NASA Astrophysics Data System (ADS)
Andre, C. L.; Wilt, D. M.; Pitera, A. J.; Lee, M. L.; Fitzgerald, E. A.; Ringel, S. A.
2005-07-01
Recent experimental measurements have shown that in GaAs with elevated threading dislocation densities (TDDs) the electron lifetime is much lower than the hole lifetime [C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, Appl. Phys. Lett. 84, 3884 (2004)]. This lower electron lifetime suggests an increase in depletion region recombination and thus in the reverse saturation current (J0 for an n+/p diode compared with a p+/n diode at a given TDD. To confirm this, GaAs diodes of both polarities were grown on compositionally graded Ge /Si1-xGex/Si (SiGe) substrates with a TDD of 1×106cm-2. It is shown that the ratio of measured J0 values is consistent with the inverse ratio of the expected lifetimes. Using a TDD-dependent lifetime in solar cell current-voltage models we found that the Voc, for a given short-circuit current, also exhibits a poorer TDD tolerance for GaAs n+/p solar cells compared with GaAs p+/n solar cells. Experimentally, the open-circuit voltage (Voc) for the n+/p GaAs solar cell grown on a SiGe substrate with a TDD of ˜1×106cm-2 was ˜880mV which was significantly lower than the ˜980mV measured for a p+/n GaAs solar cell grown on SiGe at the same TDD and was consistent with the solar cell modeling results reported in this paper. We conclude that p+/n polarity GaAs junctions demonstrate superior dislocation tolerance than n+/p configured GaAs junctions, which is important for optimization of lattice-mismatched III-V devices.
NASA Astrophysics Data System (ADS)
Ajmal Khan, M.; Sato, R.; Sawano, K.; Sichanugrist, P.; Lukianov, A.; Ishikawa, Y.
2018-05-01
Semiconducting epi-Si1‑x Ge x alloys have promising features as solar cell materials and may be equally important for some other semiconductor device applications. Variation of the germanium compositional, x in epi-Si1‑x Ge x , makes it possible to control the bandgap between 1.12 eV and 0.68 eV for application in bottom solar cells. A low proportion of Ge in SiGe alloy can be used for photovoltaic application in a bottom cell to complete the four-terminal tandem structure with wide bandgap materials. In this research, we aimed to use a low proportion of Ge—about 10%—in strained or relaxed c-Si1‑x Ge x /c-Si heterojunctions (HETs), with or without insertion of a Si buffer layer grown by molecular beam epitaxy, to investigate the influence of the relaxed or strained SiGe active layer on the performance of HET solar cells grown using the plasma enhanced chemical vapor deposition system. Thanks to the c-Si buffer layer at the hetero-interface, the efficiency of these SiGe based HET solar cells was improved from 2.3% to 3.5% (fully strained and with buffer layer). The Jsc was improved, from 8 mA cm‑2 to 15.46 mA cm‑2, which might be supported by strained c-Si buffer layer at the hetero-interface, by improving the crystalline quality.
Towards rhombohedral SiGe epitaxy on 150mm c-plane sapphire substrates
NASA Astrophysics Data System (ADS)
Duzik, Adam J.; Park, Yeonjoon; Choi, Sang H.
2015-04-01
Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions. This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of microelectromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.
High efficiency thin-film crystalline Si/Ge tandem solar cell.
Sun, G; Chang, F; Soref, R A
2010-02-15
We propose and simulate a photovoltaic solar cell comprised of Si and Ge pn junctions in tandem. With an anti-reflection film at the front surface, we have shown that optimal solar cells favor a thin Si layer and a thick Ge layer with a thin tunnel hetero-diode placed in between. We predict efficiency ranging from 19% to 28% for AM1.5G solar irradiance concentrated from 1 approximately 1000 Suns for a cell with a total thickness approximately 100 microm.
NASA Astrophysics Data System (ADS)
Poborchii, Vladimir; Shklyaev, Alexander; Bolotov, Leonid; Uchida, Noriyuki; Tada, Tetsuya; Utegulov, Zhandos N.
2017-12-01
Metasurfaces consisting of arrays of high-index Mie resonators concentrating/redirecting light are important for integrated optics, photodetectors, and solar cells. Herein, we report the optical properties of low-Ge-content SiGe lens-like Mie resonator island arrays fabricated via dewetting during Ge deposition on a Si(100) surface at approximately 900 °C. We observe enhancement of the Si interaction with light owing to the efficient island-induced light concentration in the submicron-depth Si layer, which is mediated by both near-field Mie resonance leaking into the substrate and far-field light focusing. Such metasurfaces can improve the Si photodetector and solar-cell performance.
Toward a III-V Multijunction Space Cell Technology on Si
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.
2007-01-01
High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red laser diodes on Si.9 Here we report on the first high performance dual junction GaInP/GaAs solar cells grown on Si using this promising SiGe engineered substrate approach.
Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.
2002-01-01
Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.
Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota
2013-11-01
Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Electronic structure of O-doped SiGe calculated by DFT + U method
NASA Astrophysics Data System (ADS)
Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi
2016-12-01
To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).
NASA Astrophysics Data System (ADS)
Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor
2017-11-01
Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.
Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate
NASA Technical Reports Server (NTRS)
Choi, Sang; King, Glen; Park, Yeonjoon
2009-01-01
SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than plus or minus 10 deg.) sapphire (0001) substrate can be used to improve epitaxial relationships better by providing attractive atomic steps in the epitaxial process.
NASA Astrophysics Data System (ADS)
Turner-Evans, Dan
Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.
Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells
NASA Astrophysics Data System (ADS)
Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif
2015-09-01
Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.
Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V
2015-02-13
We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.
Parameswaran, V; Ishaq Ahmed, V P; Shukla, Ravi; Bhonde, R R; Sahul Hameed, A S
2007-01-01
Two new cell lines, SIMH and SIGE, were derived from the heart of milkfish (Chanos chanos), a euryhaline teleost, and from the eye of grouper (Epinephelus coioides), respectively. These cell lines were maintained in Leibovitz's L-15 supplemented with 20% fetal bovine serum (FBS). The SIMH cell line was subcultured more than 50 times over a period of 210 days and SIGE cell line has been subcultured 100 times over a period of 1 1/2 years. The SIMH cell line consists predominantly of fibroblastic-like cells. The SIGE cell line consists predominantly of epithelial cells. Both the cell lines were able to grow at temperatures between 25 and 32 degrees C with an optimum temperature of 28 degrees C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 28 degrees C with optimum growth at the concentrations of 15% or 20% FBS. Seven marine fish viruses were tested to determine the susceptibility of these cell lines. The SIGE cell line was found to be susceptible to nodavirus, MABV NC-1 and Y6, and the infection was confirmed by cytopathic effect (CPE) and reverse transcriptase-polymerase chain reaction. When these cells were transfected with pEGFP-N1 vector DNA, significant fluorescent signals were observed, suggesting that these cell lines can be a useful tool for transgenic and genetic manipulation studies. Further, these cell lines are characterized by immunocytochemistry using confocal laser scanning microscopy (CFLSM).
Sublimation measurements and analysis of high temperature thermoelectric materials and devices
NASA Technical Reports Server (NTRS)
Shields, V.; Noon, L.
1983-01-01
High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.
Kirk, David G.; Zhang, Zhen; Korkeala, Hannu
2014-01-01
Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model. PMID:24928875
NASA Astrophysics Data System (ADS)
Lu, Yimin; Makihara, Katsunori; Takeuchi, Daichi; Ikeda, Mitsuhisa; Ohta, Akio; Miyazaki, Seiichi
2017-06-01
Hydrogenated microcrystalline (µc) Si/Ge heterostructures were prepared on quartz substrates by plasma-enhanced chemical vapor deposition (CVD) from VHF inductively coupled plasma of SiH4 just after GeH4 employing Ni nanodots (NDs) as seeds for crystalline nucleation. The crystallinity of the films and the progress of grain growth were characterized by Raman scattering spectroscopy and atomic force microscopy (AFM), respectively. When the Ge films were grown on Ni-NDs at 250 °C, the growth of µc-Ge films with crystallinity as high as 80% was realized without an amorphous phase near the Ge film/quartz substrate interface. After the subsequent Si film deposition at 250 °C, fine grains were formed in the early stages of film growth on µc-Ge films with compositional mixing (µc-Si0.85Ge0.15:H) caused by the release of large lattice mismatch between c-Si and c-Ge. With further increase in Si:H film thickness, the formation of large grain structures accompanied by fine grains was promoted. These results suggest that crystalline Si/Ge heterojunctions can be used for efficient carrier collection in solar cell application.
Schmidt, L M; Preston, J F; Nong, G; Dickson, D W; Aldrich, H C
2004-06-01
We report on the development of a PCR-based assay to detect Pasteuria penetrans infection of Meloidogyne arenaria in planta using specific primers for recently sequenced sigE, spoIIAB and atpF genes of P. penetrans biotype P20. Amplification of these genes in crude DNA extracts of ground tomato root galls using real-time kinetic PCR distinguished infected from uninfected M. arenaria race 1 by analysis of consensus thresholds for single copy genes. Fluorescent in situ hybridization (FISH) using the sigE primer sequence as a probe shows hybridization to P. penetrans cells in various stages of vegetative (pre-endospore) development. Ratios of gene copies for sigE and 16S rDNA were obtained for P. penetrans and compared to Bacillus subtilis as a genomic paradigm of endospore-forming bacteria. Phylogenetic analysis of the sigE gene from Gram-positive, endospore-forming bacteria finds P. penetrans most closely related Paenbacillus polymyxa. The sporulation genes (spo genes), particularly sigE, have sequence diversity that recommends them for species and biotype differentiation of the numerous Pasteuria isolates that infect a large number of plant-parasitic nematodes.
Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.
Hu, Ming; Giapis, Konstantinos P; Goicochea, Javier V; Zhang, Xiaoliang; Poulikakos, Dimos
2011-02-09
We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.
Bulanda, Małgorzata; Dyga, Wojciech; Rusinek, Barbara; Czarnobilska, Ewa
Qualification for specific immunotherapy (SIT) according to the guidelines of the European Academy of Allergy and Clinical Immunology (EAACI) includes medical history, skin prik tests (SPT) and/or measuring the concentration of sIgE. It is necessary to perform additional diagnostic tests in case of discrepancies between the history and the results of SPT/sIgE or differences between SPT and sIgE. Basophil activation test (BAT) assesses the expression of activation markers of these cells, eg. CD63 and CD203c after stimulation. The aim of our study was to evaluate the usefulness of BAT in the qualification for the SIT in comparison to the SPT and sIgE and in case of discrepancies between the results of SPT and sIgE. The study included 30 patients with allergic rhinitis (AR) caused by allergy to house dust mite (Dermatophagoides pteronyssinus, Dp) or birch pollen qualified for SIT. All patients had SPT, sIgE and BAT determination. The group of patients with allergy to birch was a control group for Dp allergic and vice versa. BAT with CD63 antigen expression was performed using a Flow2CAST test. Basophils were stimulated with allergen preparation (50, 500, and 5000 SBU/ml concentrations). BAT results were expressed as a stimulation index (SI). For optimal concentrations of 50 and 500 SBU/ml parameters comparing BAT to SPT and sIgE as the gold standards were consecutively: sensitivity 82-100% and 93-100%, specificity 50-94% and 47-89%, positive predictive value 65- 94% and 61-87%, negative predictive value 86-100% and 93-100%. Correlation BAT - SPT and BAT - sIgE ranged within 0.59 to 0.84 and 0.51 to 0.72. BAT was helpful in 2 of 30 patients with incompatible results of SPT and sIgE. Optimal concentrations for basophil stimulation are 50 and 500 SBU/ ml. BAT may be useful diagnostic tool in the qualification for the SIT in case of discrepancies between the results of SPT and sIgE.
SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.
Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M
2018-07-06
In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.
Advanced Si solid phase crystallization for vertical channel in vertical NANDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangsoo; Son, Yong-Hoon; Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung 445-701
The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers weremore » shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.« less
Schiener, M; Eberlein, B; Moreno-Aguilar, C; Pietsch, G; Serrano, P; McIntyre, M; Schwarze, L; Russkamp, D; Biedermann, T; Spillner, E; Darsow, U; Ollert, M; Schmidt-Weber, C B; Blank, S
2017-01-01
Hymenoptera stings can cause severe anaphylaxis in untreated venom-allergic patients. A correct diagnosis regarding the relevant species for immunotherapy is often hampered by clinically irrelevant cross-reactivity. In vespid venom allergy, cross-reactivity between venoms of different species can be a diagnostic challenge. To address immunological IgE cross-reactivity on molecular level, seven recombinant antigens 5 of the most important Vespoidea groups were assessed by different diagnostic setups. The antigens 5 of yellow jackets, hornets, European and American paper wasps, fire ants, white-faced hornets, and Polybia wasps were recombinantly produced in insect cells, immunologically and structurally characterized, and their sIgE reactivity assessed by ImmunoCAP, ELISA, cross-inhibition, and basophil activation test (BAT) in patients with yellow jacket or Polistes venom allergy of two European geographical areas. All recombinant allergens were correctly folded and structural models and patient reactivity profiles suggested the presence of conserved and unique B-cell epitopes. All antigens 5 showed extensive cross-reactivity in sIgE analyses, inhibition assays, and BAT. This cross-reactivity was more pronounced in ImmunoCAP measurements with venom extracts than in sIgE analyses with recombinant antigens 5. Dose-response curves with the allergens in BAT allowed a differentiated individual dissection of relevant sensitization. Due to extensive cross-reactivity in various diagnostic settings, antigens 5 are inappropriate markers for differential sIgE diagnostics in vespid venom allergy. However, the newly available antigens 5 from further vespid species and the combination of recombinant allergen-based sIgE measurements with BAT represents a practicable way to diagnose clinically relevant sensitization in vespid venom allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle
2017-12-01
Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.
Advances in space power research and technology at the National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.; Ambrus, J. H.
1981-01-01
Progress and plans in various areas of the NASA Space Power Program are discussed. Solar cell research is narrowed to GaAs, multibandgap, and thin Si cells for arrays in planar and concentrator configurations, with further work to increase cell efficiency, radiation hardness, develop flexible encapsulants, and reduce cost. Electrochemical research is concentrating on increasing energy and power density, cycle and wet stand life, reliability and cost reduction of batteries. Further development of the Ni-H2 battery and O2-H2 fuel cell to multihundred kW with a 5 year life and 30,000 cycles is noted. Basic research is ongoing for alkali metal anodes for high energy density secondary cells. Nuclear thermoelectric propulsion is being developed for outer planets exploration propulsion systems, using Si-Ge generators, and studies with rare earth chalcogenides and sulfides are mentioned. Power Systems Management seeks to harmonize increasing power supply levels with inner and outer spacecraft environments, circuits, demands, and automatic monitoring. Concomitant development of bipolar transistors, an infrared rectenna, spacecraft charging measurement, and larger heat pipe transport capacity are noted.
III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringel, Steven
This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first high performance GaAsP/Si double junction cell, the demonstration of a new method that allow for rapid, quantitative and non-destructive characterization of dislocations (ECCI-electron channeling contrast imaging), the first observation, explanation and solution of the now commonly reported lifetime degradation and recovery phenomena in III-V/Si MOCVD growth, the first demonstration of a high performance SiGe cell with a bandgap of 0.9 eV, amongst other highlights. The impact of the program on the international community has been significant. At the start of our FPACE1 project and for the immediate prior years, 1-2 conference papers/annually were presented at IEEE PVSC. Once FPACE1 commenced in 2011, related efforts sprouted across the US, Europe and Asia and by 2015 there were 26 papers presented on III-V/Si multijunctions in the 2015 PVSC, demonstrating the excitement that was stimulated by the results of this FPACE1 effort.« less
NASA Astrophysics Data System (ADS)
Vieira, E. M. F.; Toudert, J.; Rolo, A. G.; Parisini, A.; Leitão, J. P.; Correia, M. R.; Franco, N.; Alves, E.; Chahboun, A.; Martín-Sánchez, J.; Serna, R.; Gomes, M. J. M.
2017-08-01
In this work, we report on the production of regular (SiGe/SiO2)20 multilayer structures by conventional RF-magnetron sputtering, at 350 °C. Transmission electron microscopy, scanning transmission electron microscopy, raman spectroscopy, and x-ray reflectometry measurements revealed that annealing at a temperature of 1000 °C leads to the formation of SiGe nanocrystals between SiO2 thin layers with good multilayer stability. Reducing the nominal SiGe layer thickness (t SiGe) from 3.5-2 nm results in a transition from continuous SiGe crystalline layer (t SiGe ˜ 3.5 nm) to layers consisting of isolated nanocrystals (t SiGe ˜ 2 nm). Namely, in the latter case, the presence of SiGe nanocrystals ˜3-8 nm in size, is observed. Spectroscopic ellipsometry was applied to determine the evolution of the onset in the effective optical absorption, as well as the dielectric function, in SiGe multilayers as a function of the SiGe thickness. A clear blue-shift in the optical absorption is observed for t SiGe ˜ 2 nm multilayer, as a consequence of the presence of isolated nanocrystals. Furthermore, the observed near infrared values of n = 2.8 and k = 1.5 are lower than those of bulk SiGe compounds, suggesting the presence of electronic confinement effects in the nanocrystals. The low temperature (70 K) photoluminescence measurements performed on annealed SiGe/SiO2 nanostructures show an emission band located between 0.7-0.9 eV associated with the development of interface states between the formed nanocrystals and surrounding amorphous matrix.
Anisotropic selective etching between SiGe and Si
NASA Astrophysics Data System (ADS)
Ishii, Yohei; Scott-McCabe, Ritchie; Yu, Alex; Okuma, Kazumasa; Maeda, Kenji; Sebastian, Joseph; Manos, Jim
2018-06-01
In Si/SiGe dual-channel FinFETs, it is necessary to simultaneously control the etched amounts of SiGe and Si. However, the SiGe etch rate is higher than the Si etch rate in not only halogen plasmas but also physical sputtering. In this study, we found that hydrogen plasma selectively etches Si over SiGe. The result shows that the selectivity of Si over SiGe can be up to 38 with increasing Ge concentration in SiGe. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) results indicate that hydrogen selectively bonds with Si rather than with Ge in SiGe. During the etching, hydrogen-induced Si surface segregation is also observed. It is also observed that the difference in etched amount between SiGe and Si can be controlled from positive to negative values even in Si/SiGe dual-channel fin patterning while maintaining the vertical profiles. Furthermore, no plasma-induced lattice damage was observed by transmission electron microscopy for both Si and SiGe fin sidewalls.
NASA Astrophysics Data System (ADS)
Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan
2018-01-01
Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.
Graded Index Silicon Geranium on Lattice Matched Silicon Geranium Semiconductor Alloy
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R., Jr. (Inventor); Stoakley, Diane M. (Inventor)
2009-01-01
A lattice matched silicon germanium (SiGe) semiconductive alloy is formed when a {111} crystal plane of a cubic diamond structure SiGe is grown on the {0001} C-plane of a single crystalline Al2O3 substrate such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium. A layer of Si(1-x), ,Ge(x) is formed on the cubic diamond structure SiGe. The value of X (i) defines an atomic percent of germanium satisfying 0.2277
NASA Astrophysics Data System (ADS)
Ma, Li; Gao, Yong
2009-01-01
This paper proposes a novel super junction (SJ) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66 V whereas that of the SJ SiGe diode is only 0.52 V at operating current density of 10 A/cm2. The breakdown voltages are 203 V for the former and 235 V for the latter. Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.
NASA Astrophysics Data System (ADS)
Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah
2017-11-01
In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.
Effect of small scattering centers on the thermoelectric properties of p-type SiGe alloys
NASA Technical Reports Server (NTRS)
Beaty, John S.; Rolfe, Jonathan L.; Vandersande, Jan W.
1991-01-01
Theory predicts that the addition of ultra-fine, inert, phonon-scattering centers to thermoelectric materials will reduce their thermal conductivity. To investigate this prediction, ultrafine particulates (20 to 120 A) of silicon nitride have been added to boron-doped, p-type, 80/20 SiGe. All of the SiGe samples produced from ultrafine powder have lower thermal conductivities than standard SiGe, but high-temperature heat treatment increases the thermal conductivity back to the value for standard SiGe. However, the SiGe samples with silicon nitride, inert, phonon-scattering centers retained the lower thermal conductivity after several heat treatments. A reduction of approximately 25 percent in thermal conductivity has been achieved in these samples. The magnitude of the reduction agrees with theoretical predictions.
Hjortlund, Janni; Mortz, Charlotte Gotthard; Stage, Tore Bjerregaard; Skov, Per Stahl; Dahl, Ronald; Bindslev-Jensen, Carsten
2014-01-01
The positive and negative predictive values of specific IgE to penicillins are not well established for penicillin hypersensitivity. One reason may be that serum IgE levels to penicillin diminish over time. The objective in this study was to investigate variations in serum half-life (T½) for specific IgE to penicillins (s-IgE) and to evaluate the outcome of penicillin challenges in patients with previous but not present specific IgE to penicillins. Two subgroups were investigated. All included patients had a history of penicillin allergy with reported symptoms such as urticaria/angioedema or unclassified cutaneous rash. T½ of specific IgE to penicillins was calculated based on sera from 29 patients with repeated measurements of s-IgE. Twenty-two patients with a previous positive s-IgE was followed and challenged with penicillin when IgE had become negative. The T½ for s-IgE varied between the 26 patients with decreasing s-IgE from 1.6 months to 76.4 months and 52% had a T½ of less than a year. The three patients with stable and increasing IgE-values showed T½ approaching infinity A total of 29 challenges with β-lactams were performed. Four different patterns were seen when evaluating the clinical reaction to challenge (positive/negative) and post-challenge boost of s-IgE (yes/no). Eight (36.4%) had negative challenge and negative post-challenge s-IgE, eight (36.4%) negative challenge, but positive post-challenge s-IgE levels. 3 (13.6%) had positive challenge and positive post-challenge s-IgE whereas 3 (13.6%) were challenge positive, but had negative post-challenge s-IgE. Specific IgE to penicillins declines over time stressing the importance of a close time relation between diagnostic work-up and clinical reaction. Reversal of previously positive s-IgE may still be associated with positive penicillin challenges and/or re-boostering of s-IgE to positivity.
Positive Skin Test or Specific IgE to Penicillin Does Not Reliably Predict Penicillin Allergy.
Tannert, Line Kring; Mortz, Charlotte Gotthard; Skov, Per Stahl; Bindslev-Jensen, Carsten
According to guidelines, patients are diagnosed with penicillin allergy if skin test (ST) result or specific IgE (s-IgE) to penicillin is positive. However, the true sensitivity and specificity of these tests are presently not known. To investigate the clinical relevance of a positive ST result and positive s-IgE and to study the reproducibility of ST and s-IgE. A sample of convenience of 25 patients with positive penicillin ST results, antipenicillin s-IgE results, or both was challenged with their culprit penicillin. Further 19 patients were not challenged, but deemed allergic on the basis of a recent anaphylactic reaction or delayed reactions to skin testing. Another sample of convenience of 18 patients, 17 overlapping with the 25 challenged, with initial skin testing and s-IgE (median, 25; range, 3-121), months earlier (T -1 ), was repeat skin tested and had s-IgE measured (T 0 ), and then skin tested and had s-IgE measured 4 weeks later (T 1 ). Only 9 (36%) of 25 were challenge positive. There was an increased probability of being penicillin allergic if both ST result and s-IgE were positive at T 0 . Positive ST result or positive s-IgE alone did not predict penicillin allergy. Among the 18 patients repeatedly tested, 46.2% (12 of 25) of positive ST results at T -1 were reproducibly positive at T 0 . For s-IgE, 54.2% (14 of 24) positive measurements were still positive at T 0 and 7 converted to positive at T 1 . The best predictor for a clinically significant (IgE-mediated) penicillin allergy is a combination of a positive case history with simultaneous positive ST result and s-IgE or a positive challenge result. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
The reliability studies of nano-engineered SiGe HBTs using Pelletron accelerator
NASA Astrophysics Data System (ADS)
Prakash, A. P. Gnana; Praveen, K. C.; Pushpa, N.; Cressler, John D.
2015-05-01
The effects of high energy ions on the electrical characteristics of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were studied in the total dose of ranging from 600 krad to 100 Mrad (Si). The two generations (50 GHz and 200 GHz) of SiGe HBTs were exposed to 50 MeV lithium, 75 MeV boron and 100 MeV oxygen ions. The electrical characteristics of SiGe HBTs were studied before and after irradiation. The SiGe HBTs were exposed to 60Co gamma radiation in the same total dose. The results are systematically compared in order to understand the interaction of ions and ionizing radiation with SiGe HBTs.
Thermoelectric properties of hot-pressed fine particulate powder SiGe alloys
NASA Technical Reports Server (NTRS)
Beaty, John S.; Rolfe, Jonathan; Vandersande, Jan
1991-01-01
A novel material system and its fabrication technique have been defined and applied to the production of SiGe thermoelectric material through the hot pressing of 50-100 A ultrafine particulates into 80/20 SiGe. Relative to conventionally processed SiGe, a reduction of thermal conductivity of up to 40 percent is achieved in conjunction with an enhancement of material figure-of-merit of the order of 10-15 percent.
Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies
NASA Technical Reports Server (NTRS)
Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik
2014-01-01
The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.
NASA Astrophysics Data System (ADS)
Chen, Tianbing; Sutton, Akil K.; Haugerud, Becca M.; Henderson, Walter; Gnana Prakash, A. P.; Cressler, John D.; Doolittle, Alan; Liu, Xuefeng; Joseph, Alvin; Marshall, Paul W.
2006-07-01
The thermodynamic stability of device-relevant epitaxial SiGe strained layers under proton irradiation is investigated using X-ray diffraction techniques, and compared with its stability constrain under high-temperature annealing. Irradiation with 63 MeV protons is found to introduce no significant microdefects into the SiGe thin films, regardless of starting stability condition of the SiGe film, and thus does not appear to be an issue for the use of SiGe HBT technology in emerging space systems. The strain relaxation of SiGe thin film under thermal annealing, however, is sensitive to the composition and thickness of the as-grown samples, as expected, with the subsequent lattice relaxation of the unstable samples occurring at a much higher rate than that of metastable samples.
Müller, U; Schmid-Grendelmeier, P; Hausmann, O; Helbling, A
2012-08-01
Diagnostic tests in patients with Hymenoptera venom allergy are frequently positive to venoms of both honey bee and wasp (Vespula). Component-resolved analysis with recombinant species-specific major allergens (rSSMA) may help to distinguish true double sensitization from crossreactivity. Included were 121 patients with systemic allergic reactions to Hymenoptera stings, 76 with double positivity of serum-specific IgE (sIgE) to both venoms, 45 with single positivity to bee or wasp venom, and 32 controls without history of systemic reactions to Hymenoptera stings and no sIgE to whole venoms. In venom-allergic patients and controls, sIgE to rSSMA Api m 1 of bee venom and to Ves v 1 and Ves v 5 of wasp venom were tested by ImmunoCAP. Only 47% of 76 patients with double positivity to whole venoms reacted also to rSSMA of both species. Specificity of sIgE to the 3 rSSMA was very high, with no sIgE to rSSMA of the other species in single-positive venom-allergic patients and only one control with low sIgE to Ves v 1. All wasp-allergic single-positive patients had sIgE to Ves v 5 and/or Ves v 1, and 78.3% of single-positive bee venom-allergic patients had sIgE to Api m 1. Specificity of sIgE to rSSMA of both species is excellent. Sensitivity of sIgE to rSSMA was optimal for wasp venom. Sensitivity of bee venom Api m 1 could be increased by adding rSSMA of other important bee venom allergens. © 2012 John Wiley & Sons A/S.
Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.
Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C
2016-07-27
Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.
Proton Tolerance of SiGe Precision Voltage References for Extreme Temperature Range Electronics
NASA Astrophysics Data System (ADS)
Najafizadeh, Laleh; Bellini, Marco; Prakash, A. P. Gnana; Espinel, Gustavo A.; Cressler, John D.; Marshall, Paul W.; Marshall, Cheryl J.
2006-12-01
A comprehensive investigation of the effects of proton irradiation on the performance of SiGe BiCMOS precision voltage references intended for extreme environment operational conditions is presented. The voltage reference circuits were designed in two distinct SiGe BiCMOS technology platforms (first generation (50 GHz) and third generation (200 GHz)) in order to investigate the effect of technology scaling. The circuits were irradiated at both room temperature and at 77 K. Measurement results from the experiments indicate that the proton-induced changes in the SiGe bandgap references are minor, even down to cryogenic temperatures, clearly good news for the potential application of SiGe mixed-signal circuits in emerging extreme environments
Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire
NASA Technical Reports Server (NTRS)
Duzik, Adam J.; Choi, Sang H.
2016-01-01
Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.
Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C; Luo, Tengfei
2015-11-16
Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.
Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire
Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C.; Luo, Tengfei
2015-01-01
Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics. PMID:26568511
Recent Results on SEU Hardening of SiGe HBT Logic Circuits
NASA Technical Reports Server (NTRS)
Krithivasan, Ramkumar; Marshall, Paul W.; Nayeem, Mustayeen; Sutton, Akil K.; Kuo, Wei-Min Lance; Haugerud, Becca M.; Najafizadeh, Laieh; Cressler, John D.; Carts, martin A.; Marshall, Cheryl J.
2006-01-01
A viewgraph presentation on SEU tolerant SiGe HBT technology is shown. The topics include: 1) Introduction; 2) TID and SEU in SiGe Technology; 3) RHBD Techniques; 4) Experiment; 5) Heavy-Ion Data and Analysis; and 6) Summary.
de Vos, Gabriele; Nazari, Ramin; Ferastraoaru, Denisa; Parikh, Purvi; Geliebter, Rebecca; Pichardo, Yikania; Wiznia, Andrew; Rosenstreich, David
2013-06-01
Atopic sensitization to aeroallergens in early life has been found to be a strong risk factor for the development of persisting asthma in young children with recurrent wheeze. To assess the yield of skin prick test (SPT) compared with allergen specific serum IgE (sIgE) testing at identifying aeroallergen sensitization in atopic children younger than 4 years. Concordance between SPT and allergen-specific sIgE testing for 7 common aeroallergens was analyzed in 40 atopic inner-city children 18 to 48 months of age (mean [SD], 36 [9] months) with recurrent wheezing and family history of asthma and/or eczema. In 80% of children one or more allergen sensitizations would have been missed if only SPT had been performed, and in 38% of children one or more sensitizations would have been missed if only sIgE testing had been performed. Agreement between the SPT and sIgE test was fair for most allergens (κ = -0.04 to 0.50), as was correlation between sIgE levels and SPT grade (ρ = 0.21 to 0.55). Children with high total sIgE (≥300 kU/L) were more likely to have positive sIgE test results, with negative corresponding SPT results (P = .02). Our study revealed a significant discordance between allergen-specific SPT and sIgE testing results for common aeroallergens, suggesting that both SPT and sIgE testing should be performed when diagnosing allergic sensitization in young children at high risk of asthma. clinicaltrials.gov Identifier: NCT01028560. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Kim, Dongheun; Li, Nan; Sheehan, Chris J; Yoo, Jinkyoung
2018-04-26
Si/Ge core/shell nanowire heterostructures have been expected to provide high energy and power densities for lithium ion battery anodes due to the large capacity of Si and the high electrical and ionic conductivities of Ge. Although the battery anode performances of Si/Ge core/shell nanowire heterostructures have been characterized, the degradation of Si/Ge core/shell nanowire heterostructures has not been thoroughly investigated. Here we report the compositional and structural changes of the Si/Ge core/shell nanowire heterostructure over cycling of lithiation and delithiation at different charging rates. The Si/Ge core/shell nanowire heterostructure holds the core and shell structure at a charging rate of 0.8 A g-1 up to 50 cycles. On the other hand, compositional intermixing and loss of Si occur at a charging rate of 20 A g-1 within 50 cycles. The operation condition-dependent degradation provides a new aspect of materials research for the development of high performance lithium ion battery anodes with a long cycle life.
Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y
2015-11-06
We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.
2017-10-25
The most common tests for allergen sensitization in patients with allergic rhinitis are the skin-prick test(SPT) and an in vitro test to detect serum specific immunoglobulin E (sIgE). However, in vitro allergen test results were interpreted dichotomically as positive or negative at a threshold of 0.35kU/L of sIgE, regardless of the patient characteristics or antigen types. The purpose of this study was to determine the cutoff value for sIgE in house-dust mites and animal dander, and to analyze differences in cutoff value according to age and gender. A total of 16,209 patients with more than one allergic rhinitis symptom who underwent both SPT and serum sIgE testing were retrospectively evaluated between March 2008 and May 2012. There were 9374 male (57.8%) and 6835 female (42.2%) patients. The mean age was 31.8 years (range, 2-89 years). The criterion standard for allergen sensitization was defined as a wheal of > 3 mm or an allergen-to-histamine ratio of greater than or equal to 1 in SPT results. The Youden index was used to calculate the cutoff value of sIgE. Cutoff values of sIgE for Dermatophagoides pteronyssinus, Dermatophagoides farinae, cat, and dog were 0.69, 1.16, 0.13, and 0.45 kU/L, respectively. The cutoff value of sIgE changed according to age for D. pteronyssinus and D. farinae but not for cat and dog allergens. When categorizingaccording to age group, the cutoff values of sIgE for D. pteronyssinus and D. farinae had a tendency to decrease with age. There was no significant difference in cutoff value according to gender. The cutoff value for sIgE differed for each antigen and changed with age. Physicians should select the proper cutoff value for sIgE for appropriate criteria according to antigen and patient age rather than using a uniform cutoff value.
Hong, Sang Duk; Ryu, Gwanghui; Seo, Min Young; Jeong, Jong In; Kim, Hyo Yeol; Chung, Seung-Kyu; Dhong, Hun-Jong
2018-01-25
The most common tests for allergen sensitization in patients with allergic rhinitis are the skin-prick test (SPT) and an in vitro test to detect serum specific immunoglobulin E (sIgE). However, in vitro allergen test results were interpreted dichotomically as positive or negative at a threshold of 0.35 kU/L of sIgE, regardless of the patient characteristics or antigen types. The purpose of this study was to determine the cutoff value for sIgE in house-dust mites and animal dander, and to analyze differences in cutoff value according to age and gender. A total of 16,209 patients with more than one allergic rhinitis symptom who underwent both SPT and serum sIgE testing were retrospectively evaluated between March 2008 and May 2012. There were 9374 male (57.8%) and 6835 female (42.2%) patients. The mean age was 31.8 years (range, 2-89 years). The criterion standard for allergen sensitization was defined as a wheal of >3 mm or an allergen-to-histamine ratio of ≥1 in SPT results. The Youden index was used to calculate the cutoff value of sIgE. Cutoff values of sIgE for Dermatophagoides pteronyssinus, Dermatophagoides farinae, cat, and dog were 0.69, 1.16, 0.13, and 0.45 kU/L, respectively. The cutoff value of sIgE changed according to age for D. pteronyssinus and D. farinae but not for cat and dog allergens. When categorizing according to age group, the cutoff values of sIgE for D. pteronyssinus and D. farinae had a tendency to decrease with age. There was no significant difference in cutoff value according to gender. The cutoff value for sIgE differed for each antigen and changed with age. Physicians should select the proper cutoff value for sIgE for appropriate criteria according to antigen and patient age rather than using a uniform cutoff value.
Characterization of rodlike structures in Si-Ge-GaP alloys
NASA Astrophysics Data System (ADS)
Srikant, V.; Jesser, W. A.; Rosi, F. D.
1996-07-01
High-temperature microstructure of Si-Ge alloys containing 10-15 mole % GaP were studied. Quenching the 80/20 Si-Ge alloy (80 at. % Si) from above 1125 °C and the 50/50 Si-Ge alloy (50 at. % Si) from above 1025 °C resulted in a duplex microstructure. The two-phase regions consisted of a regular array of rodlike structures (GaP) in a Si-Ge matrix whereas the monophase regions were pure Si-Ge. These rodlike structures were found to lie along the [001] direction and result in {002} spots in a [100] electron diffraction pattern. The ``rods'' were about 35 and 45 nm in diameter in the case of the 80/20 and 50/50 alloy, respectively. These structures are not stable on annealing and do not form when the solidification rate is decreased.
Yoshida, Naruo; Hirata, Hirokuni; Watanabe, Mineaki; Sugiyama, Kumiya; Arima, Masafumi; Fukushima, Yasutsugu; Ishii, Yoshiki
2015-07-01
Ves v 5 and Pol d 5, which constitute antigen 5, are recognized as the major, most potent allergens of family Vespidae. Several studies have reported the diagnostic sensitivity of the novel recombinant (r)Ves v 5 and rPol d 5 allergens in routine clinical laboratory settings by analyzing a group of Vespula and Polistes venom-allergic patients. In this study, we analyzed the sensitivity to venom specific (s)IgE by spiking with rVes v 5 and rPol d 5 in Japanese patients suspected of Hymenoptera venom allergy. Subjects were 41 patients who had experienced systemic reactions to hornet and/or paper wasp stings. Levels of serum sIgE against hornet and paper wasp venom by spiking with rVes v 5 and rPold d 5, respectively, as improvement testing, compared with hornet and paper wasp venom, as conventional testing, were measured by ImmunoCAP. Of the 41 patients, 33 (80.5%) were positive (≥0.35 UA/ml) for hornet and/or paper wasp venom in conventional sIgE testing. sIgE levels correlated significantly (P < 0.01) between hornet (R = 0.92) or paper wasp venom (R = 0.78) in improvement testing and conventional testing. To determine specificity, 20 volunteers who had never experienced a Hymenoptera sting were all negative for sIgE against these venoms in both improvement and conventional testing. Improved sensitivity was seen in 8 patients negative for sIgE against both venoms in conventional testing, while improvement testing revealed sIgE against hornet or paper wasp venom in 5 (total 38 (92.7%)) patients. The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Yanagida, Noriyuki; Sato, Sakura; Maruyama, Nobuyuki; Takahashi, Kyohei; Nagakura, Ken-Ichi; Ogura, Kiyotake; Asaumi, Tomoyuki; Ebisawa, Motohiro
2018-01-01
Buckwheat (BW) is the source of a life-threatening allergen. Fag e 3-specific serum IgE (sIgE) is more useful than BW-sIgE for diagnosis; however, it is unknown whether Fag e 3-sIgE can predict oral food challenge (OFC) results and anaphylaxis. This study aimed to clarify the efficacy of Fag e 3-sIgE in predicting OFC results and anaphylaxis. We conducted a retrospective review of BW- and Fag e 3-sIgE data obtained using the ImmunoCAP® assay system and fluorescent enzyme-linked immunosorbent assay from children who underwent OFC using 3,072 mg of BW protein between July 2006 and March 2014 at Sagamihara National Hospital, Kanagawa, Japan. We analyzed 60 patients aged 1.9-13.4 years (median 6.0 years); 20 (33%) showed objective symptoms upon BW OFC. The patients without symptoms had significantly lower Fag e 3-sIgE than those with non-anaphylactic (p < 0.001) and anaphylactic reactions to BW (p = 0.004). Fag e 3-sIgE was the only tested factor that significantly predicted positive OFC results (odds ratio 8.93, 95% confidence interval 3.10-25.73, p < 0.001) and OFC-induced anaphylaxis (2.67, 1.12-6.35, p = 0.027). We suggest that a threshold Fag e 3-sIgE level of 18.0 kUE/L has 95% probability of provoking a positive reaction to BW. Fag e 3-sIgE predicted OFC results and OFC-induced anaphylaxis. We further emphasize paying careful attention to the risk of BW OFC-induced anaphylaxis. © 2018 The Author(s) Published by S. Karger AG, Basel.
Strain analysis of SiGe microbridges
NASA Astrophysics Data System (ADS)
Anthony, Ross; Gilbank, Ashley; Crowe, Iain; Knights, Andrew
2018-02-01
We present the analysis of UV (325 nm) Raman scattering spectra from silicon-germanium (SiGe) microbridges where the SiGe has been formed using the so-called "condensation technique". As opposed to the conventional condensation technique in which SiGe is grown epitaxially, we use high-dose ion implantation of Ge ions into SOI as a means to introduce the initial Ge profile. The subsequent oxidation both repairs implantation induced damage, and forms epitaxial Ge. Using Si-Si and Si-Ge optical phonon modes, as well as the ratio of integrated intensities for Ge-Ge and Si-Si, we can determine both the composition and strain of the material. We show that although the material is compressively strained following condensation, by fabricating microbridge structures we can create strain relaxed or tensile strained structures, with subsequent interest for photonic applications.
Ren, H L; Li, J D; Miao, Y H; Xu, T
2018-03-01
Objective: To investigate the clinical application of glass micro fiber basophil activation test (BAT) used as a complementary test for house dust mite allergen. Method: Forty patients with clinical diagnosed allergic rhinitis was test by three methods for house dust mite allergen, skin prick test(SPT),Immuno CAP sIgE, and BAT in vitro. The sensitivity and specificity of glass micro fiber were accessed, and the consistency between BAT, SPT, and Immuno sIgE was analyzed. As in vivo provocation was not performed, gold standard is regarded as the combination of medical history and positive reports of SPT and/or ImmunoCAP sIgE test. Result: Twentythree patients are diagnosed as house dust mite allergic rhinitis by gold standard. The sensitivity and specificity of glass micro fiber BAT were 60.9% and 88.2%, the sensitivity of SPT and sIgE was 87.0% and sIgE 73.9%. The correlation rates between BAT with SPT is 0.67( P <0.05), and sIgE 0.55( P <0.05). The accuracy, predictive value of positive and negative of BAT are 0.47,60.9%,88.2%.The Kappa values of BAT, SPT and sIgE with gold standard are 0.47,0.86,0.71. Conclusion: As a complementary test for house dust mite allergic rhinitis, BAT have a good consistency with SPT and sIgE, while as it has only moderate consistency with "gold standard", further studies are needed to prove its clinical significance. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Namork, Ellen; Stensby, Berit A
2015-01-01
Peanuts contain potent food allergens and the prevalence of allergy is reported to increase, especially in children. Since peanut sensitization may differ between different geographical regions, we wanted to investigate the sensitization pattern to the individual peanut allergens in a Norwegian population. Cases reported to the Norwegian Food Allergy Register with sera positive to peanut extract were analyzed for specific IgE (sIgE) to the recombinant peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 8 and Ara h 9 and to birch pollen extract. Serum samples negative to the above allergens were analyzed for sIgE to Ara h 6, and sIgE to Pru p 3 in peach were analyzed in sera positive to the cross-reactive allergen Ara h 9. Highest frequency of sIgE to Ara h 2, often co-sensitized to Ara h 1 and 3, were found in the small children up to 6 years of age. From the age of 6 years, sensitization to Ara h 8 was predominant. The sIgE levels to the storage proteins Ara h 1, 2 and 3 were strongly correlated, as was the sIgE levels to Ara h 8 and birch pollen extract. A low sensitization rate of sIgE to Ara h 9 in young adults was observed, which sIgE levels were very strongly correlated to Pru p 3. The sensitization to peanut allergens in a Norwegian population shows a clear age dependent pattern. The results add to the previously published research on the sensitization patterns of peanut sensitized patients in different geographical areas.
Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.
2016-04-01
In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.
Bending and buckling of rolled-up SiGe /Si microtubes using nanorobotic manipulation
NASA Astrophysics Data System (ADS)
Zhang, Li; Dong, Lixin; Nelson, Bradley J.
2008-06-01
Mechanical properties of individual rolled-up SiGe /Si microtubes are investigated experimentally using nanorobotic manipulation. By applying bending loads, individual SiGe /Si microtubes demonstrate various deformation modes with increasing bending angle. Remarkably, the tested microtubes resist fracture even when bent back onto themselves (180° bending angle). Axial compression tests of microtubes with different turns are also performed. Among those tubes, 1.6-turn rolled-up SiGe /Si microtubes show typical Euler buckling behavior when the load is larger than a critical load, which can be estimated by the Euler formula for columns.
High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Kim, Hyun-Jung (Inventor); Lee, Kunik (Inventor)
2017-01-01
An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.
NASA Astrophysics Data System (ADS)
Thompson, Daniel Ross
The goal of this dissertation will be to demonstrate a new synthesis technique for the current state of the art thermoelectric material for high temperature power generation, silicon germanium (SiGe). This technique is referred to as the single element (SE) spark plasma sintering (SPS) technique because the single elements of silicon, germanium, and their n and p type dopants are alloyed together during the SPS consolidation process. This novel synthesis technique is two orders of magnitude faster than the original technique for alloying this material and one order of magnitude faster than the current technique used for alloying this material. In order to fully demonstrate that the SE SPS technique alloys SiGe several scientific studies and investigations are performed. First, SiGe is alloyed using the current state of the art method, mechanical alloying (MA). Powders of MA SiGe are traditionally consolidated by a conventional hot press (HP). These materials are employed by NASA for deep space power generation on radio-isotope thermoelectric generators (RTGs). Hence, there is readily available published data for MA+HP SiGe used in RTGs. The SiGe powder that is MA by the author is consolidated using the SPS process, MA+SPS. Therefore, an initial study was conducted to ensure that the SPS consolidation process was not having any adverse effects SiGe as compared to the HP technique. Essentially it will be shown that SiGe produced by the MA+HP method and the MA+SPS method are equivalent. This guarantees that the synthesis and characterization techniques used at the complex and advanced materials laboratory (CAML) by the author agree with published standards. Second, once the first study has demonstrated that no adverse effects occur by using the SPS to consolidate SiGe, a study was conducted to show that undoped single elements of silicon and germanium can be alloyed in the SPS. To confirm that undoped SiGe is truly alloyed using the SE SPS technique, the structural properties of the resulting materials were investigated. Based on the densities, x-ray diffraction patterns, derived lattice constants, and Vegard's law it will be shown that the SE SPS method does successfully alloy multiple compositions of undoped SiGe. The third and most important study demonstrated that SiGe alloyed using the SE SPS synthesis technique can be successfully doped to a n and p type thermoelectric (TE) material. This required an investigation of all of the TE transport properties of these materials. A significant investigation and commentary will be provided for the lattice thermal conductivity of SiGe. The need for this investigation arises from the difference in synthesis processes between the traditional MA and the novel SE SPS techniques. The MA powder is already alloyed into micron sized powders that are consolidated by the HP for an extended time (>1 hour), which allows for grain growth. The SE SPS method relies on diffusion being promoted by the electric field assisted sintering technique and occurs over a very short period of time (<30 minutes). Therefore it can not be assumed that grain growth is not affected by the time dependent processes of sintering and diffusion with the SE SPS process. As will be discussed grain size plays a role in the lattice thermal conductivity of SiGe. It is surprising and physically interesting that the MA+HP standards and the SE SPS samples have lattice thermal conductivities that indicate the dominant scattering mechanism is the same. The physical insight provided by the fourth study is made possible by the existence of the new SE SPS synthesis method for SiGe. The MA method is optimized by the addition of GaP to the n-type SiGe materials during processing. The explanation for this optimization is a subject of debate within the community. Although, a staunch conclusion can not be made due to the need for more samples and carrier concentration data, this initial study does indicate that one physical explanation within the debate for the improvement of n-type SiGe with GaP additions is more coherent with scientific experimentation. The fifth study is aimed to provide suggestions for future studies for improving this material. This includes brief investigations on the effects of various nano-structure inclusions on lattice thermal conductivity of SiGe alloys. The study is meant to be used as a tool for future students who wish to investigate the interesting physical properties of this system. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Marshall, Paul; Carts, Marty; Campbell, Art; Reed, Robert; Ladbury, Ray; Seidleck, Christina; Currie, Steve; Riggs, Pam; Fritz, Karl; Randall, Barb
2004-01-01
A viewgraph presentation that reviews recent SiGe bit error test data for different commercially available high speed SiGe BiCMOS chips that were subjected to various levels of heavy ion and proton radiation. Results for the tested chips at different operating speeds are displayed in line graphs.
Percival, Elizabeth; Bhatia, Rani; Preece, Kahn; McElduff, Patrick; McEvoy, Mark; Collison, Adam; Mattes, Joerg
2016-01-01
Ara h2 sIgE serum levels improve the diagnostic accuracy for predicting peanut allergy, but the use of Ara h2 purified protein as a skin prick test (SPT), has not been substantially evaluated. The fraction of exhaled nitric oxide (FeNO) shows promise as a novel biomarker of peanut allergy. Reproducibility of these measures has not been determined. The aim was to assess the accuracy and reproducibility (over a time-period of at least 12 months) of SPT to Ara h2 in comparison with four predictors of clinical peanut allergy (Peanut SPT, Ara h2 specific Immunoglobulin E (sIgE), Peanut sIgE and FeNO). Twenty-seven children were recruited in a follow-up of a prospective cohort of fifty-six children at least 12 months after an open-labelled peanut food challenge. Their repeat assessment involved a questionnaire, SPT to peanut and Ara h2 purified protein, FeNO and sIgE to peanut and Ara h2 measurements. Ara h2 SPT was no worse in accuracy when compared with peanut SPT, FeNO, Ara h2 sIgE and peanut sIgE (AUC 0.908 compared with 0.887, 0.889, 0.935 and 0.804 respectively) for predicting allergic reaction at previous food challenge. SPT for peanut and Ara h2 demonstrated limited reproducibility (ICC = 0.51 and 0.44); while FeNO demonstrated good reproducibility (ICC = 0.73) and sIgE for peanut and Ara h2 were highly reproducible (ICC = 0.81 and 0.85). In this population, Ara h2 SPT was no worse in accuracy when compared with current testing for the evaluation of clinical peanut allergy, but had-like peanut SPT-poor reproducibility. FeNO, peanut sIgE and Ara h2 sIgE were consistently reproducible despite an interval of at least 12 months between the repeated measurements.
Discordance between Aeroallergen Specific Serum IgE and Skin Testing in Children < 4 years of age
de Vos, Gabriele; Nazari, Ramin; Ferastraoaru, Denisa; Parikh, Purvi; Geliebter, Rebecca; Pichardo, Yikania; Wiznia, Andrew; Rosenstreich, David
2015-01-01
Background Atopic sensitization to aeroallergens in early life has been shown to be a strong risk factor for developing persisting asthma in young children with recurrent wheeze. Objective The aim of this study was to assess the yield of skin prick test (SPT) compared to allergen specific serum IgE testing (sIgE) at identifying aeroallergen sensitization in atopic children < 4 years of age. Methods Concordance between SPT (Greer Laboratories, ComforTen™) and allergen specific sIgE (Immulite 2000™) for 7 common aeroallergens was analyzed in forty atopic inner-city children, 18–48 months of age (mean 36 +/− 9 months) with recurrent wheezing, family history of asthma and/or eczema. Results In 80% of children one or more allergen sensitizations would have been missed if only SPT had been performed, and in 38% of children one or more sensitizations would have been missed if only serum IgE testing had been performed. Agreement and between SPT and sIgE test was fair for most allergens (kappa between −0.04 and 0.50), as was correlation between sIgE levels and SPT grade (rho between 0.21 and 0.55). Children with high total sIgE (≥300 kU/l) were more likely to have sIgE positive tests with negative corresponding skin test (p=0.025). Conclusions Our study showed significant discordance between allergen specific SPT and sIgE testing results for common aeroallergens, suggesting that both SPT and sIgE testing should be done when diagnosing allergic sensitization in young children at high risk of asthma. PMID:23706713
Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong
2017-11-01
We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.
Noise Figure Optimization of Fully Integrated Inductively Degenerated Silicon Germanium HBT LNAs
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed Farhat
Silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) have the properties of producing very low noise and high gain over a wide bandwidth. Because of these properties, SiGe HBTs have continually improved and now compete with InP and GaAs HEMTs for low-noise amplification. This thesis investigates the theoretical characterizations and optimizations of SiGe HBT low noise amplifiers (LNAs) for low-noise low-power applications, using SiGe BiCMOS (bipolar complementary metal-oxide-semiconductor) technology. The theoretical characterization of SiGe HBT transistors is investigated by a comprehensive study of the DC and small-signal transistor modeling. Based on a selected small-signal model, a noise model for the SiGe HBT transistor is produced. This noise model is used to build a cascode inductively degenerated SiGe HBT LNA circuit. The noise figure (NF) equation for this LNA is derived. This NF equation shows better than 94.4% agreement with the simulation results. With the small-signal model verification, a new analytical method for optimizing the noise figure of the SiGe HBT LNA circuits is presented. The novelty feature of this optimization is the inclusion of the noise contributions of the base inductor parasitic resistance, the emitter inductor parasitic resistance and the bond-wire inductor parasitic resistances. The optimization is performed by reducing the number of design variables as possible. This improved theoretical optimization results in LNA designs that achieve better noise figure performance compared to previously published results in bipolar and BiCMOS technologies. Different design constraints are discussed for the LNA optimization techniques. Three different LNAs are designed. The three designs are fully integrated and fabricated in a single chip to achieve a fully monolithic realization. The LNA designs are experimentally verified. The low noise design produced a NF of 1.5dB, S21 of 15dB, and power consumption of 15mW. The three LNA designs occupied 1.4mum 2 in 130 nm BiCMOS technology.
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
NASA Astrophysics Data System (ADS)
Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Polaki, S. R.; Ilango, S.; David, C.; Dash, S.; Panigrahi, B. K.
2017-05-01
The formation of nanocrystalline SiGe without the aid of metal induced crystallization is reported. Re-crystallization of the as-deposited poly-Ge film (deposited at 450 °C) leads to development of regions with depleted Ge concentration upon annealing at 500 °C. Clusters with crystalline facet containing both nanocrystalline SiGe and crystalline Ge phase starts appearing at 600 °C. The structural phase characteristics were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The stoichiometry of the SiGe phase was estimated from the positions of the Raman spectral peaks.
Kim, Dongheun; Li, Nan; Sheehan, Chris J.; ...
2018-01-01
The charging rate-dependent degradation of lithium ion battery anodes based on Si/Ge core/shell nanowire heterostructure was observed. Si/Ge core/shell structure was preserved at the charging rate of 0.8 A g −1 . On the other hand, compositional intermixing and loss of Si occurs at the charging rate of 20 A g −1 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongheun; Li, Nan; Sheehan, Chris J.
The charging rate-dependent degradation of lithium ion battery anodes based on Si/Ge core/shell nanowire heterostructure was observed. Si/Ge core/shell structure was preserved at the charging rate of 0.8 A g −1 . On the other hand, compositional intermixing and loss of Si occurs at the charging rate of 20 A g −1 .
Surface tension and density of Si-Ge melts
NASA Astrophysics Data System (ADS)
Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz
2014-06-01
In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.
Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing
2011-08-23
We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society
Si /SiGe n-type resonant tunneling diodes fabricated using in situ hydrogen cleaning
NASA Astrophysics Data System (ADS)
Suet, Z.; Paul, D. J.; Zhang, J.; Turner, S. G.
2007-05-01
In situ hydrogen cleaning to reduce the surface segregation of n-type dopants in SiGe epitaxy has been used to fabricate Si /SiGe resonant tunneling diodes in a joint gas source chemical vapor deposition and molecular beam epitaxial system. Diodes fabricated without the in situ clean demonstrate linear current-voltage characteristics, while a 15min hydrogen clean produces negative differential resistance with peak-to-valley current ratios up to 2.2 and peak current densities of 5.0A/cm2 at 30K. Analysis of the valley current and the band structure of the devices suggest methods for increasing the operating temperature of Si /SiGe resonant tunneling diodes as required for applications.
Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.
Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke
2016-12-01
It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.
Quantification of local strain distributions in nanoscale strained SiGe FinFET structures
NASA Astrophysics Data System (ADS)
Mochizuki, Shogo; Murray, Conal E.; Madan, Anita; Pinto, Teresa; Wang, Yun-Yu; Li, Juntao; Weng, Weihao; Jagannathan, Hemanth; Imai, Yasuhiko; Kimura, Shigeru; Takeuchi, Shotaro; Sakai, Akira
2017-10-01
Strain within nanoscale strained SiGe FinFET structures has been investigated using a combination of X-ray diffraction and transmission electron microscopy-based nanobeam diffraction (NBD) techniques to reveal the evolution of the stress state within the FinFETs. Reciprocal space maps collected using high-resolution X-ray diffraction exhibited distinct features corresponding to the SiGe fin width, pitch, and lattice deformation and were analyzed to quantify the state of stress within the fins. Although the majority of the SiGe fin volume exhibited a uniaxial stress state due to elastic relaxation of the transverse in-plane stress, NBD measurements confirmed a small interaction region near the SOI interface that is mechanically constrained by the underlying substrate. We have quantitatively characterized the evolution of the fin stress state from biaxial to uniaxial as a function of fin aspect ratio and Ge fraction and confirmed that the fins obey elastic deformation based on a model that depends on the relative difference between the equilibrium Si and SiGe lattice constants and relative fraction of in-plane stress transverse to the SiGe fins. Spatially resolved, nanobeam X-ray diffraction measurements conducted near the SiGe fin edge indicate the presence of additional elastic relaxation from a uniaxial stress state to a fully relaxed state at the fin edge. Mapping of the lattice deformation within 500 nm of this fin edge by NBD revealed large gradients, particularly at the top corner of the fin. The values of the volume averaged lattice deformation obtained by nanoXRD and NBD are qualitatively consistent. Furthermore, the modulation of strain at the fin edge obtained by quantitative analysis of the nanoXRD results agrees with the lattice deformation profile obtained by NBD.
Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming
2016-06-09
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.
Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming
2016-01-01
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426
High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers
NASA Technical Reports Server (NTRS)
Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.
2005-01-01
Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).
Nano-Bio Quantum Technology for Device-Specific Materials
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2009-01-01
The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.
Tantilipikorn, Pongsakorn; Danpornprasert, Piyanart; Ngaotepprutaram, Premyot; Assanasen, Paraya; Bunnag, Chaweewan; Thinkhamrop, Bandit
2015-12-01
Diagnosis of allergic rhinitis (AR) is based on history, physical examination, and skin prick test (SPT) while intradermal (ID) test can be performed to confirm the diagnosis in case of negative result of SPT. However, the ID test is not recommended for cat and timothy grass allergy because of its high false positive rate. As a result, the "quantitative" technique of serum specific IgE (sIgE) measurement might be helpful to diagnose AR with more confidence. To evaluate the correlation between ID tests and sIgE in the diagnosis of house dust mite (HDM)-sensitive AR patients. Patients with chronic rhinitis (CR) were recruited and SPT was performed. If SPT was negative, ID test and sIgE to HDM [Dermatophagoides pteronyssinus (Dp)] measurement were performed. Eighty-two patients with chronic rhinitis (CR), whose SPTs were negative for Dp, were included. There were 39 males (47.6%) and 43 females (52.4%) aged between 18 and 76 years old (mean age = 43.3 years). The ID test was positive in 13 patients (15.9%), and was negative in 69 patients (84.1 %). sIgE to HDM was positive ( ≥ 0.35 kUA/l) in 2 patients (2.4%). There was a fair to moderate correlation between the size of wheal of ID test and sIgE to HDM (r = 0.44, 95% confidence interval: 0.19 to 0.67, p < 0.01). ID test has a fair to moderate correlation with sIgE Dermatophagoides pteronyssinus and it can be used in CR patients with negative SPT where sIgE is not feasible.
Evjenth, Bjørg; Hansen, Tonje E; Brekke, Ole-Lars; Holt, Jan
2014-01-01
Aim Paediatric cut-off values for serum allergen-specific IgE (sIgE) using the Siemens IMMULITE® 2000 system to diagnose allergic rhinoconjunctivitis have not been established. We aimed to determine cut-off levels for sIgE for 10 common inhalant allergens and to study the relationship between sIgE, total IgE and fractional exhaled nitric oxide (FENO). Methods We enrolled 243 schoolchildren, including 164 with allergic rhinoconjunctivitis. Parental interviews, skin prick tests, sIgE, total IgE, FENO measurements, spirometry and exercise tests were performed. Results Cut-off values with the best combined sensitivity and specificity were above the detection limit of the assay for seven of the ten allergens (0.23–1.1 kU/L). The overall accuracy of the IMMULITE® in detecting allergic rhinoconjunctivitis was good. sIgE was superior to total IgE and FENO in predicting allergic rhinoconjunctivitis to timothy, birch, mugwort, cat, dog and house dust mite. FENO was elevated in children with allergic rhinoconjunctivitis, irrespective of asthma. Conclusion Cut-off values for sIgE were dependent on the allergic phenotype and were above the IMMULITE® detection limit for seven of ten inhalant allergens. Consequently, using the detection limit for sIgE as the decision point would result in over-diagnosing allergic rhinoconjunctivitis. When measuring elevated FENO in children, allergic rhinoconjunctivitis should be suspected. PMID:24628428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinayakprasanna, N. H.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in
The 200 GHz SiGe HBTs were irradiated with 80 MeV Carbon ions up to a total dose of 100 Mrad to understand the degradation in electrical characteristics. The degradation in the electrical characteristics of SiGe HBTs was also studied by mixed mode electrical stress up to 10,000 s. The electrical characteristics were measured before and after every total dose and after fixed stress time. The normalized peak h{sub FE} of the stressed and irradiated SiGe HBTs are compared to estimate the equivalent stress time for a particular total dose. These correlations are drawn for the first time and the resultsmore » will establish a systematic relation between stress time and total dose.« less
NASA Astrophysics Data System (ADS)
Song, Ickhyun; Cho, Moon-Kyu; Oakley, Michael A.; Ildefonso, Adrian; Ju, Inchan; Buchner, Stephen P.; McMorrow, Dale; Paki, Pauline; Cressler, John. D.
2017-05-01
Best practice in mitigation strategies for single-event transients (SETs) in radio-frequency (RF) receiver modules is investigated using a variety of integrated receivers utilizing inverse-mode silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The receivers were designed and implemented in a 130-nm SiGe BiCMOS technology platform. In general, RF switches, low-noise amplifiers (LNAs), and downconversion mixers utilizing inverse-mode SiGe HBTs exhibit less susceptibility to SETs than conventional RF designs, in terms of transient peaks and duration, at the cost of RF performance. Under normal RF operation, the SET-hardened switch is mainly effective in peak reduction, while the LNA and the mixer exhibit reductions in transient peaks as well as transient duration.
Impact of allergic reactions on food-specific IgE concentrations and skin test results
Sicherer, Scott H.; Wood, Robert A.; Vickery, Brian P.; Perry, Tamara T; Jones, Stacie M.; Leung, Donald Y. M.; Blackwell, Beth; Dawson, Peter; Burks, A. Wesley; Lindblad, Robert; Sampson, Hugh A.
2015-01-01
Background Although there is concern that food allergic reactions may negatively affect the natural history of food allergy, the impact of reactions on food-specific IgE (sIgE) or skin prick tests is unknown. Objective To measure the effects of allergic reactions on SPT wheal size and sIgE concentrations to milk, egg and peanut. Methods Participants included 512 infants with likely milk or egg allergy enrolled in a multi-center observational study. Changes in sIgE and SPT to milk, egg, and peanut were measured before and after oral food challenge (OFC) or accidental exposure for 377 participants. Results Median age of the cohort at time of analysis was 8.5 years (67% male). There were no statistically significant changes in sIgE or SPT after positive OFC to milk, egg, or peanut (n=20-27 for each food). Change in sIgE and SPT was measured after 446 and 453 accidental exposure reactions, respectively. Median change in sIgE decreased by 0.33 kUA/L (p<.01) after milk and by 0.34 (p<.01) after egg reactions; but no other statistically significant changes in sIgE or SPT were observed for milk, egg, or peanut. Limiting analysis to only participants with diagnostic testing done within 6 months of an accidental exposure reaction, peanut SPT increased 1.75 mm (p<.01), but a significant increase was not noted when all participants with testing done within 12 months were considered. Conclusions The results suggest that reactions from OFCs and accidental exposure are not associated with increases in sensitization among children allergic to milk, egg or peanut. PMID:26718150
Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)
1997-01-01
Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.
Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS
NASA Astrophysics Data System (ADS)
De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.
1996-08-01
This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.
Heavy Ion Current Transients in SiGe HBTs
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.;
2009-01-01
Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.
Klemans, Rob J B; Otte, Dianne; Knol, Mirjam; Knol, Edward F; Meijer, Yolanda; Gmelig-Meyling, Frits H J; Bruijnzeel-Koomen, Carla A F M; Knulst, André C; Pasmans, Suzanne G M A
2013-01-01
A diagnostic prediction model for peanut allergy in children was recently published, using 6 predictors: sex, age, history, skin prick test, peanut specific immunoglobulin E (sIgE), and total IgE minus peanut sIgE. To validate this model and update it by adding allergic rhinitis, atopic dermatitis, and sIgE to peanut components Ara h 1, 2, 3, and 8 as candidate predictors. To develop a new model based only on sIgE to peanut components. Validation was performed by testing discrimination (diagnostic value) with an area under the receiver operating characteristic curve and calibration (agreement between predicted and observed frequencies of peanut allergy) with the Hosmer-Lemeshow test and a calibration plot. The performance of the (updated) models was similarly analyzed. Validation of the model in 100 patients showed good discrimination (88%) but poor calibration (P < .001). In the updating process, age, history, and additional candidate predictors did not significantly increase discrimination, being 94%, and leaving only 4 predictors of the original model: sex, skin prick test, peanut sIgE, and total IgE minus sIgE. When building a model with sIgE to peanut components, Ara h 2 was the only predictor, with a discriminative ability of 90%. Cutoff values with 100% positive and negative predictive values could be calculated for both the updated model and sIgE to Ara h 2. In this way, the outcome of the food challenge could be predicted with 100% accuracy in 59% (updated model) and 50% (Ara h 2) of the patients. Discrimination of the validated model was good; however, calibration was poor. The discriminative ability of Ara h 2 was almost comparable to that of the updated model, containing 4 predictors. With both models, the need for peanut challenges could be reduced by at least 50%. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
He, Shao-heng; Zhang, Hui-yun; Zeng, Xiao-ning; Chen, Dong; Yang, Ping-chang
2013-01-01
The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy. PMID:23974516
Yang, Hyeon-Jong; Park, Min-Ju; Youn, Seo Young; Yoo, Sangsoo; Min, Taek Ki; Jeon, You Hoon; Lee, Hae Won; Lee, Ji Sung; Pyun, Bok Yang
2014-06-01
The skin prick test (SPT) for detecting atopic sensitization is not preferred in young infants with atopic dermatitis (AD) because of concerns about poor skin reactivity. This study aimed to evaluate whether the results of SPT agreed well with those of specific serum immunoglobulin E (sIgE) antibody test in young infants with AD. This study included 2,077 eligible infants (age, <12 months) with AD who were tested by either SPT or sIgE between 2007 and 2011. Among them, 199 infants tested for egg white (EW) and 192 infants tested for cow's milk (CM), by both SPT and sIgE on the same day were identified and reviewed retrospectively. Kappa statistics and tests for equal kappa statistics were used to evaluate the agreement between the SPT and sIgE. The mean wheal diameter and the allergen-to-histamine ratio of SPT showed substantial agreement with those of sIgE for EW (κ = 0.62, 0.69) and CM (κ = 0.34, 0.47). The agreement for EW was significantly higher <6-month-old than in ≥6-month-old infants (κ = 0.79 vs. 0.54, P = 0.02), and that for CM was similar (P = 0.60). The mean wheal diameters for EW and CM were evenly distributed, and did not show increasing trends regardless of age in months (Ptrend = 0.13 and 0.06, respectively). The results of SPT agreed well with those of sIgE. This finding provides a rationale for using SPT, and suggests that SPT can be used along with sIgE to detect food sensitization in young infants with AD.
Darsow, U; Laifaoui, J; Kerschenlohr, K; Wollenberg, A; Przybilla, B; Wüthrich, B; Borelli, S; Giusti, F; Seidenari, S; Drzimalla, K; Simon, D; Disch, R; Borelli, S; Devillers, A C A; Oranje, A P; De Raeve, L; Hachem, J-P; Dangoisse, C; Blondeel, A; Song, M; Breuer, K; Wulf, A; Werfel, T; Roul, S; Taieb, A; Bolhaar, S; Bruijnzeel-Koomen, C; Brönnimann, M; Braathen, L R; Didierlaurent, A; André, C; Ring, J
2004-12-01
The atopy patch test (APT) was proposed to evaluate IgE-mediated sensitizations in patients with atopic eczema (AE). The prevalence and agreement with clinical history and specific IgE (sIgE) of positive APT reactions was investigated in six European countries using a standardized method. A total of 314 patients with AE in remission were tested in 12 study centers on clinically uninvolved, non-abraded back skin with 200 index of reactivity (IR)/g of house dust mite Dermatophagoides pteronyssinus, cat dander, grass, and birch pollen allergen extracts with defined major allergen contents in petrolatum. Extracts of egg white, celery and wheat flour with defined protein content were also patch tested. APT values were evaluated at 24, 48, and 72 h according to the European Task Force on Atopic Dermatitis (ETFAD) guidelines. In addition, skin-prick test (SPT) and sIgE and a detailed history on allergen-induced eczema flares were obtained. Previous eczema flares, after contact with specific allergens, were reported in 1% (celery) to 34% (D. pteronyssinus) of patients. The frequency of clear-cut positive APT reactions ranged from 39% with D. pteronyssinus to 9% with celery. All ETFAD intensities occured after 48 and 72 h. Positive SPT (16-57%) and elevated sIgE (19-59%) results were more frequent. Clear-cut positive APT with all SPT and sIgE testing negative was seen in 7% of the patients, whereas a positive APT without SPT or sIgE for the respective allergen was seen in 17% of the patients. APT, SPT and sIgE results showed significant agreement with history for grass pollen and egg white (two-sided Pr > /Z/ < or = 0.01). In addition, SPT and sIgE showed significant agreement with history for the other aeroallergens. With regard to clinical history, the APT had a higher specificity (64-91% depending on the allergen) than SPT (50-85%) or sIgE (52-85%). Positive APT were associated with longer duration of eczema flares and showed regional differences. In 10 non-atopic controls, no positive APT reaction was seen. Aeroallergens and food allergens are able to elicit eczematous skin reactions after epicutaneous application. As no gold standard for aeroallergen provocation in AE exists, the relevance of aeroallergens for AE flares may be evaluated by APT in addition to SPT and sIgE. The data may contribute to the international standardization of the APT.
Si/Ge elatform for lasers, amplifiers, and nonlinear optical devices based on the Raman Effect
NASA Astrophysics Data System (ADS)
Claps, Ricardo; Dimitropoulos, Dimitrios; Raghunathan, Varun; Fathpour, Sasan; Jalali, Bahram; Jusserand, Bernard
2007-02-01
The use of a silicon-germanium platform for the development of optically active devices will be discussed in this paper, from the perspective of Raman and Brillouin scattering phenomena. Silicon-Germanium is becoming a prevalent technology for the development of high speed CMOS transistors, with advances in several key parameters as high carrier mobility, low cost, and reduced manufacturing logistics. Traditionally, Si-Ge structures have been used in the optoelectronics arena as photodetectors, due to the enhanced absorption of Ge in the telecommunications band. Recent developments in Raman-based nonlinearities for devices based on a silicon-on-insulator platform have shed light on the possibility of using these effects in Si-Ge architectures. Lasing and amplification have been demonstrated using a SiGe alloy structure, and Brillouin/Raman activity from acoustic phonon modes in SiGe superlattices has been predicted. Moreover, new Raman-active branches and inhomogeneously broadened spectra result from optical phonon modes, offering new perspectives for optical device applications. The possibilities for an electrically-pumped Raman laser will be outlined, and the potential for design and development of silicon-based, Tera-Hertz wave emitters and/or receivers.
SiGe Based Low Temperature Electronics for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John
2012-01-01
The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.
Role of specific IgE to β-lactoglobulin in the gastrointestinal phenotype of cow's milk allergy.
Poza-Guedes, Paloma; Barrios, Yvelise; González-Pérez, Ruperto; Sánchez-Machín, Inmaculada; Franco, Andres; Matheu, Víctor
2016-01-01
The prevalence of many phenotypes of food allergy is increasing. Specific gastrointestinal (GI) phenotype of food allergy (GI allergy) is also increasing but it is difficult to know the prevalence because of many entities. METHODS AND RESULTS: A 1 year retrospective study of pediatric patients complaining exclusively gastrointestinal symptoms after cow's milk consumption and at least one positive specific IgE (sIgE) to cow's milk (CM) proteins (CMP) was done (n = 39). The most prevalent symptom was abdominal cramps in 35 patients (90 %), discomfort or abdominal distention in 30 patients (75 %), diarrhea in 10 patients (25 %) and constipation in 5 patients (12 %). IgA anti-transglutaminase antibodies were absent and lactose intolerance was ruled out in all patients. Average of total IgE on this group was 288 UI/ml. sIgE against β-lactoglobulin was the dominant with an average of 4.14 kU/l. sIgE to casein (CAS), which is the dominant protein in systemic anaphylaxis was 1.74 kU/l; sIgE to α-lactoalbumin, the other whey protein, was 0.83 kU/l and sIgE levels to CM were 0.78 kU/l. The quotient sIgE CAS/sIgE β-lactoglobulin in these patients was always lower than 1. Patients experienced an improvement of their symptoms after a CM free diet. An open oral challenge with CM did mimic their initial symptoms in all patients. However, the open oral challenge with dairy products was well tolerated. Patients with a specific phenotype of GI allergy with CM have specific IgE against β-lactoglobulin, as a dominant sIgE. These patients could beneficiate of a diet with dairy products.
High Temperature Stable Nanocrystalline SiGe Thermoelectric Material
NASA Technical Reports Server (NTRS)
Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)
2013-01-01
A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.
Allergen cross reactions: a problem greater than ever thought?
Pfiffner, P; Truffer, R; Matsson, P; Rasi, C; Mari, A; Stadler, B M
2010-12-01
Cross reactions are an often observed phenomenon in patients with allergy. Sensitization against some allergens may cause reactions against other seemingly unrelated allergens. Today, cross reactions are being investigated on a per-case basis, analyzing blood serum specific IgE (sIgE) levels and clinical features of patients suffering from cross reactions. In this study, we evaluated the level of sIgE compared to patients' total IgE assuming epitope specificity is a consequence of sequence similarity. Our objective was to evaluate our recently published model of molecular sequence similarities underlying cross reactivity using serum-derived data from IgE determinations of standard laboratory tests. We calculated the probabilities of protein cross reactivity based on conserved sequence motifs and compared these in silico predictions to a database consisting of 5362 sera with sIgE determinations. Cumulating sIgE values of a patient resulted in a median of 25-30% total IgE. Comparing motif cross reactivity predictions to sIgE levels showed that on average three times fewer motifs than extracts were recognized in a given serum (correlation coefficient: 0.967). Extracts belonging to the same motif group co-reacted in a high percentage of sera (up to 80% for some motifs). Cumulated sIgE levels are exaggerated because of a high level of observed cross reactions. Thus, not only bioinformatic prediction of allergenic motifs, but also serological routine testing of allergic patients implies that the immune system may recognize only a small number of allergenic structures. © 2010 John Wiley & Sons A/S.
Impact of Allergic Reactions on Food-Specific IgE Concentrations and Skin Test Results.
Sicherer, Scott H; Wood, Robert A; Vickery, Brian P; Perry, Tamara T; Jones, Stacie M; Leung, Donald Y M; Blackwell, Beth; Dawson, Peter; Burks, A Wesley; Lindblad, Robert; Sampson, Hugh A
2016-01-01
Although there is concern that food allergy reactions may negatively affect the natural history of food allergy, the impact of reactions on food-specific IgE (sIgE) levels or skin prick test (SPT) wheal size is unknown. To measure the effects of allergic reactions on SPT wheal size and sIgE concentrations to milk, egg, and peanut. Participants included 512 infants with likely milk or egg allergy enrolled in a multicenter observational study. Changes in sIgE level and SPT wheal size to milk, egg, and peanut were measured before and after oral food challenge (OFC) or accidental exposure for 377 participants. The median age of the cohort at the time of analysis was 8.5 years (67% males). There were no statistically significant changes in sIgE level or SPT wheal size after positive OFC to milk, egg, or peanut (n = 20-27 for each food). Change in sIgE level and SPT wheal size was measured after 446 and 453 accidental exposure reactions, respectively. The median change in sIgE level was a decrease of 0.33 kU(A)/L (P < .01) after milk and 0.34 kU(A)/L (P < .01) after egg reactions, but no other statistically significant changes in sIgE level or SPT wheal size were observed for milk, egg, or peanut. When we limited the analysis to only those participants who had diagnostic testing done within 6 months of an accidental exposure reaction, we found that peanut SPT wheal size increased by 1.75 mm (P < .01), but a significant increase was not noted when all participants with testing done within 12 months were considered. The results suggest that reactions from OFCs and accidental exposure are not associated with increases in sensitization among children allergic to milk, egg, or peanut. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Thermal transport across high-pressure semiconductor-metal transition in Si and Si 0.991 Ge 0.009
Hohensee, Gregory T.; Fellinger, Michael R.; Trinkle, Dallas R.; ...
2015-05-07
Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell (DAC) and provide non-contact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si 0.991Ge 0.009 across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. Furthermore, we used the Wiedemann-Franzmore » law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoh, Taizoh, E-mail: sadoh@ed.kyushu-u.ac.jp; Chikita, Hironori; Miyao, Masanobu
2015-09-07
Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealingmore » (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Kuo-Hsing; Meyer, Kristin De; Department of Electrical Engineering, KU Leuven, Leuven
Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined withmore » a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.« less
NASA Astrophysics Data System (ADS)
Samaraweera, Nalaka; Chan, Kin L.; Mithraratne, Kumar
2018-05-01
Si and Si/Ge based nanostructures of reduced lattice thermal conductivity are widely attractive for developing efficient thermoelectric materials. In this study, we demonstrate the reduced thermal conductivity of Si nanotwinned random layer (NTRL) structures over corresponding superlattice and twin-free counterparts. The participation ratio analysis of vibrational modes shows that a possible cause of thermal conductivity reduction is phonon localization due to the random arrangement of twin boundaries. Via non-equilibrium molecular dynamic simulations, it is shown that ~23 and ~27% reductions over superlattice counterparts and ~55 and 53% over twin-free counterparts can be attained for the structures of total lengths of 90 and 170 nm, respectively. Furthermore, a random twin boundary distribution is applied for Si/Ge random layer structures seeking further reduction of thermal conductivity. A significant reduction in thermal conductivity of Si/Ge structures exceeding the thermal insulating performance of the corresponding amorphous Si structure by ~31% for a total length of 90 nm can be achieved. This reduction is as high as ~98% compared to the twin-free Si counterpart. It is demonstrated that application of randomly organised nanoscale twin boundaries is a promising nanostructuring strategy towards developing efficient Si and Si/Ge based thermoelectric materials in the future.
Sato, Sakura; Ogura, Kiyotake; Takahashi, Kyohei; Sato, Yasunori; Yanagida, Noriyuki; Ebisawa, Motohiro
2017-04-01
Specific IgE (sIgE) antibody detection using the Siemens IMMULITE ® 3gAllergy™ (3gAllergy) assay have not been sufficiently examined for the diagnosis of food allergy. The aim of this study was to evaluate the utility of measuring sIgE levels using the 3gAllergy assay to diagnose allergic reactions to egg, milk, and wheat. This retrospective study was conducted on patients with diagnosed or suspected allergies to egg, milk and wheat. Patients were divided into two groups according to their clinical reactivity to these allergens based on oral food challenge outcomes and/or convincing histories of immediate reaction to causative food(s). The sIgE levels were measured using 3gAllergy and ImmunoCAP. Predicted probability curves were estimated using logistic regression analysis. We analyzed 1561 patients, ages 0-19 y (egg = 436, milk = 499, wheat = 626). The sIgE levels determined using 3gAllergy correlated with those of ImmunoCAP, classifying 355 patients as symptomatic: egg = 149, milk = 123, wheat = 83. 3gAllergy sIgE levels were significantly higher in symptomatic than in asymptomatic patients (P < 0.0001). Predictive probability for positive food allergy was significantly increased and correlated with increased sIgE levels. The cut-offs for allergic reaction with 95% predictive probability as determined by the 3gAllergy probability curves were different from those of ImmunoCAP. Measurements of sIgE against egg, milk, and wheat as determined by 3gAllergy may be used as a tool to facilitate the diagnosis of food allergy in subjects with suspected food allergies. However, these probability curves should not be applied interchangeably between different assays. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chagarov, Evgueni A.; Kavrik, Mahmut S.; Fang, Ziwei; Tsai, Wilman; Kummel, Andrew C.
2018-06-01
Comprehensive Density-Functional Theory (DFT) Molecular Dynamics (MD) simulations were performed to investigate interfaces between a-HfO2 and SiGe or Ge semiconductors with fully-stoichiometric a-SiO2 or sub-oxide SiO interlayers. The electronic structure of the selected stacks was calculated with a HSE06 hybrid functional. Simulations were performed before and after hydrogen passivation of residual interlayer defects. For the SiGe substrate with Ge termination prior to H passivation, the stacks with a-SiO suboxide interlayer (a-HfO2/a-SiO/SiGe) demonstrate superior electronic properties and wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/SiGe). After H passivation, most of the a-HfO2/a-SiO2/SiGe defects are passivated. To investigate effect of random placement of Si and Ge atoms additional simulations with a randomized SiGe slab were performed demonstrating improvement of electronic structure. For Ge substrates, before H passivation, the stacks with a SiO suboxide interlayer (a-HfO2/a-SiO/Ge) also demonstrate wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/Ge). However, even for a-HfO2/a-SiO/Ge, the Fermi level is shifted close to the conduction band edge (CBM) consistent with Fermi level pinning. Again, after H passivation, most of the a-HfO2/a-SiO2/Ge defects are passivated. The stacks with fully coordinated a-SiO2 interlayers have much stronger deformation and irregularity in the semiconductor (SiGe or Ge) upper layers leading to multiple under-coordinated atoms which create band-edge states and decrease the band-gap prior to H passivation.
NASA Astrophysics Data System (ADS)
Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain
2017-06-01
The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.
NASA Astrophysics Data System (ADS)
Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu
2017-11-01
A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.
Microarray evaluation of specific IgE to allergen components in elite athletes.
Bonini, M; Marcomini, L; Gramiccioni, C; Tranquilli, C; Melioli, G; Canonica, G W; Bonini, S
2012-12-01
Allergic sensitization and diseases have been reported to have a very high and increasing prevalence in elite athletes. Over 80% of allergic athletes are poly-sensitized. This study aims at evaluating the potential diagnostic added value of a microarray technology (ImmunoCAP ISAC, Phadia AB [at present Thermo Fisher Scientific] Uppsala, Sweden which detects IgE antibodies to specific or cross-reacting allergen components. Seventy-two poly-sensitized athletes according to skin prick test (SPT) with different allergic phenotypes (asthma n = 19; rhino-conjunctivitis n = 20; food allergy and/or oral allergy syndrome n = 13; no clinical symptoms n = 20) and two different control populations (20 poly-sensitized sedentary subjects with respiratory allergy and 20 healthy athletes with negative SPT) were studied for detecting specific IgE (sIgE) both to allergen extracts (ImmunoCAPsIgE) and to allergen components (ImmunoCAP ISAC). ImmunoCAP ISAC detected the presence of sIgE in 90% of poly-sensitized athletes--in 96% with symptoms and in 75% without symptoms--and in 100% of allergic controls. The pattern of positivity towards the 103 components tested differed from subject to subject, even in those with the same sensitization to allergen extract SPT or sIgE. Based on the ISAC results, poly-sensitized athletes were classified into the following prototypical patterns, differently represented in the clinical phenotypes studied (P = 0.03): (1) One single predominant specific allergen positivity; (2) sIgE to two or more non-cross-reacting allergens; (3) sIgE to cross-reacting allergens; and (4) sIgE to components potentially responsible for severe allergic reactions. The ImmunoCAP ISAC represents a useful additional tool for diagnosis and management of poly-sensitized athletes. © 2012 John Wiley & Sons A/S.
Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M
2011-03-25
The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Li, Yize; Foote, Ryan; Cui, Xiaorui; Savage, Donald; Sookchoo, Pornsatit; Eriksson, Mark; Lagally, Max
2014-03-01
A high-quality 2-dimensional electron gas (2DEG) is crucial for quantum electronics and spintronics. Grown heterostructures on SiGe nanomembranes (NMs) show promise to create these 2DEG structures because they have reduced strain inhomogeneities and mosaic tilt. We investigate charge transport properties of these SiGe NMs/heterostructures over a range of temperatures and compare them with results from heterostructures grown on compositionally graded SiGe substrates. Measurements are done by creating Hall bars with top gates on the samples. From the magneto-transport data, low-carrier-density mobility values are calculated. Initial results on the grown heterostructures give a typical curve for mobility versus carrier density, but extraction of the zero-carrier-density mobility is dependent on the curve-fitting technique. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government.
Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe
2012-02-03
The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.
Vertical nanowire heterojunction devices based on a clean Si/Ge interface.
Chen, Lin; Fung, Wayne Y; Lu, Wei
2013-01-01
Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.
Pisu, Davide; Provvedi, Roberta; Espinosa, Dulce Mata; Payan, Jorge Barrios; Boldrin, Francesca; Palù, Giorgio; Hernandez-Pando, Rogelio
2017-01-01
ABSTRACT The emergence and spread of drug-resistant Mycobacterium tuberculosis strains possibly threaten our ability to treat this disease in the future. Even though two new antitubercular drugs have recently been introduced, there is still the need to design new molecules whose mechanisms of action could reduce the length of treatment. We show that two alternative sigma factors of M. tuberculosis (SigE and SigB) have a major role in determining the level of basal resistance to several drugs and the amount of persisters surviving long-duration drug treatment. We also demonstrate that ethambutol, a bacteriostatic drug, is highly bactericidal for M. tuberculosis mutants missing either SigE or SigB. We suggest that molecules able to interfere with the activity of SigE or SigB not only could reduce M. tuberculosis virulence in vivo but also could boost the effect of other drugs by increasing the sensitivity of the organism and reducing the number of persisters able to escape killing. PMID:28993339
Pacharn, Punchama; Songnual, Wisuwat; Siriwatanakul, Umaporn; Thongngarm, Torpong; Reamtong, Onrapak; Jirapongsananuruk, Orathai; Bunnag, Chawewan; Piboonpocanun, Surapon
2018-03-12
Subtropical grass pollens of Bermuda (BGP), Johnson (JGP), and Para or buffalo grass (PGP), are common causes of pollen allergies in warm climate area. Allergic rhinitis (AR) patients had positive skin prick test (SPT) to extract of these 3 grass pollens. However, no allergenic proteins of 3 grass pollens have never been studied. To identify major allergens of BGP, JGP, and PGP in Thai grass pollen-allergic patients and to examine their sIgE cross-reactivity. Serum of nine AR patients with positive SPT to at least 2 of 3 studied pollens were collected. Based on availability, only ImmunoCAP of BGP and JGP were available to determine a level of sIgE. Profiles of sIgE bound proteins from BGP, JGP, and PGP, were obtained by immunoblot. Major IgE bound protein was identified by liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). Cross-reactivity of purified major allergen of the 3 grass pollens was determined by inhibition of sIgE in both ELISA and immunoblot. AR patients who have positive SPT to extract of BGP, JGP, and PGP, were 9, 8, and 6, respectively. Positive sIgE (> 0.35 kUA/L) to BGP and JGP were found in 9 and 8 patients, respectively. Eight profiles of IgE bound proteins of the 3 grass pollens showed 29-30 kDa pollen protein as major allergen and was identified as beta-expansin (ExpB). Moreover, purified ExpB of the 3 grass pollens cross-inhibited serum sIgE. ~30 kDa ExpB of BGP, JGP, and PGP, is major cross-reactive allergen for AR Thai patients.
Thermoelectric properties of hot pressed p-type SiGe alloys
NASA Technical Reports Server (NTRS)
Bajgar, Clara; Masters, Richard; Scoville, Nancy; Vandersande, Jan
1991-01-01
This paper presents the results of measurements of electrical resistivity, Seebeck coefficient, thermal conductivity, as well as Hall carrier concentration, and mobility, for hot pressed SiGe 80 at. pct Si-20 at. pct Ge (SiGe) thermoelectric materials containing 0.24-3.0 at. pct boron. The carrier concentration was varied by annealing and quenching at different high temperatures. Figure-of-merit, Z, was found to be 0.60 +/- 0.03 x 10 exp -3/K over a carrier concentration range from 1.8- 3.5 x 10 exp -20/cu cm. This result is very encouraging from a production standpoint, since the dopant concentration is not critical.
Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf
2014-01-01
The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100°C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~00 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance. PMID:28788521
Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf
2014-02-24
The effects of annealing temperatures on composition and strain in Si x Ge 1- x , obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm -1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of Si x Ge 1- x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.
Factors that predict the clinical reactivity and tolerance in children with cow's milk allergy.
Yavuz, S Tolga; Buyuktiryaki, Betul; Sahiner, Umit M; Birben, Esra; Tuncer, Ayfer; Yakarisik, Selin; Karabulut, Erdem; Kalayci, Omer; Sackesen, Cansin
2013-04-01
Specific IgE (sIgE) may be used for the diagnosis of cow's milk allergy (CMA) and as a guide to perform food challenge tests in patients with CMA. The effect of genetic variants on the prognosis of food allergy is largely unknown. To examine the performance of sIgE analysis and the utility of the genetic variants of CD14, STAT6, IL13, IL10, SPINK5, and TSLP in predicting the clinical course in children with CMA. Serum sIgE levels of 94 children who underwent open food challenges and 54 children with anaphylaxis due to cow's milk (CM) were retrospectively analyzed between January 2002 and May 2009. The genetic polymorphisms were determined in 72 children. A total of 148 children were followed up for a median of 3.5 years, and 42 of the 94 challenge results were positive. The probability curves with 95% decision points were 2.8 kU/L for younger than 1 year, 11.1 for younger than 2 years, 11.7 for younger than 4 years, and 13.7 for younger than 6 years. Sixty-six children outgrew CMA during follow-up. Children with initial an CM sIgE level less than 6 kU/L outgrew CMA earlier than children with an initial CM sIgE level of 6 kU/L or higher (P < .001). The age of tolerance development for CM was significantly higher in children with the GG genotype at rs324015 of the STAT6 gene compared with those with the AA+AG genotype (2 years [range, 1.5-3.9 years] vs 1.2 years [range, 1.0-2.2 years]) (P = .02). The decision points of sIgE obtained in different age groups may help to determine the likelihood of clinical reactivity more precisely. The results suggest that sIgE levels and STAT6 gene variants may be important determinants to predict longer persistence of CMA. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Dodd, Paul E.; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier; Phillips, Stanley D.;
2009-01-01
SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location.
Development of Si(1-x)Ge(x) technology for microwave sensing applications
NASA Technical Reports Server (NTRS)
Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David
1993-01-01
The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.
Jiang, Ming; Xiao, Haiyan; Peng, Shuming; Yang, Guixia; Liu, Zijiang; Qiao, Liang; Zu, Xiaotao
2018-05-02
In this study, the low-energy radiation responses of Si, Ge, and Si/Ge superlattice are investigated by an ab initio molecular dynamics method and the origins of their different radiation behaviors are explored. It is found that the radiation resistance of the Ge atoms that are around the interface of Si/Ge superlattice is comparable to bulk Ge, whereas the Si atoms around the interface are more difficult to be displaced than the bulk Si, showing enhanced radiation tolerance as compared with the bulk Si. The mechanisms for defect generation in the bulk and superlattice structures show somewhat different character, and the associated defects in the superlattice are more complex. Defect formation and migration calculations show that in the superlattice structure, the point defects are more difficult to form and the vacancies are less mobile. The enhanced radiation tolerance of the Si/Ge superlattice will benefit for its applications as electronic and optoelectronic devices under radiation environment.
NASA Astrophysics Data System (ADS)
Jiang, Ming; Xiao, Haiyan; Peng, Shuming; Yang, Guixia; Liu, Zijiang; Qiao, Liang; Zu, Xiaotao
2018-05-01
In this study, the low-energy radiation responses of Si, Ge, and Si/Ge superlattice are investigated by an ab initio molecular dynamics method and the origins of their different radiation behaviors are explored. It is found that the radiation resistance of the Ge atoms that are around the interface of Si/Ge superlattice is comparable to bulk Ge, whereas the Si atoms around the interface are more difficult to be displaced than the bulk Si, showing enhanced radiation tolerance as compared with the bulk Si. The mechanisms for defect generation in the bulk and superlattice structures show somewhat different character, and the associated defects in the superlattice are more complex. Defect formation and migration calculations show that in the superlattice structure, the point defects are more difficult to form and the vacancies are less mobile. The enhanced radiation tolerance of the Si/Ge superlattice will benefit for its applications as electronic and optoelectronic devices under radiation environment.
SiGe Integrated Circuit Developments for SQUID/TES Readout
NASA Astrophysics Data System (ADS)
Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.
2018-03-01
SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.
NASA Astrophysics Data System (ADS)
Lahwal, Ali Sadek
Thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF. Our methods, in this thesis, will be into two different approaches as follow: The first approach is manipulating the lattice thermal conductivity of n and p-type SiGe alloys via direct nanoparticle inclusion into the n-type SiGe matrix and, in a different process, using a core shell method for the p-type SiGe. This approach is in line with the process of in-situ nanocomposites. Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering of heat-carrying phonons. To this end, a promising choice of nano-particle to include by direct mixing into a SiGe matrix would be Yttria Stabilized Zirconia ( YSZ). In this work we report the preparation and thermoelectric study of n-type SiGe + YSZ nanocomposites prepared by direct mechanical mixing followed by Spark Plasma Sintering (SPS) processing. Specifically, we experimentally investigated the reduction of lattice thermal conductivity (kappaL) in the temperature range (30--800K) of n-type Si 80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20 ˜ 40 nm diameter) into the Si-Ge matrix. These samples synthesized by SPS were found to have densities > 95% of the theoretical density. At room temperature, we observed approximately a 50% reduction in the lattice thermal conductivity as result of adding 10 volume % YSZ to the Si80Ge 20P2 host matrix. A phenomenological Callaway model was used to corroborate both the temperature dependence and the reduction of kappaL over the measured temperature range (30--800K) of both Si80Ge 20P2 and Si80 Ge20P2 + YSZ samples. The observed kappaL is discussed and interpreted in terms of various phonon scattering mechanisms including alloy disorder, the Umklapp process, and boundary scattering. Specifically, a contribution from the phonon scattering by YSZ nanoparticles was further included to account for the kappaL of Si80Ge20P 2 +YSZ samples. In addition, a core shell treatment was applied onto p-type SiGe. Ball milled Si80Ge 20B1.7 alloys were coated with YSZ with different thicknesses and characterized upon their thermoelectric properties. The results show that YSZ coatings are capable of greatly reducing the thermal conductivity especially the lattice thermal conductivity. These coatings are applied directly onto mechanical alloyed (MA), p-type SiGe. The only concern about the YSZ core shelling is that these coatings turned out to be too thick degrading the electrical conductivity of the material. Our second approach, in a parallel work, is to enhance the thermoelectric power factor as well as the dimensionless figure of merit ZT of: (i) single element spark plasma sintered (SE SPS) SiGe alloys. (ii) ball milled (BM) SiGe , via sodium boron hydrate (NaBH4) alkali-metal-salt treatment. Sodium boron hydrate alkali-metal-salt thermally decomposes (decompose temperature 600 ˜ 700 K) to elemental solid sodium, solid boron, and hydrogen gas, as binary phases, e.g., Na-B or Na-H, or as a ternary phase, Na- B-H. Upon SPS at 1020 K, it is inferred that Na dopes SiGe while forming Na 2B29 phase, leading to a reduction in the electrical resistivity without much degrading the Seebeck coefficient, consequently enhancement of the power factor. Both Hall and Seebeck coefficient showed that all the samples are p-type. Data analysis shows that the reduction of the electrical resistivity can be attributed to the increased carrier concentration. While the reduction of the thermal conductivity, in the ball milled samples, is mainly due to the enhanced phonon scattering at the increased grain boundaries in addition to contribution of scattering by the Na2B29 phases, consequently resulting in a very significant 80% improvement of the ZT figure of merit. (Abstract shortened by UMI.).
Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)
1998-01-01
Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.
SiGe derivatization by spontaneous reduction of aryl diazonium salts
NASA Astrophysics Data System (ADS)
Girard, A.; Geneste, F.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.
2013-10-01
Germanium semiconductors have interesting properties for FET-based biosensor applications since they possess high surface roughness allowing the immobilization of a high amount of receptors on a small surface area. Since SiGe combined low cost of Si and intrinsic properties of Ge with high mobility carriers, we focused the study on this particularly interesting material. The comparison of the efficiency of a functionalization process involving the spontaneous reduction of diazonium salts is studied on Si(1 0 0), SiGe and Ge semiconductors. XPS analysis of the functionalized surfaces reveals the presence of a covalent grafted layer on all the substrates that was confirmed by AFM. Interestingly, the modified Ge derivatives have still higher surface roughness after derivatization. To support the estimated thickness by XPS, a step measurement of the organic layers is done by AFM or by profilometer technique after a O2 plasma etching of the functionalized layer. This original method is well-adapted to measure the thickness of thin organic films on rough substrates such as germanium. The analyses show a higher chemical grafting on SiGe substrates compared with Si and Ge semiconductors.
Sato, Sakura; Yanagida, Noriyuki; Ebisawa, Motohiro
2018-06-01
To assess the recent studies that focus on specific immunoglobulin E (sIgE) testing and basophil activation test (BAT) for diagnosing IgE-mediated food allergies. The sIgE to allergen extract or component can predict reactivity to food. The cutoff value based on the positive predictive value (PPV) of sIgE can be considered whenever deciding whether oral food challenge (OFC) is required to diagnose hen's egg, cow's milk, wheat, peanut, and cashew nut allergy. However, PPV varies depending on the patients' background, OFC methodology, challenge foods, and assay methodology. Component-resolved diagnostics (CRD) has been used for food allergy diagnosis. Ovomucoid and omega-5 gliadin are good diagnostic markers for heated egg and wheat allergy. More recently, CRD of peanut, tree nuts, and seed have been investigated. Ara h 2 showed the best diagnostic accuracy for peanut allergy; other storage proteins, such as Jug r 1 for walnut, Ana o 3 for cashew nut, Ses i 1 for sesame, and Fag e 3 for buckwheat, are also better markers than allergen extracts. Some studies suggested that BAT has superior specificity than skin prick test and sIgE testing. The sIgE testing and BAT can improve diagnostic accuracy. CRD provides additional information that can help determine whether OFCs should be performed to diagnose food allergy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Guo Xing; Hatchtel, Jordan; Shen, Xiao
Here, we investigate negative-bias temperature instabilities in SiGe pMOSFETs with SiO 2/HfO 2 gate dielectrics. The activation energies we measured for interface-trap charge buildup during negative-bias temperature stress were lower for SiGe channel pMOSFETs with SiO 2/HfO 2 gate dielectrics and Si capping layers than for conventional Si channel pMOSFETs with SiO 2 gate dielectrics. Electron energy loss spectroscopy and scanning transmission electron microscopy images demonstrate that Ge atoms can diffuse from the SiGe layer into the Si capping layer, which is adjacent to the SiO 2/HfO 2 gate dielectric. Density functional calculations show that these Ge atoms reduce themore » strength of nearby Si-H bonds and that Ge-H bond energies are still lower, thereby reducing the activation energy for interface-trap generation for the SiGe devices. Moreover, activation energies for oxide-trap charge buildup during negative-bias temperature stress are similarly small for SiGe pMOSFETs with SiO 2/HfO 2 gate dielectrics and Si pMOSFETs with SiO 2 gate dielectrics, suggesting that, in both cases, the oxide-trap charge buildup likely is rate-limited by hole tunneling into the near-interfacial SiO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogaddam, N. A. P.; Turan, R.; Alagoz, A. S.
2008-12-15
SiGe nanocrystals have been formed in SiO{sub 2} matrix by cosputtering Si, Ge, and SiO{sub 2} independently on Si substrate. Effects of the annealing time and temperature on structural and compositional properties are studied by transmission electron microscopy, x-ray diffraction (XRD), and Raman spectroscopy measurements. It is observed that Ge-rich Si{sub (1-x)}Ge{sub x} nanocrystals do not hold their compositional uniformity when annealed at high temperatures for enough long time. A segregation process leading to separation of Ge and Si atoms from each other takes place. This process has been evidenced by a double peak formation in the XRD and Ramanmore » spectra. We attributed this phase separation to the differences in atomic size, surface energy, and surface diffusion disparity between Si and Ge atoms leading to the formation of nonhomogenous structure consist of a Si-rich SiGe core covered by a Ge-rich SiGe shell. This experimental observation is consistent with the result of reported theoretical and simulation methods.« less
NASA Astrophysics Data System (ADS)
Savic, Ivana; Mingo, Natalio; Donadio, Davide; Galli, Giulia
2010-03-01
It has been recently proposed that Si and SiGe based nanostructured materials may exhibit low thermal conductivity and overall promising properties for thermoelectric applications. Hence there is a considerable interest in developing accurate theoretical and computational methods which can help interpret recent measurements, identify the physical origin of the reduced thermal conductivity, as well as shed light on the interplay between disorder and nanostructuring in determining a high figure of merit. In this work, we investigate the capability of an atomistic Green's function method [1] to describe phonon transport in several types of Si and SiGe based systems: amorphous Si, SiGe alloys, planar and nanodot Si/SiGe multilayers. We compare our results with experimental data [2,3], and with the findings of molecular dynamics simulations and calculations based on the Boltzmann transport equation. [1] I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008). [2] S.-M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997). [3] G. Pernot et al., submitted.
Relationship Between Objective Measures of Atopy and Myocardial Infarction in the United States
Jaramillo, Renee; Cohn, Richard D.; Crockett, Patrick W.; Gowdy, Kymberly M.; Zeldin, Darryl C.; Fessler, Michael B.
2012-01-01
Background Whereas rodent studies indicate that atherosclerosis is a T helper (Th)1-mediated disease and that atopic Th2 immunity is atheroprotective, findings in humans are conflicting. Total IgE (tIgE) is associated with atherosclerotic disease, but has limited specificity for atopy. Objective Our aim was to determine the relationship between atopy, as indicated by a broad panel of serum allergen-specific immunoglobulin E (sIgE), and past myocardial infarction (MI) in a sample representative of the U.S. population. Methods Data were analyzed from 4,002 participants aged ≥20 years from the 2005–2006 National Health and Nutrition Examination Survey. Results Subjects reporting a history of MI had lower summed sIgE (5.51 vs. 7.71 kU/L; P<0.001), and were less likely to have ≥1 positive sIgE test (29.9% vs. 44.6%; P=0.02) or current hay fever (3.3% vs. 7.6%; P=0.002). After adjustment for age, gender, race/ethnicity, diabetes mellitus, hypertension, family history of MI, smoking, total/high density lipoprotein-cholesterol, body mass index, and C-reactive protein, the odds ratio (OR) for MI was 0.91 (95% confidence interval [CI], 0.85–0.97) per positive sIgE; 0.70 (95% CI, 0.57–0.85) per 2-fold increase in sum[sIgE]; and 0.82 (95% CI, 0.69–0.98) per 10% increase in the ratio of sum[sIgE] to tIgE. Analysis using 7 data-driven, prespecified allergen clusters revealed that house dust mite is the only allergen cluster for which sIgE is associated with reduced odds for MI (fully adjusted OR 0.36 [95% CI, 0.20–0.64]). Conclusion Serum sIgE is inversely related to MI in the U.S. population in a manner independent of multiple coronary risk factors. PMID:22921873
Evidence for the formation of SiGe nanoparticles in Ge-implanted Si 3N 4
Mirzaei, S.; Kremer, F.; Feng, R.; ...
2017-03-14
SiGe nanoparticles were formed in an amorphous Si 3N 4 matrix by Ge + ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8±0.2 nm for the lowest concentration and annealing temperature to 3.2±0.5 nm for the highestmore » concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si 3N 4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.« less
The diagnosis of food allergy: a systematic review and meta-analysis.
Soares-Weiser, K; Takwoingi, Y; Panesar, S S; Muraro, A; Werfel, T; Hoffmann-Sommergruber, K; Roberts, G; Halken, S; Poulsen, L; van Ree, R; Vlieg-Boerstra, B J; Sheikh, A
2014-01-01
We investigated the accuracy of tests used to diagnose food allergy. Skin prick tests (SPT), specific-IgE (sIgE), component-resolved diagnosis and the atopy patch test (APT) were compared with the reference standard of double-blind placebo-controlled food challenge. Seven databases were searched and international experts were contacted. Two reviewers independently identified studies, extracted data, and used QUADAS-2 to assess risk of bias. Where possible, meta-analysis was undertaken. Twenty-four (2831 participants) studies were included. For cows' milk allergy, the pooled sensitivities were 53% (95% CI 33-72), 88% (95 % CI 76-94), and 87% (95% CI 75-94), and specificities were 88% (95% CI 76-95), 68% (95% CI 56-77), and 48% (95% CI 36-59) for APT, SPT, and sIgE, respectively. For egg, pooled sensitivities were 92% (95% CI 80-97) and 93% (95% CI 82-98), and specificities were 58% (95% CI 49-67) and 49% (40-58%) for skin prick tests and specific-IgE. For wheat, pooled sensitivities were 73% (95% CI 56-85) and 83% (95% CI 69-92), and specificities were 73% (95% CI 48-89) and 43% (95% CI 20-69%) for SPT and sIgE. For soy, pooled sensitivities were 55% (95% CI 33-75) and 83% (95% CI 64-93), and specificities were 68% (95% CI 52-80) and 38% (95% CI 24-54) for SPT and sIgE. For peanut, pooled sensitivities were 95% (95% CI 88-98) and 96% (95% CI 92-98), and specificities were 61% (95% CI 47-74), and 59% (95% CI 45-72) for SPT and sIgE. The evidence base is limited and weak and is therefore difficult to interpret. Overall, SPT and sIgE appear sensitive although not specific for diagnosing IgE-mediated food allergy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
García-Ara, Carmen; Pedrosa, María; Belver, María Teresa; Martín-Muñoz, María Flor; Quirce, Santiago; Boyano-Martínez, Teresa
2013-04-01
Oral desensitization in children allergic to cow's milk proteins is not risk free. The analysis of factors that may influence the outcome is of utmost importance. To analyze the efficacy and safety of the oral desensitization according to specific IgE (sIgE) level and adverse events during the maintenance phase. Thirty-six patients allergic to cow's milk (mean age, 7 years) were included in an oral desensitization protocol. Patients were grouped according to sIgE levels (ImmunoCAP) into groups 1 (sIgE <3.5 kU/L), 2 (3.5-17 kU/L), and 3 (>17-50 kU/L). Nineteen children were included as a control group. Serum sIgE levels to cow's milk and its proteins were determined at inclusion and 6 and 12 months after finishing the desensitization protocol. Thirty-three of 36 patients were successfully desensitized (200 mL): 100% of group 1 and 88% of groups 2 and 3. Desensitization was achieved in a median of 3 months (range, 1-12 months); 90% of the patients in group 1, 50% of the patients in group 2, and 30% of the patients in group 3 achieved tolerance in less than 3 months (P = .04). In the control group only 1 child tolerated milk in oral food challenge after 1 year. During the induction phase, there were 53 adverse events in 27 patients (75%). Patients of groups 2 and 3 had more severe adverse events compared with group 1. During the maintenance phase, 20 of 33 patients (60%) had an adverse event. Oral desensitization is efficacious. Tolerance is achieved earlier when sIgE is lower. Severe adverse events are frequent, especially in patients with higher sIgE levels. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
A promising new thermoelectric material - Ruthenium silicide
NASA Technical Reports Server (NTRS)
Vining, Cronin B.; Mccormack, Joseph A.; Zoltan, Andrew; Zoltan, Leslie D.
1991-01-01
Experimental and theoretical efforts directed toward increasing thermoelectric figure of merit values by a factor of 2 or 3 have been encouraging in several respects. An accurate and detailed theoretical model developed for n-type silicon-germanium (SiGe) indicates that ZT values several times higher than currently available are expected under certain conditions. These new, high ZT materials are expected to be significantly different from SiGe, but not unreasonably so. Several promising candidate materials have been identified which may meet the conditions required by theory. One such candidate, ruthenium silicide, currently under development at JPL, has been estimated to have the potential to exhibit figure of merit values 4 times higher than conventional SiGe materials. Recent results are summarized.
Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo
2010-07-01
Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...
2016-12-14
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
NASA Astrophysics Data System (ADS)
Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.
2015-03-01
This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.
270GHz SiGe BiCMOS manufacturing process platform for mmWave applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Preisler, Edward J.; Talor, George; Yan, Zhixin; Booth, Roger; Zheng, Jie; Chaudhry, Samir; Howard, David; Racanelli, Marco
2011-11-01
TowerJazz has been offering the high volume commercial SiGe BiCMOS process technology platform, SBC18, for more than a decade. In this paper, we describe the TowerJazz SBC18H3 SiGe BiCMOS process which integrates a production ready 240GHz FT / 270 GHz FMAX SiGe HBT on a 1.8V/3.3V dual gate oxide CMOS process in the SBC18 technology platform. The high-speed NPNs in SBC18H3 process have demonstrated NFMIN of ~2dB at 40GHz, a BVceo of 1.6V and a dc current gain of 1200. This state-of-the-art process also comes with P-I-N diodes with high isolation and low insertion losses, Schottky diodes capable of exceeding cut-off frequencies of 1THz, high density stacked MIM capacitors, MOS and high performance junction varactors characterized up to 50GHz, thick upper metal layers for inductors, and various resistors such as low value and high value unsilicided poly resistors, metal and nwell resistors. Applications of the SBC18H3 platform for millimeter-wave products for automotive radars, phased array radars and Wband imaging are presented.
The role of SiGe buffer in growth and relaxation of Ge on free-standing Si(001) nano-pillars.
Zaumseil, P; Kozlowski, G; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T
2012-09-07
We study the growth and relaxation processes of Ge nano-clusters selectively grown by chemical vapor deposition on free-standing 90 nm wide Si(001) nano-pillars with a thin Si(0.23)Ge(0.77) buffer layer. We found that the dome-shaped SiGe layer with a height of about 28 nm as well as the Ge dot deposited on top of it partially relaxes, mainly by elastic lattice bending. The Si nano-pillar shows a clear compliance behavior-an elastic response of the substrate on the growing film-with the tensile strained top part of the pillar. Additional annealing at 800 °C leads to the generation of misfit dislocation and reduces the compliance effect significantly. This example demonstrates that despite the compressive strain generated due to the surrounding SiO(2) growth mask it is possible to realize an overall tensile strain in the Si nano-pillar and following a compliant substrate effect by using a SiGe buffer layer. We further show that the SiGe buffer is able to improve the structural quality of the Ge nano-dot.
NASA Technical Reports Server (NTRS)
Rosenfeld, D.; Alterovitz, S. A.
1994-01-01
A theoretical study of the effects of the strain on the base properties of ungraded and compositional-graded n-p-n SiGe Heterojunction Bipolar Transistors (HBT) is presented. The dependencies of the transverse hole mobility and longitudinal electron mobility upon strain, composition and doping, are formulated using published Monte-Carlo data and, consequently, the base resistance and transit time are modeled and calculated. The results are compared to results obtained using common formulas that ignore these dependencies. The differences between the two sets of results are shown. The paper's conclusion is that for the design, analysis and optimization of high frequency SiGe HBTs the strain effects on the base properties cannot be ignored.
Effect of Synthesis Procedure on Thermoelectric Property of SiGe Alloy
NASA Astrophysics Data System (ADS)
Li, Jing; Han, Jun; Jiang, Tao; Luo, Lili; Xiang, Yongchun
2018-05-01
SiGe thermoelectric material has been synthesized by ball milling combined with hot pressing (HP) or spark plasma sintering (SPS). Effects of ball milling time, powder to ball weight ratio and sintering method on microstructure and thermoelectric properties of SiGe are studied. The results show that longer ball milling time leads to decreased density and worse electrical properties. In the sintering process, SPS results in much larger density and better electrical properties than HP. The Si0.795Ge0.2B0.005 sample prepared by 2 h ball milling combined with SPS obtains a maximum power factor of 3.0 mW m-1 K-2 at 860 K and ZT of 0.95 at 1000 K.
NASA Tech Briefs, October 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Hybrid Architecture Active Wavefront Sensing and Control; Carbon-Nanotube-Based Chemical Gas Sensor; Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials; Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode; Inductive Non-Contact Position Sensor; High-Temperature Surface-Acoustic-Wave Transducer; Grid-Sphere Electrodes for Contact with Ionospheric Plasma; Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link; Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications; Robust Optimization Design Algorithm for High-Frequency TWTs; Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain; Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space; BGen: A UML Behavior Network Generator Tool; Platform for Post-Processing Waveform-Based NDE; Electrochemical Hydrogen Peroxide Generator; Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures; Process to Create High-Fidelity Lunar Dust Simulants; Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives; InGaP Heterojunction Barrier Solar Cells; Straight-Pore Microfilter with Efficient Regeneration; Determining Shear Stress Distribution in a Laminate; Self-Adjusting Liquid Injectors for Combustors; Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft; Tele-Robotic ATHLETE Controller for Kinematics - TRACK; Three-Wheel Brush-Wheel Sampler; Heterodyne Interferometer Angle Metrology; Aligning Astronomical Telescopes via Identification of Stars; Generation of Optical Combs in a WGM Resonator from a Bichromatic Pump; Large-Format AlGaN PIN Photodiode Arrays for UV Images; Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems; On Calculating the Zero-Gravity Surface Figure of a Mirror; Optical Modification of Casimir Forces for Improved Function of Micro- and Nano-Scale Devices; Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems; Core and Off-Core Processes in Systems Engineering; Digital Reconstruction Supporting Investigation of Mishaps; and Template Matching Approach to Signal Prediction.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.
Ge-rich graded-index Si1-xGex devices for MID-IR integrated photonics
NASA Astrophysics Data System (ADS)
Ramirez, J. M.; Vakarin, V.; Liu, Q.; Frigerio, J.; Ballabio, A.; Le Roux, X.; Benedikovic, D.; Alonso-Ramos, C.; Isella, G.; Vivien, L.; Marris-Morini, D.
2018-02-01
Mid-infrared (mid-IR) silicon photonics is becoming a prominent research with remarkable potential in several applications such as in early medical diagnosis, safe communications, imaging, food safety and many more. In the quest for the best material platform to develop new photonic systems, Si and Ge depart with a notable advantage over other materials due to the high processing maturity accomplished during the last part of the 20th century through the deployment of the CMOS technology. From an optical viewpoint, combining Si with Ge to obtain SiGe alloys with controlled stoichiometry is also of interest for the photonic community since permits to increase the effective refractive index and the nonlinear parameter, providing a fascinating playground to exploit nonlinear effects. Furthermore, using Ge-rich SiGe gives access to a range of deep mid-IR wavelengths otherwise inaccessible (λ 2-20 μm). In this paper, we explore for the first time the limits of this approach by measuring the spectral loss characteristic over a broadband wavelength range spanning from λ = 5.5 μm to 8.5 μm. Three different SiGe waveguide platforms are compared, each one showing higher compactness than the preceding through the engineering of the vertical Ge profile, giving rise to different confinement characteristics to the propagating modes. A flat propagation loss characteristic of 2-3 dB/cm over the entire wavelength span is demonstrated in Ge-rich graded-index SiGe waveguides of only 6 μm thick. Also, the role of the overlap fraction of the confined optical mode with the Si-rich area at the bottom side of the epitaxial SiGe waveguide is put in perspective, revealing a lossy characteristic compared to the other designs were the optical mode is located in the Ge-rich area at the top of the waveguide uniquely. These Ge-rich graded-index SiGe waveguides may pave the way towards a new generation of photonic integrated circuits operating at deep mid-IR wavelengths.
Risk Factors and Clinical Features in Cashew Nut Oral Food Challenges.
Inoue, Takashi; Ogura, Kiyotake; Takahashi, Kyohei; Nishino, Makoto; Asaumi, Tomoyuki; Yanagida, Noriyuki; Sato, Sakura; Ebisawa, Motohiro
2018-01-01
Cashew nuts (CN) are capable of causing severe allergic reactions. However, little has been reported about the details of CN oral food challenges (OFC). CN-specific IgE (sIgE) levels were measured for 1 year in 66 patients who underwent an OFC with >3 g CN for diagnosis or confirmation of tolerance acquisition between June 2006 and August 2014. We retrospectively analyzed the OFC and patient background. The median (IQR) age of the 66 patients (48 boys/men and 18 girls/women) was 7.0 years (5.7-8.8). Twelve patients (18.2%) had a positive OFC result; 6 of 8 (75%) patients with a history of an immediate reaction to CN failed the OFC. Anaphylaxis was experienced by 5 of these 12 (42%) patients. A history of an immediate reaction to CN and the CN sIgE levels were significantly different for patients with a positive or negative OFC result (p < 0.01). Among patients without a previous immediate reaction to CN, the 95% positive predictive value (PPV) for the CN sIgE level for a positive OFC result was 66.1 kUA/L. A history of an immediate reaction to CN and high CN sIgE were risk factors for a positive OFC result. The number of positive OFC results was relatively low, but there was a high probability of anaphylaxis. We should consider the indication of OFC carefully for patients with a history of immediate reactions to CN and avoid OFC for patients without such a history whose CN sIgE values are >66.1 kUA/L (95% PPV). © 2018 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam
2003-01-01
SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT structures and map out the spatial sensitivities using the Sandia Focused Heavy Ion Microprobe Facility s Ion Beam Induced Charge Collection (IBICC) technique. Combining the two data sets offers insights into the charge collection mechanisms responsible for circuit level response and provides the first insights into the SEE characteristics of this latest version of IBM s commercial SiGe process.
Quantification of atopy, lung function and airway hypersensitivity in adults
2011-01-01
Background Studies in children have shown that concentration of specific serum IgE (sIgE) and size of skin tests to inhalant allergens better predict wheezing and reduced lung function than the information on presence or absence of atopy. However, very few studies in adults have investigated the relationship of quantitative atopy with lung function and airway hyperresponsiveness (AHR). Objective To determine the association between lung function and AHR and quantitative atopy in a large sample of adults from the UK. Methods FEV1 and FVC (% predicted) were measured using spirometry and airway responsiveness by methacholine challenge (5-breath dosimeter protocol) in 983 subjects (random sample of 800 parents of children enrolled in a population-based birth cohort enriched with 183 patients with physician-diagnosed asthma). Atopic status was assessed by skin prick tests (SPT) and measurement of sIgE (common inhalant allergens). We also measured indoor allergen exposure in subjects' homes. Results Spirometry was completed by 792 subjects and 626 underwent methacholine challenge, with 100 (16.0%) having AHR (dose-response slope>25). Using sIgE as a continuous variable in a multiple linear regression analysis, we found that increasing levels of sIgE to mite, cat and dog were significantly associated with lower FEV1 (mite p = 0.001, cat p = 0.0001, dog p = 2.95 × 10-8). Similar findings were observed when using the size of wheal on skin testing as a continuous variable, with significantly poorer lung function with increasing skin test size (mite p = 8.23 × 10-8, cat p = 3.93 × 10-10, dog p = 3.03 × 10-15, grass p = 2.95 × 10-9). The association between quantitative atopy with lung function and AHR remained unchanged when we repeated the analyses amongst subjects defined as sensitised using standard definitions (sIgE>0.35 kUa/l, SPT-3 mm>negative control). Conclusions In the studied population, lung function decreased and AHR increased with increasing sIgE levels or SPT wheal diameter to inhalant allergens, suggesting that atopy may not be a dichotomous outcome influencing lung function and AHR. PMID:22410099
SiGe BiCMOS manufacturing platform for mmWave applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker
2010-10-01
TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.
Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken
2012-04-09
We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.
Thermoelectric-figure-of-merit enhancement of silicon-germanium through nanocomposite concept
NASA Astrophysics Data System (ADS)
Wang, Dezhi
SiGe alloy has been the thermoelectric material element of RTGs (Radioisotope thermoelectric power generators) for more than 20 years because of its good performance at high temperature. It also has a very high potential application in converting exhaust heat into useful electricity, which currently attracts a lot of research interest in the automotive industry where 40% of the energy was rejected as exhaust heat. However, its low conversion efficiency (8%) is a major concern although it is the best in practice. A new concept, namely Si-Ge nanocomposite, was proposed to enhance thermoelectric figure-of-merit. Fast heating pressure sintering was found to be an appropriate synthesizing method and a lab-made direct current-induced hot press system was established. It can reach l200°C within several minutes and many parameters can be controlled. The uniquely designed graphite die assembly can stand l60MPa pressure which is better than the best commercial products (127MPa). Numerous Si-Ge nanocomposite samples were pressed using our DC hot press. Fully dense n-type Si-Ge nanocomposite samples of nanoSi80nanoGe20P were finally obtained. The nanocomposite structure was characterized via XRD, SEM, EDS, and TEM. The proposed nanocomposite structure, dots in a matrix, was observed. Most importantly, the thermoelectric property measurements showed that the Si-Ge nanocomposite of n-type nanoSi80nanoGe20 possessed higher electrical conductivity but lower thermal conductivity, thus a higher ZT than that of n-type nanoSi80microGe20. This result proved that thermoelectric-figure-of-merit enhancement through the nanocomposite concept was the right direction.
Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting
NASA Astrophysics Data System (ADS)
Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.
2018-01-01
High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Sajid, E-mail: sajidahmadiitkgp@gmail.com; Dubey, K.; Bhattacharya, Shovit
2016-05-23
Nearly 60% of the world’s useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research{sup [1]}. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel{sup [2]}. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe andmore » p-type SiGe-x wt.%TiB{sub 2} (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α{sup 2}/ρ) of SiGe alloy on addition of TiB{sub 2} upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.« less
Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts.
Hose, Alexander J; Depner, Martin; Illi, Sabina; Lau, Susanne; Keil, Thomas; Wahn, Ulrich; Fuchs, Oliver; Pfefferle, Petra Ina; Schmaußer-Hechfellner, Elisabeth; Genuneit, Jon; Lauener, Roger; Karvonen, Anne M; Roduit, Caroline; Dalphin, Jean-Charles; Riedler, Josef; Pekkanen, Juha; von Mutius, Erika; Ege, Markus J
2017-06-01
Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear. We sought to define phenotypes of atopic sensitization over the first 6 years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE). Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort. The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-γ ratio. A path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk. LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Nanoheteroepitaxy of gallium arsenide on strain-compliant silicon-germanium nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Hock-Chun; Gong, Xiao; Yeo, Yee-Chia
Heterogeneous integration of high-quality GaAs on Si-based substrates using a selective migration-enhanced epitaxy (MEE) of GaAs on strain-compliant SiGe nanowires was demonstrated for the first time. The physics of compliance in nanoscale heterostructures was captured and studied using finite-element simulation. It is shown that nanostructures can provide additional substrate compliance for strain relief and therefore contribute to the formation of defect-free GaAs on SiGe. Extensive characterization using scanning electron microscopy and cross-sectional transmission electron microscopy was performed to illustrate the successful growth of GaAs on SiGe nanowire. Raman and Auger electron spectroscopy measurements further confirmed the quality of the GaAsmore » grown and the high growth selectivity of the MEE process.« less
Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands
NASA Astrophysics Data System (ADS)
Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih
2010-09-01
A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.
Factors associated with allergen sensitizations in patients with asthma and/or rhinitis in China.
Li, Jing; Huang, Ying; Lin, Xiaoping; Zhao, Deyu; Tan, Guolin; Wu, Jinzhun; Zhao, Changqing; Zhao, Jing; Spangfort, Michael D; Lai, Xuxin; Zhong, Nanshan
2012-01-01
Allergen sensitization is influenced by genetic and environmental factors; however, the factors related to sensitizations in patients with rhinitis and asthma in China are largely unknown. This study investigated the factors associated with allergen sensitizations in patients with asthma and rhinitis in China. A cross-sectional survey was performed in 6304 patients with asthma and/or rhinitis from four regions of China. Patients completed a standardized questionnaire related to respiratory and allergic symptoms, family history of allergic diseases, smoking history, environmental exposure, and eating behaviors. They underwent skin-prick tests (SPTs) with 13 common aeroallergens. Blood samples were collected from 2268 of patients for specific IgE (sIgE) measurements against 16 common aeroallergens. Patients with both asthma and rhinitis had higher prevalence of SPT and sIgE positivity to most allergens than those with asthma or rhinitis alone (p < 0.0001). Male gender, family history of allergic rhinitis, air-conditioner usage, sleeping on a mattress, and frequently eating meat were associated with increased risk of SPT and sIgE positivity. Using air-conditioner and sleeping on a mattress were further found to be associated with sIgE positivity to mites and molds. However, increased age and fish, fruit, and raw vegetable intake decreased the risk of SPT and sIgE positivity. Family history of allergic rhinitis, male gender, using an air conditioner, sleeping on a mattress, and frequent meat consumption are risk factors for allergen sensitizations, whereas increased age and frequent fish, fruit, and raw vegetable consumption may protect patients with asthma and/or rhinitis from developing sensitizations in China.
Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it
2015-03-14
The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by themore » surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.« less
[Clinical symptoms and immunology inspection characteristics of nasal cavity local allergy].
Yin, Z X; Zhu, Y; Zhai, X; Zhang, J L; Liu, G
2017-08-05
Objective: To investigate the clinical symptoms and immunology inspection characteristics of nasal cavity local allergy. Method: Selected 60 patients as observation group, who had only nasal local allergy symptoms, allergen skin prick test and serum allergen specific IgE (SIgE) test were negative, 40 allergic rhinitis (AR) patients and 40 healthy volunteers as control groups. To detect Symptom scores and VAS scores, and eosinophilia counts in venous blood, allergen skin prick test (SPT), serum allergen SIgE test, nasal secretions allergen SIgE test, nasal mucous membrane excitation test in both observation group and AR group, eosinophilia counts in nasal secretion, taked the data for statistical analysis. Result: There was no difference ( P > 0.05) in the symptom scores and VAS scores of observation group and the AR group. The eosinophilia counts in venous blood in the AR group were higher than in the observation group ( P < 0.05). The eosinophilia counts in venous blood in the observation group were higher than in the healthy volunteers group ( P < 0.05). The positive rate of nasal secretions dust mites and pollen allergen was 90% (54/60) in observation group. There was no significant difference ( P > 0.05) in the eosinophilia percentages in nasal secretion in the observation group and the AR group. There was significant difference ( P < 0.05) in the eosinophilia percentages in nasal secretion in the observation group and the healthy volunteers group. There were 6 patients in observation group whose nasal secretions allergen SIgE test and nasal mucous membrane excitation test were both negative, could be diagnosised as non-allergic rhinitis (NAR). According to eosinophilia counts in venous blood and nasal secretions, 4 patients were diagnosised as vasomotor rhinitis and 2 patients were diagnosised as NAR with eosinophilia syndrome. There were 54 patients in observation group whose nasal secretions allergen SIgE test and (or) nasal mucous membrane excitation test were positive, could be diagnosised as local allergic rhinitis. After three years, all of the observation group patients were detected with SPT and serum allergen SIgE test. Five patients diagnosed as local allergic rhinitis before three years were positive. Six patients diagnosed as NAR before three years were negative. Conclusion: For patients with the typical medical history and symptoms of AR, but allergen SPT and serum allergen SIgE test were negative, there was local specific hypersensitivity in nasal mucosa, but the reaction was not accompanied by systemic sensitization. Combined with nasal secretions allergen SIgE test or allergen nasal mucosa proocation tests positive, could be diagnosed as local allergic rhinitis. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Evaluation of basophil activation test in suspected food hypersensitivity.
Pignatti, Patrizia; Yacoub, Mona-Rita; Testoni, Claudia; Pala, Gianni; Corsetti, Maura; Colombo, Giselda; Meriggi, Antonio; Moscato, Gianna
2017-07-01
Food hypersensitivity is characterized by a wide range of symptoms. The relationship between symptoms and food is more frequently suspected than objectively proven. Basophil activation test (BAT) is based on the evaluation of activation markers on blood basophils in vitro stimulated with drugs or allergens. The aim of the study was to evaluate the usefulness of BAT when introduced in the routine work-up of suspected food hypersensitivity. BAT was requested in subjects with food adverse reactions when a discrepancy existed among history and skin prick test (SPT) and/or specific IgE. Data from 150 subjects were analysed using CD63 as basophil activation marker. Thirty controls were evaluated for cut-offs. Immunoblots was performed with the sera of representative subjects positive for BAT and negative for SPT and sIgE. 1,024 BAT were carried out, the agreement (positive/positive and negative/negative) was 78.5% for BAT vs. SPT and 78.3% for BAT vs. IgE. Atopic patients, but not atopic controls, more frequently had a positive BAT than non-atopic patients (P < 0.0001). Among subjects with positive BAT, those with negative sIgE had lower total IgE, P = 0.001. Nearly 23.3% of all subjects had positive BAT (for at least one tested food) and both negative sIgE and SPT. Immunoblots revealed the presence of sIgE for the tested foods in representative patients with positive BAT, negative SPT and sIgE. Introduction of BAT in routine of food hypersensitivity, limited to subjects with a discrepancy between history and traditional tests, might be useful particularly when total IgE are low. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.
Simberloff, Tander; Parambi, Ron; Bartnikas, Lisa M; Broyles, Ana Dioun; Hamel, Victoria; Timmons, Karol G; Miller, D Marlowe; Graham, Dionne A; Schneider, Lynda C; MacGinnitie, Andrew J
Oral food challenges (OFCs) are routinely used to confirm ongoing food allergy. Serum-specific IgE (sIgE) and skin prick testing (SPT) are imperfect predictors of which patients will pass OFCs. The objective of this study was to describe the design and implementation of a Standardized Clinical Assessment and Management Plan (SCAMP) to study and iteratively improve sIgE and SPT thresholds to determine when and where to conduct OFCs for patients. Allergists consulted recommended sIgE and SPT thresholds when ordering challenges although diversions were permitted. Criteria were iteratively improved after periodic analyses of challenge outcome and diversions. Over 3 years, allergists ordered 2368 food challenges for 1580 patients with histories of IgE-mediated reactions to food: 1386 in an outpatient clinic and 945 in a higher resource infusion center. Reactions to challenge were observed in 13% of clinic and 23% of infusion center challenges. Six patients challenged in clinic required treatment with epinephrine compared with 22 in the infusion center. The need for epinephrine was more common in patients with asthma-5% of asthmatic patients required epinephrine compared with 1% of nonasthmatic patients (P < .01). Recommended sIgE and SPT thresholds were incrementally changed and, using the control chart methodology, a significant decrease was noted in the proportion of challenges ordered in the higher resource location. By setting and continually refining sIgE and SPT recommendations using the SCAMP method, allergists can better determine the risk of severe reaction and triage patients to the appropriate setting for an OFC. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Zeng, G; Luo, W; Zheng, P; Wei, N; Huang, H; Sun, B; Zhao, X
2015-01-01
Little is known about component-resolved diagnosis (CRD) for Dermatophagoides pteronyssinus (Der p) sensitization in the Chinese population. We aimed to evaluate sensitization to Der p components in southern China. Two-hundred immunotherapy-naïve patients with asthma and/or rhinitis positive to specific IgE (sIgE) against Der p extract, along with 20 Der p-negative nonallergic healthy controls, were tested for sIgE against Der p 1, Der p 2, and Der p 10 using ImmunoCAP 100. Seventy-five were further examined with the ImmunoCAP Immuno Solid-phase Allergen Chip (ISAC). Der p 10-positive patients were also tested for sIgE against crude extracts of cockroach, moth, and shrimp. In total, 183 (91.5%) of the 200 patients were sensitized to Der p 1 and/or Der p 2. The proportion of positive results and the median level of s1gE against Der p 1 were higher in children than in adults. Der p 1 and Der p 2 correlated with Der p in sIgE levels. ImmunoCAP ISAC demonstrated 100% specificity and 84% sensitivity in detecting Der p 1, Der p 2, and Der p 10 compared with ImmunoCAP 100. Sensitization to Der p 10 correlated well with sIgE to shrimp, moths, cockroaches, Pen m 1, Bla g 7, and Ani s 3. The detection of Der p 1 and Der p 2 provided a good reflection of atopy to Der p in a Chinese cohort. Sensitization to Der p 10 may result from cross-reactivity with seafood and cockroaches in coastal southern China. ImmunoCAP ISAC may be a useful tool for CRD, with comparable performance to ImmunoCAP 100.
Effect of Ga and P dopants on the thermoelectric properties of n-type SiGe
NASA Technical Reports Server (NTRS)
Draper, S. L.; Vandersande, J. W.; Wood, C.; Masters, R.; Raag, V.
1989-01-01
The purpose of this study was to hot-press improved n-type Si80Ge20/GaP samples directly (without any heat treatment) and to confirm that a Ga/P ratio less than one increases the solubility of P and, hence, improves the power factor and Z. One of the three samples (Ga/P = 0.43) had an improvement in Z of about 20 percent between 400 and 1000 C over that for standard SiGe. This demonstrates that improved samples can be pressed directly and that a Ga/P ratio less than one is necessary. The other two samples (Ga/P = 0.33 and 0.50) had Z's equal to or less than that of standard SiGe but had a lower hot-pressing temperature than the improved sample.
Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.
Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A
2013-12-27
The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.
Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira
2015-01-01
Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678
Li, Junpu; Zhang, Jiayi; Qiong, Cuiya; She, Tiantian; Bian, Ying; Lin, Shuxiang; Li, Huiqiang
2018-05-30
Increasing dairy consumption in China has been accompanied by rising incidence of milk allergy. Here we analyzed profiles of specific immunoglobulin E (sIgE) against cow's milk proteins, and assessed their value for milk allergy diagnosis among infants and young children from northern China. Sera collected from 48 patients with milk allergy and 27 negative control subjects was analyzed by enzyme-linked immunosorbent assay to measure sIgE to α-lactalbumin (Bos d 4), β-lactoglobulin (Bos d 5), α-casein (Bos d 9), β-casein (Bos d 11), and κ-casein (Bos d 12). Among milk-allergic individuals, most were sensitized to at least one milk protein; about half were sensitized to Bos d 5, Bos d 9, Bos d 11 and Bos d 12, respectively, while few had positive serum sIgE against Bos d 4. Bos d 12 sIgE had the largest area under curve (AUC) (0.878; 95% CI, 0.800-0.957) and thus showed the best diagnostic performance in discriminating between milk-allergic and non-milk allergic patients, with a sensitivity of 92.6% and specificity of 72.9% using a statistically optimal cut-off value (OD 450nm , 0.191). The combinations of Bos d 5 + Bos d 12 showed an AUC of 0.926, which was larger than for any individual components. Our results revealed inter-individual variation in the sensitization to different milk allergen component. Bos d 12 sIgE showed best performance in diagnosing milk allergy. Milk allergy diagnostic accuracy was further improved using combinations of milk allergen components by application of ROC curves based on logistic regression. Copyright © 2018 Elsevier B.V. All rights reserved.
Silicon Germanium Cryogenic Low Noise Amplifiers
NASA Astrophysics Data System (ADS)
Bardin, J. C.; Montazeri, S.; Chang, Su-Wei
2017-05-01
Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.
A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD
NASA Astrophysics Data System (ADS)
Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd
2017-12-01
Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.
Universal behavior of surface-dangling bonds in hydrogen-terminated Si, Ge, and Si/Ge nanowires.
NASA Astrophysics Data System (ADS)
Nunes, Ricardo; Kagimura, Ricardo; Chacham, Hélio
2007-03-01
We report an ab initio study of the electronic properties of surface dangling bond (SDB) states in hydrogen-terminated Si, Ge, and Si/Ge nanowires with diameters between 1 and 2 nm. We find that the charge transition levels ɛ(+/-) of SDB states are deep in the bandgap for Si wires, and shallow (near the valence band edge) for Ge wires. In both Si and Ge wires, the SDB states are localized. We also find that the SDB ɛ(+/-) levels behave as a ``universal" energy reference level among Si, Ge, and Si/Ge wires within a precision of 0.1 eV. By computing the average bewteen the electron affinity and ionization energy in the atomi limit of several atoms from the III, IV and V columns, we conjecture that the universality is a periodic-table atomic property.
Cobalt disilicide contacts to silicon-germanium alloys
NASA Astrophysics Data System (ADS)
Goeller, Peter Thomas
This dissertation investigated the structure and stability of thin (18--45 nm) cobalt disilicide films, electron beam evaporated onto strained and relaxed Si1--xGex/Si(001) alloy layers. The aim of these investigations was to develop a means of growing smooth, continuous, epitaxial and thermally stable CoSi2 films suitable for use as contacts in SiGe device technology. Previous research on the reaction of Co metal with SiGe alloys has indicated a number of problems, such as film islanding, formation of polycrystalline silicide films, Ge segregation and poor thermal stability. In the present work, we studied the scientific issues underlying these phenomena with a variety of experimental techniques. Our initial studies comparing direct deposition of Co versus co-deposition of Co and Si indicated that co-deposition resulted in CoSi2 formation at much lower temperatures (500°C) than with the direct deposition method (700°C). Furthermore, the co-deposited films were epitaxial to the SiGe layer, whereas the direct deposited films were polycrystalline. Both methods resulting in increasing islanding of the films with increasing annealing temperature. The issues underlying the islanding of the co-deposited films were investigated with an in situ XAFS investigation of the Co/SiGe interface using monolayers of Co. It was determined that Co preferentially bonds with Si atoms as the annealing temperature is increased, leading to segregation of Ge at the interface and faceting of the silicide. A modified template method of silicide growth was devised, in which a sacrificial Si layer was deposited onto the SiGe surface before the CoSi2 template was grown. This growth method was shown to result in smooth, epitaxial and thermally stable films of CoSi2 on Si0.80Ge0.20 alloys. A thickness effect was observed for the direct deposition of Co on SiGe alloys, in which Co layers do not completely convert to CoSi2 until thicknesses greater than 35 nm are deposited. A thermodynamic model was developed, based on the Gibbs free energy change of the CoSi → CoSi2 transition, which indicated that the thickness effect was driven by the presence of Ge in the reaction zone. Finally, the Ge segregation phenomenon accompanying the direct reaction of Co on both strained and relaxed Si0.80Ge0.20 alloys was investigated. It was determined using XRD and EDS in the STEM microscope that Ge segregation on strained SiGe takes the form of Ge-enriched SiGe regions surrounding CoSi and CoSi2 grains at the surface of the film. (Abstract shortened by UMI.)
5 MeV Proton irradiation effects on 200 GHz silicon-germanium heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Gnana Prakash, A. P.; Hegde, Vinayakprasanna N.; Pradeep, T. M.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Cressler, J. D.
2017-12-01
The total dose effects of 5 MeV proton and Co-60 gamma irradiation in the dose range from 1 to 100 Mrad on advanced 200 GHz Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) are investigated. The SRIM simulation study was conducted to understand the energy loss of 5 MeV proton ions in SiGe HBT structure. Pre- and post-radiation DC figure of merits such as forward- and inverse-mode Gummel characteristics, excess base current, DC current gain and output characteristics were used to quantify the radiation tolerance of the devices. The results show that the proton creates a significant amount of damages in the surface and bulk of the transistor when compared with gamma irradiation. The SiGe HBTs shows robust ionizing radiation tolerance even up to a total dose of 100 Mrad for both radiations.
Ceriotti, M; Montalenti, F; Bernasconi, M
2012-03-14
By means of first-principles calculations we studied the decomposition pathways of SiH₃ on Ge(100) and of GeH₃ on Si(100), of interest for the growth of crystalline SiGe alloys and Si/Ge heterostructures by plasma-enhanced chemical vapor deposition. We also investigated H desorption via reaction of two adsorbed SiH₂/GeH₂ species (β₂ reaction) or via Eley-Rideal abstraction of surface H atoms from the impinging SiH₃ and GeH₃ species. The calculated activation energies for the different processes suggest that the rate-limiting step for the growth of Si/Ge systems is still the β₂ reaction of two SiH₂ as in the growth of crystalline Si.
2016-03-31
Corporation, Linthicum, Maryland *Corresponding author: Pavel.Borodulin@ngc.com Abstract: A chip -scale, highly-reconfigurable transmitter and...the technology has been used in a chip -scale, reconfigurable receiver demonstration and ongoing efforts to increase the level of performance and...circuit (RF-FPGA). It consists of a heterogeneous assembly of a SiGe BiCMOS chip with multiple 3D-integrated, low-loss, phase-change switch chiplets
Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit
NASA Technical Reports Server (NTRS)
Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.
2010-01-01
Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.
Peters, Rachel L.; Gurrin, Lyle C.; Dharmage, Shyamali C.; Koplin, Jennifer J.; Allen, Katrina J.
2013-01-01
IgE-mediated food allergy is a transient condition for some children, however there are few indices to predict when and in whom food allergy will resolve. Skin prick test (SPT) and serum-specific IgE levels (sIgE) are usually monitored in the management of food allergy and are used to predict the development of tolerance or persistence of food allergy. The aim of this article is to review the published literature that investigated the predictive value of SPT and sIgE in development of tolerance in children with a previous diagnosis of peanut, egg and milk allergy. A systematic search identified twenty-six studies, of which most reported SPT or sIgE thresholds which predicted persistent or resolved allergy. However, results were inconsistent between studies. Previous research was hampered by several limitations including the absence of gold standard test to diagnose food allergy or tolerance, biased samples in retrospective audits and lack of systematic protocols for triggering re-challenges. There is a need for population-based, prospective studies that use the gold standard oral food challenge (OFC) to diagnose food allergy at baseline and follow-up to develop SPT and sIgE thresholds that predict the course of food allergy. PMID:24132133
Predicting food challenge outcomes for baked milk: role of specific IgE and skin prick testing.
Bartnikas, Lisa M; Sheehan, William J; Hoffman, Elaine B; Permaul, Perdita; Dioun, Anahita F; Friedlander, James; Baxi, Sachin N; Schneider, Lynda C; Phipatanakul, Wanda
2012-11-01
Cow's milk allergy is the most common food allergy in childhood. Many children with IgE-mediated cow's milk allergy may tolerate baked milk products, but few data exist on predictors of outcomes of baked milk challenges. To determine the relation of milk protein allergen specific IgE (sIgE) levels and skin prick test (SPT) wheal size with baked milk challenge outcomes. A retrospective medical record review was conducted of 35 baked milk challenges. SPT results, sIgE levels, demographic characteristics, and food challenge results were analyzed. Thirty-five children underwent open challenges to baked milk and 29 (83%) passed. Of those who failed, 3 (50%) passed the initial clinic challenge but developed symptoms to ongoing exposure at home, days to months later. One child who ultimately failed at home required epinephrine. Compared with those who passed, children who failed were younger (median age, 8.9 and 3.7 years, respectively; P = .02). Children with a milk SPT wheal less than 12 mm were more than 90% likely to pass a baked milk challenge, and no child with a milk SPT wheal less than 7 mm failed a baked milk challenge. We were also able to establish more than 90% predictive values for passing baked milk challenges with a casein SPT wheal of 9 mm, a milk sIgE level of 1.0 kU/L, and a casein sIgE level of 0.9 kU/L. Most children allergic to cow's milk tolerated baked milk. Milk protein SPT wheal may be more reliable than sIgE level in predicting outcomes of baked milk challenges. It is important to be aware of the possibility of late reactions to ongoing baked milk exposure. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Detection of ovomucoid-specific low-affinity IgE in infants and its relationship to eczema.
Kawamoto, Norio; Kamemura, Norio; Kido, Hiroshi; Fukao, Toshiyuki
2017-06-01
Allergen-specific low-affinity IgE was previously detected in cord blood by a highly sensitive densely carboxylated protein (DCP) chip, but not by ImmunoCAP. Here, we investigated the presence of low-affinity IgE during the early life of infants and observed its relationship with eczema. We conducted a birth cohort study, collecting sera at birth and 6 and 14 months of age (n = 110). We monitored the ovomucoid (OM)- and egg white (EW)-specific IgE (sIgE) by ImmunoCAP or DCP chip and analyzed the antigen affinity of sIgE by binding inhibition assays in the presence or absence of a mild chaotropic agent, diethyl amine (DEA). The low- and high-affinity OM-sIgEs and sensitization risk factors were analyzed by a multivariate logistic analysis. The OM-sIgE measured by DCP chip significantly correlated with that measured by ImmunoCAP, but some samples assessed as OM-sIgE positive by DCP chip were considered OM-sIgE negative by ImmunoCAP. Binding inhibition analysis after DEA treatment was performed for participants judged as OM-sIgE positive by DCP chip at 14 M. The group assessed as negative for OM- and EW-sIgE by ImmunoCAP at 6 and 14 months showed a larger binding inhibition curve shift after DEA treatment than did the group assessed as positive at these times, indicating the presence of low-affinity sIgE antibodies at 14 months. The logistic regression analysis found that persistent eczema from 6 to 14 months is a significant risk factor for developing high-affinity, but not low-affinity, sIgE. Human infant peripheral blood contains allergen-specific low-affinity sIgE. Persistent eczema is related to the development of high-affinity, but not low-affinity, IgE. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thermoelectric Energy Conversion Technology for High-Altitude Airships
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon
2011-01-01
The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.
Kukkonen, A K; Pelkonen, A S; Mäkinen-Kiljunen, S; Voutilainen, H; Mäkelä, M J
2015-10-01
Component-resolved diagnostics offers a modern tool in peanut allergy, but studies applying consistently double-blind placebo-controlled challenges are lacking. We aimed to optimize diagnostics for moderate-to-severe peanut allergy in a birch-endemic region and to create an oral-peanut challenge with its allergen activity characterized. We performed double-blind placebo-controlled peanut challenges for a referred sample of 6- to 18-year-olds with peanut sensitization or a high suspicion of peanut allergy, including anaphylaxis. We measured specific IgE (sIgE) to Ara h 1, 2, 3, 6, 8, and 9. Testing of allergen activity of the challenge products was by IgE microarray inhibition. Of the 102 patients, 69 were challenge positive: 25 (36%) had severe, 36 (52%) moderate, and 8 (12%) mild symptoms; 38 (37%) received adrenalin. SIgE to Ara h 6 AUC 0.98 (95%CI, 0.96-1.00) was the best marker of moderate-to-severe allergy. When sIgE to Ara h 2 and Ara h 6 was measured together, all (100%) severe reactions at low doses were successfully diagnosable. SIgE to Ara h 8 had no diagnostic value, AUC 0.42 (95%CI, 0.30-0.52). Both nonroasted and roasted peanut inhibited 100% of IgE binding to Ara h 1, 2, 3, and 6. Nonroasted peanut inhibited 87% of IgE binding to Ara h 8, roasted inhibited 30%. The products lacked Ara h 9 activity. Co-sensitization to Ara h 2 and Ara h 6 was associated with severe reactions distinguishing severe allergy from mild symptoms. SIgE to Ara h 8 added no diagnostic value. Component-resolved diagnostics reduce the need for oral challenges in peanut allergy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Heavy Ion Microbeam- and Broadbeam-Induced Transients in SiGe HBTs
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Ferlet-Cavrois, Veronique; Baggio, Jacques; Duhamel, Olivier; Moen, Kurt A.; Phillips, Stanley D.; Diestelhorst, Ryan M.;
2009-01-01
SiGe HBT heavy ion-induced current transients are measured using Sandia National Laboratories microbeam and high- and low-energy broadbeam sources at the Grand Accelerateur National d'Ions Lourds and the University of Jyvaskyla. The data were captured using a custom broadband IC package and real-time digital phosphor oscilloscopes with at least 16 GHz of analog bandwidth. These data provide detailed insight into the effects of ion strike location, range, and LET.
2012-09-01
MSM) photodectors fabricated using black silicon-germanium on silicon substrate (Si1–xGex//Si) for I-V, optical response, external quantum ...material for Si for many applications in low-power and high-speed semiconductor device technologies (4, 5). It is a promising material for quantum well ...MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection by Fred
Lattice contraction with boron doping in fully strained SiGe epitaxial layers
NASA Astrophysics Data System (ADS)
Shin, Keun Wook; Song, Sukchan; Kim, Hyun-Woo; Lee, Gun-Do; Yoon, Euijoon
2018-06-01
Changes in lattice constants of epitaxial SiGe layers by boron (B) doping were studied by using high resolution X-ray diffraction (HRXRD) by using SiGe:B with Ge and B concentrations in the range of 11–23% and (1.5–4.2) × 1019 cm‑3, respectively. The lattice contraction coefficient (β) of B in SiGe was measured to be (9.6 ± 0.6) × 10‑24 cm3, which was approximately twice as large as that of B in Si. The ab initio calculation of β, 9.35 × 10‑24 cm3, was in excellent agreement with the experiment. From the ab initio calculation, it is found that the large lattice contraction is due to the favorability of Si–B bond than Si–Ge bond.
Zivanovic, Mirjana; Atanasković-Marković, Marina; Medjo, Biljana; Gavrović-Jankulović, Marija; Smiljanić, Katarina; Tmušić, Vladimir; Djurić, Vojislav
2017-04-01
IgE- mediated food allergy affects 6-8% of children. Our study aimed to define the correlations between the results obtained with skin prick tests (SPTs) using commercial extracts and fresh foods, and the correlations between these result and those obtained with specific IgE (sIgE) and/ or challenge. Children aged from 2 months to 6 years were recruited prospectively. Overall 571 children were positive to one food. In all children we performed SPT using commercial extracts of suspected food and fresh foods and sIgE. If SPT and sIgE test results did not correspond to the history, we performed open oral food challenge. Sensitivity of SPT with commercial extracts for all tested food was poor (3-35%), while sensitivity of fresh food skin prick tests (FFSPT) was excellent (50-100%), and showed correlation with open oral food challenge (p<0.001). Our results suggest that fresh food extracts are more effective in detecting sensitization and with levels of sIgE greater than class 3 could predict clinical reactivity, without the need for potentially hazardous food challenges.
Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces
NASA Astrophysics Data System (ADS)
Bouabdellaoui, Mohammed; Checcucci, Simona; Wood, Thomas; Naffouti, Meher; Sena, Robert Paria; Liu, Kailang; Ruiz, Carmen M.; Duche, David; le Rouzo, Judikael; Escoubas, Ludovic; Berginc, Gerard; Bonod, Nicolas; Zazoui, Mimoun; Favre, Luc; Metayer, Leo; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Gurioli, Massimo; Abbarchi, Marco
2018-03-01
We demonstrate a simple self-assembly method based on solid state dewetting of ultrathin silicon films and germanium deposition for the fabrication of efficient antireflection coatings on silicon for light trapping. We fabricate SiGe islands with a high surface density, randomly positioned and broadly varied in size. This allows one to reduce the reflectance to low values in a broad spectral range (from 500 nm to 2500 nm) and a broad angle (up to 55°) and to trap within the wafer a large portion of the impinging light (˜40 % ) also below the band gap, where the Si substrate is nonabsorbing. Theoretical simulations agree with the experimental results, showing that the efficient light coupling into the substrate is mediated by Mie resonances formed within the SiGe islands. This lithography-free method can be implemented on arbitrarily thick or thin SiO2 layers and its duration only depends on the sample thickness and on the annealing temperature.
Analysis on temperature dependent current mechanism of tunnel field-effect transistors
NASA Astrophysics Data System (ADS)
Lee, Junil; Kwon, Dae Woong; Kim, Hyun Woo; Kim, Jang Hyun; Park, Euyhwan; Park, Taehyung; Kim, Sihyun; Lee, Ryoongbin; Lee, Jong-Ho; Park, Byung-Gook
2016-06-01
In this paper, the total drain current (I D) of a tunnel FET (TFET) is decomposed into each current component with different origins to analyze the I D formation mechanisms of the TFET as a function of gate voltage (V GS). Transfer characteristics are firstly extracted with fabricated Silicon channel TFETs (Si TFETs) and silicon germanium channel TFETs (SiGe TFETs) at various temperatures. The subthreshold swings (SS) of both Si TFETs and SiGe TFETs get degraded and the SSs of SiGe TFETs get degraded more as temperature becomes higher. Then, all the I Ds measured at various temperatures are decomposed into each current component through technology computer aided design (TCAD) simulations with a good agreement with experimental data. As a result, it is revealed that Shockley-Read-Hall (SRH) recombination mainly contribute to the I D of a TFET before band to band tunneling (BTBT) occurs. Furthermore, the SS degradation by high temperature is explained successfully by the SRH recombination with electric field dependence.
Visible and infrared emission from Si/Ge nanowires synthesized by metal-assisted wet etching.
Irrera, Alessia; Artoni, Pietro; Fioravanti, Valeria; Franzò, Giorgia; Fazio, Barbara; Musumeci, Paolo; Boninelli, Simona; Impellizzeri, Giuliana; Terrasi, Antonio; Priolo, Francesco; Iacona, Fabio
2014-02-12
Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm-2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 μm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS: 61.46.Km; 78.55.-m; 78.67.Lt.
Visible and infrared emission from Si/Ge nanowires synthesized by metal-assisted wet etching
2014-01-01
Abstract Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm−2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 μm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS 61.46.Km; 78.55.-m; 78.67.Lt PMID:24521284
Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation
2010-01-01
The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films. PMID:21170391
Kirk, David G; Palonen, Eveliina; Korkeala, Hannu; Lindström, Miia
2014-04-01
Heat-resistant spores of Clostridium botulinum can withstand the pasteurization processes in modern food processing. This poses a risk to food safety as spores may germinate into botulinum neurotoxin-producing vegetative cells. Sporulation in Bacillus subtilis, the model organism for sporulation, is regulated by the transcription factor Spo0A and four alternative sigma factors, SigF, SigE, SigG, and SigK. While the corresponding regulators are found in available genomes of C. botulinum, little is known about their expression. To accurately measure the expression of these genes using quantitative reverse-transcriptase PCR (RT-qPCR) during the exponential and stationary growth phases, a suitable normalization reference gene is required. 16S rrn, adK, alaS, era, gluD, gyrA, rpoC, and rpsJ were selected as the candidate reference genes. The most stable candidate reference gene was 16S ribosomal RNA gene (rrn), based on its low coefficient of variation (1.81%) measured during the 18-h study time. Using 16S rrn as the normalization reference gene, the relative expression levels of spo0A, sigF, sigE, sigG, and sigK were measured over 18h. The pattern of expression showed spo0A expression during the logarithmic growth phase, followed by a drop in expression upon entry to the stationary phase. Expression levels of sigF, sigE, and sigG peaked simultaneously at the end of the exponential growth phase. Peak expression of sigK occurred at 18h, however low levels of expression were detected during the exponential phase. These findings suggest these sigma factors play a role in C. botulinum sporulation that is similar, but not equal, to their role in the B. subtilis model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Technology Evaluation for Paintable Computing and Paintable Displays RF Nixel Seedling
2006-04-15
0.32 mm2• 111-V LED’s may be fabricated on Si wafers using SiGe virtual substrates. The MIT Media Lab selected technologies for a 17" diagonal, 640 x...energy conversion, though betavoltaic devices, tends to have a very low efficiency, about 1%. [15] With 1% conversion efficiency on the lOmW released...200 J.!Cilyear of 63Ni, assuming that this was this person’s only exposure to man-made radiation. A prototype betavoltaic cell has been constructed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu; Yang, Mo
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heatmore » transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.« less
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-12-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
Race, Ancestry, and Development of Food-Allergen Sensitization in Early Childhood
Tsai, Hui-Ju; Hong, Xiumei; Liu, Xin; Wang, Guoying; Pearson, Colleen; Ortiz, Katherin; Fu, Melanie; Pongracic, Jacqueline A.; Bauchner, Howard; Wang, Xiaobin
2011-01-01
OBJECTIVE: We examined whether the risk of food-allergen sensitization varied according to self-identified race or genetic ancestry. METHODS: We studied 1104 children (mean age: 2.7 years) from an urban multiethnic birth cohort. Food sensitization was defined as specific immunoglobulin E (sIgE) levels of ≥0.35 kilo–units of allergen (kUA)/L for any of 8 common food allergens. Multivariate logistic regression analyses were used to evaluate the associations of self-identified race and genetic ancestry with food sensitization. Analyses also examined associations with numbers of food sensitizations (0, 1 or 2, and ≥3 foods) and with logarithmically transformed allergen sIgE levels. RESULTS: In this predominantly minority cohort (60.9% black and 22.5% Hispanic), 35.5% of subjects exhibited food sensitizations. In multivariate models, both self-reported black race (odds ratio [OR]: 2.34 [95% confidence interval [CI]: 1.24–4.44]) and African ancestry (in 10% increments; OR: 1.07 [95% CI: 1.02–1.14]) were associated with food sensitization. Self-reported black race (OR: 3.76 [95% CI: 1.09–12.97]) and African ancestry (OR: 1.19 [95% CI: 1.07–1.32]) were associated with a high number (≥3) of food sensitizations. African ancestry was associated with increased odds of peanut sIgE levels of ≥5 kUA/L (OR: 1.25 [95% CI: 1.01–1.52]). Similar ancestry associations were seen for egg sIgE levels of ≥2 kUA/L (OR: 1.13 [95% CI: 1.01–1.27]) and milk sIgE levels of ≥5 kUA/L (OR: 1.24 [95% CI: 0.94–1.63]), although findings were not significant for milk. CONCLUSIONS: Black children were more likely to be sensitized to food allergens and were sensitized to more foods. African ancestry was associated with peanut sensitization. PMID:21890831
Amini, Peyman; Abdullah, Maha; Seng, Lee Sing; Karunakaran, Thanusha; Hani, Norzhafarina; Bakar, Saraiza Abu; Latiff, Amir Hamzah Abdul; Fong, Seow Heng; Yeow, Yap Yoke
2016-06-01
The number of available reports regarding the influence of ethnicity on clinical features of allergic rhinitis (AR), especially disease severity in tropical climates, is limited. We aimed to compare clinical parameters and disease severity in AR patients of different ethnicities. Malay, Chinese, and Indian AR patients (n = 138) with confirmed sensitivity to Dermatophagoides pteronyssinus, Dematophagoides farinae, and Blomia tropicalis were tested for mite-specific immunoglobulin E (sIgE) levels. A detailed questionnaire was used to collect data on nasal symptom score (NSS), ocular symptom score (OSS), sum of symptoms score (SSS), quality of life score (QLS), symptomatic control score (SCS), and total sum of scores (TSS) and correlate the derived data with patients' demography, mite-polysensitivity, and sIgE levels. AR-related symptoms were most severe in Malays and least in Chinese (p < 0.01). Age (r = 0.516 to 0.673, p < 0.05) and duration of AR (r = 0.635 to 0.726, p < 0.01) correlated positively with severity domains (NSS, SSS, QLS, and TSS) in Chinese. Duration of concurrent allergies was highest in Malays (p < 0.05). Polysensitivity predicted increased sIgE levels in Malays (r = 0.464 to 0.551, p < 0.01) and Indians (r = 0.541 to 0.645, p < 0.05) but affected NSS, SSS, and TSS only in Indians (r = 0.216 to 0.376, p < 0.05). sIgE levels were lowest among Chinese but correlated strongly with NSS, OSS, SSS, and TSS (r = 0408 to 0.898, p < 0.05). Clinical parameters in AR may be influenced by race. Symptoms were most severe among Malays but did not correlate with other variables examined. Although Indian ethnicity did not impact disease severity, duration of concurrent allergies and mite-polysensitivity was associated with more severe disease. Age, duration of disease, and sIgE levels may be useful indicators of disease severity in Chinese. © 2016 ARS-AAOA, LLC.
Computer modeling of thermoelectric generator performance
NASA Technical Reports Server (NTRS)
Chmielewski, A. B.; Shields, V.
1982-01-01
Features of the DEGRA 2 computer code for simulating the operations of a spacecraft thermoelectric generator are described. The code models the physical processes occurring during operation. Input variables include the thermoelectric couple geometry and composition, the thermoelectric materials' properties, interfaces and insulation in the thermopile, the heat source characteristics, mission trajectory, and generator electrical requirements. Time steps can be specified and sublimation of the leg and hot shoe is accounted for, as are shorts between legs. Calculations are performed for conduction, Peltier, Thomson, and Joule heating, the cold junction can be adjusted for solar radition, and the legs of the thermoelectric couple are segmented to enhance the approximation accuracy. A trial run covering 18 couple modules yielded data with 0.3% accuracy with regard to test data. The model has been successful with selenide materials, SiGe, and SiN4, with output of all critical operational variables.
Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters
NASA Astrophysics Data System (ADS)
Nahali, Masoud; Mehri, Ali
2018-06-01
The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.
High-Power, High-Frequency Si-Based (SiGe) Transistors Developed
NASA Technical Reports Server (NTRS)
Ponchak, George E.
2002-01-01
Future NASA, DOD, and commercial products will require electronic circuits that have greater functionality and versatility but occupy less space and cost less money to build and integrate than current products. System on a Chip (SOAC), a single semiconductor substrate containing circuits that perform many functions or containing an entire system, is widely recognized as the best technology for achieving low-cost, small-sized systems. Thus, a circuit technology is required that can gather, process, store, and transmit data or communications. Since silicon-integrated circuits are already used for data processing and storage and the infrastructure that supports silicon circuit fabrication is very large, it is sensible to develop communication circuits on silicon so that all the system functions can be integrated onto a single wafer. Until recently, silicon integrated circuits did not function well at the frequencies required for wireless or microwave communications, but with the introduction of small amounts of germanium into the silicon to make silicon-germanium (SiGe) transistors, silicon-based communication circuits are possible. Although microwavefrequency SiGe circuits have been demonstrated, there has been difficulty in obtaining the high power from their transistors that is required for the amplifiers of a transmitter, and many researchers have thought that this could not be done. The NASA Glenn Research Center and collaborators at the University of Michigan have developed SiGe transistors and amplifiers with state-of-the-art output power at microwave frequencies from 8 to 20 GHz. These transistors are fabricated using standard silicon processing and may be integrated with CMOS integrated circuits on a single chip. A scanning electron microscope image of a typical SiGe heterojunction bipolar transistor is shown in the preceding photomicrograph. This transistor achieved a record output power of 550 mW and an associated power-added efficiency of 33 percent at 8.4 GHz, as shown. Record performance was also demonstrated at 12.6 and 18 GHz. Developers have combined these state-of-the-art transistors with transmission lines and micromachined passive circuit components, such as inductors and capacitors, to build multistage amplifiers. Currently, a 1-W, 8.4-GHz power amplifier is being built for NASA deep space communication architectures.
Lee, Yong Won; Sohn, Jung Ho; Lee, Jae-Hyun; Hong, Chein-Soo; Park, Jung-Won
2009-03-01
Intermethod comparison between IMMULITE 2000 chemiluminescent enzyme immunoassay (CLEIA) and the established CAP test for allergen-specific IgE (sIgE) has only been evaluated by a few studies. We performed such an interassay comparison using 283 Korean allergic patients with the following: asthma (18.4%), allergic rhinitis (18.4%), both asthma and allergic rhinitis (14.5%), atopic dermatitis (21.9%), and others (26.8%). We compared the sIgE detection performance of both systems for 10 major inhalant allergens (Dermatophagoides pteronyssinus, Dermatophagoides farinae, Blattela germanica, cat dander, dog hair, alder, birch, oak, ragweed, and mugwort) and four food allergens (egg white, cow milk, peanut, and shrimp). After 645 paired comparison tests, close association and significant correlation were observed between the results of both assays for most of these allergens (r=0.525-0.979, p<0.05, respectively), except for shrimp. Intermethod agreement based on sIgE detection was fair to good (74.1-100%, kappa=0.514-1.000, p<0.05, respectively) for most allergens except for B. germanica, ragweed, and shrimp. Although both assays showed good accuracy in ROC curve analysis, some minor differences were noted. IMMULITE 2000 CLEIA for sIgE detection showed fair to good intermethod correlation, association, agreement, and accuracy in comparison to the established CAP assay among Korean allergic patients. However, we should take into account the intermethod differences between both assays for clinical applications.
Peters, Rachel L; Allen, Katrina J; Dharmage, Shyamali C; Tang, Mimi L K; Koplin, Jennifer J; Ponsonby, Anne-Louise; Lowe, Adrian J; Hill, David; Gurrin, Lyle C
2013-10-01
Ninety-five percent positive predictive values (PPVs) provide an invaluable tool for clinicians to avoid unnecessary oral food challenges. However, 95% PPVs specific to infants, the age group most likely to present for diagnosis of food allergy, are limited. We sought to develop skin prick test (SPT) and allergen-specific IgE (sIgE) thresholds with 95% PPVs for challenge-confirmed food allergy in a large population-based cohort of 1-year-old infants with challenges undertaken irrespective of SPT wheal size or previous history of ingestion. HealthNuts is a population-based, longitudinal food allergy study with baseline recruitment of 1-year-old infants. Infants were recruited from council-run immunization sessions during which they underwent SPTs to 4 allergens: egg, peanut, sesame, and cow's milk/shrimp. Any infant with a detectable SPT response was invited to undergo oral food challenge and sIgE testing. Five thousand two hundred seventy-six infants participated in the study. Peanut SPT responses of 8 mm or greater (95% CI, 7-9 mm), egg SPT responses of 4 mm or greater (95% CI, 3-5 mm), and sesame SPT responses of 8 mm or greater (95% CI, 5-9 mm) had 95% PPVs for challenge-proved food allergy. Peanut sIgE levels of 34 kUA/L or greater (95% CI, 14-48 kUA/L) and egg sIgE levels of 1.7 kUA/L or greater (95% CI, 1-3 kUA/L) had 95% PPVs for challenge-proved food allergy. Results were robust when stratified on established risk factors for food allergy. Egg SPT responses and sIgE levels were poor predictors of allergy to egg in baked goods. These 95% PPVs, which were generated from a unique dataset, are valuable for the diagnosis of food allergy in young infants and were robust when stratified across a number of different risk factors. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fulkerson, David E.
2010-02-01
This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.
Makhija, Melanie M; Robison, Rachel G; Caruso, Deanna; Cai, Miao; Wang, Xiaobin; Pongracic, Jacqueline A
2016-10-01
Sensitization in adults has not been extensively studied. To investigate patterns of allergen sensitization in parents of food allergic children and to compare self-report of allergic disease with specific IgE (sIgE) measurements. A total of 1,252 mothers and 1,225 fathers of food allergic children answered standardized questionnaires about demographics, home environment, history of atopic diseases, and food allergy. Skin prick testing and sIgE serum tests were performed to 9 foods and 5 aeroallergens. A total of 66.1% of parents were sensitized to either a food or aeroallergen. Mean sIgE levels were low for all foods tested. A total of 14.5% of mothers and 12.7% of fathers reported current food allergy. Only 28.4% had sensitization to their reported allergen. Fathers had significantly higher rates of sensitization to both foods and aeroallergens (P < .01) than mothers. Logistic regression evaluating predictors of self-reported food allergy revealed statistically significant positive associations in fathers with self-reported asthma, environmental allergy, and eczema. For mothers, significant positive associations were found with environmental allergy and having more than 1 food allergic child. This cohort of parents of food allergic children found higher rates of sensitization to foods and aeroallergens compared with the general population. However, food sIgE levels were low and correlated poorly with self-reported food allergy. Sex differences in sensitization to foods and aeroallergens were seen. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.
Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao
2017-03-01
Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.
NASA Astrophysics Data System (ADS)
Lubner, Sean; Khan, Md. Imran; Dames, Chris
In the electronics and clean energy fields, it is increasingly necessary to reliably model the dissipation of heat from micro and nanostructures or nanostructured materials such as in batteries, computer chips, and thermoelectrics. In these regimes where length scales are comparable to the mean free paths (MFPs) of energy carriers, the diffusion law of heat conduction begins to break down. In this talk, I present our recent results from using a time domain thermoreflectance (TDTR) technique with laser spot 1/e-squared radii less than 2 microns to measure sub-diffusion thermal transport in silicon, nanograined-silicon (ng-Si), and silicon germanium (SiGe) alloys. Our results experimentally demonstrate that alloy scattering skews phonon spectra toward longer MFPs, while nanostructuring skews phonon spectra toward shorter MFPs. As a consequence, we show that a significant fraction of the heat-carrying phonons in SiGe have MFPs greater than 10 microns at room temperature, and that the thermal conductivity of ng-Si overtakes that of SiGe after microstructuring. NSF.
Electrical properties of sub-100 nm SiGe nanowires
NASA Astrophysics Data System (ADS)
Hamawandi, B.; Noroozi, M.; Jayakumar, G.; Ergül, A.; Zahmatkesh, K.; Toprak, M. S.; Radamson, H. H.
2016-10-01
In this study, the electrical properties of SiGe nanowires in terms of process and fabrication integrity, measurement reliability, width scaling, and doping levels were investigated. Nanowires were fabricated on SiGe-on oxide (SGOI) wafers with thickness of 52 nm and Ge content of 47%. The first group of SiGe wires was initially formed by using conventional I-line lithography and then their size was longitudinally reduced by cutting with a focused ion beam (FIB) to any desired nanometer range down to 60 nm. The other nanowire group was manufactured directly to a chosen nanometer level by using sidewall transfer lithography (STL). It has been shown that the FIB fabrication process allows manipulation of the line width and doping level of nanowires using Ga atoms. The resistance of wires thinned by FIB was 10 times lower than STL wires which shows the possible dependency of electrical behavior on fabrication method. Project support by the Swedish Foundation for Strategic Research “SSF” (No. EM-011-0002) and the Scientific and Technological Research Council of Turkey (No. TÜBİTAK).
Immune and clinical response to honeybee venom in beekeepers.
Matysiak, Jan; Matysiak, Joanna; Bręborowicz, Anna; Kycler, Zdzisława; Dereziński, Paweł; Kokot, Zenon J
2016-01-01
The aim of the study was to assess immune response to honeybee venom in relation to the degree of exposure, time after a sting and clinical symptoms. Fifty-four volunteers were divided into 2 groups: beekeepers and a control group. The serum levels of total IgE (tIgE), bee venom-specific IgE (venom sIgE), phospholipase A2-specific IgE (phospholipase A2 sIgE), tryptase and venom-specific IgG4 (venom sIgG4) were determined. In beekeepers, diagnostic tests were performed within 3 hours following a sting and were repeated after a minimum of 6 weeks from the last sting. In individuals from the control group, the tests were performed only once, without a sting. The tests showed significant differences in venom sIgE (beekeepers' median = 0.34 kUA/l, control group median = 0.29 kUA/l), baseline serum tryptase (beekeepers' median = 4.25 µg/l, control group median = 2.74 µg/l) and sIgG4 (beekeepers' median = 21.2 mgA/l, control group median = 0.14 mgA/l), confirming higher levels of the tested substances in the beekeepers than in the control group. A significant positive correlation was observed between phospholipase A2 sIgE concentration and severity of clinical symptoms after a sting in the group of beekeepers. It was also demonstrated that the clinical symptoms after a sting became less severe with increasing age of the beekeepers. The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.
Strain and stability of ultrathin Ge layers in Si/Ge/Si axial heterojunction nanowires
Ross, Frances M.; Stach, Eric A.; Wen, Cheng -Yen; ...
2015-02-05
The abrupt heterointerfaces in the Si/Ge materials system presents useful possibilities for electronic device engineering because the band structure can be affected by strain induced by the lattice mismatch. In planar layers, heterointerfaces with abrupt composition changes are difficult to realize without introducing misfit dislocations. However, in catalytically grown nanowires, abrupt heterointerfaces can be fabricated by appropriate choice of the catalyst. Here we grow nanowires containing Si/Ge and Si/Ge/Si structures respectively with sub-1nm thick Ge "quantum wells" and we measure the interfacial strain fields using geometric phase analysis. Narrow Ge layers show radial strains of several percent, with a correspondingmore » dilation in the axial direction. Si/Ge interfaces show lattice rotation and curvature of the lattice planes. We conclude that high strains can be achieved, compared to what is possible in planar layers. In addition, we study the stability of these heterostructures under heating and electron beam irradiation. The strain and composition gradients are supposed to the cause of the instability for interdiffusion.« less
Design and development of SiGe based near-infrared photodetectors
NASA Astrophysics Data System (ADS)
Zeller, John W.; Puri, Yash R.; Sood, Ashok K.; McMahon, Shane; Efsthadiatis, Harry; Haldar, Pradeep; Dhar, Nibir K.
2014-10-01
Near-infrared (NIR) sensors operating at room temperatures are critical for a variety of commercial and military applications including detecting mortar fire and muzzle flashes. SiGe technology offers a low-cost alternative to conventional IR sensor technologies such as InGaAs, InSb, and HgCdTe for developing NIR micro-sensors that will not require any cooling and can operate with high bandwidths and comparatively low dark currents. Since Ge has a larger thermal expansion coefficient than Si, tensile strain may be incorporated into detector devices during the growth process, enabling an extended operating wavelength range above 1600 nm. SiGe based pin photodetectors have advantages of high stability, low noise, and high responsivity compared to metal-semiconductor-metal (MSM) devices. We have developed a process flow and are fabricating SiGe detector devices on 12" (300 mm) silicon wafers in order to take advantage of high throughput, large-area leading-edge silicon based CMOS technology that provides small feature sizes with associated device cost/density scaling advantages. The fabrication of the detector devices is facilitated by a two-step growth process incorporating initial low temperature growth of Ge/SiGe to form a thin strain-relaxed layer, followed by high temperature growth to deposit a thicker absorbing film, and subsequent high temperature anneal. This growth process is designed to effectively reduce dark current and enhance detector performance by reducing the number of defects and threading dislocations which form recombination centers during the growth process. Various characterization techniques have been employed to determine the properties of the epitaxially deposited Ge/SiGe layers, and the corresponding results are discussed.
2013-01-01
In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the formation of nanocones is the mechanical compressive stresses due to the atoms’ redistribution caused by the gradient of temperature induced by strongly absorbed laser radiation. According to our investigation, the nanocone formation mechanism in semiconductors is characterized by two stages. The first stage is characterized by formation of a p-n junction for elementary semiconductors or of a Ge/Si heterojunction for SiGe solid solution. The generation and redistribution of intrinsic point defects in elementary semiconductors and Ge atoms concentration on the irradiated surface of SiGe solid solution in temperature gradient field take place at this stage due to the thermogradient effect which is caused by strongly absorbed laser radiation. The second stage is characterized by formation of nanocones due to mechanical plastic deformation of the compressed Ge layer on Si. Moreover, a new 1D-graded band gap structure in elementary semiconductors due to quantum confinement effect was formed. For the formation of microcones Ni/Si structure was used. The mechanism of the formation of microcones is characterized by two stages as well. The first stage is the melting of Ni film after irradiation by laser beam and formation of Ni islands due to surface tension force. The second step is the melting of Ni and subsequent manifestations of Marangoni effect with the growth of microcones. PMID:23735193
Characterisation of diode-connected SiGe BiCMOS HBTs for space applications
NASA Astrophysics Data System (ADS)
Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand
2016-02-01
Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal radiation sensing and cryogenic terahertz radiation sensing.
Cow's milk allergic children-Can component-resolved diagnostics predict duration and severity?
Petersen, Thomas Houmann; Mortz, Charlotte Gotthard; Bindslev-Jensen, Carsten; Eller, Esben
2018-03-01
Cow's milk allergy (CMA) affects 2% of all children. This study investigatescomponent-resolved diagnostics(CRD) to cow's milk proteins in children suspected of CMA, by correlating the level of CRD with outcome of the oral challenge. Furthermore, we evaluate the ability of serial CRD measurements to distinguish children with persistent CMA from children developing tolerance. We included data from 78 children referred to the Allergy Centre during a 13-year period. Results from oral food challenges including threshold, severity, and sensitization data (IgE antibodies to whole milk protein, IgE components toward milk and skin prick test (SPT)) were collected. The milk allergic children were re-evaluated with sensitization data and rechallenges regularly. Thirty-nine children had negative first challenges, and 39 had positive first challenges. The positive group was rechallenged and separated into 3 groups depending on time to remission. At inclusion, children with persistent CMA had significantly larger size of SPT and higher levels of s-IgE to milk and CRD compared to the other groups. SPT wheal size was significantly larger in children with persistent CMA compared to children outgrowing CMA. Furthermore, a correlation between s-IgE level to cow's milk and casein and the severity of the allergic reaction elicited by food challenges was found. Oral food challenge cannot be replaced by s-IgE to whole milk protein or milk components nor SPT in the diagnosis of CMA; however, high levels of milk components and s-IgE to milk increase the risk of a long-lasting or persisting CMA. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.
Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem
2017-01-01
Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.
Wegienka, Ganesa; Havstad, Suzanne; Ownby, Dennis R.; Johnson, Christine C.; Zoratti, Edward M.
2013-01-01
It is unknown whether family members with detectable specific immunoglobulin E (sIgE) and/or allergic symptoms to pets are more or less likely to reside in a household with pets. We cross-sectionally investigated potential relationships between family members' allergic sensitization and symptoms to dogs and cats and current household pet-keeping practices, using birth cohort data. Blood samples taken from children enrolled in a birth cohort and their biological mothers and fathers, when the children were aged 18 years, were assessed for sIgE to dog and cat allergens. Interviews assessed subjects' self-reported pet exposure symptoms, current household pet-keeping practices, and socioeconomic characteristics. Overall, household dog or cat keeping was not associated with sIgE to these animals and/or self-reported allergic symptoms in the presence of these animals, even after controlling for factors such as education and household income. In subgroup analyses, current household dog keeping among dog-symptomatic teens (n = 40) was significantly lower than among teens who were not dog symptomatic (n = 289), at 48.8 and 61.1%, respectively (p = 0.036). Current household cat keeping was significantly lower among cat-symptomatic mothers (n = 27) compared with mothers who were not cat symptomatic (n = 120), at 24.3 and 37.0%, respectively (p = 0.015). However, when considering those who were both sensitized and reported symptoms, only the mother and cat-keeping associations persisted (p = 0.049). When cat-sensitized mothers report allergic symptoms to cats, these pets may be less likely to be kept in homes. Elevated dog and cat allergen sIgE does not appear to be associated with the keeping of these pets. PMID:24169057
Pacharn, Punchama; Kumjim, Sasaros; Tattiyapong, Puntanat; Jirapongsananuruk, Orathai; Piboonpocanun, Surapon
2016-06-01
Identification of wheat sensitization by a skin prick test (SPT) is essential for children with wheat-induced anaphylaxis, since oral food challenge can cause serious adverse effects. Wheat allergens are both water/salt and alcohol soluble. The preparation of wheat extract for SPT containing both water/salt and alcohol soluble allergen is needed. To determine if a wheat extract using Coca's solution containing 10% alcohol (Coca-10% EtOH), prepared in-house, contians both water/salt and alcohol soluble allergens. Serum of children with a history of anaphylaxis after wheat ingestion was used. Wheat flour was extracted in Coca-10% alcohol solution. An SPT with both commercial and in-house wheat extracts was performed as well as specific IgE (sIgE) for wheat and omega-5 gliadin. Direct and IgE inhibition immunoblots were performed to determine serum sIgE levels against water/salt as well as alcohol soluble (gliadins and glutenins) allergens in the extracts. Six children with history of wheat anaphylaxis had positive SPT to both commercial and in-house extracts. They also had different levels of sIgE against wheat and omega-5 gliadin allergens. The results of direct immunoblotting showed all tested sera had sIgE bound to ~35 kDa wheat protein. Further IgE inhibition immunoblotting identified the ~35 kDa wheat protein as gliadin but not gluten allergen. The in-house prepared Coca-10% EtOH solution could extract both water/salt and alcohol soluble allergens. The ~35 kDa gliadin appears to be a major wheat allergen among tested individuals.
Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures
Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem
2017-01-01
Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, <100>, is better than the <111> crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials. PMID:28469733
Structural and optical characteristics of GaAs films grown on Si/Ge substrates
NASA Astrophysics Data System (ADS)
Rykov, A. V.; Dorokhin, M. V.; Vergeles, P. S.; Baidus, N. V.; Kovalskiy, V. A.; Yakimov, E. B.; Soltanovich, O. A.
2018-03-01
A GaAs/AlAs heterostructure and a GaAs film grown on Si/Ge substrates have been fabricated and studied. A Ge buffer on a silicon substrate was fabricated using the MBE process. A3B5 films were grown by MOCVD at low pressures. Photoluminescence spectroscopy was used to define the optical quality of A3B5 films. Structural properties were investigated using the electron beam induced current method. It was established that despite a rather high density of dislocations on the epitaxial layers, the detected photoluminescence radiation of layers indicates the acceptable crystalline quality of the top GaAs layer.
NASA Technical Reports Server (NTRS)
Lu, Liang-Hung; Mohammadi, Saeed; Ma, Zhen-Qiang; Ponchak, George E.; Alterovitz, Samuel A.; Strohm, Karl M.; Luy, Johann-Friedrich; Downey, Alan (Technical Monitor)
2001-01-01
Multifinger SiGe HBTs have been fabricated using a novel fully self-aligned double-mesa technology. With the novel process technology, a common-emitter 2x2x30 sq micrometer device exhibits high maximum oscillating frequency (f(sub max)) and cut-off frequency (f(sub T)) of 78 and 37 GHz, respectively. In class-A operation, a multifinger device with l0x2x30 sq micrometer emitter is expected to provide an output power of 25.6 dBm with a gain of 10 dB and a maximum power added efficiency (PAE) of 30.33% at 8 GHz.
Novel mid-infrared silicon/germanium detector concepts
NASA Astrophysics Data System (ADS)
Presting, Hartmut; Konle, Johannes; Hepp, Markus; Kibbel, Horst; Thonke, Klaus; Sauer, Rolf; Corbin, Elizabeth A.; Jaros, Milan
2000-10-01
Highly p-doped silicon/silicon-germanium (Si/SiGe) quantum well (QW) structures are grown by molecular beam epitaxy on double-sided polished (100)Si substrates for mid-IR (3 to 5 micrometers and 8 to 12 micrometers ) detection. The samples are characterized by secondary ion mass spectroscopy, x-ray diffraction, and absorption measurements. Single mesa detectors are fabricated as well as large-area focal plane arrays with 256 X 256 pixels using standard Si integrated processing techniques. The detectors, based on heterointernal photo-emission (HIP) of photogenerated holes from a heavily p-doped (p++ approximately 5 X 1020 cm-3) SiGe QW into an undoped silicon layer, operate at 77 K. Various novel designs of the SiGe HIP's such as Ge- and B-grading, double- and multi-wells, are realized; in addition, thin doping setback layers between the highly doped well and the undoped Si layer are introduced. The temperature dependence of dark currents and photocurrents are measured up to 225 K. In general, we observe broad photoresponse curves with peak external quantum efficiencies, up to (eta) ext approximately 0.5% at 77 K and 4(mu) , detectivities up to 8 X 1011 cm(root)Hz/W are obtained. We demonstrate that by varying the thickness, Ge content, and doping level of the single- and the multi-QWs of SiGe HIP detectors, the photoresponse peak and the cutoff of the spectrum can be tuned over a wide wavelength range. The epitaxial versatility of the Si/SiGe system enables a tailoring of the photoresponse spectrum which demonstrates the advantages of the SiGe system in comparison over commercially used silicide detectors.
A microwave cryogenic low-noise amplifier based on sige heterostructures
NASA Astrophysics Data System (ADS)
Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.
2016-04-01
A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.
Anisotropy of Seebeck coefficient in Si/Ge composite quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsin, Cheng-Lun, E-mail: clhsin@ee.ncu.edu.tw; Tsai, Yue-Yun; Lee, Sheng-Wei
2016-08-22
In this report, Si{sub 5}Ge{sub 5} alloy and Si/Ge composite quantum dots (CQDs) layers were grown on Si substrates. Seebeck coefficient (S) of Si and Ge wafers, as well as these two samples, were patterned and measured from 60 to 180 °C in [110] and [010] directions. For Si, Ge, and Si{sub 5}Ge{sub 5}, the S of each is a constant in this temperature range. However, the S of the CQDs at 60–80 °C is anomalous and much higher than the others. The behavior of the voltage difference is linear to the temperature difference even as large as 50 °C, except for CQDsmore » at 60–80 °C. This result indicates that a narrow distribution of carriers energy with a sharp change in density of state near Fermi-level and selective carrier scattering in the miniband at Si/Ge interface make the discrepancy of charge transport enhanced. The CQDs can be a good candidate for temperature sensing and thermoelectric applications due to their high S and low thermal conductivity near room temperature.« less
Flynn, G; Stokes, K; Ryan, K M
2018-05-31
Herein, we report the formation of silicon, germanium and more complex Si-SixGe1-x and Si-Ge axial 1D heterostructures, at low temperatures in solution. These nanorods/nanowires are grown using phenylated compounds of silicon and germanium as reagents, with precursor decomposition achieved at substantially reduced temperatures (200 °C for single crystal nanostructures and 300 °C for heterostructures), through the addition of a reducing agent. This low energy route for the production of these functional nanostructures as a wet chemical in high yield is attractive to meet the processing needs for next generation photovoltaics, batteries and electronics.
Performance testing of thermoelectric generators including Voyager and LES 8/9 flight results
NASA Technical Reports Server (NTRS)
Garvey, L.; Stapfer, G.
1979-01-01
Several thermoelectric generators ranging in output power from 0.5 to 155 W have been completed or are undergoing testing at JPL. These generators represent a wide range of technologies, using Bi2Te3, PbTe and SiGe thermoelectric materials. Several of these generators are of a developmental type, such as HPG S/N2, and others are representative of Transit and Multi-Hundred Watt (MHW) Technology. Representative flight performance data of LES 8/9 and Voyager RTG's are presented and compared with the DEGRA computer program based on the data observed from tests of SiGe couples, modules and MHW generators.
Sensitization pattern of crustacean-allergic individuals can indicate allergy to molluscs.
Vidal, C; Bartolomé, B; Rodríguez, V; Armisén, M; Linneberg, A; González-Quintela, A
2015-11-01
This study investigated the sensitization pattern of crustacean-allergic patients according to tolerance to molluscs. Thirty-one patients with anaphylaxis to crustaceans (14 with mollusc allergy and 17 with mollusc tolerance) were studied using skin prick tests (SPTs), specific IgEs (sIgEs) and SDS-PAGE immunoblotting. IgE-reactive shrimp proteins were identified by proteomic analyses. Patients with mollusc allergy presented more frequently SPTs positive to molluscs and higher sIgE titres in response to both molluscs and crustaceans. Shrimp-sIgE and rPen a1-sIgE values of 1.57 kUA /l and 4.38 kUA /l, respectively, showed positive likelihood ratios of 4.3 and 10.9 for the identification of mollusc allergy. Patients with mollusc allergy reacted more frequently to tropomyosin in immunoblots than did patients without it (93% vs 35%, respectively, P = 0.004). Reactivity to proteins other than tropomyosin (n = 14) was not different between the two groups. Among patients with crustacean anaphylaxis, patients with mollusc allergy and mollusc tolerance show a different pattern of sensitization, something that may help identify them. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Peng, Ying; Miao, Lei; Li, Chao; Huang, Rong; Urushihara, Daisuke; Asaka, Toru; Nakatsuka, Osamu; Tanemura, Sakae
2018-01-01
The use of nanostructured thermoelectric materials that can effectively reduce the lattice conductivity with minimal effects on electrical properties has been recognized as the most successful approach to decoupling three key parameters (S, σ, and κ) and reaching high a dimensionless figure of merit (ZT) values. Here, five-period multilayer films consisting of 10 nm B-doped Si, 1.1 nm B, and 13 nm B-doped Ge layers in each period were prepared on Si wafer substrates using a magnetron sputtering system. Nanocrystallites of 22 nm diameter were formed by post-annealing at 800 °C in a short time. The nanostructures were confirmed by X-ray diffraction analysis, Raman spectroscopy, and transmission electron microscopy. The maximum Seebeck coefficient of Si/Ge films is significantly increased to 850 µV/K at 200 °C with their electrical resistivity decreased to 1.3 × 10-5 Ω·m, and the maximum power factor increased to 5.6 × 10-2 W·m-1·K-2. The improved thermoelectric properties of Si/Ge nanostructured films are possibly attributable to the synergistic effects of interface scattering, interface barrier, and quantum dot localization.
Gap/silicon Tandem Solar Cell with Extended Temperature Range
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2006-01-01
A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.
Szecsi, Pal B; Stender, Steen
2013-01-01
Specific immunoglobulin E (IgE) antibody in vitro tests are performed on enzyme immunoassay systems. Poor agreement among systems has been reported and comparisons have been made exclusively with allergen extracts - not with recombinant allergens. Here we compare the ImmunoCAP and the IMMULITE systems. Ten patient samples with positive IgE toward egg white, birch pollen or cat or dog dander were compared using allergen extracts or the recombinant allergens Gal d 1, Bet v 1, Fel d 1 and Can f 1 with the two assay systems. Comparisons were also performed using four monoclonal mouse-human chimeric IgE antibodies specific for the same allergenic components. IMMULITE estimated a higher allergen-specific IgE concentration in sera than ImmunoCAP when testing with allergen extracts as well as recombinant allergens. The chimeric antibodies gave an equivalent response in the total IgE and specific IgE (sIgE) with an average ratio of 1.08 (range 0.9-1.3) on ImmunoCAP. In contrast, IMMULITE exhibited sIgE signals that were substantially higher than the summed level of IgE for all four chimeric antibodies (average ratio 2.96 and range 1.7-4.3). Comparison using chimeric antibodies allowed the evaluation of the true performance of the systems. ImmunoCAP measured total IgE and sIgE equally, whereas IMMULITE displayed higher sIgE signals when compared to the summed level of total IgE for all four chimeric antibodies. Results obtained with the two assay systems are not interchangeable by means of mathematical conversion. Copyright © 2013 S. Karger AG, Basel.
Module level solutions to solar cell polarization
Xavier, Grace , Li; Bo, [San Jose, CA
2012-05-29
A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.
NASA Technical Reports Server (NTRS)
Bifano, W. J.
1972-01-01
Test results are presented for a nine couple (3 x 3 array) thermoelectric panel of hybrid thermocouples. In the hybrid couple, a hollow cylinder of p-type Si-Ge is used to encapsulate a segmented PbTe/Si-Ge n-leg. The hybrid couple is predicted to offer a 10- to 15-percent improvement in performance relative to all Si-Ge couples. The efficiency, output power, and internal resistance of the panel as well as the resistances of the individual hybrid couples are presented as a function of test time covering a period of more than 2600 hours. Initial test results indicated hybrid couple performance consistent with design predictions. Extraneous resistance ranged from 20 to 25% of the hybrid couple thermoelectric resistance.
[Role of IgE-dependent reactions in atopic dermatitis].
Dynowski, Jarosław; Wasowska-Królikowska, Krystyna; Modzelewska-Hołyńska, Małgorzata; Tomaszewska, Monika; Funkowicz, Marzena
2007-01-01
Atopic dermatitis is a disease of multifactorial pathogenesis. of the study was to establish the most common allergens responsible for development of atopic symptoms in children with atopic dermatitis. the study complied 36 children aged 4 months - 3 years treated in the Department of Children Allergology, Gastroenterology and Nutrition because of atopic dermatitis. With each case the patient and family history of atopy was collected and basic laboratory tests were conducted (including total IgE and specific IgE using Polly Check system). eosinophilia was found in 11/36 children, elevated total IgE level in 16/36 and specific IgE were present in 14/36 patients. 6 patients proved to have sIgE for more then one allergen. The most commonly found allergens were animal hair, and food allergens. In 22 cases in spite of obvious clinical symptoms requiring therapy at hospital, all sIgE were negative for all tested allergens. although estimating sIgE is commonly used in diagnosing atopic dermatitis, it may not be sufficient to establish complete diagnosis. It seems that animal hair and food allergens are mainly responsible for development of atopic dermatitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okba, F.; Departement Optique et Mecanique de Precision, Faculte des Sciences de l'Ingenieur, Universite Ferhat Abbas, Setif 19000; Cherkashin, N.
2010-07-19
We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to 'clean' the top layer from pre-existing defects.
Cryogenic ultra-low-noise SiGe transistor amplifier.
Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G
2011-10-01
An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.
A theoretical analysis of the current-voltage characteristics of solar cells
NASA Technical Reports Server (NTRS)
Fang, R. C. Y.; Hauser, J. R.
1979-01-01
The following topics are discussed: (1) dark current-voltage characteristics of solar cells; (2) high efficiency silicon solar cells; (3) short circuit current density as a function of temperature and the radiation intensity; (4) Keldysh-Franz effects and silicon solar cells; (5) thin silicon solar cells; (6) optimum solar cell designs for concentrated sunlight; (7) nonuniform illumination effects of a solar cell; and (8) high-low junction emitter solar cells.
Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
NASA Astrophysics Data System (ADS)
England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.
Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications
NASA Astrophysics Data System (ADS)
Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji
2017-10-01
We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.
SiGe:C Heterojunction Bipolar Transistors: From Materials Research to Chip Fabrication
NASA Astrophysics Data System (ADS)
Ruecker, H.; Heinemann, B.; Knoll, D.; Ehwald, K.-E.
Incorporation of substitutional carbon ( ~10^20 cm^-3) into the SiGe region of a heterojunction bipolar transistor (HBT) strongly reduces boron diffusion during device processing. We describe the physical mechanism behind the suppression of B diffusion in C-rich Si and SiGe, and explain how the increased thermal stability of doping profiles in SiGe:C HBTs can be used to improve device performance. Manufacturability of SiGe:C HBTs with transit frequencies of 100 GHz and maximum oscillation frequencies of 130 GHz is demonstrated in a BiCMOS technology capable of fabricating integrated circuits for radio frequencies with high yield.
Visitsunthorn, Nualanong; Visitsuntho, Kittipos; Pacharn, Punchama; Jirapongsananuruk, Orathai; Bunnag, Chaweewan
2017-12-01
Allergen extracts may be different due to the difference in dissemination of allergen-containing species in various geographical areas. Therefore, we wish to develop our own extracts to ensure the precision and quality of diagnosis. To compare the efficacy and safety of our locally prepared pollen allergen extracts to imported ones, using skin prick testing (SPT) and serum specific IgE (sIgE) as references. This prospective, randomized, double-blinded, self-controlled study was performed in respiratory allergic adult volunteers who are sensitized to at least one kind of pollen. Each subject was pricked with our Bermuda grass, Johnson grass and careless weed pollen allergen extracts, and also with the imported ones. sIgE levels were measured by using ImmunoCAP?. In 68 volunteers, our Bermuda, Johnson and careless weed extracts showed 91.2%, 45.6% and 54.4% positive SPTs, respectively, while for the imported ones 73.5%, 45.6% and 54.4% SPTs were positive, respectively. No adverse reaction was found in all procedures. The concentration of 10,000 BAU/mL of Bermuda grass, 1 : 20 w/v or 10,000 PNU/mL of Johnson grass and 1 : 40 w/v or 10,000 PNU/mL of careless weed yielded the most positive SPT results. There was no significant difference in mean wheal diameter (MWD) yielded from using local and imported extracts. Significant correlation was found between MWDs of imported pollen extracts and serum sIgE levels (p < 0.01). No significant difference between SPT results of local and imported pollen allergen extracts was found. Significant correlation was found between MWDs of imported pollen extract SPT and serum sIgE levels.
The Effect of Interface Cracks on the Electrical Performance of Solar Cells
NASA Astrophysics Data System (ADS)
Kim, Hansung; Tofail, Md. Towfiq; John, Ciby
2018-04-01
Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.
One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review
NASA Astrophysics Data System (ADS)
Ray, Samit K.; Katiyar, Ajit K.; Raychaudhuri, Arup K.
2017-03-01
Remarkable progress has been made in the field of one-dimensional semiconductor nanostructures for electronic and photonic devices. Group-IV semiconductors and their heterostructures have dominated the years of success in microelectronic industry. However their use in photonic devices is limited since they exhibit poor optical activity due to indirect band gap nature of Si and Ge. Reducing their dimensions below a characteristic length scale of various fundamental parameters like exciton Bohr radius, phonon mean free path, critical size of magnetic domains, exciton diffusion length etc result in the significant modification of bulk properties. In particular, light emission from Si/Ge nanowires due to quantum confinement, strain induced band structure modification and impurity doping may lead to the integration of photonic components with mature silicon CMOS technology in near future. Several promising applications based on Si and Ge nanowires have already been well established and studied, while others are now at the early demonstration stage. The control over various forms of energy and carrier transport through the unconstrained dimension makes Si and Ge nanowires a promising platform to manufacture advanced solid-state devices. This review presents the progress of the research with emphasis on their potential application of Si/Ge nanowires and their heterostructures for electronic, photonic, sensing and energy devices.
Gas spectroscopy system with 245 GHz transmitter and receiver in SiGe BiCMOS
NASA Astrophysics Data System (ADS)
Schmalz, Klaus; Rothbart, Nick; Borngräber, Johannes; Yilmaz, Selahattin Berk; Kissinger, Dietmar; Hübers, Heinz-Wilhelm
2017-02-01
The implementation of an integrated mm-wave transmitter (TX) and receiver (RX) in SiGe BiCMOS or CMOS technology offers a path towards a compact and low-cost system for gas spectroscopy. Previously, we have demonstrated TXs and RXs for spectroscopy at 238 -252 GHz and 495 - 497 GHz using external phase-locked loops (PLLs) with signal generators for the reference frequency ramps. Here, we present a more compact system by using two external fractional-N PLLs allowing frequency ramps for the TX and RX, and for TX with superimposed frequency shift keying (FSK) or reference frequency modulation realized by a direct digital synthesizer (DDS) or an arbitrary waveform generator. The 1.9 m folded gas absorption cell, the vacuum pumps, as well as the TX and RX are placed on a portable breadboard with dimensions of 75 cm x 45 cm. The system performance is evaluated by high-resolution absorption spectra of gaseous methanol at 13 Pa for 241 - 242 GHz. The 2f (second harmonic) content of the absorption spectrum of the methanol was obtained by detecting the IF power of RX using a diode power sensor connected to a lock-in amplifier. The reference frequency modulation reveals a higher SNR (signal-noise-ratio) of 98 within 32 s acquisition compared to 66 for FSK. The setup allows for jumping to preselected frequency regions according to the spectral signature thus reducing the acquisition time by up to one order of magnitude.
Photovoltaic solar concentrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat
A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less
Structural and optical properties of axial silicon-germanium nanowire heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Tsybeskov, L., E-mail: tsybesko@njit.edu; Kamins, T. I.
2015-12-21
Detailed studies of the structural and optical properties of axial silicon-germanium nanowire heterojunctions show that despite the 4.2% lattice mismatch between Si and Ge they can be grown without a significant density of structural defects. The lattice mismatch induced strain is partially relieved due to spontaneous SiGe intermixing at the heterointerface during growth and lateral expansion of the Ge segment of the nanowire. The mismatch in Ge and Si coefficients of thermal expansion and low thermal conductivity of Si/Ge nanowire heterojunctions are proposed to be responsible for the thermally induced stress detected under intense laser radiation in photoluminescence and Ramanmore » scattering measurements.« less
NASA Astrophysics Data System (ADS)
Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid
2016-03-01
Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 - 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 - 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy superlattice structure display PL of high intensity while exhibiting a characteristic decay time that is up to 1000 times shorter than that found in conventional Si/SiGe nanostructures. The non-exponential PL decay found experimentally in Si/SiGe nanostructures can be interpreted as resulting from variations in the separation distance between electrons and holes at the Si/SiGe heterointerface. The results demonstrate that a sharp Si/SiGe heterointerface acts to reduce the carrier radiative recombination lifetime and increase the PL quantum
Investigation of the stability of Co-doped apatite ionic conductors in NH 3
NASA Astrophysics Data System (ADS)
Headspith, D. A.; Orera, A.; Slater, P. R.; Young, N. A.; Francesconi, M. G.
2010-12-01
Hydrogen powered solid oxide fuel cells (SOFCs) are of enormous interest as devices for the efficient and clean production of electrical energy. However, a number of problems linked to hydrogen production, storage and transportation are slowing down the larger scale use of SOFCs. Identifying alternative fuel sources to act as intermediate during the transition to the full use of hydrogen is, therefore, of importance. One excellent alternative is ammonia, which is produced on a large scale, is relatively cheap and has the infrastructure for storage and transportation already in place. However, considering that SOFCs operate at temperatures higher than 500 °C, a potential problem is the interaction of gaseous ammonia with the materials in the cathode, anode and solid electrolyte. In this paper, we extend earlier work on high temperature reactions of apatite electrolytes with NH 3 to the transition metal (Co) doped systems, La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5. A combination of PXRD, TGA and XAFS spectroscopy data showed a better structural stability for the silicate systems. Apatite silicates and germanates not containing transition metals tend to substitute nitride anions for their interstitial oxide anions, when reacted with NH 3 at high temperature and, consequentially, lower the interstitial oxide content. In La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5 reduction of Co occurs as a competing process, favouring lower levels of nitride-oxide substitution.
Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Lundsgaard Hansen, John; Nylandsted Larsen, Arne; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut
2017-01-01
Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing. PMID:28773172
Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut
2017-07-17
Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.
Latest generation of ASICs for photodetector readout
NASA Astrophysics Data System (ADS)
Seguin-Moreau, N.
2013-08-01
The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.
Combined wet and dry cleaning of SiGe(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong
Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less
Planar photovoltaic solar concentrator module
Chiang, Clement J.
1992-01-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.
Planar photovoltaic solar concentrator module
Chiang, C.J.
1992-12-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.
Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M.; Ji, Xiulei
2013-01-01
Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials. PMID:23860418
Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M; Ji, Xiulei
2013-01-01
Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials.
Solar Cell Panel and the Method for Manufacturing the Same
NASA Technical Reports Server (NTRS)
Sarver, Charles F. (Inventor); Richards, Benjamin C. (Inventor); Naidenkova, Maria (Inventor)
2016-01-01
According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.
Furuya, K; Nagao, M; Sato, Y; Ito, S; Fujisawa, T
2016-10-01
Specific IgE (sIgE) is often used to predict oral food challenge (OFC) outcomes in food allergy, but interpretation of the results may vary depending on the assay method employed and the patient population tested. The aim of this study was to use two commercial assay systems to determine egg-sIgE values predictive of allergy within the most common populations treated at pediatric clinics. In a multicenter prospective study, 433 children with suspected or confirmed egg allergy underwent oral challenge (OFC) using cooked egg (CE) and raw egg (RE) powders to diagnose either true allergy in 1-year-old (group A, n = 220) or tolerance in 2- to 6-year-old (group B, n = 213). Egg white (EW)- and ovomucoid (OM)-sIgE values were measured using the ImmunoCAP(®) sIgE (ImmunoCAP) and the IMMULITE(®) 2000 3 gAllergy(™) (3gAllergy) systems. Children were recruited from six primary care clinics and 18 hospitals in Japan. Receiver-operating characteristic (ROC) curve analysis yielded similar areas under the curve (AUC) for the two assays (0.7-0.8). The optimal cutoff values and the probability curves (PCs) of the sIgE by the two assays to predict CE and RE OFC outcomes were determined for both groups. Values for 3gAllergy were higher than for ImmunoCAP; however, correlation of sIgE and predicted probability calculated by PCs were strong between the two methods. Cutoff values and PCs for egg-sIgE established using both ImmunoCAP and 3gAllergy may be useful for predicting egg allergy in early childhood patient populations. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.
Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Reed, R. A.; McMorrow, D.; Vizkelethy, G.; Ferlet-Cavrois, V.; Baggio, J.; Duhamel, O.; Moen, K. A.; Phillips, S. D.; Diestelhorst, R. M.;
2009-01-01
IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback.
Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com; Lavoie, Christian; Jordan-Sweet, Jean
We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.
NASA Astrophysics Data System (ADS)
Malyutenko, V. K.; Malyutenko, O. Yu.; Leonov, V.; Van Hoof, C.
2009-05-01
The technology for self-supported membraneless polycrystalline SiGe thermal microemitters, their design, and performance are presented. The 128-element arrays with a fill factor of 88% and a 2.5-μm-thick resonant cavity have been grown by low-pressure chemical vapor deposition and fabricated using surface micromachining technology. The 200-nm-thick 60×60 μm2 emitting pixels enforced with a U-shape profile pattern demonstrate a thermal time constant of 2-7 ms and an apparent temperature of 700 K in the 3-5 and 8-12 μm atmospheric transparency windows. The application of the devices to the infrared dynamic scene simulation and their benefit over conventional planar membrane-supported emitters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi
2015-01-05
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less
NASA Astrophysics Data System (ADS)
Takahashi, K.; Konagai, M.
The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided.
2011-01-01
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement. PMID:21711709
Si-Ge-metal ternary phase diagram calculations
NASA Technical Reports Server (NTRS)
Fleurial, J. P.; Borshchevsky, A.
1990-01-01
Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).
Measurements of Thermophysical Properties of Molten Silicon and Geranium
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu
2001-01-01
The objective of this ground base program is to measure thermophysical properties of molten/ undercooled silicon, germanium, and Si-Ge alloys using a high temperature electrostatic levitator and in clearly assessing the need of the microgravity environment to achieve the objective with higher degrees of accuracy. Silicon and germanium are two of the most important semiconductors for industrial applications: silicon is unsurpassed as a microelectronics material, occupying more than 95% of the electronics market. Si-Ge alloy is attracting keen interest for advanced electronic and optoelectronic applications in view of its variable band gap and lattice parameter depending upon its composition. Accurate thermophysical properties of these materials are very much needed in the semiconductor industry for the growth of large high quality crystals.
Recent progress in Si thin film technology for solar cells
NASA Astrophysics Data System (ADS)
Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya
1991-11-01
Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.
Long term behavior of silicon germanium thermoelectric generators
NASA Technical Reports Server (NTRS)
Shields, V.
1981-01-01
Results of tests of the long term performance of SiGe radioisotope thermoelectric generators (RTG) are presented. Three modules were monitored for 17,000-32,300 hr at hot junction temperatures of 1,085, 1,055, and 1,000 C; coating the unicouples with a 12,000 A thick layer of Si3N4 protected the modules from Si sublimation. Output degraded less than 0.3-0.4%/1,000 hr over the testing period. Life tests on a multihundredwatt (MHW) SiGe generator with 312 couples at a hot shoe temperature of 1,040 C dealt with power of 150 W at 30 V, with 0.5%/1,000 hr performance degradation. Si deposition on the insulation was found to enhance electrical conductance until a saturation point was reached. Disassembly of a test module after 16,750 hr revealed a Mo build-up, SiN4 coating deterioration, and Ti diffustion from the hot shoe to cooler regions of the junction. The presence of an Al2O3 insulator was recognized as preventing coating loss. Performance records from the Voyager and Les-8 satellites' RTG's are compared and show similar, 0.25%/1,000 hr degradation rates; RTG storage is judged to be feasible and the tests lead to projections of a 600,000 hr lifetime for a SiGe RTG.
NREL Scientists Report First Solar Cell Producing More Electrons In
Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell
Chen, Guanying; Ning, Zhijun; Ågren, Hans
2016-08-09
We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.
Salo, Päivi M.; Arbes, Samuel J.; Jaramillo, Renee; Calatroni, Agustin; Weir, Charles H.; Sever, Michelle L.; Hoppin, Jane A.; Rose, Kathryn M.; Liu, Andrew H.; Gergen, Peter J.; Mitchell, Herman E.; Zeldin, Darryl C.
2014-01-01
Background Allergic sensitization is an important risk factor for the development of atopic disease. The National Health and Nutrition Examination Survey (NHANES) 2005–2006 provides the most comprehensive information on IgE-mediated sensitization in the general US population. Objective We investigated clustering, sociodemographic and regional patterns of allergic sensitization and examined risk factors associated with IgE-mediated sensitization. Methods Data for this cross-sectional analysis were obtained from NHANES 2005–2006. Participants aged ≥1 year (N=9440) were tested for sIgEs to inhalant and food allergens; participants ≥6 years were tested for 19 sIgEs, and children aged 1–5 years for 9 sIgEs. Serum samples were analyzed using the ImmunoCAP System. Information on demographics and participant characteristics was collected by questionnaire. Results Of the study population aged 6 and older, 44.6% had detectable sIgEs, while 36.2% of children aged 1–5 years were sensitized to ≥1 allergen. Allergen-specific IgEs clustered into 7 groups that might have largely reflected biological cross-reactivity. Although sensitization to individual allergens and allergen types showed regional variation, the overall prevalence of sensitization did not differ across census regions, except in early childhood. In multivariate modeling, young age, male gender, non-Hispanic black race/ethnicity, geographic location (census region), and reported pet avoidance measures were most consistently associated with IgE-mediated sensitization. Conclusions The overall prevalence of allergic sensitization does not vary across US census regions, except in early life, although allergen-specific sensitization differs by sociodemographic and regional factors. Biological cross-reactivity may be an important, but not a sole, contributor to the clustering of allergen-specific IgEs. Clinical implications IgE-mediated sensitization shows clustering patterns and differs by sociodemographic and regional factors, but the overall prevalence of sensitization may not vary across US census regions. PMID:24522093
Silicon solar cell process. Development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Tanner, D. P.
1978-01-01
Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.
Power Systems Evaluated for Solar Electric Propulsion Vehicles
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Gefert, Leon P.
2000-01-01
Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several photovoltaic array design concepts were considered for the SEP vehicle power system for the human mission to Mars. These include a space station derivative, a SCARLET (Solar Concentrator Arrays with Refractive Linear Element Technology) derivative, and a hybrid inflatable-deployable thin polymer membrane array with thin-film solar cells (as shown in the concept illustration). This concept is based on a design developed for the Next Generation Space Telescope Sun shield. The array is divided into 16 independent electrical sections with 500-V, negative-grounded solar cell strings. The power system employs a channelized, 500-Vdc power management and distribution (PMAD) architecture with lithium ion batteries for energy storage for vehicle and payload secondary loads (the high-power Hall thrusters do not operate in eclipse periods). The 500-V PMAD voltage permits "direct-drive" thruster operation, greatly reducing the power processing unit size, complexity, and power loss. Similar power system architecture, designs, and technology are assumed for the Europa Mapper Mission SEP vehicle. The primary exceptions are that the photovoltaic array is assumed to consist of two rectangular wings and that the power system rating is 15 kW in Earth orbit and 200 W at Europa. To size the SEP vehicle power system, a dedicated Fortran code was developed to predict detailed power system performance, mass, and thermal control requirements. This code also modeled all the relevant Earth orbit environments; that is, the particulate radiation, plasma, meteoroids and debris, ultraviolet radiation, contamination, and thermal conditions. Analysis results for the Human Mars Mission SEP vehicle show a power system mass of 9-MT and photovoltaic array area of 5800-square meters for the thin-membrane design concept with CuInS2 thin-film cells. Power processing unit input power for a thin-membrane array design with three-junction, amorphous SiGe solar cells is shown in the graph. Power falls off rapidly inhe first weeks of the mission because of light-induced (Staebler-Wronksi) solar cell losses. During the next 200 days, power decreases steadily as the SEP stage spirals through the proton belts and sustains the bulk of the mission radiation damage. Once the vehicle apogee is above approximately four Earth radii, little additional degradation is incurred. From 400 to 800 days, a 1100-km "parking" orbit is maintained to await the next payload transfer opportunity. This orbit is below the main proton belt, and thus, little radiation dose is accumulated during this time period. During the second LEO-to-HEEPO transfer, power degrades somewhat further, but power requirements are still met. In comparison, the Europa Mapper SEP vehicle power system had a mass of 150 kg and a thin membrane array area of 100 square meters.
A review of recent progress in heterogeneous silicon tandem solar cells
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki
2018-04-01
Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.
1991-01-01
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.
Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.
Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H
2015-07-16
Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).
Semiconductor Nanocrystals as Light Harvesters in Solar Cells
Etgar, Lioz
2013-01-01
Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318
2011-01-01
On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172
Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott
2010-10-01
Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.
Improved electrical properties of n-type SiGe alloys
NASA Technical Reports Server (NTRS)
Scoville, A. N.; Bajgar, Clara; Vandersande, Jan; Fleurial, Jean-Pierre
1992-01-01
The effect of changes in the carrier concentration and mobility for heavily doped n-type SiGe on the electrical power factor has been investigated. It has been shown that power factors of 37-40 microV/cm-K-squared can be achieved with carrier concentrations of 2.0 - 2.5 x 10 exp 20/cu cm and mobilities of 38-40 sq cm/V-sec. Many samples with suitable carrier concentration do not have high mobilities and some rationale for this behavior is presented. Initial results are presented on fabrication of n-type samples from ultrafine powders. The emphasis in this work is to achieve thermal conductivity reductions by adding inert particles to scatter midfrequency phonons.
Differential Resonant Ring YIG Tuned Oscillator
NASA Technical Reports Server (NTRS)
Parrott, Ronald A.
2010-01-01
A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.
Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power
NASA Technical Reports Server (NTRS)
Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.
2004-01-01
The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.
Recent advances of flexible hybrid perovskite solar cells
NASA Astrophysics Data System (ADS)
Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk
2017-11-01
Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.
NREL Scientists Demonstrate Remarkable Stability in Perovskite Solar Cells
environmentally stable, high-efficiency perovskite solar cell, bringing the emerging technology a step closer to needed to make the devices durable enough for long-term use. NREL's unencapsulated solar cell-a cell used Unencapsulated Perovskite Solar Cells for >1000 Hours of Operational Stability." "A solar cell in
A review on solar cells from Si-single crystals to porous materials and quantum dots
Badawy, Waheed A.
2013-01-01
Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed. PMID:25750746
A review on solar cells from Si-single crystals to porous materials and quantum dots.
Badawy, Waheed A
2015-03-01
Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.
A numerical model for charge transport and energy conversion of perovskite solar cells.
Zhou, Yecheng; Gray-Weale, Angus
2016-02-14
Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.
Modeling the Effects of Solar Cell Distribution on Optical Cross Section for Solar Panel Simulation
2012-09-01
cell material. The solar panel was created as a CAD model and simulated with the imaging facility parameters with TASAT. TASAT uses a BRDF to apply...1 MODELING THE EFFECTS OF SOLAR CELL DISTRIBUTION ON OPTICAL CROSS SECTION FOR SOLAR PANEL SIMULATION Kelly Feirstine Meiling Klein... model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of “solar cell” material
Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications
Zhou, Keya; Guo, Zhongyi; Liu, Shutian; Lee, Jung-Ho
2015-01-01
Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the material costs. In this article, we review current approaches on different kinds of solar cells, such as crystalline silicon (c-Si) and amorphous silicon (a-Si) thin film solar cells, organic solar cells, nanowire array solar cells, and single nanowire solar cells. PMID:28793457
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell
NASA Technical Reports Server (NTRS)
Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.
1989-01-01
Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.
Titanium-based silicide quantum dot superlattices for thermoelectrics applications.
Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles
2015-07-10
Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.
Zhao, Dewei; Yu, Yue; Wang, Changlei; ...
2017-03-01
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dewei; Yu, Yue; Wang, Changlei
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging
NASA Astrophysics Data System (ADS)
Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.
2015-06-01
Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750°C. The hot surface of the TE module reached 550°C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400°C.
GaAs Solar Cell Radiation Handbook
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.
1996-01-01
The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.
The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.
1979-01-01
The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.
Hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2016-04-12
An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.
Materials That Enhance Efficiency and Radiation Resistance of Solar Cells
NASA Technical Reports Server (NTRS)
Sun, Xiadong; Wang, Haorong
2012-01-01
A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.
Hybrid Perovskites: Prospects for Concentrator Solar Cells.
Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M
2018-04-01
Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.
Hybrid Perovskites: Prospects for Concentrator Solar Cells
Lin, Qianqian; Wang, Zhiping; Snaith, Henry J.; Johnston, Michael B.
2018-01-01
Abstract Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley–Queisser limit stipulated for a single‐junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge‐carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy‐conversion efficiencies under solar concentration, where they are able to exceed the Shockley–Queisser limit and exhibit strongly elevated open‐circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications. PMID:29721426
Silicon-based optoelectronics: Monolithic integration for WDM
NASA Astrophysics Data System (ADS)
Pearson, Matthew Richard T.
2000-10-01
This thesis details the development of enabling technologies required for inexpensive, monolithic integration of Si-based wavelength division multiplexing (WDM) components and photodetectors. The work involves the design and fabrication of arrayed waveguide grating demultiplexers in silicon-on-insulator (SOI), the development of advanced SiGe photodetectors capable of photodetection at 1.55 mum wavelengths, and the development of a low cost fabrication technique that enables the high volume production of Si-based photonic components. Arrayed waveguide grating (AWG) demultiplexers were designed and fabricated in SOI. The fabrication of AWGs in SOI has been reported in the literature, however there are a number of design issues specific to the SOI material system that can have a large effect on device performance and design, and have not been theoretically examined in earlier work. The SOI AWGs presented in this thesis are the smallest devices of this type reported, and they exhibit performance acceptable for commercial applications. The SiGe photodetectors reported in the literature exhibit extremely low responsivities at wavelengths near 1.55 mum. We present the first use of three dimensional growth modes to enhance the photoresponse of SiGe at 1.55 mum wavelengths. Metal semiconductor-metal (MSM) photodetectors were fabricated using this undulating quantum well structure, and demonstrate the highest responsivities yet reported for a SiGe-based photodetector at 1.55 mum. These detectors were monolithically integrated with low-loss SOI waveguides, enabling integration with nearly any Si-based passive WDM component. The pursuit of inexpensive Si-based photonic components also requires the development of new manufacturing techniques that are more suitable for high volume production. This thesis presents the development of a low cost fabrication technique based on the local oxidation of silicon (LOCOS), a standard processing technique used for Si integrated circuits. This process is developed for both SiGe and SOI waveguides, but is shown to be commercially suitable only for SOI waveguide devices. The technique allows nearly any Si microelectronics fabrication facility to begin manufacturing optical components with minimal change in processing equipment or techniques. These enabling technologies provide the critical elements for inexpensive, monolithic integration in a Si-based system.
Haxel, Boris R; Huppertz, Tilman; Boessert, Patrick; Bast, Florian; Fruth, Kai
2016-01-01
Allergen-specific immunotherapy for house-dust mite (HDM) allergies is associated with lower success rates when compared with similar treatments for other inhalant allergens, such as grass or birch. One reason might be the greater difficulty in diagnosing patients with assumed HDM allergies because symptoms occur perennially and may differ from those of a conventional allergic rhinitis. The aim of the study was to compare the different methods of diagnosis in patients with assumed HDM allergy. We performed a retrospective analysis of nasal provocation tests (NPT) from patients (n = 161) evaluated for Dermatophagoides pteronyssinus (n = 127) and Dermatophagoides farinae (n = 104) allergies, and compared the results with other allergen testing methods (skin-prick test [SPT], intracutaneous test, and allergen specific immunoglobulin E levels [sIgE] to detect sensitization). Receiver operating characteristic curves were used for the analyses and the areas under the curve were calculated. For D. pteronyssinus and D. farinae, 86 and 70 complete data files, respectively, were available. For both tested HDMs, the results of the receiver operating characteristic curves showed a significant correlation for SPT and sIgE, with the results of the NPT (area under the curve, 0.742 to 0.763) but not for the intracutaneous test. In patients with a positive SPT (≥3 mm), an allergy was confirmed by the NPT in 69% of cases for D. pteronyssinus and 71% for D. farinae. A positive sIgE result (ImmunoCAP class of ≥2) was verified by the NPT in 69% of cases (D. pteronyssinus) and 70% (D. farinae). The predictability value for a positive NPT result is best for SPT and sIgE. Nevertheless, even if the results of both test systems are combined, the positive predictive value that was achieved was only 0.77 for D. pteronyssinus and 0.69 for D. farinae. Therefore, in patients eligible for immunotherapy for HDM, an NPT should be performed before the start of the therapy to verify a clinically relevant allergy.
Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells.
Chowdhury, Towhid H; Islam, Ashraful; Mahmud Hasan, A K; Terdi, M Asri Mat; Arunakumari, M; Prakash Singh, Surya; Alam, Md Khorshed; Bedja, Idriss M; Hafidz Ruslan, Mohd; Sopian, Kamaruzzaman; Amin, Nowshad; Akhtaruzzaman, Md
2016-04-01
Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.
2015-09-08
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Solar cell with back side contacts
Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J
2013-12-24
A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.
NASA Astrophysics Data System (ADS)
The state-of-the-art in amorphous solar cells is reviewed in terms of polycrystalline silicon solar cells, single crystal silicon solar cells, and methods of characterizing solar cells, including dielectric liquid immersion to increase cell efficiency. Compound semiconductor solar cells are explored, and new structures and advanced solar cell materials are discussed. Film deposition techniques for fabricating amorphous solar cells are presented, and the characterization, in addition to the physics and the performance, of amorphous solar cells are examined.
NASA Astrophysics Data System (ADS)
Perl, Emmett Edward
Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as a top junction. These designs maximize reflection of high-energy light for an InGaN top junction while minimizing reflection of low-energy light that would be absorbed by the lower four junctions. Increasing the reflectivity of high-energy photons enables a second pass of light through the InGaN cell, leading to increased absorption and a higher photocurrent. These optical designs enhanced the efficiency of a 2.65eV InGaN solar cell to a value of 3.3% under the AM0 spectrum, the highest reported efficiency for a standalone InGaN solar cell. The second half of the dissertation describes the development of III-V solar cells for high-temperature applications. As the operating temperature of a solar cell is increased, the ideal bandgap of the top junction increases. AlGaInP solar cells with bandgaps ranging from 1.9eV to 2.2eV are developed. A 2.03eV AlGaInP solar cell is demonstrated with a bandgap-voltage offset of 440mV, the lowest of any AlGaInP solar cell reported to date. Single-junction AlGaInP, GaInP, and GaAs solar cells designed for high-temperature operation are characterized up to a temperature of 400°C. The cell properties are compared to an analytical drift-diffusion model, and we find that a fundamental increase in the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. These findings provide a valuable guide to the design of any system that requires high-temperature solar cell operation.
Use of solar cell in electrokinetic remediation of cadmium-contaminated soil.
Yuan, Songhu; Zheng, Zhonghua; Chen, Jing; Lu, Xiaohua
2009-03-15
This preliminary study used a solar cell, instead of direct current (DC) power supply, to generate electric field for electrokinetic (EK) remediation of cadmium-contaminated soil. Three EK tests were conducted and compared; one was conducted on a cloudy and rainy day with solar cell, one was conducted on a sunny day with solar cell and another was conducted periodically with DC power supply. It was found that the output potential of solar cell depended on daytime and was influenced by weather conditions; the applied potential in soil was affected by the output potential and weather conditions, and the current achieved by solar cell was comparable with that achieved by DC power supply. Solar cell could be used to drive the electromigration of cadmium in contaminated soil, and removal efficiency achieved by solar cell was comparable with that achieved by DC power supply. Compared with traditional DC power supply, using solar cell as power supply for EK remediation can greatly reduce energy expenditure. This study provided an alternative to improve the EK soil remediation and expanded the use of solar cell in environmental remediation.
Arrays of ultrathin silicon solar microcells
Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred
2015-08-11
Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.
Arrays of ultrathin silicon solar microcells
Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred
2014-03-25
Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.
Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter
2017-06-01
Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.
Compatibility of segmented thermoelectric generators
NASA Technical Reports Server (NTRS)
Snyder, J.; Ursell, T.
2002-01-01
It is well known that power generation efficiency improves when materials with appropriate properties are combined either in a cascaded or segmented fashion across a temperature gradient. Past methods for determining materials used in segmentation weremainly concerned with materials that have the highest figure of merit in the temperature range. However, the example of SiGe segmented with Bi2Te3 and/or various skutterudites shows a marked decline in device efficiency even though SiGe has the highest figure of merit in the temperature range. The origin of the incompatibility of SiGe with other thermoelectric materials leads to a general definition of compatibility and intrinsic efficiency. The compatibility factor derived as = (Jl+zr - 1) a is a function of only intrinsic material properties and temperature, which is represented by a ratio of current to conduction heat. For maximum efficiency the compatibility factor should not change with temperature both within a single material, and in the segmented leg as a whole. This leads to a measure of compatibility not only between segments, but also within a segment. General temperature trends show that materials are more self compatible at higher temperatures, and segmentation is more difficult across a larger -T. The compatibility factor can be used as a quantitative guide for deciding whether a material is better suited for segmentation orcascading. Analysis of compatibility factors and intrinsic efficiency for optimal segmentation are discussed, with intent to predict optimal material properties, temperature interfaces, and/or currentheat ratios.
Reduction in the formation temperature of Poly-SiGe alloy thin film in Si/Ge system
NASA Astrophysics Data System (ADS)
Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Sarguna, R. M.; Magudapathy, P.; Ilango, S.
2018-04-01
The role of deposition temperature in the formation of poly-SiGe alloy thin film in Si/Ge system is reported. For the set ofsamples deposited without any intentional heating, initiation of alloying starts upon post annealingat ˜ 500 °C leading to the formation of a-SiGe. Subsequently, poly-SiGe alloy phase could formonly at temperature ≥ 800 °C. Whereas, for the set of samples deposited at 500 °C, in-situ formation of poly-SiGe alloy thin film could be observed. The energetics of the incoming evaporated atoms and theirsubsequent diffusionsin the presence of the supplied thermal energy is discussed to understand possible reasons for lowering of formation temperature/energyof the poly-SiGe phase.
Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.
Biswas, Rana; Timmons, Erik
2013-09-09
A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.
Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors
NASA Astrophysics Data System (ADS)
Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.
2016-03-01
Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.
Enhancing Solar Cell Efficiencies through 1-D Nanostructures
2009-01-01
The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.
A theoretical analysis of the current-voltage characteristics of solar cells
NASA Technical Reports Server (NTRS)
Fang, R. C. Y.; Hauser, J. R.
1977-01-01
The correlation of theoretical and experimental data is discussed along with the development of a complete solar cell analysis. The dark current-voltage characteristics, and the parameters for solar cells are analyzed. The series resistance, and impurity gradient effects on solar cells were studied, the effects of nonuniformities on solar cell performance were analyzed.
Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.
Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming
2016-12-01
Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.
NASA Astrophysics Data System (ADS)
Tayubi, Y. R.; Suhandi, A.; Samsudin, A.; Arifin, P.; Supriyatman
2018-05-01
Different approaches have been made in order to reach higher solar cells efficiencies. Concepts for multilayer solar cells have been developed. This can be realised if multiple individual single junction solar cells with different suitably chosen band gaps are connected in series in multi-junction solar cells. In our work, we have simulated and optimized solar cells based on the system mechanically stacked using computer simulation and predict their maximum performance. The structures of solar cells are based on the single junction GaAs, GaAs0.5Sb0.5 and GaSb cells. We have simulated each cell individually and extracted their optimal parameters (layer thickness, carrier concentration, the recombination velocity, etc), also, we calculated the efficiency of each cells optimized by separation of the solar spectrum in bands where the cell is sensible for the absorption. The optimal values of conversion efficiency have obtained for the three individual solar cells and the GaAs/GaAs0.5Sb0.5/GaSb tandem solar cells, that are: η = 19,76% for GaAs solar cell, η = 8,42% for GaAs0,5Sb0,5 solar cell, η = 4, 84% for GaSb solar cell and η = 33,02% for GaAs/GaAs0.5Sb0.5/GaSb tandem solar cell.
Analytical determination of critical crack size in solar cells
NASA Technical Reports Server (NTRS)
Chen, C. P.
1988-01-01
Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.
Partially suppressed shot noise in hopping conduction: observation in SiGe quantum wells
Kuznetsov; Mendez; Zuo; Snider; Croke
2000-07-10
We have observed shot noise in the hopping conduction of two-dimensional carriers confined in a p-type SiGe quantum well at a temperature of 4 K. Moreover, shot noise is suppressed relative to its "classical" value 2eI by an amount that depends on the length of the sample and the carrier density. We have found a suppression factor to the classical value of about one-half for a 2 &mgr;m long sample, and of one-fifth for a 5 &mgr;m sample. In each case, the factor decreased slightly as the density increased toward the insulator-metal transition. We explain these results in terms of the characteristic length ( approximately 1 &mgr;m in our case) of the inherent inhomogeneity of hopping transport, obtained from percolation theory.
NREL Inks Technology Agreement for High Efficiency Multijunction Solar
) multijunction solar cells. While high-efficiency multijunction solar cells are commonly used for space Devices is excited to now be commercializing IMM solar cells for high-performance space and UAV Cells | News | NREL Inks Technology Agreement for High Efficiency Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Kim, H. J.; Zhao, Z. M.; Xie, Y. H.
2003-11-01
Three-stage nucleation and growth of Ge self-assembled quantum dots (SAQDs) on a relaxed SiGe buffer layer has been studied. Plastic relaxation of the SiGe buffer layer is associated with a network of buried 60° dislocations leading to an undulating strain field. As a result, the surface possesses three different types of sites for the nucleation and growth of Ge SAQDs: over the intersection of two perpendicular buried dislocations, over a single dislocation line, and in the region beyond one diffusion length away from any dislocation. Ge SAQDs are observed to nucleate exclusively over the dislocation intersections first, followed by over single dislocation lines, and finally in the region far away from dislocations. By increasing the Ge coverage at a slow rate, the prenucleation stage at the various sites is observed. It appears that the varying strain field has a significant effect on both the diffusion of Ge adatoms before SAQD nucleation, as well as the shape evolution of the SAQDs after they form. Moreover, two distinctly different self-assembly mechanisms are observed at different sites. There exist denuded zones free of Ge SAQDs adjacent to dislocation lines. The width of the denuded zone can be used to make direct determination of the Ge adatom diffusion lengths. The partially relaxed substrate provides a useful experimental vehicle for the in-depth understanding of the formation mechanism of SAQDs grown epitaxially in the Stranski-Krastanov growth mode.
The enhanced efficiency of graphene-silicon solar cells by electric field doping.
Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren
2015-04-28
The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.
Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.
Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T
2015-09-04
We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yablonsky, A. N., E-mail: yablonsk@ipmras.ru; Zhukavin, R. Kh.; Bekin, N. A.
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si{sub 0.8}5Ge{sub 0.15}more » layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.« less
Automated solar module assembly line
NASA Technical Reports Server (NTRS)
Bycer, M.
1980-01-01
The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.
Efficient CsF interlayer for high and low bandgap polymer solar cell
NASA Astrophysics Data System (ADS)
Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan
2018-02-01
Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.
Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nuo; Lu, Ning; Yao, Yong-Xin
2013-02-28
Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less
Towards stable silicon nanoarray hybrid solar cells.
He, W W; Wu, K J; Wang, K; Shi, T F; Wu, L; Li, S X; Teng, D Y; Ye, C H
2014-01-16
Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.
Towards stable silicon nanoarray hybrid solar cells
He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.
2014-01-01
Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells. PMID:24430057
Theoretical and experimental research in space photovoltaics
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria
1995-01-01
Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.
Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air.
Ito, Nozomi; Kamarudin, Muhammad Akmal; Hirotani, Daisuke; Zhang, Yaohong; Shen, Qing; Ogomi, Yuhei; Iikubo, Satoshi; Minemoto, Takashi; Yoshino, Kenji; Hayase, Shuzi
2018-04-05
Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4-1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation.
Organic solar cells and physics education
NASA Astrophysics Data System (ADS)
Csernovszky, Zoltán; Horváth, Ákos
2018-07-01
This paper explains the operational principles of a home-made organic solar cell with the representation of an electron-cycle on an energy-level diagram. We present test data for a home-made organic solar cell which operates as a galvanic cell and current source in an electrical circuit. To determine the maximum power of the cell, the optimal current was estimated with a linear approximation. Using different light sources and dyes, the electrical properties of organic solar cells were compared. The solar cells were studied by looking at spectrophotometric data from different sensitizer dyes, generated by a do-it-yourself diffraction grating spectroscope. The sensitizer dyes of solar cells were tested by the diffraction grating spectroscope. The data were analysed on a light-intensity‑wavelength diagram to discover which photons were absorbed and to understand the colours of the fruits containing these dyes. In terms of theoretical applications, the paper underlines the analogous nature of organic solar cells, a conventional single p‑n junction solar cell and the light-dependent reactions of photosynthesis, using energy-level diagrams of electron-cycles. To conclude, a classification of photon‑electron interactions in molecular systems and crystal lattices is offered, to show the importance of organic solar cells.
Interdigitated Back-Surface-Contact Solar Cell Modeling Using Silvaco Atlas
2015-06-01
11 2. Solar Spectrum ...................................................................................13 3. PV Cell Efficiency...Figure 10. Spectrum of solar radiance, from [12]. 14 3. PV Cell Efficiency There are many factors that affect the efficiency of a solar cell. Metal...BACK-SURFACE-CONTACT SOLAR CELL MODELING USING SILVACO ATLAS by Shawn E. Green June 2015 Thesis Advisor: Sherif Michael Second Reader
Fullerene surfactants and their use in polymer solar cells
Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi
2015-12-15
Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.
Third Working Meeting on Gallium Arsenide Solar Cells
NASA Technical Reports Server (NTRS)
Walker, G. H. (Compiler)
1976-01-01
Research results are reported for GaAs Schottky barrier solar cells, GaAlAs/GaAs heteroface solar cells, and GaAlAs graded band gap solar cells. Related materials studies are presented. A systems study for GaAs and Si solar concentrator systems is given.
Highly efficient light management for perovskite solar cells
Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang
2016-01-01
Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112
Highly efficient light management for perovskite solar cells
NASA Astrophysics Data System (ADS)
Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang
2016-01-01
Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.
Highly efficient light management for perovskite solar cells.
Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang
2016-01-06
Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.
Review of status developments of high-efficiency crystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng
2018-03-01
In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.
Solar Cell Fabrication Studies Pertinent to Developing Countries.
NASA Astrophysics Data System (ADS)
Prah, Joseph Henry
That there is a need in the world today, and in the Third World in particular, for developing renewable energy sources is a proposition without question. Toward that end, the harnessing of solar energy has attracted much attention recently. In this thesis, we have addressed the question of Photovoltaics among the many approaches to the problem as being of poignant relevance in the Third World. Based on our studies, which involved the physics of solar cells, various solar cell configurations, the materials for their fabrication and their fabrication sequences, we arrived at the conclusion that silicon homojunction solar cells are best suited to the present needs and environment of, and suitable for development in the Third World, though Cadmium Sulphide-Cuprous Sulphide solar cell could be considered as a viable future candidate. Attendant with the adoption of photovoltaics as electric energy supply, is the problem of technology transfer and development. Towards that goal, we carried out in the laboratory, the fabrication of solar cells using very simple fabrication sequences and materials to demonstrate that tolerable efficiencies are achievable by their use. The view is also presented that for a thriving and viable solar cell industry in the Third World, the sine qua non is an integrated national policies involving all facets of solar cell manufacture and application, namely, material processing and fabrication, basic research, and development and socio -economic acceptance of solar cell appliances. To demonstrate how basic research could benefit solar cell fabrication, we undertook a number of experiments, such as varying our fabrication sequences and materials, finding their radiation tolerance, and carrying out Deep Level Transient Spectroscopy (DLTS) studies, in an attempt to understand some of the fabrication and environmental factors which limit solar cell performance. We thus found that subjecting wafers to preheat treatments does not improve solar cell performance, but rather reduces solar cell radiation tolerance. Also P-type substrate solar cells were found to be more radiation resistant than N-type substrate solar cells. The Deep Level Transient Spectroscopy results showed that carbon and oxygen, as one would expect, are chief contaminants of the silicon wafers that we used in the fabrication of our solar cells. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI.
GaAs Solar Cell Radiation Handbook
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.
1996-01-01
History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.
Photovoltaic solar concentrator
Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.
2016-03-15
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Photovoltaic solar concentrator
Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis
2012-12-11
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Spoerl, D; Bircher, A J; Scherer, K
2011-01-01
Venom immunotherapy (VIT) has proven to be efficacious in reducing the severity of anaphylactic reactions following field stings in patients with Hymenoptera venom allergy. Due to sequence homologies in the allergens used in Hymenoptera vaccines, there is concern that immunotherapy could lead to sensitization to allergens to which patients were not previously sensitized. The relevance of such an undesired phenomenon is unclear. To investigate the incidence of sensitization to Hymenoptera venoms other than those to which the patients were already sensitized and to assess the overall safety profile of VIT in order to compare the risk-benefit ratio in a subpopulation of monosensitized individuals. We performed a retrospective analysis of specific immunoglobulin E (sIgE) levels in patients with no prior detectable sIgE to Hymenoptera venom other than the one for which they received VIT. We assessed the safety profile of VIT using serological and clinical parameters. Of the 56 monosensitized patients who had VIT, 3 (5%) developed sIgE to the other insect with no history of field sting to explain it. This rate was similar to the rate of new sensitization due to field stings during VIT. VIT was well-tolerated and levels of serological markers improved. No patient had a systemic anaphylactic reaction after having been stung by an insect other than the one he/she was desensitized for during follow-up. VIT seems to be safe with respect to clinically significant new sensitizations.
High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.
Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei
2016-06-01
Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene).
Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO(2)/P3HT) heterojuction. In this solar cell, TiO(2) is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm(-2), the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells.
An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)
Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470
Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L
2017-07-12
We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.
Front contact solar cell with formed electrically conducting layers on the front side and backside
Cousins, Peter John
2012-06-26
A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.
Development of a Thin Film Solar Cell Interconnect for the Powersphere Concept
NASA Technical Reports Server (NTRS)
Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen
2003-01-01
Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the Powersphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference.
Results of the 1973 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Yasui, R. K.; Greenwood, R. F.
1975-01-01
High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabbar, Muhandis Abdul, E-mail: muhandis.abdul@sci.ui.ac.id; Prawito
A solar cell is one of many alternative energy which is still being developed and it works by converting sunlight into electricity. In order to use a solar cell, a deep knowledge about the solar cell’s characteristics is needed. The current and voltage (I-V) produced when the light hits the solar cell surface with a certain value of intensity and at a certain value of temperature becomes the basic study to determine solar cell characteristics. In the past decade, there were so many developments of devices to characterize solar cells and solar panels. One of them used a MOSFET devicemore » for varying electronic load to observe solar cell current and voltage responses. However, many devices which have been developed even device on the market using many expensive tools and quite complex. Therefore in this research, a simple low cost electronic controlled device for solar cell characterization is built based on MOSFET method and a microcontroller but still has high reliability and accuracy.« less
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1979-01-01
Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
High saturation solar light beam induced current scanning of solar cells.
Vorster, F J; van Dyk, E E
2007-01-01
The response of the electrical parameters of photovoltaic cells under concentrated solar irradiance has been the subject of many studies performed in recent times. The high saturation conditions typically found in solar cells that are subjected to highly concentrated solar radiation may cause electrically active cell features to behave differently than under monochromatic laser illumination, normally used in light beam induced current (LBIC) investigations. A high concentration solar LBIC (S-LBIC) measurement system has been developed to perform localized cell characterization. The responses of silicon solar cells that were measured qualitatively include externally biased induced cell current at specific cell voltages, I(V), open circuit voltage, V(oc), and the average rate of change of the cell bias with the induced current, DeltaV/DeltaI(V), close to the zero bias region. These images show the relative scale of the parameters of a cell up to the penetration depth of the solar beam and can be obtained with relative ease, qualifying important electrical response features of the solar cell. The S-LBIC maps were also compared with maps that were similarly obtained using a high intensity He-Ne laser beam probe. This article reports on the techniques employed and initial results obtained.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1994-01-01
The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.
Enhancing Solar Cell Efficiency Using Photon Upconversion Materials
Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying
2015-01-01
Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
Studies of silicon p-n junction solar cells
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Lindholm, F. A.
1979-01-01
To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.
NASA Astrophysics Data System (ADS)
Zhang, Yaoju; Zheng, Jun; Zhao, Xuesong; Ruan, Xiukai; Cui, Guihua; Zhu, Haiyong; Dai, Yuxing
2018-03-01
A practical model of crystalline silicon-wafer solar cells is proposed in order to enhance the light absorption and improve the conversion efficiency of silicon solar cells. In the model, the front surface of the silicon photovoltaic film is designed to be a textured-triangular-grating (TTG) structure, and the ITO contact film and the antireflection coating (ARC) of glass are coated on the TTG surface of silicon solar cells. The optical absorption spectrum of solar cells are simulated by applying the finite difference time domain method. Electrical parameters of the solar cells are calculated using two models with and without carrier loss. The effect of structure parameters on the performance of the TTG cell is discussed in detail. It is found that the thickness (tg) of the ARC, period (p) of grating, and base angle (θ) of triangle have a crucial influence on the conversion efficiency. The optimal structure of the TTG cell is designed. The TTG solar cell can produce higher efficiency in a wide range of solar incident angle and the average efficiency of the optimal TTG cell over 7:30-16:30 time of day is 8% higher than that of the optimal plane solar cell. In addition, the study shows that the bulk recombination of carriers has an influence on the conversion efficiency of the cell, the conversion efficiency of the actual solar cell with carrier recombination is reduced by 20.0% of the ideal cell without carrier recombination.
NASA Astrophysics Data System (ADS)
Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong
2018-05-01
The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.
Methods for fabricating thin film III-V compound solar cell
Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve
2011-08-09
The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.
Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Xiao, Sanshui; Mortensen, Niels A.
2012-10-01
Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.
2017-01-01
Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells. PMID:28920081
Futscher, Moritz H; Ehrler, Bruno
2017-09-08
Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells.
Front contact solar cell with formed emitter
Cousins, Peter John
2014-11-04
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Front contact solar cell with formed emitter
Cousins, Peter John [Menlo Park, CA
2012-07-17
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells
NASA Astrophysics Data System (ADS)
Saadah, Mohammed Ahmed
The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.
A Short Progress Report on High-Efficiency Perovskite Solar Cells.
Tang, He; He, Shengsheng; Peng, Chuangwei
2017-12-01
Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.
Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong
2018-06-27
The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
Single-Event Effects in High-Frequency Linear Amplifiers: Experiment and Analysis
NASA Astrophysics Data System (ADS)
Zeinolabedinzadeh, Saeed; Ying, Hanbin; Fleetwood, Zachary E.; Roche, Nicolas J.-H.; Khachatrian, Ani; McMorrow, Dale; Buchner, Stephen P.; Warner, Jeffrey H.; Paki-Amouzou, Pauline; Cressler, John D.
2017-01-01
The single-event transient (SET) response of two different silicon-germanium (SiGe) X-band (8-12 GHz) low noise amplifier (LNA) topologies is fully investigated in this paper. The two LNAs were designed and implemented in 130nm SiGe HBT BiCMOS process technology. Two-photon absorption (TPA) laser pulses were utilized to induce transients within various devices in these LNAs. Impulse response theory is identified as a useful tool for predicting the settling behavior of the LNAs subjected to heavy ion strikes. Comprehensive device and circuit level modeling and simulations were performed to accurately simulate the behavior of the circuits under ion strikes. The simulations agree well with TPA measurements. The simulation, modeling and analysis presented in this paper can be applied for any other circuit topologies for SET modeling and prediction.
Assessment of a Solar Cell Panel Spatial Arrangement Influence on Electricity Generation
NASA Astrophysics Data System (ADS)
Anisimov, I. A.; Burakova, L. N.; Burakova, A. D.; Burakova, O. D.
2017-05-01
The research evaluates the impact of the spatial arrangement of solar cell panels on the amount of electricity generated (power generated by solar cell panel) in Tyumen. Dependences of the power generated by the solar panel on the time of day, air temperature, weather conditions and the spatial arrangement are studied. Formulas for the calculation of the solar cell panel inclination angle which provides electricity to urban infrastructure are offered. Based on the data in the future, changing of inclination angle of solar cell panel will be confirmed experimentally during the year in Tyumen, and recommendations for installing solar cell panels in urban infrastructure will be developed.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.
1990-01-01
Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.
Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.
Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh
2017-02-01
Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), tungsten diselenide (WSe 2 ), titanium disulfide (TiS 2 ), tantalum sulfide (TaS 2 ), and niobium selenide (NbSe 2 ) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS 2 ; and thereafter, emphasize the role of atomically thin MoS 2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS 2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS 2 /n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS 2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS 2 /h-BN/GaAs heterostructure solar cells. The MoS 2 -containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS 2 -based organic solar cells exceeds 8.40%. The stability of MoS 2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS 2 -based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.
Achieving 15% Tandem Polymer Solar Cells
2015-06-23
solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency
Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.
Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y
2016-10-06
Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.
Combined Silicon and Gallium Arsenide Solar Cell UV Testing
NASA Technical Reports Server (NTRS)
Willowby, Douglas
2005-01-01
The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.
Youn, Jin-Sung; Lee, Myung-Jae; Park, Kang-Yeob; Rücker, Holger; Choi, Woo-Young
2012-12-17
An optoelectronic integrated circuit (OEIC) receiver is realized with standard 0.25-μm SiGe BiCMOS technology for 850-nm optical interconnect applications. The OEIC receiver consists of a Si avalanche photodetector, a transimpedance amplifier with a DC-balanced buffer, a tunable equalizer, and a limiting amplifier. The fabricated OEIC receiver successfully detects 12.5-Gb/s 2(31)-1 pseudorandom bit sequence optical data with the bit-error rate less than 10(-12) at incident optical power of -7 dBm. The OEIC core has 1000 μm x 280 μm chip area, and consumes 59 mW from 2.5-V supply. To the best of our knowledge, this OEIC receiver achieves the highest data rate with the smallest sensitivity as well as the best power efficiency among integrated OEIC receivers fabricated with standard Si technology.
Thermal conductivity of mesoporous films measured by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Stoib, B.; Filser, S.; Petermann, N.; Wiggers, H.; Stutzmann, M.; Brandt, M. S.
2014-04-01
We measure the in-plane thermal conductance of mesoporous Ge and SiGe thin films using the Raman-shift method and, based on a finite differences simulation accounting for the geometry of the sample, extract the in-plane thermal conductivity. For a suspended thin film of laser-sintered SiGe nanoparticles doped with phosphorus, we find an effective in-plane thermal conductivity of 0.05 W/m K in vacuum for a temperature difference of 400 K and a mean temperature of 500 K. Under similar conditions, the effective in-plane thermal conductivity of a laser-sintered undoped Ge nanoparticle film is 0.5 W/m K. Accounting for a porosity of approximately 50%, the normalized thermal conductivities are 0.1 W/m K and 1 W/m K, respectively. The thermoelectric performance is discussed, considering that the electrical in-plane conductivity is also affected by the mesoporosity.
Variation of solar cell sensitivity and solar radiation on tilted surfaces
NASA Technical Reports Server (NTRS)
Klucher, T. M.
1978-01-01
The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.
High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells
Daniel, Claus; Blue, Craig A.; Ott, Ronald D.
2014-08-19
Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.
Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisaman, Matthew
2014-04-16
Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs—for everything from manufacturing and transportation to air conditioning and charging cell phone batteries—improved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells—variations that are so small they are measuredmore » in billionths of a meter—in order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.« less
Direct glass bonded high specific power silicon solar cells for space applications
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Rand, J. A.; Cummings, J. R.; Lampo, S. M.; Shreve, K. P.; Barnett, Allen M.
1991-01-01
A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications.
Si/Ge double-layered nanotube array as a lithium ion battery anode.
Song, Taeseup; Cheng, Huanyu; Choi, Heechae; Lee, Jin-Hyon; Han, Hyungkyu; Lee, Dong Hyun; Yoo, Dong Su; Kwon, Moon-Seok; Choi, Jae-Man; Doo, Seok Gwang; Chang, Hyuk; Xiao, Jianliang; Huang, Yonggang; Park, Won Il; Chung, Yong-Chae; Kim, Hansu; Rogers, John A; Paik, Ungyu
2012-01-24
Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries. © 2011 American Chemical Society
Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules
NASA Technical Reports Server (NTRS)
Mesch, H. G.
1984-01-01
The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).
Measurement and Characterization of Concentrator Solar Cells II
NASA Technical Reports Server (NTRS)
Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave
2005-01-01
Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].
Aluminum for bonding Si-Ge alloys to graphite
Eggemann, Robert V.
1976-01-13
Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.
On-Orbit Reconfigurable Solar Array
NASA Technical Reports Server (NTRS)
Levy, Robert K. (Inventor)
2017-01-01
In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.
Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications
NASA Technical Reports Server (NTRS)
Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.
2004-01-01
Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.
Advantages of thin silicon solar cells for use in space
NASA Technical Reports Server (NTRS)
Denman, O. S.
1978-01-01
A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.
Entirely screen printed CdS/CdTe solar cell
NASA Astrophysics Data System (ADS)
Ikegami, S.; Matsumoto, H.; Uda, H.; Komatsu, Y.; Nakano, A.; Kuribayashi, K.
An entirely screen printed CdS/CdTe solar cell has been manufactured on a borosilicate glass substrate by successively repeating screen printing and heating in a belt furnace of each paste of CdS, Cd+Te, C, Ag+In and Ag. In a small cell with 0.78 sq cm area, the intrinsic conversion efficiency of 12.8 percent has been obtained; this value is the highest in the thin film type solar cells. On a large glass substrate of 30 x 30 sq cm, 28 unit solar cells connected in series have been constructed by this printing technique, their intrinsic efficiency being 8.5 percent. Under the roof top condition, no change in output power is observed in the present solar cells encapsulated over 206 days. Thus, the entirely screen printed CdS/CdTe solar cells can be expected as low cost, highly efficient, and stable solar cells.
Mechanisms limiting the performance of large grain polycrystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.
1984-01-01
The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.
Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.
2003-01-01
NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.
Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.
Bergmann, Victor W; Weber, Stefan A L; Javier Ramos, F; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Li, Dan; Domanski, Anna L; Lieberwirth, Ingo; Ahmad, Shahzada; Berger, Rüdiger
2014-09-22
Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells.
Micro Solar Cells with Concentration and Light Trapping Optics
NASA Astrophysics Data System (ADS)
Li, Lanfang; Breuckner, Eric; Corcoran, Christopher; Yao, Yuan; Xu, Lu; Nuzzo, Ralph
2013-03-01
Compared with conventional bulk plate semiconductor solar cells, micro solar cells provide opportunity for novel design geometry and provide test bed for light trapping at the device level as well as module level. Surface recombination, however, will have to be addressed properly as the much increased surface area due to the reduced dimension is more prominent in these devices than conventional solar cells. In this poster, we present experimental demonstration of silicon micro solar cells with concentration and light trapping optics. Silicon micro solar cell with optimized surface passivation and doping profile that exhibit high efficiency is demonstrated. Effective incorporation of high quantum yield fluorescent centers in the polymer matrix into which micro solar cell was encapsulated was investigated for luminescent solar concentration application. Micro-cell on a semi-transparent, nanopatterned reflector formed by soft-imprint lithography was investigated for near field effect related solar conversion performance enhancement. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293
A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.
Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan
2016-06-01
A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.
Process of making solar cell module
Packer, M.; Coyle, P.J.
1981-03-09
A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayerovitch, M.D.
1980-03-25
A solar collector cell formed as an integral portion of a roof flashing is disclosed as comprising a flashing base having a dihedral surface including a larger base portion and a smaller ramp portion, and a solar collector cell container built integrally with the base portion of the flashing. The combination is designed to be installed in the roof of a dwelling or other building structure. The container portion of the flashing is substantially shorter in height above the roof line than conventional solar collector cell structures added to a roof subsequent to its construction. As a result, the inventionmore » gives the building constructor or owner, the option of either including the solar cell components at the time of construction of the roof to provide a solar heating device, or to fill the solar collector cell container with a temporary support structure, such as roof shakes or tiles. The shape of the solar collector cell and flashing assembly permits the solar collector cell structure to be camouflaged by overlying shakes or tiles of which the roof is constructed.« less
Dislocation-free strained silicon-on-silicon by in-place bonding
NASA Astrophysics Data System (ADS)
Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.
2005-06-01
In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.
Silicon solar cells: Past, present and the future
NASA Astrophysics Data System (ADS)
Lee, Youn-Jung; Kim, Byung-Sung; Ifitiquar, S. M.; Park, Cheolmin; Yi, Junsin
2014-08-01
There has been a great demand for renewable energy for the last few years. However, the solar cell industry is currently experiencing a temporary plateau due to a sluggish economy and an oversupply of low-quality cells. The current situation can be overcome by reducing the production cost and by improving the cell is conversion efficiency. New materials such as compound semiconductor thin films have been explored to reduce the fabrication cost, and structural changes have been explored to improve the cell's efficiency. Although a record efficiency of 24.7% is held by a PERL — structured silicon solar cell and 13.44% has been realized using a thin silicon film, the mass production of these cells is still too expensive. Crystalline and amorphous silicon — based solar cells have led the solar industry and have occupied more than half of the market so far. They will remain so in the future photovoltaic (PV) market by playing a pivotal role in the solar industry. In this paper, we discuss two primary approaches that may boost the silicon — based solar cell market; one is a high efficiency approach and the other is a low cost approach. We also discuss the future prospects of various solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schachtner, Michael, E-mail: michael.schachtner@ise.fraunhofer.de; Prado, Marcelo Loyo; Reichmuth, S. Kasimir
2015-09-28
It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.
Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth
Yu, Minrui; Huang, Yu; Ballweg, Jason; Shin, Hyuncheol; Huang, Minghuang; Savage, Donald E.; Lagally, Max G.; Dent, Erik W.; Blick, Robert H.; Williams, Justin C.
2013-01-01
In many neural culture studies, neurite migration on a flat, open surface does not reflect the three-dimensional (3D) microenvironment in vivo. With that in mind, we fabricated arrays of semiconductor tubes using strained silicon (Si) and germanium (Ge) nanomembranes and employed them as a cell culture substrate for primary cortical neurons. Our experiments show that the SiGe substrate and the tube fabrication process are biologically viable for neuron cells. We also observe that neurons are attracted by the tube topography, even in the absence of adhesion factors, and can be guided to pass through the tubes during outgrowth. Coupled with selective seeding of individual neurons close to the tube opening, growth within a tube can be limited to a single axon. Furthermore, the tube feature resembles the natural myelin, both physically and electrically, and it is possible to control the tube diameter to be close to that of an axon, providing a confined 3D contact with the axon membrane and potentially insulating it from the extracellular solution. PMID:21366271
Development of standardized specifications for silicon solar cells
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.
1977-01-01
A space silicon solar cell assembly (cell and coverglass) specification aimed at standardizing the diverse requirements of current cell or assembly specifications was developed. This specification was designed to minimize both the procurement and manufacturing costs for space qualified silicon solar cell assembilies. In addition, an impact analysis estimating the technological and economic effects of employing a standardized space silicon solar cell assembly was performed.
Solare Cell Roof Tile And Method Of Forming Same
Hanoka, Jack I.; Real, Markus
1999-11-16
A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.
Electron and proton damage on InGaAs solar cells having an InP window layer
NASA Technical Reports Server (NTRS)
Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.
1995-01-01
As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.
NASA Technical Reports Server (NTRS)
Xu, Jianzeng; Woodyward, James R.
2005-01-01
The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.
Investigation of back surface fields effect on bifacial solar cells
NASA Astrophysics Data System (ADS)
Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.
2012-11-01
A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.
Production technology for high efficiency ion implanted solar cells
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.
1978-01-01
Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.
Ebo, D G; Faber, M; Sabato, V; Leysen, J; Gadisseur, A; Bridts, C H; De Clerck, L S
2013-01-01
Recent observations have disclosed that the galactose-alpha (1,3)-galactose (alpha-gal) moiety of non-primate glycoproteins can constitute a target for meat allergy. To describe adults with allergic reactions to mammalian meat, dairy products and gelatin. To investigate whether patients could demonstrate sensitization to activated recombinant human coagulation factor VII ectapog alpha that is produced in baby hamster kidney cells. Ten adults with mammalian meat, dairy products and gelatin allergies were examined using quantification of specific IgE and/or skin prick test for red meat, milk, milk components, gelatin, cetuximab and eptacog alpha. Most patients demonstrate quite typical clinical histories and serological profiles, with anti-alpha-gal titers varying from less than 1% to over 25% of total serum IgE. All patients demonstrate negative sIgE for gelatin, except the patient with a genuine gelatin allergy. All patients also demonstrated a negative sIgE to recombinant milk components casein, lactalbumin and lactoglobulin. Specific IgE to eptacog was positive in 5 out of the 9 patients sensitized to alpha-gal and none of the 10 control individuals. This series confirms the importance of the alpha-gal carbohydrate moiety as a potential target for allergy to mammalian meat, dairy products and gelatin (oral, topical or parenteral) in a Flemish population of meat allergic adults. It also confirms in vitro tests to mammalian meat generally to be more reliable than mammalian meat skin tests, but that diagnosis can benefit from skin testing with cetuximab. Specific IgE to gelatin is far too insensitive to diagnose alphaa-gal related gelatin allergy. IgE binding studies indicate a potential risk of alpha-gal-containing human recombinant proteins produced in mammalians.
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.
1973-01-01
The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.
Project STOP (Spectral Thermal Optimization Program)
NASA Technical Reports Server (NTRS)
Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.
1977-01-01
The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.
Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure
NASA Technical Reports Server (NTRS)
Das, Kalyan; Hall, Harvey
1999-01-01
Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.
A life prediction methodology for encapsulated solar cells
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1978-01-01
This paper presents an approach to the development of a life prediction methodology for encapsulated solar cells which are intended to operate for twenty years or more in a terrestrial environment. Such a methodology, or solar cell life prediction model, requires the development of quantitative intermediate relationships between local environmental stress parameters and the basic chemical mechanisms of encapsulant aging leading to solar cell failures. The use of accelerated/abbreviated testing to develop these intermediate relationships and in revealing failure modes is discussed. Current field and demonstration tests of solar cell arrays and the present laboratory tests to qualify solar module designs provide very little data applicable to predicting the long-term performance of encapsulated solar cells. An approach to enhancing the value of such field tests to provide data for life prediction is described.
Indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1982-12-28
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
Analysis of each branch current of serial solar cells by using an equivalent circuit model
NASA Astrophysics Data System (ADS)
Yi, Shi-Guang; Zhang, Wan-Hui; Ai, Bin; Song, Jing-Wei; Shen, Hui
2014-02-01
In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ish1 and Ish2), diode currents (ID1 and ID2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.
Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W
2014-11-11
Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.
Development of Low-cost, High Energy-per-unit-area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.
1978-01-01
The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng
2017-01-01
Abstract Large‐scale (156 mm × 156 mm) quasi‐omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal‐assisted alkaline etching method, which is an all‐solution‐processed method and highly simple together with cost‐effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)‐textured solar cells, the SiNPs‐textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures‐textured solar cells. Furthermore, SiNPs‐textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi‐omnidirectional characteristic. As an overall result, both the SiNPs‐textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs‐textured counterparts. The quasi‐omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost. PMID:29201616
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong
2017-11-01
Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.
Summary of solar cell data from the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1994-01-01
The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.
NASA Astrophysics Data System (ADS)
Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong
2018-03-01
The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.
Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Rhee, S. S.; Jones, G. T.; Allison, K. L.
1978-01-01
Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.
Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.
Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; ...
2014-12-08
Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.
High Performance Tandem Perovskite/Polymer Solar Cells
NASA Astrophysics Data System (ADS)
Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas
Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.
Single P-N junction tandem photovoltaic device
Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA
2012-03-06
A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.
Single P-N junction tandem photovoltaic device
Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA
2011-10-18
A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.
Radiation Performance of Commercial SiGe HBT BiCMOS-High Speed Operational Amplifiers
NASA Technical Reports Server (NTRS)
Chen, Dakai; Pellish, Jonathan; Phan, Anthony; Kim, Hak; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; LaBel, Kenneth
2010-01-01
We present results on heavy-ion and proton irradiations for commercial SiGe BiCMOS operational amplifiers: LTC6400-20 from Linear Technology and THS4304 from Texas Instruments. We found that the devices are susceptible to heavy-ion-induced SETs. The SET cross-sections increase with increasing operating frequency. The LTC6400 exhibits a LET(sub th) < 7.4 MeV·sq cm/mg for frequencies ranging from 10 to 1000 MHz. The THS4304 exhibits a LET(sub th) < 4.4 MeV·sq cm/mg at 200 MHz; the LET(sub th) decreases with increasing frequency. The significance of the SETs also increases with frequency. The SETs at 1000 MHz can erase several signal cycles. We al.so found that the LTC6400 is relatively robust against 198 and 54 MeV protons. We did not observe angular sensitivity from the proton irradiations.
Effects of Negative-Bias-Temperature-Instability on Low-Frequency Noise in SiGe $${p}$$ MOSFETs
Duan, Guo Xing; Hachtel, Jordan A.; Zhang, En Xia; ...
2016-09-20
In this paper, we have measured the low-frequency 1/f noise of Si 0.55Ge 0.45 pMOSFETs with a Si capping layer and SiO 2/HfO 2/TiN gate stack as a function of frequency, gate voltage, and temperature (100-440 K). The magnitude of the excess drain voltage noise power spectral density (Svd) is unaffected by negative-bias-temperature stress (NBTS) for temperatures below ~250 K, but increases significantly at higher temperatures. The noise is described well by the Dutta-Horn model before and after NBTS. The noise at higher measuring temperatures is attributed primarily to oxygen-vacancy and hydrogen-related defects in the SiO 2 and HfO 2more » layers. Finally, at lower measuring temperatures, the noise also appears to be affected strongly by hydrogen-dopant interactions in the SiGe layer of the device.« less
Challenge of Si/SiGe technology to optoelectronics
NASA Astrophysics Data System (ADS)
Chang, C. Y.; Jung, J. G.
1993-01-01
Low temperature epitaxy (LTE) of Si and SiGecanbe performed at a temperature of 550 C or lower. Very promising applications can be opened. Such as high speed/high frequency operations at 90GHZ by constructing heterojunction bipolar transistors. High performance FET'slikepseudomorphic p-channel orn-channel high mobility field effect transistors are presented which canbe composed to perform CMOS operations. Optoelectronic devices such as IRdetectors (1-12um), mutiple quantum well (MOW), disordered superlattice (d-SL) which are the potential candidatesof IR detector and optical sources (e.q. LED, LD etc.) Various physical insights regarding to SiGe heterostructures are presented which includeswave function filter, mass filter as well as band mixing are introduced. Researchesat National Nano Device Laboratory (NDL) which processes the capability of 0.3um Si ULSI technologies and SiGe works as well as lll-V, a-Si/SiGe lines are also presented.
NASA Astrophysics Data System (ADS)
Satoh, Motoki; Arimoto, Keisuke; Yamanaka, Junji; Sawano, Kentarou; Shiraki, Yasuhiro; Nakagawa, Kiyokazu
2018-04-01
The electronic properties of SiGe on insulator (SGOI) structure are under intense investigation due to its importance as an electronic material. In the previous investigations, a p-type conduction was observed in SGOI even in the absence of extrinsic chemical acceptors, which is a serious problem for device applications. In this paper, the electrical properties of intrinsic-defect-related acceptor states generated during the SGOI formation are reported. It is found that freeze-out is hard to be achieved even at temperatures below 10 K, which indicates that the Fermi level lies near the valence band at low temperatures. With an aim to annihilate these defects, thermal annealing at 1050 °C for 12 h in N2 ambient was carried out. It was found that the thermal treatment is effective in reducing the densities of the acceptor states and in improving the crystalline quality.
Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells
NASA Astrophysics Data System (ADS)
Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.
1995-12-01
We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.
NASA Technical Reports Server (NTRS)
Draper, Susan L.
1987-01-01
Annealing of GaP doped SiGe will significantly alter the thermoelectric properties of the material resulting in increased performance as measured by the figure of merit Z and the power factor P. The microstructures and corresponding thermoelectric properties after annealing in the 1100 to 1300 C temperature range have been examined to correlate performance improvement with annealing history. The figure of merit and power factor were both improved by homogenizing the material and limiting the amount of cross-doping. Annealing at 1215 C for 100 hr resulted in the best combination of thermoelectric properties with a resultant figure of merit exceeding 1x10 to the -3 deg C to the -1 and a power factor of 44 microW/cm/deg C sq for the temperature range of interest for space power: 400 to 1000 C.
NASA Astrophysics Data System (ADS)
Malz, Stefan; Goettel, Benjamin; Eisenbeis, Joerg; Boes, Florian; Grzyb, Janusz; Vazquez, Pedro Rodriguez; Zwick, Thomas; Pfeiffer, Ullrich R.
2017-09-01
This paper reports on the research activities during the first phase of the project Real100G.RF, which is part of the German Research Foundation (DFG) priority programm SPP1655. The project's main objective is to research silicon-based wireless communication above 200 GHz to enable data rates in excess of 100 gigabit per second (Gbps). To that end, this paper presents a fully packaged 240 GHz RF transmitter front-end with power combining antenna in 0.13 μm SiGe technology. The design of circuit building blocks, passives, antenna and high-speed packaging is discussed. Communication measurements show data rates of 8 Gbps with an EVM of 12.4% using 16-QAM, 24 Gbps with 26.5% EVM using QPSK and 30 Gbps with 27.9% EVM using 8-PSK.
Photo-degradation of high efficiency fullerene-free polymer solar cells.
Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf
2017-12-07
Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.
None
2017-12-09
Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%âabout one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%.
[Advances in microbial solar cells--A review].
Guo, Xiaoyun; Yu, Changping; Zheng, Tianling
2015-08-04
The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.
Singh, Surya Prakash; Sharma, G D
2014-06-01
Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes
NASA Astrophysics Data System (ADS)
Sun, Wen-Cheng
To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.
Results of the 1974 through 1977 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Sidwell, L. B.
1978-01-01
From 1974 through 1977, seven solar cell calibration flights and two R&D flights with a spectroradiometer as a payload were attempted. There were two R&D flights, and one calibration flight that failed. Each calibration flight balloon was designed to carry its payload to an altitude of 36.6 km (120 kft). The R&D flight balloons were designed for a payload altitude of 47.5 km (150 kft). At the end of the flight period, the upper (solar cell calibration system) and lower (consolidated instrument package (DIP) payloads were separated from the balloon and descend via parachutes. The calibrated solar cells recovered in this manner were used as primary intensity reference standards during solar simulator testing of solar cells and solar arrays with similar spectral response characteristics. This method of calibration has become the most widely accepted technique for developing space standard solar cells.
NASA Astrophysics Data System (ADS)
Chhetri, Nikita; Chatterjee, Somenath
2018-01-01
Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.
NASA Technical Reports Server (NTRS)
Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.
1981-01-01
The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.
Method for forming indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1984-03-13
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
Reversible electron-hole separation in a hot carrier solar cell
NASA Astrophysics Data System (ADS)
Limpert, S.; Bremner, S.; Linke, H.
2015-09-01
Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices.
2016-03-21
ORIGINAL PAPER Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots Elias...smaller influence on solar cell performance, they are con- sidered to be a more attractive option due to their afford- ability and minimal impact in the...Photovoltaics Solar cells Introduction There is a generalized trend to demonstrate higher solar cell efficiency with more affordable devices to promote
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2003-07-01
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2001-11-20
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL
Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's
Present Status and Future Prospects of Silicon Thin-Film Solar Cells
NASA Astrophysics Data System (ADS)
Konagai, Makoto
2011-03-01
In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.
NASA Astrophysics Data System (ADS)
Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu
2018-05-01
We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.
NASA Astrophysics Data System (ADS)
Wang, Hao-Yu; Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung; Liao, Xin-Lan; Lin, Kun-Hsien; Wu, Wei-Liang; Chen, Yi-Yuan
2018-01-01
Using solar cell (or photovoltaic cell) for visible light communication (VLC) is attractive. Apart from acting as a VLC receiver (Rx), the solar cell can provide energy harvesting. This can be used in self-powered smart devices, particularly in the emerging ;Internet of Things (IoT); networks. Here, we propose and demonstrate for the first time using pre-distortion pulse-amplitude-modulation (PAM)-4 signal and parallel resistance circuit to enhance the transmission performance of solar cell Rx based VLC. Pre-distortion is a simple non-adaptive equalization technique that can significantly mitigate the slow charging and discharging of the solar cell. The equivalent circuit model of the solar cell and the operation of using parallel resistance to increase the bandwidth of the solar cell are discussed. By using the proposed schemes, the experimental results show that the data rate of the solar cell Rx based VLC can increase from 20 kbit/s to 1.25 Mbit/s (about 60 times) with the bit error-rate (BER) satisfying the 7% forward error correction (FEC) limit.
NASA Technical Reports Server (NTRS)
Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.
1992-01-01
SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.
Power management circuits for self-powered systems based on micro-scale solar energy harvesting
NASA Astrophysics Data System (ADS)
Yoon, Eun-Jung; Yu, Chong-Gun
2016-03-01
In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.
Predicting efficiency of solar cells based on transparent conducting electrodes
NASA Astrophysics Data System (ADS)
Kumar, Ankush
2017-01-01
Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.
The simulation of CZTS solar cell for performance improvement
NASA Astrophysics Data System (ADS)
Kumar, Atul; Thakur, Ajay D.
2018-05-01
A Copper-Zinc-Tin-Sulphide (CZTS) based solar cell of Mo/CZTS/CdS/ZnO is simulated using SCAPS. Quantum efficiency and IV curve of the simulated output of CZTS solar cell is mapped with highest efficiency reported in literature for CZTS solar cell. A modification in back contact thus shottky barrier, spike type band alignment at the CZTS-n type layer junction and higher electron mobility (owing to alkali doping in CZT)S are implement in simulation of CZTS solar cell. An improvement in the solar cell efficiency compared to the standard cell configuration of Mo/CZTS/CdS/ZnO is found. CZTS is plagued with low Voc and low FF which can be increased by optimization as suggested in paper.
NASA Astrophysics Data System (ADS)
Liu, Yang; Chen, Hung-Yu; Liang, Kevin; Wei, Liang-Yu; Chow, Chi-Wai; Yeh, Chien-Hung
2016-01-01
Traditional visible light communication (VLC) uses positive-intrinsic-negative photodiode (PD) or avalanche PD as the optical receivers (Rx). We demonstrate using a solar cell as the VLC Rx. The solar cell is flexible and low cost and converts the optical signal into an electrical signal directly without the need of external power supply. In addition to acting as the VLC passive Rx, the converted electrical signal from the solar cell can charge up the battery of the Rx nodes. Hence, the proposed scheme can be a promising candidate for the future Internet of Things network. However, a solar cell acting as a VLC Rx is very challenging, since the response of the solar cell is limited. Here, we propose and demonstrate using predistortion to significantly enhance the solar cell Rx response for the first time up to the authors' knowledge. Experimental results show that the response of the solar cell Rx is significantly enhanced; and the original 2-kHz detection bandwidth of the solar cell can be enhanced by 250 times for receiving 500-kbit/s VLC signal at a transmission distance of 1 m. The operation principle, the generated voltage by the solar cell, and the maximum data rates achieved at different transmission distances are also studied.
Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating
2012-01-01
An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... Request: Solar Cell: A Mobile UV Manager for Smart Phones (NCI) SUMMARY: In compliance with the... Management and Budget (OMB) for review and approval. Proposed Collection: Title: Solar Cell: A Mobile UV... Collection: The overall goal of the study is to design a smart phone application, Solar Cell, which uses...
Radiation tolerance of low resistivity, high voltage silicon solar cells
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Weinberg, I.; Swartz, C. K.
1984-01-01
The radiation tolerance of the following three low resistivity, high voltage silicon solar cells was investigated: (1) the COMSAT MSD (multi-step diffused) cell, (2) the MinMIS cell, and (3) the MIND cell. A description of these solar cells is given along with drawings of their configurations. The diffusion length damage coefficients for the cells were calculated and presented. Solar cell spectral response was also discussed. Cells of the MinMIS type were judged to be unsuitable for use in the space radiation environment.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad Azeem; Maaroufi, AbdelKrim
2018-07-01
A beginning has been made in the present study regarding the accurate lifetime predictions of polymer solar cells. Certain reservations about the conventionally employed temperature accelerated lifetime measurements test for its unworthiness of predicting reliable lifetimes of polymer solar cells are brought into light. Critical issues concerning the accelerated lifetime testing include, assuming reaction mechanism instead of determining it, and relying solely on the temperature acceleration of a single property of material. An advanced approach comprising a set of theoretical models to estimate the accurate lifetimes of polymer solar cells is therefore suggested in order to suitably alternate the accelerated lifetime testing. This approach takes into account systematic kinetic modeling of various possible polymer degradation mechanisms under natural weathering conditions. The proposed kinetic approach is substantiated by its applications on experimental aging data-sets of polymer solar materials/solar cells including, P3HT polymer film, bulk heterojunction (MDMO-PPV:PCBM) and dye-sensitized solar cells. Based on the suggested approach, an efficacious lifetime determination formula for polymer solar cells is derived and tested on dye-sensitized solar cells. Some important merits of the proposed method are also pointed out and its prospective applications are discussed.
The effect of single and multiple infections on atopy and wheezing in children
Alcantara-Neves, Neuza Maria; Veiga, Rafael Valente; Dattoli, Vitor Camilo Cavalcante; Fiaccone, Rosimeire Leovigildo; Esquivel, Renata; Cruz, Álvaro Augusto; Cooper, Philip John; Rodrigues, Laura Cunha; Barreto, Maurício Lima
2016-01-01
Background The current epidemic of asthma and atopy has been explained by alterations in immune responses related to reduction in childhood infections. However, the findings of epidemiologic studies investigating the association between infection with atopy and asthma have been inconsistent. Objective We sought to investigate the effect of single or multiple infections (pathogen burden) on atopy and wheeze in urban children from Latin America. Methods Specific IgE against aeroallergens (sIgE) and skin prick test (SPT) reactivity for the most common local allergens were measured in 1128 children aged 4 to 11 years. Data on wheezing and potential confounders were collected by questionnaire. Infections by 8 pathogens were assessed by using serology and stool examination. Associations of wheeze and atopic outcomes with single and multiple infections were analyzed by means of logistic regression. Results Negative results for Toxoplasma gondii were associated with a higher prevalence of sIgE (≥0.70 kU/L), whereas negative results for Ascaris lumbricoides, T gondii, herpes simplex virus, and EBV were associated with a higher prevalence of SPT reactivity. Children with 3 or fewer infection markers had a higher prevalence of sIgE and SPT reactivity compared with those with 4 or more infection markers. However, isolated infections or pathogen burden were not associated with the prevalence of atopic or nonatopic wheeze. Conclusion The findings provide support for the idea that the hygiene hypothesis is operating in an urban Latin American context, but its expression is thus far restricted to the atopic status of patients and not the perceived asthma symptoms. PMID:22035877
High performance a-Si solar cells and new fabrication methods for a-Si solar cells
NASA Astrophysics Data System (ADS)
Nakano, S.; Kuwano, Y.; Ohnishi, M.
1986-12-01
The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.
Multi-crystalline II-VI based multijunction solar cells and modules
Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.
2015-06-30
Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.
Mamun, Abdullah Al; Ava, Tanzila Tasnim; Byun, Hye Ryung; Jeong, Hyeon Jun; Jeong, Mun Seok; Nguyen, Loi; Gausin, Christine; Namkoong, Gon
2017-07-26
While organo-inorganic halide perovskite solar cells show great potential to meet future energy needs, their thermal instability raises serious questions about their commercialization viability. At present, the stability of perovskite solar cells has been studied under various environmental conditions including humidity and temperature. Nonetheless, understanding of the performance of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells is limited. This study reports the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells during the heating and cooling processes under AM 1.5 and unveils what triggers the irreversible performance degradation of solar cells. Particularly, the primary cause of the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x is quantitatively analyzed by monitoring in real time the development of deteriorated crystallinity, charge trapping/detrapping, trap depth, and the PbI 2 phase, namely a critical signal of perovskite degradation while varying the temperature of the perovskite films and solar cells. Most surprisingly, it is revealed that the degradation of both perovskite films and solar cells was triggered at ∼70 °C. Remarkably, even after the device temperature cooled down to room temperature, the degraded performance of the solar cells persisted with increasing charge trapping and further development of the PbI 2 phase. Identification of the irreversible performance degradation of perovskite solar cells provides guidance for future development of more stable perovskite solar cells.
Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J
2017-08-22
Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.
Results from testing and analysis of solar cells flown on LDEF
NASA Technical Reports Server (NTRS)
Dursch, Harry
1992-01-01
A brief discussion of the solar cell experiments flown on the Long Duration Exposure Facility (LDEF) is provided. The information presented is a collation of results published by the various experimenters. This process of collation and documentation is an ongoing Systems Special Investigation Group (SIG) effort. There are four LEO environments, operating individually and/or synergistically, that cause performance loss in solar cells: meteoroid and space debris, atomic oxygen, ultraviolet radiation, and charged particle radiation. In addition, the effects of contamination caused by outgassing of materials used on the specific spacecraft play a role in decreasing the light being transmitted through the coverglass and adhesive to the solar cell. From the results presented on the solar cells aboard LDEF, the most extensive degradation of the solar cells came from impacts and the resulting cratering. The extent of the damage to the solar cells was largely dependent upon the size and energy of the meteoroids or space debris. The other cause of degradation was reduced light reaching the solar cell. This was caused by contamination, UV degradation of coverglass adhesive, and/or atomic oxygen/UV degradation of antireflection coatings.
Enhanced conversion efficiency in wide-bandgap GaNP solar cells
Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; ...
2015-10-12
In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, E g –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher thanmore » other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less
2018-01-18
to a variety solar energy markets. For instance, micro-cracks have been shown to cause decreased power output in single- and multi-crystalline Si PV ...fingers in silicon wafer solar cells and PV modules," Solar Energy Materials and Solar Cells, vol. 108, pp. 78-81, 1// 2013. [4] T. H. Reijenga and H...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0125 TR-2017-0125 ENHANCED CONTACTS FOR INVERTED METAMORPHIC MULTI-JUNCTION SOLAR CELLS USING CARBON NANOTUBE METAL
Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept
NASA Technical Reports Server (NTRS)
Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig; Lin, John K.; Scarborough, Stephen E.
2005-01-01
Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution.
Flexible thermal cycle test equipment for concentrator solar cells
Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA
2012-06-19
A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.
Solar Cells Light Up Prison Cells on 'The Rock' | News | NREL
2 » Solar Cells Light Up Prison Cells on 'The Rock' Solar Cells Light Up Prison Cells on 'The Rock ' July 23, 2012 This photo shows an island in the middle of blue sea water, with industrial buildings taking up a good deal of the island. The 1,300 solar panels on the Cellhouse building are a dark blue
NASA Astrophysics Data System (ADS)
Song, Pei; Jiang, Chun
2013-05-01
The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.
Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu
2015-11-11
Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.
1981-01-01
Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm.
One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells
NASA Astrophysics Data System (ADS)
Guo, Da
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
New mounting improves solar-cell efficiency
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1980-01-01
Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.
Evaluation of solar cells for potential space satellite power applications
NASA Technical Reports Server (NTRS)
1977-01-01
The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.
Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells
NASA Astrophysics Data System (ADS)
Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki
2017-11-01
A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.
A review of high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Rohatgi, A.
1986-01-01
Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.
Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.
Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo
2017-06-14
Herein, the open-circuit voltage (V OC ) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of V OC to discuss the difference in the primary loss mechanism of V OC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of V OC in both solar cells are further discussed on the basis of the experimental data.
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong
2016-01-01
With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)
1977-01-01
A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.
Research | Photovoltaic Research | NREL
-V cells Hybrid tandems Polycrystalline Thin-Film PV CdTe solar cells CIGS solar cells Perovskites and Organic PV Perovskite solar cells Organic PV solar cells Advanced Materials, Devices, and Science Interfacial and Surface Science Reliability and Engineering Real-Time PV and Solar Resource
Demonstration of the feasibility of automated silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Taylor, W. E.; Schwartz, F. M.
1975-01-01
A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
Laser beam apparatus and method for analyzing solar cells
Staebler, David L.
1980-01-01
A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.
An interim report on the NTS-2 solar cell experiment
NASA Technical Reports Server (NTRS)
Statler, R. L.; Walker, D. H.
1979-01-01
Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects.
Solar Cell Modules With Improved Backskin
Gonsiorawski, Ronald C.
2003-12-09
A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.
NASA Astrophysics Data System (ADS)
Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi
2018-04-01
To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
NASDA activities in space solar power system research, development and applications
NASA Technical Reports Server (NTRS)
Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato
1993-01-01
NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.
Design and Photovoltaic Properties of Graphene/Silicon Solar Cell
NASA Astrophysics Data System (ADS)
Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren
2018-04-01
Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Downing, R. G.; Sidwell, L. B.
1985-01-01
The Solar Cell Calibration Facility (SCCF) experiment was designed and built to evaluate the effect of the Earth's upper atmosphere on the calibration of solar cell standards. During execution of the experiment, a collection of carefully selected solar cells was flown on the shuttle, and reflown on a high-altitude balloon, then their outputs were compared. After correction to standard temperature and intensity values of 28 C and an Earth-Sun distance of 1 AU, the solar cell outputs during the two flights were found to be identical. The conclusion is therefore that the high-altitude balloon flights are very good vehicles for calibrating solar cells for use as space flight reference standards.
Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.
Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan
2014-08-22
Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.
The planar multijunction cell - A new solar cell for earth and space
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Chai, A.-T.; Goradia, C.
1980-01-01
A new family of high-voltage solar cells, called the planar multijunction (PMJ) cell is being developed. The new cells combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell area. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.
Recycling Perovskite Solar Cells To Avoid Lead Waste.
Binek, Andreas; Petrus, Michiel L; Huber, Niklas; Bristow, Helen; Hu, Yinghong; Bein, Thomas; Docampo, Pablo
2016-05-25
Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-10-08
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-01-01
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599
Wang, Qi; Iwaniczko, Eugene
2006-10-17
A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.