltaic module reliability workshop

    SciTech Connect

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  12. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    SciTech Connect

    Demiroğlu, D.; Tatar, B.; Kazmanli, K.; Urgen, M.

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height Φ{sub B}, diode ideality factor η were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  13. Photovoltaics, the solar electric solution

    NASA Astrophysics Data System (ADS)

    Beach, C. D.; Litka, A. H.

    Direct conversion of solar energy to electricity by photovoltaic devices (solar cells) may be the most promising solution to the current energy problem. Photovoltaic energy systems provide a clean, simple method of energy conversion, and are reliable, safe, and flexible with respect to size (modular). The federal government is trying to commercialize photovoltaics by funding research on new materials and manufacturing processes. Earliest commercialization will be in residential systems, where the power grid back-up provides for a reliable electrical system without storage costs. The Florida Solar Energy Center has been operating a 5 kW experimental residential facility since 1980. The facility showed an average solar irradiance in the 62.5 sq m panels of 264 kw-hours/day from December 1980 through February 1981. The overall system efficiency was 7%, and the inverter operated with an ac output/dc input efficiency of 85-90%, depending on input levels.

  14. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  15. Photovoltaic cell

    SciTech Connect

    Bronstein-Bonte, I.Y.; Fischer, A.B.

    1986-12-16

    This patent describes a product comprising a photovoltaic cell including a luminescent dye which will absorb radiation at a wavelength to which the cell is not significantly responsive and emit radiation at a higher wavelength at which it is responsive. The improvement described here is wherein the dye comprises a lepidopterene.

  16. Photovoltaic energy

    NASA Astrophysics Data System (ADS)

    1990-01-01

    In 1989, the U.S. photovoltaic industry enjoyed a growth rate of 30 percent in sales for the second year in a row. This sends a message that the way we think about electricity is changing. Instead of big energy projects that perpetuate environmental and economic damage, there is a growing trend toward small renewable technologies that are well matched to end-user needs and operating conditions. As demand grows and markets expand, investment capital will be drawn to the industry and new growth trends will emerge. The photovoltaic industry around the world achieved record shipments also. Worldwide shipments of photovoltaic (PV) modules for 1989 totaled more than 40 megawatts (MW), nearly a 20 percent increase over last year's shipments. The previous two years showed increases in worldwide shipments of 23 and 25 percent, respectively. If this growth rate continues through the 1990s, as industry back orders would indicate, 300 to 1000 MW of PV-supplied power could be on line by 2000. Photovoltaic systems have low environmental impact and they are inexpensive to operate and maintain. Using solid-state technology, PV systems directly convert sunlight to electricity without high-temperature fluids or moving parts that could cause mechanical failure. This makes the technology very reliable.

  17. Photovoltaics information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  18. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  19. Photovoltaic Power Systems: A Tour Through the Alternatives

    ERIC Educational Resources Information Center

    Kelly, Henry

    1978-01-01

    Photovoltaic systems are examined as potentially major energy sources, along with the economic factors that will affect their future use. Cell design, power efficiency, and manufacturing problems are also considered. (MA)

  20. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  1. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  2. MBE growth of GaP on a Si substrate

    SciTech Connect

    Sobolev, M. S. Lazarenko, A. A.; Nikitina, E. V.; Pirogov, E. V.; Gudovskikh, A. S.; Egorov, A. Yu.

    2015-04-15

    It is shown that single-crystal GaP buffer layers can be formed on a Si substrate by molecular-beam epitaxy, with the “migration-enhanced epitaxy” procedure applied in the stage in which the nucleating layer is formed. When a GaP layer is produced on a p-type silicon substrate, a p-n junction is created in a natural way between the p-Si substrate and the surface n-Si layer produced by the diffusion of phosphorus into the substrate during the course of the epitaxial growth of GaP. This p-n junction can be used as the first junction of a silicon-based multijunction photovoltaic converter.

  3. Solar Cells and Photovoltaics

    NASA Astrophysics Data System (ADS)

    Irvine, Stuart

    Photovoltaic solar cells are gaining wide acceptance for producing clean, renewable electricity. This has been based on more than 40 years of research that has benefited from the revolution in silicon electronics and compound semiconductors in optoelectronics. This chapter gives an introduction into the basic science of photovoltaic solar cells and the challenge of extracting the maximum amount of electrical energy from the available solar energy. In addition to the constraints of the basic physics of these devices, there are considerable challenges in materials synthesis. The latter has become more prominent with the need to reduce the cost of solar module manufacture as it enters mainstream energy production. The chapter is divided into sections dealing with the fundamentals of solar cells and then considering five very different materials systems, from crystalline silicon through to polycrystalline thin films. These materials have been chosen because they are all in production, although some are only in the early stages of production. Many more materials are being considered in research and some of the more exciting, polymer and dye-sensitised cells are mentioned in the conclusions. However, there is insufficient space to give these very active areas of research the justice they deserve. I hope the reader will feel sufficiently inspired by this topic to read further and explore one of the most exciting areas of semiconductor science. The need for high-volume production at low cost has taken the researcher along paths not normally considered in semiconductor devices and it is this that provides an exciting challenge.

  4. All-Oxide Photovoltaics.

    PubMed

    Rühle, Sven; Anderson, Assaf Y; Barad, Hannah-Noa; Kupfer, Benjamin; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Zaban, Arie

    2012-12-20

    Recently, a new field in photovoltaics (PV) has emerged, focusing on solar cells that are entirely based on metal oxide semiconductors. The all-oxide PV approach is very attractive due to the chemical stability, nontoxicity, and abundance of many metal oxides that potentially allow manufacturing under ambient conditions. Already today, metal oxides (MOs) are widely used as components in PV cells such as transparent conducting front electrodes or electron-transport layers, while only very few MOs have been used as light absorbers. In this Perspective, we review recent developments of all-oxide PV systems, which until today were mostly based on Cu2O as an absorber. Furthermore, ferroelectric BiFeO3-based PV systems are discussed, which have recently attracted considerable attention. The performance of all-oxide PV cells is discussed in terms of general PV principles, and directions for progress are proposed, pointing toward the development of novel metal oxide semiconductors using combinatorial methods.

  5. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  6. Photovoltaics: New opportunities for utilities

    NASA Astrophysics Data System (ADS)

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: residential photovoltaics- the New England experience builds confidence in PV; Austin's 300-kW Photovoltaic Power Station- evaluating the breakeven costs; residential photovoltaics- the lessons learned; photovoltaics for electric utility use; least-cost planning- the environmental link; photovoltaics in the distribution system; photovoltaic systems for the rural consumer; the issues of utility-intertied photovoltaics; and photovoltaics for large-scale use- costs ready to drop again.

  7. Photovoltaics: New opportunities for utilities

    SciTech Connect

    Not Available

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  8. Photovoltaic solar concentrator

    SciTech Connect

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  9. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  10. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect

    Summers, K.A.

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  11. Solar Photovoltaic Cell/Module Shipments Report

    EIA Publications

    2016-01-01

    Summary data for the photovoltaic industry in the United States. Data includes manufacturing, imports, and exports of modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices. Where possible, imports and exports are listed by country, and shipments to the United States are listed by state.

  12. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  13. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.

  14. Photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1981-12-08

    A photovoltaic cell has: an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amporphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 mu thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  15. Manufacturing technology development for CuInGaSe sub 2 solar cell modules

    SciTech Connect

    Stanbery, B.J. )

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{ge}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  16. Photovoltaic performance and reliability workshop

    SciTech Connect

    Mrig, L.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  17. Preparation of a-Si:H and a-SiGe:H nip cells at high rates using a 70 MHz VHF PECVD technique

    SciTech Connect

    Jones, S.J.; Liu, T.; Izu, M.

    1999-03-01

    A 70 MHz Very High Frequency (VHF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique has been used to prepare i-layers for small area, single-junction a-Si:H and a-SiGe:H nip cells and triple-junction devices at deposition rates as high as 10 {Angstrom}/s. For both the a-Si:H and a-SiGe:H single-junction cells under optimized deposition conditions, the efficiencies and the light stability remain relatively constant as the i-layer deposition rate is varied from 1 to 10 {Angstrom}/s. Also the stable efficiencies for both types of cells are similar to those for similar cells made in the same deposition system at low deposition rates (1 {Angstrom}/s) using the standard 13.56 MHz PECVD technique. Triple-junction a-Si:H/a-SiGe:H/a-SiGe:H cells have been fabricated using the VHF technique to prepare all of the i-layers at deposition rates near 10 {Angstrom}/s. These devices have pre-light soaked active area efficiencies between 9.5 and 10{percent} and total area efficiencies between 9.0 and 9.5{percent}. Considering these results, the VHF method is a promising technique to increase the growth rate of i-layers for a-Si:H based devices, and when applied to the production of large area a-Si:H based multi-junction solar modules, it will allow for higher manufacturing throughput and reduced module cost. {copyright} {ital 1999 American Institute of Physics.}

  18. Demonstration of Resonance Coupling in Scalable Dielectric Microresonator Coatings for Photovoltaics.

    PubMed

    Ha, Dongheon; Gong, Chen; Leite, Marina S; Munday, Jeremy N

    2016-09-21

    To increase the power conversion efficiency of solar cells, improved antireflection coatings are needed to couple light into the cell with minimal parasitic loss. Here, we present measurements and simulations of an antireflection coating based on silicon dioxide (SiO2) nanospheres that improve solar cell absorption by coupling light from free space into the absorbing layer through excitation of modes within the nanospheres. The deposited monolayer of nanospheres leads to a significant increase in light absorption within an underlying semiconductor on the order of 15-20%. When the periodicity and spacing between the nanospheres are varied, whispering gallery-like modes can be excited and tuned throughout the visible spectrum. The coating was applied to a Si solar cell containing a Si3N4 antireflection layer, and an additional increase in the spectral current density of ∼5% was found. The fabrication process, involving Meyer rod rolling, is scalable and inexpensive and could enable large-scale manufacturability of microresonator-based photovoltaics.

  19. Report of an exploratory study: safety and liability considerations for photovoltaic modules/panels, Low Cost Solar Array Project

    SciTech Connect

    Weinstein, A.S.; Meeker, D.G.

    1981-01-01

    Product safety and product liability considerations are explored for photovoltaic module/array devices. A general review of photovoltaic literature was made using computerized literature searches. A literature search was also made of relevant legal material as it applies to design. Recommendations are made to minimize or eliminate perceived hazards in manufacture and use of a photovoltaic module/array. (MHR)

  20. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that manufacturing output in America…

  1. Photovoltaic cell

    SciTech Connect

    Jordan, J. F.; Lampkin, C. M.

    1981-02-03

    A photovoltaic cell is disclosed having an electrically conductive substrate, which may be glass having a film of conductive tin oxide. A first layer contains a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure a second layer forms a heterojunction with the first layer suitable electrodes are provided where the heterojunction is formed from a solution containing copper, and the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 mu thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  2. Photovoltaics program plan, FY 1991--FY 1995

    SciTech Connect

    Not Available

    1991-10-01

    This program plan describes the goals and philosophy of DOE National Photovoltaics Program and its major research and development activities for fiscal years (FY) 1991 through 1995. The plan represents a consensus among researchers and manufacturers, as well as current and potential users of photovoltaics (PV). It defines the activites that we believe are necessary to continue the rapid progress toward acceptance of photovoltaics as a serious candidate for cost-competitive electric power generation by the utility, transportation, buildings, and industrial sectors. A succesful National Photovoltaics Program will help achieve many of our national priorities. The mission of the National Photovoltaics Program is to help US industry to develop photovoltaic technology for large-scale generation of economically competitive electric power in the United States, making PV a significant part of our national energy mix. To fully achieve this, we must continue to work toward the long-term goals established in our previous program plan: reducing the price of delivered electricity to 5 to 6 cents per kilowatt-hour (kWh), increasing lifetimes to 30 years, and increasing module efficiencies to 15% for flat-plate and 25% for concentrator technologies. If progress continues at its current pace, we expect that the PV industry will have installed at least 1000 megawatts (MW) of capacity in the United States and 500 MW internationally by the year 2000.

  3. US photovoltaic patents, 1951--1987

    NASA Astrophysics Data System (ADS)

    1988-09-01

    This document contains 2195 U.S. patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1951 through 1987; no patents were found in 1950. The entries were located by searching USPA, the data base of the U.S. Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric, and the subclasses Photoelectric, Testing, and Applications. The search also located patents that contained the words photovoltaic(s) or solar cell(s) and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrwstrial PV power technologies.

  4. US Photovoltaic Patents, 1988--1990

    SciTech Connect

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  5. US Photovoltaic Patents, 1988--1990

    SciTech Connect

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  6. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  7. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure. PMID:27483880

  8. Parameter variation of the one-diode model of a-Si and a- Si/μc-Si solar cells for modeling light-induced degradation

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2014-11-01

    For analyzing the long-term behavior of thin film a-Si/μc-Si photovoltaic modules, it is important to observe the light-induced degradation (LID) in dependence of the temperature for the parameters of the one-diode model for solar cells. According to the IEC 61646 standard, the impact of LID on module parameters of these thin film cells is determined at a constant temperature of 50°C with an irradiation of 1000 W/m2 at open circuit conditions. Previous papers examined the LID of thin film a-Si cells with different temperatures and some others are about a-Si/μc-Si. In these previous papers not all parameters of the one-diode model are examined. We observed the serial resistance (Rs), parallel resistance (Rp), short circuit current (Isc), open circuit voltage (Uoc), the maximum power point (MPP: Umpp, Impp and Pmpp) and the diode factor (n). Since the main reason for the LID of silicon-based thin films is the Staebler Wronski effect in the a-Si part of the cell, the temperature dependence of the healing of defects for all parameters of the one-diode model is also taken into account. We are also measuring modules with different kind of transparent conductive oxides: In a-Si thin film solar cells fluorine-doped tin oxide (FTO) is used and for thin film solar cells of a-Si/μc-Si boron- doped zinc oxide is used. In our work we describe an approach for transferring the parameters of a one-diode model for tandem thin film solar cells into the one-diode model for each part of the solar cell. The measurement of degradation and regeneration at higher temperatures is the necessary base for optimization of the different silicon-based thin films in warm hot climate.

  9. Photovoltaic systems for export application. Informal report

    SciTech Connect

    Duffy, J.; Campbell, H.; Sajo, A.; Sanz, E.

    1988-01-31

    One approach to improving the competitiveness of photovoltaic systems is the development of designs specifically for export applications. In other words, where is it appropriate in a system design to incorporate components manufactured and/or assembled in the receiving country in order to improve the photovoltaic exports from the US? What appears to be needed is a systematic method of evaluating the potential for export from the US of PV systems for various application in different countries. Development of such a method was the goal of this project.

  10. Progress in photovoltaic system and component improvements

    SciTech Connect

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E.; Bower, W.; Bonn, R.; Hund, T.D.

    1998-07-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  11. Progress in photovoltaic system and component improvements

    SciTech Connect

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E.; Bower, W.; Bonn, R.; Hund, T.D.

    1998-08-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  12. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  13. Photovoltaic device and method

    SciTech Connect

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  14. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  15. Editorial: Photovoltaic Materials and Devices

    SciTech Connect

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  16. Development of the femtosecond energy diffusion sensor for use in the manufacture of amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    McLeskey, James Thomas, Jr.

    Before photovoltaics can compete with traditional sources of grid-connected power, the cost per Watt must come down. Toward this end, the Femtosecond Energy Diffusion (FED) sensor has been developed to improve the manufacturing process for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. This may lead to both lower fabrication costs and increased cell efficiencies. The FED sensor is a non-contact, non-destructive device based on the pump-probe technique that can measure many important properties of amorphous silicon. It is used in conjunction with two newly developed computer models to measure the properties of the individual layers of an a-Si:H solar cell. These properties include the bandgap, the doping level, the alloying level, optical absorption, and a simplified density of states. In developing the sensor, a number of novel transient transmission experiments have been conducted. These experiments are among the first reported where the photon energies of both the pump and probe lasers fall within the bandtail energy region of a-Si:H. In addition to intrinsic a-Si:H, pump-probe experiments have been conducted on samples alloyed with germanium and carbon as well as samples doped with phosphorus and boron. Tests have been performed on samples with differing levels of hydrogenation created in two ways. Experiments performed on three samples comprising the build up of an a-Si:H p-i-n diode solar cell demonstrate the ability of the sensor to determine the properties of each new layer as it is deposited. This makes the FED sensor a potentially powerful tool for use in the manufacturing of a-Si:H solar cells. Two new models have been developed in order to explain the experimental results. The absorption model calculates absorptivity by combining thermally-induced bandgap reduction due to carrier thermalization and recombination with carrier trapping in order to fit the data obtained by the FED sensor. A second model, the multi-layer model, combines

  17. Photovoltaic Prospection in South Tamaulipas

    NASA Astrophysics Data System (ADS)

    Saleme Vila, S.; Rivas, D.; Ortega Izaguirre, R.

    2015-12-01

    Commercial monocrystalline silicon (c-Si), polycrystalline silicon (p-Si) and amorphous silicon (a-Si) photovoltaic (PV) panels are tested on real conditions in order to identify which of the aforementioned PV panels present the best performance in the city of Altamira, Tamaulipas (northeastern Mexico) and to evaluate the impact of the city's climatic conditions over the electrical characteristics and power generation of the aforementioned PV panels. In situ direct solar irradiance and current-voltage characteristics (I-V) of each PV panel were taken from Monday to Friday at 11:00, 13:00 and 15:00 hours (GMT-6) with 3 repeats from 08/04/2014 to 07/31/2015. Also, daylong in situ direct solar irradiance, panel temperature, and I-V characteristics were taken from 8:00 to 20:30 hours with a 30-minute interval in synchrony with National Polytechnic Institute-owned CICATA-I meteorological station in order to cross-reference the experimental data with the station's air temperature, specific humidity and global solar irradiance data. Up to June 2015, c-Si panel presented the best performance on real conditions with mean max power loss of 49% compared to the reference max power value followed by the p-Si with 54% mean max power loss and the a-Si panel with a 73% mean max power loss. The number of cloudy days, electrical resistance due to panel materials nature and meteorological impact are further discussed.

  18. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future. PMID:26872163

  19. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  20. 78 FR 9939 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... pursuant to Section 6(b) of the Act on December 21, 2011 (76 FR 79218). Patricia A. Brink, Director of.... Photovoltaic Manufacturing Consortium, Inc. Notice is hereby given that, on January 15, 2013, pursuant to.... (``the Act''), U.S. Photovoltaic Manufacturing Consortium, Inc. (``USPVMC'') has filed ]...

  1. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Ahmad, Ashfaq

    2012-04-01

    This work deals with the design evaluation and influence of absorber doping for a-Si:H/a-SiC:H/a-SiGe:H based thin-film solar cells using a two-dimensional computer aided design (TCAD) tool. Various physical parameters of the layered structure, such as doping and thickness of the absorber layer, have been studied. For reliable device simulation with realistic predictability, the device performance is evaluated by implementing necessary models (e.g., surface recombinations, thermionic field emission tunneling model for carrier transport at the heterojunction, Schokley—Read Hall recombination model, Auger recombination model, bandgap narrowing effects, doping and temperature dependent mobility model and using Fermi—Dirac statistics). A single absorber with a graded design gives an efficiency of 10.1% for 800 nm thick multiband absorption. Similarly, a tandem design shows an efficiency of 10.4% with a total absorber of thickness of 800 nm at a bandgap of 1.75 eV and 1.0 eV for the top a-Si and bottom a-SiGe component cells. A moderate n-doping in the absorber helps to improve the efficiency while p doping in the absorber degrades efficiency due to a decrease in the VOC (and fill factor) of the device.

  2. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  3. Photovoltaic Subcontract Program. Annual report, FY 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  4. Annual Report: Photovoltaic Subcontract Program FY 1991

    SciTech Connect

    Summers, K. A.

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  5. All-Oxide Photovoltaics.

    PubMed

    Rühle, Sven; Anderson, Assaf Y; Barad, Hannah-Noa; Kupfer, Benjamin; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Zaban, Arie

    2012-12-20

    Recently, a new field in photovoltaics (PV) has emerged, focusing on solar cells that are entirely based on metal oxide semiconductors. The all-oxide PV approach is very attractive due to the chemical stability, nontoxicity, and abundance of many metal oxides that potentially allow manufacturing under ambient conditions. Already today, metal oxides (MOs) are widely used as components in PV cells such as transparent conducting front electrodes or electron-transport layers, while only very few MOs have been used as light absorbers. In this Perspective, we review recent developments of all-oxide PV systems, which until today were mostly based on Cu2O as an absorber. Furthermore, ferroelectric BiFeO3-based PV systems are discussed, which have recently attracted considerable attention. The performance of all-oxide PV cells is discussed in terms of general PV principles, and directions for progress are proposed, pointing toward the development of novel metal oxide semiconductors using combinatorial methods. PMID:26291107

  6. Photovoltaics in the U.S.A. - A progress report

    NASA Technical Reports Server (NTRS)

    Forney, R. G.

    1979-01-01

    The Federal Photovoltaics Program is reviewed with reference to price goals, program organization, technical developments, and various applications. The immediate goals of the program are: (1) to develop the Federal market by encouraging Government agencies to incorporate photovoltaic systems, and (2) to provide marketing support to commercial solar cell and system manufacturers whose growth is crucial to the ultimate success of the photovoltaic program. The program will initially provide for procurement of the smaller remote types of systems and will be broadened to include residential and intermediate load systems.

  7. In situ investigation of the a-Si:H/c-Si interface

    SciTech Connect

    Feist, H.; Swiatkowski, C.; Elmiger, J.R.; Zipfel, M.; Kunst, M.

    1996-12-31

    Amorphous silicon/crystalline silicon solar cells have become a very interesting photovoltaic device in the last few years. The deposition of a-Si:H films on crystalline silicon substrates was monitored in situ by transient photoconductivity measurements in the microwave frequency range. At the start of the deposition a drastic increase of the interface recombination velocity was observed, followed by a rapid decrease. The implications of these results for the structure of the interface are discussed. Changes of the interface after deposition were detected without a change of the temperature, even at 250 C. The long relaxation time of the structure of the interface will be discussed. Ex situ results on the samples produced will be compared to the in situ results in view of the passivation properties of a-Si:H films on c-Si substrates.

  8. Editorial: Photovoltaic Materials and Devices 2014

    SciTech Connect

    Sopori, Bhushan; Rupnowski, Peter; Shet, Sudhakar; Basnyat, Prakash

    2014-12-22

    An ever increasing demand on energy has fostered many new generation technologies, which include photovoltaics. In recent years, photovoltaic industry has grown very rapidly. The installed capacity of PV for 2013 was about 37 GW and 2014 sales are expected to be around 45 GW. However, there has been excess production for last several years, which is responsible in part for the low prices (about 60 c/W). To lower the PV energy costs further, a major strategy appears to be going to high efficiency solar cells. This approach is favored (over lower cost/lower efficiency) because cell efficiency has a very large influence on the acceptable manufacturing cost of a PV module. Hence, the PV industry is moving toward developing processes and equipment to manufacture solar cells that can yield efficiencies >20%. Therefore, further research is needed within existing technologies to accomplish these objectives. Likewise, research will continue to seek new materials and devices.

  9. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect

    Choi, J.K.; Fthenakis, V.

    2010-10-01

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  10. Small-Angle Neutron Scattering Studies of a-Si:H and a-Si:D

    SciTech Connect

    Williamson, D. L.; Marr, D. W. M.; Nelson, B. P.; Iwaniczko, E.; Yang, J.; Yan, B.; Guha, S.

    2000-01-01

    The heterogeneity of hydrogen and deuterium on the nanometer scale has been probed by samll-angle neutron scattering (SANS) from a-Si:H and a-Si:D films. Films were depsoited by two techniques, plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) using conditions that yield high quality films and devices.

  11. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  12. Photovoltaic system criteria documents. Volume 2: Quality assurance criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Quality assurance criteria are described for manufacturers and installers of solar photovoltaic tests and applications. Quality oriented activities are outlined to be pursued by the contractor/subcontractor to assure the physical and operational quality of equipment produced is included. In the broad sense, guidelines are provided for establishing a QA organization if none exists. Mainly, criteria is provided to be considered in any PV quality assurance plan selected as appropriate by the responsible Field Center. A framework is established for a systematic approach to ensure that photovoltaic tests and applications are constructed in a timely and cost effective manner.

  13. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  14. Photovoltaics - The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presened. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  15. Photovoltaics: The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presented. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  16. Department of Energy: Photovoltaics program - FY 1996

    SciTech Connect

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  17. Photovoltaic development in Argentina

    SciTech Connect

    Godfrin, E.M.; Duran, J.C.; Frigerio, A.; Moragues, J.A.

    1994-12-31

    A critical assessment of the photovoltaic program in Argentina is presented. Research and development activities on photovoltaic cells as well as industrial and technological development are still in the initial stages. Activities accomplished by the Atomic Energy Commission (CNEA) and the Institute of Technology Development for the Chemical industry (INTEC) are briefly described. The evolution of photovoltaic installations in Argentina is analyzed and accumulative data up to 1993 are given. A summary of the potential market for photovoltaic systems in the short and medium term is presented.

  18. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOEpatents

    Phillips, James E.; Lasswell, Patrick G.

    1987-01-01

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  19. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  20. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  1. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  2. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  3. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  4. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  5. Characterization of Photovoltaic Generators

    ERIC Educational Resources Information Center

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  6. Challenges to Scaling CIGS Photovoltaics

    NASA Astrophysics Data System (ADS)

    Stanbery, B. J.

    2011-03-01

    The challenges of scaling any photovoltaic technology to terawatts of global capacity are arguably more economic than technological or resource constraints. All commercial thin-film PV technologies are based on direct bandgap semiconductors whose absorption coefficient and bandgap alignment with the solar spectrum enable micron-thick coatings in lieu to hundreds of microns required using indirect-bandgap c-Si. Although thin-film PV reduces semiconductor materials cost, its manufacture is more capital intensive than c-Si production, and proportional to deposition rate. Only when combined with sufficient efficiency and cost of capital does this tradeoff yield lower manufacturing cost. CIGS has the potential to become the first thin film technology to achieve the terawatt benchmark because of its superior conversion efficiency, making it the only commercial thin film technology which demonstrably delivers performance comparable to the dominant incumbent, c-Si. Since module performance leverages total systems cost, this competitive advantage bears directly on CIGS' potential to displace c-Si and attract the requisite capital to finance the tens of gigawatts of annual production capacity needed to manufacture terawatts of PV modules apace with global demand growth.

  7. A wide-gap a-SiC:H PV-powered electrochromic window coating

    SciTech Connect

    Gao, W.; Lee, S.H.; Xu, Y.; Benson, D.K.; Deb, S.K.; Branz, H.M.

    1998-09-01

    The authors report on the first monolithic, amorphous-silicon-based, photovoltaic-powered electrochromic window coating. The coating employs a wide bandgap a-Si{sub 1{minus}x}C{sub x}:H n-i-p photovoltaic (PV) cell as a semitransparent power supply, and a Li{sub y}WO{sub 3}/LiAlF{sub 4}/V{sub 2}O{sub 5} electrochromic (EC) device as an optical-transmittance modulator. The EC device is deposited directly on top of a PV cell that coats a glass substrate. The a-Si{sub 1{minus}x}C{sub x}:H PV cell has a Tauc gap of 2.2 eV and a transmittance of 60--80% over a large portion of the visible light spectrum. The authors reduced the thickness of the device to about 600 {angstrom} while maintaining a 1-sun open-circuit voltage of 0.9 V and short-circuit current of 2 mA/cm{sup 2}. The prototype 16 cm{sup 2} PV/EC device modulates the transmittance by more than 60% over a large portion of the visible spectrum. The coloring and bleaching times of the EC device are approximately 1 minute under normal operating conditions ({+-} 1 volt). A brief description of photoelectrochromic windows study is also given.

  8. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report

    SciTech Connect

    Deng, X.; Jones, S.J.; Liu, T.; Izu, M.

    1998-04-01

    This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

  9. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  10. Photovoltaic Power Plants

    NASA Astrophysics Data System (ADS)

    Berman, Elliot

    1986-11-01

    To demonstrate technical viability of photovoltaic modules in central, grid connected energy systems, ARCO Solar, Inc. has designed, installed and is operating two photovoltaic power plants on the megawatt scale. These systems use two-axis tracking. The first generation plant in Lugo (Hesperia), California, with a nominal rating of one MWpk (DC)" was installed in 1982 in the Southern California Edison Company grid. The second system, rated at 6.4 MWDk (DC), is located in the Carrisa Plain in California and connected to the Pacific Gas and Electric Company grid. Based on the cost and performance data from these installations, an assessment of the current status and future needs of large scale photovoltaic energy systems is made. With each new system, improved techniques of design, installation and system integration have been developed. Expectations have been confirmed as to the performance and adaptability of solar cells, especially the ease of incremental increases in capacity when needed. Modular photovoltaic systems have been found to be easy to build and operate, and to be highly reliable. Prologue: Technological advancement usually requires good science and logical engineering. In the main, faith, persistence and feel are also required. Rule: The balance-of-system costs for photovoltaic energy systems equal photovoltaic module costs. Photovoltaic systems have progressed to their current stage of high promise because of faith, persistence, feel and belief in this rule.

  11. The NREL Outdoor Accelerated-Weathering Tracking System Photovoltaic Module Exposure Results

    SciTech Connect

    Basso, T. S.

    2000-01-01

    Status results are presented for the Outdoor Accelerated-Weathering Tracking System (OATS) first study on photovoltaic (PV) modules. Studies began in November 1997 on pairs of commercially available crystalline silicon and amorphous silicon (a-Si) PV modules kept at constant resistive load.

  12. A new architecture for printable photovoltaics overcoming conventional module limits.

    PubMed

    Kang, Hongkyu; Hong, Soonil; Back, Hyungcheol; Lee, Kwanghee

    2014-03-12

    A new architecture for manufacturing large-area polymer solar cells that does not produce concomitant aperture and Ohmic losses is presented. By introducing the innovative concept of metal-filamentary nanoelectrodes, which are vertically formed inside the main active layers, loss-free, widely expandable solar cells with the highest relative power conversion efficiency (ca. 90%) in organic photovoltaic systems are demonstrated.

  13. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  14. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  15. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  16. Light induced degradation and structure of high efficiency a-Si:H, a-SiGe:H and a-SiC:H solar cells

    SciTech Connect

    Fortmann, C.M.; O'Dowd, J.; Newton, J.; Fischer, J.

    1987-06-25

    The electrical and optical properties of a-Si:H, a-SiGe:H and a-SiC:H films prepared by d.c. glow discharge method have been characterized. High performance p-i-n devices have also been prepared. The relative stability as well as initial properties of these materials was examined as a function of growth rate. Notable solar cells include efficiencies of 9.36% for a-Si:H deposited at 10Asec, 8.6% for a-SiGe:H and 7% for a-SiC:H. Cells employing I-layers of a-Si:H grown at rates greater than 10Asec were significantly less stable than standard material. Cells using I-layers of either a-SiGe:H or a-SiC:H were stable (compared to standard a-Si:H) when they were prepared at growth rates of less than 1.0Asec. An increase in the infrared absorption at 845 cm/sup -1/ was associated with an increase in the rate of light induced degradation. Absorption at 845 cm/sup -1/, is usually associated with the bending modes of (SiH/sub 2/)/sub n/ polymeric chains

  17. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  18. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  19. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Computational assessment of organic photovoltaic candidate compounds

    NASA Astrophysics Data System (ADS)

    Borunda, Mario; Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan

    2015-03-01

    Organic photovoltaic (OPV) cells are emerging as a possible renewable alternative to petroleum based resources and are needed to meet our growing demand for energy. Although not as efficient as silicon based cells, OPV cells have as an advantage that their manufacturing cost is potentially lower. The Harvard Clean Energy Project, using a cheminformatic approach of pattern recognition and machine learning strategies, has ranked a molecular library of more than 2.6 million candidate compounds based on their performance as possible OPV materials. Here, we present a ranking of the top 1000 molecules for use as photovoltaic materials based on their optical absorption properties obtained via time-dependent density functional theory. This computational search has revealed the molecular motifs shared by the set of most promising molecules.

  1. Health risks of photovoltaic energy technologies

    NASA Astrophysics Data System (ADS)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Novak, K. M.; Robinson, C. V.; Rowe, M. D.

    1981-12-01

    Health risks of photovoltaic energy technologies arise from mining, processing and refining of raw materials, and fabrication, installation, operation, and disposal of devices used to convert sunlight into useful energy. Using an accounting approach, public and occupational health risks are examined for four different photovoltaic cell alternatives: silicon single-crystal cells produced by an ingot process; silicon metal/insulator/semiconductor cells produced by ribbon growing; cadmium sulfide backwall cells produced by spray deposition; and gallium arsenide cells produced by modified ingot-growing. These alternatives cover a range of manufacturing options (e.g., ingot versus spray deposition) and materials (silicon versus arsenic) which might be used in future commercialization efforts. Most occupational mortality and morbidity effects probably relate to industrial risks similar to those encountered in the day-to-day operation of any industrial operation. Material supply, installation, and operation appear to contribute substantial portions of the damage.

  2. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  3. Photovoltaic systems and applications

    SciTech Connect

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  4. Electrospun a-Si using Liquid Silane/Polymer Inks

    SciTech Connect

    Doug Schulz

    2010-12-09

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  5. Electrospun a-Si using Liquid Silane/Polymer Inks

    SciTech Connect

    D.L. Schulz; J.M. Hoey; J. Smith; J. Lovaasen; C. Braun; X. Dai; K. Anderson; A. Elangovan; X. Wu; S. Payne; K. Pokhodnya; I. Akhatov; L. Pederson; P. Boudjouk

    2010-12-01

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  6. Valence x-ray-emission bands of a-Si:H/a-SiNx:H superlattices

    NASA Astrophysics Data System (ADS)

    Nithianandam, Jeyasingh; Schnatterly, Stephen E.

    1990-11-01

    Si L2,3 x-ray-emission spectra from amorphous superlattices made with a-Si:H and a-SiNx:H are presented and interpreted using a two-phase linear superposition model for the valence-band region. The average thickness of buried interfaces in these superlattices was found to be 1.8 Å and the interfaces were shown to be of silicon-nitride character. A direct measurement of the fluorescence yield ratio in the soft-x-ray spectral range for any two materials is also presented.

  7. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  8. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing. PMID:25898070

  9. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  10. Manufacturing Aids

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Contractor's work for Lewis Research Center on "thermal barrier" coatings designed to improve aircraft engine efficiency resulted in two related but separate spinoffs. The Materials and Manufacturing Technology Center of TRW, Inc. invented a robotic system for applying the coating, and in the course of that research found it necessary to develop a new, extremely accurate type of optical gage that offers multiple improvements in controlling the quality of certain manufactured parts.

  11. An update on environmental, health and safety issues of interest to the photovoltaic industry

    SciTech Connect

    Moskowitz, P.D.; Viren, J.; Fthenakis, V.M.

    1992-08-01

    There is growing interest in the environmental, health, and safety issues related to new photovoltaic technologies as they approach commercialization. Such issues include potential toxicity of II--VI compounds; the impacts of new environmental regulations on module manufacturers; and, the need for recycling of spent modules and manufacturing wastes. This paper will review these topics. 20 refs.

  12. An update on environmental, health and safety issues of interest to the photovoltaic industry

    SciTech Connect

    Moskowitz, P.D.; Viren, J.; Fthenakis, V.M.

    1992-01-01

    There is growing interest in the environmental, health, and safety issues related to new photovoltaic technologies as they approach commercialization. Such issues include potential toxicity of II--VI compounds; the impacts of new environmental regulations on module manufacturers; and, the need for recycling of spent modules and manufacturing wastes. This paper will review these topics. 20 refs.

  13. Optical losses in multi-junction a-Si:H based solar cells and modules

    NASA Astrophysics Data System (ADS)

    Wiedeman, S.; Morris, J.; Yang, L.

    A comprehensive optical model is described which is applicable to glass/textured CTO/a-Si:H/a-SiGe:H-based multijunction cells and allows the calculation of optical absorption in each layer of the solar cell. The major optical losses which limit the output current density of tandem cells using 1.72-eV/1.50-eV bandgap a-Si:H/a-SiGe:H and an ITO/Ag rear contact to about 20.8 mA/sq cm (sum of both junctions) are identified and discussed. It is shown that improvements in the reflectivity and scattering properties of the rear contact may be expected to result in current densities of 22.3 mA/sq cm in this type of cell using intrinsic layers of limited thickness. The use of low-cost materials, such as soda-lime glass and the aluminum rear contacts typically employed in the manufacture of large-area modules, should reduce the total current density available to 18.5 mA/sq cm.

  14. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  15. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  16. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  17. Benchmarking concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  18. Photovoltaic-system costing-methodology development. Final report

    SciTech Connect

    Not Available

    1982-07-01

    Presented are the results of a study to expand the use of standardized costing methodologies in the National Photovoltaics Program. The costing standards, which include SAMIS for manufacturing costs and M and D for marketing and distribution costs, have been applied to concentrator collectors and power-conditioning units. The M and D model was also computerized. Finally, a uniform construction cost-accounting structure was developed for use in photovoltaic test and application projects. The appendices contain example cases which demonstrate the use of the models.

  19. Photovoltaic subsystem marketing and distribution model: programming manual. Final report

    SciTech Connect

    Not Available

    1982-07-01

    Complete documentation of the marketing and distribution (M and D) computer model is provided. The purpose is to estimate the costs of selling and transporting photovoltaic solar energy products from the manufacturer to the final customer. The model adjusts for the inflation and regional differences in marketing and distribution costs. The model consists of three major components: the marketing submodel, the distribution submodel, and the financial submodel. The computer program is explained including the input requirements, output reports, subprograms and operating environment. The program specifications discuss maintaining the validity of the data and potential improvements. An example for a photovoltaic concentrator collector demonstrates the application of the model.

  20. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  1. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  2. Photovoltaic system controller

    SciTech Connect

    Gerken, K.F.; Sullivan, R.A.

    1989-12-19

    This patent describes a photovoltaic system controller for utilization with a photovoltaic power system including at least a photovoltaic array, a system battery adapted to be charged by the array and a load adapted to be powered by the battery. The controller comprising a microprocessor having an erasable programmable memory. The microprocessor having means to receive input data from the array, the battery and the load. The microprocessor having means to evaluate the input data in relation to at least one predetermined setpoint, the microprocessor in response to the evaluation being adapted to disconnect the battery from the array or to disconnect the load from the battery. The setpoint being adapted to be adjusted to a second setpoint by adjustment means, and the erasable programmable memory being adapted to be changed whereby the evaluation performed by the microprocessor is also changed.

  3. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  4. Manipulating hybrid structures of polymer/a-Si for thin film solar cells

    SciTech Connect

    Peng, Ying; He, Zhiqun E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun; Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B. E-mail: J.I.B.Wilson@hw.ac.uk

    2014-03-10

    A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200 nm)/i-Si(450 nm)/n-Si(200 nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

  5. Metal-induced crystallization of a-Si thin films by nonvacuum treatments

    SciTech Connect

    Kalkan, A.K.; Fonash, S.J.

    1997-11-01

    Thin film polycrystalline Si (poly-Si) is of considerable interest today for microelectronics, flat panel displays, and photovoltaics. Low thermal budget solid-phase crystallization (SPC) of a-Si precursor films was achieved using surface treatments with metal-containing solutions. Two different treatment procedures were demonstrated. With these treatments, one based on a Pd solution and the other on a Ni solution, the SPC time at 600 C was reduced from 18 h to 10 min or less. This approach renders the usual vacuum deposition step used in metal-induced crystallization unnecessary. The authors find that the ultraviolet reflectance and Raman shift signals for the crystallized films are independent of whether the SPC-enhancing metal is applied by vacuum or solution. These characterization results do differ, however, with the metal applied.

  6. Microgravity Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Manufacturing capability in outer space remains one of the critical milestones to surpass to allow humans to conduct long-duration manned space exploration. The high cost-to-orbit for leaving the Earth's gravitational field continues to be the limiting factor in carrying sufficient hardware to maintain extended life support in microgravity or on other planets. Additive manufacturing techniques, or 'chipless' fabrication, like RP are being considered as the most promising technologies for achieving in situ or remote processing of hardware components, as well as for the repair of existing hardware. At least three RP technologies are currently being explored for use in microgravity and extraterrestrial fabrication.

  7. The DOE photovoltaics program

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1983-01-01

    The considered program of the U.S. Department of Energy (DOE) has the objective to provide federal support for research and development work related to photovoltaics. According to definitions of policy in 1981, a strong emphasis is to be placed on long-term, high-risk research and development that industry could not reasonably be expected to perform using their own funds. Attention is given to the program structure, the photovoltaics program management organization, the advanced research and development subprogram, the collector research and development subprogram, flat-plate collectors, concentrator collectors, and the systems research and technology subprogram.

  8. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  9. Asphaltene based photovoltaic devices

    DOEpatents

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  10. Three-dimensional photovoltaics

    NASA Astrophysics Data System (ADS)

    Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.

    2010-02-01

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D structures are not simple box-like shapes, and that design attributes such as reflectivity could be optimized using three-dimensionality.

  11. Three-dimensional photovoltaics

    NASA Astrophysics Data System (ADS)

    Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.

    2010-03-01

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D shapes are not simple box-like shapes, and that design attributes such as reflectivity can be optimized in new ways using three-dimensionality.

  12. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  13. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  14. The worldwide market for photovoltaics in the rural sector

    NASA Astrophysics Data System (ADS)

    Brainard, W. A.

    1982-09-01

    The worldwide market for stand-alone photovoltaic power systems in three specific segments of the rural sector were determined. The worldwide market for photovoltaic power systems for village power, cottage industry, and agricultural applications were addressed. The objectives of these studies were to: The market potential for small stand-alone photovoltaic power system in specific application areas was assessed. Technical, social and institutional barriers to PV utilization were identified. Funding sources available to potential users was also identified and marketing strategies appropriate for each sector were recommended to PV product manufacturers. The studies were prepared on the basis of data gathered from domestic sources and from field trips to representative countries. Both country-specific and sector-specific results are discussed, and broadly applicable barriers pertinent to international marketing of PV products are presented.

  15. The worldwide market for photovoltaics in the rural sector

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1982-01-01

    The worldwide market for stand-alone photovoltaic power systems in three specific segments of the rural sector were determined. The worldwide market for photovoltaic power systems for village power, cottage industry, and agricultural applications were addressed. The objectives of these studies were to: The market potential for small stand-alone photovoltaic power system in specific application areas was assessed. Technical, social and institutional barriers to PV utilization were identified. Funding sources available to potential users was also identified and marketing strategies appropriate for each sector were recommended to PV product manufacturers. The studies were prepared on the basis of data gathered from domestic sources and from field trips to representative countries. Both country-specific and sector-specific results are discussed, and broadly applicable barriers pertinent to international marketing of PV products are presented.

  16. BMDO photovoltaics program overview

    NASA Technical Reports Server (NTRS)

    Caveny, Leonard H.; Allen, Douglas M.

    1994-01-01

    This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.

  17. Photovoltaics in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1985-01-01

    Report surveys status of research and development on photovoltaics in Japan. Report based on literature searches, private communications, and visits by author to Japanese facilities. Included in survey are Sunshine Project, national program to develop energy sources; industrial development at private firms; and work at academic institutions.

  18. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  19. Formed photovoltaic module busbars

    DOEpatents

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  20. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  1. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  2. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  3. Photovoltaics reading list

    SciTech Connect

    Not Available

    1984-01-01

    The articles, conference papers, monographs and technical reports cited here are meant to provide a basic introduction to photovoltaics, its research, economics, and technology development. In addition to specific articles and books, several directories, bibliographies, journals, and magazines are suggested as additional sources of information.

  4. Editorial: Photovoltaic Materials and Devices 2014

    DOE PAGES

    Sopori, Bhushan; Rupnowski, Peter; Shet, Sudhakar; Basnyat, Prakash

    2014-12-22

    An ever increasing demand on energy has fostered many new generation technologies, which include photovoltaics. In recent years, photovoltaic industry has grown very rapidly. The installed capacity of PV for 2013 was about 37 GW and 2014 sales are expected to be around 45 GW. However, there has been excess production for last several years, which is responsible in part for the low prices (about 60 c/W). To lower the PV energy costs further, a major strategy appears to be going to high efficiency solar cells. This approach is favored (over lower cost/lower efficiency) because cell efficiency has a verymore » large influence on the acceptable manufacturing cost of a PV module. Hence, the PV industry is moving toward developing processes and equipment to manufacture solar cells that can yield efficiencies >20%. Therefore, further research is needed within existing technologies to accomplish these objectives. Likewise, research will continue to seek new materials and devices.« less

  5. Evaluation of environmental control equipment for thin film silicon photovoltaic cell processing: Phase I

    SciTech Connect

    Khanna, A.K.; Gupta, R.; Joseph, A.; Singh, N.; Vojtek, M.E.

    1987-01-01

    Thin film silicon:hydrogen alloys are commanding an increasing share of the photovoltaic marketplace. Due to the hazardous nature of the materials involved in their manufacture, it is important to control and render harmless those reactants that are not consumed as inert coating. Environmental control equipment used for such purposes must meet important safety, throughput, efficiency, and reliability requirements. This report discusses the analytical methodology and performance results obtained for various environmental systems evaluated at a photovoltaic research facility.

  6. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOEpatents

    Phillips, J.E.; Lasswell, P.G.

    1987-02-03

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device. 10 figs.

  7. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  8. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  9. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  10. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  11. Photovoltaic power conditioning subsystem: state of the art and development opportunities

    SciTech Connect

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-15

    Photovoltaic sytems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and hot utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are also considered, including: (1) standards, guidelines, and specifications; (2) cost-effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. In addition, theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  12. Defects in a-Si and a-Si:H: A numerical study

    NASA Astrophysics Data System (ADS)

    Knief, Simone; von Niessen, Wolfgang; Koslowski, Thorsten

    1998-08-01

    We present a numerical study of the electronic properties of various structural models of amorphous silicon and hydrogenated amorphous silicon. Starting from an ideal random network, dangling bonds, floating bonds, double bonds, microvoids, hydrogenated dangling bonds, and hydrogenated floating bonds are introduced. The concentrations of these defects can be varied independently, the amount of disorder introduced to the system is therefore strictly controllable. Two continuous random networks, the vacancy model of Duffy, Boudreaux, and Polk and the bond switching model of Wooten, Winer, and Weaire (WWW model) are investigated. For the relaxation of the structures the potentials of Keating and of Stillinger and Weber are employed. The electronic structure is described by a tight-binding Hamiltonian; the localized or extended character of the eigenstates is investigated via a scaling approach. The vacancy model shows a band gap for small defect concentrations but this fills up with increasing disorder. Similar behavior is found for the case of the other models. In general defects introduce states into the gap region of a-Si, where the dangling bonds lead to the largest density of states in the gap region for a given defect concentration. This model turns out to be unique. For small system sizes an impurity band results that dramatically changes its character for large systems above 4000 atoms to a nearly uniform density of states as observed experimentally. In a-Si:H the dangling and floating bonds are removed and a mobility gap results with a width in good agreement with experiment. The experimentally observed tailing of the band into the gap region (first linear, then exponential) is well described only for the a-Si:H model derived from the vacancy model and for very large system sizes above 4000 atoms. The WWW model does not lead to this tail behavior. Localized states are found at all band edges but states at the bottom of the conduction band are more strongly

  13. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  14. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices. PMID:27227369

  15. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  16. Alpha Solarco`s Photovoltaic Concentrator Development program

    SciTech Connect

    Anderson, A.; Bailor, B.; Carroll, D.

    1995-10-01

    This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

  17. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-05-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  18. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    SciTech Connect

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

  19. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  20. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  1. Photovoltaic prospects in Europe

    NASA Astrophysics Data System (ADS)

    Starr, M. R.

    The economics of solar cells is reviewed with an eye to potential cost reductions in processing, and potential markets are explored. Current solar cell systems costs are noted to be on the road to achieving the U.S. DoE goals of $0.40/kWp by 1990. Continued progress will depend on technical developments in cheaper materials and processes, scaling up production, and the success of sales programs. Various consumer and professional markets are outlined, with a prediction that a 12 MWp deman will be reached as a steady state by 1995. Photovoltaic panels may conceivably replace conventional roofing materials, resulting in the projection that, if grid-supplied power continues to inflate in price, then all new European homes would be equipped with photovoltaics by the year 2000. Further, accomplishment of the cost goals could generate a 1 GWp/yr industrial market at the same time.

  2. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  3. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  4. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  5. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated.

  6. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated. PMID:27087582

  7. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  8. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  9. Advances in photovoltaic technology

    NASA Technical Reports Server (NTRS)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  10. Photovoltaic panel support assembly

    SciTech Connect

    Barker, J.M.; Underwood, J.C.; Shingleton, J.

    1993-07-20

    A solar energy electrical power source is described comprising in combination at least two flat photovoltaic panels disposed side-by-side in co-planar relation with one another, a pivot shaft extending transversely across the panels, at least two supports spaced apart lengthwise of the pivot shaft, means for connecting the pivot shaft to the at least two supports, attachment means for connecting the at least two panels to the pivot shaft so that the panels can pivot about the longitudinal axis of the shaft, coupling means mechanically coupling all of the panels together so as to form a unified flat array, and selectively operable drive means for mechanically pivoting the unified flat array about the axis; wherein each of the flat photovoltaic panels comprises at least two modules each comprising a plurality of electrically interconnected photovoltaic cells, the at least two modules being aligned along a line extending at a right angle to the pivot shaft, and the coupling means comprises (a) an elongate member extending parallel to and spaced from the pivot shaft and (b) means for attaching the elongate member to the panels; and further wherein each flat photovoltaic panel comprises a unitary frame consisting of a pair of end frame members extending parallel to the pivot shaft, a pair of side frame members extending between and connected to the end frame members, and a pair of spaced apart cross frame members, with one of the two modules being embraced by and secured to the side frame members and a first one of each of the end and cross frame members, and the other of the two modules being embraced by and secured to the side frame members and the second one of each of the end and cross frame members, whereby the gap created by the spaced apart cross frame members allow air to pass between them in order to reduce the sail effect when the solar array is subjected to buffeting winds.

  11. Photovoltaic cell array

    NASA Technical Reports Server (NTRS)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  12. Photovoltaic-thermal collectors

    DOEpatents

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  13. Photovoltaic module certification/laboratory accreditation criteria development

    SciTech Connect

    Osterwald, C.R.; Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L.; Zerlaut, G.A.; D`Aiello, R.V.

    1995-04-01

    This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

  14. Photocurrent of Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  15. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  16. Photovoltaics and the automobile

    SciTech Connect

    Young, W.R. Jr.

    1994-12-31

    For years people have been in love with the automobile. Some people just enjoy using the automobile as transportation while others also enjoy the workings and operation of this fascinating machine. The automobile is not without problems of pollution and energy consumption. These problems are changing its design and construction. New clean energy sources are being analyzed and applied to power the modern automobile. A space age energy source now being considered by some and used by others to power the automobile is photovoltaics. Photovoltaics (PV) is the direct conversion of sunlight to electricity. There are a number of devices in the modern car that are electrically powered. PV could provide a clean endless supply of electricity for air conditioning, radios and other electrical components of a car. Most people have never heard of photovoltaics (PV). There has been a great deal of research in PV among energy experts. The automobile is known the world over in both use and operation. The author describes how the merging of these two technologies will benefit mankind and without damaging the environment. 12 refs.

  17. Solar photovoltaics for development applications

    SciTech Connect

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  18. Do photovoltaics have a future

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1979-01-01

    There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.

  19. Utility-scale photovoltaic concentrators

    SciTech Connect

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Plasmonics for improved photovoltaic devices.

    PubMed

    Atwater, Harry A; Polman, Albert

    2010-03-01

    The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

  1. Solar photovoltaics for development applications

    NASA Astrophysics Data System (ADS)

    Shepperd, L. W.; Richards, E. H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major U.S. photovoltaic system suppliers.

  2. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  3. Thick-film materials for silicon photovoltaic cell manufacture

    NASA Technical Reports Server (NTRS)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  4. Photovoltaic Cz Silicon Module Improvements; Final Subcontract Report, 9 November 1995 - 8 November 1998

    SciTech Connect

    T. L. Jester.

    1999-06-17

    This report describes work that focused on reducing the cost per watt of Cz silicon photovoltaic modules under Siemens Solar Industries' (SSI) DOE/NREL Photovoltaic Manufacturing Technology (PVMaT) 4A subcontract. SSI researchers deployed new module designs, realized improvements in yield of more than 25%, and implemented statistical process control (SPC). They have described yield improvements in detail and reported on the deployment of SPC in critical process steps. The sum of all improvements resulted in a greater than 17% cost per watt reduction in manufacturing.

  5. Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)

    SciTech Connect

    Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

    2013-09-01

    This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

  6. a-Si:H and a-SiGe:H alloys fabricated close to powder regime of rf PECVD

    SciTech Connect

    Middya, A.R.; Hazra, S.; Ray, S.; Longeaud, C.; Kleider, J.P.

    1997-07-01

    The authors have been observing that a-Si:H and a-SiGe:H films deposited under high chamber pressure or close to powder regime (500 to 2,000 mT for a-Si:H and 200 to 1,000 mT for a-SiGe:H) show many new features: the mobility lifetime product is 10 to 100 times higher and the density of states above Fermi level of a-Si:H and a-SiGe:H ([Ge] {le} 0.20) is lower than that of standard samples. This enhancement in photoconductivity can neither be attributed to autodoping nor to creation of sensitization centers in the samples. Hydrogen bonding of these films, is mostly monohydride and the density of microstructural (polyhydrides and microvoids) defects is low. Evidence for the presence of nanocrystals is noted. Though the films seems amorphous by all conventional techniques, they crystallize easily under low laser intensity. Kinetics of light induced degradation is very fast (less than 20 hrs), for a-Si:H and the value of photoconductivity in the light soaked state is comparable to that of the standard samples in the annealed state. The process gas utilization efficiency in this regime is also higher than in the low power and pressure regime.

  7. Lasers in energy device manufacturing

    NASA Astrophysics Data System (ADS)

    Ostendorf, A.; Schoonderbeek, A.

    2008-02-01

    Global warming is a current topic all over the world. CO II emissions must be lowered to stop the already started climate change. Developing regenerative energy sources, like photovoltaics and fuel cells contributes to the solution of this problem. Innovative technologies and strategies need to be competitive with conventional energy sources. During the last years, the photovoltaic solar cell industry has experienced enormous growth. However, for solar cells to be competitive on the longer term, both an increase in efficiency as well as reduction in costs is necessary. An effective method to reduce costs of silicon solar cells is reducing the wafer thickness, because silicon makes up a large part of production costs. Consequently, contact free laser processing has a large advantage, because of the decrease in waste materials due to broken wafers as caused by other manufacturing processes. Additionally, many novel high efficiency solar cell concepts are only economically feasible with laser technology, e.g. for scribing silicon thin-film solar cells. This paper describes laser hole drilling, structuring and texturing of silicon wafer based solar cells and describes thin film solar cell scribing. Furthermore, different types of lasers are discussed with respect to processing quality and time.

  8. Photovoltaics: solar electric power systems

    SciTech Connect

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  9. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  10. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  11. Photovoltaic tests and applications project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities and accomplishments of the Photovoltaic Tests and Applications Project during the period April 1976 through June 1977 are summarized. Results of efforts to identify potential near-term photovoltaic applications and users are discussed, including the outcome of an extensive survey of Federal government agencies. The status of application experiments is presented. Various general engineering efforts are reported, including the design and construction of a photovoltaic Systems Test Facility. Efforts to develop a high efficiency 10 kVA self-commutated inverter and controller specifically designed for photovoltaic systems are also discussed. The results of a wide variety of activities in the area of photovoltaic measurements and standards are related. Documents generated by the Project during the reporting period are listed in an Appendix.

  12. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  13. Photovoltaic panel clamp

    SciTech Connect

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  14. Photovoltaic panel clamp

    DOEpatents

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  15. Europe's space photovoltaics programme

    NASA Technical Reports Server (NTRS)

    Bogus, Klaus P.

    1994-01-01

    The current space PV (photovoltaic) technology development program of ESA is described. The program is closely coupled to the European space mission scenario for the next 10 year period and has as its main objective to make the most effective use of the limited resources available for technology in the present economical climate. This requires a well-balanced approach between concentration on very few options and keeping the competition alive if more than one promising technology exists. The paper describes ESA's main activities in the areas of solar array technology, solar cell technology, solar cell assembly technology, and special test and verification activities including the in-orbit demonstration of new technologies.

  16. Photovoltaic Degradation Risk: Preprint

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  17. Optical waveguide enhanced photovoltaics.

    PubMed

    Rühle, Sven; Greenwald, Shlomit; Koren, Elad; Zaban, Arie

    2008-12-22

    Enhanced light to electric power conversion efficiency of photovoltaic cells with a low absorbance was achieved using waveguide integration. We present a proof of concept using a very thin dye-sensitized solar cell which absorbed only a small fraction of the light at normal incidence. The glass substrate in conjunction with the solar cells reflecting back contact formed a planar waveguide, which lead to more than four times higher conversion efficiency compared to conventional illumination at normal incidence. This illumination concept leads to a new type of multi-junction PV systems based on enforced spectral splitting along the waveguide.

  18. Bracket for photovoltaic modules

    SciTech Connect

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  19. Photovoltaics: From the laboratory to the marketplace

    SciTech Connect

    Basso, T.S.; Surek, T.; Thornton, J.

    1991-03-01

    Photovoltaics (PV), the direct conversion of sunlight to electricity, is experiencing significant improvements in technology performance and lowered costs. Fostering these improvements, the SERI Photovoltaic Advanced Research and Development (PV AR D) Project supports research and provides services to the US PV industry. This paper presents the recent advances and future direction of the PV project. Research areas are Fundamental and Supporting Research, Advanced Thin-Film Materials, High-Efficiency Materials, Module Development, and Systems Development. Materials of interest include amorphous silicon, copper indium diselenide, cadmium telluride, crystalline silicon, gallium arsenide and related alloys, transparent conductors, antireflection coatings, substrates, and encapsulants. The PV project inherently provides technology transfer that helps industry shorten the time to bring R D advances to the marketplace. SERI annually performs over 10,000 measurements for the entire PV community, participates in collaborative research, and welcomes visiting scientists. Two specific areas of recently increased national focus are: (1) manufacturing processes for cost-effective PV modules, and (2) systems development for high-value utility applications. The SERI research approach is based on facilitating direct contact between industry, electric utilities, and others interested in PV technology. This approach heavily relies on SERI/industry partnerships. The arrangements vary to address generic and company-specific problems to improve the US industry's competitive position and accelerate greater electric utility deployment of PV systems. 5 refs., 5 figs., 6 tabs.

  20. Functional substrates for flexible organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Niggemann, M.; Ruf, D.; Bläsi, B.; Glatthaar, M.; Riede, M.; Müller, C.; Zimmermann, B.; Gombert, A.

    2005-10-01

    Along with efficiency and lifetime, costs are one of the most important aspects for the commercialization of organic solar cells. Thinking of large scale production of organic solar cells by an efficient reel-to-reel process, the materials are expected to determine the costs of the final product. Our approach is to develop functional substrates for organic solar cells which have the potential for cost effective production. The functionality is obtained by combining periodically microstructured substrates with lamellar electrode structures. Such structured substrates were fabricated by cost effective replication from masterstructures that were generated by large area interference lithography. Two cell architectures were investigated - holographic microprisms and interdigital buried nanoelectrodes. A structure period of 20 μm in combination with a 2 μm wide metal grid was chosen for the microprism cells based on the results of electrical calculations. Current-voltage curves with reasonable fill factors were measured for these devices. A significant light trapping effect was predicted from optical simulations. Interdigital buried nanoelectrodes are embedded in the photoactive layer of the solar cell. Separated interdigital metal electrodes with a sufficiently high parallel resistance were manufactured despite a small electrode distance below 400 nm. Experimental results on first photovoltaic devices will be presented. We observe an insufficient rectification of the photovoltaic device which we attribute to partial electron injection into the gold anode.

  1. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-09-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, they verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. They discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  2. Chemical bonding technology for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Coulter, D. R.; Cuddihy, E. F.; Plueddeman, E. P.

    1983-01-01

    Encapsulated photovoltaic modules must hold together for 20 years, reliably resisting delamination and separation of any of the component materials. Delamination of encapsulation materials from each other, or from solar cells and interconnects, can create voids for accumulation of water, promoting corrosive failure. Delamination of silicone elastomers from unprimed surfaces was a common occurrence with early modules, but the incidences of silicone delamination with later modules decreased when adhesion promoters recommended by silicone manufacturers were used. An investigation of silicone delamination from unprimed surfaces successfully identified the mechanism, which was related to atmospheric oxygen and moisture. This early finding indicated that reliance on physical bonding of encapsulation interfaces for long life in an outdoor environment would be risky. For long outdoor life, the material components of a module must therefore be held together by weather-stable adhesion promoters that desirably form strong, interfacial chemical bonds.

  3. Method for the continuous manufacture of thin film solar cells

    SciTech Connect

    Barnett, A.M.; Baron, B.N.; Masi, J.V.; Russell, T.W.

    1982-03-09

    A technique for manufacturing durable, reliable solar cells by a continuous process suitable for large-scale manufacture involves, in substance, providing a reel of thin metal foil substrate and forming on the substrate a series of layers operative to form a photovoltaic junction, short prevention blocking layers, contacts and integral encapsulation. The foil substrate is processed as a continuous reel substantially until final testing at which point, if desired, it can be cut into individual cells for deployment. In comparison with a batch process, the continuous technique can reduce manufacturing cost by as much as a factor of two.

  4. Charge collection in a-Si:H/a-Si{sub 1-x}C{sub x} multilayers photodetectors

    SciTech Connect

    Jing, T.; Drewray, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Delgado, J.C.; Bertomeu, J.

    1994-04-01

    Amorphous semiconductors have been used as thin film transistor(TFT), solar cell, phototransistors. In this paper we study the charge collected properties of a-Si:H/a-Si{sub 1-x}C:H{sub x} multilayer pin photodiode. In a-Si:H pin photodiode, the photogenerated carriers can be totally collected under strong electric field under reverse bias. However, our measurements show that in the a-Si:H/a-Si{sub l-x}C:H{sub x} multilayer pin photodiode photogenerated electrons and holes drift toward the electrodes under a certain bias, the total collected charge shows no saturation with bias and exhibits a continuous increase with reverse bias. We classify that the device works at two regions. In Region 1, the device behaves like a photodiode. This charge collection efficiency drop from theoretical value may indicate charge capture or confinement at the interfaces and trapping at the a-Si:H potential wells. These charges trapped or confined can be released at the interface and quantum well at higher electric field. In Region 2, above a critical bias voltage, the device works as a breakdown diode with a series photosensitive resistor which contributes higher collection efficiency, namely optical gain greater than unity.

  5. NREL Center for Photovoltaics

    ScienceCinema

    None

    2016-07-12

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%—about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  6. NREL Center for Photovoltaics

    SciTech Connect

    2009-01-01

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%—about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  7. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  8. Cloud manufacturing: a new manufacturing paradigm

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Luo, Yongliang; Tao, Fei; Li, Bo Hu; Ren, Lei; Zhang, Xuesong; Guo, Hua; Cheng, Ying; Hu, Anrui; Liu, Yongkui

    2014-03-01

    Combining with the emerged technologies such as cloud computing, the Internet of things, service-oriented technologies and high performance computing, a new manufacturing paradigm - cloud manufacturing (CMfg) - for solving the bottlenecks in the informatisation development and manufacturing applications is introduced. The concept of CMfg, including its architecture, typical characteristics and the key technologies for implementing a CMfg service platform, is discussed. Three core components for constructing a CMfg system, i.e. CMfg resources, manufacturing cloud service and manufacturing cloud are studied, and the constructing method for manufacturing cloud is investigated. Finally, a prototype of CMfg and the existing related works conducted by the authors' group on CMfg are briefly presented.

  9. Photovoltaic system costs using local labor and materials in developing countries

    NASA Technical Reports Server (NTRS)

    Jacobson, E.; Fletcher, G.; Hein, G.

    1980-01-01

    The use of photovoltaic (PV) technology in countries that do not presently have high technology industrial capacity was investigated. The relative cost of integrating indigenous labor (and manufacturing where available) into the balance of the system industry of seven countries (Egypt, Haiti, the Ivory Coast, Kenya, Mexico, Nepal, and the Phillipines) was determined. The results were then generalized to other countries, at most levels of development. The results of the study imply several conclusions: (1) the cost of installing and maintaining comparable photovoltaic systems in developing countries is less than in the United States; (2) skills and some materials are available in the seven subject countries that may be applied to constructing and maintaining PV systems; (3) there is an interest in foreign countries in photovoltaics; and (4) conversations with foreign nationals suggest that photovoltaics must be introduced in foreign markets as an appropriate technology with high technology components rather than as a high technology system.

  10. Detection of electrically failed photovoltaic modules at selected MIT Lincoln Laboratory test sites

    SciTech Connect

    Forman, S. E.

    1981-01-01

    The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Tests and Applications Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites throughout the United States, ranging in size from 1.5 to 100 kW of peak power. These sites contain modules from several manufacturers and serve as test beds for photovoltaic system components. From May 1977 to date, over 11,000 modules have been placed in service at these sites, of which a total of 250 have suffered electrical failures. In previous reports emphasis has been placed on failure modes and the types of physical and electrical degradation found in modules. The methods used to detect failures in operational photovoltaic power-generating systems are reported for several Lincoln Laboratory test sites.

  11. Environmentally benign silicon solar cell manufacturing

    SciTech Connect

    Tsuo, Y.S.; Gee, J.M.; Menna, P.; Strebkov, D.S.; Pinov, A.; Zadde, V.

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  12. Polymer Hybrid Photovoltaics for Inexpensive Electricity Generation: Final Technical Report, 1 September 2001--30 April 2006

    SciTech Connect

    Carter, S. A.

    2006-07-01

    The project goal is to understand the operating mechanisms underlying the performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a maximum power conversion efficiency over cost ratio that is significantly greater than current PV technologies. Plastic or polymer-based photovoltaics can have significant cost advantages over conventional technologies in that they are compatible with liquid-based plastic processing and can be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using standard printing technologies, such as reel-to-reel and screen printing. Moreover, polymer-based PVs are lightweight, flexible, and largely unbreakable, which make shipping, installation, and maintenance simpler. Furthermore, a numerical simulation program was developed (in collaboration with IBM) to fully simulate the performance of multicomponent polymer photovoltaic devices, and a manufacturing method was developed (in collaboration with Add-vision) to inexpensively manufacture larger-area devices.

  13. Byproduct mineral commodities used for the production of photovoltaic cells

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2010-01-01

    Rising fossil fuel costs, environmental concerns relating to global climate change, and Government policy to signifcantly increase our Nation's energy independence have placed greater emphasis on the generation of electricity from renewable sources, such as the Sun (light and heat), water, and wind, which for all intents and purposes are inexhaustible resources. Although the total amount of electricity generated from the direct conversion of sunlight through photovoltaic cells is relatively small compared with that from other forms of renewable energy, the rate of growth in the sector is signifcant. The total value of energy of photovoltaic cells produced worldwide increased to nearly 7 gigawatts (GW) in 2008 from 45 megawatts (MW) in 1990, a compound annual growth rate of about 30 percent. In the United States, manufacturing of photovoltaic cells has grown exponentially to about 480 MW in 2008, accounting for 6 percent of world production, from less than 10 MW of photovoltaic capacity in 1990 (Benner, 2007; U.S. Department of Energy, Energy Information Administration, 2010), a compound annual growth rate of approxi-mately 23 percent. A production capacity of 1 GW of electricity [or 8,760 gigawatthours1 (GWh)] is equivalent to the annual electricity requirements for roughly 800,000 average households in the United States (U.S. Department of Energy, Energy Information Administration, 2010). This estimate does not include losses of electricity, such as during transmission through power lines.

  14. Engineering and economic evaluation of central-station photovoltaic power plants

    SciTech Connect

    Stolte, W.J. )

    1992-12-01

    This report describes the conceptual design, design optimization, and estimated cost and performance of three 50 MW photovoltaic power plants. The first design uses Fresnel lens/glass silo modules mounted on two-axis tracking arrays. The second design has all of the cells mounted on a central receiver on top of a single tower, with heliostats concentrating sunlight onto the receiver. Both designs are based on a similar advanced back-contact silicon concentrator cell developed under EPRI sponsorship. The third design uses thin-film copper indium diselenide flat-plate modules mounted on fixed-tilt array structures. The design and manufacture of the photovoltaic cells and modules are described, along with selection of the photovoltaic technologies, generating and cell manufacturing plant sites. Power system simulation and revenue requirement analyses are included for all of the plant designs.

  15. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  16. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  17. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  18. Etching of a-Si:H thin films by hydrogen plasma: A view from in situ spectroscopic ellipsometry

    SciTech Connect

    Hadjadj, Aomar Larbi, Fadila; Gilliot, Mickaël; Roca i Cabarrocas, Pere

    2014-08-28

    When atomic hydrogen interacts with hydrogenated amorphous silicon (a-Si:H), the induced modifications are of crucial importance during a-Si:H based devices manufacturing or processing. In the case of hydrogen plasma, the depth of the modified zone depends not only on the plasma processing parameters but also on the material. In this work, we exposed a-Si:H thin films to H{sub 2} plasma just after their deposition. In situ UV-visible spectroscopic ellipsometry measurements were performed to track the H-induced changes in the material. The competition between hydrogen insertion and silicon etching leads to first order kinetics in the time-evolution of the thickness of the H-modified zone. We analyzed the correlation between the steady state structural parameters of the H-modified layer and the main levers that control the plasma-surface interaction. In comparison with a simple doped layer, exposure of a-Si:H based junctions to the same plasma treatment leads to a thinner H-rich subsurface layer, suggesting a possible charged state of hydrogen diffusing.

  19. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-01-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  20. Photovoltaic module with adhesion promoter

    DOEpatents

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  1. Report of an exploratory study: Safety and liability considerations for photovoltaic modules/panels

    NASA Technical Reports Server (NTRS)

    Weinstein, A. S.; Meeker, D. G.

    1981-01-01

    An overview of legal issues as they apply to design, manufacture and use of photovoltaic module/array devices is provided and a methodology is suggested for use of the design stage of these products to minimize or eliminate perceived hazards. Questions are posed to stimulate consideration of this area.

  2. NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    1995-06-01

    This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

  3. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    SciTech Connect

    Cabraal, R.A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The following subjects are included: demographic overview;Philippine development plans; financing of energy, agriculture and development projects; potential photovoltaic applications in Philippine agriculture; market assessment; and business environment. The applications cover fish/prawn hatchery operations, irrigation, maintenance facilities, grinding and milling, fish cultivation, salt production, ice manufacture, and agricultural extension services. (MHR)

  4. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  5. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  6. Reliability of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1986-01-01

    In order to assess the reliability of photovoltaic modules, four categories of known array failure and degradation mechanisms are discussed, and target reliability allocations have been developed within each category based on the available technology and the life-cycle-cost requirements of future large-scale terrestrial applications. Cell-level failure mechanisms associated with open-circuiting or short-circuiting of individual solar cells generally arise from cell cracking or the fatigue of cell-to-cell interconnects. Power degradation mechanisms considered include gradual power loss in cells, light-induced effects, and module optical degradation. Module-level failure mechanisms and life-limiting wear-out mechanisms are also explored.

  7. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  8. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  9. Photovoltaic spectral responsivity measurements

    SciTech Connect

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  10. Photovoltaics and electric utilities

    NASA Astrophysics Data System (ADS)

    Bright, R.; Leigh, R.; Sills, T.

    1981-12-01

    The long term value of grid connected, residential photovoltaic (PV) systems is determined. The value of the PV electricity is defined as the full avoided cost in accordance with the Public Utilities Regulatory Policies Act of 1978. The avoided cost is computed using a long range utility planning approach to measure revenue requirement changes in response to the time phased introduction of PV systems into the grid. A case study approach to three utility systems is used. The changing value of PV electricity over a twenty year period from 1985 is presented, and the fuel and capital savings due to FY are analyzed. These values are translated into measures of breakeven capital investment under several options of power interchange and pricing.

  11. Polycrystalline photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1983-10-25

    A photovoltaic cell is disclosed, having an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 /SUB u/ thick) of underlying polycrystalline semiconductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  12. Photovoltaic solar cell

    SciTech Connect

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  13. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  15. Photovoltaic cell assembly

    DOEpatents

    Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  16. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have recorded stimulated spikes from the ganglion cells, with latencies in the 1-100ms range, and with peak irradiance stimulation thresholds varying from 0.1 to 1 mW/mm2. With 1ms pulses at 25Hz the average irradiance is more than 100 times below the IR retinal safety limit. Elicited retinal response disappeared upon the addition of synaptic blockers, indicating that the inner retina is stimulated rather than the ganglion cells directly, and raising hopes that the prosthesis will preserve some of the retina's natural signal processing.

  17. Photovoltaic System Performance

    1989-09-25

    PVFORM4.0 is used to design a photovoltaic (PV) system using a set of design parameters which optimize the system's economic potential for the proposed location and the expected operating conditions. PVFORM3.3 has been used to determine PV system size and optimum mounting configuration. The anticipated electrical load determines the system size and the weather and the mounting configuration affect the system output. PVFORM4.0 uses program-supplied default values or their user-supplied equivalents for each of amore » large number of parameters describing the system and time-series data describing the environment to perform a series of hourly calculations to simulate the physical (photovoltaic) performance of a PV system for a one-year period. These iterative calculations sample the performance of the PV system throughout a simulated 365-day year of system operation. Within any simulated day on which system performance is sampled, the calculations are done hourly. The number of days sampled and the interval between them is determined by an input parameter. The results of these calculations are summarized on a monthly basis in output tables and an optional plot file. The program is applicable to grid interactive or stand-alone flat-plate systems. The grid interactive system is assumed to use power purchased from a local utility to supply that portion of the load not met by the simulated PV array. If the array produces more energy than can be consumed by the load, the excess energy is assumed to be sold back to the utility at a constant energy sellback price. If a stand-alone system is being modeled, the program assumes that all energy produced by the simulated PV array is first applied to the external load, and any excess is then used to charge the battery bank. Energy not consumed by the load or the batteries is considered to be wasted.« less

  18. Mass manufactured secondary optics for CPV

    NASA Astrophysics Data System (ADS)

    Schmid, Tobias; Wiesenfarth, Maike; Hornung, Thorsten; Gremmelspacher, Matthias; Manns, Peter; Nitz, Peter

    2014-09-01

    The Fraunhofer Institutes for Solar Energy Systems ISE and for Mechanics of Materials IWM in cooperation with industrial partners have explored routes for highly cost effective mass manufacturing of dome lens shaped glass secondary optical elements (SOEs) for concentrating photovoltaics (CPV). This included optical design studies, design optimizations and outdoor measurements on prototypes by Fraunhofer ISE. Fraunhofer IWM has explored a short cycle molding process suitable for low-cost high volume production. SOEs of spherical shape can be a possible option for a cost-effective production.

  19. Study on limiting efficiencies of a-Si:H/μc-Si:H-based single-nanowire solar cells under single and tandem junction configurations

    SciTech Connect

    Zhai, Xiongfei; Cao, Guoyang; Wu, Shaolong E-mail: xfli@suda.edu.cn; Shang, Aixue; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-11-02

    Detailed balance calculations are presented for a-Si:H/μc-Si:H-based single- and tandem-junction single-nanowire solar cells (S- and T-SNSCs). Our study is based on three-dimensional finite-element electromagnetic simulation and thermodynamic balanced analysis, which includes radiative and Auger recombinations simultaneously. We quantify and compare the limiting short-circuit current densities, open-circuit voltages, and light-conversion efficiencies of these highly compact photovoltaic cells, addressing especially the effect of Auger recombination on the open-circuit voltages of SNSCs. Results show that tandem design leads to much higher light-conversion capability than μc-Si:H S-SNSCs, but exhibits superior performance than a-Si:H S-SNSCs only for cells with large radii.

  20. Study on limiting efficiencies of a-Si:H/μc-Si:H-based single-nanowire solar cells under single and tandem junction configurations

    NASA Astrophysics Data System (ADS)

    Zhai, Xiongfei; Cao, Guoyang; Wu, Shaolong; Shang, Aixue; Li, Xiaofeng

    2015-11-01

    Detailed balance calculations are presented for a-Si:H/μc-Si:H-based single- and tandem-junction single-nanowire solar cells (S- and T-SNSCs). Our study is based on three-dimensional finite-element electromagnetic simulation and thermodynamic balanced analysis, which includes radiative and Auger recombinations simultaneously. We quantify and compare the limiting short-circuit current densities, open-circuit voltages, and light-conversion efficiencies of these highly compact photovoltaic cells, addressing especially the effect of Auger recombination on the open-circuit voltages of SNSCs. Results show that tandem design leads to much higher light-conversion capability than μc-Si:H S-SNSCs, but exhibits superior performance than a-Si:H S-SNSCs only for cells with large radii.

  1. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  2. Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell

    NASA Astrophysics Data System (ADS)

    Shaoying, Ke; Chong, Wang; Tao, Pan; Jie, Yang; Yu, Yang

    2014-03-01

    The computer program AMPS-1D (analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G (100 mW/cm2) and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density—voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well.

  3. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    SciTech Connect

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  4. Silicon material technology status. [assessment for electronic and photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1983-01-01

    Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.

  5. Solid State Photovoltaic Research Branch

    SciTech Connect

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  6. Solid State Photovoltaic Research Branch

    NASA Astrophysics Data System (ADS)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  7. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  8. Nonstationary Effects at Photovoltaic Module Characterization Using Pulsed Solar Simulator

    NASA Astrophysics Data System (ADS)

    Silsirivanich, N.; Chenvidhya, D.; Kirtikara, K.; Sriprapha, K.; Sritharathikhun, J.; Songprakorp, R.; Jivacate, C.

    2015-05-01

    This paper presents the dynamic characteristic of a tandem silicon/amorphous silicon (a-Si:H/a-Si:H) photovoltaic (PV) module measured in the nonstationary regime. The current-voltage (I-V) characteristics of the PV module are generally measured by using a pulsed solar simulator. Distortions of the I-V curves can often be observed when measurements are done under the solar simulator with different pulse durations or different sweeping rates of the curve tracing, a direction of the curve tracing from short circuit to open circuit (SCOC), or from open circuit to short circuit (OCSC). In this paper, the measurements were made on the a-Si:H/a-Si:H tandem PV module consisting of 40 cells in series connection. The PV module area is 0.78 m2. Dissimilarities of the I-V curves of the PV modules can be observed by the deviation of power at maximum point (Pm) and fill factor (FF). From the experimental results, it is found that the largest deviation of Pm is 6.12% for 1 ms sweeping duration with OCSC direction of the curve tracing. Dissimilarities of the I-V curves can be explained by charging and discharging capacitive currents due to a voltage dependence of solar cell parameters. Moreover, the capacitance effects can be described by a dynamic impedance measurement of the PV module in the dark with forward and reverse biasing. The voltage and time-dependent parameters are the diffusion capacitance (CD), transient or junction capacitance (CT), series resistance (Rs), and shunt resistance (Rsh),which can be revealed by an impedance plot.

  9. Environmental, health, and safety assessment of photovoltaics

    SciTech Connect

    Rose, E.C.

    1983-10-15

    Potential enviornmental, health, and safety (E,H and S) concerns associated with all phases of the photovoltaic (PV) energy system life cycle are identified and assessed. E,H and S concerns affecting the achievement of National PV Program goals or the viability of specific PV technologies are emphasized. The report is limited to near-term manufacturing process alternatives for crystalline silicon PV materials, addresses flat-plate and concentrator collector designs, and reviews system deployment in grid-connected, roof-mounted, residential and ground-mounted central-station applications. The PV life-cycle phases examined include silicon refinement and manufacture of PV collectors, system deployment, and decommissioning. The primary E,H and S concerns that arise during collector fabrication are associated with occupational exposure to materials of undetermined toxicity or to materials that are known to be hazardous, but for which process control technology may be inadequate. Stricter exposure standards are anticipated for some materials and may indicate a need for further control technology development. Minimizing electric shock hazards is a significant concern during system construction, operation and maintenance, and decommissioning.

  10. Will we exceed 50% efficiency in photovoltaics?

    NASA Astrophysics Data System (ADS)

    Luque, Antonio

    2011-08-01

    Solar energy is the most abundant and reliable source of energy we have to provide for the multi-terawatt challenge we are facing. Although huge, this resource is relatively dispersed. High conversion efficiency is probably necessary for cost effectiveness. Solar cell efficiencies above 40% have been achieved with multijunction (MJ) solar cells. These achievements are here described. Possible paths for improvement are hinted at including third generation photovoltaics concepts. It is concluded that it is very likely that the target of 50% will eventually be achieved. This high efficiency requires operating under concentrated sunlight, partly because concentration helps increase the efficiency but mainly because the cost of the sophisticated cells needed can only be paid by extracting as much electric power form each cell as possible. The optical challenges associated with the concentrator optics and the tools for overcoming them, in particular non-imaging optics, are briefly discussed and the results and trends are described. It is probable that optical efficiency over 90% will be possible in the future. This would lead to a module efficiency of 45%. The manufacturing of a concentrator has to be addressed at three levels of integration: module, array, and photovoltaic (PV) subfield. The PV plant as a whole is very similar than a flat module PV plant with two-axes tracking. At the module level, the development of tools for easy manufacturing and quality control is an important topic. Furthermore, they can accommodate in different position cells with different spectral sensitivities so complementing the effort in manufacturing MJ cells. At the array level, a proper definition of the nameplate watts, since the diffuse light is not used, is under discussion. The cost of installation of arrays in the field can be very much reduced by self aligning tracking control strategies. At the subfield level, aspects such as the self shadowing of arrays causes the CPV subfields to

  11. High Throughput, Continuous, Mass Production of Photovoltaic Modules

    SciTech Connect

    Kurt Barth

    2008-02-06

    AVA Solar has developed a very low cost solar photovoltaic (PV) manufacturing process and has demonstrated the significant economic and commercial potential of this technology. This I & I Category 3 project provided significant assistance toward accomplishing these milestones. The original goals of this project were to design, construct and test a production prototype system, fabricate PV modules and test the module performance. The original module manufacturing costs in the proposal were estimated at $2/Watt. The objectives of this project have been exceeded. An advanced processing line was designed, fabricated and installed. Using this automated, high throughput system, high efficiency devices and fully encapsulated modules were manufactured. AVA Solar has obtained 2 rounds of private equity funding, expand to 50 people and initiated the development of a large scale factory for 100+ megawatts of annual production. Modules will be manufactured at an industry leading cost which will enable AVA Solar's modules to produce power that is cost-competitive with traditional energy resources. With low manufacturing costs and the ability to scale manufacturing, AVA Solar has been contacted by some of the largest customers in the PV industry to negotiate long-term supply contracts. The current market for PV has continued to grow at 40%+ per year for nearly a decade and is projected to reach $40-$60 Billion by 2012. Currently, a crystalline silicon raw material supply shortage is limiting growth and raising costs. Our process does not use silicon, eliminating these limitations.

  12. Photovoltaic array mounting apparatus, systems, and methods

    DOEpatents

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  13. Photovoltaic array mounting apparatus, systems, and methods

    DOEpatents

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  14. Effects of disorder on electronic structures of a-Si:H and a-SiO2

    NASA Astrophysics Data System (ADS)

    Nithianandam, Jeyasingh; Schnatterly, Stephen E.

    1989-12-01

    Si L23 x-ray emission spectra from c-Si, doped and intrinsic a-Si:H, quartz, and a-SiO2 are presented. The first and second moments of the valence-band transition density of states of each of these samples were computed. The variance of the disorder potential that characterizes the amorphous network was found for the amorphous samples from their second moments. Lifetime broadening as a function of energy in the valence band of silicon samples was found to vary significantly between the crystalline and amorphous structures.

  15. Exploring diagnostic capabilities for application to new photovoltaic technologies.

    SciTech Connect

    Rolfe, Kevin D.; Quintana, Enrico Carlo; Thompson, Kyle Richard; Quintana, Michael A.; Hacke, Peter

    2009-06-01

    Explosive growth in photovoltaic markets has fueled new creative approaches that promise to cut costs and improve reliability of system components. However, market demands require rapid development of these new and innovative technologies in order to compete with more established products and capture market share. Often times diagnostics that assist in R&D do not exist or have not been applied due to the innovative nature of the proposed products. Some diagnostics such as IR imaging, electroluminescence, light IV, dark IV, x-rays, and ultrasound have been employed in the past and continue to serve in development of new products, however, innovative products with new materials, unique geometries, and previously unused manufacturing processes require additional or improved test capabilities. This fast-track product development cycle requires diagnostic capabilities to provide the information that confirms the integrity of manufacturing techniques and provides the feedback that can spawn confidence in process control, reliability and performance. This paper explores the use of digital radiography and computed tomography (CT) with other diagnostics to support photovoltaic R&D and manufacturing applications.

  16. Corrosion of a-Si cells and modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Wen, L.; Ross, R. G., Jr.

    1987-01-01

    The authors report on corrosion/erosion phonemena observed in exposing a-Si cells, modules, and specially designed test structures to natural and accelerated test environments. Relevant cell and module I-V curve data used for monitoring degradation are presented. The causes of the observed degradation, methods of mitigation, and consequences for fielded modules are discussed.

  17. Study and Simulation of the Heterojunction Thin Film Solar Cell a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)

    NASA Astrophysics Data System (ADS)

    Toufik, Zarede; Hamza, Lidjici; Mohamed, Fathi; Achour, Mahrane

    2016-08-01

    In this article, we present a study based on numerical simulation of the electrical characteristics of a thin-film heterojunction solar cell (a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)), using the automat for simulation of hetero-structures (AFORS-Het) software. This cell is composed of four main layers of silicon (Si): (i) 5 nm amorphous silicon doped n, (ii) 100 μm crystalline silicon (substrate) doped p, (iii) 5 nm amorphous silicon doped p, and (iv) 3 nm amorphous silicon intrinsic. This cell has a front and rear metal contact of aluminum and zinc oxide (ZnO) front layer transparent conductive oxide of 80 nm thickness. The simulations were performed at conditions of "One Sun" irradiation with air mass 1.5 (AM1.5), and under absolute temperature T = 300 K. The simulation results have shown a high electrical conversion efficiency of about 30.29% and high values of open circuit voltage V oc = 779 mV. This study has also shown that the studied cell has good quality light absorption on a very broad spectrum.

  18. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  19. DOE Zero Energy Ready Home Case Study: Southern Energy Homes — First DOE Zero Energy Ready Manufactured Home, Russellville, AL

    SciTech Connect

    none,

    2014-09-01

    This home is the first manufactured home built to the DOE Zero Energy Ready Home standard and won an Affordable Builder award in the 2014 Housing Innovations Awards. This manufactured home achieved a HERS score of 57 without photovoltaics and includes superior insulation and air sealing.

  20. Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report

    SciTech Connect

    Podder, A; Kapner, M; Morse, T

    1981-02-01

    The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

  1. Photovoltaics for municipal planners

    SciTech Connect

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  2. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  3. Photovoltaic Incentive Design Handbook

    SciTech Connect

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  4. The DOE photovoltaics program

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1980-01-01

    As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.

  5. Nanowire Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  6. Structure and optical properties of aSiAl and aSiAlHx magnetron sputtered thin films

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Stange, Marit; Jensen, Ingvild J. T.; Røyset, Arne; Ulyashin, Alexander; Diplas, Spyros

    2016-03-01

    Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al-Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSi1-xAlx and aSi1-xAlxHy. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-VisNIR spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0-25 at. %) on the optical band gap, refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (<1 eV). Hydrogenation of the films increased the band gap to values >1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

  7. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.

    PubMed

    Wi, Sungjin; Kim, Hyunsoo; Chen, Mikai; Nam, Hongsuk; Guo, L Jay; Meyhofer, Edgar; Liang, Xiaogan

    2014-05-27

    Layered transition-metal dichalcogenides hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photovoltaic performance, superior flexibility, long lifetime, and low manufacturing cost. Engineering the proper band structures of such layered materials is essential to realize such potential. Here, we present a plasma-assisted doping approach for significantly improving the photovoltaic response in multilayer MoS2. In this work, we fabricated and characterized photovoltaic devices with a vertically stacked indium tin oxide electrode/multilayer MoS2/metal electrode structure. Utilizing a plasma-induced p-doping approach, we are able to form p-n junctions in MoS2 layers that facilitate the collection of photogenerated carriers, enhance the photovoltages, and decrease reverse dark currents. Using plasma-assisted doping processes, we have demonstrated MoS2-based photovoltaic devices exhibiting very high short-circuit photocurrent density values up to 20.9 mA/cm(2) and reasonably good power-conversion efficiencies up to 2.8% under AM1.5G illumination, as well as high external quantum efficiencies. We believe that this work provides important scientific insights for leveraging the optoelectronic properties of emerging atomically layered two-dimensional materials for photovoltaic and other optoelectronic applications.

  8. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  9. Photovoltaic energy program overview, fiscal year 1991. Programs in utility technologies

    SciTech Connect

    Not Available

    1992-02-01

    The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers` immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  10. Photovoltaic technology and applications: Overview for the workshop on photochemistry research opportunities

    SciTech Connect

    Benner, J.P.

    1996-09-01

    The business surrounding photovoltaic energy conversion for terrestrial applications has changed dramatically in the last several years. It is now a business that makes money. Industry is responding. with manufacturing capacity expansions, and planned expansions, that will triple U.S. annual output within the next eighteen months. The majority of this product is exported (70%) where it is proven to be a cost competitive alternative. This industry provides experience in manufacturing and reliability in fielded systems that will serve as the basis for extrapolating growth to larger-scale installations and utility systems. The largest part of the National Photovoltaic Program budget supports assisting industry in advancing manufacturing technology and stimulating applications to reduce cost and expand the evolving industry. A growing segment of society looks to photovoltaics as an alternative that may be needed to replace conventional electric generating capacity. The grand challenge for photovoltaics is to make the technology economically competitive for large scale electric power generation before real or perceived evidence of environmental damage from conventional sources dictates its use at economically disruptive costs.

  11. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  12. The worldwide market for photovoltaics in the rural sector

    NASA Astrophysics Data System (ADS)

    Brainard, W. A.

    Attention is given to the assessment of results obtained by three NASA studies aimed at determining the global market for stand-alone photovoltaic (PV) power systems in the village power, cottage industry, and agricultural applications areas of the rural sector. An attempt was made to identify technical, social, and institutional barriers to PV system implementation, as well as the funding sources available to potential users. Country- and sector-specific results are discussed, and marketing strategies appropriate for each sector are suggested for the benefit of American PV products manufacturers.

  13. The worldwide market for photovoltaics in the rural sector

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1982-01-01

    Attention is given to the assessment of results obtained by three NASA studies aimed at determining the global market for stand-alone photovoltaic (PV) power systems in the village power, cottage industry, and agricultural applications areas of the rural sector. An attempt was made to identify technical, social, and institutional barriers to PV system implementation, as well as the funding sources available to potential users. Country- and sector-specific results are discussed, and marketing strategies appropriate for each sector are suggested for the benefit of American PV products manufacturers.

  14. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  15. Development of a commercial photovoltaic concentrator module

    SciTech Connect

    Saifee, S.T.; Hutchison, G.

    1992-09-01

    The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

  16. Development of a commercial photovoltaic concentrator module

    NASA Astrophysics Data System (ADS)

    Saifee, S. T.; Hutchison, G.

    1992-09-01

    The objective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

  17. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  18. Survey of Facilities for Testing Photovoltaics

    NASA Technical Reports Server (NTRS)

    Weaver, R. W.

    1982-01-01

    42-page report describes facilities capable of testing complete photovoltaic systems, subsystems, or components. Compilation includes facilities and capabilities of five field centers of national photovoltaics program, two state-operated agencies, and five private testing laboratories.

  19. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  20. Photovoltaic product directory and buyers guide

    SciTech Connect

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  1. Mounting support for a photovoltaic module

    DOEpatents

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  2. The new alchemy of photovoltaics

    SciTech Connect

    Jeffries, J.P.

    1983-01-01

    The work is a review. The expanding field of use of photovoltaic electric power plants includes single family homes. Solar batteries with a surface area of less than 90 square meters mounted on a roof totally or partially satisfy their daily requirement for electric power. The cost of a single family, approximately 220 square meter home built near Sante Fe and equipped with a passive solar system with a photovoltaic power plant with a power production of 6,500 kilovolthours per year is 190,000 dollars. The cost of a solar battery has been reduced to 7 to 15 dollars per watt of peak power, which is totally insufficient for buy back even over forth years. The threshold of cost, when the solar battery is competitive is 3 dollars per watt. Nevertheless, approximately 6,000 single family dwelling passive solar systems with a photovoltaic power plant are in operation in the United States. The previous opponents of the photovoltaic method, the oil companies, have become suporters of the development and production of solar energy. After the decline in 1982 as a result of the five fold reduction of government financing in works in the field of renewable energy sources, the photovoltaic industry enjoyed a new rise in popularity.

  3. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  4. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure

    NASA Astrophysics Data System (ADS)

    Zhao, Bing; Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhou, Jinyu; Qu, Yegao; Ge, Binbin

    2016-10-01

    The amorphous silicon photovoltaic (a-Si PV) cells are widely used for electricity generation from solar energy. When the a-Si PV cells are integrated into building roofs, such as ETFE (ethylene-tetrafouoroethylene) cushions, the temperature characteristics are indispensible for evaluating the thermal performances of a-Si PV and its constructions. This temperature value is directly dependent on the solar irradiance, wind velocity, ambient temperature and installation form. This paper concerns the field experiments and numerical modeling on the temperature characteristics and temperature value of the a-Si PV integrated in a double-layer ETFE cushion structure. To this end, an experimental model composed of two a-Si PV cells and a double-layer ETFE cushion was developed, and the corresponding experiments were carried out under two typical weather conditions (summer sunny and summer cloudy). The theoretical thermal model was developed based on an energy balance equation taking the short wave radiation, long wave radiation, convection and generated power into account. The measured solar irradiance and air temperature were used as real weather conditions for the thermal model. The corresponding differential equation of the a-Si PV temperature varying with the solar irradiance and air temperature was solved by a newly developed program based on the numerical method. The measured results show that the influence of solar irradiance on the temperature is much more significant than the other parameters, and the maximum temperature variation under sunny conditions is greater than that under cloudy conditions. The comparative study between the experimental and numerical results shows the correct predictions of the a-Si PV temperature under the sunny and cloudy conditions. The maximum difference is 3.9 °C with the acceptable reasons of the solar irradiance fluctuation and the PV thermal response time. These findings will provide useful observations and explanations for

  5. Study on photovoltaic power system on ships

    SciTech Connect

    Katagi, Takeshi; Fujii, Yoshimi; Nishikawa, Eiichi; Hashimoto, Takeshi

    1995-11-01

    This paper presents the application of photovoltaic power systems to ships. Two types of leisure or fishing boats powered by photovoltaics are designed. The boats described are single hull and catamaran type with twin hulls. The design of a new electric power system using a photovoltaic power system in a harbor ship having 20 tons is also proposed. The results of this study show that the photovoltaic power system can apply to small ships.

  6. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect

    Goodman, Jr, F R

    1980-03-01

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  7. Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

    SciTech Connect

    ASHWILL, THOMAS D.

    2003-05-01

    The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

  8. National Orange Show Photovoltaic Demonstration

    SciTech Connect

    Dan Jimenez Sheri Raborn, CPA; Tom Baker

    2008-03-31

    National Orange Show Photovoltaic Demonstration created a 400KW Photovoltaic self-generation plant at the National Orange Show Events Center (NOS). The NOS owns a 120-acre state fairground where it operates an events center and produces an annual citrus fair known as the Orange Show. The NOS governing board wanted to employ cost-saving programs for annual energy expenses. It is hoped the Photovoltaic program will result in overall savings for the NOS, help reduce the State's energy demands as relating to electrical power consumption, improve quality of life within the affected grid area as well as increase the energy efficiency of buildings at our venue. In addition, the potential to reduce operational expenses would have a tremendous effect on the ability of the NOS to service its community.

  9. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  10. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  11. Interband Cascade Photovoltaic Cells

    SciTech Connect

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  12. Photovoltaic hydrogen production

    SciTech Connect

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  13. Field profile tailoring in a-Si:H radiation detectors

    SciTech Connect

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Quershi, S.; Wildermuth, D. ); Street, R.A. )

    1990-03-01

    The capability of tailoring the field profile in reverse-biased a-Si:H diodes by doping and/or manipulating electrode shapes opens a way to many interesting device structures. Charge collection in a-Si:H radiation detectors is improved for high LET particle detection by inserting thin doped layers into the i-layer of the usual p-i-n diode. This buried p-i-n structure enables us to apply higher reverse-bias and the electric field is enhanced in the mid i-layer. Field profiles of the new structures are calculated and the improved charge collection process is discussed. Also discussed is the possibility of field profile tailoring by utilizing the fixed space charges in i-layers and/or manipulating electrode shapes of the reverse-biased p-i-n diodes. 10 refs., 7 figs.

  14. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-12-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  15. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  16. Aternating current photovoltaic building block

    DOEpatents

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  17. Photovoltaic water pumping for Bolivia

    SciTech Connect

    Post, H.N.; Garvison, P.

    1987-01-01

    This paper describes the design, installation and performance of photovoltaically-powered water pumping systems which provide potable water to residents of three villages in the Altiplano region of Bolivia. The installation of these systems during August 1986 was the culmination of a cooperative effort between The World Bank, US Department of Energy and the Bolivian government. This project was configured to demonstrate, through pilot systems, the many potential benefits of using photovoltaic water pumping in developing countries. The lessons learned through the procurement and installation of these systems are discussed and the resulting benefits of the project to international lending institutions, US industry, and the Bolivian participants are examined.

  18. Basic photovoltaic principles and methods

    SciTech Connect

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  19. Voltage Regulators for Photovoltaic Systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  20. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  1. Battery testing for photovoltaic applications

    SciTech Connect

    Hund, T.

    1996-11-01

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  2. Trends in Space Photovoltaic Technology

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1984-01-01

    The current status of silicon and gallium arsenide (GaAs) solar cell technology is described, and anticipated near and far term projections of photovoltaic cell performance are provided. It is shown that current ultrathin silicon and near term GaAs solar cells provide substantial enhancement of planar solar array performance. The advantages of utililizing GaAs cells in high concentration arrays is discussed. Evidence is provided to support the view that photovoltaic offers a viable means of supporting long term space objectives.

  3. Macromolecular architectures for organic photovoltaics.

    PubMed

    Popere, Bhooshan C; Della Pelle, Andrea M; Poe, Ambata; Thayumanavan, S

    2012-03-28

    Research in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.

  4. The Harvard organic photovoltaic dataset

    PubMed Central

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  5. Photovoltaic systems sizing for Algeria

    SciTech Connect

    Arab, A.H.; Driss, B.A.; Amimeur, R.; Lorenzo, E.

    1995-02-01

    The purpose of this work is to develop an optimization method applicable to stand-alone photovoltaic systems as a function of its reliability. For a given loss-of-load probability (LLP), there are many combinations of battery capacity and photovoltaic array peak power. The problem consists in determining the couple which corresponds to a minimum total system cost. The method has been applied to various areas all over Algeria taking into account various climatic zones. The parameter used to define the different climatic zones is the clearness index KT for all the considered sites. The period of the simulation system is 10 years. 5 refs., 4 figs., 5 tabs.

  6. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.

    1984-01-10

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  7. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra

    1983-08-23

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  8. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  9. An update on the Department of Energy's photovoltaic program

    NASA Technical Reports Server (NTRS)

    Benner, John P.; Fitzgerald, Mark

    1994-01-01

    Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.

  10. An update on the Department of Energy's photovoltaic program

    NASA Astrophysics Data System (ADS)

    Benner, John P.; Fitzgerald, Mark

    1994-09-01

    Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.

  11. Structure-property relations in amorphous carbon for photovoltaics

    SciTech Connect

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  12. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  13. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  14. Rapid screening buffer layers in photovoltaics

    DOEpatents

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  15. Photovoltaic Power Station with Ultracapacitors for Storage

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Soltis, Richard F.; Tavernelli, Paul F.

    2003-01-01

    A solar photovoltaic power station in which ultracapacitors, rather than batteries, are used to store energy is discussed. Developments in the semiconductor industry have reduced the cost and increased the attainable efficiency of commercially available photovoltaic panels; as a result, photovoltaic generation of power for diverse applications has become practical. Photovoltaic generation can provide electric power in remote locations where electric power would otherwise not be available. Photovoltaic generation can also afford independence from utility systems. Applications include supplying power to scientific instruments and medical equipment in isolated geographical regions.

  16. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  17. Energy Use in Manufacturing

    EIA Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  18. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    NASA Astrophysics Data System (ADS)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  19. Wafer Manufacturing and Slicing Using Wiresaw

    NASA Astrophysics Data System (ADS)

    Kao, Imin; Chung, Chunhui; Moreno Rodriguez, Roosevelt

    Wafer manufacturing (or wafer production) refers to a series of modern manufacturing processes of producing single-crystalline or poly-crystalline wafers from crystal ingot (or boule) of different sizes and materials. The majority of wafers are single-crystalline silicon wafers used in microelectronics fabrication although there is increasing importance in slicing poly-crystalline photovoltaic (PV) silicon wafers as well as wafers of different materials such as aluminum oxide, lithium niobate, quartz, sapphire, III-V and II-VI compounds, and others. Slicing is the first major post crystal growth manufacturing process toward wafer production. The modern wiresaw has emerged as the technology for slicing various types of wafers, especially for large silicon wafers, gradually replacing the ID saw which has been the technology for wafer slicing in the last 30 years of the 20th century. Modern slurry wiresaw has been deployed to slice wafers from small to large diameters with varying wafer thickness characterized by minimum kerf loss and high surface quality. The needs for slicing large crystal ingots (300 mm in diameter or larger) effectively with minimum kerf losses and high surface quality have made it indispensable to employ the modern slurry wiresaw as the preferred tool for slicing. In this chapter, advances in technology and research on the modern slurry wiresaw manufacturing machines and technology are reviewed. Fundamental research in modeling and control of modern wiresaw manufacturing process are required in order to understand the cutting mechanism and to make it relevant for improving industrial processes. To this end, investigation and research have been conducted for the modeling, characterization, metrology, and control of the modern wiresaw manufacturing processes to meet the stringent precision requirements of the semiconductor industry. Research results in mathematical modeling, numerical simulation, experiments, and composition of slurry versus wafer

  20. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.

    PubMed

    Hu, Binxin; Li, Buyin; Zhao, Rixin; Yang, Tiechen

    2011-06-01

    Photovoltaic module measurements are predominantly taken by using pulsed solar simulators. However, significant errors can be generated when the existing simulators are applied to current high-efficiency crystalline silicon photovoltaic modules. This paper presents the design and implementation of a novel solar simulator featuring reflection-type light source and single long-pulse flash. The analysis and experimental study of the capacitance effect and the technical details of the simulator including reflection-type lamp house, xenon flash lamp power supply, and source-measure unit are introduced. The results show that the complete system achieves Class AAA performance in accordance with the international standard. The proposed simulator outperforms other similar products on the market and has been adopted by some well-known photovoltaic module manufacturers. The practical application demonstrates that this high-performance and cost-effective simulator is quite suitable for photovoltaic module production line.

  1. Using adhesives as a means to reduce costs and increase performance in the production of photovoltaic electricity.

    PubMed

    Thorey, Claire

    2013-01-01

    Although adhesives have been used for many years to manufacture cars in more efficient ways, their potential has not yet been fully exploited by the renewable energy industry. We argue in this article that photovoltaic module manufacturers can save costs and differentiate from competition by careful selection and use of their bonding systems. Clever adhesives can enable new, more effective product designs and can play a major role in the longevity of the complete product.

  2. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  3. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  4. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1994-04-26

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  5. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1996-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  6. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    SciTech Connect

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  7. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1996-04-02

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  8. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    SciTech Connect

    Hammond, R.L.; Turpin, J.F.; Corey, G.P.

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  9. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.

  10. Breakthrough: micro-electronic photovoltaics

    SciTech Connect

    Okandan, Murat; Gupta, Vipin

    2012-04-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  11. Breakthrough: micro-electronic photovoltaics

    ScienceCinema

    Okandan, Murat; Gupta, Vipin

    2016-07-12

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  12. Electrochemical photovoltaic cells and electrodes

    DOEpatents

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Terminal System for Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Maloney, T. J.

    1984-01-01

    Quick-connect terminal system provides electrical contact and physical alinement between adjacent photovoltaic modules. Dual-ended plugs connect adjacent modules; single-ended plugs connect bus cables. No tools required to insert plugs and no live terminals exposed before, during, or after connection.

  14. SAM Photovoltaic Model Technical Reference

    SciTech Connect

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  15. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  16. NREL Photovoltaic Program FY 1993

    SciTech Connect

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  17. Photovoltaics radiometric issues and needs

    SciTech Connect

    Myers, D.R.

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  18. Improved photovoltaic cells and electrodes

    DOEpatents

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  19. Photovoltaic cells employing zinc phosphide

    SciTech Connect

    Barnett, A.M.; Catalano, A.W.; Dalal, V.L.; Hall, R.B.; Masi, J.V.; Meakin, J.D.

    1984-10-16

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  20. Advanced thermal management materials for concentrator photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2010-08-01

    Thermal management is a critical issue for photovoltaics (PVs), especially concentrator photovoltaic systems. Thermal management problems are similar for all semiconductors, including those used in microelectronics and other optoelectronic applications, such as lasers, light-emitting diodes (LEDs), detectors and displays. We divide the thermal management problem into two parts: heat dissipation and thermal stresses. Heat dissipation affects efficiency and lifetime. Thermal stresses affect manufacturing yield and lifetime. Traditional thermal management materials all have serious deficiencies. Copper and aluminum have high coefficients of thermal expansion (CTEs), which can cause severe thermal stresses during manufacturing and in service. Compliant attach materials, used to minimize thermal stresses, all have major drawbacks. Traditional low-CTE thermal management materials have relatively low thermal conductivities and are hard to machine. In response to these deficiencies, new thermal management materials have been, and are continuing to be developed, which have low CTEs and thermal conductivities up to four times that of copper. Some are reportedly are cheaper than copper. In this paper, we survey the six categories of advanced thermal materials, including properties, state of maturity and cost. We also review a CPV application in which an advanced metal matrix composite with a tailored CTE eliminated solder joint failure and provided other benefits.

  1. Development of a testbed for flexible a-Si:H photodiode sensing arrays

    NASA Astrophysics Data System (ADS)

    Dominguez, Alfonso; Kunnen, George; Vetrano, Michael; Smith, Joseph; Marrs, Michael; Allee, David R.

    2013-05-01

    Large area, flexible sensing arrays for imaging, biochemical sensing and radiation detection are now possible with the development of flexible active matrix display technology. In particular, large-area flexible imaging arrays can provide considerable advancement in defense and security industries because of their inherent low manufacturing costs and physical plasticity that allows for increased adaptability to non-planar mounting surfaces. For example, a flexible array of photodetectors and lenslets formed into a cylinder could image simultaneously with a 360 degree view without the need for expensive bulky optics or a gimbaled mount. Here we report the design and development of a scalable 16x16 pixel testbed for flexible sensor arrays using commercial-off-the-shelf (COTS) parts and demonstrate the capture of a shadow image with an array of photodiodes and active pixel sensors on a plastic substrate. The image capture system makes use of an array of low-noise, InGaZnO active pixel amplifiers to detect changes in current in 2.4 μm-thick reverse-biased a-Si:H PIN diodes. A thorough characterization of the responsivity, detectivity, and optical gain of an a- Si:H photodiode is also provided. At the back end, analog capture circuitry progressively scans the array and constructs an image based on the electrical activity in each pixel. The use of correlated-double-sampling to remove fixed pattern noise is shown to significantly improve spatial resolution due to process variations. The testbed can be readily adapted for the development of neutron, alpha-particle, or X-ray detection arrays given an appropriate conversion layer.

  2. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  3. Photovoltaics: Energy for the New Millenium

    NASA Astrophysics Data System (ADS)

    Surek, Thomas

    2000-04-01

    Photovoltaics (PV) is a semiconductor-based technology that directly converts sunlight to electricity. The stimulus for terrestrial PV started more than 25 years ago in response to the oil crises of the 1970s, which resulted in major government programs in the United States, Europe, Japan, and elsewhere. Ongoing concerns with the global environment, as well as the worldwide efforts to seek alternate, indigenous sources of energy, continue to drive the investment in PV research and deployment. Today, the manufacture, sale, and use of PV has become a billion-dollar industry worldwide, with nearly 200 megawatts (MW) of PV modules shipped in 1999. The twenty five years of research and development led to the discovery of new PV materials, devices, and fabrication approaches; continuing improvements in the efficiency and reliability of solar cells and modules; and lower PV module and system costs. This talk reviews the rapid progress that has occurred in PV technology from the laboratory to the marketplace, including reviews of the leading technology options, status and issues, and key industry players. New processes for fabricating PV materials and devices, and innovative PV approaches with low-cost potential are elements of an ongoing research program aimed at future advancements in PV cost and performance While major market opportunities continue to exist in the developing countries, where sizable populations are without any electricity, today's manufacturing expansions are fueled by market initiatives for grid-connected PV in residential and commercial buildings. The combinations of increased production capacities, with the attendant cost reductions as a result of economies of scale, are expected to lead to sustainable markets. A key to achieving the ultimate potential of PV is to continue to increase the sunlight-to-electricity conversion efficiencies and translate the laboratory successes to cost-competitive products. Building a robust technology base is essential

  4. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.

    2015-10-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  5. 78 FR 37572 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... pursuant to Section 6(b) of the Act on December 21, 2011 (76 FR 79218). The last notification was filed... Section 6(b) of the Act on February 12, 2013 (78 FR 9939). Patricia A. Brink, Director of Civil.... Photovoltaic Manufacturing Consortium, Inc. Notice is hereby given that, on May 21, 2013, pursuant to Section...

  6. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  7. Optical scattering modeling of etched ZnO:Al superstrates and device simulation studies of a-Si:H solar cells with different texture morphologies.

    PubMed

    Yan, Xia; Li, Weimin; Aberle, Armin G; Venkataraj, Selvaraj

    2016-08-20

    Transparent conductive oxide (TCO) materials have been widely used as the front electrodes of thin-film amorphous silicon (a-Si:H) solar cells. To improve the performance of solar cells, textured front TCO is required as the optical layer which effectively scatters the incoming light and thus enhances the photon absorption within the device. One promising TCO material is aluminum-doped zinc oxide (AZO), which is most commonly prepared by magnetron sputtering. After deposition, sputtered AZO films are typically wet-chemically etched using diluted hydrochloric (HCl) or hydrofluoric (HF) acid to obtain rough surface morphologies. In this paper, we report the effects of a textured AZO front electrode on the performance of a-Si:H solar cells based on optical scattering modeling and electrical device simulations, involving four different AZO surface morphologies. The simulated light scattering behaviors indicate that a better textured surface not only scatters more light, but also allows more light get transmitted into the absorber (∼90% of visible light), due to greatly reduced front reflection by the rough surface. Device simulation results show that the two-step AZO texturing process should give improved a-Si:H solar cell performance, with an enhanced short-circuit current density of 16.5  mA/cm2, which leads to a high photovoltaic (PV) efficiency of 9.9%. PMID:27556994

  8. In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO{sub 2} bilayered matrix

    SciTech Connect

    Yang, T. C.-J. Wu, L.; Lin, Z.; Jia, X.; Puthen-Veettil, B.; Zhang, T.; Conibeer, G.; Perez-Wurfl, I.; Kauffmann, Y.; Rothschild, A.

    2014-08-04

    Solid-state nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix was observed at temperatures as low as 450 °C. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600 °C. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO{sub 2} bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO{sub 2}. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.

  9. Photovoltaic power generation system free of bypass diodes

    SciTech Connect

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  10. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  11. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  12. Ion implantation induced modification of a-SiC : H

    NASA Astrophysics Data System (ADS)

    Tzenov, N.; Tzolov, M.; Dimova-Malinovska, D.; Tsvetkova, T.; Angelov, C.; Adriaenssens, G.; Pattyn, H.

    1994-02-01

    Optical transmission measurements have been carried out on thin a-SiC:H alloy films, implanted with ions of group IV elements. High doses of the order of 10 17 cm -2 have been used leading to a considerable shift of the absorption edge to lower photon energies. This shift may be attributed both to additional defect introduction and to accompanying formation of bonds between implanted ions and the atoms of the alloy, as confirmed by IR and Raman measurements. The observed chemical modification results from the high concentration of introduced atoms which is of the order of those for the host elements.

  13. Economically sustainable scaling of photovoltaics to meet climate targets

    DOE PAGES

    Needleman, David Berney; Poindexter, Jeremy R.; Kurchin, Rachel C.; Peters, I. Marius; Wilson, Gregory; Buonassisi, Tonio

    2016-04-21

    To meet climate targets, power generation capacity from photovoltaics (PV) in 2030 will have to be much greater than is predicted from either steady state growth using today's manufacturing capacity or industry roadmaps. Analysis of whether current technology can scale, in an economically sustainable way, to sufficient levels to meet these targets has not yet been undertaken, nor have tools to perform this analysis been presented. Here, we use bottom-up cost modeling to predict cumulative capacity as a function of technological and economic variables. We find that today's technology falls short in two ways: profits are too small relative tomore » upfront factory costs to grow manufacturing capacity rapidly enough to meet climate targets, and costs are too high to generate enough demand to meet climate targets. We show that decreasing the capital intensity (capex) of PV manufacturing to increase manufacturing capacity and effectively reducing cost (e.g., through higher efficiency) to increase demand are the most effective and least risky ways to address these barriers to scale. We also assess the effects of variations in demand due to hard-to-predict factors, like public policy, on the necessary reductions in cost.Lastly, we review examples of redundant technology pathways for crystalline silicon PV to achieve the necessary innovations in capex, performance, and price.« less

  14. Why silicon is and will remain the dominant photovoltaic material

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra

    2009-07-01

    Rising demands of energy in emerging economies, coupled with the green house gas emissions related problems around the globe have provided a unique opportunity of exploiting the advantages offered by photovoltaic (PV) systems for green energy electricity generation. Similar to cell phones, power generated by PV systems can reach over two billion people worldwide who have no access to clean energy. Only silicon based PV devices meet the low-cost manufacturing criterion of clean energy conversion (abundance of raw material and no environmental health and safety issues). The use of larger size glass substrates and manufacturing techniques similar to the ones used by the liquid crystal display industry and the large scale manufacturing of amorphous silicon thin films based modules (~ GW per year manufacturing at a single location) can lead to installed PV system cost of $3/Wp. This will open a huge market for grid connected PV systems and related markets. With further research and development, this approach can provide $2/Wp installed PV system costs in the next few years. At this cost level, PV electricity generation is competitive with any other technology, and PV power generation can be a dominant electricity generation technology in the 21st century.

  15. Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.

  16. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  17. Solar photovoltaic energy and electric vehicles: natural synergism of two technologies

    SciTech Connect

    Stirewalt, E.N.

    1982-06-01

    Because of acid rain and CO/sub 2/ emission problems, electric vehicle technology must be advanced. The photovoltaic cell used to ''fuel'' electric cars is a possibility. The PV cell converts light directly into electricity. Automated PV manufacturing techniques are being developed. PV already is used in stand-alone systems and residential systems. Improved battery technology will benefit both PV and electric car technology. Another means of energy storage, the flywheel, is also applicable to both technologies.

  18. Single carbon nanotube photovoltaic device

    NASA Astrophysics Data System (ADS)

    Barkelid, M.; Zwiller, V.

    2013-10-01

    Here we present photocurrent measurements on a single suspended carbon nanotube p-n junction. The p-n junction was induced by electrostatic doping by local gates, and the E11 and E22 resonances in the nanotube could be probed using photocurrent spectroscopy. Current-voltage characteristics were recorded, revealing an enhanced optoelectronic response on resonance. The internal power conversion efficiency for the nanotube diode was extracted on and off resonance with the E11 and E22, and a large internal power conversion efficiency was observed. An internal efficiency of up to 23% is reported for the E11, showing the potential of carbon nanotubes to be used as the active element in photovoltaic devices. Finally, a photovoltaic device is proposed which exploits this enhanced efficiency.

  19. Photovoltaic/thermal hybrid projects

    NASA Astrophysics Data System (ADS)

    Kush, E. A.

    1980-03-01

    Systems which utilize a combination of photovoltaic and thermal collection in the same solar collectors (PV/T Systems) can have advantages over PV or thermal only systems in that the cost effectiveness of the collectors and their support structure may be improved, active cooling may allow the cells to run at lower temperatures-hence higher conversion efficiency, and space limitations on side by side collectors can be avoided. Evaluation of such systems requires formulation and assessment of collector concepts, power conditioning, storage, and control strategies, and their interactions when combined into a total system. Systems with flat plate PV/T collectors and vapor compression heat pump driven by the photovoltaic electric output are considered along with PV/T concentrating collectors and their potential applications, particularly to solar driven absorption chillers.

  20. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.