Science.gov

Sample records for a-site cation size

  1. Effects of cation disorder and size on metamagnetism in A-site substituted Pr0.5Ca0.5MnO3 system

    NASA Astrophysics Data System (ADS)

    Mavani, K. R.; Paulose, P. L.

    2005-04-01

    The effects of A-site cation disorder and size on metamagnetism of ABO3 type charge and orbital ordered Pr0.5Ca0.5MnO3 system have been studied by substituting Ba+2 for Ca+2 or La+3 for Pr+3. Substitution of 5% Ba+2 or 5% La+3 drastically reduces the critical magnetic field (Hc) for metamagnetism and induces successive steplike metamagnetic transitions at low temperatures. Interestingly, with further increase in substitution, Hc rises. We find that there is a sharp decrease in electrical resistivity corresponding to the metamagnetic transitions, which is indicative of strongly correlated magnetic and electronic transitions in these manganites.

  2. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-06-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  3. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3.

    PubMed

    Wang, Y L; Liu, M F; Liu, R; Xie, Y L; Li, X; Yan, Z B; Liu, J-M

    2016-06-14

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  4. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    PubMed Central

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-01-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder. PMID:27297396

  5. Size Dependent Cation Channel in Nanoporous Prussian Blue Lattice

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Igarashi, Kazuhiro; Kim, Jungeun; Tanaka, Hiroshi

    2009-08-01

    Cation and/or molecule transfer within nanoporous materials can be utilized in, for example, electrochromic devices, hydrogen storage, molecular sensors, and molecular filters. Here, we investigated the mobilities of cations, Na+, K+, and Rb+, in vacancy-controlled Prussian blue film, NaxCo[Fe(CN)6]1-vzH2O (v is vacancy concentration) with a jungle gym structure. We found that only the smallest Na+ ions pass through the cubic planes of the lattice, while the larger cations, i.e., K+ and Rb+, take a detour channel along the [Fe(CN)6] vacancy. The size-dependent cation channel is well understood in terms of the potential curve derived by an ab initio total energy calculation.

  6. Effects of cation size disorder and lattice distortion on metamagnetism in phase-separated manganites

    NASA Astrophysics Data System (ADS)

    Mavani, K. R.; Paulose, P. L.

    2005-07-01

    The effects of A-site cation size disorder in ABO 3 type charge-ordered and antiferromagnetic Pr 0.5Ca 0.5MnO 3 system have been studied by substituting La 3+, Sr 2+ or Ba 2+, while keeping the valency of Mn ions and the tolerance factor ( t=0.921) constant in the substituted compounds. We find that the substitutions by these larger cations induce successive sharp step-like metamagnetic transitions at 2.5 K. The critical field for metamagnetism is the lowest for 3% Ba substituted compound, which has the largest A-site cation size disorder and the least distorted MnO 6 octahedra, among the compounds reported here. These cation substitutions give rise to ferromagnetic clusters within antiferromagnetic matrix, indicating phase-separation at low temperatures. The growth of the clusters is found to vary with the substitution amount. The local lattice distortion of MnO 6 octahedra enhances the charge ordering temperature and reduces the magnetization at high fields (>1 T) in these manganites.

  7. Size dependent mechanical and magnetic properties of Zn substituted cobalt ferrite below A-site percolation threshold

    NASA Astrophysics Data System (ADS)

    Acharya, Prashant; Parmar, Harshida

    2017-05-01

    Nanomagnetic particles of Co0.3Zn0.7Fe2O4 were synthesized using chemicalcoprecipitation technique followed by hydrothermal treatment and by controlling the preparative parameters pH and digestion time (td). Polydispersed nature and clear grain boundaries of the particles have been observed from the typical SEM image. EDX results confirmed the stoichiometric composition of the samples. XRD analysis shows the formation of a single phase spinel structure. Particle size ranging 5.5nm-9.0nm, calculated using Scherrer's formula, observed to be a function of pH and td. Cation distribution (Zn0.7Fe0.3)A[Co0.3Fe1.7]B is obtained from Rietveld analysis of XRD patterns. Lattice parameters and oxygen parameters are observed almost same showing the present synthesis technique is found to be effective to prepare particles of different size without changing the cation distribution and structural parameters. FTIR analysis and magnetic measurements reveals size dependent mechanical and magnetic properties of Zn substituted cobalt ferrite below A-site percolation threshold.

  8. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site.

    PubMed

    Belik, Alexei A; Yi, Wei

    2014-04-23

    ABO3 perovskites with small cations at the A site (A = Sc(3+), In(3+) and Mn(2+) and B = Al(3+) and transition metals) are reviewed. They extend the corresponding families of perovskites with A(3+) = Y, La-Lu, and Bi and A(2+) = Cd, Ca, Sr and Ba and exhibit the largest structural distortions. As a result of these large distortions, they show, in many cases, distinct structural and magnetic properties. These are manifested in: B-site-ordered monoclinic structures of ScMnO3 and 'InMnO3'; an unusual superstructure of ScRhO3 and InRhO3; antiferromagnetic ground states and multiferroic properties of Sc2NiMnO6 and In2NiMnO6; two magnetic transitions in ScCrO3 and InCrO3 with very close transition temperatures; a Pnma-to-P-1 structural transition and k = (½, 0, ½) magnetic ordering in ScVO3; and incommensurate magnetic ordering of Mn(2+) spins in metallic MnVO3. A large number of simple ScBO3, InBO3 and MnBO3 perovskites has not been synthesized yet, and the number of experimental and theoretical works on each known ScBO3, InBO3 and MnBO3 perovskites counts to only one or two (except for ScAlO3). The synthesis, crystal chemistry and physics of perovskites with small cations at the A site is an emerging field in perovskite science.

  9. Structure and magnetism in S r1 -xAxTc O3 perovskites: Importance of the A -site cation

    NASA Astrophysics Data System (ADS)

    Reynolds, Emily; Avdeev, Maxim; Thorogood, Gordon J.; Poineau, Frederic; Czerwinski, Kenneth R.; Kimpton, Justin A.; Yu, Michelle; Kayser, Paula; Kennedy, Brendan J.

    2017-02-01

    The S r1 -xB axTc O3 (x =0 , 0.1, 0.2) oxides were prepared and their solid-state and magnetic structure studied as a function of temperature by x-ray and neutron powder diffraction. The refined Tc moments at room temperature and Néel temperatures for B a0.1S r0.9Tc O3 and B a0.2S r0.8Tc O3 were 2.32 (14 ) μβ and 2.11 (13 ) μβ and 714 ∘C and 702 ∘C , respectively. In contrast to expectations, the Néel temperature in the series S r1 -xAxTc O3 decreases with increasing Ba content. This observation is consistent with previous experimental measurements for the two series A M O3 (M =Ru , Mn; A =Ca , Sr, Ba) where the maximum magnetic ordering temperature was observed for A =Sr . Taken with these previous results the current work demonstrates the critical role of the A -site cation in the broadening of the π* bandwidth and ultimately the magnetic ordering temperature.

  10. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  11. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  12. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.

    PubMed

    Austin, C A; Rodgers, M T

    2014-07-24

    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  13. Effects of the A-site cation number on the properties of Ln{sub 5/8}M{sub 3/8}MnO{sub 3} manganites

    SciTech Connect

    Collado, J.A.; Garcia-Munoz, J.L.; Aranda, M.A.G.

    2010-05-15

    The properties of manganites can be tuned by changing the doping level x in Ln{sub 1-x}M{sub x}MnO{sub 3}. A second mechanism allows tuning of magnetic and electronic properties, for fixed x values, by varying the average A-cation radius, . Moreover, for fixed x and values, the changes in the A-cation size variance, sigma{sup 2}, also modify the ferromagnetic and metal-insulator transition temperatures. Here, we investigate the influence of the number of A-site cations on Ln{sub 5/8}M{sub 3/8}MnO{sub 3} manganites, where x, and sigma{sup 2} values are kept constant, and in the absence of phase separation phenomena. We have found that the number of cation species at the A site (N{sub A}) has a strong influence on the width of the ferromagnetic and metal-insulator transitions, and a small influence on the average transition temperature. This behavior is opposite to that observed for increasing values of the variance sigma{sup 2} in manganites, with the same x and values, where average transition temperatures are strongly reduced. - Graphical abstract: In this paper the influence of A-site cation number is shown, see attached schematic figure, on the magnetotransport properties of T{sub c}-optimized manganites, Ln{sub 5/8}M{sub 3/8}MnO{sub 3}.

  14. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  15. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed Central

    2016-01-01

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na+ would outcompete Cs+ by 1.8–2.1-fold; i.e., with Cs+ in 2-fold excess of Na+ the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res.2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na+ over Cs+. There is an ∼25% preferential occupancy of Li+ over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4–P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation–anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the development of

  16. Interaction of alkali metal cations and short chain alcohols: effect of core size on theoretical affinities

    NASA Astrophysics Data System (ADS)

    Ma, N. L.; Siu, F. M.; Tsang, C. W.

    2000-05-01

    The effect of core size on the calculated binding energies of alkali metal cations (Li +, Na +, K +) to methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, and t-butanol are evaluated using G2(MP2,SVP) protocol. The K + affinities, reported for the first time, were found to be negative if a core size larger than that of neon (2s 22p 6) was used. Given this, we suggest that the 1s 2, 2s 22p 6, and 3s 23p 6 electrons have to be included in the electron correlation treatment for Li +, Na + and K + containing species, respectively. With these core sizes, our G2(MP2,SVP) Li + and Na + affinities are in excellent agreement with values obtained from the newly developed G3 protocol. The nature of alkali metal cation-alcohol interaction is also discussed.

  17. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  18. Structure and cation distribution in perovskites with small cations at the A site: the case of ScCoO3

    NASA Astrophysics Data System (ADS)

    Yi, Wei; Presniakov, Igor A.; Sobolev, Alexey V.; Glazkova, Yana S.; Matsushita, Yoshitaka; Tanaka, Masahiko; Kosuda, Kosuke; Tsujimoto, Yoshihiro; Yamaura, Kazunari; Belik, Alexei A.

    2015-04-01

    We synthesize ScCoO3 perovskite and its solid solutions, ScCo1-xFexO3 and ScCo1-xCrxO3, under high pressure (6 GPa) and high temperature (1570 K) conditions. We find noticeable shifts from the stoichiometric compositions, expressed as (Sc1-xMx)MO3 with x = 0.05-0.11 and M = Co, (Co, Fe) and (Co, Cr). The crystal structure of (Sc0.95Co0.05)CoO3 is refined using synchrotron x-ray powder diffraction data: space group Pnma (No. 62), Z = 4 and lattice parameters a = 5.26766(1) Å, b = 7.14027(2) Å and c = 4.92231(1) Å. (Sc0.95Co0.05)CoO3 crystallizes in the GdFeO3-type structure similar to other members of the perovskite cobaltite family, ACoO3 (A3+ = Y and Pr-Lu). There is evidence that (Sc0.95Co0.05)CoO3 has non-magnetic low-spin Co3+ ions at the B site and paramagnetic high-spin Co3+ ions at the A site. In the iron-doped samples (Sc1-xMx)MO3 with M = (Co, Fe), Fe3+ ions have a strong preference to occupy the A site of such perovskites at small doping levels.

  19. Infrared multiple photon dissociation spectroscopy of cationized asparagine: effects of metal cation size on gas-phase conformation.

    PubMed

    Heaton, A L; Bowman, V N; Oomens, J; Steill, J D; Armentrout, P B

    2009-05-14

    Gas-phase structures of cationized asparagine (Asn) including complexes with Li(+), Na(+), K(+), Rb(+), Cs(+), and Ba(2+), as well as protonated Asn, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser. Experimental spectra for the alkali metal cation complexes exhibit systematic trends, whereas spectra for Ba(2+)(Asn) and H(+)(Asn) are more distinct. To identify the structures formed experimentally, measured IRMPD spectra are compared to spectra calculated at a B3LYP/6-311+G(d,p) level with several effective core potentials and basis sets evaluated for the heavy metal systems. The dominant conformation ascertained for complexes with the smaller metal cations, Li(+)(Asn) and Na(+)(Asn), is a charge-solvated, tridentate [N,CO,CO] structure that binds the metal cation with the amine group of the amino acid backbone and to the carbonyl oxygen atoms of the backbone and amino acid side chain. For the larger alkali metal cation complexes, K(+)(Asn), Rb(+)(Asn), and Cs(+)(Asn), an additional charge-solvated, tridentate [COOH,CO] structure that binds the metal cation with the two oxygen atoms of the backbone carboxylic acid group and the carbonyl oxygen atom of the Asn side chain may also be present. The Ba(2+)(Asn) spectrum is characteristic of a single charge-solvated [N,CO,CO] conformation, in contrast to Gly, Trp, Arg, Gln, Pro, Ser, Val, and Glu, which all take on a zwitterionic structure when complexed to Ba(2+). In no case do the cationized Asn complexes show definitive evidence of forming a zwitterionic structure in the complexes studied here. For H(+)(Asn), a mixture of two [N,CO] structures, which differ only in the orientation the side chain and are calculated to be nearly identical in energy, explains the experimental spectrum well.

  20. Elucidating the impact of A-site cation change on photocatalytic H2 and O2 evolution activities of perovskite-type LnTaON2 (Ln = La and Pr).

    PubMed

    Hojamberdiev, Mirabbos; Bekheet, Maged F; Hart, Judy N; Vequizo, Junie Jhon M; Yamakata, Akira; Yubuta, Kunio; Gurlo, Aleksander; Hasegawa, Masashi; Domen, Kazunari; Teshima, Katsuya

    2017-08-23

    Transition metal (oxy)nitrides with perovskite-type structures have been regarded as one of the promising classes of inorganic semiconductor materials that can be used in solar water splitting systems for the production of hydrogen as a renewable and storable energy carrier. The performance of transition metal (oxy)nitrides in solar water splitting is strongly influenced by the crystal structure-related dynamics of photogenerated charge carriers. Here, we have systematically assessed the influence of A-site cation exchange on the visible-light-induced photocatalytic H2 and O2 evolution activities, photoanodic response, and dynamics of photogenerated charge carriers of perovskite-type LnTaON2 (Ln = La and Pr). The structural refinement results reveal the orthorhombic Imma and Pnma structures for LaTaON2 and PrTaON2, respectively; the latter has a more distorted crystal structure from the ideal cubic perovskite due to the smaller size of Pr(3+) cations. Compared with LaTaON2, PrTaON2 exhibits lower photocatalytic H2 and O2 gas evolution activities and photoanodic response owing to an excessive amount of intrinsic defects associated with anionic vacancies and reduced tantalum species stemming from a long high-temperature nitridation process under reductive NH3 atmosphere. Transient absorption signals evidence the faster decay of photogenerated electrons (holes) in Pt (CoOx)-loaded LaTaON2 than that in Pt (CoOx)-loaded PrTaON2, consistent with the photocatalytic and photoelectrochemical performance of the two photocatalysts. This study suggests that in addition to selecting a suitable A-site cation, it is prerequisite to synthesize LnTaON2 (Ln = La and Pr) crystals with a low defect density to improve their photo-conversion efficiency for solar water splitting.

  1. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes.

    PubMed

    Inoh, Yoshikazu; Nagai, Mie; Matsushita, Kayo; Nakanishi, Mamoru; Furuno, Tadahide

    2017-05-01

    Cationic liposomes have attracted recent attention as DNA vaccine carriers that can target dendritic cells (DCs). In general, cationic liposome/DNA complexes (lipoplexes) are taken up by various cells via clathrin-mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis, or phagocytosis, with the mode of endocytosis determining further intracellular trafficking pathways. Moreover, the physicochemical properties of cationic lipoplexes, including lipid composition, shape, size, and charge, influence transfection efficiency, affecting uptake and subsequent intracellular pathways. To develop cationic liposomes as potential DNA vaccine carriers, the objective of this study was to study the effect of lipoplex size on DNA transfection efficiency in DCs. We explored the size-dependent endocytosis pathway and the intracellular trafficking of cationic lipoplexes using bone marrow derived dendritic cells (BMDCs). Our results indicated that small-sized lipoplexes (approximately 270nm diameter) were taken up by BMDCs via caveolae-mediated endocytosis, which led to a non-degradative pathway, whereas larger-sized lipoplexes (approximately 500nm diameter) were taken up by BMDCs via clathrin-mediated endocytosis and micropinocytosis, which led to a lysosomal degradation pathway. These findings suggest that, by regulating the size of lipoplexes, it may be possible to develop cationic liposomes as DNA vaccine therapies for targeting DCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Impact of particle size and morphology on zinc cation adsorption by hydroxyapatite and dentifrice containing hydroxyapatite].

    PubMed

    Yang, Jian-Zhen; Shen, Xiao-Qing; Liu, Cheng-Xia; Xu, Ping-Ping

    2016-05-01

    To study the influence of particle size and morphology on zinc cation adsorption by hydroxyapatite (HA) and dentifrice containing HA. Four HAs with different particle sizes and morphologies, HA-containing dentifrice and blank dentifrice were prepared into suspensions of serial concentrations. Zinc ion solutions with an initial concentration of 10 mg/L was mixed with the suspensions and kept for 24 h for adsorption reaction. The zinc ion concentration in the supernatant was measured by inductively coupled plasma emission spectrometer and the sorption rate of zinc ion was calculated. HA and HA-containing dentifrice with various particle sizes and morphologies were all capable of absorbing zinc ions from simulated waste water, and the adsorption rate of HA-containing dentifrice was 3%-10% higher than that of HA. HA with a particle size of 12 µm and a spherical morphology showed the strongest adsorption ability, followed by short bar-shaped HA with a particle size of 30 µm. Both Langmuir and Freundlich equation could simulate the sorption processes of HA dentifrice, while only Langmuir equation could simulate the sorption processes of HA. Incorporation of HA in dentifrice can enhance zinc ion adsorption capacity of the material. The particle size and morphology of HA both affect the adsorption of zinc ions, and 12-µm HA particle with a spherical morphology has the best adsorption ability.

  3. The influence of monovalent cation size on the stability of RNA tertiary structures

    PubMed Central

    Lambert, Dominic; Leipply, Desirae; Shiman, Ross; Draper, David E.

    2009-01-01

    Many RNA tertiary structures are stable in the presence of monovalent ions alone. To evaluate the degree to which ions at or near the surfaces of such RNAs contribute to stability, the salt-dependent stabilities of a variety of RNA structures were measured with each of the five group I cations. The stabilities of hairpin secondary structures and a pseudoknot tertiary structure are insensitive to the ion identity, but the tertiary structures of two other RNAs, an adenine riboswitch and a kissing loop complex, become more stable by 2-3 kcal/mol as ion size decreases. This “default” trend is attributed to the ability of smaller ions to approach the RNA surface more closely. The degree of cation accumulation around the kissing loop complex was also inversely proportional to ion radius, perhaps because of the presence of sterically restricted pockets that can be accessed only by smaller ions. An RNA containing the tetraloop-receptor motif shows a strong (up to ∼3 kcal/mol) preference for Na+ or K+ over other group I ions, consistent with the chelation of K+ by this motif in some crystal structures. This RNA reverts to the “default” dependence on ion size when a base forming part of the chelation site is mutated. Lastly, an RNA aptamer for cobinamide, which was originally selected in the presence of high LiCl concentrations, binds ligand more strongly in the presence of Li+ than other monovalent ions. Based on these trends in RNA stability with group I ion size, it is argued that two features of RNA tertiary structures may promote strong interactions with ions at or near the RNA surface: negative charge densities that are higher than found in secondary structures, and the occasional presence of chelation sites, electronegative pockets that selectively bind ions of an optimum size. PMID:19427322

  4. Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling.

    PubMed

    De Winter, Julien; Lemaur, Vincent; Ballivian, Renaud; Chirot, Fabien; Coulembier, Olivier; Antoine, Rodolphe; Lemoine, Jérôme; Cornil, Jérôme; Dubois, Philippe; Dugourd, Philippe; Gerbaux, Pascal

    2011-08-22

    Ion mobility spectrometry coupled with mass spectrometry was used to experimentally determine the three-dimensional structure of multiply charged sodium cationized polylactides (PLA). In particular, the experiments were conducted to evaluate the influence of the charge state and the size on the gas-phase conformation of cationized PLA. The measured collision cross sections were then compared to calculated values obtained by computational chemistry methods. The most striking feature was the experimental and theoretical observation of a breaking point in the quasilinear relationship between the average collision cross sections and the number of monomer units for the triply charged cations. This breaking point was theoretically demonstrated, for the doubly and triply charged cations, to be associated with a significant folding of the polymer chains around the cationizing agents. The occurrence of such breaking points could be exploited to correlate the charge state of the most intense ion series observed upon electrospray ionization with the number-average molecular mass of a polymer.

  5. Effect of A-site cations on the broadband-sensitive upconversion of AZrO3:Er3+,Ni2+ (A = Ca, Sr, Ba) phosphors

    NASA Astrophysics Data System (ADS)

    Luitel, Hom Nath; Mizuno, Shintaro; Tani, Toshihiko; Takeda, Yasuhiko

    2017-02-01

    We investigated broadband-sensitive upconversion processes in a series of AZrO3 type perovskites codoped with Ni2+ and Er3+, especially giving focus on the effect of the A-site host cations viz. Ca, Sr, Ba. Absorption and Stokes emission of the Ni2+ changed remarkably according to the A-site cations making difference in the Ni2+ to Er3+ energy transfer efficiency. The energy transfer extent from the Ni2+ sensitizers to the Er3+ emitters and the back transfer from the Er3+ to the Ni2+ were studied to clarify the guide for efficient broadband-sensitive upconversion. The Ni2+ to Er3+ energy transfer efficiency and hence the Er3+ upconversion emission intensity was dependent on the extent of overlap between the Er3+ absorption and the Ni2+ emission bands. Larger the overlap, faster was the energy transfer from the Ni2+ to the Er3+, leading to more intense Er3+ upconversion emission. However, back energy transfer from the Er3+ to the Ni2+ due to significant overlap of the Er3+ emission band with the Ni2+ absorption band reduced the upconversion emission intensity. Another important factor is the upconversion efficiency of the Er3+ emitters themselves after the energy transfer from the Ni2+ sensitizers, which was significantly improved when the symmetry around the Er3+ was lowered. As a result of these combined effects, the CaZrO3 host exhibited the most intense Ni2+-sensitized upconversion emission compared to the Sr and Ba analogues. Thus, for the efficient broadband-sensitive upconversion to be realized, a low symmetry host to manifest efficient upconversion of the Er3+ emitters and controlled Ni2+ absorption and emission bands to suppress the back energy transfer while maintaining efficient energy transfer in the forward direction are essential.

  6. Infrared multiple photon dissociation spectroscopy of cationized histidine: effects of metal cation size on gas-phase conformation.

    PubMed

    Citir, Murat; Hinton, Christopher S; Oomens, Jos; Steill, Jeffrey D; Armentrout, P B

    2012-02-16

    The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different

  7. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes

    PubMed Central

    Contat-Rodrigo, Laura; Pérez-Fuster, Clara; Lidón-Roger, José Vicente; Bonfiglio, Annalisa; García-Breijo, Eduardo

    2016-01-01

    A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene) doped with polysterene sulfonate (PEDOT:PSS). Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS) solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B). The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag). The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na+ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl− counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes. PMID:27690032

  8. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes.

    PubMed

    Contat-Rodrigo, Laura; Pérez-Fuster, Clara; Lidón-Roger, José Vicente; Bonfiglio, Annalisa; García-Breijo, Eduardo

    2016-09-28

    A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene) doped with polysterene sulfonate (PEDOT:PSS). Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS) solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B). The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag). The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na⁺ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl(-) counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.

  9. La2SrCr2O7: Controlling the Tilting Distortions of n = 2 Ruddlesden-Popper Phases through A-Site Cation Order.

    PubMed

    Zhang, Ronghuan; Abbett, Brian M; Read, Gareth; Lang, Franz; Lancaster, Tom; Tran, T Thao; Halasyamani, P Shiv; Blundell, Stephen J; Benedek, Nicole A; Hayward, Michael A

    2016-09-06

    Structural characterization by neutron diffraction, supported by magnetic, SHG, and μ(+)SR data, reveals that the n = 2 Ruddlesden-Popper phase La2SrCr2O7 adopts a highly unusual structural configuration in which the cooperative rotations of the CrO6 octahedra are out of phase in all three Cartesian directions (ΦΦΦz/ΦΦΦz; a(-)a(-)c(-)/a(-)a(-)c(-)) as described in space group A2/a. First-principles DFT calculations indicate that this unusual structural arrangement can be attributed to coupling between the La/Sr A-site distribution and the rotations of the CrO6 units, which combine to relieve the local deformations of the chromium-oxygen octahedra. This coupling suggests new chemical "handles" by which the rotational distortions or A-site cation order of Ruddlesden-Popper phases can be directed to optimize physical behavior. Low-temperature neutron diffraction data and μ(+)SR data indicate La2SrCr2O7 adopts a G-type antiferromagnetically ordered state below TN ∼ 260 K.

  10. Infrared multiple photon dissociation spectroscopy of cationized methionine: effects of alkali-metal cation size on gas-phase conformation.

    PubMed

    Carl, Damon R; Cooper, Theresa E; Oomens, Jos; Steill, Jeff D; Armentrout, P B

    2010-04-14

    The gas-phase structures of alkali-metal cation complexes of the amino acid methionine (Met) as well as protonated methionine are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser. Spectra of Li(+)(Met) and Na(+)(Met) are similar and relatively simple, whereas the spectra of K(+)(Met), Rb(+)(Met), and Cs(+)(Met) include distinctive new bands. Measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory to identify the conformations present in the experimental studies. For Li(+) and Na(+) complexes, the only conformation present is a charge-solvated, tridentate structure that binds the metal cation to the amine and carbonyl groups of the amino acid backbone and the sulfur atom of the side chain, [N,CO,S]. In addition to the [N,CO,S] conformer, bands corresponding to alkali-metal cation binding to a bidentate zwitterionic structure, [CO(2)(-)], are clearly present for the K(+), Rb(+), and Cs(+) complexes. Theoretical calculations of the lowest energy conformations of Rb(+) and Cs(+) complexes suggest that the experimental spectra could also include contributions from two additional charge-solvated structures, tridentate [COOH,S] and bidentate [COOH]. For H(+)(Met), the IRMPD action spectrum is reproduced by multiple low-energy [N,CO,S] conformers, in which the protonated amine group hydrogen bonds to the carbonyl oxygen atom and the sulfur atom of the amino acid side chain. These [N,CO,S] conformers only differ in their side-chain orientations.

  11. Melting point trends and solid phase behaviors of model salts with ion size asymmetry and distributed cation charge.

    PubMed

    Lindenberg, E K; Patey, G N

    2015-07-14

    The melting point trends of model salts composed of coarse grain ions are examined using NPT molecular dynamics simulations. The model salts incorporate ion size asymmetry and distributed cation charge, which are two common features in ionic liquids. A series of single-phase and two-phase simulations are done at set temperatures with 50 K intervals for each salt, and the normal melting point is estimated within 50 K. The melting point trends are then established relative to a charge-centered, size symmetric salt with a normal melting point between 1250 K and 1300 K. We consider two sets of size asymmetric salts with size ratios up to 3:1; the melting point trends are different in each set. The lowest melting point we find is between 450 K and 500 K, which is a reduction of over 60% from the charge-centered, size symmetric case. In both sets, we find diversity in the solid phase structures. For all size ratios with small cation charge displacements, the salts crystallize with orientationally disordered cations. When the partial cation charge is far enough off-center in salts with ion size ratios near 1:1, the salts can become trapped in glassy states and have underlying crystal structures that are orientationally ordered. At ion size ratios near 3:1, the salts with large cation charge displacements show premelting transitions at temperatures as low as 300 K. After the premelting transition, these salts exist either as fast ion conductors, where the smaller anions move through a face centered cubic (fcc) cation lattice, or as plastic crystals, where ion pairs rotate on a fcc lattice.

  12. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies

    NASA Astrophysics Data System (ADS)

    Antanovich, Artsiom; Prudnikau, Anatol; Gurin, Valerij; Artemyev, Mikhail

    2015-07-01

    We examine conversion of magic-sized CdSe clusters (MSCs) into HgSe ones by means of Cd/Hg cation exchange. With this procedure Cd8Cd17- and Cd32-selenide clusters can be converted into corresponding Hg8-, Hg17- and Hg32-selenide ones. Upon cationic exchange MSCs behavior differs from that of bulkier counterparts - larger (2-3 nm) quantum dots. Unlike CdSe colloidal quantum dots, magic-sized clusters are converted in fast and complete manner without a formation of intermediate mixed CdxHg1-x compounds that was established on the basis of optical absorption spectroscopy and chemical composition analysis. These assumptions were supported by DFT quantum chemical calculations performed for Cd8-, Cd17- and Hg8-, Hg17-selenide model clusters. Energies of experimental and calculated optical transitions were compared in order to prove the isostructural character of cationic substitution in magic-sized clusters.

  13. Size effects on cation heats of formation. IV. Methyl and ethyl substitutions in methyl, methylene, acetylene and ethene

    NASA Astrophysics Data System (ADS)

    Leach, Sydney

    2015-08-01

    An empirical relation between the heat of formation of molecular ions and cation size is used to study the effects of methyl and ethyl substitution of hydrogen atoms on the cations of the CnHm hydrocarbons methyl, methylene, acetylene and ethene. The results provide tests of the graphical method, revealing regularities and irregularities in the empirical size relation used, as well as its value as a predictive tool for determining cation and neutral heats of formation. Of the 36 CnHm cations studied, only 5 have heats of formation listed in the renowned ATcT tables. Some CnHm cation heats of formation are questioned or eliminated, mainly in cases where multiple choices are available in the literature. Proposals are made for investigating or re-investigating the ionisation energies and the heats of formation of several of the molecules studied where no data previously exist or where our analysis suggests that more reliable values are needed. The relative effects of methyl and ethyl substitution on the thermodynamic stability of the series of alkyl-substituted CnHm cations are discussed.

  14. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE PAGES

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...

    2017-03-22

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  15. Topotactic reductive synthesis of A-site cation-ordered perovskite YBaCo2O x (x = 4.5-5.5) epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2016-04-01

    A-site cation-ordered perovskite YBaCo2O x epitaxial films were synthesized by combining pulsed-laser deposition and topotactic reduction using CaH2. The oxygen contents (x) of the films could be controlled in a range of 4.5-5.5 by adjusting the reaction temperature. The c-axis length of the YBaCo2O x films decreased with decreasing x when x ≥ 5.3 but drastically increased when x ˜ 4.5. In contrast, the in-plane lattice constants remained locked-in by the substrate after the reaction. The metal insulator transition observed in bulk YBaCo2O5.5 was substantially suppressed in the present film, likely because of the epitaxial strain effect. The resistivity of the films was significantly enhanced by changing the x value from ˜5.5 to ˜4.5, reflecting the distortion of the CoO x layers.

  16. Influence of pine bark particle size and pH on cation exchange capacity

    USDA-ARS?s Scientific Manuscript database

    Cation exchange capacity (CEC) describes the maximum quantity of cations a soil or substrate can hold while being exchangeable with the soil solution. While CEC has been studied for peat-based substrates, relatively little work has documented factors that affect CEC of pine bark substrates. The ob...

  17. Contraction, cation oxidation state and size effects in cerium oxide nanoparticles.

    PubMed

    Pelli Cresi, Jacopo Stefano; Spadaro, Maria Chiara; D'Addato, Sergio; Valeri, Sergio; Amidani, Lucia; Boscherini, Federico; Bertoni, Giovanni; Deiana, Davide; Luches, Paola

    2017-10-10

    An accurate description of the structural and chemical modifications of cerium oxide nanoparticles is mandatory for understanding their functionality in the applications. In this work we investigate the relation between local atomic structure, oxidation state, defectivity and size in cerium oxide nanoparticles with variable diameter below 10 nm, using X-ray absorption fine structure analysis in the near and extended energy range. The nanoparticles are prepared by physical methods under controlled conditions by physical methods and analyzed in morphology and crystalline quality by high resolution transmission electron microscopy. We resolve here an important question on the local structure of cerium oxide nanoparticles: we demonstrate a progressive contraction in the Ce-O interatomic distance with decreasing nanoparticle diameter and we relate the observed effect to the reduced dimensionality. The contraction is not significantly modified by inducing a 4-6% higher Ce3+ concentration through thermal annealing in high vacuum. The consequences of the observed average cation-anion distance contraction on the properties of the nanoparticles are discussed. © 2017 IOP Publishing Ltd.

  18. Implementation of a siting methodology for utility size WECS in western Massachusetts and northwestern Connecticut

    SciTech Connect

    Kirchhoff, R.H.; Kaminsky, F.C.

    1981-01-01

    This paper describes a long term research project by Northeast Utilities and the University of Massachusetts to identify candidate sites for utility size wind energy systems in Western Massachusetts and Northwestern Connecticut. A generalized methodology is described for identifying the candidate sites. This methodology includes the use of biological wind prospecting, data collection with TALA kites, computerized wind mapping with MATHEW, and the installation of long run data collection stations. This paper also describes the use of a mass consistent flow model known as MATHEW in developing computerized wind maps for selected regions of the area under study.

  19. On the Structural Basis for Size-selective Permeation of Organic Cations through the Voltage-gated Sodium Channel

    PubMed Central

    Sun, Ye-Ming; Favre, Isabelle; Schild, Laurent; Moczydlowski, Edward

    1997-01-01

    Recent evidence indicates that ionic selectivity in voltage-gated Na+ channels is mediated by a small number of residues in P-region segments that link transmembrane elements S5 and S6 in each of four homologous domains denoted I, II, III, and IV. Important determinants for this function appear to be a set of conserved charged residues in the first three homologous domains, Asp(I), Glu(II), and Lys(III), located in a region of the pore called the DEKA locus. In this study, we examined several Ala-substitution mutations of these residues for alterations in ionic selectivity, inhibition of macroscopic current by external Ca2+ and H+, and molecular sieving behavior using a series of organic cations ranging in size from ammonium to tetraethylammonium. Whole-cell recording of wild-type and mutant channels of the rat muscle μ1 Na+ channel stably expressed in HEK293 cells was used to compare macroscopic current–voltage behavior in the presence of various external cations and an intracellular reference solution containing Cs+ and very low Ca2+. In particular, we tested the hypothesis that the Lys residue in domain III of the DEKA locus is responsible for restricting the permeation of large organic cations. Mutation of Lys(III) to Ala largely eliminated selectivity among the group IA monovalent alkali cations (Li+, Na+, K+, Rb+, Cs+) and permitted inward current of group IIA divalent cations (Mg2+, Ca2+, Sr2+, Ba2+). This same mutation also resulted in the acquisition of permeability to many large organic cations such as methylammonium, tetramethylammonium, and tetraethylammonium, all of which are impermeant in the native channel. The results lead to the conclusion that charged residues of the DEKA locus play an important role in molecular sieving behavior of the Na+ channel pore, a function that has been previously attributed to a hypothetical region of the channel called the “selectivity filter.” A detailed examination of individual contributions of the Asp(I), Glu

  20. Pore-size distributions of cationic polyacrylamide hydrogels varying in initial monomer concentration and cross-linker/monomer ratio

    SciTech Connect

    Kremer, M.; Pothmann, E.; Roessler, T.; Baker, J.; Yee, A.; Blanch, H.; Prausnitz, J.M. )

    1994-05-23

    Pore-size distributions have been measured for cationic acrylamide-based hydrogels. The authors use the experimental mixed-solute-exclusion method, MSE (introduced by Kuga), to obtain the solute-exclusion curve representing the amount of imbibed liquid inside the gel inaccessible for a solute of radius r. The authors use the Brownian motion model (developed by Cassasa) to convert the size-exclusion curve into the pore-size distribution, which gives the frequency of pore radius R as a function of R. This theoretically-based interpretation of MSE data leads to the Fredholm integral equation that they solve numerically. Results are reported for a series of hydrogels containing acrylamide and 3% MAPTAC; the hydrogels differed in extent of cross-linking and/or initial concentration of monomer. Pore-size distributions shift to lower pore sizes with rising initial monomer concentration and with rising cross-linker-to-monomer ratio.

  1. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    PubMed Central

    Kurakula, Mallesh; El-Helw, AM; Sobahi, Tariq R; Abdelaal, Magdy Y

    2015-01-01

    Cationic charged chitosan as stabilizer was evaluated in preparation of nanocrystals using probe sonication method. The influence of cationic charge densities of chitosan (low CSL, medium CSM, high CSH molecular weights) and Labrasol® in solubility enhancement and modifying the release was investigated, using atorvastatin (ATR) as poorly soluble model drug. Compared to CSM and CSH; low cationic charge of CSL acted as both electrostatic and steric stabilizer by significant size reduction to 394 nm with charge of 21.5 meV. Solubility of ATR-CSL increased to 60-fold relative to pure ATR and ATR-L. Nanocrystals were characterized for physiochemical properties. Scanning electron microscopy revealed scaffold-like structures with high surface area. X-ray powder diffractometry and differential scanning calorimetry revealed crystalline to slight amorphous state changes after cationic charge size reduction. Fourier transform-infrared spectra indicated no potent drug-excipient interactions. The enhanced dissolution profile of ATR-CSL indicates that sustained release was achieved compared with ATR-L and Lipitor®. Anti-hyperlipidemic performance was pH dependent where ATR-CSL exhibited 2.5-fold higher efficacy at pH 5 compared to pH 6 and Lipitor®. Stability studies indicated marked changes in size and charge for ATR-L compared to ATR-CSL exemplifying importance of the stabilizer. Therefore, nanocrystals developed with CSL as a stabilizer is a promising choice to enhance dissolution, stability, and in-vivo efficacy of major Biopharmaceutical Classification System II/IV drugs. PMID:25609947

  2. Cross-linked cationic diblock copolymer worms are superflocculants for micrometer-sized silica particles.

    PubMed

    Penfold, Nicholas J W; Ning, Yin; Verstraete, Pierre; Smets, Johan; Armes, Steven P

    2016-12-01

    A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO113, Mn = 4400 g mol(-1); Mw/Mn = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA125, Mn = 31 800 g mol(-1), Mw/Mn = 1.19). A detailed phase diagram was constructed to determine the maximum amount of PQDMA125 stabilizer block that could be incorporated while still allowing access to a pure worm copolymer morphology. Aqueous electrophoresis studies indicated that zeta potentials of +35 mV could be achieved for such cationic worms over a wide pH range. Core cross-linked worms were prepared via statistical copolymerization of glycidyl methacrylate (GlyMA) with HPMA using a slightly modified PISA formulation, followed by reacting the epoxy groups of the GlyMA residues located within the worm cores with 3-aminopropyl triethoxysilane (APTES), and concomitant hydrolysis/condensation of the pendent silanol groups with the secondary alcohol on the HPMA residues. TEM and DLS studies confirmed that such core cross-linked cationic worms remained colloidally stable when challenged with either excess methanol or a cationic surfactant. These cross-linked cationic worms are shown to be much more effective bridging flocculants for 1.0 μm silica particles at pH 9 than the corresponding linear cationic worms (and also various commercial high molecular weight water-soluble polymers.). Laser diffraction studies indicated silica aggregates of around 25-28 μm diameter when using the former worms but only 3-5 μm diameter when employing the latter worms. Moreover, SEM studies confirmed that the cross-linked worms remained intact after their adsorption onto the silica particles, whereas the much more

  3. Role of the A -site cation in determining the properties of the hybrid perovskite CH3NH3PbBr3

    NASA Astrophysics Data System (ADS)

    Sarkar, Sagar; Mahadevan, Priya

    2017-06-01

    The presence of a molecule at the A site of an organic perovskite leads to unusual behavior compared to its inorganic counterpart. Considering the case of CH3NH3 , we find that it is both the size of the molecule as well as its orientation in the cage formed by the Pb and Br atoms which determine the favored structure. At the microscopic level, the basic energetics which come into play are steric effects as well as hydrogen bonding. While the molecule is asymmetrically placed in the cuboctahedral cavity, a mapping of the ab initio band structure to a tight-binding model reveals that the movement of the amine end of the molecule towards the Br atoms is driven primarily by electrostatic considerations. While the hydrogen bonding is responsible for driving the octahedral tilts, the energy lowering considerations do not follow a simple prescription of minimizing H-Br bond lengths. The presence of several competing energetics results in a complex low-energy landscape with deep valleys and high barriers between them which could explain the glassy dynamics seen even at low temperatures in the orthorhombic structure where the dipoles are believed to be frozen.

  4. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Rath, Chandana; Anand, S.; Das, R. P.; Sahu, K. K.; Kulkarni, S. D.; Date, S. K.; Mishra, N. C.

    2002-02-01

    In Mn1-xZnxFe2O4 (x=0 to 1) nanosize particles prepared through hydrothermal precipitation we observe a decrease in particle size from 13 to 4 nm with increasing Zn concentration from 0 to 1. The lattice constant, a, for all Mn/Zn concentrations is found to be less than that for the corresponding bulk values. At specific compositions within x=0.35 and 0.5, the temperature dependence of the magnetization exhibits a cusp-like behavior below the temperature at which the nanoparticles undergo a ferri- to para-magnetic transition (Tc). The Curie temperatures, Tc, of the nanoparticles are in the range of 175-500 °C, which are much higher than their corresponding bulk values. To explain these unusual features, the strong preferential occupancy of cations in chemically inequivalent A and B sites and the metastable cation distribution in nanoparticles are invoked.

  5. Daptomycin forms cation- and size-selective pores in model membranes.

    PubMed

    Zhang, TianHua; Muraih, Jawad K; MacCormick, Ben; Silverman, Jared; Palmer, Michael

    2014-10-01

    Daptomycin is a lipopeptide antibiotic that is used clinically to treat severe infections caused by Gram-positive bacteria. Its bactericidal action involves the calcium-dependent binding to membranes containing phosphatidylglycerol, followed by the formation of membrane-associated oligomers. Bacterial cells exposed to daptomycin undergo membrane depolarization, suggesting the formation of channels or pores in the target membranes. We here used a liposome model to detect and characterize the permeability properties of the daptomycin pores. The pores are selective for cations, with permeabilities being highest for Na(+), K(+), and other alkali metal ions. The permeability is approximately twice lower for Mg(++), and lower again for the organic cations choline and hexamethonium. Anions are excluded, as is the zwitterion cysteine. These observations account for the observed depolarization of bacterial cells by daptomycin and suggest that under typical in vivo conditions depolarization is mainly due to sodium influx.

  6. Influence of heteroanion and ammonium cation size on the composition and gas-phase fragmentation of polyoxovanadates

    SciTech Connect

    Johnson, Grant E.; Al Hasan, Naila M.; Laskin, Julia

    2013-11-01

    This paper describes the results of a systematic experimental investigation of the influence of different size cationic ammonium ligands and heteroanions on the composition, ionic charge state and gas-phase fragmentation pathways of anionic polyoxovanadates synthesized in solution. Four separate solutions of olyoxometalates (POMs) were prepared using all possible combinations of the tetraethylammonium [(C2H5)4N+] ligand, chloride (Cl-) heteroanion, tetrabutylammonium [(C4H9)4N+] ligand and acetate (CH3CO2-) heteroanion. Employing electrospray ionization combined with high-resolution mass spectrometry (ESI-MS) we demonstrate that POM solutions synthesized using the small [(C2H5)4N+] ligand and Cl-heteroanion are composed predominately of large doubly and triply charged chlorine containing clusters with a size distribution centered at fourteen vanadium atoms. POM solutions prepared using the Cl- anion and [(C4H9)4N+] ligand are shown to contain slightly larger clusters with fifteen and sixteen vanadium atoms, thereby indicating that the size of the cationic ammonium ligand exerts only a weak influence on the polymerization of polyoxovanadates. POM solutions prepared using (C2H5)4NCl and (C4H9)4NCl also produced peaks consistent with the attachment of one and two ammonium cations to the larger clusters. Solutions prepared using the large CH3CO2 - heteroanion, in contrast, are demonstrated to contain much smaller singly and doubly *Manuscript Click here to view linked References 2 charged clusters with a size distribution centered at six vanadium atoms. In addition, while incorporation of one and two ammonium ligands into the smaller clusters was observed, no POMs containing the CH3CO2 - heteroanion were identified. The gas-phase fragmentation pathways of representative POMs containing one and two ammonium ligands were examined using collision induced dissociation (CID) and mass spectrometry. Similar primary fragmentation pathways involving partial loss of a ligand

  7. Cation distribution and particle size effect on Raman spectrum of CoFe{sub 2}O{sub 4}

    SciTech Connect

    Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.; Narasimhan, S.V.

    2011-01-15

    Moessbauer and Raman spectroscopic studies were carried out on CoFe{sub 2}O{sub 4} particles synthesized with size ranging from 6 to 500 nm (bulk). Cation distribution studies were carried out on the high temperature and room temperature phases of the microcrystalline CoFe{sub 2}O{sub 4} by Moessbauer and Raman spectroscopic methods. The high temperature phase of CoFe{sub 2}O{sub 4} showed a decreased inversion parameter of 0.69 as compared to the value of the room temperature phase of 0.95, indicating that the structure gradually transforms towards a normal spinel. Corresponding Raman spectra for these two phases of CoFe{sub 2}O{sub 4} showed a change in relative peak intensity of the vibrational mode at 695 cm{sup -1}(A{sub 1g}(1)) to 624 cm{sup -1} (A{sub 1g}(2)). The relative peak intensity ratio, I{sub v} between the A{sub 1g}(1) and A{sub 1g}(2) vibrational mode was decreasing with lowering of inversion parameter of the CoFe{sub 2}O{sub 4} spinel system. A variation of laser power on the sample surface was reflected in the cation distribution in ferrite phase. Superparamagnetic, single domain CoFe{sub 2}O{sub 4} particles (6 nm) showed a 20 cm{sup -1} red shift and broadening of phonon modes when compared to the macro-crystalline CoFe{sub 2}O{sub 4} (500 nm). Variation of Raman shift with particle size was studied by considering the bond polarization model. Raman spectroscopic studies clearly indicate the variation in the cation distribution in nano-sized particles and distribution tending to a normal spinel structural configuration. -- Graphical abstract: Variation of Raman shift difference ({Delta}{omega}) with size. Display Omitted

  8. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    PubMed

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-03-08

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m(2)/g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications.

  9. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells.

    PubMed

    Bandara, T M W J; Fernando, H D N S; Furlani, M; Albinsson, I; Dissanayake, M A K L; Ratnasekera, J L; Mellander, B-E

    2016-04-28

    The nature and concentration of cationic species in the electrolyte exert a profound influence on the efficiency of nanocrystalline dye-sensitized solar cells (DSSCs). A series of DSSCs based on gel electrolytes containing five alkali iodide salts (LiI, NaI, KI, RbI and CsI) and polyacrylonitrile with plasticizers were fabricated and studied, in order to investigate the dependence of solar cell performance on the cation size. The ionic conductivity of electrolytes with relatively large cations, K(+), Rb(+) and Cs(+), was higher and essentially constant, while for the electrolytes containing the two smaller cations, Na(+) and Li(+), the conductivity values were lower. The temperature dependence of conductivity in this series appears to follow the Vogel-Tamman-Fulcher equation. The sample containing the smallest cation shows the lowest conductivity and the highest activation energy of ∼36.5 meV, while K(+), Rb(+) and Cs(+) containing samples show an activation energy of ∼30.5 meV. DSSCs based on the gel electrolyte and a TiO2 double layer with the N719 dye exhibited an enhancement in the open circuit voltage with increasing cation size. This can be attributed to the decrease in the recombination rate of electrons and to the conduction band shift resulting from cation adsorption by TiO2. The maximum efficiency value, 3.48%, was obtained for the CsI containing cell. The efficiencies shown in this study are lower compared to values reported in the literature, and this can be attributed to the use of a single salt and the absence of other additives, since the focus of the present study was to analyze the cation effect. The highest short circuit current density of 9.43 mA cm(-2) was shown by the RbI containing cell. The enhancement of the solar cell performance with increasing size of the cation is discussed in terms of the effect of the cations on the TiO2 anode and ion transport in the electrolyte. In liquid electrolyte based DSSCs, the short circuit current density

  10. Magnetodielectric effects in A -site cation-ordered chromate spinels Li M C r4O8 (M =Ga and In)

    NASA Astrophysics Data System (ADS)

    Saha, Rana; Fauth, Francois; Avdeev, Maxim; Kayser, Paula; Kennedy, Brendan J.; Sundaresan, A.

    2016-08-01

    We report the occurrence of a magnetodielectric effect and its correlation with structure and magnetism in the A -site ordered chromate spinel oxides Li M C r4O8 (M =Ga , In). In addition to magnetic and dielectric measurements, temperature dependent synchrotron and neutron diffraction experiments have been carried out for the Ga compound. The results are compared and contrasted with that of a corresponding conventional B -site magnetic chromate spinel oxide, ZnC r2O4 . Like ZnC r2O4 , the A -site ordered chromate spinels exhibit a magnetodielectric effect at the magnetic ordering temperature (TN˜13 -15 K ), resulting from magnetoelastic coupling through a spin Jahn-Teller effect. While the presence of a broad magnetic anomaly, associated with a short-range magnetic ordering (TSO˜45 K ) in ZnC r2O4 , does not cause any dielectric anomaly, a sharp change in dielectric constant has been observed in LiInC r4O8 at the magnetic anomaly, which is associated with the opening of a spin gap (TSG˜60 K ). Contrary to the In compound, a broad dielectric anomaly exists at the onset of short-range antiferromagnetic ordering (TSO˜55 K ) in LiGaC r4O8 . The differences in dielectric behavior of these compounds have been discussed in terms of breathing distortion of the C r4 tetrahedra.

  11. Permeation properties of a Ca(2+)-blockable monovalent cation channel in the ectoderm of the chick embryo: pore size and multioccupancy probed with organic cations and Ca2+

    PubMed Central

    1995-01-01

    A Ca(2+)-blockable monovalent cation channel is present in the apical membrane of the ectoderm of the gastrulating chick embryo. We used the patch clamp technique to study several single-channel permeation properties of this channel. In symmetrical conditions without Ca2+, the Na+ current carried by the channel rectifies inwardly. The channel has an apparent dissociation constant for extracellular Na+ of 115 mM at 0 mV and a low density of negative surface charge (-0.03 e/nm2) at its extracellular entrance. The minimal pore diameter is approximately 5.8 A, as calculated from the relative permeabilities of 10 small organic cations. Extracellular application of six large organic cations decreased the inward Na+ current in a voltage-dependent manner, which strongly suggests an intrachannel block. The presence of at least two ion binding sites inside the pore is inferred from the Na+ dependence of the block by the organic cations. This hypothesis is strengthened by the fact that the extracellular Ca2+ block is also modified by the Na+ concentration. In particular, the rise of the unblocking rate with increased Na+ concentrations clearly suggests the presence of an interaction between Ca2+ and Na+ inside the channel. A low probability of double occupancy at physiological ionic conditions is implied from the absence of an anomalous mole fraction effect with mixtures of extracellular Li+ and K+. Finally, the absence of inward current at very strong hyperpolarizations and in the presence of 10 mM extracellular Ca2+ demonstrates the absence of significant Ca2+ current through this channel. It is argued that this embryonic epithelial Ca(2+)-blockable monovalent cation channel is related to both L-type Ca2+ channel and cyclic nucleotide-gated channels. PMID:8537814

  12. The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals.

    PubMed

    Atuchin, V V; Kesler, V G; Meng, Guangsi; Lin, Z S

    2012-10-10

    The electronic structure of RbTiOPO(4) has been investigated with x-ray photoemission spectroscopy. Detailed photoemission spectra of the element core levels have been recorded under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The chemical bonding parameters are compared to those reported for complex titanates and phosphates. The band structures of KTiOPO(4), RbTiOPO(4), K(0.535)R(0.465)TiOPO(4) and TlTiOPO(4) have been calculated by ab initio methods and compared to available experimental results. It is found that the band structure of KTP-type phosphate crystals is weakly dependent on the nature of the A-site (A=K, Rb, Tl) element.

  13. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    PubMed Central

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-01-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A−1 and 40.6 cd A−1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A−1 and 25.4 cd A−1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays. PMID:27278527

  14. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-06-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A‑1 and 40.6 cd A‑1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A‑1 and 25.4 cd A‑1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays.

  15. Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)2XF6 (X = P, As, Sb).

    PubMed

    Pop, Flavia; Auban-Senzier, Pascale; Canadell, Enric; Avarvari, Narcis

    2016-10-13

    Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF6 anions (X = P, As, Sb), determined by the anion size and the chiral information.

  16. Cation size effect on the thermochromic properties of rare earth cobaltites RECoO{sub 3} (RE: La, Nd, Sm)

    SciTech Connect

    Capon, F.; Boileau, A.; Boulet, P.; Pierson, J. F.; Carteret, C.; Martin, N.

    2013-09-21

    RECoO{sub 3} (RE: rare earth) perovskite thin films have been deposited at room temperature by direct current co-sputtering and subsequent annealing in air at 923 K during 1 day. The effect of the octahedra tilts on the optical properties has been tracked decreasing the RE cation size. The bending and stretching vibrational modes of the CoO{sub 6/2} octahedra give information on the Co–O distances and the Co–O–Co angles which determine the Co–O overlap integral and hence the electric properties of these perovskites. Transmittance measurements in the 1.42–100 μm wavelength range show a high transparency at room temperature. When temperature increases, an optical screening effect depending on the RE{sup 3+} ionic radii (i.e., Co-O-Co angles) and resulting from the electrical behaviour occurs. At the wavelength of 8 μm, the transmittance drops from about 90% at room temperature to 50% at the temperature of 516, 600, and 640 K for LaCoO{sub 3}, NdCoO{sub 3}, and SmCoO{sub 3}, respectively.

  17. Time-Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals [The Dynamic Mechanical Properties of Lead-Halide Perovskite Single Crystals are Independent of A-site Cation Chemistry

    DOE PAGES

    Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; ...

    2017-05-02

    The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudesmore » of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. In conclusion, this contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.« less

  18. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  19. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.

    PubMed

    Yang, X N; Cui, F Y

    2013-01-01

    Nano-sized titanium dioxide in the aquatic environment has a potential impact on the environment and human health. In this study, the impact of pH value, dissolved organic matter (DOM) and divalent cations (Ca(2+)) on the stability of titanium dioxide nanoparticles (nano-TiO2) in an aqueous environment was investigated in batch tests. The results showed that the particle size of nano-TiO2 was not sensitive to pH value but was inversely proportional to zeta potential. The nano-TiO2 becomes more stable with surface zeta potential, accompanied by small particle size and high dispersion. In the presence of DOM, the particle size was smaller and the stability of nano-TiO2 could be enhanced. This might be a synergistic effect of the ligand exchange and electrostatic force. Particle size increased with the addition of Ca(2+) and the stability decreased.

  20. Simultaneous separation and detection of anions and thiophilic cations using capillary-size anion exchange chromatography with suppressed conductivity detection.

    PubMed

    Sötz, Veronika Anna; Kochmann, Sven

    2015-05-01

    In this fundamental study, the simultaneous separation and detection of anions and thiophilic cations in anion exchange chromatography with suppressed conductivity detection is investigated. Mercury(II) and cadmium(II) served as model analytes. Separation and detection was performed by introducing 2-mercaptoethanesulfonate, which forms complexes with both mercury and cadmium with a strong metal-sulfur bond, into the KOH eluent. Additional to the separation on the column, these complexes were able to pass the suppressor. Subsequently, they could be detected as negative peaks. A simple model for the separation mechanism was developed based on these results. Furthermore, the effect of the eluent concentration on the retention factors of both cation complexes and standard anions was examined and quantified. It revealed that the concentration of 2-mercaptoethanesulfonate has more influence on the cations than the KOH concentration. Also, 2.0 mM of 2-mercaptoethanesulfonate had about the same effect on the anion separation as 60 mM KOH. Finally, selectivity and detection limits were investigated. The detection limits were 4.9 μM for mercury and 2.2 μM for cadmium.

  1. Influence of Cation Size on the Ionicity, Fluidity, and Physiochemical Properties of 1,2,4-Triazolium Based Ionic Liquids.

    PubMed

    Singh, Dharmendra; Gardas, Ramesh L

    2016-06-02

    Interpreting the physiochemical properties and structure-property correlations of ionic liquids (ILs) is a key to the enlargement of their optimized structures for specific applications. In this work, a series of ILs based on 1-alkyl-1,2,4-triazolium cation with trifluoromethanesulfonate anion were synthesized and the effect of cation and temperature on physiochemical properties such as density, viscosity, speed of sound, conductivity, and rheology was studied. Temperature dependence densities were correlated with the densities estimated by the Gardas and Coutinho model, whereas viscosity and molar conductivity have been found to satisfy the Vogel-Tammann-Fulcher (VTF) equation over the studied temperature range 293.15-343.15 K. Further, to explore the wide range of applications, ionicity has been tested by correlating the fluidity with molar conductivity and it was found that synthesized ILs can be referred to as "good ILs". Furthermore, the fluidity behavior describing the interactions between the cation and anion of ILs was investigated through their rheological properties, and the Newtonian behavior of ILs has been examined by varying the effect of shear rate on viscosity. Finally, the impact of structure variants in terms of the N-1 functionalized 1,2,4-triazole ring has been analyzed over the studied properties.

  2. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  3. Stability assessment of injectable castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulsifier films.

    PubMed

    Tamilvanan, S; Kumar, B Ajith; Senthilkumar, S R; Baskar, Raj; Sekharan, T Raja

    2010-06-01

    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.

  4. Cation size and strain effects in La 2/3(Ca 1- x' Sr x'- x″ Ba x″ ) 1/3MnO 3

    NASA Astrophysics Data System (ADS)

    Yuan, S. L.; Peng, G.; Xia, Z. C.; Liu, J.; Liu, S.; Li, Z. Y.; Yang, Y. P.; Liu, L.; Tang, J.; Zhang, G. H.; Zhang, L. J.; Feng, W.; Xiong, C. S.; Xiong, Y. H.

    2002-03-01

    Based on investigations of metal-insulator transition temperature Tm on La 2/3(Ca 1- x' Sr x'- x″ Ba x″ ) 1/3MnO 3, we point out that considerations based only on the mismatch effect or the strain-field effect cannot provide a reasonable description for the experimental observations. Including two contributions arising from the average A-cation size (< rA>) and the strain-field effect defined by a quantity S=<( rA0- rA) 2> gives Tm varying as Tm= Tm(< rA>,0)- pS, where Tm(< rA>,0) is the transition temperature in the absence of the strain-field effect and the parameter p is estimated to be ˜1.05×10 6 K nm -2. It is shown that the strain-corrected Tm shows a behavior expected by the double-exchange mechanism which monotonously increases towards ˜500 K with increasing < rA> towards rA0 (the A-cation size of an ideal cubic perovskite).

  5. Increase of third-order nonlinear optical activity of PbS quantum dots in zeolite Y by increasing cation size.

    PubMed

    Kim, Hyun Sung; Yoon, Kyung Byung

    2012-02-08

    The third-order nonlinear optical (3NLO) activity of PbS quantum dots (QDs) encapsulated in zeolite Y has been expected to depend sensitively on the countercation of the zeolite host. However, ion exchange of the pristine countercation, H(+), with other cations has not been possible because the framework decomposes and the QDs aggregate immediately when the PbS QD-incorporating zeolite Y with H(+) as the countercation is exposed to the atmosphere. We now report that when H(+) is transformed to NH(4)(+), the framework of PbS QD-containing zeolite Y does not undergo decomposition and the PbS QDs do not undergo aggregation to form larger QDs during the aqueous ion exchange of NH(4)(+) with alkali-metal ions (M(A)(+) = Li, Na(+), K(+), Rb(+)). The 3NLO activity of the M(A)(+)-exchanged PbS QD-incorporating zeolite Y film increases with increasing size of M(A)(+). The stabilization of the surface-bound exciton by the electron-rich framework oxide and electron-poor cation is proposed to be responsible for the increase. This is the first example of a method for systematically increasing the 3NLO activity of QDs dispersed in a dielectric matrix by systematically changing its properties. These results will serve as a guideline for future research and also promote applications of QD-incorporating zeolites in various fields.

  6. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion.

    PubMed

    Yamada, Hironori; Urata, Chihiro; Higashitamori, Sayuri; Aoyama, Yuko; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2014-03-12

    Mesoporous silica nanoparticles are promising materials for various applications, such as drug delivery and catalysis, but the functional roles of surfactants in the formation and preparation of mesostructured silica nanoparticles (MSN-as) remain to be seen. It was confirmed that the molar ratio of cationic surfactants to Si of alkoxysilanes (Surf/Si) can affect the degree of mesostructure formation (i.e., whether the mesochannels formed inside the nanoparticles actually pass through the outer surface of the particles), the particle diameter, and the dispersibility of MSN-as. Wormhole-like mesostructures formed with low Surf/Si ratios; however, the mesopores did not pass through the outer surface of the particles completely. At high Surf/Si ratios, the mesostructures extended. The particle diameter was 100 nm or larger at low Surf/Si ratios, and the primary particle diameter decreased as the Surf/Si ratio increased. This was because the surfactants enhanced the dispersity of the alkoxysilanes in water and the hydrolysis rate of the alkoxysilanes became faster, leading to an increased nucleation as compared to the particle growth. Moreover, primary particles aggregated at low Surf/Si ratios because of the hydrophobic interactions among the surfactants that were not involved in the mesostructure formation but were adsorbed onto the nanoparticles. At high Surf/Si ratios, the surfactant micelles were adsorbed on the surface of primary particles (admicelles), resulting in the dispersion of the particles due to electrostatic repulsion. In particular, molar ratios of 0.13 or higher were quite effective for the preparation of highly dispersed MSN-as. Surfactants played important roles in the mesostructure formation, decreasing the particle diameters, and the dispersibility of the particles. All of these factors were considerably affected by the Surf/Si ratio. The results suggested novel opportunities to control various colloidal mesostructured nanoparticles from the

  7. Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution.

    PubMed

    Shpacovitch, Victoria; Sidorenko, Irina; Lenssen, Jan Eric; Temchura, Vladimir; Weichert, Frank; Müller, Heinrich; Überla, Klaus; Zybin, Alexander; Schramm, Alexander; Hergenröder, Roland

    2017-01-27

    The PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles-microvesicles (100-1000 nm)-also attracts growing interest as biomarkers of different pathologies and needs development of novel techniques for characterization. This work shows the applicability of a PAMONO-sensor for selective detection of microvesicles in aquatic samples. The sensor permits comparison of relative concentrations of microvesicles between samples. We also study a possibility of repeated use of a sensor chip after elution of the microvesicle capturing layer. Moreover, we improve the detection features of the PAMONO-sensor. The detection process utilizes novel machine learning techniques on the sensor image data to estimate particle size distributions of nano-particles in polydisperse samples. Altogether, our findings expand analytical features and the application field of the PAMONO-sensor. They can also serve for a maturation of diagnostic tools based on the PAMONO-sensor platform.

  8. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    PubMed

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na(+), K(+), and Ca(2+) solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  9. Effect of annealing on cation distribution and magnetic properties of nano sized Mn0.34Co0.66Fe2O4 microwave ferrites

    NASA Astrophysics Data System (ADS)

    Datt, Gopal; Abhyankar, A. C.

    2016-05-01

    Microwave spinel ferrites are ubiquitous in systems that receive, send, and manipulate electromagnetic signals across very high frequency to quasi-optical frequency bands. This paper elaborates the effects of annealing on structural and magnetic properties of the Mn0.34Co0.66Fe2O4 ferrite nano-particles, synthesised by solvothermal method. The Rietveld refinement of XRD data reveals that nanoparticles are crystallized in spinel structure with Fd-3m space group and on annealing the Mn2+ ions migrates from tetrahedral to octahedral site. The FESEM microstructures reveal that grain size increase from 30 nm to 200 nm on annealing and morphology of the particles changes from spherical to rhombohedral. The magnetic data analysis shows that on annealing the magnetization improves significantly from Ms = 59.23 emu/g to Ms = 86.80 emu/g. Magnetocrystalline anisotropy and coercivity increased significantly on annealing. The change in magnetic properties on annealing is strongly correlated to redistribution of Mn2+ cations on different sites.

  10. Determination of trace amounts of total dissolved cationic aluminium species in environmental samples by solid phase extraction using nanometer-sized titanium dioxide and atomic spectrometry techniques.

    PubMed

    Matús, Peter; Hagarová, Ingrid; Bujdos, Marek; Divis, Pavel; Kubová, Jana

    2009-11-01

    Nanometer-sized titanium dioxide was used as a solid-phase extractant for the separation and preconcentration of trace amounts of Al(III) prior to its determination by electrothermal atomic absorption spectrometry (ET AAS) and inductively coupled plasma optical emission spectrometry (ICP OES). The optimal conditions for the proposed solid phase extraction (SPE; 50mg TiO(2), 10 min extraction time, pH 6.0, HCl and HNO(3) as eluents) and ET AAS measurement (1500 degrees C pyrolysis and 2600 degrees C atomization temperatures, Mg(NO(3))(2) as matrix modifier) were obtained. The adsorption capacity of TiO(2) was 4.1mg Al g(-1) TiO(2). Two modes of the proposed procedure were compared, (I) batch and elution mode with the elution of Al from TiO(2) phase by nitric or hydrochloric acid, and (II) batch and slurry mode (without elution) with the direct TiO(2) phase-slurry sampling. Finally, the batch and slurry mode of nanometer-sized TiO(2) SPE with slurry ET AAS detection and quantification was preferred and used for the determination of trace amounts of total dissolved cationic Al species in synthetic and natural water samples. The method accuracy was checked by the analysis of lake water CRM TMDA-61 and by the technique of analyte addition (sample spiking). Under the optimal conditions, the calibration curve for batch and slurry TiO(2) SPE with a 10-fold preconcentration was linear up to 40 microg L(-1) Al. The limit of detection (LOD) and the limit of quantification (LOQ) was 0.11 microg L(-1) Al and 0.35 microg L(-1) Al, respectively, with a preconcentration factor of 20 and a relative standard deviation (RSD) lower than 5%.

  11. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size.

    PubMed

    Li, Xian; Mehr, Nima Ghavidel; Guzmán-Morales, Jessica; Favis, Basil D; De Crescenzo, Gregory; Yakandawala, Nanda; Hoemann, Caroline D

    2017-04-05

    P15-CSP is a biomimetic cationic fusion peptide that stimulates osteogenesis and inhibits bacterial biofilm formation when coated on 2-D surfaces. This study tested the hypothesis that P15-CSP coatings enhance 3-D osteogenesis in a porous but otherwise hydrophobic poly-(ε-caprolactone) (PCL) scaffold. Scaffolds of 84 µm and 141 µm average pore size were coated or not with Layer-by-Layer polyelectrolytes followed by P15-CSP, seeded with adult primary human mesenchymal stem cells (MSCs), and cultured 10 days in proliferation medium, then 21 days in osteogenic medium. Atomic analyses showed that P15-CSP was successfully captured by LbL. After 2 days of culture, MSCs adhered and spread more on P15-CSP coated pores than PCL-only. At day 10, all constructs contained non-mineralized tissue. At day 31, all constructs became enveloped in a "skin" of tissue that, like 2-D cultures, underwent sporadic mineralization in areas of high cell density that extended into some 141 µm edge pores. By quantitative histomorphometry, 2.5-fold more tissue and biomineral accumulated in edge pores versus inner pores. P15-CSP specifically promoted tissue-scaffold integration, 4-fold higher overall biomineralization, and more mineral deposits in the outer 84 µm and inner 141 µm pores than PCL-only (p<0.05). 3-D Micro-CT revealed asymmetric mineral deposition consistent with histological calcium staining. This study provides proof-of-concept that P15-CSP coatings are osteoconductive in PCL pore surfaces with 3-D topography. Biomineralization deeper than 150 µm from the scaffold edge was optimally attained with the larger 141 µm peptide-coated pores. This article is protected by copyright. All rights reserved.

  12. Cationic Silicon Nanocrystals with Colloidal Stability, pH‐Independent Positive Surface Charge and Size Tunable Photoluminescence in the Near‐Infrared to Red Spectral Range

    PubMed Central

    Chen, Kenneth K.; Liao, Kristine; Casillas, Gilberto; Li, Yiying

    2016-01-01

    In this report, the synthesis of a novel class of cationic quaternary ammonium‐surface‐functionalized silicon nanocrystals (ncSi) using a novel and highly versatile terminal alkyl halide‐surface‐functionalized ncSi synthon is described. The distinctive features of these cationic ncSi include colloidal stability, pH‐independent positive surface charge, and size‐tunable photoluminescence (PL) in the biologically relevant near‐infrared‐to‐red spectral region. These cationic ncSi are characterized via a combination of high‐resolution scanning transmission electron microscopy with energy‐dispersive X‐ray analysis, Fourier transform infrared, X‐ray photoelectron, and photoluminescence spectroscopies, and zeta potential measurements. PMID:27812459

  13. K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9}: The first osmium perovskites containing alkali cations at the 'A' site

    SciTech Connect

    Mogare, Kailash M.; Klein, Wilhelm; Jansen, Martin

    2012-07-15

    K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9} were obtained from solid-state reactions of potassium superoxide, sodium peroxide and osmium metal at elevated oxygen pressures. K{sub 2}NaOsO{sub 5.5} crystallizes as an oxygen-deficient cubic double perovskite in space group Fm3{sup Macron }m with a=8.4184(5) A and contains isolated OsO{sub 6} octahedra. K{sub 3}NaOs{sub 2}O{sub 9} crystallizes hexagonally in P6{sub 3}/mmc with a=5.9998(4) A and c=14.3053(14) A. K{sub 3}NaOs{sub 2}O{sub 9} consists of face sharing Os{sub 2}O{sub 9} pairs of octahedra. According to magnetic measurements K{sub 2}NaOsO{sub 5.5} is diamagnetic, whereas K{sub 3}NaOs{sub 2}O{sub 9} displays strong antiferromagnetic coupling (T{sub N}=140 K), indicating enhanced magnetic interactions within the octahedral pair. - Graphical abstract: High oxidation states of Os, obtained by high oxygen pressure synthesis, are accommodated in double and triple perovskite matrices. K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions. Highlights: Black-Right-Pointing-Pointer New osmates containing highly oxidized Os were obtained by high O{sub 2} pressure synthesis. Black-Right-Pointing-Pointer High oxidation states of Os are accommodated in double and triple perovskite matrices. Black-Right-Pointing-Pointer Both compounds represent the first Os perovskites with an alkali metal at the A site. Black-Right-Pointing-Pointer K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions within the octahedral pair.

  14. Effects of cation-size disorder in (La0.67Ca0.15Sr0.18)1-x(Gd0.67Ba0.33)xCoO3 perovskites

    NASA Astrophysics Data System (ADS)

    Sun, J. R.; Wong, H. K.

    1999-07-01

    Effects of the A-cation disorder on the structural, magnetic and transport properties of the ABO3-type (La0.67Ca0.15Sr0.18)1-x(Gd0.67Ba0.33)xCoO3 (x=0.0, 0.1, 0.2, 0.3, and 0.4) are studied. Based on x-ray diffraction, two crystallographic phases coexist in the compounds, and a progressive transition from rhombohedral structure to orthorhombic structure takes place with increasing x, with which the cation disorder increases. Two resistive transitions, a metal-to-metal and a metal-to-semiconductor, occur subsequently with decreasing temperature, with the upper resistive transition coinciding with a magnetic one. Both resistive transitions vary against x, with the upper one from ~223 to ~190 K and the lower one from ~95 to ~160 K corresponding to a change of x from 0.0-0.3. The presence of cation-size disorder drives the system from the cluster-glass state into the spin-glass state, accompanied by an enhancement of the semiconducting character of the compounds. The weak Jahn-Teller effects and the spin state transition could be responsible for the special cation disorder effects in the Co-based perovskites.

  15. Intact deposition of cationic vesicles on anionic cellulose fibers: Role of vesicle size, polydispersity, and substrate roughness studied via streaming potential measurements.

    PubMed

    Kumar, Abhijeet; Gilson, Laurent; Henrich, Franziska; Dahl, Verena; Kleinen, Jochen; Gambaryan-Roisman, Tatiana; Venzmer, Joachim

    2016-07-01

    Understanding the mechanism of intact vesicle deposition on solid surfaces is important for effective utilization of vesicles as active ingredient carriers in applications such as drug delivery and fabric softening. In this study, the deposition of large (davg=12μm) and small (davg=0.27μm) cationic vesicles of ditallowethylester dimethylammonium chloride (DEEDMAC) on smooth and rough anionic cellulose fibers is investigated. The deposition process is studied quantitatively using streaming potential measurements and spectrophotometric determination of DEEDMAC concentrations. Natural and regenerated cellulose fibers, namely cotton and viscose, having rough and smooth surfaces, respectively, are used as adsorbents. Equilibrium deposition data and profiles of substrate streaming potential variation with deposition are used to gain insights into the fate of vesicles upon deposition and the deposition mechanism. Intact deposition of DEEDMAC vesicles is ascertained based on streaming potential variation with deposition in the form of characteristic saturating profiles which symbolize particle-like deposition. The same is also confirmed by confocal fluorescence microscopy. Substrate roughness is found to considerably influence the deposition mechanism which, in a novel application of electrokinetic methods, is elucidated via streaming potential measurements. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Adsorption of submicrometer-sized cationic sterically stabilized polystyrene latex at the air-water interface: contact angle determination by ellipsometry.

    PubMed

    Hunter, Timothy N; Jameson, Graeme J; Wanless, Erica J; Dupin, Damien; Armes, Steven P

    2009-04-09

    Near-monodisperse, sterically stabilized cationic polystyrene latexes of either 122 or 310 nm diameter were prepared by aqueous emulsion polymerization using cheap, readily available reagents. At low pH, these latexes stabilized foams prepared by either hand-shaking or by using a foam column. SEM studies confirmed that the dried foam mainly comprised well-defined bilayers, which suggests that each air bubble is stabilized with a latex monolayer. Adsorption of the same latexes at the planar air-water interface was studied using the Langmuir-Blodgett trough technique. Surface pressure isotherms confirmed particle desorption from the interface on repeated compression of the latex monolayers. For the 122 nm latex at pH 2, ellipsometric analysis enabled a contact angle of approximately 43 degrees to be calculated from a simple two-layer model, which suggests that these particles have only moderate wettability. Similar results were obtained for the 310 nm latex, but the data were much less reliable in this case due to additional background particle scattering.

  17. Mesoporous TiO₂ thin films exhibiting enhanced thermal stability and controllable pore size: preparation and photocatalyzed destruction of cationic dyes.

    PubMed

    Wang, Jinshu; Li, Hui; Li, Hongyi; Zou, Chen; Wang, Hong; Li, Dasheng

    2014-02-12

    Ordered mesostructured TiO2 thin films were constructed through a method that combined sol-gel with evaporation-induced self-assembly (EISA). It was found that the calcination temperature, as well as the type of block copolymer, could vary the TiO2 mesoporous structure. Based on tension stress calculated by the surface energy of crystallites and the compression calculated by interface energy between the crystallites, the thermodynamic study for the sample had been carried out and the critical crystallite size expression of the mesoporous film was presented for the prediction of the thermal stability of the mesoporous structure at high temperature. It was also found that varying the mass ratio of templating agent to inorganic precursor could adjust the pore size of mesoporous TiO2. The pore size regulating mechanism had been discussed. The sample calcined at 450-500 °C, which had a higher specific surface area and larger pore size, exhibited higher photocatalyzed destruction capability of Methylene Blue.

  18. Molecular tectonics: control of pore size and polarity in 3-D hexagonal coordination networks based on porphyrins and a zinc cation.

    PubMed

    Kühn, Elisabeth; Bulach, Véronique; Hosseini, Mir Wais

    2008-11-07

    In the crystalline phase, porphyrin derivatives based on two 4-pyridyl units at the 5 and 15 meso positions and two 4-aryl moieties bearing various groups (CN, OMe, OH and CF(3)) at the 10 and 20 meso positions lead, in the presence of a zinc dication, to the formation of robust 3-D networks presenting hexagonal channels: both the size and the polarity of the pores were tuned by the nature of the substituents attached to the two aryl groups.

  19. Solvent blends can control cationic reversed micellar interdroplet interactions. The effect of n-heptane:benzene mixture on BHDC reversed micellar interfacial properties: droplet sizes and micropolarity.

    PubMed

    Agazzi, Federico M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2011-10-27

    We have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X(Hp)) investigated, that is, X(Hp) = 0.00, 0.13, 0.21, 0.30, and 0.38. Also, DLS was used to measure the RMs diffusion coefficient and to calculate the apparent droplet hydrodynamic diameter (d(App)) at different compositions of the nonpolar organic medium. The data suggest that as the n-heptane content increases, the interdroplet attractive interactions also increase with the consequent increment in the droplet size. Moreover, the interdroplet attractive interactions can be "switched on (increased)" or "switched off (decreased)" by formulation of appropriate n-heptane:benzene mixtures. Additionally, QB spectroscopy was used to obtain the "operational" critical micellar concentration (cmc) and to investigate both the RMs interfacial micropolarity and the sequestrated water structure in every RMs studied. The results show that BHDC RMs are formed at lower surfactant concentration when n-heptane or water content increases. When the interdroplet interaction "switches on", the RMs droplet sizes growth expelling benzene molecules from the RMs interface, favoring the water-BHDC interaction at the interface with the consequent increases in the interfacial micropolarity. Therefore, changing the solvent blend is possible to affect dramatically the interfacial micropolarity, the droplet sizes and the structure of the entrapped water.

  20. Local A-Site Layering in Rare-Earth Orthochromite Perovskites by Solution Synthesis.

    PubMed

    Daniels, Luke M; Kashtiban, Reza J; Kepaptsoglou, Demie; Ramasse, Quentin M; Sloan, Jeremy; Walton, Richard I

    2016-12-19

    Cation size effects were examined in the mixed A-site perovskites La0.5 Sm0.5 CrO3 and La0.5 Tb0.5 CrO3 prepared through both hydrothermal and solid-state methods. Atomically resolved electron energy loss spectroscopy (EELS) in the transmission electron microscope shows that while the La and Sm cations are randomly distributed, increased cation-radius variance in La0.5 Tb0.5 CrO3 results in regions of localised La and Tb layers, an atomic arrangement exclusive to the hydrothermally prepared material. Solid-state preparation gives lower homogeneity resulting in separate nanoscale regions rich in La(3+) and Tb(3+) . The A-site layering in hydrothermal La0.5 Tb0.5 CrO3 is randomised upon annealing at high temperature, resulting in magnetic behaviour that is dependent on synthesis route. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Effect of local A-site strain on dipole stability in A6GaNb9O30 (A = Ba, Sr, Ca) tetragonal tungsten bronze relaxor dielectrics.

    PubMed

    Miller, Andrew J; Rotaru, Andrei; Arnold, Donna C; Morrison, Finlay D

    2015-06-21

    A series of isovalently A-site substituted relaxor dielectric tetragonal tungsten bronzes of general formula Ba(6-x-y)Sr(x)Ca(y)GaNb(9)O(30) were investigated. The long-range (average) crystal structure as determined by conventional diffraction techniques varies monotonically according to Vegard's law. The dielectric properties, however, do not display a similar, simple "average size" dependence and instead show a dependence on the statistical size variance, i.e. size mismatch, of the A-cation. The difficulties in Vogel-Fulcher analysis of relative permittivity and the complementary approach of using dielectric loss data fitted to Jonscher's empirical universal dielectric relaxation model is discussed.

  2. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  3. Cation binding by bacteriorhodopsin

    SciTech Connect

    Chang, C.H.; Chen, J.G.; Govindjee, R.; Ebrey, T.

    1984-01-01

    It was found that extensively washed purple membrane has about 1 calcium and 3-4 magnesium ions bound per bacteriorhodopsin molecule. When these divalent cations are removed by any of a variety of means, the pigment changes its color from purple to blue (lambda/sub max/ approx. = 600 nm). This blue pigment, which can be formed at near neutral pH, is probably very similar to blue species formed when the pH of a purple membrane sample is lowered to approx. = 2. When any of a wide variety of cations are added to a blue membrane preparation, the characteristic purple color of bacteriorhodopsin returns. Divalent and trivalent cations are much more efficient than monovalent cations in restoring the purple color and are effective at a ratio approaching one cation per pigment molecule. Besides shifting the absorption spectrum, removal of the divalent cations drastically alters the photochemical cycle of bacteriorhodopsin, including abolishing the unprotonated Schiff base (M-type) intermediate. Finally, lanthanum not only displaces the divalent cations normally bound to the purple membrane but also greatly reduces both the rate of decay of the M412 intermediate and proton uptake.

  4. Thermally induced A'-A site exchange in novel layered perovskites Ag2[Ca1.5M3O10] (M = Nb, Ta).

    PubMed

    Bhuvanesh, Nattamai S P; Woodward, Patrick M

    2002-12-04

    We have synthesized and characterized new layered perovskites Ag2[A1.5M3O10] (A = Ca, M = Nb, Ta), from their lithium analogues, by soft-chemical ion exchange. These oxides show topotactic irreversible thermally induced A'-A site exchange, resulting in Ag1.1Ca0.9[Ca0.6Ag0.9M3O10], conferred from our high-temperature X-ray and ionic conductivity studies. The latter phases are the first compounds where Ag+ ions reside in both A' and A sites in layered perovskites. The absence of similar phase transition for A = Sr suggests that these transitions strongly depend on the size, charge, and the coordination preference of A' and A cations. This result provides a new synthetic tool for modifying the occupation of the 12-coordinate A site of layered perovskites using soft chemical routes.

  5. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    PubMed

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  6. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    PubMed

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  7. Evaluation of the emulsifying properties of some cationic starches.

    PubMed

    Vermeire, A; Kiekens, F; Corveleyn, S; Remon, J P

    1999-03-01

    Different cationic potato, maize, and waxy maize starches were evaluated for their emulsifying properties. Emulsions were prepared using 20% (w/w) arachidic oil and 80% (w/w) water. Emulsions with the cationic starches as emulsifier in a concentration ranging from 1% to 5% (w/w) were prepared and characterized by droplet size and viscosity measurements, and the stability was evaluated visually and by electrical conductance measurements. None of the cationic potato, waxy maize starches, and maize starches with a low degree of substitution (DS) showed adequate emulsifying properties. Emulsions prepared using non-pregelatinized (C [symbol: see text] bond 05914, 2% and 5% w/w; C [symbol: see text] bond 05907, 5% w/w) and pregelatinized (C [symbol: see text] bond 12504, 5% w/w) cationic maize starches with high-DS were visually stable. The initial mean droplet volume diameter of the emulsions prepared with these cationic starches in a 5% (w/w) concentration was similar and ranged from 2.40 to 2.84 microns; however, there was an important difference in droplet size distribution. The droplet size distribution of the emulsions prepared using the non-pregelatinized high-DS cationic starches was markedly narrower than in the case of the emulsions prepared using the pregelatinized high-DS cationic starches. The droplet size of the emulsions remained almost constant during 120 days of storage. Visual inspection and electrical conductance measurements showed that these emulsions were stable for at least 120 days.

  8. Restructuring of a Peat in Interaction with Multivalent Cations: Effect of Cation Type and Aging Time

    PubMed Central

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for Ca

  9. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    PubMed

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for

  10. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists.

    PubMed

    Kamiński, Kamil; Płonka, Monika; Ciejka, Justyna; Szczubiałka, Krzysztof; Nowakowska, Maria; Lorkowska, Barbara; Korbut, Ryszard; Lach, Radosław

    2011-10-13

    Cationic derivatives of dextran (Dex) and hydroxypropylcellulose (HPC) were studied as potential alternatives of protamine sulfate (PS) used in the reversal of anticoagulant activity of heparin. The modification was performed by the attachment of cationic groups to the Dex main chain or by grafting short side chains of a polycation onto HPC. The cationic derivatives of these polysaccharides were found to bind heparin with the efficiency increasing with growing degree of cationic modification. The degree of cationic modification and consequently the ζ potential of the polymers do not have to be high to achieve effective heparin binding. The size of the complexes of cationic Dex with unfractionated heparin (UFH) is a few micrometers. For complexes of cationic HPC and UFH the size is much below 1 μm, both below and above the lower critical solution temperature of HPC. None of the cationic polysaccharides studied caused hemolysis. The concentrations of the polymers inducing the aggregation of human erythrocytes in vitro were determined.

  11. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    PubMed

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-10

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  12. Diaryldichalcogenide radical cations.

    PubMed

    Mallow, Ole; Khanfar, Monther A; Malischewski, Moritz; Finke, Pamela; Hesse, Malte; Lork, Enno; Augenstein, Timo; Breher, Frank; Harmer, Jeffrey R; Vasilieva, Nadezhda V; Zibarev, Andrey; Bogomyakov, Artem S; Seppelt, Konrad; Beckmann, Jens

    2015-01-01

    One-electron oxidation of two series of diaryldichalcogenides (C6F5E)2 (13a-c) and (2,6-Mes2C6H3E)2 (16a-c) was studied (E = S, Se, Te). The reaction of 13a and 13b with AsF5 and SbF5 gave rise to the formation of thermally unstable radical cations [(C6F5S)2]˙(+) (14a) and [(C6F5Se)2]˙(+) (14b) that were isolated as [Sb2F11](-) and [As2F11](-) salts, respectively. The reaction of 13c with AsF5 afforded only the product of a Te-C bond cleavage, namely the previously known dication [Te4](2+) that was isolated as [AsF6](-) salt. The reaction of (2,6-Mes2C6H3E)2 (16a-c) with [NO][SbF6] provided the corresponding radical cations [(2,6-Mes2C6H3E)2]˙(+) (17a-c; E = S, Se, Te) in the form of thermally stable [SbF6](-) salts in nearly quantitative yields. The electronic and structural properties of these radical cations were probed by X-ray diffraction analysis, EPR spectroscopy, and density functional theory calculations and other methods.

  13. Nanoheterostructure cation exchange: anionic framework conservation.

    PubMed

    Jain, Prashant K; Amirav, Lilac; Aloni, Shaul; Alivisatos, A Paul

    2010-07-28

    In ionic nanocrystals the cationic sublattice can be replaced with a different metal ion via a fast, simple, and reversible place exchange, allowing postsynthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate that, during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu(2)Se/Cu(2)S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  14. Cation diffusion in titanomagnetites

    NASA Astrophysics Data System (ADS)

    Aragon, R.; McCallister, R. H.; Harrison, H. R.

    1984-02-01

    Interdiffusion couple experiments were performed with titanomagnetite single crystals at 1,000°C, 1,100° C and 1,200° C in various buffered atmospheres. The dependence of the interdiffusion coefficient on oxygen fugacity, composition and temperature was interpreted in terms of point defect structure. Estimates of the cation tracer diffusivities indicate that Fe migrates via a point defect mechanism, involving mixed tetrahedral-octahedral site jumps, with an activation energy of 33 Kcal/mole; whereas Ti migration is one to two orders of magnitude slower, is restricted to octahedral sites and has an activation energy of 60 Kcal/mole.

  15. Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery.

    PubMed

    Leber, Nadine; Nuhn, Lutz; Zentel, Rudolf

    2017-06-12

    Short pharmaceutical active oligonucleotides such as small interfering RNA (siRNA) or cytidine-phosphate-guanosine (CpG) are considered as powerful therapeutic alternatives, especially to medicate hard-to-treat diseases (e.g., liver fibrosis or cancer). Unfortunately, these molecules are equipped with poor pharmacokinetic properties that prevent them from translation. Well-defined nanosized carriers can provide opportunities to optimize their delivery and guide them to their site of action. Among several concepts, this Feature Article focuses on cationic nanohydrogel particles as a universal delivery system for small anionic molecules including siRNA and CpG. Cationic nanohydrogels are derived from preaggregated precursor block copolymers, which are further cross-linked to obtain well-defined nanoparticles of tunable sizes and with (degradable) cationic cores. Novel opportunities for oligonucleotide delivery in vitro and in vivo with respect to liver fibrosis therapies will be highlighted as well as perspectives toward modulating the immune system. In general, the approach of covalently stabilized cationic carrier systems can contribute to find advanced oligonucleotide therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tubular cationized pullulan hydrogels as local reservoirs for plasmid DNA.

    PubMed

    San Juan, Aurélie; Ducrocq, Grégory; Hlawaty, Hanna; Bataille, Isabelle; Guénin, Erwann; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans were obtained by grafting at different charge densities ethylamine (EA) or diethylaminoethylamine (DEAE) on the pullulan backbone. Polymers were characterized by elemental analysis, acid-base titration, size exclusion chromatography, Fourier-transform infrared spectroscopy, and proton nuclear magnetic resonance. The complexation of cationized pullulans in solution with plasmid DNA was evidenced by fluorescence quenching with PicoGreen. Cationized pullulans were then chemically crosslinked with phosphorus oxychloride to obtain tubular cationized pullulan hydrogels. Native pullulan tubes did not retain loaded plasmid DNA. In contrast, the ability of cationized pullulan tubes to retain plasmid DNA was dependent on both the amine content and the type of amine. The functional integrity of plasmid DNA in cationized pullulan tubes was demonstrated by in vitro transfection of VSMCs. Hence, cationized pullulan hydrogels can be designed as tubular structures with high affinity for plasmid DNA, which may provide new biomaterials to enhance the efficiency of local arterial gene transfer strategies.

  17. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications.

  18. Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

    PubMed Central

    2014-01-01

    We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627

  19. Sn cation valency dependence in cation exchange reactions involving Cu(2-x)Se nanocrystals.

    PubMed

    De Trizio, Luca; Li, Hongbo; Casu, Alberto; Genovese, Alessandro; Sathya, Ayyappan; Messina, Gabriele C; Manna, Liberato

    2014-11-19

    We studied cation exchange reactions in colloidal Cu(2-x)Se nanocrystals (NCs) involving the replacement of Cu(+) cations with either Sn(2+) or Sn(4+) cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu(2-x)Se NCs remains cubic regardless of the degree of copper deficiency (that is, "x") in the NC lattice. Also, Sn(4+) ions are comparable in size to the Cu(+) ions, while Sn(2+) ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn(4+) cations are used, alloyed Cu(2-4y)Sn(y)Se NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu(+) cations with Sn(4+) cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn(2+) cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu(2-x)Se/SnSe heterostructures, with no Cu-Sn-Se alloys.

  20. Infrared Spectroscopic Study for the Hydrated Clusters of Pentane Cation

    NASA Astrophysics Data System (ADS)

    Endo, Tomoya; Matsuda, Yoshiyuki; Fujii, Asuka

    2016-06-01

    We performed infrared predissociation spectroscopy of size-selected pentane-water cluster cations, [pentane-(H2O)n]+, n=1-3, generated through the vacuum-ultraviolet photoionization. In the infrared spectra of the di- and tri-hydrated clusters, there appear broad features which spread to the lower frequency region from 2800 cm-1. These broad features are assigned to vibrations of a proton, which is transferred from CH of the pentane cation to the water molecules. These results indicate that the pentane cation has high proton donor ability. We will discuss these results based on theoretical conputations.

  1. Carbon dioxide (C{sup 16}O{sub 2} and C{sup 18}O{sub 2}) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size

    SciTech Connect

    Pragati Galhotra; Juan G. Navea; Sarah C. Larsen; Vicki H. Grassian

    2009-07-01

    In this study, CO{sub 2} adsorption in the presence and absence of co-adsorbed H{sub 2}O was investigated in zeolite Y. Several different zeolite Y materials were investigated including commercial NaY, commercial NaY ion-exchanged with Ba{sup 2+} and nanocrystalline NaY; herein referred to as NaY, BaY and nano-NaY. Following heating of these zeolites to 573 K and cooling to room temperature, CO{sub 2} was adsorbed as a function of pressure. FTIR spectra show that a majority of CO{sub 2} adsorbs in the pores of these three zeolites (NaY, BaY and nano-NaY) in a linear complex with the exchangeable cation, as indicated by the intense absorption band near 2350 cm{sup -1}, assigned to the 3 asymmetric stretch of adsorbed CO{sub 2}. Most interestingly is the formation of carbonate and bicarbonate on the external surface of nano-NaY zeolites as indicated by the presence of several broad absorption bands in the 1200-1800 cm{sup -1} region, suggesting unique sites for CO{sub 2} adsorption on the surface of the nanomaterial. For the other two zeolite materials investigated, bicarbonate formation is only evident in BaY zeolite in the presence of co-adsorbed water. Adsorption of {sup 18}O-labeled carbon dioxide and theoretical quantum chemical calculations confirm these assignments and conclusions. 28 refs., 9 figs., 3 tabs.

  2. Silica-based cationic bilayers as immunoadjuvants

    PubMed Central

    Lincopan, Nilton; Santana, Mariana RA; Faquim-Mauro, Eliana; da Costa, Maria Helena B; Carmona-Ribeiro, Ana M

    2009-01-01

    Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris.HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001–1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid. PMID:19152701

  3. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  4. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.

    PubMed

    Hagigit, Tal; Nassar, Taher; Behar-Cohen, Francine; Lambert, Gregory; Benita, Simon

    2008-09-01

    Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

  5. Probing optical band gaps at nanoscale from tetrahedral cation vacancy defects and variation of cation ordering in NiCo2O4 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Dileep, K.; Loukya, B.; Silwal, P.; Gupta, A.; Datta, R.

    2014-10-01

    High resolution electron energy loss spectroscopy (HREELS) is utilized to probe the optical band gaps at the nanoscale in epitaxial NiCo2O4 (NCO) thin films with different structural order (cation/charge). The structure of NCO deviates from the ideal inverse spinel (non-magnetic and insulating) for films grown at higher temperatures (>500 °C) towards a mixed cation structure (magnetic with metallic conductivity) at lower deposition temperatures (<450 °C). This significantly modifies the electronic structure as well as the nature of the band gap of the material. Nanoscale regions with unoccupied tetrahedral A site cations are additionally observed in all the samples and direct measurement from such areas reveals considerably lower band gap values as compared to the ideal inverse spinel and mixed cation configurations. Experimental values of band gaps have been found to be in good agreement with the theoretical mBJLDA exchange potential based calculated band gaps for various cation ordering and consideration of A site cation vacancy defects. The origin of rich variation in cation ordering observed in this system is discussed.

  6. Dynamics of photoexcited Ba(+) cations in (4)He nanodroplets.

    PubMed

    Leal, Antonio; Zhang, Xiaohang; Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo; Drabbels, Marcel; Pi, Martí

    2016-03-07

    We present a joint experimental and theoretical study on the desolvation of Ba(+) cations in (4)He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba(+) cations and Ba(+)Hen exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba(+) Hen exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba(+). In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba(+) cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba(+) cations or exciplexes, even when relaxation pathways to lower lying states are included.

  7. Dynamics of photoexcited Ba+ cations in 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Leal, Antonio; Zhang, Xiaohang; Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo; Drabbels, Marcel; Pi, Martí

    2016-03-01

    We present a joint experimental and theoretical study on the desolvation of Ba+ cations in 4He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba+ cations and Ba+Hen exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba+ Hen exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba+. In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba+ cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba+ cations or exciplexes, even when relaxation pathways to lower lying states are included.

  8. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb)

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Wilkins, Branford O.; Chance, W. Michael; Smith, Mark D.; zur Loye, Hans-Conrad

    2016-01-01

    Crystals of Na2ScSiO4(OH) and Na2YbSiO4(OH) were synthesized at low temperatures using a sodium hydroxide based hydroflux, while crystals of NaLaSiO4 and NaYbSiO4 were grown at high temperatures using a sodium fluoride/sodium chloride eutectic flux. Both structure types were crystallized under reaction conditions that, when used for medium sized rare earths (RE = Pr, Nd, Sm - Tm) yield the Na5RE4X[SiO4]4 structure type, where X is OH in the hydroflux conditions and F in the eutectic flux conditions. Herein, we report the synthesis, structure, size effect, and magnetic properties of these compositions and introduce the new structure type of Na2RESiO4(OH), which crystallizes in the orthorhombic space group Pca21, of NaLaSiO4, which crystallizes in the orthorhombic space group Pna21, and of NaYbSiO4, which crystallizes in the orthorhombic space group Pnma, where both NaRESiO4 compounds have one silicon structural analog.

  9. Stability of luciferase plasmid entrapped in cationic bilayer vesicles.

    PubMed

    Manosroi, A; Thathang, K; Werner, R G; Schubert, R; Manosroi, J

    2008-05-22

    Characteristics and physical stability of luciferase plasmid (pLuc) entrapped in cationic bilayer vesicles prepared from various molar ratios of amphiphiles (DPPC, Tween61 or Span60), cholesterol (Chol) and cationic charge lipid (DDAB) were investigated. The cationic liposomes were composed of DPPC/Chol/DDAB in the molar ratio of 7:2:1. The cationic (Tween61 or Span60) niosomes were composed of Tween61/Chol/DDAB or Span60/Chol/DDAB in the molar ratio of 1:1:0.05. The maximum loading of pLuc was 15.29, 22.70, and 18.92 microg/mg of the total lipids or surfactants of liposomes, Tween61 and Span60 niosomes, respectively. The morphology of the vesicles showing multilamellar structure was characterized by transmission electron microscope (TEM). The particle sizes of the vesicles in nanosize range (160-850 nm) were determined by Photon Correlation Spectroscopy (PCS). Gel electrophoresis and gel documentation were modified to determine the entrapment efficiency of pLuc in cationic bilayer vesicles. The cationic bilayer vesicles gave the pLuc entrapment efficiency of 100%. The pLuc entrapped in cationic liposomes exhibited higher stability than pLuc in solution and pLuc entrapped in cationic Tween61 or Span60 niosomes, when stored at 4, 30 and 50 degrees C for 8 weeks. After 8 weeks at 4 degrees C, pLuc contents remained in cationic liposomes was 2 and 3 times higher than cationic Span60 and Tween61 niosomes, respectively. After 3 weeks, 50 and 2% of pLuc was remained in cationic liposomes at 30 and 50 degrees C respectively, whereas all pLuc in cationic Span 60 and Tween61 niosomes were degraded within 2 and 1 week, respectively. At 30 and 50 degrees C, pLuc in an aqueous solution or in bilayer vesicular formulations were not in a stable supercoil form. This study has indicated that the stability of pLuc can be enhanced by entrapping in cationic liposomes more than in niosomes. Higher temperature with increase storage time can affect the stability of pLuc even entrapped

  10. Reducible cationic lipids for gene transfer.

    PubMed Central

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  11. Reducible cationic lipids for gene transfer.

    PubMed

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-06-15

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization.

  12. Clarification of juice by thermolabile valencia pectinmethylesterase is accelerated by cations.

    PubMed

    Wicker, L; Ackerley, J L; Corredig, M

    2002-07-03

    Pectinmethylesterase (PME) was isolated from Valencia orange pulp and added to reconstituted juice at 1.2 units/mL of juice in the presence or absence of cations at 4.2 or 16.7 mM. The percent transmittance (%T) of control juices with no added PME or cation did not clarify. The %T of juices with added PME and added cation was 45-55% by the second day. Increases in the average particle size was observed with PME- or cation-added juices and preceded increases in %T. Most likely, cations displaced PME from an inactive pectin substrate complex and increased clarification. PME, in the absence of cations, increased particle size but did not affect %T, suggesting a direct interaction of PME with cloud particles.

  13. Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study.

    PubMed

    Huang, Yinjuan; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinyu; Zhang, Xinjie; Liu, Zhen

    2013-07-01

    This research demonstrated the preparation of ultra-small cationic starch nanospheres for the first time. Unlike conventional cationic starch, the cationic starch in here could not form gel. The starch nanoparticles were obtained via reverse micro-emulsion method and were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The formation mechanism of cationic starch nanospheres was proposed and the effects of preparation conditions on particle size were also investigated. A cationic starch nanosphere with a size of 50 nm can be obtained under the optimal condition. Moreover, the drug release behaviors, cytotoxicity test and degradation analysis were tested and indicated that the particles possess good capacity in delivering the negatively charged molecules, biocompatibility and biodegradability. Thus, the cationic nanoparticles exhibit potential applications in the areas of food and medical sciences. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The Cation-π Interaction

    PubMed Central

    DOUGHERTY, DENNIS A.

    2014-01-01

    CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction – Li+ binds to benzene with 38 kcal/mol of binding energy; NH4+ with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) Cδ−–Hδ+ bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li+>Na+>K+>Rb+: as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane

  15. Facile synthesis of magnetic metal (Mn, Fe, Co, and Ni) oxides nanocrystals via a cation-exchange reaction.

    PubMed

    Ning, Jiajia; Xiao, Guanjun; Wang, Li; Zou, Bo; Liu, Bingbing; Zou, Guangtian

    2011-02-01

    Magnetic metal (Mn, Fe, Co, and Ni) oxides nanocrystals with small size and uniform size distribution are synthesized via a cation-exchange reaction. Two experimental stages are included in the synthesis of metal oxides nanocrystals. Firstly, Cu(OH)2 decomposes to CuO nanocrystals, induced by free metal cations. Compared to CuO nanocrystals produced without any free metal cation, the free metal cation has an important influence on the shape and size of CuO. Secondly, free metal cations exchange with the Cu2+ cation in the CuO nanocrystals to get Mn3O4, Fe2O3, CoO and NiO nanocrystals by cation-exchange reactions. The magnetic properties of these metal oxides nanocrystals have been investigated, all the nanocrystals are superparamagnetic at room temperature.

  16. Cationic Nitrogen Doped Helical Nanographenes.

    PubMed

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier.

    PubMed

    Kushibiki, Toshihiro; Tabata, Yasuhiko

    2005-01-01

    The objective of this study was to prepare cationized gelatins grafted with poly(ethylene glycol) (PEG) (PEG-cationized gelatin) and evaluate the in vivo efficiency as a non-viral gene carrier. Cationized gelatin was prepared by chemical introduction of ethylenediamine to the carboxyl groups of gelatin. PEG with one terminal of active ester group was coupled to the amino groups of cationized gelatin to prepare PEG-cationized gelatins. Electrophoretic experiments revealed that the PEG-cationized gelatin with low PEGylation degrees was complexed with a plasmid DNA of luciferase, in remarked contrast to that with high PEGylation degrees. When the plasmid DNA complexed with the cationized gelatin or PEG-cationized gelatin was mixed with deoxyribonuclease I (DNase I) in solution to evaluate the resistance to enzymatic degradation, stronger protection effect of the PEG-cationized gelatin was observed than that of the cationized gelatin. The complex of plasmid DNA and PEG-cationized gelatin had an apparent molecular size of about 300 nm and almost zero surface charge. These findings indicate that the PEG-cationized gelatin-plasmid DNA complex has a nano-order structure where the plasmid DNA is covered with PEG molecules. When the PEG-cationized gelatin-plasmid DNA complex was intramuscularly injected, the level of gene expression was significantly increased compared with the injection of plasmid DNA solution. It is concluded that the PEG-cationized gelatin was a promising non-viral gene carrier to enhance gene expression in vivo.

  18. Development of cationic nanocrystals for ocular delivery.

    PubMed

    Romero, Gregori B; Keck, Cornelia M; Müller, Rainer H; Bou-Chacra, Nadia A

    2016-10-01

    A cationic nanocrystal formulation containing dexamethasone acetate nanocrystals (0.05%) and polymyxin B (0.10%) for ophthalmic application was produced using a self-developed small scale method for wet bead milling. The formulation developed offers the advantage of increased saturation solubility of the drug (due to the nano-size of the crystals) and increased residence time in the eye (due to small size and increased mucoadhesion by the cationic charge) resulting ultimately in potential increased bioavailability. Characterization of the nanosuspensions by photon correlation spectroscopy (PCS) and transmission electron microscopy showed that the production method was successful in achieving dexamethasone crystals in the range of about 200-250nm. The physical stabilization of the nanocrystals and generation of the positive charge were realized by using cetylpyridinium chloride (CPC) and benzalkonium chloride (BAC) at the concentration of 0.01%. In contrast to other cationic excipients, they are regulatorily accepted due to their use as preservatives. The drug polymyxin B also contributed to the positive charge. Positive zeta potentials in the range +20 to +30mV were achieved. Isotonicity was adjusted using NaCl and non-ionic excipients (glycerol, sorbitol, dextrose). Physical and chemical stabilities were monitored for a period of 6months at room temperature, 5°C and 40°C. Particle size of the bulk population assessed by PCS remained practically unchanged over 6months of storage for the various formulations without isotonicity agents, and for the CPC-containing formulations with non-ionic isotonicity excipients. The chemical content also proved stable after 6months for all 3 temperatures evaluated. In vitro investigation of mucoadhesion was tested using mucin solutions at different concentrations, and the generated negative zeta potential was used as a measure of the interaction. The zeta potential reversed to about -15mV, indicating distinct interaction. The

  19. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  20. Nanoheterostructure Cation Exchange: Anionic Framework Conservation

    SciTech Connect

    Jain, Prashant K.; Amirav, Lilac; Aloni, Shaul; Alivisatos, A. Paul

    2010-05-11

    In ionic nanocrystals the cationic sub-lattice can be replaced with a different metal ion via a fast, simple, and reversible place-exchange, allowing post-synthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate for the first time that during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu2Se/Cu2S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line-scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  1. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  2. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE PAGES

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra; ...

    2017-07-24

    The electrochemical reduction of CO2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably for HCOO–, C2H4,more » and C2H5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  3. Relaxor or classical ferroelectric behavior in A-site substituted perovskite type Ba 1- x(Sm 0.5Na 0.5) xTiO 3

    NASA Astrophysics Data System (ADS)

    Abdelmoula, N.; Chaabane, H.; Khemakhem, H.; Von der Mühll, R.; Simon, A.

    2006-08-01

    New ferroelectric ceramics of ABO 3 perovskite type were synthetized in the Ba 1- x(Sm 0.5Na 0.5) xTiO 3 system by solid state reaction technique. The effect of the replacement of barium by samarium and sodium in the A cationic site on structural and physical properties was investigated. These compounds crystallize with tetragonal or cubic symmetry. The material is classical ferroelectric for 0⩽x⩽0.1 and x⩾0.5, and present a relaxor behavior for 0.2⩽x<0.4. The dielectric behavior depends upon the cationic disorder in the A-site and the cell size. Small rate substitution allows a ferroelectric-paraelectric transition. For higher rate of substitution the possible random position of the Sm-Na cations brings to a relaxor state and when the substitution rate x becomes higher than 0.5, the material comes back to a ferroelectric state due to the reduced cell size. Some of these new compositions are of interest for applications due to their physical properties and environmentally friendly character.

  4. Structure and dynamics of ionic liquids: Trimethylsilylpropyl-substituted cations and bis(sulfonyl)amide anions.

    PubMed

    Wu, Boning; Yamashita, Yuki; Endo, Takatsugu; Takahashi, Kenji; Castner, Edward W

    2016-12-28

    Ionic liquids with cationic organosilicon groups have been shown to have a number of useful properties, including reduced viscosities relative to the homologous cations with hydrocarbon substituents on the cations. We report structural and dynamical properties of four ionic liquids having a trimethylsilylpropyl functional group, including 1-methyl-3-trimethylsilylpropylimidazolium (Si-C3-mim(+)) cation paired with three anions: bis(fluorosulfonyl)imide (FSI(-)), bis(trifluoromethanesulfonyl)imide (NTf2(-)), and bis(pentafluoroethanesulfonyl)imide (BETI(-)), as well as the analogous N-methyl-N-trimethylsilylpropylpyrrolidinium (Si-C3-pyrr(+)) cation paired with NTf2(-). This choice of ionic liquids permits us to systematically study how increasing the size and hydrophobicity of the anions affects the structural and transport properties of the liquid. Structure factors for the ionic liquids were measured using high energy X-ray diffraction and calculated from molecular dynamics simulations. The liquid structure factors reveal first sharp diffraction peaks (FSDPs) for each of the four ionic liquids studied. Interestingly, the domain size for Si-C3-mim(+)/NTf2(-) indicated by the maxima for these peaks is larger than for the more polar ionic liquid with a similar chain length, 1-pentamethyldisiloxymethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide (SiOSi-mim(+)/NTf2(-)). For the series of Si-C3-mim(+) ionic liquids, as the size of the anion increases, the position of FSDP indicates that the intermediate range order domains decrease in size, contrary to expectation. Diffusivities for the anions and cations are compared for a series of both hydrocarbon-substituted and silicon-substituted cations. All of the anions show the same scaling with temperature, size, and viscosity, while the cations show two distinct trends-one for hydrocarbon-substituted cations and another for organosilicon-substituted cations, with the latter displaying increased friction.

  5. Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions.

    PubMed

    Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo

    2010-06-15

    The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.

  6. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  7. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  8. Photodissociation of Cerium Oxide Nanocluster Cations.

    PubMed

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  9. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    NASA Astrophysics Data System (ADS)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  10. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  11. Electrospray Ionization Tandem Mass Spectrometry of Ammonium Cationized Polyethers

    NASA Astrophysics Data System (ADS)

    Nasioudis, Andreas; Heeren, Ron M. A.; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F.

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  12. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  13. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  14. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis.

    PubMed

    Danby, Phillip M; Withers, Stephen G

    2017-08-09

    Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 β-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s(-1). Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.

  15. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    PubMed

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  16. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  17. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    PubMed

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  18. A QSAR-modeling perspective on cationic transfection lipids. 1. Predicting efficiency and understanding mechanisms.

    PubMed

    Horobin, Richard W; Weissig, Volkmar

    2005-08-01

    As gene therapy using viral vectors involves clinical risks, limited DNA-carrying capacity, and manufacturing problems, non-viral vectors, including cationic lipids, have been investigated. Unfortunately, these agents have significantly lower transfectional ability and, due to the complexity of the transfectional pathway, no general schemes exist for correlating cationic lipid chemistry with transfectional efficacy. Quantitative structure-activity relationship (QSAR) analyses were carried out on sets of routinely used, experimental, and unsuccessful cationic lipid vectors taken from the literature. This approach described the amphipathic character, basicity, headgroup size, lipophilicity and shape of cationic lipids using numerical parameters. Compounds were plotted onto various parameter diagrams, and correlations were sought between numerical parameters and transfectional efficiency. Transfectionally effective cationic lipids fell into restricted zones in various parameter spaces, indicating that amphipathic character, lipid shape and lipophilicity were generally significant factors, whilst basicity and headgroup size were only important for certain compounds. The data supported the general significance of membrane mixing followed by induction of membrane curvature, and the more limited role of osmotic shock, as mechanisms of membrane disruption. QSAR descriptions of effective lipids permitted detailed chemical guidelines for optimizing cationic lipid structure to be given. Limitations of the approach and models are discussed. QSAR modeling indicated that induction of membrane curvature and osmotic shock are important mechanisms for membrane disruption by cationic lipids. The models also allowed specification of chemically detailed guidelines for selection or design of optimal cationic lipids. Copyright (c) 2005 John Wiley & Sons, Ltd.

  19. Formulation parameters influencing the physicochemical characteristics of rosiglitazone-loaded cationic lipid emulsion.

    PubMed

    Davaa, Enkhzaya; Park, Jeong-Sook

    2012-07-01

    To enhance the solubility of rosiglitazone, rosiglitazone-loaded cationic lipid emulsion was formulated using cationic lipid DOTAP, DOPE, castor oil, tween 20, and tween 80. The formulation parameters in terms of droplet size were optimized focused on the effect of the cationic lipid emulsion composition ratio on drug encapsulating efficiency, in vitro drug release, and cellular uptake of the rosiglitazone-loaded emulsion. Droplet sizes of a blank cationic emulsion and a rosiglitazone-loaded cationic emulsion ranged between 195-230 nm and 210-290 nm, respectively. The encapsulation efficiency of the rosiglitazone-loaded emulsion was more than 90%. The rosiglitazone-loaded cationic emulsion improved in vitro drug release over the drug alone and showed a much higher cellular uptake than rosiglitazone alone. Moreover, drug loading in cationic emulsions increased cellular uptake of rosiglitazone in insulin-resistant HepG2 cells more than the normal HepG2 cells. Taken together, these results indicate that cationic lipid emulsions could be a potential delivery system for rosiglitazone and could enhance its cellular uptake efficiency into target cells.

  20. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  1. Calorimetric study of cationic photopolymerization

    NASA Astrophysics Data System (ADS)

    Czajlik, I.; Hedvig, P.; Ille, A.; Dobó, J.

    1996-03-01

    The photopolymerization of penta-erythritol tetra-glycidyl ether (initiator Degacure KI-85) was studied by a du Pont 910 type DSC. From our experimental results the following conclusions can be drawn: (1) During the cationic polymerization reaction the lifetime of the initiating centers are long compared to the lifetime of free radicals in case of radical polymerization. (2) The rate of deactivation of the initiating centers increases with increasing temperature.

  2. A Theoretical Investigation of the Infrared Spectroscopic Properties of Closed-Shell Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.

  3. A Theoretical Investigation of the Infrared Spectroscopic Properties of Closed-Shell Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.

  4. Physicochemical and transfection properties of cationic Hydroxyethylcellulose/DNA nanoparticles.

    PubMed

    Fayazpour, Farzaneh; Lucas, Bart; Alvarez-Lorenzo, Carmen; Sanders, Niek N; Demeester, Jo; De Smedt, Stefaan C

    2006-10-01

    In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties.

  5. DFT and TDDFT study on cation-π complexes of diboryne (NHC → B ≡ B←NHC).

    PubMed

    Bania, Kusum K; Guha, Ankur Kanti; Bhattacharyya, Pradip K

    2016-11-14

    In this study, density functional theory calculation on mono-cationic cation-π complexes of diborynes has been made to understand the interaction in cation-π complexes of diboryne. Results suggest that apart from the smaller cations Li(+) and Na(+), larger cation like K(+) ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis (11)B, (13)C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li(+)) with high electronegativity interacts more strongly compared to larger cation (K(+)). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.(11)B-NMR, (13)C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

  6. DFT and TDDFT study on cation-π complexes of diboryne (NHC → B ≡ B←NHC)

    NASA Astrophysics Data System (ADS)

    Bania, Kusum K.; Guha, Ankur Kanti; Bhattacharyya, Pradip K.

    2016-11-01

    In this study, density functional theory calculation on mono-cationic cation-π complexes of diborynes has been made to understand the interaction in cation-π complexes of diboryne. Results suggest that apart from the smaller cations Li+ and Na+, larger cation like K+ ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis 11B, 13C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li+) with high electronegativity interacts more strongly compared to larger cation (K+). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.11B-NMR, 13C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

  7. Sorption of benzene and naphthol to organobentonites intercalated with short chain cationic surfactants.

    PubMed

    Shen, Yun-Hwei

    2002-01-01

    This work studies the sorption of benzene and naphthol by bentonites exchanged with quaternary ammonium surfactants tetramethylammonium (TMA) ion, benzyltrimethylammonium (BTMA) ion, tetraethylammonium (TEA) ion, and benzyltriethylammonium (BTEA) ion to elucidate how exchanged short chain organic cations affect the mechanistic function of the modified bentonite. Local high charge density areas are found at interlamellar surfaces of bentonite and intercalated short chain organic cations aggregate preferentially at these sites to form organic carbon phase effective in nonionic organic compounds (NOC) uptake. Experimental results indicate that the amount of benzene uptake decreases as the size of intercalated organic cation increases from TMA to BTMA to TEA to BTEA, presumably due to the different structures of organic carbon phase formed in organobentonite. In addition, benzene sorption capacity of organobentonite modified with short chain organic cation is highly sensitive to the cation exchange capacities (CEC) of bentonite used.

  8. Infrared frequencies and intensities for astrophysically important polycyclic aromatic hydrocarbon cations

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin

    1993-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been implicated as the carriers of the 'unidentified infrared' (UIR) emission bands observed from the interstellar medium. It has long been thought that these molecules, if present, probably exist as cations. In this paper we present infrared spectra of the cations of five moderate-sized PAHs. The PAH cations have been produced by low-energy electron impact and then trapped and stabilized in argon matrices at 12 K. To date, results have been obtained on naphthalene, anthracene, pyrene, perylene, and coronene. A common feature of the infrared spectra of all these cations is the very different intensity pattern of the ions compared to the neutral parents. Visible and (partial) infrared spectra of the coronene cation are also presented. It is shown that the out-of-plane CH bending mode shifts to a position very close to the UIR band at 11.3 microns. The astrophysical impact of these observations is discussed.

  9. Modification of potato peel waste with base hydrolysis and subsequent cationization.

    PubMed

    Lappalainen, Katja; Kärkkäinen, Johanna; Joensuu, Päivi; Lajunen, Marja

    2015-11-05

    Potato peel waste (PW) is a starch containing biomaterial produced in large amounts by food processing industry. In this work, the treatment of PW by alkaline hydrolysis and cationization in the water phase is reported. In order to improve the cationization of starch, PW was hydrolyzed by heating with alkaline (NaOH) ethanol solution (80%) in a water bath. The impact of variable molar ratios of anhydroglucose unit (AGU):NaOH, heating temperatures and times was studied on the degradation of starch and the molecular size distribution of the product. The hydrolyzed PW was cationized subsequently in water by using glycidyltrimethylammonium chloride and catalyzed by NaOH under microwave irradiation or in an oil bath. The impact of the various reaction conditions on the cationization and degree of substitution of starch was studied. The degree of substitution of the cationized starch varied in the range of 0-0.35. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Infrared frequencies and intensities for astrophysically important polycyclic aromatic hydrocarbon cations

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin

    1993-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been implicated as the carriers of the 'unidentified infrared' (UIR) emission bands observed from the interstellar medium. It has long been thought that these molecules, if present, probably exist as cations. In this paper we present infrared spectra of the cations of five moderate-sized PAHs. The PAH cations have been produced by low-energy electron impact and then trapped and stabilized in argon matrices at 12 K. To date, results have been obtained on naphthalene, anthracene, pyrene, perylene, and coronene. A common feature of the infrared spectra of all these cations is the very different intensity pattern of the ions compared to the neutral parents. Visible and (partial) infrared spectra of the coronene cation are also presented. It is shown that the out-of-plane CH bending mode shifts to a position very close to the UIR band at 11.3 microns. The astrophysical impact of these observations is discussed.

  11. Combined delivery of the adiponectin gene and rosiglitazone using cationic lipid emulsions.

    PubMed

    Davaa, Enkhzaya; Kang, Bong-Seok; Han, Joo-Hui; Lee, Sang-Eun; Ng, Choon Lian; Myung, Chang-Seon; Park, Jeong-Sook

    2015-04-10

    For the combined delivery of an insulin-sensitizing adipokine; i.e., the ADN gene, and the potent PPARγ agonist rosiglitazone, cationic lipid emulsions were formulated using the cationic lipid DOTAP, helper lipid DOPE, castor oil, Tween 20 and Tween 80. The effect of drug loading on the physicochemical characteristics of the cationic emulsion/DNA complexes was investigated. Complex formation between the cationic emulsion and negatively charged plasmid DNA was confirmed and protection from DNase was observed. The in vitro transfection efficiency and cytotoxicity were evaluated in HepG2 cells. The particle sizes of the cationic emulsion/DNA complex were in the range 230-540 nm and those of the rosiglitazone-loaded cationic emulsion/DNA complex were in the range 220-340 nm. Gel retardation of the complexes was observed when the complexation weight ratios of the cationic lipid to plasmid DNA exceeded 4:1 for both the drug-free and rosiglitazone-loaded complexes. Both complexes stabilized plasmid DNA against DNase. The ADN expression level increased dose-dependently when cells were transfected with the cationic emulsion/DNA complexes. The rosiglitazone-loaded cationic emulsion/DNA complexes showed higher cellular uptake in HepG2 cells depending on the rosiglitazone loading, but not depending on the type of plasmid DNA type such as pVAX/ADN, pCAG/ADN, or pVAX. The drug-loaded cationic emulsion/plasmid DNA complexes were less cytotoxic than free rosiglitazone. Therefore, a cationic emulsion could potentially serve as a co-delivery system for rosiglitazone and the adiponectin gene. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  13. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  14. Cation disorder in shocked orthopyroxene.

    NASA Technical Reports Server (NTRS)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  15. Quality control of cationic cell-penetrating peptides.

    PubMed

    Stalmans, Sofie; Gevaert, Bert; Verbeke, Frederick; D'Hondt, Matthias; Bracke, Nathalie; Wynendaele, Evelien; De Spiegeleer, Bart

    2016-01-05

    During fundamental research, it is recommended to evaluate the test compound identity and purity in order to obtain reliable study outcomes. For peptides, quality control (QC) analyses are routinely performed using reversed-phase liquid chromatography coupled to an ultraviolet (UV) detector system. These traditional QC methods, using a C18 column and a linear gradient with formic acid (FA) as acidic modifier in the mobile phase, might not result in optimal chromatographic performance for basic peptides due to their cationic nature and hence may lead to erroneous results. Therefore, the influence of the used chromatographic system on the final QC results of basic peptides was evaluated using five cationic cell-penetrating peptides and five C18-chromatographic systems, differing in the column particle size (high performance liquid chromatography (HPLC) versus ultra-high performance liquid chromatography (UHPLC)), the acidic modifier (FA versus trifluoroacetic acid (TFA)), and the column temperature (30 °C versus 60 °C). Our results indicate that a UHPLC system with the C18 column thermostated at 30 °C and a mobile phase containing TFA, provides the most suitable routine QC analysis method for cationic peptides, outperforming in sensitivity and resolution compared to the other systems. We also demonstrate the use of a single quad mass spectrometry (MS) detector system during QC analysis of (cationic) peptides, allowing identification of the peptide and its impurities, as well as the evaluation of the peak purity.

  16. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

    PubMed

    Lesnyak, Vladimir; George, Chandramohan; Genovese, Alessandro; Prato, Mirko; Casu, Alberto; Ayyappan, S; Scarpellini, Alice; Manna, Liberato

    2014-08-26

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.

  17. Interactions between liposomes and cations in aqueous solution.

    PubMed

    Ruso, Juan M; Besada, Lina; Martínez-Landeira, Pablo; Seoane, Laura; Prieto, Gerardo; Sarmiento, Félix

    2003-05-01

    An investigation on the dependence of electrophoretic mobilities of unilamellar vesicles of phosphatidylcholine-cholesterol-phosphatidylinositol (PC-Chol-PI) on the concentration of several cations with variations in the relation charge/radius in the range Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, and La3+ has been realized. Plots of zeta potential against ion concentration exhibit a maximum for all the cations under study, the position of the maximum is greatly affected by the charge of the ion. From the feature of these plots two phenomenon were observed: an initial binding of cations into the slipping plane for ion concentration below the maximum and a phenomenon of vesicle association for concentration above the maximum. To confirm these observations measurements on dynamic light scattering were performed to obtain the corresponding size distribution of the liposomes at different ion concentrations. Finally the ability of the Stern isotherm to describe the adsorption of the cations to vesicles was tested by two methods. The two main parameters of the theory: the total number of adsorption sites per unit area, N1, and the equilibrium constant, K; (and consequently the free energy of adsorption, deltaG0ads) were calculated for the different ions, showing good agreement. The equilibrium constants of adsorption have been found to obey a linear relationship with ion radius the slope of which decreases with the ion charge.

  18. Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

    PubMed Central

    2014-01-01

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  19. Cation and anion transport through hydrophilic pores in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Kandasamy, Senthil K.; Larson, Ronald G.

    2006-08-01

    To understand the origin of transmembrane potentials, formation of transient pores, and the movement of anions and cations across lipid membranes, we have performed systematic atomistic molecular dynamics simulations of palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids. A double bilayer setup was employed and different transmembrane potentials were generated by varying the anion (Cl-) and cation (Na+) concentrations in the two water compartments. A transmembrane potential of ˜350mV was thereby generated per bilayer for a unit charge imbalance. For transmembrane potential differences of up to ˜1.4V, the bilayers were stable, over the time scale of the simulations (10-50ns). At larger imposed potential differences, one of the two bilayers breaks down through formation of a water pore, leading to both anion and cation translocations through the pore. The anions typically have a short residence time inside the pore, while the cations show a wider range of residence times depending on whether they bind to a lipid molecule or not. Over the time scale of the simulations, we do not observe the discharge of the entire potential difference, nor do we observe pore closing, although we observe that the size of the pore decreases as more ions translocate. We also observed a rare lipid flip-flop, in which a lipid molecule translocated from one bilayer leaflet to the opposite leaflet, assisted by the water pore.

  20. Anion-promoted cation motion and conduction in zeolites.

    PubMed

    Jordan, Edgar; Bell, Robert G; Wilmer, Dirk; Koller, Hubert

    2006-01-18

    The motion of sodium cations in sodalite and cancrinite has been investigated by force field calculations, solid-state NMR, and impedance spectroscopy. Special emphasis is dedicated to the influence of anions on sodium mobilities. Local cation motion is promoted when they interact with anions. However, not all systems with high local mobilities exhibit good ion conductivities, as cooperativity of the motion appears to be an important factor, as well. The activation barrier for local sodium motion (calculations) and long-range transport (dc conductivities) is lowered in sodalite when halogenide anions, Cl(-), Br(-), or I(-), are present. The activation barriers increase with increasing size of the anion and decreasing coordination in the transition state. On the basis of (23)Na solid-state NMR data, all the sodium ions in the dense sodalite structure are rather rigid up to 470 K. All the cations in chromate sodalite, and Na(+) in the small cancrinite epsilon-cages without anion interactions, show a restricted local motion at higher temperatures. There is a selective high local motion of Na(+) in the neighborhood of chromate anions in the more open channel system of cancrinite. These results suggest that sodium migration can be enhanced, at least locally, in open channel systems by anion interactions. A dynamics coupling between anion reorientation and cation mobility was not observed.

  1. Anti-arthritis activity of cationic materials

    PubMed Central

    Dong, Lei; Xia, Suhua; Chen, Huan; Chen, Jiangning; Zhang, Junfeng

    2010-01-01

    Abstract Cationic materials exhibit remarkable anti-inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant-induced arthritis (AIA) models were used to test cationic materials for their anti-inflammatory activity. Cationic dextran (C-dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti-inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)-γ receptor-deficient mice and macrophage-depleted rats were used to examine the possible mechanisms of the anti-inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti-inflammatory characters. The anti-inflammatory activity of C-dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)-12 expression in peritoneal macrophages, and strong stimulation of IFN-γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL-12 and IFN-γ were enhanced by the cationic materials. Using IFN-γ receptor knockout mice and macrophage-depleted rats, we found that IFN-γ and macrophages played key roles in the anti-inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C-dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL-12 secretion, and that IL-12 promotes the expression of IFN-γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN-γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites. PMID:19538477

  2. Effect of Cations on the Chemical Mechanical Polishing of SiO2 Film

    NASA Astrophysics Data System (ADS)

    Song, Han; Wang, Liang-Yong; Liu, Wei-Li; Song, Zhi-Tang

    2013-09-01

    We investigate the effect of cations with different valences on the chemical mechanical polishing (CMP) of silicon dioxide films. The removal rate and surface roughness of the silicon-dioxide-film post-CMP are checked for the silica-based slurry with different cation salts (NaCl, CaCl2, AlCl3). Meanwhile, the particle size and size distribution of the slurries are characterized to test their lifetimes. The result shows that the three kinds of salts can improve the polishing removal rate from around 20 nm/min to 120 nm/min without affecting the surface roughness when the polishing slurry is stable. With increasing valence of cations, the polishing slurry requires less cation concentration to be added to improve the removal rate, while keeping a superior surface topography and maintaining a longer lifetime as well.

  3. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Solomon, A. K.

    1961-01-01

    Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply. PMID:13909521

  4. Plan a Site Visit with Your Legislator

    ERIC Educational Resources Information Center

    Ochs, Mike

    2005-01-01

    When members of Congress head home for a recess, participants in the grassroots network have an opportunity to use one of their effective education tools: the site visit. A site visit occurs when a legislator actually visits one's business, school, or organization to see one's work firsthand. A local site visit is effective because grassroots…

  5. Dialogue as a Site of Transformative Possibility

    ERIC Educational Resources Information Center

    Sinha, Shilpi

    2010-01-01

    This article examines how affect allows us to view the relational form of dialogue, as built upon the work of Derrida and Levinas, to be a site of transformative possibility for students as they encounter and address issues of social justice and difference in the classroom. The understanding of affect that attends this form of dialogue demands…

  6. Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.

    1995-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of the neutrals and cations of thirteen polycyclic aromatic hydrocarbons (PAHs) up to the size of ovalene. Calculations are also carried out for a few PAH anions. The DFT harmonic frequencies, when uniformly scaled by the factor of 0.958 to account primarily for anharmonicity, agree with the matrix isolation fundamentals to within an average error of about 10 per centimeter. Electron correlation is found to significantly reduce the intensities of many of the cation harmonics, bringing them into much better agreement with the available experimental data. While the theoretical infrared spectra agree well with the experimental data for the neutral systems and for many of the cations, there are notable discrepancies with the experimental matrix isolation data for some PAH cations that are difficult to explain in terms of limitations in the calculations. In agreement with previous theoretical work, the present calculations show that the relative intensities for the astronomical unidentified infrared (UIR) bands agree reasonably well with those for a distribution of polycyclic aromatic hydrocarbon (PAH) cations, but not with a distribution of PAH neutrals. We also observe that the infrared spectra of highly symmetrical cations such as coronene agree much better with astronomical observations than do those of, for example, the polyacenes such as tetracene and pentacene. The total integrated intensities for the neutral species are found to increase linearly with size, while the total integrated intensities are much larger for the cations and scale more nearly quadratically with size. We conclude that emission from moderate-sized highly symmetric PAH cations such as coronene and larger could account for the UIR bands.

  7. Liquid Crystalline Polymers by Cationic Polymerization,

    DTIC Science & Technology

    1986-01-01

    cation mechanism of Scholl reaction the Lewis acid and by the benzylic carbocations . Hydride transfer to benzylic carbenium ions leads to methyl groups...reviewed. Examples from ring-opening, carbocationic , and radical-cation poly- merizations and oligomerizations are discussed. Accesion For DrIC TAB3...Examples from ring- opening, carbocationic , and radical-cation polymeri- zations and oligomerizations are discussed. INTRODUCTION This paper will

  8. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  9. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.

  10. Cationic nanoemulsions as potential carriers for intracellular delivery

    PubMed Central

    Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S.

    2014-01-01

    Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740

  11. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  12. Cation-coupled bicarbonate transporters.

    PubMed

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-10-01

    Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.

  13. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.

    PubMed

    Hale, John D F; Hancock, Robert E W

    2007-12-01

    Cationic antimicrobial peptides are a novel type of antibiotic offering much potential in the treatment of microbial-related diseases. They offer many advantages for commercial development, including a broad spectrum of action and modest size. However, despite the identification or synthetic production of thousands of such peptides, the mode of action remains elusive, except for a few examples. While the dogma for the mechanism of action of antimicrobial peptides against bacteria is believed to be through pore formation or membrane barrier disruption, some peptides clearly act differently and other intracellular target sites have been identified. This article presents an updated review of how cationic antimicrobial peptides are able to affect bacterial killing, with a focus on internal targets.

  14. Novel cholesterol-based cationic lipids for gene delivery.

    PubMed

    Medvedeva, Darya A; Maslov, Mikhail A; Serikov, Roman N; Morozova, Nina G; Serebrenikova, Galina A; Sheglov, Dmitry V; Latyshev, Alexander V; Vlassov, Valentin V; Zenkova, Marina A

    2009-11-12

    Gene therapy based on gene delivery is a promising strategy for the treatment of human disease. Here we present data on structure/biological activity of new biodegradable cholesterol-based cationic lipids with various heterocyclic cationic head groups and linker types. Enhanced accumulation of nucleic acids in the cells mediated by the lipids was demonstrated by fluorescent microscopy and flow cytometry. Light scattering and atomic force microscopy were used to find structure/transfection activity correlations for the lipids. We found that the ability of the lipids to stimulate intracellular accumulation of the oligodeoxyribonucleotides and plasmid DNA correlates well with their ability to form in solution lipid/NA complexes of sizes that do not exceed 100 nm. Screening of the lipids revealed the most promising transfection agents both in terms of low toxicity and efficient delivery: cholesterol-based lipids with positively charged pyridine and methyl imidazole head groups and either the ester or carbamate linker.

  15. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in

  16. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, Stephen R.; Anderson, Kenneth B.; Song, Kang; Yuchs, Steven E.; Marshall, Christopher L.

    1998-01-01

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  17. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    PubMed Central

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene

  18. Cation exchange capacity of pine bark substrates

    USDA-ARS?s Scientific Manuscript database

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  19. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  20. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  1. Hyperbranched cationic amylopectin derivatives for gene delivery.

    PubMed

    Zhou, Yanfang; Yang, Bin; Ren, Xianyue; Liu, Zhenzhen; Deng, Zheng; Chen, Luming; Deng, Yubin; Zhang, Li-Ming; Yang, Liqun

    2012-06-01

    A series of hyperbranched cationic amylopectin derivatives conjugated with 1,2-ethylenediamine, diethylenetriamine and 3-(dimethylamino)-1-propylamine residues, named as EDA-Amp, DETA-Amp and DMAPA-Amp, were synthesized by the N,N'-carbonyldiimidazole activation method at room temperature. Their structures were characterized by FTIR and (1)H NMR analyses, and their buffering capability was assessed by acid-base titration. The amylopectin derivatives exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI) in the hemolysis and MTT assays. Atomic force microscopy and optical microscopy confirmed that the amylopectin derivatives exhibited lower damage for erythrocytes than bPEI. The amylopectin derivatives could bind and condense plasmid DNA (pDNA) to form the complexes with the size ranging from 100 to 300 nm. The resultant complexes showed higher transfection efficiency in 293T cells than in A549 cells. The DMAPA-Amp derivative-mediated gene transfection for Forkhead box O1 exhibited higher protein expression than that of the EDA-Amp and DETA-Amp derivatives in 293T cells, which was analyzed by western blot, flow cytometry and Hoechst staining assay. On the basis of these data, amylopectin derivatives exhibit potential as nonviral gene vectors. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Cationic PAMAM dendrimers disrupt key platelet functions

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Franks, Zechariah; Gibson, Christopher C.; Thiagarajan, Giridhar; Vieira-de-Abreu, Adriana; Sukavaneshvar, Sivaprasad; Mohammad, S. Fazal; Li, Dean Y.; Ghandehari, Hamidreza; Weyrich, Andrew S.; Brooks, Benjamin D.; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood. PMID:22497592

  3. Ultrasonic dyeing of cationized cotton fabric with natural dye. Part 1: cationization of cotton using Solfix E.

    PubMed

    Kamel, M M; El Zawahry, M M; Ahmed, N S E; Abdelghaffar, F

    2009-02-01

    The dyeing of cationized cotton fabric with Solfix E using colouring matter extracted from Cochineal dye has been studied using both conventional and ultrasonic techniques. Factors affecting dye extraction such as ultrasound power, particle size, extraction temperature and time were studied. The results indicated that the extraction by ultrasound at 300 W was more effective at lower temperature and time than conventional extraction. The effect of various factors of dye bath such as pH, salt concentration, ultrasound power, dyeing time and temperature were investigated. The colour strength values obtained were found to be higher with ultrasound than with conventional techniques. The results of fastness properties of the dyed fabrics were fair to good. The scanning electron microscope (SEM) images of the morphological and X-ray analyzes were measured for cationized cotton fabrics dyed with both conventional and ultrasound methods, thus showing the sonicator efficiency.

  4. Structural and energetic study of cation-π-cation interactions in proteins.

    PubMed

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  5. ESR study of the guanine cation

    NASA Astrophysics Data System (ADS)

    Close, David M.; Sagstuen, Einar; Nelson, William H.

    1985-05-01

    It has been proposed that the primary direct radiation damage products in DNA are guanine cations and thymine anions. Experiments reported here characterize a guanine cation observed in a single crystal of guanine:HCl:H2O. ESR experiments were performed by x-irradiating and observing the crystals at 15 K. Spectral parameters for the cation include N3 and N10 hyperfine couplings, a C8-Hα hyperfine coupling, and two small exchangeable couplings presumably from the N10 protons. The computed spin densities of ρ(N3)=0.283, ρ(N10)=0.168, and ρ(C8)=0.182 agree nicely with those observed for the guanine cation in DNA. In the single crystal the native molecule is protonated at N7. It is proposed that once the native molecule is oxidized it rapidly deprotonates at N7 to form the cation observed.

  6. Prediction of Intrinsic Cesium Desorption from Na-Smectite in Mixed Cation Solutions.

    PubMed

    Fukushi, Keisuke; Fukiage, Tomo

    2015-09-01

    Quantitative understanding of the stability of sorbed radionuclides in smectite is necessary to assess the performance of engineering barriers used for nuclear waste disposal. Our previous study demonstrated that the spatial organization of the smectite platelets triggered by the divalent cations led to the apparent fixation of intrinsic Cs in smectite, because some Cs is retained inside the formed tactoids. Natural water is usually a mixture of Na(+) and divalent cations (Ca(2+) and Mg(2+)). This study therefore investigated the desorption behavior of intrinsic Cs in Na-smecite in mixed Na(+)-divalent cation solutions under widely various cation concentrations using batch experiments, grain size measurements, and cation exchange modeling (CEM). Results show that increased Na(+) concentrations facilitate Cs desorption because Na(+) serves as the dispersion agent. A linear relation was obtained between the logarithm of the Na(+) fraction and the accessible Cs fraction in smectite. That relation enables the prediction of accessible Cs fraction as a function of solution cationic compositions. The corrected CEM considering the effects of the spatial organization suggests that the stability of intrinsic Cs in the smectite is governed by the Na(+) concentration, and suggests that it is almost independent of the concentrations of divalent cations in natural water.

  7. Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy.

    PubMed

    Licciardi, Mariano; Paolino, Donatella; Mauro, Nicolò; Cosco, Donato; Giammona, Gaetano; Fresta, Massimo; Cavallaro, Gennara; Celia, Christian

    2016-08-19

    The biopharmaceutical properties of supramolecular vesicular aggregates (SVAs) were characterized with regard to their physicochemical features and compared with cationic liposomes (CLs). Neutral and cationic SVAs were synthesized using two different copolymers of poly(aspartyl hydrazide) by thin-layer evaporation and extrusion techniques. Both copolymers were self-assembled in pre-formulated liposomes and formed neutral and cationic SVAs. Gemcitabine hydrochloride (GEM) was used as an anticancer drug and loaded by a pH gradient remote loading procedure, which significantly increased drug loading inside the SVAs. The resulting average size of the SVAs was 100 nm. The anticancer activity of GEM-loaded neutral and cationic SVAs was tested in human alveolar basal epithelial (A549) and colorectal cancer (CaCo-2) cells. GEM-loaded cationic SVAs increased the anticancer activity in A549 and CaCo-2 cells relative to free drug, neutral SVAs, and CLs. In vivo biodistribution in Wistar rats showed that cationic SVAs accumulate at higher concentrations in lung tissue than neutral SVAs and CLs. Cationic SVAs may therefore serve as an innovative future therapy for pulmonary carcinoma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparison of covalency in the complexes of trivalent actinide and lanthanide cations.

    PubMed

    Jensen, Mark P; Bond, Andrew H

    2002-08-21

    The complexes of trivalent actinide (Am(III) and Cm(III)) and lanthanide (Nd(III) and Sm(III)) cations with bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2,4,4-trimethylpentyl)monothiophosphinic acid, and bis(2,4,4-trimethylpentyl)dithiophosphinic acid in n-dodecane have been studied by visible absorption spectroscopy and X-ray absorption fine structure (XAFS) measurements in order to understand the chemical interactions responsible for the great selectivity the dithiophosphinate ligand exhibits for trivalent actinide cations in liquid-liquid extraction. Under the conditions studied, each type of ligand displays a different coordination mode with trivalent f-element cations. The phosphinate ligand coordinates as hydrogen-bonded dimers, forming M(HL2)3. Both the oxygen and the sulfur donor of the monothiophosphinate ligand can bind the cations, affording both bidentate and monodentate ligands. The dithiophosphinate ligand forms neutral bidentate complexes, ML3, with no discernible nitrate or water molecules in the inner coordination sphere. Comparison of the Cm(III), Nd(III), and Sm(III) XAFS shows that the structure and metal-donor atom bond distances are indistinguishable within experimental error for similarly sized trivalent lanthanide and actinide cations, despite the selectivity of bis(2,4,4-trimethylpentyl)dithiophosphinic acid for trivalent actinide cations over trivalent lanthanide cations.

  9. Comparison of covalency in the complexes of trivalent actinide and lanthanide cations.

    SciTech Connect

    Jensen, M. P.; Bond, A. H.; Chemistry

    2002-08-21

    The complexes of trivalent actinide (Am(III) and Cm(III)) and lanthanide (Nd(III) and Sm(III)) cations with bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2,4,4-trimethylpentyl)monothiophosphinic acid, and bis(2,4,4-trimethylpentyl)dithiophosphinic acid in n-dodecane have been studied by visible absorption spectroscopy and X-ray absorption fine structure (XAFS) measurements in order to understand the chemical interactions responsible for the great selectivity the dithiophosphinate ligand exhibits for trivalent actinide cations in liquid-liquid extraction. Under the conditions studied, each type of ligand displays a different coordination mode with trivalent f-element cations. The phosphinate ligand coordinates as hydrogen-bonded dimers, forming M(HL{sub 2}){sub 3}. Both the oxygen and the sulfur donor of the monothiophosphinate ligand can bind the cations, affording both bidentate and monodentate ligands. The dithiophosphinate ligand forms neutral bidentate complexes, ML{sub 3}, with no discernible nitrate or water molecules in the inner coordination sphere. Comparison of the Cm(III), Nd(III), and Sm(III) XAFS shows that the structure and metal-donor atom bond distances are indistinguishable within experimental error for similarly sized trivalent lanthanide and actinide cations, despite the selectivity of bis(2,4,4-trimethylpentyl)dithiophosphinic acid for trivalent actinide cations over trivalent lanthanide cations.

  10. Temperature-induced vesicle to micelle transition in cationic/cationic mixed surfactant systems.

    PubMed

    Yang, Yanjuan; Liu, Lifei; Huang, Xin; Tan, Xiuniang; Luo, Tian; Li, Wei

    2015-12-07

    Temperature-induced vesicle to micelle transition (VMT), which has rarely been reported in cationic/cationic mixed surfactant systems, was systemically studied in a didodecyldimethylammonium bromide (DDAB)/dodecyltrimethylammonium chloride (DTAC) aqueous solution. We investigated the effect of temperature on DDAB/DTAC aqueous solutions by means of turbidity, conductivity, cryo-TEM, a UV-vis spectrophotometer, and a steady-state fluorescence spectrometer. It was found that increasing temperature could induce the transformation from the vesicle to the micelle in this cationic/cationic mixed surfactant system. The degree of transformation can be easily controlled by the operation temperature. Additionally, by adjusting the proportion of the mixed cationic/cationic systems and employing cationic surfactants with different chain-lengths, we were able to conclude that the hydrophobic tail length of the surfactant affects the aggregation behavior of cationic/cationic mixed surfactant systems as a function of temperature. It is universal to induce the transformation from the vesicle to the micelle by temperature in cationic/cationic mixed surfactant systems. A possible mechanism for the temperature-induced VMT was proposed based on the experimental results.

  11. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    PubMed

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  12. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery.

    PubMed

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang

    2009-05-27

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  13. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    NASA Astrophysics Data System (ADS)

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang

    2009-05-01

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  14. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  15. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  16. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Epstein, Wolfgang; Solomon, A. K.

    1963-01-01

    The resuspension of K-poor, Na-rich stationary phase E. coli in fresh medium at pH 7.0 results in a rapid uptake of K and extrusion of Na by the cells. In all experiments net K uptake exceeded net Na extrusion. An investigation of the uptake of glucose, PO4, and Mg and the secretion of H by these cells indicates that the excess K uptake is not balanced by the simultaneous uptake of anions but must be accompanied by the extrusion of cations from the cell. The kinetics of net K uptake are consistent with the existence of two parallel influx processes. The first is rapid, of brief duration, and accounts for approximately 60 per cent of the total net K uptake. This process is a function of the extracellular K concentration, is inhibited in acid media, and appears to be a 1 for 1 exchange of extracellular K for intracellular H. The second influx process has a half-time of approximately 12 minutes, and is not affected by acid media. This process is a function of the intracellular Na concentration, is dependent upon the presence of K in the medium, and may be ascribed to a 1 for 1 exchange of extracellular K for intracellular Na. PMID:14080819

  17. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  18. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  19. Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site.

    PubMed

    Billoni, Orlando V; Pomiro, Fernando; Cannas, Sergio A; Martin, Christine; Maignan, Antoine; Carbonio, Raul E

    2016-11-30

    In this work, we have performed Monte Carlo simulations in a classical model for RFe1-x Cr x O3 with R  =  Y and Lu, comparing the numerical simulations with experiments and mean field calculations. In the analyzed compounds, the antisymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction induced a weak ferromagnetism due to a canting of the antiferromagnetically ordered spins. This model is able to reproduce the magnetization reversal (MR) observed experimentally in a field cooling process for intermediate x values and the dependence with x of the critical temperatures. We also analyzed the conditions for the existence of MR in terms of the strength of DM interactions between Fe(3+) and Cr(3+) ions with the x values variations.

  20. Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site

    NASA Astrophysics Data System (ADS)

    Billoni, Orlando V.; Pomiro, Fernando; Cannas, Sergio A.; Martin, Christine; Maignan, Antoine; Carbonio, Raul E.

    2016-11-01

    In this work, we have performed Monte Carlo simulations in a classical model for RFe1-x Cr x O3 with R  =  Y and Lu, comparing the numerical simulations with experiments and mean field calculations. In the analyzed compounds, the antisymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction induced a weak ferromagnetism due to a canting of the antiferromagnetically ordered spins. This model is able to reproduce the magnetization reversal (MR) observed experimentally in a field cooling process for intermediate x values and the dependence with x of the critical temperatures. We also analyzed the conditions for the existence of MR in terms of the strength of DM interactions between Fe3+ and Cr3+ ions with the x values variations.

  1. Gas-phase Electronic Spectra of Coronene and Corannulene Cations

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, Corey A.; Maier, John P.

    2017-02-01

    Gas-phase electronic spectra of the coronene ({{{C}}}24{{{{H}}}12}+) and corannulene ({{{C}}}20{{{{H}}}10}+) cations complexed with helium have been recorded in a quadrupole ion trap at 5 K by photodissociation. The electronic spectrum of {{{C}}}20{{{{H}}}10}+ with two helium atoms was also measured to estimate the perturbation. This method is sufficient for an astronomical comparison because the shift due to the weakly bound helium is on the order of 0.2 Å. {{{C}}}24{{{{H}}}12}+{--}{He} has the origin band of the {{{A}}}2{{{E}}}1g≤ftarrow X{}2{{{E}}}2u transition at 9438.3 Å and that to a much higher state {{{D}}}3≤ftarrow X{}2{{{E}}}2u at 4570 Å. The corannulene cation is subject to a Jahn–Teller distortion in the electronic ground state, leading to the {3}2{{A}}\\prime ≤ftarrow {{X}}{}2{{A}}\\prime \\prime and {3}2{{A}}\\prime \\prime ≤ftarrow {{X}}{}2{{A}}\\prime transitions with origin band maxima when complexed with helium at 5996.1 and 5882.6 Å. These absorptions lie in a region where there is a congestion of diffuse interstellar bands (DIBs). However, the recorded features have no match with astronomical observations, removing coronene and corannulene cations and probably other aromatic hydrocarbons of this size as possible carriers of the DIBs.

  2. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  3. Cation effects in doped La2CuO4 superconductors

    NASA Astrophysics Data System (ADS)

    Attfield, J. P.; Kharlanov, A. L.; McAllister, J. A.

    1998-07-01

    The critical temperatures of (Ln1-xMx)2CuO4 superconductors, in which Ln3+ (La and other lanthanides) and M2+ (Ca, Sr, Ba) cations are randomly distributed amongst the `type A' lattice sites, are known to depend on the doping level, x, and the mean A-site cation radius, (refs 2, 3). Here we show, by studying series of compositions with the same doping level and , that the critical temperature decreases linearly with increasing A-site disorder, as quantified by the variance in the distribution of A-site cation radii. From this, we are able to show that, in the absence of disorder, the critical temperature should increase quadratically with for superconductors containing a single CuO2 layer. Our results therefore show that the critical temperature is very sensitive to lattice strains, as has also been shown for the metal to insulator transition temperature in the magnetoresistive (Ln1-xMx)MnO3 perovskites.

  4. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  5. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  6. Slow permeation of organic cations in acetylcholine receptor channels

    PubMed Central

    1986-01-01

    Block, permeation, and agonist action of small organic amine compounds were studied in acetylcholine receptor (AChR) channels. Single channel conductances were calculated from fluctuation analysis at the frog neuromuscular junction and measured by patch clamp of cultured rat myotubes. The conductance was depressed by a few millimolar external dimethylammonium, arginine, dimethyldiethanolammonium, and Tris. Except with dimethylammonium, the block was intensified with hyperpolarization. A two-barrier Eyring model describes the slowed permeation and voltage dependence well for the three less permeant test cations. The cations were assumed to pause at a site halfway across the electric field of the channel while passing through it. For the voltage- independent action of highly permeant dimethylammonium, a more appropriate model might be a superficial binding site that did not prevent the flow of other ions, but depressed it. Solutions of several amine compounds were found to have agonist activity at millimolar concentrations, inducing brief openings of AChR channels on rat myotubes in the absence of ACh. PMID:2425045

  7. Synergistic effects of high molecular weight polyethylene oxide (PEO) and cationic cellulosic polymers on conditioning properties of hair care products [corrected].

    PubMed

    Li, Wing; Jordan, Susan L P; Zhang, Xiaodong; Amos, Jennifer; Davis, Cal

    2004-01-01

    A hair cleansing composition containing both high molecular weight PEO and cationic hydroxyethyl cellulose (HEC) was found to provide superior conditioning performance. Hair treated with a formulation containing both cationic HEC and high molecular weight PEO showed 30% better wet combing reduction than the formulation containing cationic HEC only. In conjunction with PEO, cationic HEC-dependent deposition of silicone oil and octyl methoxycinnamate (OMC) onto hair was enhanced 27% and 25%, respectively. When examined with a polarized microscope, the appearance of the polymer-surfactant complex (coacervate) of the diluted formation differed in the presence of PEO. In particular, the particle size of the coacervate in the formulation containing both PEO and cationic HEC was smaller. This result indicates PEO reduces the size of the deposition precipitate by preventing the coacervate from agglomerating. Surface analysis also showed that the presence of PEO in formulations containing cationic HEC deposited insoluble actives more evenly on the hair surface.

  8. Cationic Liposomes Modified with Polyallylamine as a Gene Carrier: Preparation, Characterization and Transfection Efficiency Evaluation

    PubMed Central

    Kazemi Oskuee, Reza; Mahmoudi, Asma; Gholami, Leila; Rahmatkhah, Alireza; Malaekeh-Nikouei, Bizhan

    2016-01-01

    Purpose: Cationic polymers and cationic liposomes have shown to be effective non-viral gene delivery vectors. In this study, we tried to improve the transfection efficiency by employing the advantages of both. Methods: For this purpose, modified polyallylamines (PAAs) were synthesized. These modifications were done through the reaction of PAA (15 KDa) with acrylate and 6-bromoalkanoic acid derivatives. Liposomes comprising of these cationic polymers and cationic lipid were prepared and extruded through polycarbonate filters to obtain desired size. Liposome-DNA nanocomplexes were prepared in three carrier to plasmid (C/P) ratios. Size, zeta potential and DNA condensation ability of each complex were characterized separately and finally transfection efficiency and cytotoxicity of prepared vectors were evaluated in Neuro2A cell line. Results: The results showed that mean particle size of all these nanocomplexes was lower than 266 nm with surface charge of 22.0 to 33.9 mV. Almost the same condensation pattern was observed in all vectors and complete condensation was occurred at C/P ratio of 1.5. The lipoplexes containing modified PAA 15 kDa with 10% hexyl acrylate showed the highest transfection efficacy and lowest cytotoxicity in C/P ratio of 0.5. Conclusion: In some cases nanocomplexes consisting of cationic liposome and modified PAA showed better transfection activity and lower cytotoxicity compared to PAA. PMID:28101458

  9. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    PubMed Central

    Bose, Rajendran JC; Arai, Yoshie; Ahn, Jong Chan; Park, Hansoo; Lee, Soo-Hong

    2015-01-01

    Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(d,l-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. PMID:26379434

  10. Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery.

    PubMed

    Bose, Rajendran J C; Arai, Yoshie; Ahn, Jong Chan; Park, Hansoo; Lee, Soo-Hong

    2015-01-01

    Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid-polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52-60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine-PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased.

  11. Cation-π Interactions: Mimicking mussel mechanics

    NASA Astrophysics Data System (ADS)

    Birkedal, Henrik

    2017-05-01

    Gluing materials together underwater is a mighty challenge faced -- and overcome -- by mussels. It requires good adhesion and cohesion. Molecular-level mechanical measurements have now shown that cation-π interactions provide surprisingly strong cohesive abilities.

  12. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  13. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion.

    PubMed

    Knorr, Anne; Ludwig, Ralf

    2015-12-02

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3-4 kJmol(-1). The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

  14. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  15. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  16. Mechanisms of fragmentation of cationic peptide ions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Adams, Jeanette

    1993-06-01

    Fragmentation mechanisms for formation of several commonly occurring product ions in high-energy collision-induced induced decomposition spectra of either (M + Cat2+ - H)+ ions of peptides cationized with alkaline earth metal ions, (M + Ca+)+ ions cationized with alkali metal ions, or (M + H)+ ions are evaluated by using deuterium-labelled peptides. The different sources of hydrogen transferred in the reactions are identified. Our study supports some previously proposed mechanisms but also provides evidence for others.

  17. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  18. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  19. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry.

    PubMed

    Bythell, Benjamin J; Abutokaikah, Maha T; Wagoner, Ashley R; Guan, Shanshan; Rabus, Jordan M

    2016-11-28

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the (0,2) A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies. Graphical Abstract ᅟ.

  20. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  1. Cation-dependent stability of subtilisin.

    PubMed

    Alexander, P A; Ruan, B; Bryan, P N

    2001-09-04

    Subtilisin BPN' contains two cation binding sites. One specifically binds calcium (site A), and the other can bind both divalent and monovalvent metals (site B). By binding at specific sites in the tertiary structure of subtilisin, cations contribute their binding energy to the stability of the native state and increase the activation energy of unfolding. Deconvoluting the influence of binding sites A and B on the inactivation rate of subtilisin is complicated, however. This paper examines the stabilizing effects of cation binding at site B by using a mutant of subtilisin BPN' which lacks calcium site A. Using this mutant, we show that calcium binding at site B has relatively little effect on stability in the presence of moderate concentrations of monovalent cations. At [NaCl] =100 mM, site B is >or=98% occupied with sodium, and therefore its net occupancy with a cation varies little as subtilisin is titrated with calcium. Exchanging sodium for calcium results in a 5-fold decrease in the rate of inactivation. In contrast, because of the high selectivity of site A for calcium, its occupancy changes dramatically as calcium concentration is varied, and consequently the inactivation rate of subtilisin decreases approximately 200-fold as site A becomes saturated with calcium, irrespective of the concentration of monovalent cations.

  2. Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations

    SciTech Connect

    Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F.; Benesi, Alan; Maroncelli, Mark

    2008-01-01

    Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.

  3. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    NASA Astrophysics Data System (ADS)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  4. Self-aggregation of cationically modified poly(ε-caprolactone)2-co-poly(ethylene glycol) copolymers: Effect of cationic grafting ligand and poly(ε-caprolactone) chain length.

    PubMed

    Charoongchit, Pimchanok; Suksiriworapong, Jiraphong; Sripha, Kittisak; Mao, Shirui; Sapin-Minet, Anne; Maincent, Philippe; Junyaprasert, Varaporn Buraphacheep

    2017-03-01

    Cationic copolymers have been attractive to investigate due to their potential to complexation with anionic drugs and expected to use in the pharmaceutical application. In this study, the modified poly(ε-caprolactone)2-co-poly(ethylene glycol) copolymers (P(CL)2-PEG) were successfully synthesized by click reaction. The amount of small molecular cationic ligand, propargyltrimethyl ammonium iodide, was varied and grafted onto various mole ratios of P(CL) to PEG. The effects of P(CL) chain length and amount of the grafting cationic ligand on physicochemical properties of polymers and particles were studied. The number-average molecular weights of the copolymers grafted with cationic ligand were found ranging between 10,000 and 23,000g/mol as investigated by NMR. From DSC study, the results showed that the grafting ligand affected thermal behaviors of the copolymers by increasing the glass transition temperature and decreasing the melting temperature of the copolymers. Furthermore, these cationic copolymers could self-aggregate with their critical aggregation concentration depending on mole ratios of hydrophilic to hydrophobic portions. The particles containing higher amounts of the cationic ligand tended to aggregate in both acidic and basic pH environment and at high salt concentration. Additionally, particle size, size distribution (PdI), and morphology of self-assembling particles varied depending on P(CL) chain length and the amount of the grafting cationic ligand. The synthesized cationic copolymer showed a capability to encapsulate a high negatively charged drug, enoxaparin, with an encapsulation efficiency of 87%. After drug incorporation, the particles substantially changed in size, shape, PdI, and zeta potential to become more suitable for drug delivery. These cationic copolymers with flexible properties will be the candidate for further development as carriers for the delivery of negatively charged drugs. Copyright © 2016. Published by Elsevier B.V.

  5. Effect of cations on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system.

    PubMed

    Chen, Yuanbo; Hu, Yongyou; Guo, Qian; Yan, Jia; Wu, Wenjin

    2016-09-01

    Cations had great influence on the self-assembly of rhamnolipid, which in turn affected the fate of triclosan. The migration of triclosan from sediment to water benefited its biodegradation but it could be transformed into more toxic compounds. To regulate the fate of triclosan and reduce environmental risks extremely, the effect of four common cations in surface water (Na(+)/K(+)/Ca(2+)/Mg(2+)) on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system was investigated. The interaction among cations, triclosan and rhamnolipid was explored based on self-assembly of rhamnolipid and water solubility of triclosan in rhamnolipid solutions. Results showed that cations had little influence on the fate of triclosan in the absence of rhamnolipid. Cations, especially Ca(2+)/Mg(2+), reduced the critical micelle concentration, micellar size and zeta potential of rhamnolipid solutions. The changes in self-assembly of rhamnolipid with different cations led to the difference of residual rhamnolipid concentration in water, which was nearly invariant with 0.01 M Na(+)/K(+) while decreased significantly with 0.01 M Ca(2+)/Mg(2+). Consequently, water solubility of triclosan in rhamnolipid solutions increased with the addition of Na(+)/K(+) whereas decreased with Ca(2+)/Mg(2+). In sediment-water- rhamnolipid system, triclosan was slightly solubilized from sediment to water with Na(+)/K(+) while deposited in sediment with Ca(2+)/Mg(2+). These findings provided an alternative application of rhamnolipid for the remediation of triclosan-polluted sediment.

  6. Controlling the kinetic and thermodynamic stability of cationic clusters by the addition of molecules or counterions.

    PubMed

    Strate, Anne; Niemann, Thomas; Ludwig, Ralf

    2017-07-26

    Whereas ion pairing is one of the most fundamental atomic interactions in chemistry and biology, pairing between like-charged ions remains an elusive concept. This phenomenon was only reported for large-scaled structures, assemblies or stabilizing frameworks. Recently, we could report the formation of cationic clusters in pure ionic liquids. In such structures like-charge repulsion is attenuated by cooperative hydrogen bonds. In the present work, we investigate the possible formation of cationic clusters in the gas phase beyond those found in the neutral ionic liquids wherein the positive charges are fully balanced by anions. Based on the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide we calculated differently charged cationic clusters including varying numbers of cation-like molecules (3-3-dimethyl-1-butanol) or ionic liquid anions (NTf2). We give the number of molecules or anions which are needed to transfer the cationic clusters from the meta-stable into the thermodynamically stable regime. We analyze the charge, the size and the structural motif of these clusters. A particular focus we put on the cooperativity of hydrogen bonding and the role of dispersion forces for the cluster stability. We also show that interaction energies and charge transfer within the cationic clusters can be related to spectroscopic parameters such as NMR chemical shifts and IR vibrational frequencies. Finally, we suggest clusters which should be observable in demanding gas phase experiments.

  7. Several textural properties of compacted and cation-exchanged bentonite

    NASA Astrophysics Data System (ADS)

    Montes-Hernandez, G.; Duplay, J.; Géraud, Y.; Martinez, L.

    2006-08-01

    One of the principal applications for bentonite is in drilling muds. Moreover it is widely used as a suspending and stabilizing agent, and as an adsorbent or clarifying agent, in many industries. Recently the bentonites have been proposed as engineered barriers for radioactive waste repository because these materials are supposed to build up a better impermeable zone around wastes by swelling. For these reasons, a textural characterization of bentonites in the laboratory is very important. The aim in this study was to estimate several textural properties of compacted and cation-exchanged bentonite by using Hg-porosimetry, N2-adsorption, water vapour adsorption, scanning electron microscopy (SEM) observations and environmental scanning electron microscopy-digital images analysis measurements. For that, bulk samples were mechanically compressed at atmospheric conditions by using a uniaxial system at four different pressures (21, 35, 49, and 63 MPa) in order to obtain four physical densities. On the other hand, the bulk samples of bentonite were treated separately with four concentrated solutions (1N concentration) of sodium, potassium, magnesium and calcium chlorides in order to obtain a homoionic interlayer cation in the clay phase. The results showed that the macro-porosity (porous size>50 nm) and eventually the mesoporosity (porous size 2 50 nm) are affected by the uniaxial compaction. In this case, a transformation of the shape of the macro-pores network from tube to crack was observed. On the other hand, the swelling potential and water content are governed by the relative humidity and by the nature of interlayer cation.

  8. X-ray Analyses of the Ribosomal A-Site Molecular Switches

    NASA Astrophysics Data System (ADS)

    Kondo, Jiro

    The aminoacyl-tRNA decoding site (A-site) on the small ribosomal subunit is an RNA molecular switch guaranteeing high translation fidelity. Due to the similarity of the secondary structure of the A-site, it has long been believed that the functional characteristics and tertiary structure of the A-site molecular switch are basically conserved in three main cell types, bacteria, mitochondria and eukaryotic cytoplasm. However, these three cell types are noticeably different in their biological properties such as life cycle, genome size, structural component of ribosome and number of tRNA species. In our structural studies, we have shown how a small difference of nucleotide sequences affects the dynamics of the A-site molecular switches underlying the decoding mechanism adapted to their biological properties and environments. The observed structural insights into the decoding process allowed us to understand molecular mechanisms of non-syndromic hearing loss and toxicity mechanism of aminoglycoside antibiotics.

  9. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  10. Alkali metal-cationized serine clusters studied by sonic spray ionization tandem mass spectrometry.

    PubMed

    Nanita, Sergio C; Sokol, Ewa; Cooks, R Graham

    2007-05-01

    Serine solutions containing salts of alkali metals yield magic number clusters of the type (Ser(4)+C)(+), (Ser(8)+C)(+), (Ser(12)+C)(+), and (Ser(17)+2C)(+2) (where C = Li(+), Na(+), K(+), Rb(+), or Cs(+)), in relative abundances which are strongly dependent on the cation size. Strong selectivity for homochirality is involved in the formation of serine tetramers cationized by K(+), Rb(+), and Cs(+). This is also the case for the octamers cationized by the smaller alkalis but there is a strong preference for heterochirality in the octamers cationized by the larger alkali cations. Tandem mass spectrometry shows that the octamers and dodecamers cationized by K(+), Rb(+), and Cs(+) dissociate mainly by the loss of Ser(4) units, suggesting that the neutral tetramers are the stable building blocks of the observed larger aggregates, (Ser(8)+C)(+) and (Ser(12)+C)(+). Remarkably, although the Ser(4) units are formed with a strong preference for homochirality, they aggregate further regardless of their handedness and, therefore, with a preference for the nominally racemic 4D:4L structure and an overall strong heterochiral preference. The octamers cationized by K(+), Rb(+), or Cs(+) therefore represent a new type of cluster ion that is homochiral in its internal subunits, which then assemble in a random fashion to form octamers. We tentatively interpret the homochirality of these tetramers as a consequence of assembly of the serine molecules around a central metal ion. The data provide additional evidence that the neutral serine octamer is homochiral and is readily cationized by smaller ions.

  11. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    PubMed

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed.

  12. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  13. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  14. INORGANIC CATIONS IN THE CELL NUCLEUS

    PubMed Central

    Tres, Laura L.; Kierszenbaum, A. L.; Tandler, C. J.

    1972-01-01

    Earlier reports indicated the presence of significant amounts of inorganic salts in the nucleus. In the present study the possibility that this might be related to the transcription process was tested on seminiferous epithelium of the adult mouse, using potassium pyroantimonate as a fixative. The results indicated that a correlation exists between the inorganic cations comprising the pyroantimonate-precipitable fraction and the RNA synthetic activity. During meiotic prophase an accumulation of cation-antimonate precipitates occurs dispersed through the middle pachytene nuclei, the stage in which RNA synthesis reaches a maximum. At other stages (zygotene to diplotene), where RNA synthesis falls to a low level, that pattern is not seen; cation-antimonate deposits are restricted to a few masses in areas apparently free of chromatin. The condensed sex chromosomes, the heterochromatin of the "basal knobs," the axial elements, and the synaptonemal complexes are devoid of antimonate deposits during the meiotic prophase. The Sertoli cells, active in RNA synthesis in both nucleoplasm and nucleolus, show cation-antimonate deposits at these sites. In the nucleoplasm some "patches" of precipitates appear coincident with clusters of interchromatin granules; in the nucleolus the inorganic cations are mainly located in the fibrillar and/or amorphous areas, whereas relatively few are shown by the granular component. The condensed chromatin bodies associated with the nucleolus were always free of antimonate precipitates. It is suggested that the observed sites of inorganic cation accumulation within the nucleus may at least partially indicate the presence of RNA polymerases, the activity of which is dependent on divalent cations. PMID:4112542

  15. Class Size.

    ERIC Educational Resources Information Center

    Underwood, Siobhan; Lumsden, Linda S.

    1994-01-01

    The items featured in this annotated bibliography touch on several aspects of the multifaceted class-size debate. Allen Odden reviews the literature and contends that class-size reduction should be used "sparingly and strategically." C. M. Achilles and colleagues examines two different class-size situations and find student test…

  16. Class Size.

    ERIC Educational Resources Information Center

    Varner, Sherrell E.

    Two basic reasons for concern over classroom size are the desire to optimize learning conditions and the tremendous impact of class size on school finances. The first reason of concern is not as well defined as the second. Rather than looking for the optimum figure, as has been done in the past, the question should read "Best classroom size for…

  17. Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics

    DOE PAGES

    Barnhill, William C.; Qu, Jun; Luo, Huimin; ...

    2014-11-17

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent moremore » on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.« less

  18. Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics

    SciTech Connect

    Barnhill, William C.; Qu, Jun; Luo, Huimin; Meyer III, Harry M.; Ma, Cheng; Chi, Miaofang; Papke, Brian L.

    2014-11-17

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent more on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.

  19. Free energy profiles of Al3+ and La3+ cation distribution in silica and soda silicate glasses

    SciTech Connect

    Corrales, Louis R.

    2005-03-01

    The factors that control the distribution of Al3+ and La3+ cations in silica and soda silicate glasses is examined by using molecular dynamics (MD) simulations. In particular, the response of the glass network to the presence of metal oxide is probed using liquid state theory that treats the glass network as a solvent and the metal cation as a solute. MD simulations are used to obtain the mean force of the solvent-solute and solute-solute interactions along a trajectory that is then used to obtain the potential of mean force. The resulting free energy is analyzed along the trajectory to determine the stable configurations of the cation pair. Details of determining the PMF for an Al cation pair in silica and silicate glass is presented. A comparison of these results with those previously calculated for a La cation pair in the same glass systems is given. The results reveal that there are distinct differences on how the network accommodates the two different size cations. It is found that the network wraps itself around the larger La cation very much like a solvent shell, whereas, the smaller Al cation is incorporated into the network backbone. In silica and soda silicate glasses clustering of the La ion pair to form La-O-La linkages is favored, in contrast, the glasses favor a separated state of the Al ion pair.

  20. Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics.

    PubMed

    Barnhill, William C; Qu, Jun; Luo, Huimin; Meyer, Harry M; Ma, Cheng; Chi, Miaofang; Papke, Brian L

    2014-12-24

    Our previous work suggested great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent more on molecular mass than on symmetry. While a larger cation size generally increases an IL's solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Results here provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.

  1. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    SciTech Connect

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds is studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.

  2. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  3. Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films.

    PubMed

    Baiutti, Federico; Gregori, Giuliano; Wang, Yi; Suyolcu, Y Eren; Cristiani, Georg; van Aken, Peter A; Maier, Joachim; Logvenov, Gennady

    2016-10-12

    The exploration of interface effects in complex oxide heterostructures has led to the discovery of novel intriguing phenomena in recent years and has opened the path toward the precise tuning of material properties at the nanoscale. One recent example is space-charge superconductivity. Among the complex range of effects which may arise from phase interaction, a crucial role is played by cationic intermixing, which defines the final chemical composition of the interface. In this work, we performed a systematic study on the local cationic redistribution of two-dimensionally doped lanthanum cuprate films grown by oxide molecular beam epitaxy, in which single LaO layers in the epitaxial crystal structure were substituted by layers of differently sized and charged dopants (Ca, Sr, Ba, and Dy). In such a model system, in which the dopant undergoes an asymmetric redistribution across the interface, the evolution of the cationic concentration profile can be effectively tracked by means of atomically resolved imaging and spectroscopic methods. This allowed for the investigation of the impact of the dopant chemistry (ionic size and charge) and of the growth conditions (temperature) on the final superconducting and structural properties. A qualitative model for interface cationic intermixing, based on thermodynamic considerations, is proposed. This work highlights the key role which cationic redistribution may have in the definition of the final interface properties and represents a further step forward the realization of heterostructures with improved quality.

  4. Cation effects in the oxidative coupling of methane on silica-supported binary alkali and alkaline earths

    SciTech Connect

    Voyatzis, R.; Moffat, J.B. )

    1993-07-01

    The oxidative coupling of methane has been investigated with a series of silica-supported binary oxide catalysts containing alkali or alkaline earths or combinations of the former and latter. The conversion of methane and the stability of the silica-supported binary alkali metal oxides were found to increase with decreasing cation mobility, while the selectivities and conversions observed with the binary alkaline earths increase with cation size. The selectivities and conversions of binary alkali/alkaline earths appear to depend upon the size of the alkali and alkaline earth cations, respectively. With small quantities of TCM (CCl[sub 4]) added continuously to the feedstream, catalysts containing small alkali and large alkaline earth cations produced the largest selectivities and conversions. 23 refs., 14 figs., 2 tabs.

  5. Subcellular Size

    PubMed Central

    Marshall, Wallace F.

    2015-01-01

    All of the same conceptual questions about size in organisms apply equally at the level of single cells. What determines the size, not only of the whole cell, but of all of its parts? What ensures that subcellular components are properly proportioned relative to the whole cell? How does alteration in organelle size affect biochemical function? Answering such fundamental questions requires us to understand how the size of individual organelles and other cellular structures is determined. Knowledge of organelle biogenesis and dynamics has advanced rapidly in recent years. Does this knowledge give us enough information to formulate reasonable models for organelle size control, or are we still missing something? PMID:25957302

  6. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications.

    PubMed

    Gui, Jing; Ji, Muwei; Liu, Jiajia; Xu, Meng; Zhang, Jiatao; Zhu, Hesun

    2015-03-16

    Phosphine-initiated cation exchange is a well-known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine-initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core-shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Using Ylide Functionalization to Stabilize Boron Cations

    PubMed Central

    Scherpf, Thorsten; Feichtner, Kai‐Stephan

    2017-01-01

    Abstract The metalated ylide YNa [Y=(Ph3PCSO2Tol)−] was employed as X,L‐donor ligand for the preparation of a series of boron cations. Treatment of the bis‐ylide functionalized borane Y2BH with different trityl salts or B(C6F5)3 for hydride abstraction readily results in the formation of the bis‐ylide functionalized boron cation [Y−B−Y]+ (2). The high donor capacity of the ylide ligands allowed the isolation of the cationic species and its characterization in solution as well as in solid state. DFT calculations demonstrate that the cation is efficiently stabilized through electrostatic effects as well as π‐donation from the ylide ligands, which results in its high stability. Despite the high stability of 2 [Y−B−Y]+ serves as viable source for the preparation of further borenium cations of type Y2B+←LB by addition of Lewis bases such as amines and amides. Primary and secondary amines react to tris(amino)boranes via N−H activation across the B−C bond. PMID:28185370

  8. Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities.

    PubMed

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-09-26

    Reverse Electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain - next to monovalent ions - also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities due to both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg2+ and Ca2+) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The newly developed multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  9. U/sub 3/O/sub 8/ powder from uranyl-loaded cation exchange resin

    SciTech Connect

    Mosley, W.C.

    1985-01-01

    U/sub 3/O/sub 8/ powder has been produced from uranyl-loaded cation exchange resin with density, particle size distribution, and grain size suitable for powder metallurgy fabrication of reactor fuel tubes with Al-U/sub 3/O/sub 8/ cores. Macroporous sulfonate resin in granular form is used in the process. Resin conversion techniques that were evaluated include batch, rotary, and fluidized bed calcination. 2 refs., 16 figs.

  10. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  11. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  12. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  13. Divalent cation signaling in immune cells

    PubMed Central

    Chaigne-Delalande, Benjamin

    2016-01-01

    Divalent cations of two alkaline earth metals Ca2+ and Mg2+ and the transition metal Zn2+ play vital roles in the immune system, and several immune disorders are associated with disturbances of their function. Until recently, only Ca2+ was considered to serve as a second messenger. However, signaling roles for Mg2+ and Zn2+ have been recently described, leading to a reevaluation of their role as potential second messengers. Here we review the roles of these cations as second messengers in light of recent advances in Ca2+, Mg2+ and Zn2+ signaling in the immune system. Developing a better understanding of these signaling cations may lead to new therapeutic strategies for immune disorders. PMID:24932518

  14. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  15. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    SciTech Connect

    Shirani, Hossein; Jameh-Bozorghi, Saeed; Yousefi, Ali

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  16. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids.

    PubMed

    Pouton, C W; Lucas, P; Thomas, B J; Uduehi, A N; Milroy, D A; Moss, S H

    1998-04-30

    DNA plasmids formed particulate complexes with a variety of cationic polyamino acids and cationic lipids, which were used to transfect mammalian cells in culture. Complexation was studied by assaying for exclusion of ethidium using a fluorometric assay, which indicated that complexation with cationic polyamino acids took place with utilisation of the majority of charged functional groups. The particle sizes and zeta potentials of a range of complexes were determined. Generally polyamino acids formed uniform particles 80-120 nm in diameter in water, but their particle size increased on dilution of the particles in electrolytes or cell culture media. The efficiency of transfection was compared using complexes of pRSVlacZ, a reporter construct which expressed beta-galactosidase under the control of the Rous sarcoma virus promoter. Positively charged DNA/polyamino acid complexes were taken up by cells but required an endosomolytic agent, such as chloroquine, to facilitate transfection. Polyornithine complexes resulted in the highest levels of expression, in comparison with other homopolyamino acids (polyornithine>poly-L-lysine=poly-D-lysine>polyarginine). Copolyamino acids of lysine and alanine condensed DNA but were less active in transfection experiments. Copoly(L-Lys, L-Ala 1:1) was inactive even in the presence of chloroquine. In contrast DNA/cationic lipid complexes transfected cells spontaneously, and chloroquine did not improve the extent of expression, rather it usually reduced efficiency. There was little correlation between comparative efficiencies of lipid complexes between cell lines suggesting that the nature of the cell membrane and differences in mechanisms of internalisation were determinants of efficiency. In an effort to explore better cell culture models for gene delivery, monolayers of Caco-2 cells were transfected in filter culture. As the cells differentiated and formed a polarized monolayer, expression of beta-galactosidase was reduced until at

  17. Metalated Nitriles: Cation-Controlled Cyclizations

    PubMed Central

    Fleming, Fraser F.; Wei, Yunjing; Liu, Wang; Zhang, Zhiyu

    2008-01-01

    Judicious choice of cation allows the selective cyclization of substituted γ-hydroxynitriles to trans- or cis-decalins and trans- or cis-bicyclo[5.4.0]-undecanes. The stereoselectivities are consistent with deprotonations generating two distinctly different metalated nitriles: an internally coordinated nitrile anion with BuLi, and a C-magnesiated nitrile with i-PrMgCl. Employing cations to control the geometry of metalated nitriles permits stereodivergent cyclizations with complete control over the stereochemistry of the quaternary, nitrile-bearing carbon. PMID:17579448

  18. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  19. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  20. Synthesis, DTPA coupling and radio labeling of cationic aminodextran

    SciTech Connect

    Subramanian, G.; McAfee, J.G.; Schneider, R.F.; Zapf-Longo, C.; Palladino, E.; Lyons, B.J.; Roskopf, M.

    1984-01-01

    In glomerular diseases, the normal anionic charge of the basement membrane is lost at an early stage. Glomerular damage in rats has been detected more readily with cationic dextrans than with inulin. Hence, the authors attempted to demonstrate this phenomenon in vivo in rats with labeled cationic dextran. Aminated Dextran (AMDEX) was prepared by treating Dextran(mol. wt approx. = 15k) with sodium methoxide followed by a bromethylamine HBr in DMSO resulting in 10-25 aminogroups per mole. DTPA cyclic dianhydride was coupled to AMDEX using a weight ratio of 1:10 in 0.2 - 1.0 ml 0.42 M Hepes buffer at pH 7.4. Free DTPA was removed by gel filtration (Sephadex P6DG) or by using Centricon-10 (AMICON) centrifugal microconcentrators. AMDEX coupled with DTPA was labeled with Indium-111 in 0.25 M acetate buffer. Labeling yields were >90% by gel chromatography and electrophoresis (pH8.2 Barbitol buffer). AMEXDTPA was labeled also by ligand exchange with Tc-99m-Sn-citrate at neutral pH with a labeling yield of 30%. On electrophoresis, all the labeled samples retained their cationic character. The distribution of purified In-111 AMDEX, was compared with simultaneously IV injected Tc-99m DTPA in rats. The 2 hour urinary excretion, and renal clearance (calculated from the biexponential plasma clearance) were slower (70 to 80%) than those of DTPA, due to the larger molecular size of AMDEX. By 1 hr., 5% of the administered activity was retained in each kidney, probably due to adherence to anionic binding sites.

  1. Effects of exchanged cation on the microporosity of montmorillonite

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Eberl, D.D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz- 1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and ??s-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K> Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 A??, the limiting molecular dimension of neo -hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 A?? determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 A?? determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  2. Reversible precipitation of casein micelles with a cationic hydroxyethylcellulose.

    PubMed

    Ausar, Salvador F; Bianco, Ismael D; Castagna, Leonardo F; Alasino, Roxana V; Narambuena, Claudio F; Leiva, Ezequiel P M; Beltramo, Dante M

    2005-11-16

    The cationic hydroxyethylcellulose Polyquaternium 10 (PQ10) was found to produce a dose-dependent destabilization of casein micelles from whole or skim milk without affecting the stability of most of the whey proteins. The anionic phosphate residues on caseins were not determinant in the observed interaction since the destabilization was also observed with dephosphorylated caseins to the same extent. However, the precipitation process was completely inhibited by rising NaCl concentration, indicating an important role of electrostatic interactions. Furthermore, the addition of 150 mM NaCl solubilized preformed PQ10-casein complexes, rendering a stable casein suspension without a disruption of the internal micellar structure as determined by dynamic light scattering. This casein preparation was found to contain most of the Ca2+ and only 10% of the lactose originally present in milk and remained as a stable suspension for at least 4 months at 4 degrees C. The final concentration of PQ10 determined both the size of the casein-polymer aggregates and the amount of milkfat that coprecipitates. The presence of PQ10 in the aggregates did not inhibit the activity of rennet or gastrointestinal proteases and lipases, nor did it affect the growth of several fermentative bacteria. The cationic cellulose PQ10 may cause a reversible electrostatic precipitation of casein micelles without disrupting their internal structure. The reversibility of the interaction described opens the possibility of using this cationic polysaccharide to concentrate and resuspend casein micelles from whole or skim milk in the production of new fiber-enriched lactose-reduced calcium-caseinate dairy products.

  3. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    PubMed

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  4. Study of cation distribution of spinel zinc nano-ferrite by X-ray

    NASA Astrophysics Data System (ADS)

    Najafi Birgani, Azadeh; Niyaifar, Mohammad; Hasanpour, Ahmad

    2015-01-01

    A set of zinc ferrite samples with ZnFe2O4 chemical composition were synthesized in 400, 500, and 1100 °C using conventional solid state synthesis method. The X-ray diffraction pattern of all the three samples was studied at room temperature. This diffraction pattern confirmed the existence of a single-phase cubic spinel structure with lattice parameters of 8.451, 8.448, and 8.437 Å, respectively. Oxygen position and cation distribution of the samples between the tetrahedral site, A and the octahedral site, B were examined using R-Factor method. The results showed that cation distribution of zinc ferrite samples changes from a normal spinel mode into a mixed spinel mode with the decrease of particle size. Moreover, the ratio of zinc divalent cations migrating from the tetrahedral site to the octahedral site was calculated.

  5. Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel.

    PubMed

    Gong, Renmin; Zhang, Xiaoping; Liu, Huijun; Sun, Yingzhi; Liu, Birong

    2007-04-01

    A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. Granules prepared from kohlrabi peel had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), neutral red (NR) and acridine orange (AO). The effects of various experimental parameters (e.g., dye concentration, particle size, initial pH, contact time and other factors) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 4, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of NR sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo-first-order rate kinetics. The results in this study indicated that kohlrabi peel was an attractive candidate for removing cationic dyes from the dye wastewater.

  6. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer.

    PubMed

    Wang, David S; Panje, Cedric; Pysz, Marybeth A; Paulmurugan, Ramasamy; Rosenberg, Jarrett; Gambhir, Sanjiv S; Schneider, Michel; Willmann, Jürgen K

    2012-09-01

    To test whether plasmid-binding cationic microbubbles (MBs) enhance ultrasound-mediated gene delivery efficiency relative to control neutral MBs in cell culture and in vivo tumors in mice. Animal studies were approved by the institutional animal care committee. Cationic and neutral MBs were characterized in terms of size, charge, circulation time, and DNA binding. Click beetle luciferase (CBLuc) reporter plasmids were mixed with cationic or neutral MBs. The ability of cationic MBs to protect bound plasmids from nuclease degradation was tested by means of a deoxyribonuclease (DNase) protection assay. Relative efficiencies of ultrasound-mediated transfection (ultrasound parameters: 1 MHz, 1 W/cm(2), 20% duty cycle, 1 minute) of CBLuc to endothelial cells by using cationic, neutral, or no MBs were compared in cell culture. Ultrasound-mediated gene delivery to mouse hind limb tumors was performed in vivo (n = 24) with insonation (1 MHz, 2 W/cm(2), 50% duty cycle, 5 minutes) after intravenous administration of CBLuc with cationic, neutral, or no MBs. Tumor luciferase activity was assessed by means of serial in vivo bioluminescence imaging and ex vivo analysis. Results were compared by using analysis of variance. Cationic MBs (+15.8 mV; DNA binding capacity, 0.03 pg per MB) partially protected bound DNA from DNase degradation. Mean CBLuc expression of treated endothelial cells in culture was 20-fold higher with cationic than with neutral MBs (219.0 relative light units [RLUs]/µg protein ± 92.5 [standard deviation] vs 10.9 RLUs/µg protein ± 2.7, P = .001) and was significantly higher (P < .001) than that in the no MB and no ultrasound control groups. Serial in vivo bioluminescence of mouse tumors was significantly higher with cationic than with neutral MBs ([5.9 ± 2.2] to [9.3 ± 5.2] vs [2.4 ± 0.8] to [2.9 ± 1.1] × 10(4) photons/sec/cm(2)/steradian, P < .0001) and versus no MB and no ultrasound controls (P < .0001). Results of ex vivo analysis confirmed these

  7. Cationic versus Neutral Microbubbles for Ultrasound-mediated Gene Delivery in Cancer

    PubMed Central

    Wang, David S.; Panje, Cedric; Pysz, Marybeth A.; Paulmurugan, Ramasamy; Rosenberg, Jarrett; Gambhir, Sanjiv S.; Schneider, Michel

    2012-01-01

    Purpose: To test whether plasmid-binding cationic microbubbles (MBs) enhance ultrasound-mediated gene delivery efficiency relative to control neutral MBs in cell culture and in vivo tumors in mice. Materials and Methods: Animal studies were approved by the institutional animal care committee. Cationic and neutral MBs were characterized in terms of size, charge, circulation time, and DNA binding. Click beetle luciferase (CBLuc) reporter plasmids were mixed with cationic or neutral MBs. The ability of cationic MBs to protect bound plasmids from nuclease degradation was tested by means of a deoxyribonuclease (DNase) protection assay. Relative efficiencies of ultrasound-mediated transfection (ultrasound parameters: 1 MHz, 1 W/cm2, 20% duty cycle, 1 minute) of CBLuc to endothelial cells by using cationic, neutral, or no MBs were compared in cell culture. Ultrasound-mediated gene delivery to mouse hind limb tumors was performed in vivo (n = 24) with insonation (1 MHz, 2 W/cm2, 50% duty cycle, 5 minutes) after intravenous administration of CBLuc with cationic, neutral, or no MBs. Tumor luciferase activity was assessed by means of serial in vivo bioluminescence imaging and ex vivo analysis. Results were compared by using analysis of variance. Results: Cationic MBs (+15.8 mV; DNA binding capacity, 0.03 pg per MB) partially protected bound DNA from DNase degradation. Mean CBLuc expression of treated endothelial cells in culture was 20-fold higher with cationic than with neutral MBs (219.0 relative light units [RLUs]/µg protein ± 92.5 [standard deviation] vs 10.9 RLUs/µg protein ± 2.7, P = .001) and was significantly higher (P < .001) than that in the no MB and no ultrasound control groups. Serial in vivo bioluminescence of mouse tumors was significantly higher with cationic than with neutral MBs ([5.9 ± 2.2] to [9.3 ± 5.2] vs [2.4 ± 0.8] to [2.9 ± 1.1] × 104 photons/sec/cm2/steradian, P < .0001) and versus no MB and no ultrasound controls (P < .0001). Results of ex

  8. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    SciTech Connect

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1996-12-31

    The problems associated with the disposal of toxic metals in an environmentally acceptable manner continues to plague industry. Such metals as nickel, vanadium, molybdenum, cobalt, iron, and antimony present physiological and ecological challenges that are best addressed through minimization of exposure and dispersion. A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  9. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

    PubMed Central

    Finnerty, Justin John

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  10. Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cation-π Interactions.

    PubMed

    Simó Padial, Joan; Poater, Jordi; Nguyen, D Thao; Tinnemans, Paul; Bickelhaupt, F Matthias; Mecinović, Jasmin

    2017-09-15

    Energetically favorable cation-π interactions play important roles in numerous molecular recognition processes in chemistry and biology. Herein, we present synergistic experimental and computational physical-organic chemistry studies on 2,6-diarylanilines that contain flanking meta/para-substituted aromatic rings adjacent to the central anilinium ion. A combination of measurements of pKa values, structural analyses of 2,6-diarylanilinium cations, and quantum chemical analyses based on the quantitative molecular orbital theory and a canonical energy decomposition analysis (EDA) scheme reveal that through-space cation-π interactions essentially contribute to observed trends in proton affinities and pKa values of 2,6-diarylanilines.

  11. Application of a site-binding, electrical, double-layer model to nuclear waste disposal

    SciTech Connect

    Relyea, J.F.; Silva, R.J.

    1981-09-01

    A site-binding, electrical, double-layer adsorption model has been applied to adsorption of Cs for both a montmorillonite clay and powdered SiO/sub 2/. Agreement between experimental and predicted results indicates that C/sub s//sup +/ is adsorbed by a simple cation-exchange mechanism. Further application of a combination equilibrium thermodynamic model and site-binding, electrical, double-layer adsorption model has been made to predict the behavior of U(VI) in solutions contacting either the montmorillonite clay or powdered SiO/sub 2/. Experimentally determined U solution concentrations have been used to select what is felt to be the best available thermodynamic data for U under oxidizing conditions. Given the existing information about the probable U solution species, it was possible to determine that UO/sub 2//sup +2/ is most likely adsorbed by cation-exchange at pH 5. At higher values (pH 7 and 9), it was shown that UO/sub 2/(OH)/sub 2//sup 0/ is probably the most strongly adsorbed U solution species. It was also found that high NaCl solution concentrations at higher pH values lowered U concentrations (either because of enhanced sorption or lowered solubility); however, the mechanism responsible for this behavior has not been determined.

  12. Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency

    USGS Publications Warehouse

    Burns, Douglas A.; Hooper, R.P.; McDonnell, Jeffery J.; Freer, J.E.; Kendall, C.; Beven, K.

    1998-01-01

    A 20-m-wide trench was excavated to bedrock on a hillslope at the Panola Mountain Research Watershed in the Piedmont region of Georgia to determine the effect of upslope drainage area from the soil and bedrock surfaces on the geochemical evolution of base cation concentrations in subsurface flow. Samples were collected from ten 2-m sections and five natural soil pipes during three winter rainstorms in 1996. Base cation concentrations in hillslope subsurface flow were generally highest early and late in the storm response when flow rates were low, but during peak flow, concentrations varied little. Base cation concentrations in matrix flow from the 10 trench sections were unrelated to the soil surface drainage area and weakly inversely related to the bedrock surface drainage area. Base cation concentrations in pipe flow were lower than those in matrix flow and were also consistent with the inverse relation to bedrock surface drainage area found in matrix flow. The left side of the trench, which has the highest bedrock surface drainage area, had consistently lower mean base cation concentrations than the right side of the trench, which has the lowest bedrock surface drainage area. During moderate size rain events of about 20-40 mm, subsurface flow occurred only on the left side of the trench. The greater volume of water that has flowed through the left side of the trench appears to have resulted in greater leaching of base cations from soils and therefore lower base cation concentrations in subsurface flow than in flow from the right side of the trench. Alternatively, a greater proportion of flow that bypasses the soil matrix may have occurred through the hillslope on the left side of the trench than on the right side. Flushing frequency links spatial hillslope water flux with the evolution of groundwater and soil chemistry.

  13. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  14. Process and apparatus for the production of Bi-213 cations

    SciTech Connect

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  15. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  16. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  17. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  18. ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS

    EPA Science Inventory

    The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

  19. ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS

    EPA Science Inventory

    The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

  20. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Pesticide Factsheets

    Toxicity data for the impact of nano-silver on anaerobic degradation.This dataset is associated with the following publication:Gitipour, A., S. Thiel, K. Scheckel, and T. Tolaymat. Anaerobic Toxicity of Cationic Silver Nanoparticles. D. Barcelo Culleres, and J. Gan SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 557: 363-368, (2016).

  1. Concave binding of cationic Li to quadrannulene.

    PubMed

    Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang; Nagase, Shigeru

    2017-08-09

    Binding of Li(+) to quadrannulene and its influence on buckybowl functionalization are introduced. The concave-trapped Li(+) acts as a Lewis acid and the rate of Diels-Alder cycloaddition is enhanced 10(8) times. A sandwiched bowl-Li(+)-bowl structure is stabilized via concave-cation-convex interactions, indicating the promoted role of Li(+) in buckybowl assembly.

  2. Hybrids of cationic porphyrins with nanocarbons.

    PubMed

    Girek, Beata; Sliwa, Wanda

    In the review hybrids of cationic porphyrins (i.e. porphyrins functionalized by quaternary pyridinium groups) with nanocarbons such as fullerenes, carbon nanotubes and graphene are described. Selected examples of these species are characterized in regard of their properties and possible applications.

  3. Viscoelastic cationic polymers containing the urethane linkage

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1972-01-01

    A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.

  4. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  5. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces.

    PubMed

    Schwierz, Nadine; Horinek, Dominik; Netz, Roland R

    2013-02-26

    Using a two-step modeling approach, we address the full spectrum of direct, reversed, and altered ionic sequences as the charge of the ion, the charge of the surface, and the surface polarity are varied. From solvent-explicit molecular dynamics simulations, we extract single-ion surface interaction potentials for halide and alkali ions at hydrophilic and hydrophobic surfaces. These are used within Poisson-Boltzmann theory to calculate ion density and electrostatic potential distributions at mixed polar/unpolar surfaces for varying surface charge. The resulting interfacial tension increments agree quantitatively with experimental data and capture the Hofmeister series, especially the anomaly of lithium, which is difficult to obtain using continuum theory. Phase diagrams that feature different Hofmeister series as a function of surface charge, salt concentration, and surface polarity are constructed from the long-range force between two surfaces interacting across electrolyte solutions. Large anions such as iodide have a high hydrophobic surface affinity and increase the effective charge magnitude on negatively charged unpolar surfaces. Large cations such as cesium also have a large hydrophobic surface affinity and thereby compensate an external negative charge surface charge most efficiently, which explains the well-known asymmetry between cations and anions. On the hydrophilic surface, the size-dependence of the ion surface affinity is reversed, explaining the Hofmeister series reversal when comparing hydrophobic with hydrophilic surfaces.

  6. Layered double hydroxides as anion- and cation-exchanging materials

    NASA Astrophysics Data System (ADS)

    Richardson, Mickey Charles

    2007-12-01

    Layered double hydroxides (LDH) have been principally known as anion-exchanging, clay-like materials for several decades, and continues to be the main driving force for current and future research. The chemical interactions of LDH, with transition metallocyanides, have been a popular topic of investigation for many years, partly due to the use of powder x-ray diffraction and infrared spectroscopy as the main characterization tools. Each transition metallocyanide has a characteristic infrared stretching frequency that can be easily observed, and their respective sizes can be observed while intercalated within the interlayer of the LDH. The ability of LDH to incorporate metal cations or any ions/molecules/complexes, that have a postive charge, have not been previously investigated, mainly due to the chemical and physical nature of LDH. The possibility of cationic incorporation with LDH would most likely occur by surface adsorption, lattice metal replacement, or by intercalation into the LDH interlayers. Although infrared spectroscopy finds it main use through the identification of the anions incorporated with LDH, it can also be used to study and identify the various active and inactive bending and stretching modes that the metal hydroxide layers have.

  7. Deposition of DNA rafts on cationic SAMs on silicon [100].

    PubMed

    Sarveswaran, Koshala; Hu, Wenchuang; Huber, Paul W; Bernstein, Gary H; Lieberman, Marya

    2006-12-19

    We demonstrate a guided self-assembly approach to the fabrication of DNA nanostructures on silicon substrates. DNA oligonucleotides self-assemble into "rafts" 8 x 37 x 2 nm in size. The rafts bind to cationic SAMs on silicon wafers. Electron-beam lithography of a thin poly(methyl methacrylate) (PMMA) resist layer was used to define trenches, and (3-aminopropyl)triethoxysilane (APTES), a cationic SAM precursor, was deposited from aqueous solution onto the exposed silicon dioxide at the trench bottoms. The remaining PMMA can be cleanly stripped off with dichloromethane, leaving APTES layers 0.7-1.2 nm in thickness and 110 nm in width. DNA rafts bind selectively to the resulting APTES stripes. The coverage of DNA rafts on adjacent areas of silicon dioxide is 20 times lower than on the APTES stripes. The topographic features of the rafts, measured by AFM, are identical to those of rafts deposited on wide-area SAMs. Binding to the APTES stripes appears to be very strong as indicated by "jamming" of the rafts at a saturation coverage of 42% and the stability to repeated AFM scanning in air.

  8. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sook; Lerch, Martin; Maier, Joachim

    2006-01-01

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500C in the vacancy range below 4 mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially.

  9. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    SciTech Connect

    Lee, Jong-Sook . E-mail: jong-sook.lee@fkf.mpg.de; Lerch, Martin; Maier, Joachim

    2006-01-15

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500{sup -}bar C in the vacancy range below 4mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially.

  10. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  11. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.

    PubMed

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-09

    Graphene oxide membranes-partially oxidized, stacked sheets of graphene-can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes-that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)-are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K(+), Na(+), Ca(2+), Li(+) or Mg(2+) ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe(2+), Co(2+), Cu(2+), Cd(2+), Cr(2+) and Pb(2+)) should have a much stronger cation-π interaction with the graphene sheet than Na(+) has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  12. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA.

    PubMed

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-05-21

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  13. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.

    PubMed

    Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias

    2014-02-18

    This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.

  14. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment.

    PubMed

    Syvänen, Stina; Edén, Desirée; Sehlin, Dag

    2017-11-04

    Antibodies and fragments thereof are, because of high selectivity for their targets, considered as potential therapeutics and biomarkers for several neurological disorders. However, due to their large molecular size, antibodies/fragments do not easily penetrate into the brain. The aim of the present study was to improve the brain distribution via adsorptive-mediated transcytosis of an amyloid-beta (Aβ) protofibril selective F(ab')2 fragment (F(ab')2-h158). F(ab')2-h158 was cationized to different extents and the specific and unspecific binding was studied in vitro. Next, cationized F(ab')2-h158 was labelled with iodine-125 and its brain distribution and pharmacokinetics was studied in mice. Cationization did not alter the in vitro affinity to Aβ protofibrils, but increased the unspecific binding somewhat. Ex vivo experiments revealed a doubling of brain concentrations compared with unmodified F(ab')2-h158 and in vivo imaging with single photon emission computed tomography (SPECT) showed that the cationized F(ab')2-h158, but not the unmodified F(ab')2-h158 could be visualized in the brain. To conclude, cationization is a means to increase brain concentrations of therapeutic antibodies or fragments and may facilitate the use of antibodies/fragments as imaging biomarkers in the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  16. Cationic β-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system.

    PubMed

    Junthip, Jatupol; Tabary, Nicolas; Leclercq, Laurent; Martel, Bernard

    2015-08-01

    A polyelectrolyte multilayer film (PEM) based on cationic and anionic β-cyclodextrin polyelectrolytes was coated onto a textile substrate for future drug delivery purposes. We firstly synthesized a novel cationic β-cyclodextrin polymer (polyEPG-CD) by crosslinking β-cyclodextrin (βCD) with epichlorohydrin (EP) under basic conditions, in the presence of glycidyltrimetrylammonium chloride (GTMAC) as cationizing group. The influence of preparation conditions has been investigated in order to preferably obtain a water soluble fraction whose charge density and molecular weights were optimal for the layer-by-layer (LbL) deposition process. The different cationic cyclodextrin polymers obtained were characterized by FTIR, NMR, colloidal titration, conductimetry, thermogravimetric analysis and size exclusion chromatography. Besides, the counterpart polyelectrolyte was a β-cyclodextrin polymer crosslinked with citric acid, polyCTR-CD, whose synthesis and characterization have been previously reported. Finally we realized the Layer by Layer (LbL) build-up of the PEM coating onto the textile support, using the dip coating method, by alternatively soaking it in cationic polyEPG-CD and anionic polyCTR-CD solutions. This multilayer self-assembly was monitored by SEM, gravimetry and OWLS in function of both polyelectrolytes concentrations and ratios. Solutions parameters such as pH, ionic strenght were also discussed.

  17. Cationic lipophosphoramidates containing a hydroxylated polar headgroup for improving gene delivery.

    PubMed

    Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-06-01

    The structure of the cationic moiety of amphiphiles is a key factor which directly influences their transfection efficacy. Accordingly, in the present work, we have synthesized three new lipophosphoramide-based amphiphilic compounds incorporating a methoxy 5, hydroxyl 6, or dihydroxyl 7 functional group in their cationic part. Gene delivery efficacies of these novel vectors were compared to our benchmark compound, the arsenolipophosphoramidate KLN47, and to its trimethylammonium (TMA) analogue 4. We next studied the characteristics (size, ζ potential) of the nanometric assemblies formed (liposomes and lipid/DNA complexes), and the DNA binding ability of the cationic liposomes was characterized at the physicochemical level. In vitro, all of the cationic lipids evaluated were efficient not only to condense plasmids but also to transfect two types of human airway epithelial cells. Interestingly, in vivo administration to mice (via simple tail vein injection) showed that compound 6 was the most efficient in transfecting the lungs when compared to that of the other cationic lipids studied, including compound KLN47. All of these results suggest that a hydroxyethyldimethylammonium (HE-DMA) polar head could be a valuable alternative to a trimethylarsonium (TMAs) polar head and that they also invite further evaluation of the in vivo potential of compound 6 using more clinically relevant delivery procedures.

  18. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Donghua; Sun, Xiaoli; Liu, Chunxi; Liu, Yongjun; Zhang, Na

    2011-06-01

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  19. DFT and MP2 study of the interaction between corannulene and alkali cations.

    PubMed

    Rellán-Piñeiro, Marcos; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M; Josa, Daniela

    2013-05-01

    Corannulene is an unsaturated hydrocarbon composed of fused rings, with one central five-membered ring and five peripheral six-membered rings. Its structure can be considered as a portion of C60. Corannulene is a curved π surface, but unlike C60, it has two accessible different faces: one concave (inside) and one convex (outside). In this work, computational modeling of the binding between alkali metal cations (Li(+), Na(+), and K(+)) and corannulene has been performed at the DFT and MP2 levels. Different corannulene···M(+) complexes have been studied and the transition states interconnecting local minima were located. The alkali cations can be bound to a five or six membered ring in both faces. At the DFT level, binding to the convex face (outside) is favored relative to the concave face for the three alkali cations studied, as it was previously published. This out preference was found to decrease as cation size increases. At the MP2 level, although a similar trend is found, some different conclusions related to the in/out preference were obtained. According to our results, migration of cations can take place on the convex or on the concave face. Also, there are two ways to transform a concave complex in a convex complex: migration across the edge of corannulene and bowl-to-bowl inversion.

  20. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    PubMed

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pressure-induced cation-cation bonding in V2O3

    DOE PAGES

    Bai, Ligang; Li, Quan; Corr, Serena A.; ...

    2015-10-09

    A pressure-induced phase transition, associated with the formation of cation-cation bonding, occurs in V2O3 by combining synchroton x-ray diffraction in a diamond anvil cell and ab initio evolutionary calculations. The high-pressure phase has a monoclinic structure with a C2/c space group, and it is both energetically and dynamically stable at pressures above 47 GPa to at least 105 GPa. this phase transition can be viewed as a two-dimensional Peierls-like distortion, where the cation-cation dimer chains are connected along the c axis of the monoclinic cell. In conclusion, this finding provides insights into the interplay of electron correlation and lattice distortionmore » in V2O3, and it may also help to understand novel properties of other early transition-metal oxides.« less

  2. Mixed-valent neptunium(IV/V) compound with cation-cation-bound six-membered neptunyl rings.

    PubMed

    Jin, Geng Bang

    2013-11-04

    A new mixed-valent neptunium(IV/V) compound has been synthesized by evaporation of a neptunium(V) acidic solution. The structure of the compound features cation-cation-bound six-membered neptunyl(V) rings. These rings are further connected by Np(IV) ions through cation-cation interactions (CCIs) into a three-dimensional neptunium cationic open framework. This example illustrates the possibility of isolating neptunyl(V) CCI oligomers in inorganic systems using other cations to compete with Np(V) in bonding with the neptunyl oxygen.

  3. Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins.

    PubMed

    Jadbabaei, Nastaran; Zhang, Huichun

    2014-12-16

    Understanding the sorption mechanism of organic contaminants on cation exchange resins (CXRs) will enable application of these resins for the removal of cationic organic compounds from contaminated water. In this study, sorption of a diverse set of 12 organic cations and 8 neutral aromatic solutes on two polystyrene CXRs, MN500 and Amberlite 200, was examined. MN500 showed higher sorbed concentrations due to its microporous structure. The sorbed concentrations followed the same trend of aromatic cations > aliphatic cations > neutral solutes for both resins. Generally, solute-solvent interactions, nonpolar moiety of the solutes, and resin matrix can affect selectivity of the cations. Sorbed concentrations of the neutral compounds were significantly less than those of the cations, indicating a combined effect of electrostatic and nonelectrostatic interactions. By conducting multiple linear regression between Gibbs free energy of sorption and Abraham descriptors for all 20 compounds, polarity/polarizability (S), H-bond acidity (A), induced dipole (E), and electrostatic (J(+)) interactions were found to be involved in the sorption of the cations by the resins. After converting the aqueous sorption isotherms to sorption from the ideal gas-phase by water-wet resins, a more significant effect of J(+) was observed. Predictive models were then developed based on the linear regressions and validated by accurately estimating the sorption of different test set compounds with a root-mean-square error range of 0.91-1.1 and 0.76-0.85 for MN500 and Amberlite 200, respectively. The models also accurately predicted sorption behavior of aniline and imidazole between pH 3 and 10.

  4. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy.

    PubMed

    Zhang, Ran; Wang, Shi-Bin; Chen, Ai-Zheng; Chen, Wei-Guang; Liu, Yuan-Gang; Wu, Wen-Guo; Kang, Yong-Qiang; Ye, Shi-Fu

    2015-09-01

    Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs. © The Author(s) 2015.

  5. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    NASA Astrophysics Data System (ADS)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  6. Improving the alkaline stability of imidazolium cations by substitution.

    PubMed

    Dong, Huilong; Gu, Fenglou; Li, Min; Lin, Bencai; Si, Zhihong; Hou, Tingjun; Yan, Feng; Lee, Shuit-Tong; Li, Youyong

    2014-10-06

    Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.

  7. Preparation and swelling inhibition of cation glucoside to montmorillonite

    NASA Astrophysics Data System (ADS)

    Song, Shaofu; Liu, Jurong; Guo, Gang; Huang, Lei; Qu, Chentun; Li, Bianqin; Chen, Gang

    2017-06-01

    In this work, a cation glucoside (CG) was synthesized with glucose and glycidyl trimethyl ammonium chloride (GTA) and used as montmorillonite (MMT) swelling inhibiter. The inhibition of CG was investigated by MMT linear expansion test and mud ball immersing test. The results showed that the CG has a good inhibition to the hydration swelling and dispersion of MMT. Under the same condition, the linear expansion rate of MMT in CG solution is much lower that of methylglucoside and the hydration expansion degree of the mud ball in the CG solution was significantly inhibited. The characterizations of physic-chemical properties of particle, analysized by thermogravimetric analysis and scanning electron microscopy, revealed that CG play great role to prevent water from absorb and keep MMT in large particle size.

  8. Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants

    PubMed Central

    Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong

    2014-01-01

    The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394

  9. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    NASA Astrophysics Data System (ADS)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  10. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection

    PubMed Central

    Kim, Sung Rae; Ho, Myoung Jin; Kim, Sang Hyun; Cho, Ha Ra; Kim, Han Sol; Choi, Yong Seok; Choi, Young Wook; Kang, Myung Joo

    2016-01-01

    Piroxicam (PRX), a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP) was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA) injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA) in the synovial cavity. PRX-loaded NPs consisting of poly(lactic-co-glycolic acid), Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w) of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 μm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration–time curve (AUC0–24 h) and maximum plasma concentration (Cmax) of PRX after IA injection of the cationic NPs were <70% (P<0.05) and 60% (P<0.05), respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold (P<0.05) and 1.8-fold (P<0.05) higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint. PMID:27895468

  11. Sequestration of organic cations by acidified hepatic endocytic vesicles and implications for biliary excretion.

    PubMed

    Van Dyke, R W; Faber, E D; Meijer, D K

    1992-04-01

    these drugs, accomplished through partial vesicle alkalization by primaquin, decreased excretion of TC, vecuronium and TBuMA, perhaps reflecting the small functional size of the displaceable organellar drug compartment and/or competition between primaquin and the organic cations for membrane transport processes.

  12. Zener Polarons Ordering Variants Induced by A-Site Ordering in Half-Doped Manganites

    NASA Astrophysics Data System (ADS)

    Daoud-Aladine, Aziz

    2006-03-01

    Zener Polaron (ZP) ordering [1] provides a still polemic [2] and elusive interpretation of the charge ordering (CO) phenomenon in A site disordered half doped (A1/2Ca1/2) MnO3, which is classically pictured by the Goodenough model (GM) of Mn^3+ and Mn^4+ CO [3,4]. ZP ordering considers instead the ordering of pre-formed ferromagnetic Mn pairs sharing an charge and keeping Mn in a Mn^+3.5 valence state. The recently synthesized A site cation ordered ABaMn2O6 were shown to not present the generic magnetic CE state found of (A1/2Ca1/2)MnO3 [5]. We present our magnetic structure determination of YBaMn2O6: the non- collinear magnetic order obtained unexpectedly reveals ferromagnetic plaquettes of four Mn attributable to larger 4-Mn ZPs, whose presence additionally fits very well the effective paramagnetic moments inferred from susceptibility measurements. The results unambiguously reveal the possible existence of ZP ordering variant in charge ordered manganites. [1] A. Daoud-Aladine et al., Phys. Rev. Lett. 89, 097205 (2002) [2] S. Grenier et al., Phys. Rev. B 69, 134419 (2004) [3] J. B. Goodenough, Phys. Rev. 100, 564 (1955) [4] P.G. Radaelli et al., Phys. Rev. B, 55, 3015 (1997) [5] T. Arima et al., Phys. Rev. B 66, 140408 (2002)

  13. Mechanism of metal cationization in organic SIMS

    NASA Astrophysics Data System (ADS)

    Wojciechowski, I.; Delcorte, A.; Gonze, X.; Bertrand, P.

    2001-09-01

    A mechanism for metal cationization of phenyl group containing hydrocarbons is discussed. Intact molecules and their fragments are emitted from a thin organic layer covering a metal surface bombarded by fast ions. It is shown that the process of associative ionization of a neutral hydrocarbon molecule and a neutral excited metal atom, occurring above the surface, may contribute to the yield of cationized molecules. To demonstrate this we have calculated the potential energy curves for the model system C 6H 6+Me (Me=Ag, Cu, Au) making use of the density functional theory. The initial states of the metal atoms approaching the benzene ring along the C 6 symmetry axis were set as the ground, ionic, and excited in ( n-1)d 9ns 2 electronic configuration.

  14. Expanding the Palette of Phenanthridinium Cations

    PubMed Central

    Cairns, Andrew G; Senn, Hans Martin; Murphy, Michael P; Hartley, Richard C

    2014-01-01

    5,6-Disubstituted phenanthridinium cations have a range of redox, fluorescence and biological properties. Some properties rely on phenanthridiniums intercalating into DNA, but the use of these cations as exomarkers for the reactive oxygen species (ROS), superoxide, and as inhibitors of acetylcholine esterase (AChE) do not require intercalation. A versatile modular synthesis of 5,6-disubstituted phenanthridiniums that introduces diversity by Suzuki–Miyaura coupling, imine formation and microwave-assisted cyclisation is presented. Computational modelling at the density functional theory (DFT) level reveals that the novel displacement of the aryl halide by an acyclic N-alkylimine proceeds by an SNAr mechanism rather than electrocyclisation. It is found that the displacement of halide is concerted and there is no stable Meisenheimer intermediate, provided the calculations consistently use a polarisable solvent model and a diffuse basis set. PMID:24677631

  15. Cation channels in the Arabidopsis plasma membrane.

    PubMed

    Véry, Anne Aliénor; Sentenac, Hervé

    2002-04-01

    In vivo analyses have identified different functional types of ion channels in various plant tissues and cells. The Arabidopsis genome contains approximately 70 genes for ion channels, of which 57 might be cation-selective channels (K(+), Ca(2+) or poorly discriminating channels). Here, we describe the different families of (putative) cation channels: the Shakers, the two-P-domain and Kir K(+) channels (encoded by the KCO genes), the cyclic-nucleotide-gated channels, the glutamate receptors, and the Ca(2+) channel TPC1. We also compare molecular data with the data obtained in planta, which should lead to a better understanding of the identity of these channels and provide clues about their roles in plant nutrition and cell signalling.

  16. Electronic spectrum of 9-methylanthracenium radical cation

    NASA Astrophysics Data System (ADS)

    O'Connor, Gerard D.; Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J.; Schmidt, Timothy W.

    2016-04-01

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm-1 to 44 500 cm-1. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D1←D0 transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH2 or CH3. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  17. [PAH Cations as Viable Carriers of DIBs

    NASA Technical Reports Server (NTRS)

    Snow, Ted

    1998-01-01

    This report is intended to fill in the blanks in NASA's file system for our lab astro study of molecular ions of astrophysical interest. In order to give NASA what it needs for its files, I attach below the text of the section from our recent proposal to continue this work, in which we describe progress to date, including a large number of publications. Our initial studies were focused on PAH cations, which appear to be viable candidates as the carriers of the DIBs, an idea that has been supported by laboratory spectroscopy of PAH cations in inert matrices. Beginning with the simplest aromatic (benzene; C6H6) and moving progressively to larger species (naphthalene, C10OH8; pyrene, C16H10; and most recently chrysene, C18H12), we have been able to derive rate coefficients for reactions with neutral spices that are abundant in the diffuse interstellar medium.

  18. Planar Chiral, Ferrocene-Stabilized Silicon Cations.

    PubMed

    Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin

    2016-04-04

    The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29)Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3))-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen.

  19. Sustainable Sizing.

    PubMed

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  20. Interaction between silica and hydrophobic cations.

    PubMed Central

    Depasse, J

    1978-01-01

    The interactions between silica and some molecules which have a high affinity for its surface have been studied. The hydrophobic properties and the positive charge of these molecules are likely to be responsible for their strong adsorption on to silica. These observations should be useful in research into new inhibitors of the effects of silica. One of the cations tested, chloroquine, has been shown to be an effective inhibitor of the haemolytic activity of quartz. PMID:204326

  1. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  2. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  3. Low cation coordination in oxide melts

    SciTech Connect

    Skinner, Lawrie; Benmore, Chris J; Du, Jincheng; Weber, Richard; Neuefeind, Joerg C; Tumber, Sonia; Parise, John B

    2014-01-01

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  4. Gravity-flow open tubular cation chromatography.

    PubMed

    Kubán, Petr; Pelcová, Pavlína; Kubán, Vlastimil; Klakurková, Lenka; Dasgupta, Purnendu K

    2008-08-01

    We describe ion chromatography (IC) on open tubular cation exchange columns with a controllable capacity multilayered stationary phase architecture. The columns of relatively large bore (75 microm id) are fabricated by coating fused-silica capillaries with multiple layers of poly(butadiene-maleic acid) (PBMA) copolymer and crosslinking the deposited layers by thermally initiated radical polymerisation. Column capacity increases in a predictable manner with increase in the number of successively coated layers. Gravity flow with a modest head (< 2 m) can provide the desired separations within a reasonable period. We provide a minimalist configuration where no suppression is used, the sample is injected hydrodynamically as in CE, and detection is accomplished by an inexpensive homebuilt contactless conductivity detector or a capacitance to voltage digital converter. A 1 m long 75 microm bore column coated with two layers of PBMA allows gravity-flow open tubular IC to separate four alkali cations in < 10 min with a 1 mM tartaric acid (TA) eluent. Simultaneous separation of alkali and alkaline earth metal cations can be accomplished in less than 25 min using 1.75 mM pyridinedicarboxylic acid as an eluent. Contactless conductometric detection (C(4)D) allows LODs down to 150 nmol/L, corresponding to 30 fmol injections. Analysis of real water samples is demonstrated.

  5. Controlling chemistry with cations: photochemistry within zeolites.

    PubMed

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  6. Cross-linked cationic diblock copolymer worms are superflocculants for micrometer-sized silica particles† †Electronic supplementary information (ESI) available: Macro-CTAs and the worm cross-linking chemistry; suggested mechanism for the break-up of linear worms; UV-visible spectroscopy data and assigned 1H NMR spectrum for the PEO113 macro-CTA; THF and aqueous GPC data for PEO113 and PQDMA120 macro-CTAs; kinetic data for the aqueous solution polymerization of QDMA monomer; assigned 1H NMR for PQDMA125 macro-CTA; additional TEM images and further laser diffraction traces; DLS particle size distributions; tabulated data for linear and cross-linked cationic worms diluted at pH 9 using either water or methanol; full experimental section. See DOI: 10.1039/c6sc03732a Click here for additional data file.

    PubMed Central

    Ning, Yin; Verstraete, Pierre; Smets, Johan

    2016-01-01

    A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) via reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO113, M n = 4400 g mol–1; M w/M n = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA125, M n = 31 800 g mol–1, M w/M n = 1.19). A detailed phase diagram was constructed to determine the maximum amount of PQDMA125 stabilizer block that could be incorporated while still allowing access to a pure worm copolymer morphology. Aqueous electrophoresis studies indicated that zeta potentials of +35 mV could be achieved for such cationic worms over a wide pH range. Core cross-linked worms were prepared via statistical copolymerization of glycidyl methacrylate (GlyMA) with HPMA using a slightly modified PISA formulation, followed by reacting the epoxy groups of the GlyMA residues located within the worm cores with 3-aminopropyl triethoxysilane (APTES), and concomitant hydrolysis/condensation of the pendent silanol groups with the secondary alcohol on the HPMA residues. TEM and DLS studies confirmed that such core cross-linked cationic worms remained colloidally stable when challenged with either excess methanol or a cationic surfactant. These cross-linked cationic worms are shown to be much more effective bridging flocculants for 1.0 μm silica particles at pH 9 than the corresponding linear cationic worms (and also various commercial high molecular weight water-soluble polymers.). Laser diffraction studies indicated silica aggregates of around 25–28 μm diameter when using the former worms but only 3–5 μm diameter when employing the latter worms. Moreover, SEM studies confirmed that the cross-linked worms remained intact after their adsorption onto the silica particles, whereas the

  7. Cation uptake and allocation by red pine seedlings under cation-nutrient stress in a column growth experiment

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Plant nutrient uptake is affected by environmental stress, but how plants respond to cation nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system. Methods: Column experim...

  8. Exploring Size.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  9. Exploring Size.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  10. Portion size

    MedlinePlus

    ... a woman's fist or a baseball One medium apple or orange is a tennis ball One-quarter cup (35 grams) of dried fruit or nuts is a golf ball or small handful One cup (30 grams) of lettuce is four leaves (Romaine lettuce) One medium baked potato is a computer mouse To control your portion sizes when you ...

  11. [Sorption properties of carboxyl cation exchangers with a bacteriostatic effect].

    PubMed

    Ezhova, N M; Zaikina, N A; Shataeva, L K; Dubinina, N I; Ovechkina, T P; Kopylova, J V

    1980-01-01

    Sorption properties of new carboxyl cation exchangers containing components of salicylic acid (CST and CMTS) and benzoic acid (CBT and CMTB) were examined with respect to large organic ions. Such cation exchangers were shown to have greater permeability for high molecular weight proteins that sorbents of the Biocarb type. Bacteriostatic properties of the above cation exchangers were studied. With an increase in the content of the bactericidal component the bacteriostatic effect of the cation exchangers on Escherichia coli and Staphylococcus aureus enhanced. The cation exchangers CST and CMTS showed a greater bacteriostatic effect than those CBT and CMTB.

  12. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  13. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.

    PubMed

    Rivest, Jessy B; Jain, Prashant K

    2013-01-07

    Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II-VI, IV-VI, and III-V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes

  14. Cell volume-regulated cation channels.

    PubMed

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  15. Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica.

    PubMed

    Zhou, Qiong; Somasundaran, P

    2009-03-15

    Adsorption behavior of cationic C(12)-C(4)-C(12) gemini surfactant on silica has been investigated, along with that of nonionic surfactant n-dodecyl-beta-D-maltoside (DM). While DM alone shows meager adsorption on silica, because of the lack of any electrostatic adsorption, cationic gemini adsorbs significantly on the oppositely charged silica surface. Due to the electrostatic nature of cationic gemini adsorption on silica, solution pH affects adsorption of C(12)-C(4)-C(12) gemini dramatically. Meanwhile, C(12)-C(4)-C(12) gemini hemimicelle size at silica/water interface does not seem to change with solution pH. For the mixtures of DM and cationic C(12)-C(4)-C(12) gemini, there is a sharp increase of DM adsorption at silica/water interface, up to 100 times more than DM alone. After mixing with DM, saturation adsorption of cationic C(12)-C(4)-C(12) gemini decreases, due to competition for adsorption sites from DM. At the same time, in its mixture with DM, there is an increased adsorption of C(12)-C(4)-C(12) gemini in the rising part of the adsorption isotherm. Hydrophobic chain-chain interactions, especially with two hydrophobic chains in one C(12)-C(4)-C(12) gemini molecule, and adsorbed C(12)-C(4)-C(12) gemini molecule acting as an anchor or nucleation sites for forming mixed aggregates with DM on silica surface, are attributed to the marked adsorption synergy between DM and cationic C(12)-C(4)-C(12) gemini. The adsorption of surfactants and their mixtures has a marked effect on silica surface charge and silica's wettability.

  16. Cell compatible arginine containing cationic polymer: one-pot synthesis and preliminary biological assessment.

    PubMed

    Zavradashvili, Nino; Memanishvili, Tamar; Kupatadze, Nino; Baldi, Lucia; Shen, Xiao; Tugushi, David; Wandrey, Christine; Katsarava, Ramaz

    2014-01-01

    Synthetic cationic polymers are of interest as both nonviral vectors for intracellular gene delivery and antimicrobial agents. For both applications synthetic polymers containing guanidine groups are of special interest since such kind of organic compounds/polymers show a high transfection potential along with antibacterial activity. It is important that the delocalization of the positive charge of the cationic group in guanidine significantly decreases the toxicity compared to the ammonium functionality. One of the most convenient ways for incorporating guanidine groups is the synthesis of polymers composed of the amino acid arginine (Arg) via either application of Arg-based monomers or chemical modification of polymers with derivatives of Arg. It is also important to have biodegradable cationic polymers that will be cleared from the body after their function as transfection or antimicrobial agent is fulfilled. This chapter deals with a two-step/one-pot synthesis of a new biodegradable cationic polymer-poly(ethylene malamide) containing L-arginine methyl ester covalently attached to the macrochains in β-position of the malamide residue via the α-amino group. The goal cationic polymer was synthesized by in situ interaction of arginine methyl ester dihydrochloride with intermediary poly(ethylene epoxy succinimide) formed by polycondensation of di-p-nitrophenyl-trans-epoxy succinate with ethylenediamine. The cell compatibility study with Chinese hamster ovary (CHO) and insect Schneider 2 cells (S2) within the concentration range of 0.02-500 mg/mL revealed that the new polymer is not cytotoxic. It formed nanocomplexes with pDNA (120-180 nm in size) at low polymer/DNA weight ratios (WR = 5-10). A preliminarily transfection efficiency of the Arg-containing new cationic polymer was assessed using CHO, S2, H5, and Sf9 cells.

  17. Hydrophilic monolayer formation of adsorbed cationic starch and cationic hydroxyethyl cellulose derivatives on polyester surfaces.

    PubMed

    Roos, Peter; Westling, Asa; Chronakis, Ioannis S

    2004-11-01

    Cationic starch, cationic cellulose derivatives, and hydrophobically modified cationic cellulose were physically adsorbed from aqueous solution onto oppositely charged hydrophobic polyester (poly(ethylene terephthalate)) fabric and nonwoven, and this resulted in hydrophilic surface properties. Surface coverage of the polysaccharides occurred primarily by strong electrostatic interactions, and the surface characteristics were evaluated by measuring the time required for a water droplet to be absorbed into the polyester material as well as by electron spectroscopy for chemical analysis (ESCA). From a comparison of the adsorption characteristics we assess the polysaccharide-dependent and substrate-dependent adsorption behavior and discuss the similarities and differences in the hydrophilic properties and wettability observed. In particular, the temperature of the cationic polysaccharide solutions in which the substrate was immersed, the configuration of the polymer in solution, and the presence of hydrophobic substituents on the cationic moiety have a considerable effect on the polysaccharide affinity and its adsorption on the surface, irrespective of the substrate type (fabric or nonwoven). We also evaluate the relative contribution of the polyelectrolyte molecular weight, concentration in solution, and degree of charge density along the polymer chain which determine the range of interactions and alter surface hydroplilicity dependent on the type of substrate.

  18. The effect of cationic polymer treatment on adhesion of iron oxide to eyelashes.

    PubMed

    Ko, S; Roh, Y H; Choo, J H; Jang, S H; Han, S H; Jang, H G

    2009-01-01

    The aim of this study was to investigate the effect of iron oxide application on improving the volume of eyelashes. Iron oxide, having a negative surface charge in its natural form, was coated with commercial cationic polymers to increase its adhesion. The iron oxides coated with different types and concentrations of these polymers were incorporated into a basic mascara formula to test their volume effects by means of the weight difference of eyelashes.The results indicated that the type and concentration of coating materials affect the surface zeta potential and particle cluster size of iron oxides. The type of cationic polymer, especially, was shown to modify both factors of iron oxide. The obtained results also suggested that the volume effect of mascara increases with a higher positive surface zeta potential and a smaller particle cluster size of the coated iron oxides.

  19. The effect of cationic starch on hemoglobin, and the primary attempt to encapsulate hemoglobin.

    PubMed

    Gao, Wei; Sha, Baoyong; Liu, Yongchun; Wu, Daocheng; Shen, Xin; Jing, Guixia

    2015-06-01

    Though starch has been a common material used for drug delivery, it has not been used as an encapsulation material for hemoglobin-based oxygen carriers. In this study, cationic amylose (CA) was synthesized by an etherification reaction. The interaction behaviors between CA and hemoglobin (Hb) were measured by zeta potential, size, and UV-Vis absorption spectra at different pH values. Cationic starch encapsulated Hb by electrostatic adhesion, reverse micelles, and cross-linking, and showed a core shell structure with a size of around 100 nm, when measured immediately after dispersing in PBS solution. However, we found that it was prone to swell, aggregate, and leak Hb with a longer duration of dispersal in PBS.

  20. Effect of variations in annealing temperature and metallic cations on nanostructured molybdate thin films.

    PubMed

    Marques, Anapauladeazevedo; Leite, Edsonroberto; Varela, Joséarana; Longo, Elson

    2008-04-29

    Crystalline molybdate thin films were prepared by the complex polymerization method. The AMoO4(A = Ca, Sr, Ba) films were deposited onto Si wafers by the spinning technique. The Mo-O bond in the AMoO4structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A2+cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material's morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba) and in the thermal treatment.

  1. Effect of Variations in Annealing Temperature and Metallic Cations on Nanostructured Molybdate Thin Films

    NASA Astrophysics Data System (ADS)

    Marques, Ana Paula De Azevedo; Leite, Edson Roberto; Varela, José Arana; Longo, Elson

    2008-04-01

    Crystalline molybdate thin films were prepared by the complex polymerization method. The AMoO4 (A = Ca, Sr, Ba) films were deposited onto Si wafers by the spinning technique. The Mo O bond in the AMoO4 structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A2+ cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material’s morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba) and in the thermal treatment.

  2. Effect of Variations in Annealing Temperature and Metallic Cations on Nanostructured Molybdate Thin Films

    PubMed Central

    2008-01-01

    Crystalline molybdate thin films were prepared by the complex polymerization method. The AMoO4(A = Ca, Sr, Ba) films were deposited onto Si wafers by the spinning technique. The Mo–O bond in the AMoO4structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A2+cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material’s morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba) and in the thermal treatment. PMID:21777487

  3. Comparative analysis of cation/proton antiporter superfamily in plants

    SciTech Connect

    Ye, Chuyu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-01-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant specieswas reported.We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiospermspecies. Sliding windowanalysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and foundmostmotifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.

  4. Molecular connectivity indices for modeling the critical micelle concentration of cationic (chloride) Gemini surfactants.

    PubMed

    Mozrzymas, Anna

    2017-01-01

    The molecular connectivity indices were used to derive the simple model relating the critical micelle concentration of cationic (chloride) gemini surfactants to their structure. One index was selected as the best to describe the effect of the structure of investigated compounds on critical micelle concentration consistent with the experimental results. This index encodes the information about molecular size, the branches, and also the information about heteroatoms. The selected model can be helpful in designing novel chloride gemini surfactants.

  5. Superamphiphilic nanocontainers based on the resorcinarene - Cationic surfactant system: Synergetic self-assembling behavior

    NASA Astrophysics Data System (ADS)

    Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.

    2016-05-01

    Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.

  6. Alkylimidazolium based ionic liquids: impact of cation symmetry on their nanoscale structural organization.

    PubMed

    Rocha, Marisa A A; Neves, Catarina M S S; Freire, Mara G; Russina, Olga; Triolo, Alessandro; Coutinho, João A P; Santos, Luís M N B F

    2013-09-19

    Aiming at evaluating the impact of the cation symmetry on the nanostructuration of ionic liquids (ILs), in this work, densities and viscosities as a function of temperature and small-wide angle X-ray scattering (SWAXS) patterns at ambient conditions were determined and analyzed for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (asymmetric) and 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide (symmetric) series of ionic liquids. The symmetric IL series, [CN/2CN/2im][NTf2], presents lower viscosities than the asymmetric [CN-1C1im][NTf2] counterparts. For ionic liquids from [C1C1im][NTf2] to [C6C6im][NTf2], an odd-even effect in the viscosity along the cation alkyl side chain length was observed, in contrast with a linear increase found for the ones ranging between [C6C6im][NTf2] and [C10C10im][NTf2]. The analysis of the viscosity data along the alkyl side chain length reveals a trend shift that occurs at [C6C1im][NTf2] for the asymmetric series and at [C6C6im][NTf2] for the symmetric series. These results are further supported by SWAXS measurements at ambient conditions. The gathered data indicate that both asymmetric and symmetric members are characterized by the occurrence of a distinct degree of mesoscopic structural organization above a given threshold in the side alkyl chain length, regardless the cation symmetry. The data also highlight a difference in the alkyl chain dependence of the mesoscopic cluster sizes for symmetric and asymmetric cations, reflecting a different degree of interdigitation of the aliphatic tails in the two families. The trend shift found in this work is related to the structural segregation in the liquid after a critical alkyl length size (CALS) is attained and has particular relevance in the cation structural isomerism with higher symmetry.

  7. Cation–cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    SciTech Connect

    Balboni, Enrica; Burns, Peter C.

    2014-05-01

    The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are a framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal

  8. Induction of morphogenesis in Geodermatophilus by inorganic cations and by organic nitrogenous cations.

    PubMed

    Ishiguro, E E; Wolfe, R S

    1974-01-01

    Morphogenesis of Geodermatophilus strain 22-68 involves two stages, a motile rod (R form) and an irregularly shaped cluster of coccoid cells (C form). A variety of mono- and divalent cations have been found to induce R-form to C-form morphogenesis and to maintain the organism in the C form. Concentration optima for all cations exceeded 100 mM. Results indicated that uptake of cations was accompanied by extrusion of intracellular protons, causing an increase in intracellular pH. A variety of organic amines also induced morphogenesis. Organic amines were taken up in the dissociated free base form, causing the intracellular pH to rise. None of these compounds was utilized as a carbon or nitrogen source.

  9. Induction of Morphogenesis in Geodermatophilus by Inorganic Cations and by Organic Nitrogenous Cations

    PubMed Central

    Ishigura, Edward E.; Wolfe, R. S.

    1974-01-01

    Morphogenesis of Geodermatophilus strain 22–68 involves two stages, a motile rod (R form) and an irregularly shaped cluster of coccoid cells (C form). A variety of mono- and divalent cations have been found to induce R-form to C-form morphogenesis and to maintain the organism in the C form. Concentration optima for all cations exceeded 100 mM. Results indicated that uptake of cations was accompanied by extrusion of intracellular protons, causing an increase in intracellular pH. A variety of organic amines also induced morphogenesis. Organic amines were taken up in the dissociated free base form, causing the intracellular pH to rise. None of these compounds was utilized as a carbon or nitrogen source. Images PMID:4587602

  10. Effect of cation exchange on major cation chemistry in the large scale redox experiment at Aespoe

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1994-10-01

    Predicting the chemical changes that result from excavating a repository below the groundwater table in granitic terrain is a major focus of the SKB geochemistry program. The modeling study presented here demonstrates that cation exchange can play a major role in controlling the fluid chemistry that results when groundwaters of differing composition mix due to flow induced by excavation of the HRL tunnel. The major goal of this study was to assess whether an equilibrium cation exchange model could explain the composition of groundwater sampled from boreholes in the HRL tunnel. Given the consistency of the cation exchange hypothesis with observations, geochemical modeling was used to assess whether the quantity of exchanger necessary to match model results and observation was physically reasonable. The impact of mineral dissolution and precipitation on fluid chemistry was also evaluated. Finally, the compositions of exchanger phases expected to be in equilibrium with various Aespoe groundwaters were predicted.

  11. A monovalent cationic conductance that is blocked by extracellular divalent cations in Xenopus oocytes.

    PubMed Central

    Arellano, R O; Woodward, R M; Miledi, R

    1995-01-01

    1. Native Xenopus oocytes were voltage clamped and exposed to Ringer solutions containing low concentrations of divalent cations. Oocytes, held at -60 mV, developed a reversible non-inactivating smooth inward current (Ic) associated with an increase in membrane conductance. 2. Ic was selectively carried by cations (Na+, K+), indicating that the current was not the result of a non-specific membrane breakdown, but was due instead to removal of a blocking effect of divalent cations on a specific population of endogenous ionic channels located in the oocyte membrane. 3. The blocking effects of Ca2+ and Mg2+ were voltage dependent, implying action at a binding site within the pore of the cationic channel. For example, the half-maximal inhibition (IC50) of Ic by Ca2+ was 61 microM in oocytes held at -60 mV and 212 microM in oocytes held at 0 mV. 4. The Ic channels could be unblocked by depolarization of the membrane even in the presence of physiological concentrations of Ca2+ or Mg2+. The unblocking of the channels was observed as a slowly developing outward current. 5. The novel cationic current was substantially reduced following in vitro maturation of oocytes by treatment with progesterone (10 microM, 4-5 h). 6. The physiological role of Ic channels remains to be elucidated. Nonetheless, their characteristics explain the ionic basis of the sensitivity of oocytes to reductions in extracellular divalent cations and raise the possibility that the channels play a role in calcium homeostasis. PMID:7542710

  12. Nonlinearity of cationic aromatic amine sorption to aluminosilicates and soils: role of intermolecular cation-π interactions.

    PubMed

    Vasudevan, Dharni; Arey, Teresa A; Dickstein, Daniel R; Newman, Mark H; Zhang, Tina Y; Kinnear, Heather M; Bader, Mohammad M

    2013-12-17

    Through the study of substituted anilines and benzylamines, we demonstrated that cooperative cation-π, π-π, and van der Waals interactions can increase aromatic cationic amine sorption to Na/Ca-montmorillonite well beyond the extent expected by cation exchange alone. Cationic amines exhibiting cooperative interactions displayed nonlinear S-shaped isotherms and increased affinity for the sorbent at low surface coverage; parallel cation exchange and cooperative interactions were noted above a sorption threshold of 0.3-2.3% of exchange sites occupied. Our experiments revealed the predominance of intermolecular cation-π interactions, which occurred between the π system of a compound retained on the surface via cation exchange and the cationic amine group of an adjacent molecule. Compounds with greater amine charge/area and electron-donating substituents that allowed for greater electron density at the center of the aromatic ring showed a greater potential for cation-π interactions on montmorillonite surfaces. However, benzylamine sorption to nine soils, at charge loadings comparable to the experiments with montmorillonite, revealed no significant cooperative interactions. It appears that cation-π interactions may be likely in soils with exceptionally high cation exchange capacities (>0.7 mol charge/kg) and low organic matter contents, abundant in montmorillonite and other expanding clay minerals.

  13. Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes.

    PubMed

    Dale, Edward J; Vermeulen, Nicolaas A; Juríček, Michal; Barnes, Jonathan C; Young, Ryan M; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-16

    Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor-acceptor interactions to form host-guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with boxlike geometries, dubbed Ex(n)Boxm(4+) for short, have been prepared by altering a number of variables: (i) n, the number of "horizontal" p-phenylene spacers between adjoining pyridinium units, to modulate the "length" of the cavity; (ii) m, the number of "vertical" p-phenylene spacers, to modulate the "width" of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles (ExBoxes) and macrobicycles (ExCages), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry. Ex(1)Box(4+) (or simply ExBox(4+)) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host-guest complexes allow the development of artificial photosystems. Ex(2)Box(4+) boasts the ability to bind both π-electron-rich and -poor aromatic

  14. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    PubMed Central

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia

    2015-01-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842

  15. The sequence to hydrogenate coronene cations: A journey guided by magic numbers

    PubMed Central

    Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas

    2016-01-01

    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2. PMID:26821925

  16. Double Double Cation Order in the High-Pressure Perovskites MnRMnSbO6.

    PubMed

    Solana-Madruga, Elena; Arévalo-López, Ángel M; Dos Santos-García, Antonio J; Urones-Garrote, Esteban; Ávila-Brande, David; Sáez-Puche, Regino; Attfield, J Paul

    2016-08-01

    Cation ordering in ABO3 perovskites adds to their chemical variety and can lead to properties such as ferrimagnetism and magnetoresistance in Sr2 FeMoO6 . Through high-pressure and high-temperature synthesis, a new type of "double double perovskite" structure has been discovered in the family MnRMnSbO6 (R=La, Pr, Nd, Sm). This tetragonal structure has a 1:1 order of cations on both A and B sites, with A-site Mn(2+) and R(3+) cations ordered in columns and Mn(2+) and Sb(5+) having rock salt order on the B sites. The MnRMnSbO6 double double perovskites are ferrimagnetic at low temperatures with additional spin-reorientation transitions. The ordering direction of ferrimagnetic Mn spins in MnNdMnSbO6 changes from parallel to [001] below TC =76 K to perpendicular below the reorientation transition at 42 K at which Nd moments also order. Smaller rare earths lead to conventional monoclinic double perovskites (MnR)MnSbO6 for Eu and Gd.

  17. The sequence to hydrogenate coronene cations: A journey guided by magic numbers.

    PubMed

    Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas

    2016-01-29

    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.

  18. Synthesis of conformation switchable cationic polypeptides based on poly(S-propargyl-cysteine) for use as siRNA delivery.

    PubMed

    Yi, Ling; Wang, Yisi; Lin, Guanliang; Lin, Danling; Chen, Wenliang; Huang, Yugang; Ye, Guodong

    2017-08-01

    Ring-opening polymerization of S-propargyl-cysteine-N-carboxyanhydride has been used to synthesize conformation switchable poly(S-propargyl-cysteine) starting with l-cysteine, dl- and d-cysteine. Then cationic polypeptides with different backbone chirality are obtained by nearly 100% side-chain grafting of cysteamine via thiol-yne click chemistry. The cationic polypeptides containing mixed conformations of β-sheets, β-turns and random coils are stable against pH, salt and temperature variations. The cationic polypeptides can condense siRNA at a low polypeptide/siRNA weight ratio to form nanoparticles with size depending on the backbone chirality. The cationic polypeptides derived from poly(S-propargyl-l or d-cysteine) are non-cytotoxic to HeLa and HepG2 cells, but interrupting the backbone chirality enhances the cytotoxicity sharply. The cationic polypeptides used for siRNA delivery show good transfection efficiency, but cell internalization process depends on the backbone chirality. The cationic polypeptide derived from the poly(S-propargyl-l-cysteine) is an appropriate siRNA vector with advantages of non-cytotoxicity and high transfection efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles.

    PubMed

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Lin, Chwan-Fwu; Chang, Yuan-Ting; Fang, Jia-You

    2015-01-01

    This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2(•-), and intracellular Ca(2+) were examined. The nanoparticles showed a size of 170-225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca(2+) influx. The elevation of intracellular Ca(2+) induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity.

  20. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles

    PubMed Central

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Lin, Chwan-Fwu; Chang, Yuan-Ting; Fang, Jia-You

    2015-01-01

    This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2•−, and intracellular Ca2+ were examined. The nanoparticles showed a size of 170–225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca2+ influx. The elevation of intracellular Ca2+ induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity. PMID:25609950

  1. Cationic order versus La-O covalency in La A (Ca,Ba)VMoO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Abhisek; Neogi, Swarup Kumar; Paul, Atanu; Meneghini, Carlo; Dasgupta, Indra; Bandyopadhyay, Sudipta; Ray, Sugata

    2017-01-01

    We have investigated the structural and physical properties of double perovskite (DP) La A VMoO6 (A =Ca2 + , Ba2 +; abbreviated as LCVMO and LBVMO from now on) compounds, proposed to be possible half-metallic antiferromagnets (HMAFMs). Here we show that within La A VMoO6 double perovskite structure, La-O covalency competes against B -site as well A -site cationic order and this competition critically influences their physical properties. Evidently, the presence of Ca2 + or Ba2 + at the A site along with La3 + would offer a tool to modify the A -site ordering and consequently influence the La-O covalency as well. Our experimental results reveal that LCVMO lies at the extreme end of this family and accommodates large scale phase separation in terms of La, V, and Ca, Mo-rich phases as a result of dominant La-O covalency. On the other hand, LBVMO is more correctly described as a layered A -site ordered and nearly complete B -site disordered double perovskite where cationic order dominates the La-O covalency. The general trend of our experimental findings is in agreement with the ab initio electronic structure calculations, carried out on realistic structures based on local coordination obtained from extended x-ray-absorption fine-structure study.

  2. Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study

    NASA Astrophysics Data System (ADS)

    Henderson, C. M. B.; Charnock, J. M.; Plant, D. A.

    2007-02-01

    The distribution of cations between tetrahedral (A) sites and octahedral (B) sites in ferrite spinels has been studied using K-edge x-ray absorption spectroscopy. The samples include natural and synthetic end-member magnetites (Fe3O4), a natural Mn- and Zn-rich magnetite (franklinite) and synthetic binary, ternary and quaternary ferrites of stoichiometry M2+M23+O4, where M2+ = Mg, Co, Ni, Zn and M3+ = Fe, Al. XAS data were obtained for all metals. Complete, unfiltered, EXAFS spectra were refined to determine the percentage distribution of each element over the A and B sites and these data were combined with microprobe analyses to quantify the tetrahedral occupancy for each element in each sample. Measured site occupancies and an internally consistent set of (M-O)A and (M-O)B bond lengths were used to calculate unit-cell parameters, which show excellent agreement with measured values, pointing to the reliability of the measured occupancy factors. The average occupancies determined for the tetrahedral sites in ferrites are (atoms per formula unit) Mg 0.44, Co 0.24, Ni 0.11, Zn 0.76, Al 0.11 and Fe3+ 0.92-0.19. The wide range found for Fe3+ is consistent with it playing a relatively passive role by making good any A-site deficit left by the other competing cations.

  3. Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study.

    PubMed

    Henderson, C M B; Charnock, J M; Plant, D A

    2007-02-21

    The distribution of cations between tetrahedral (A) sites and octahedral (B) sites in ferrite spinels has been studied using K-edge x-ray absorption spectroscopy. The samples include natural and synthetic end-member magnetites (Fe₃O₄), a natural Mn- and Zn-rich magnetite (franklinite) and synthetic binary, ternary and quaternary ferrites of stoichiometry M(²+)M₂(³+)O₄, where M(²+) = Mg, Co, Ni, Zn and M(³+) = Fe, Al. XAS data were obtained for all metals. Complete, unfiltered, EXAFS spectra were refined to determine the percentage distribution of each element over the A and B sites and these data were combined with microprobe analyses to quantify the tetrahedral occupancy for each element in each sample. Measured site occupancies and an internally consistent set of (M-O)(A) and (M-O)(B) bond lengths were used to calculate unit-cell parameters, which show excellent agreement with measured values, pointing to the reliability of the measured occupancy factors. The average occupancies determined for the tetrahedral sites in ferrites are (atoms per formula unit) Mg 0.44, Co 0.24, Ni 0.11, Zn 0.76, Al 0.11 and Fe(³+) 0.92-0.19. The wide range found for Fe(³+) is consistent with it playing a relatively passive role by making good any A-site deficit left by the other competing cations.

  4. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6

    SciTech Connect

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl3 and RbZnCl3) forming the double perovskite exhibit a stark contrast. While CsCaCl3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We show that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.

  5. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl{sub 6}

    SciTech Connect

    Pilania, G. Uberuaga, B. P.

    2015-03-21

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl{sub 6} using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl{sub 3} and RbZnCl{sub 3}) forming the double perovskite exhibit a stark contrast. While CsCaCl{sub 3} is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl{sub 3} is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We show that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl{sub 6} can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. The computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.

  6. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6

    DOE PAGES

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl3 and RbZnCl3) forming the double perovskite exhibit a stark contrast. While CsCaCl3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We show that combining the two compositionsmore » in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  7. Size Matters

    PubMed Central

    Long, Kimberly; Abuelenen, Toaa; Pava, Libia; Bastille, Maya

    2011-01-01

    We tallied the number of possible mutant amino acids in proteins thought to be inactivated early in tumorigenesis and in proteins thought to be inactivated late in tumorigenesis, respectively. Proteins thought to be inactivated early in tumorigenesis, on average, have a greater number of alternative, mutant possibilities, which raises the possibility that the sequential order of mutations associated with cancer development reflects the random chance, throughout life, of a mutagen inactivating a larger versus a smaller target. The hypothesis that the temporal order of genetic changes in cancer reflects mutagen target sizes leads to novel considerations of 1) the mechanisms of the acquisition of cancer hallmarks and 2) cancer screening strategies. PMID:22701759

  8. Nonclassical 21-Homododecahedryl Cation Rearrangement Revisited.

    PubMed

    Jalife, Said; Mondal, Sukanta; Osorio, Edison; Cabellos, José Luis; Martínez-Guajardo, Gerardo; Fernández-Herrera, María A; Merino, Gabriel

    2016-03-04

    The degenerate rearrangement in the 21-homododecahedryl cation (1) has been studied via density functional theory computations and Born-Oppenheimer Molecular Dynamics simulations. Compound 1 can be described as a highly fluxional hyperconjugated carbocation. Complete scrambling of 1 can be achieved by the combination of two unveiled barrierless processes. The first one is a "rotation" of one of the six-membered rings via a 0.8 kcal·mol(-1) barrier, and the second one is a slower interconvertion between two hyperconjomers via an out-of-plane methine bending (ΔG(⧧) = 4.0 kcal·mol(-1)).

  9. Fragmentation Pathways in the Uracil Radical Cation

    SciTech Connect

    Zhou, Congyi; Matsika, Spiridoula; Kotur, Marija; Weinacht, Thomas C.

    2012-08-24

    We investigate pathways for fragmentation in the uracil radical cation using ab initio electronic structure calculations. We focus on the main fragments produced in pump–probe dissociative ionization experiments. These are fragments with mass to charge ratios (m/z) of 69, 28, 41, and 42. Barriers to dissociation along the ground ionic surface are reported, which provide an estimate of the energetic requirements for the production of the main fragments. Finally, direct and sequential fragmentation mechanisms have been analyzed, and it is concluded that sequential fragmentation after production of fragment with m/z 69 is the dominant mechanism for the production of the smaller fragments.

  10. Soil Cation Status in Southern California: Interactions of Vehicular Emissions

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D. J.; Jenerette, D.; Clarke, L. W.

    2012-12-01

    Roadside soils are often enriched in trace metals due to vehicular deposition. However, less attention is given to base cation pools in roadside soils. Relatively high loadings of nitrate from vehicular exhaust should acidify roadside soils, potentially mobilizing cationic species by displacing them from soil exchange sites. In contrast, weathering of road materials can contribute substantial amounts of these cations to the same soils, potentially replenishing cation pools. Base cations are essential nutrients and these dynamics may alter ecosystem processes in near-road environments. Metal concentrations in park and garden soils collected from Southern California (Los Angeles and Riverside Counties) were examined across gradients of road network intensity, climate and geology. In these samples, base cation concentrations decrease in areas of denser road networks. Base cation concentrations also decrease with distance from the road, with near-road samples relatively depleted in base cation concentrations. In addition, base cation concentrations are associated with traffic flux density, with exchange pools decreasing near heavily trafficked areas. These relationships suggest road activity is mobilizing cations, depleting near-road soils of essential nutrient pools, despite road material weathering. This depletion of soil nutrients from exchange pools in roadside soils likely influences local ecological function in unpredictable ways. This observation lays the groundwork for continued characterization of soil metal processes in the increasingly common roadside environment.

  11. Structural Modification of the Cation-Ordered Ruddlesden-Popper Phase YSr2Mn2O7 by Cation Exchange and Anion Insertion.

    PubMed

    Zhang, Ronghuan; Gibbs, Alexandra S; Zhang, Weiguo; Halasyamani, P Shiv; Hayward, Michael A

    2017-08-21

    Calcium-for-strontium cation substitution of the a(-)b(0)c(0)/b(0)a(-)c(0)-distorted, cation-ordered, n = 2 Ruddlesden-Popper phase, YSr2Mn2O7, leads to separation into two phases, which both retain an a(-)b(0)c(0)/b(0)a(-)c(0)-distorted framework and have the same stoichiometry but exhibit different degrees of Y/Sr/Ca cation order. Increasing the calcium concentration to form YSr0.5Ca1.5Mn2O7 leads to a change in the cooperative tilting on the MnO6 units to a novel a(-)b(-)c(-)/b(-)a(-)c(-) arrangement described in space group P21/n11. Low-temperature, topochemical fluorination of YSr2Mn2O7 yields YSr2Mn2O5.5F3.5. In contrast to many other fluorinated n = 2 Ruddlesden-Popper oxide phases, YSr2Mn2O5.5F3.5 retains the a(-)b(0)c(0)/b(0)a(-)c(0) lattice distortion and P42/mnm space group symmetry of the parent oxide phase. The resilience of the a(-)b(0)c(0)/b(0)a(-)c(0)-distorted framework of YSr2Mn2O7 to resist symmetry-changing deformations upon both cation substitution and anion insertion/exchange is discussed on the basis the A-site cation order of the lattice and the large change in the ionic radius of manganese upon oxidation from Mn(3+) to Mn(4+). The structure property relations observed in the Y-Sr-Ca-Mn-O-F system provide insight into assisting in the synthesis of n = 2 Ruddlesden-Popper phases, which adopt cooperative structural distortions that break the inversion symmetry of the extended lattice and therefore act as a route for the preparation of ferroelectric and multiferroic materials.

  12. Cation ordering in Li2M (II)Sn3O8, M( II)= Mn, Zn

    NASA Astrophysics Data System (ADS)

    Kovacheva, D.; Trendafilova, T.; Petrov, K.; Hewat, A.

    2002-11-01

    New complex oxides with general formula Li 2M(II)Sn 3O 8(M= Mn, Zn ) have been synthesized and studied by powder neutron diffraction. They crystallize in the orthorhombic system, space group Cmc2 1, Z=12 . For Li 2MnSn 3O 8, the lattice constants obtained from the refinement are a=18.3795(6), b=10.6080(3); c=9.90056(6) Å; for Li 2ZnSn 3O 8, a=18.2048(8), b=10.5098(5) and c=9.87158(7) Å. The structure consists of a hexagonal close packed array of oxygen layers stacked along < c> direction in a sequence (ABCB) in which cations occupy 1/8 of the tetrahedral and 1/2 of the octahedral interstices. The structure can be derived from that of the partially disordered LiFeSnO 4 (space group P6 3mc) described earlier, assuming complete cation ordering. The influence of two antagonistic factors that govern the cation distribution (the electrostatic repulsion between the adjacent high valence cations and the geometrical factor, that accounts for the ionic size) is discussed.

  13. In vitro and In vivo Studies on a Novel Bioadhesive Colloidal System: Cationic Liposomes of Ibuprofen.

    PubMed

    Gai, Xiumei; Cheng, Lizhen; Li, Ting; Liu, Dandan; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2017-10-02

    The objective of this study was to develop an ocular drug delivery system built on the cationic liposomes, a novel bioadhesive colloidal system, which could enhance the precorneal residence time, ocular permeation, and bioavailability of ibuprofen. The optimal formulation of cationic liposomes prepared by ethanol injection method was ultimately confirmed by an orthogonal L9 (3(3)) test design. In addition, γ-scintigraphic technology and the microdialysis technique were utilized in the assessment of in vivo precorneal retention capability and ocular bioavailability individually. In the end, we acquired the optimal formulation of ibuprofen cationic liposomes (Ibu-CL) by orthogonal test design, and the particle size and entrapment efficiency (EE%) were 121.0 ± 3.5 nm and 72.9 ± 3.4%, respectively. In comparison to ibuprofen eye drops (Ibu-ED), Ibu-CL could significantly prolong the T max to 100 min and the AUC to 1.53-folds, which indicated that the Ibu-CL could improve the precorneal retention time and bioavailability of ibuprofen. Consequently, these outcomes designated that the ibuprofen cationic liposomes we researched probably are a promising application in ocular drug delivery system.

  14. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  15. Identifying the charge generation dynamics in Cs(+)-based triple cation mixed perovskite solar cells.

    PubMed

    Salado, Manuel; Kokal, Ramesh K; Calio, Laura; Kazim, Samrana; Deepa, Melepurath; Ahmad, Shahzada

    2017-08-30

    Triple cation based perovskite solar cells offer enhanced moisture tolerance and stability compared to mixed perovskites. Slight substitution of methyl ammonium or formamidinium cation by cesium (Cs(+)), was also reported to eliminate halide segregation due to its smaller size. To elucidate the device kinetics and understand the role of the Cs, we undertook different modes of scanning probe microscopy and electrochemical impedance spectroscopy (EIS) experiments. Kelvin probe force microscopy revealed that the incorporation of the Cs cation increases the contact potential difference (CPD), this CPD further increases when Spiro-OMeTAD is used as a hole transport material. The current at the nanoscale level shows improvement with Cs inclusion and further enhancement by the Spiro-OMeTAD deposition, studied under light illumination, which supports the high photocurrent density obtained from the cells. EIS demonstrates that in a triple cation environment, reduced carrier recombination at the TiO2/perovskite interface was also obtained which in turn allow us to achieve a higher Voc value.

  16. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction.

    PubMed

    Ma, Heping; Liu, Bailing; Li, Bin; Zhang, Liming; Li, Yang-Guang; Tan, Hua-Qiao; Zang, Hong-Ying; Zhu, Guangshan

    2016-05-11

    Mimicking proton conduction mechanism of Nafion to construct novel proton-conducting materials with low cost and high proton conductivity is of wide interest. Herein, we have designed and synthesized a cationic covalent organic framework with high thermal and chemical stability by combining a cationic monomer, ethidium bromide (EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide), with 1,3,5-triformylphloroglucinol (TFP) in Schiff base reactions. This is the first time that the stable cationic crystalline frameworks allowed for the fabrication of a series of charged COFs (EB-COF:X, X = F, Cl, Br, I) through ion exchange processes. Exchange of the extra framework ions can finely modulate the COFs' porosity and pore sizes at nanoscale. More importantly, by introducing PW12O40(3-) into this porous cationic framework, we can greatly enhance the proton conductivity of ionic COF-based material. To the best of our knowledge, EB-COF:PW12 shows the best proton conductivity at room temperature among ever reported porous organic materials.

  17. Agonist-induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1.

    PubMed

    Karashima, Yuji; Prenen, Jean; Talavera, Karel; Janssens, Annelies; Voets, Thomas; Nilius, Bernd

    2010-03-03

    The Ca(2+)-permeable cation channel TRPA1 acts as an ionotropic receptor for various pungent compounds and as a noxious cold sensor in sensory neurons. It is unclear what proportion of the TRPA1-mediated current is carried by Ca(2+) ions and how the permeation pathway changes during stimulation. Here, based on the relative permeability of the nonstimulated channel to cations of different size, we estimated a pore diameter of approximately 11 A. Combined patch-clamp and Fura-2 fluorescence recordings revealed that with 2 mM extracellular Ca(2+), and at a membrane potential of -80 mV, approximately 17% of the inward TRPA1 current is carried by Ca(2+). Stimulation with mustard oil evoked an apparent dilatation of the pore of 3 A and an increase in divalent cation selectivity and fractional Ca(2+) current. Mutations in the putative pore that reduced the divalent permeability and fractional Ca(2+) current also prevented mustard-oil-induced increases in Ca(2+) permeation. It is interesting that fractional Ca(2+) currents for wild-type and mutant TRPA1 were consistently higher than values predicted based on biionic reversal potentials using the Goldman-Hodgkin-Katz equation, suggesting that binding of Ca(2+) in the pore hinders monovalent cation permeation. We conclude that the pore of TRPA1 is dynamic and supports a surprisingly large Ca(2+) influx.

  18. Biodistribution of rhodamine B fluorescence-labeled cationic nanoparticles in rats

    NASA Astrophysics Data System (ADS)

    Knudsen, Kristina Bram; Northeved, Helle; Gjetting, Torben; Permin, Anders; Andresen, Thomas L.; Wegener, Karen Malene; Lam, Henrik Rye; Lykkesfeldt, Jens

    2014-02-01

    We investigated the biodistribution following the administration of nanosized (about 50 and 90 nm) cationic ( ζ: +30 and +50 mV) micelles and liposomes intended for drug delivery. The particles were stable and well characterized with respect to size and ζ potential. Ten 5- to 6-week-old male rats were used. The animals were randomly allocated to five groups receiving either cationic micelles or cationic liposomes by single intravenous (IV) administration at a dose of 100 mg/kg bodyweight by single intracerebroventricular (ICV) injection at a dose of 50 μg or no treatment. ICV administration was used to study local distribution in the brain and IV administration to study the systemic distribution of the particles. For both types of particles, ICV administration showed distribution in all ventricles in the brain while IV delivery displayed distribution to the major organs liver, spleen, kidney and lung, but not to the brain. Our data suggest that cationic micelles and liposomes are widely distributed in the body, indicating that these could potentially be used as drug delivery carriers to the major organs, but they do not cross the blood-brain barrier to a significant extent, without a targeting ligand attached. However, they are able to persist in the ventricles of the brain up to 24 h after ICV administration, demonstrating a new ability.

  19. Electron spin resonance spectroscopic studies of radical cation reactions

    SciTech Connect

    Dai, S.

    1990-01-01

    A spin Hamiltonian suitable for theoretical analyses of ESR spectra is derived using the general effective Hamiltonian theory in the usual Schroedinger representation. The Permutation Indices method is extended to obtain the dynamic exchange equations used in ESR lineshape simulation. The correlation between [beta]-hydrogen coupling constants and their geometric orientations are derived using a perturbation method. The three electron bond model is extended to rationalize unimolecular rearrangements of radical cations. The ring-closed radical cations of 9,10-octalin oxide and synsesquinorbornene oxide have been characterized by ESR spectroscopy in the CFCl[sub 3] matrix at low temperature. The self-electron-transfer rate constants between the methyl viologen dication and cation have been determined by dynamic ESR lineshape simulations at room temperature in allyl alcohol, water, methanol and propargyl alcohol solvents. The radical cation formed by the radiolytic oxidation of allylamine in Freon matrices at 77 K is the 3-iminiopropyl distonic species(3-iminium-1-propyl radical). The nucleophilic endocylization of the but-3-en-1-ol radical cation to the protonated tetrahydrofuran-3-yl radical was observed in the radiolytic oxidation of but-3-en-1-ol in Freon matrices. ESR studies of the radiolytic oxidation of 1,5-hexdiyne have resulted in characterization the 1,5-hexadiyne radical cation isomerizing to the 1,2,4,5-hexatetraene radical cation. The symmetric (C[sub 2v]) bicyclo[3.3.0]-octa-2,6-diene-4,8-diyl(a bridged 1,4-bishomobenzene species) radical cation is produced by the radiolytic oxidation of semibullvalene in Freon matrices. The ring-opening 3,4-dimethylenecyclobutene radical cation to 1,2,4,5-hexatetraene radical cation was observed in the photolysis of 3,4-dimethylenecyclobutene radical cation. The cyclooctatetraene radical cation generated by radiolytic oxidation photoisomerizes to bicyclo[3.3.0]octa-2,6-diene-4,8-diyl radical cation.

  20. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity.

    PubMed

    Ahani, Elnaz; Montazer, Majid; Toliyat, Tayebeh; Mahmoudi Rad, Mahnaz; Harifi, Tina

    2017-03-01

    This study suggested successful encapsulation of polyhexamethylene biguanide chloride (PHMB) into nano cationic liposome as a biocompatible antibacterial agent with less cytotoxicity and higher activities. Phosphatidylcholine, cholesterol and stearylamine were used to prepare nano cationic liposome using thin film hydration method along with sonication or homogeniser. Sonication was more effective in PHMB loaded nano cationic liposome preparation with smaller size (34 nm). FTIR, (1)H NMR and XRD analyses were used to confirm the encapsulation of PHMB into nano cationic liposome. PHMB inclusion in nano cationic liposome was beneficial for increased antibacterial activity against Staphylococcus aureus and Escherichia coli. PHMB-loaded cationic liposome enables to deliver high concentrations of the antibacterial agent into the infectious cell. The cytotoxicity of PHMB entrapped in positively charged liposome was prominently reduced showing no significant visible detrimental effect on normal primary human skin fibroblast cell lines morphology confirming the effective role of cationic liposome encapsulation. Comparing with PHMB alone, encapsulation of PHMB in nano cationic liposome resulted in significant increase in cell viability from 2.4 to 63%.

  1. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  2. Development of a Site Comparison Index: Southeast Upland Forests

    DTIC Science & Technology

    2007-05-01

    ER D C/ CE R L TR -0 7 -1 2 Strategic Environmental Research and Development Program Development of a Site Comparison Index : Southeast...Development of a Site Comparison Index : Southeast Upland Forests Anthony J. Krzysik Prescott College 220 Grove Avenue Prescott, AZ 86301 Harold E...jective site comparison index (SCI), a combination of metrics: soil A- horizon depth, soil compaction, ground cover, canopy cover, basal area, remote

  3. Designing structural features of novel benznidazole-loaded cationic nanoparticles for inducing slow drug release and improvement of biological efficacy.

    PubMed

    Dos Santos-Silva, Alaine M; de Caland, Lilia B; de S L Oliveira, Ana Luíza C; de Araújo-Júnior, Raimundo F; Fernandes-Pedrosa, Matheus F; Cornélio, Alianda Maira; da Silva-Júnior, Arnóbio A

    2017-09-01

    Several polymers have been investigated for producing cationic nanocarriers due to their ability to cross biological barriers. Polycations such as copolymers of polymethylmethacrylate are highlighted due to their biocompatibility and low toxicity. The purpose of this study was to produce small and narrow-sized cationic nanoparticles able to overcome cell membranes and improve the biological activity of benznidazole (BNZ) in normal and cancer cells. The effect of composition and procedure parameters of the used emulsification-solvent evaporation method were controlled for this purpose. The experimental approach included particle size, polydispersity index, zeta potential, atomic force microscopy (AFM), attenuated total reflectance Fourier transforms infrared spectroscopy (ATR- FTIR), drug loading efficiency, and physical stability assays. Spherical and stable (over six weeks) sub 150nm cationic nanoparticles were optimized, with the encapsulation efficiency >80%. The used drug/copolymer ratio modulated the slow drug release, which was adjusted by the parabolic diffusion mathematical model. In addition, the ability of the cationic nanoparticles improve the BNZ uptake in the normal kidney cells (HEK 293) and the human colorectal cancer cells (HT 29) demonstrate that this novel BNZ-loaded cationic has great potential as a chemotherapeutic application of benznidazole. Copyright © 2017. Published by Elsevier B.V.

  4. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  5. Selective interactions of trivalent cations Fe3 +, Al3 + and Cr3 + turn on fluorescence in a naphthalimide based single molecular probe

    NASA Astrophysics Data System (ADS)

    Janakipriya, Subramaniyan; Chereddy, Narendra Reddy; Korrapati, Purnasai; Thennarasu, Sathiah; Mandal, Asit Baran

    2016-01-01

    Synthesis and fluorescence turn-on behavior of a naphthalimide based probe is described. Selective interactions of trivalent cations Fe3 +, Al3 + or Cr3 + with probe 1 inhibit the PET operating in the probe, and thereby, permit the detection of these trivalent cations present in aqueous samples and live cells. Failure of other trivalent cations (Eu3 +, Gd3 + and Nb3 +) to inhibit the PET process in 1 demonstrates the role of chelating ring size vis-à-vis ionic radius in the selective recognition of specific metal ions.

  6. The Infrared Spectra of BF_3 Cation and BF_2OH Cation Trapped in Solid Neon

    NASA Astrophysics Data System (ADS)

    Jacox, Marilyn E.; Thompson, Warren E.

    2010-06-01

    New, more detailed studies of the photoionization and Penning ionization of BF_3 trapped in solid neon have confirmed the earlier infrared spectroscopic identification of BF_2 and BF_2 cation and have yielded a revised assignment for the infrared absorptions of BF3 cation. The position of the absorption attributed to ν_3 of that molecule is consistent with the distortion of the ground-state cation from D3h symmetry because of strong vibronic interaction between levels of the Btilde ^2E^' state and E^' levels of the ~X ^2A_2^' ground state, as predicted by Haller and co-workers. The facile reaction of BF_3 with traces of H_2O desorbed from the walls of the vacuum system leads to the stabilization of sufficient BF_2OH for the identification of two vibrational fundamentals of BF_2OH cation. M. E. Jacox and W. E. Thompson, J. Chem. Phys. 102, 4747 (1995). E. Haller, H. Koppel, L. S. Cederbaum, W. von Niessen, and G. Bieri, J. Chem. Phys. 78, 1359 (1983).

  7. Rhizosphere size

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We

  8. Elaboration of ammonio methacrylate copolymer based spongy cationic particles via double emulsion solvent evaporation process.

    PubMed

    Zafar, Nadiah; Bitar, Ahmad; Valour, Jean Pierre; Fessi, Hatem; Elaissari, Abdelhamid

    2016-04-01

    The aim of present work is to investigate systematic study of the preparation of biodegradable particles via double emulsion solvent evaporation technique. The used formation is based on cationic ammonium methacrylate copolymer Eudragit® RS 100, without the use of any stabilizer. The effect of process parameters like ultra turrax® stirring speed and stirring time, ultrasonication time, polymer amount, and volume of outer aqueous phases on the colloidal properties of particles was investigated. All prepared dispersions were characterized in terms of size, size distribution, and electrokinetic properties, and surface morphology was investigated.

  9. Interaction of oligonucleotides with cationic lipids: the relationship between electrostatics, hydration and state of aggregation.

    PubMed

    Meidan, V M; Cohen, J S; Amariglio, N; Hirsch-Lerner, D; Barenholz, Y

    2000-04-05

    Lipoplexes, which are spontaneously formed complexes between oligonucleotide (ODN) and cationic lipid, can be used to deliver ODNs into cells, both in vitro and in vivo. The present study was aimed at characterizing the interactions associated with the formation of lipoplexes, specifically in terms of electrostatics, hydration and particle size. Large unilamellar vesicles (approximately 100 nm diameter), composed of either DOTAP, DOTAP/cholesterol (mole ratio 1:1) or DOTAP/DOPE (mole ratio 1:1) were employed as a model of cationic liposomes. Neutral vesicles ( approximately 100 nm diameter), composed of DOPC/DOPE (mole ratio 1:1), were employed as control liposomes. After ODN addition to vesicles, at different mole ratios, changes in pH and electrical surface potential at the lipid-water interface were analyzed by using the fluorophore heptadecyl-7-hydroxycoumarin. In separate 'mirror image' experiments, liposomes were added at different mole ratios to fluorescein isothiocyanate-labeled ODNs, thus yielding data about changes in the pH near the ODN molecules induced by the complexation with the cationic lipid. Particle size distribution and turbidity fluctuations were analyzed by the use of photon correlation spectroscopy and static light-scattering, respectively. In additional fluorescent probe studies, TMADPH was used to quantify membrane defects while laurdan was used to measure the level of hydration at the water-lipid interface. The results indicate that mutual neutralization of cationic lipids by ODNs and vice versa is a spontaneous reaction and that this neutralization is the main driving force for lipoplex generation. When lipid neutralization is partial, induced membrane defects cause the lipoplexes to exhibit increased size instability.

  10. Electronic absorptions of the benzylium cation

    NASA Astrophysics Data System (ADS)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.

    2012-11-01

    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  11. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  12. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  13. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    PubMed

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  14. Irrigant divalent cation concentrations influence bacterial adhesion

    PubMed Central

    Dass, Clarissa L.; Walsh, Mary F.; Seo, Sue; Shiratsuchi, Hiroe; Craig, David H.; Basson, Marc D.

    2009-01-01

    Background Surgical wounds are frequently contaminated by microbes, but rarely become infected if the bacterial burden is low, and irrigation is used to reduce contamination. Wound fluids are low in calcium and high in magnesium. We hypothesized that manipulating irrigant divalent cation concentrations might influence bacterial adhesion. Methods Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were stained with fluorescent Calcein AM before plating onto fibroblast monolayers, collagen I, or uncoated bacteriologic plastic. After one hour, wells were washed with HEPES-buffered pH-balanced sterile water without or with 5mM CaCl2, 5mM MgCl2 or 1mM EDTA+EGTA, and the remaining adherent bacteria were assayed fluorometrically. Results Supplementing the irrigation with magnesium or chelators increased but calcium-supplemented irrigation reduced bacterial adhesion to collagen or fibroblasts. Non-specific electrostatic bacterial adhesion to uncoated plastic was unaffected by calcium. Conclusion Bacterial adhesion to mammalian cells and matrix proteins is influenced by divalent cations, and pathogenic bacteria may be adapted to adhere under the low calcium high magnesium conditions in wounds. Although these results await confirmation for other bacteria, and in vivo validation and safety-testing, they suggest that supplementing wound irrigation with 5mM CaCl2 may reduce bacterial adhesion and subsequent wound infection. PMID:19577252

  15. A cation counterflux supports lysosomal acidification

    PubMed Central

    Steinberg, Benjamin E.; Huynh, Kassidy K.; Brodovitch, Alexandre; Jabs, Sabrina; Stauber, Tobias; Jentsch, Thomas J.

    2010-01-01

    The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7. To assess the individual contribution of counter-ions to acidification, we devised means of reversibly and separately permeabilizing the plasma and lysosomal membranes to dialyze the cytosol and lysosome lumen in intact cells, while ratiometrically monitoring lysosomal pH. Replacement of cytosolic Cl− with impermeant anions did not significantly alter proton pumping, while the presence of permeant cations in the lysosomal lumen supported acidification. Accordingly, the lysosomes were found to acidify to the same pH in both CFTR- and ClC-7–deficient cells. We conclude that cations, in addition to chloride, can support lysosomal acidification and defects in lysosomal anion conductance cannot explain the impaired microbicidal capacity of CF phagocytes. PMID:20566682

  16. Electrostatics of DNA complexes with cationic lipids

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey

    2007-03-01

    We present the exact solutions of the linear Poisson-Boltzmann theory for several problems relevant to electrostatics of DNA complexes with cationic lipids. We calculate the electrostatic potential and energy for lamellar and inverted hexagonal phases, concentrating on the effects of water-membrane dielectric boundaries. Our results for the complex energy agree qualitatively well with the known numerical solutions of the nonlinear Poisson-Boltzmann equation. Using the solution for the lamellar phase, we calculate its compressibility modulus and compare our findings with experimental data available suggesting a new scaling dependence on DNA-DNA separations in the complex. Also, we treat analytically charge-charge electrostatic interactions across, along, and in between two low-dielectric membranes. We obtain an estimate for the strength of electrostatic interactions of 1D DNA smectic layers across a lipid membrane. We discuss also some aspects of 2D DNA condensation and DNA-DNA attraction in DNA-lipid lamellar phase in the presence of di- and tri-valent cations and analyze the equilibrium intermolecular separations using the recently developed theory of electrostatic interactions of DNA helical charge motifs.

  17. Ferrocenylbenzobisimidazoles for recognition of anions and cations.

    PubMed

    Alfonso, María; Tárraga, Alberto; Molina, Pedro

    2013-07-01

    The preparation of 2,7-disubstituted benzobisimidazoles decorated with substituents displaying different electrooptical properties is described. The presence of redox, chromogenic, and fluorescent groups at the heteroaromatic core, which acts as ditopic binding site, made these receptors potential candidates as multichannel probes for ions. The triad 4 behaves as a selective redox and fluorescent chemosensor for HSO4(-) and Hg(2+) ions, whereas receptor 5 acts as a redox and chromogenic chemosensor molecule for AcO(-) and SO4(2-) anions. The change in the absorption spectra is accompanied by a color change from yellow to orange, while sensing of Zn(2+), Hg(2+), and Pb(2+) cations is carried out only by electrochemical techniques. Receptor 6 exhibits a remarkable cathodic shift of the oxidation wave only in the presence of AcO(-), H2PO4(-), and HP2O7(3-) anions, whereas addition of Pb(2+) induces an anodic shift. A new low energy band in the absorption spectra, which is responsible for the color change from colorless to pale yellow, and an important increase of the monomer emission band is observed only in the presence of H2PO4(-), and HP2O7(3-) anions. The most salient feature of the receptor 6 is its ability to act as a multichannel (redox, chromogenic, and fluorescent) chemodosimeter for Cu(2+), and Hg(2+) metal cations.

  18. Penicillamine disulfide (PNS) and alkaline cations.

    PubMed

    Apruzzese, Fabrizio; Bottari, Emilio; Festa, Maria Rosa

    2004-01-01

    D-penicillamine disulfide (PNS) shows protolytic properties and is able to form complexes with cations, because it has two aminic groups and two carboxylic groups. The four protonation constants of its deprotonated species were determined by means of electromotive force (e.m.f.) measurements of a galvanic cell involving a glass electrode at 25 degrees C and in a constant ionic medium constituted by N(CH3)4Cl 3.00 or 1.00 mol dm-3. At 25 degrees C and in 3.00 mol dm-3 N(CH3)4Cl as ionic medium, equilibria taking place between PNS and lithium, sodium and potassium ions were investigated. Experimental data, again obtained from e.m.f. measurements, were explained by assuming the formation of species of the type MH2PNS ed M2H2PNS, where M indicates a cation. Stability constants for each proposed species were calculated. A comparison with cystine is discussed.

  19. On structural studies and cation distribution of La added Zn-Ni-Mg-Cu spinel nano ferrite

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.

    2016-10-01

    Zn0.75-xNixMg0.15Cu0.1La0.02Fe1.98O4 (x = 0.0, 0.15, 0.30, 0.60, 0.75) was synthesized by sol-gel auto-combustion technique. As-burnt samples were thermally annealed at 500oC for 3 hrs. The as-burnt and annealed powder were characterized by X-ray diffraction (XRD) technique. The lattice constant (aexp), unit cell volume (V) and hopping length at A and B (LA and LB) deceases with increase in Ni2+ content (x). Scherrer's grain diameter (D) for as-burnt and annealed samples respectively ranges between 13.26 - 22.20 nm and 23.61 - 30.93 nm. After annealing the specific surface area of the particles decreases which can be attributed to increase in the particle size. Annealing leads to variation in cation distribution at tetrahedral (A) and octahedral [B] site, which affects theoretical lattice parameter (a th), ionic radii of A- site (r A) and B-site (rB), oxygen positional parameter (u), tetrahedral and octahedral bond length (RA, RB), shared tetrahedral and octahedral edge (d AE, d BE) and Neel's magnetic moment (nB N). The bond angles θ1, θ2, θ3, θ4, θ5 and the distance between the metal ions at tetrahedral/octahedral site and anion (p, q, r) gives information about the A-A, A-B, B-B magnetic interaction. For lower values of Ni content (0.0 ≤ x ≤ 0.3), effective bond length (R eff.) increases with annealing and for higher Ni content (0.30 < x ≤ .75) R eff. decreases.

  20. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    SciTech Connect

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J.; Yildiz, Bilge

    2016-06-13

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (V $••\\atop{o}$) enriched at the surface. Here we show that reducing the surface V $••\\atop{o}$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $••\\atop{o}$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

  1. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J.; Yildiz, Bilge

    2016-09-01

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a `volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

  2. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface.

    PubMed

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J; Yildiz, Bilge

    2016-09-01

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

  3. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    DOE PAGES

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; ...

    2016-06-13

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less

  4. The effects of cationic contamination on the physio-chemical properties of perfluoroionomer membranes

    NASA Astrophysics Data System (ADS)

    Molter, Trent M.

    Proton Exchange Membrane (PEM) technology cannot meet fuel cell and electrolyzer durability standards for stationary and transportation applications. Cell designs are not of sufficient maturity to demonstrate more than several thousand hours of invariant performance. One of the limiting factors is the operational lifetime of membrane electrode assemblies (MEA's) because of pin-holing, dry-out, mechanical breeches, chemical attack and contamination. This program investigated the role of contamination on the degradation of perfluorinated membranes in fuel cell and electrolysis environments. Tests were conducted to develop an understanding of the effects of cationic contaminants on fundamental design parameters for these membranes including water content, ion exchange capacity, gas diffusion, ionic conductivity, and mechanical properties. Tests showed that cations rapidly transport into the membrane and disperse throughout its structure achieving high equilibrium concentrations. Ion charge density appears to govern membrane water content with small ions demonstrating the highest water content. Permeability studies showed transport in accordance with Fick's law in the following order: H2>O2>N 2>H2O. Cations negatively affect gas and water transport, with charge density affecting transport rates. Unique diffusion coefficients were calculated for each contaminating species suggesting that the contaminant is an integral participant in the transport process. AC resistance measurements showed that size of the ion charge carrier is an important factor in the conduction mechanism and that membrane area specific resistance correlates well with water content. Increases in membrane yield strength and the modulus of elasticity were demonstrated with increased contamination. Tensile tests showed that cation size plays an important role in determining the magnitude of this increase, indicating that larger ions interfere more with strain than smaller ones. Contaminants reduced

  5. Alkali-cation affinities of polyoxyethylene dodecylethers and helical conformations of their cationized molecules studied by electrospray mass spectrometry.

    PubMed

    Yokoyama, Yukio; Hirajima, Rui; Morigaki, Ken; Yamaguchi, Yoshitaka; Ueda, Kazuyoshi

    2007-11-01

    Relative alkali-cation affinity of polyoxyethylene (POE) dodecylethers in gas phase was studied by electrospray ionization (ESI) mass spectrometry using dodecylether-poly-ethoxylate (C(12)EO:n, "n" denotes ethyleneoxide unit number) nonionic surfactants, and possible helical conformations of the cationized molecules were demonstrated. The alkali-cation affinity highly depended on the cation diameters. The mass spectra of C(12)EO:8 cationized by alkali-metal ions were dominated by potassiated molecules. The results indicated that the POE moiety could have specific affinity to K(+) ions based on a host-guest interaction between POE helix and potassium ions. This is very similar to the relationships between 18-crown-6 and K(+). The ESI mass spectra exhibited the multiply cationized C(12)EO:n in addition to the singly cationized molecules. The critical EO unit numbers necessary for producing the multiply-charged cationized molecules also depended on the cation diameters. In addition, the POE surfactants highly preferred alkali cations to proton. The results were strongly supported by molecular mechanics/dynamics calculations. A helical conformation of the POE moiety of C(12)EO:15 including two K(+) ions gave a potential minimum, while a lowest energy structure of the protonated molecule took irregular conformations due to the formation of local hydrogen bonds.

  6. Non-bridging Oxygen and Five-coordinated Aluminum in Aluminosilicate Glasses: A Cation Field Strength Study

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Stebbins, J. F.

    2011-12-01

    Linda M. Thompson Jonathan F. Stebbins Dept. of Geological and Environmental Sciences, Stanford University, Stanford CA 94305 Although it is understood in aluminosilicate melts and glasses that non-bridging oxygens (NBO) have significant influence on thermodynamic and transport properties, questions remain about its role and the extent of its influence, particularly in metaluminous and peraluminous compositions. One major question persists regarding whether the formation of NBO is in any way coupled with the formation of VAl (AlO5), which is significantly impacted by cation field strength (defined as the cation charge divided by the square of the distance between the cation and oxygen atoms) (Kelsey et al., 2009). Previous work on calcium and potassium aluminosilicate glasses has shown the presence of NBO on the metaluminous join and persisting into the peraluminous region, with significantly more NBO present in Ca glasses compared to K glasses of similar composition (Thompson and Stebbins, 2011). However, it is unclear if there is any systematic impact on NBO content by cation field strength similar to the impact on VAl. Expanding on the previous study, barium aluminosilicate glasses were synthesized covering a range of compositions crossing the metaluminous (e.g. BaAl2O4-SiO2) join to observe changes in the NBO for comparison against the calcium aluminosilicate glasses, thus looking at the impact of cation size on NBO versus cation charge. In the barium glasses on the 30 mol% SiO2 isopleth, the highest NBO content was 6.9% for the barium rich glass (R = 0.51, where R is Ba2+ / (Ba2+ + 2Al3+)) while the most peraluminous glass (R = 0.45) had an NBO content of 1.9%. Comparison of these results to earlier data shows these numbers are similar to what is observed in the Ca glasses, indicating cation size alone does not have a significant impact on NBO content. However the VAl content does show a decrease (compared to calcium aluminosilicate glasses at similar R values

  7. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  8. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  9. Controlling Cesium Cation Recognition via Cation Metathesis within and Ion Pair Receptor

    SciTech Connect

    Kim, Sung Kuk; Vargas-Zuniga, Gabriela; Hay, Benjamin; Young, Neil J; Delmau, Laetitia Helene; Lee, Prof. Chang-Hee; Kim, Jong Seung; Lynch, Vincent M.; Sessler, Jonathan L.

    2012-01-01

    Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO{sub 3}, in solution (10% methanol-d{sub 4} in chloroform-d) as inferred from {sup 1}H NMR spectroscopic analyses. The addition of KClO{sub 4} to these cesium salt complexes leads to a novel type of cation metathesis in which the 'exchanged' cations occupy different binding sites. Specifically, K{sup +} becomes bound at the expense of the Cs{sup +} cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO{sub 3} and CsCl from an aqueous D{sub 2}O layer into nitrobenzene-d{sub 5} as inferred from {sup 1}H NMR spectroscopic analyses and radiotracer measurements. The Cs{sup +} cation of the CsNO{sub 3} extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO{sub 4} solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.

  10. Immune complexes with cationic antibodies deposit in glomeruli more effectively than cationic antibodies alone.

    PubMed

    Mannik, M; Gauthier, V J; Stapleton, S A; Agodoa, L Y

    1987-06-15

    In previously published studies, highly cationized antibodies alone and in immune complexes bound to glomeruli by charge-charge interaction, but only immune complexes persisted in glomeruli. Because normal IgG does not deposit in glomeruli, studies were conducted to determine whether cationized antibodies can be prepared which deposit in glomeruli when bound to antigen but not when free in circulation. A series of cationized rabbit antiHSA was prepared with the number of added amino groups ranging from 13.3 to 60.2 per antibody molecule. Antibodies alone or in preformed soluble immune complexes, prepared at fivefold or 50-fold antigen excess, were administered to mice. With the injection of a fixed dose of 100 micrograms per mouse, antibodies alone did not deposit in glomeruli with less than 29.6 added amino groups by immunofluorescence microscopy. In contrast, 100 micrograms of antibodies with 23.5 added amino groups in immune complexes, made at fivefold antigen excess, formed immune deposits in glomeruli. With selected preparations of cationized, radiolabeled antibodies, deposition in glomeruli was quantified by isolation of mouse glomeruli. These quantitative data were in good agreement with the results of immunofluorescence microscopy. Immune complexes made at 50-fold antigen excess, containing only small-latticed immune complexes with no more than two antibody molecules per complex, deposited in glomeruli similar to antibodies alone. Selected cationized antibodies alone or in immune complexes were administered to mice in varying doses. In these experiments, glomerular deposition of immune complexes, made at fivefold antigen excess, was detected with five- to 10-fold smaller doses than the deposition of the same antibodies alone. These studies demonstrate that antibody molecules in immune complexes are more likely to deposit in glomeruli by charge-charge interactions than antibodies alone.

  11. Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores

    DTIC Science & Technology

    2012-11-09

    REPORT Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: See attached...Prescribed by ANSI Std. Z39.18 - Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores Report Title ABSTRACT See...55012.570-LS-ICB Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores Lorenzo Albertazzi,†,‡,$ Frauke M. Mickler

  12. Fully Cationized Gold Clusters: Synthesis of Au25(SR(+))18.

    PubMed

    Ishida, Yohei; Narita, Kunihiro; Yonezawa, Tetsu; Whetten, Robert L

    2016-10-06

    Although many thiolate-protected Au clusters with different numbers of Au atoms and a variety of thiolate ligands have been synthesized, to date there has been no report of a fully cationized Au cluster protected with cationic thiolates. Herein, we report the synthesis of the first member of a new series of thiolate-protected Au cluster molecules: a fully cationized Au25(SR(+))18 cluster.

  13. Structure-activity relationship in cationic lipid mediated gene transfection.

    PubMed

    Niculescu-Duvaz, Dan; Heyes, James; Springer, Caroline J

    2003-07-01

    Non-viral synthetic vectors for gene delivery represent a safer alternative to viral vectors. Their main drawback is the low transfection efficiency, especially in vivo. Among the non-viral vectors currently in use, the cationic liposomes composed of cationic lipids are the most common. This review discusses the physicochemical properties of cationic lipids, the formation, macrostructure and specific parameters of the corresponding formulated liposomes, and the effect of all these parameters on transfection efficiency. The optimisation of liposomal vectors requires both the understanding of the biological variables involved in the transfection process, and the effect of the structural elements of the cationic lipids on these biological variables. The biological barriers relevant for in vitro and in vivo transfection are identified, and solutions to overcome them based on rational design of the cationic lipids are discussed. The review focuses on the relationship between the structure of the cationic lipid and the transfection activity. The structure is analysed in a modular manner. The hydrophobic domain, the cationic head group, the backbone that acts as a scaffold for the other domains, the linkers between backbone, hydrophobic domain and cationic head group, the polyethyleneglycol chains and the targeting moiety are identified as distinct elements of the cationic lipids used in gene therapy. The main chemical functionalities used to built these domains, as well as overall molecular features such as architecture and geometry, are presented. Studies of structure-activity relationships of each cationic lipid domain, including the authors', and the trends identified by these studies, help furthering the understanding of the mechanism governing the formation and behaviour of cationic liposomes in gene delivery, and therefore the rational design of new improved cationic lipids vectors capable of achieving clinical significance.

  14. Spectral response of magnetic nanofluid to toxic cations

    NASA Astrophysics Data System (ADS)

    Mahendran, V.; Philip, John

    2013-04-01

    We probe the spectral response of a magnetically polarizable nanofluid in the presence of different toxic metal cations. In the presence of cations like Ni2+, Mn2+, Pb2+, and Cd2+, the nanofluid shows large blue shift in the diffracted Bragg peak and a visually perceivable color change due to changes in the interparticle spacing of the self-assembled nano-arrays. The observed spectral response of the nanofluid offers the possibility of rapid and selective detections of cations optically. Because the emulsion used is easy to produce and inexpensive, this approach may find several interesting applications in rapid detection of cations.

  15. Infrared spectroscopic investigations of cationic ethanol, propanol, and butanol

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Harigaya, Hiroyuki; Xie, Min; Takahashi, Kaito; Fujii, Asuka

    2015-11-01

    Infrared spectroscopy of the alcohol cations of ethanol, propanol, and butanol was performed to investigate their structures and hyperconjugation mechanisms. In the ethanol cation, the Csbnd C bond hyperconjugates with the singly occupied molecular orbital (SOMO) at the oxygen atom, so that the Csbnd C bond weakens and the bond length elongates. Multiple hyperconjugations among SOMO, the Csbnd C bond, and the end Csbnd H bond occur in the propanol cation and enhance the acidity of the Csbnd H bond through the delocalization of its bonding σ electron. The butanol cation forms the oxonium-type structure through the proton transfer from the terminal CH bond.

  16. Uniformly cationized protein efficiently reaches the cytosol of mammalian cells.

    PubMed

    Futami, Midori; Watanabe, Yasuyoshi; Asama, Takashi; Murata, Hitoshi; Tada, Hiroko; Kosaka, Megumi; Yamada, Hidenori; Futami, Junichiro

    2012-10-17

    Protein cationization techniques are powerful protein transduction methods for mammalian cells. As we demonstrated previously, cationized proteins with limited conjugation to polyethylenimine have excellent ability to enter into cells by adsorption-mediated endocytosis [Futami, J., et al. (2005) J. Biosci. Bioeng. 99, 95-103]. In this study, we show that proteins with extensive and uniform cationization covering the protein surface reach the cytoplasm and nucleus more effectively than proteins with limited cationic polymers or proteins that are fused to cationic peptides. Although extensive modification of carboxylates results in loss of protein function, chicken avidin retains biotin-binding ability even after extensive amidation of carboxylates. Using this cationized avidin carrier system, the protein transduction ability of variously cationized avidins was investigated using biotinylated protein as a probe. The results revealed that cationized avidins bind rapidly to the cell surface followed by endocytotic uptake. Small amounts of uniformly cationized avidin showed direct penetration into the cytoplasm within a 15 min incubation. This penetration route seemed to be energy dependent and functioned under cellular physiological conditions. A biotinylated exogenous transcription factor protein that penetrated cells was demonstrated to induce target gene expression in living cells.

  17. The formation of singly and doubly cationized oligomers in SIMS

    NASA Astrophysics Data System (ADS)

    Delcorte, A.; Wojciechowski, I.; Gonze, X.; Garrison, B. J.; Bertrand, P.

    2003-01-01

    The cationization of sputtered organic species via metal particle adduction is investigated using poly-4-methylstyrene molecules in combination with Cu, Pd, Ag and Au substrates. Metal-cationization occurs for these four substrates. The cationized molecule yields vary with the considered substrate and they are not correlated with the metal ion yields. In addition, double cationization with two metal particles is observed with a very significant intensity for Cu, Ag and Au supports. We interpret the results with an emission scheme in which excited molecules and metal atoms recombine above the surface and decay via electron emission, thereby locking the complex in the ionic state.

  18. Hydroxide Degradation Pathways for Imidazolium Cations. A DFT Study

    SciTech Connect

    Long, H.; Pivovar, B.

    2014-05-15

    Imidazolium cations are promising candidates as covalently tetherable cations for application in anion exchange membranes. They have generated specific interest in alkaline membrane fuel cell applications where ammonium-based cations have been the most commonly applied but have been found to be susceptible to hydroxide attack. In the search for high stability cations, a detailed understanding of the degradation pathways and reaction barriers is required. In this work, we investigate imidazolium and benzimidazolium cations in the presence of hydroxide using density functional theory calculations for their potential in alkaline membrane fuel cells. Moreover, the dominant degradation pathway for these cations is predicted to be the nucleophilic addition–elimination pathway at the C-2 atom position on the imidazolium ring. Steric interferences, introduced by substitutions at the C-2, C-4, and C-5 atom positions, were investigated and found to have a significant, positive impact on calculated degradation energy barriers. Benzimidazolium cations, with their larger conjugated systems, are predicted to degrade much faster than their imidazolium counterparts. Our results provide important insight into designing stable cations for anion exchange membranes. Some of the molecules studied have significantly increased degradation energy barriers suggesting that they could possess significantly improved (several orders of magnitude) durability compared to traditional cations and potentially enable new applications.

  19. Synthesis of ordered mesoporous crystalline CuS and Ag2S materials via cation exchange reaction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xu, Weiming; Bao, Haifeng; Shi, Yifeng

    2015-02-01

    Cation exchange reaction is a strong tool for the synthesis of new ionic nanomaterials. Most of them are isolated nanoparticles with simple geometric features, such as nanodots, nanorods and nanospheres. In this work, we demonstrated that ordered mesoporous CdS with a complex cubic Ia3d gyroidal 3D bicontinuous porous structure and large particle size can be successfully converted to crystalline CuS and Ag2S materials via cation exchange reaction without destroying the well-defined nanostructure. The change in crystal structure is an important factor for a successful conversion when the reaction is carried out without the presence of a silica template. In addition, the cation exchange reaction is sufficient for a complete compositional conversion, even when the mesostructured CdS precursor is embedded inside a mesoporous silica matrix. Our results indicate that cation exchange reaction may be applied to highly complex nanostructures with extremely large particle sizes.Cation exchange reaction is a strong tool for the synthesis of new ionic nanomaterials. Most of them are isolated nanoparticles with simple geometric features, such as nanodots, nanorods and nanospheres. In this work, we demonstrated that ordered mesoporous CdS with a complex cubic Ia3d gyroidal 3D bicontinuous porous structure and large particle size can be successfully converted to crystalline CuS and Ag2S materials via cation exchange reaction without destroying the well-defined nanostructure. The change in crystal structure is an important factor for a successful conversion when the reaction is carried out without the presence of a silica template. In addition, the cation exchange reaction is sufficient for a complete compositional conversion, even when the mesostructured CdS precursor is embedded inside a mesoporous silica matrix. Our results indicate that cation exchange reaction may be applied to highly complex nanostructures with extremely large particle sizes. Electronic supplementary

  20. Charge is an important determinant of hemodynamic and adverse cardiovascular effects of cationic drugs.

    PubMed

    Pugsley, Michael K; Authier, Simon; Curtis, Michael J

    2015-12-01

    Cationic compounds are diverse and atypical therapeutic substances. In the present study we examined whether a prototypical class effect of cationic drugs in the cardiovascular system exists and whether this might be predictable on the basis of chemistry. The dose-dependent effects of cationic compounds of varying molecular weights and charge were examined on the blood pressure (BP), heart rate (HR) and the ECG in anesthetized rats. The compounds examined were protamine, hexadimethrine, tetraethylammonium (TEA), low molecular weight poly-L-lysine (LMW-PLL) and high molecular weight PLL (HMW-PLL). All of the compounds examined except TEA produced a dose-dependent reduction in BP. No changes occurred in HR even when high doses were administered. The ECG effects of these cationic compounds included a dose-dependent prolongation of the QT interval, especially at higher doses. All compounds transiently decreased the size of the P-wave after i.v. bolus administration whereas only protamine and hexadimethrine prolonged the PR and QRS intervals and only at the highest dose (32 mg/kg) administered. All cationic compounds, except TEA and saline, evoked ventricular premature beats (VPB), and protamine and HMW-PLL also evoked brief episodes of ventricular tachycardia (VT). The incidence and frequency of arrhythmias was not dose-dependent and no animals experienced protracted episodes of arrhythmia incidence. These dose dependent effects of the polycationic compounds tested suggest a collective mechanism of action that relates the effect of charge of the compound to the onset and persistence of observed cardiovascular toxicity, and adverse cardiovascular effect risk appears to be predictable on this basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations

    NASA Astrophysics Data System (ADS)

    Urahata, Sérgio M.; Ribeiro, Mauro C. C.

    2005-01-01

    Ionic dynamics in room temperature molten salts (ionic liquids) containing 1-alkyl-3-methylimidazolium cations is investigated by molecular-dynamics simulations. Calculations were performed with united atom models, which were used in a previous detailed study of the equilibrium structure of ionic liquids [S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 120, 1855 (2004)]. The models were used in a systematic study of the dependency of several single particle time correlation functions on anion size (F-, Cl-, Br-, and PF6-) and alkyl chain length (1-methyl-, 1-ethyl-, 1-butyl-, and 1-octyl-). Despite of large mass and size of imidazolium cations, they exhibit larger mean-square displacement than anions. A further detailed picture of ionic motions is obtained by using appropriate projections of displacements along the plane or perpendicular to the plane of the imidazolium ring. A clear anisotropy in ionic displacement is revealed, the motion on the ring plane and almost perpendicular to the 1-alkyl chain being the less hindered one. Similar projections were performed on velocity correlation functions, whose spectra were used to relate short time ionic rattling with the corresponding long time diffusive regime. Time correlation functions of cation reorientation and dihedral angles of the alkyl chains are discussed, the latter decaying much faster than the former. A comparative physical picture of time scales for distinct dynamical processes in ionic liquids is provided.

  2. Competitive interaction of monovalent cations with DNA from 3D-RISM

    PubMed Central

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site model (3D-RISM) to reproduce preferential interaction parameters determined from ion counting (IC) experiments for mixed alkali chlorides and dsDNA. Calculations agree well with experiment with slight deviations for salt concentrations >200 mM and capture the observed trend where the extent of cation accumulation around the DNA varies inversely with its ionic size. Ion distributions indicate that the smaller, more competitive cations accumulate to a greater extent near the phosphoryl groups, penetrating deeper into the grooves. In accord with experiment, calculated IC profiles do not vary with sequence, although the predicted ion distributions in the grooves are sequence and ion size dependent. Calculations on other nucleic acid conformations predict that the variation in linear charge density has a minor effect on the extent of cation competition. PMID:26304542

  3. Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties.

    PubMed

    Peña-González, Cornelia E; Pedziwiatr-Werbicka, Elzbieta; Shcharbin, Dzmitry; Guerrero-Beltrán, Carlos; Abashkin, Viktar; Loznikova, Svetlana; Jiménez, José L; Muñoz-Fernández, M Ángeles; Bryszewska, Maria; Gómez, Rafael; Sánchez-Nieves, Javier; de la Mata, F Javier

    2017-01-16

    Gold nanoparticles (AuNPs) and polycationic macromolecules are used as gene carriers. Their behaviour is dependent on several factors, such as the size and type of the framework, charge, etc. We have combined both types of systems and prepared AuNPs covered with cationic carbosilane dendrons with the aim to evaluate their biocompatibility. Water soluble dendronized cationic AuNPs were prepared following a straightforward procedure from dendrons, a gold precursor and a reducing agent in water and were characterized by (1)H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), and zeta potential (ZP). The biological properties of dendrons and AuNPs were determined by hemolysis, platelet aggregation and lymphocyte proliferation. These assays reflect modification of dendron properties when covering nanoparticles. For dendrons, hemolysis and platelet aggregation are generation dependent whilst, for AuNPs these properties are related to the bigger size of NPs. On the other hand, none of the systems induced lymphocyte proliferation. Selected cationic dendrons and AuNPs were chosen for gene delivery experiments employing a small interference RNA (siRNA Nef) against human immunodeficiency virus (HIV).

  4. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr

    2017-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  5. On the cation dependence of interlamellar and interparticular water and swelling in smectite clays.

    PubMed

    Salles, F; Bildstein, O; Douillard, J M; Jullien, M; Raynal, J; Van Damme, H

    2010-04-06

    The osmotic character of long-range interlamellar swelling in smectite clays is widely accepted and has been evidenced in the interlayer space by X-ray diffraction. Such a behavior in mesopores was not experimentally confirmed until the determination of the mesopore size distribution in Na-montmorillonite prepared from MX80 bentonite using thermoporometry experiments. This is confirmed here for other montmorillonite samples where the interlayer cations are alkaline and Ca(2+) cations. The nature of the interlayer cation is found as strongly influencing the behavior of the size and the swelling of mesopores. These results are supported by the BJH (Barrett, Joyner and Halenda) pore radius values issued from the nitrogen adsorption-desorption isotherms at the dry state. Thermoporometry results as a function of relative humidity ranging from 11% to 97% have shown an evolution of the mesopore sizes for a purified Na-montmorillonite. New thermoporometry data are presented in this article and confirm that the interparticle spaces in K-, Cs-, or Ca-montmorillonites are not strongly modified for all the range of relative humidity: the swelling is not observed or is strongly limited. It appears in contrast that only Li- and Na-montmorillonites undergo a mesopore swelling, distinct from the interlayer swelling. More generally, our results confirm the possibility to use thermoporometry or differential scanning calorimetry to study the structure and the evolution of swelling materials in wetting conditions such as natural clays or biological cells. In this paper, we describe the different key steps of the hydration of swelling clays such as montmorillonites saturated with alkaline cations. Using thermoporometry results combined with X-ray diffraction data, we distinguish the evolution of the porosity at the two different scales and propose a sequence of hydration dependent on the interlayer cation. From this study, it is shown that the interlayer spaces are not completely

  6. Cation Distributions and Microwave Dielectric Properties of Spinel-Structured MgGa2O4 Ceramics

    NASA Astrophysics Data System (ADS)

    Kan, Akinori; Moriyama, Tohru; Takahashi, Susumu; Ogawa, Hirotaka

    2013-09-01

    The Mg2+ and Ga3+ cation distributions in the MgGa2O4 lattice were characterized by the refinement of the crystal structure and the firing temperature dependence of microwave dielectric properties was described in this study. The crystal structure refinement of MgGa2O4 ceramics fired at different temperatures indicated that the degree of inversion x, which represents the Mg2+ and Ga3+ cation distributions in the 8(a) and 16(d) sites in (Mg1-xGax)[MgxGa2-x]O4, slightly decreases from 0.88 to 0.84 with increasing firing temperature from 1500 to 1600 °C. This implies that the Mg2+ cation preferentially occupies the 8(a) site, i.e., the tetrahedral site, with increasing firing temperature. The dielectric constant (ɛr) of the MgGa2O4 ceramics fired above 1520 °C was almost constant (ɛr = 9.2), whereas their Q.f significantly increased from 92,000 to 298,000 GHz, depending on the firing temperature. Such an increase in the Q.f may be related to the Mg2+ and Ga3+ cation distributions in the MgGa2O4 lattice.

  7. Structural and cytotoxic studies of cationic thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai

    2017-06-01

    Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.

  8. Structures of small bismuth cluster cations

    NASA Astrophysics Data System (ADS)

    Kelting, Rebecca; Baldes, Alexander; Schwarz, Ulrike; Rapps, Thomas; Schooss, Detlef; Weis, Patrick; Neiss, Christian; Weigend, Florian; Kappes, Manfred M.

    2012-04-01

    The structures of bismuth cluster cations in the range between 4 and 14 atoms have been assigned by a combination of gas phase ion mobility and trapped ion electron diffraction measurements together with density functional theory calculations. We find that above 8 atoms the clusters adopt prolate structures with coordination numbers between 3 and 4 and highly directional bonds. These open structures are more like those seen for clusters of semiconducting-in-bulk elements (such as silicon) rather than resembling the compact structures typical for clusters of metallic-in-bulk elements. An accurate description of bismuth clusters at the level of density functional theory, in particular of fragmentation pathways and dissociation energetics, requires taking spin-orbit coupling into account. For n = 11 we infer that low energy isomers can have fragmentation thresholds comparable to their structural interconversion barriers. This gives rise to experimental isomer distributions which are dependent on formation and annealing histories.

  9. Retention of Cationic Starch onto Cellulose Fibres

    NASA Astrophysics Data System (ADS)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  10. Electrodialytic matrix isolation for metal cations.

    PubMed

    Ohira, Shin-Ichi; Hiroyama, Yuri; Nakamura, Koretaka; Koda, Takumi; Dasgupta, Purnendu K; Toda, Kei

    2015-01-01

    Electrodialytic ion transfer was studied as a matrix isolation tool for heavy metal determinations. An ion transfer device (ITD) was used for the transfer of heavy metal cations. Under optimized flow rates applied voltage and receptor composition, heavy metal ions were quantitatively transferred at concentrations spanning µg L(-1) to mg L(-1). As long as the sample pH was acidic, there was no significant sample pH effect on the transfer efficiencies. Significant salt concentrations (>1 mM NaCl), however, decreased the transfer efficiency. This could be ameliorated (up to 5 mM NaCl) by transient instead of continuous sample introduction. The device was applied to the determination of Fe, Cu and Zn in equine and bovine serum; the reproducibility was better than conventional digestion method.

  11. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  12. Computational study of cation substitutions in apatites

    SciTech Connect

    Tamm, Toomas . E-mail: tamm@yki.ttu.ee; Peld, Merike

    2006-05-15

    Density-functional theory plane-wave modeling of fluor- and hydroxyapatites has been performed, where one or two calcium ions per unit cell were replaced with cadmium or zinc cations. It was found that cadmium ions favor Ca(1) positions in fluorapatites and Ca(2) positions in hydroxyapatites, in agreement with experiment. A similar pattern is predicted for zinc substitutions. In the doubly substituted cases, where only hydroxyapatites were modeled, a preference for the substituting ions to be located in Ca(2) position was also observed. Displacement of the hydroxide ions from their symmetrical positions on the hexagonal axis can be used to explain the preferred configurations of substituting ions around the axis. -- Deformation of the hydroxide ion chain due to substitutions around the ion channel in substituted hydroxyapatites.

  13. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    PubMed

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (Kd). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (Kd) decreasing as follows: Kd(Na(+)) > Kd(NH4(+)) ≥ Kd(K(+)) > Kd(Ca(2+)) ≥ Kd(Mg(2+)) > Kd(Al(3+)). This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium Kd values, allowed for

  14. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hong, Areum; Lee, Hong Hee; Heo, Chae Eun; Cho, Yunju; Kim, Sunghwan; Kang, Dukjin; Kim, Hugh I.

    2017-04-01

    With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations.

  15. Surface-immobilized polyampholytic silver nanoparticles for SERS detection of cations and anions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tan, Siliu; Pristinski, Denis; Sukhishvili, Svetlana; Du, Henry

    2005-11-01

    A new procedure was used for the preparation of stable silver colloids by reduction of silver nitrate with (N (2 hydroxyethyl) piperazine N'-2 ethanesulfonic acid (HEPES). The nanoparticle size and the surface charge could be tuned by changing the initial pH of a HEPES solution. Rhodamine 6G and NaSCN were used respectively as model cationic and anionic analytes to study the effect of surface charge of the silver colloids on detection sensitivity. The silver colloids exhibit SERS activity comparable to those obtained by the popular Lee-Meisel approach. The combination of the high SERS sensitivity and the ability to control the nature of surface charge renders HEPES-reduced polyampholytic silver colloids a potentially powerful platform for sensing and detection of both cations and anions in aqueous solutions.

  16. [Separation and purification of lysozyme from egg white by high performance cation-exchange chromatography].

    PubMed

    Li, Rong; Chen, Guo-liang

    2002-05-01

    A new method used to separate and purify lysozyme from egg white by high performance cation-exchange chromatography has been established. The process conditions for purifying lysozyme were also discussed in detail. The procedure involved that homogenization of the egg white sample, preliminary purification with sodium chloride, and chromatographic separation by the weak cation exchange column (XIDACE-WCX). The experimental results showed that the purified lysozyme and other impurity proteins were completely separated. By using bioactivity assay, the recovery of lysozyme was 107%, and the specific activity was 15,467 U/mg through the column. Its purity was raised 5.6-fold. The collected fraction with activity was detected by size-exclusion chromatography (SEC). The purified lysozyme was homogeneous. Compared with the traditional soft-based low pressure ion-exchange chromatography, the developed method is rapid and effective.

  17. Resonance light scattering method for the determination of DNA with cationic methacrylate based polymer nanoparticle probes.

    PubMed

    Zou, Qi-Chao; Zhang, Jin-Zhi; Chai, Shi-Gan

    2011-11-01

    Narrowly distributed cationic poly (methyl methacrylate-co-diacetone acrylamide) (P(MMA-DAAM)) nanoparticles were successfully prepared by microemulsion polymerization. Photon correlation spectrometer (PCS) measurement and transmission electron microscope (TEM) observation revealed that z-average particle size of P(MMA-DAAM) is ∼27.5 nm. It was found that these cationic nanoparticles interact with DNA through electrostatic interaction to form P(MMA-DAAM)-DNA complex, which significantly enhances the resonance light scattering (RLS) signal. Therefore, a novel method using this polymer nanoparticle as a new probe for the detection of DNA by RLS technique is developed in this paper. The results showed this method is very convenient, sensitive, and reproducible.

  18. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    NASA Astrophysics Data System (ADS)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  19. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hong, Areum; Lee, Hong Hee; Heo, Chae Eun; Cho, Yunju; Kim, Sunghwan; Kang, Dukjin; Kim, Hugh I.

    2016-12-01

    With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations.

  20. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    PubMed Central

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-01-01

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting. PMID:27698348

  1. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes.

    PubMed

    Bruxel, Fernanda; Vilela, José Mario Carneiro; Andrade, Margareth Spangler; Malachias, Ângelo; Perez, Carlos A; Magalhães-Paniago, Rogério; Oliveira, Mônica Cristina; Teixeira, Helder F

    2013-12-01

    Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added.

  2. Controlling the actuation properties of MXene paper electrodes upon cation intercalation

    SciTech Connect

    Come, Jeremy E.; Black, Jennifer M.; Naguib, Michael; Lukatskaya, Maria R.; Beidaghi, Majid; Wesolowski, David J.; Gogotsi, Yury; Rondinone, Adam J.; Balke, Nina; Kalinin, Sergei V.

    2015-08-05

    Atomic force microscopy was used to monitor the macroscopic deformation in a delaminated Ti₃C₂ paper electrode in-situ, during charge/discharge in a variety of aqueous electrolytes to examine the effect of the cation intercalation on the electrochemical behavior and mechanical response. The results show a strong dependence of the electrode deformation on cation size and charge. The electrode undergoes a large contraction during Li⁺, Na⁺ or Mg²⁺ intercalation, differentiating the Ti₃C₂ paper from conventional electrodes where redox intercalation of ions (e.g. Li⁺) into the bulk phase (e.g. graphite, silicon) results in volumetric expansion. This feature may explain the excellent rate performance and cyclability reported for MXenes. We also demonstrated that the variation of the electromechanical contraction can be easily adjusted by electrolyte exchange, and shows interesting characteristics for the design of actuators based on 2D metal carbides.

  3. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoliang; Chen, Cheng; Liu, Zhaohui; Liu, Pengxin; Zheng, Nanfeng

    2011-04-01

    etching of solid SiO2 accelerated by cationic surfactant followed by the redeposition of dissolved silica species directed by cationic surfactant is proposed. Furthermore, the strategy can be extended as a general strategy to transform silica-coated composite materials into yolk-shell structures with either wormhole-like or oriented mesoporous shell. Electronic supplementary information (ESI) available: Experimental procedures for sSiO2 with different sizes, α-Fe2O3@HMSS-W, α-Fe2O3@HMSS-O, Au@HMSS-W, and Au@HMSS-O; SEM images of HMSS-W; the histogram of size distribution of sSiO2 and HMSS-W; TEM images and the corresponding pore size distributions of HMSS-W obtained by using the CTAC/C12TAB; TEM images of HMSS-W obtained by using the sSiO2 with particle sizes of 470 nm; TEM images of the product obtained by using the 10 mg mL-1CTAB in the synthetic procedure of HMSS-W; SEM images of HMSS-O; TEM images of Au@SiO2, Au@HMSS-W, Au@SiO2@CTAB/SiO2, and Au@HMSS-O. See DOI: 10.1039/c0nr00893a

  4. Investigation of DNA condensing properties of amphiphilic triblock cationic polymers by atomic force microscopy.

    PubMed

    Lidgi-Guigui, Nathalie; Guis, Christine; Brissault, Blandine; Kichler, Antoine; Leborgne, Christian; Scherman, Daniel; Labdi, Sid; Curmi, Patrick A

    2010-11-16

    Introduction of nucleic acids into cells is an important biotechnology research field which also holds great promise for therapeutic applications. One of the key steps in the gene delivery process is compaction of DNA into nanometric particles. The study of DNA condensing properties of three linear cationic triblock copolymers poly(ethylenimine-b-propylene glycol-b-ethylenimine), namely, LPEI(50)-PPG(36)-LPEI(50), LPEI(19)-PPG(36)-LPEI(19), and LPEI(14)-PPG(68)-LPEI(14), indicates that proper DNA condensation is driven by both the charge and the size of the respective cationic hydrophilic linear polyethylenimine (LPEI) and neutral hydrophobic poly(propylene glycol) (PPG) parts. Atomic force microscopy was used to investigate the interactions of the triblock copolymers with plasmid DNA at the single molecule level and to enlighten the mechanism involved in DNA condensation.

  5. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    NASA Astrophysics Data System (ADS)

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-10-01

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  6. Tuning the LSPR in copper chalcogenide nanoparticles by cation intercalation, cation exchange and metal growth.

    PubMed

    Wolf, Andreas; Kodanek, Torben; Dorfs, Dirk

    2015-12-14

    Localized surface plasmon resonances (LSPRs) of degenerately doped copper chalcogenide nanoparticles (NPs) (Cu2-xSe berzelianite and Cu1.1S covellite) have been modified applying different methods. The comparison of the cation exchange (Cu2-xSe) and intercalation (Cu1.1S) of Ag(I) and Cu(I) has shown that Ag(I) causes a non reversible, air stable shift of the LSPR. This was compared to the influence of Au(I) cation exchange into Cu1.1S platelets under the formation of Cu1.1S-Au2S mixed nanoplatelets. Furthermore, we show the growth of Au domains on Cu2-xSe, and discuss the interaction of the two plasmonic parts of the obtained dual plasmonic Cu2-xSe-Au hybrid particles.

  7. Crystal structure of channelrhodopsin, a light-gated cation channel - all cations lead through the monomer.

    PubMed

    Kato, Hideaki E; Nureki, Osamu

    2013-01-01

    Channelrhodopsin (ChR) is a light-gated cation channel derived from green algae. Since the inward flow of cations triggers the neuron firing, neurons expressing ChRs can be optically controlled even within freely moving mammals. Although ChR has been broadly applied to neuro-science research, little is known about its molecular mechanisms. We determined the crystal structure of chimeric ChR at 2.3 Å resolution and revealed its molecular architecture. The integration of structural, electrophysio-logical, and computational analyses provided insight into the molecular basis for the channel function of ChR, and paved the way for the principled design of ChR variants with novel properties.

  8. Cation-Dependent Hierarchical Assembly of U60 Nanoclusters into Macro-Ion Assemblies Imaged via Cryogenic Transmission Electron Microscopy.

    PubMed

    Soltis, Jennifer A; Wallace, Christine M; Penn, R Lee; Burns, Peter C

    2016-01-13

    Self-assembly of ([UO2(O2)OH]60)(60-) (U60), an actinide polyoxometalate with fullerene topology, can be induced by the addition of mono- and divalent cations to aqueous U60 solutions. Dynamic light scattering and small-angle X-ray scattering lend important insights into assembly in this system, but direct imaging of U60 and its assemblies via transmission electron microscopy (TEM) has remained an elusive goal. In this work, we used cryogenic TEM to image U60 and secondary and tertiary assemblies of U60 to characterize the size, morphology, and rate of formation of the secondary and tertiary structures. The kinetics and final morphologies of the secondary and tertiary structures strongly depend on the cation employed, with monovalent cations (Na(+) and K(+)) leading to the highest rates and largest secondary and tertiary structures.

  9. Structural isomerization of the gas-phase 2-norbornyl cation revealed with infrared spectroscopy and computational chemistry.

    PubMed

    Mosley, Jonathan D; Young, Justin W; Agarwal, Jay; Schaefer, Henry F; Schleyer, Paul v R; Duncan, Michael A

    2014-06-02

    In an attempt to produce the 2-norbornyl cation (2NB(+)) in the gas phase, protonation of norbornene was accomplished in a pulsed discharge ion source coupled with a supersonic molecular beam. The C7H11(+) cation was size-selected in a time-of-flight mass spectrometer and investigated with infrared laser photodissociation spectroscopy using the method of "tagging" with argon. The resulting vibrational spectrum, containing sharp bands in the C-H stretching and fingerprint regions, was compared to that predicted by computational chemistry. However, the measured spectrum did not match that of 2NB(+), prompting a detailed computational study of other possible isomers of C7H11(+). This study finds five isomers more stable than 2NB(+). The spectrum obtained corresponds to the 1,3-dimethylcyclopentenyl cation, the global minimum-energy structure for C7H11(+), which is produced through an unanticipated ring-opening rearrangement path.

  10. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    PubMed

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000.

  11. Gas-phase reactions of polycyclic aromatic hydrocarbon cations and their nitrogen-containing analogs with H atoms

    SciTech Connect

    Demarais, Nicholas J.; Yang, Zhibo; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Zhibo.Yang@ou.edu E-mail: Theodore.Snow@Colorado.edu

    2014-03-20

    We have studied the reactions of polycyclic aromatic hydrocarbon cations and their nitrogen-containing analogs with H atoms. Reaction rate constants are measured at 300 K using a flowing afterglow-selected ion flow tube. We have implemented the laser induced acoustic desorption technique to allow the study of large, non-volatile species in the gas phase. The extension of this work from previous studies shows that the reactivity of polycyclic aromatic hydrocarbon cations with H atoms reaches a constant value for large cations. There is a small difference in reactivity when comparing molecules of different size and geometry; however, no difference in reactivity was found when nitrogen was incorporated into the ring.

  12. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection.

    PubMed

    Ong, Zhan Yuin; Yang, Chuan; Cheng, Wei; Voo, Zhi Xiang; Chin, Willy; Hedrick, James L; Yang, Yi Yan

    2017-05-01

    The degree of hydrophobicity in cationic polymers plays an important but often underappreciated role in the safety and efficacy of gene delivery processes. In order to further elucidate structure-activity relationships of biodegradable cationic poly(carbonate) gene carriers, we synthesized a series of narrowly dispersed homo-polymers via metal-free organocatalytic living ring-opening polymerization (ROP) of cyclic carbonate monomers bearing either alkyl (propyl, hexyl or nonyl) or 4-methyl benzyl halide side chains. The polymers were then quaternized using bis-tertiary amines to install both quaternary ammoniums and tertiary amines for DNA binding and endosomal escape, respectively. Among the polymers with similar molecular lengths and charge densities, it was found that an increase in side chain alkyl spacer length from 3 to 6 carbons significantly enhanced cellular uptake and luciferase gene expression in HepG2 and HeLa cell lines without causing overt hemolysis and cytotoxicity. A further increase of side chain alkyl length to 9 carbons, however, led to a drastic decline in gene expression due to increased cellular toxicity, which was correlated with an increased disruption and lysis of red blood cell membranes. Interestingly, the incorporation of an aromatic 4-methyl benzyl spacer increased DNA binding strength, reduced particle sizes of resultant DNA complexes, and enhanced cellular uptake, leading to improved luciferase gene expression, albeit with higher levels of hemolysis and cytotoxicity. Taken together, the findings of this study demonstrate that a delicate balance between cationic charge density and hydrophobicity could be achieved by utilizing a hexyl spacer in the side chains of cationic poly(carbonates), hence providing insights on the future development of non-viral cationic polymeric gene delivery systems. Owing to their ease of synthesis and well-controlled polymerization, biodegradable cationic poly(carbonates) have emerged as a highly promising

  13. Zhang-Rice physics and anomalous copper states in A-site ordered perovskites.

    PubMed

    Meyers, D; Mukherjee, Swarnakamal; Cheng, J-G; Middey, S; Zhou, J-S; Goodenough, J B; Gray, B A; Freeland, J W; Saha-Dasgupta, T; Chakhalian, J

    2013-01-01

    In low dimensional cuprates several interesting phenomena, including high Tc superconductivity, are deeply connected to electron correlations on Cu and the presence of the Zhang-Rice (ZR) singlet state. Here, we report on direct spectroscopic observation of the ZR state responsible for the low-energy physical properties in two isostructural A-site ordered cuprate perovskites, CaCu(3)Co(4)O(12) and CaCu(3)Cr(4)O(12) as revealed by resonant soft x-ray absorption spectroscopy on the Cu L(3,2)- and O K-edges. These measurements reveal the signature of Cu in the high-energy 3+ (3d(8)), the typical 2+ (3d(9)), as well as features of the ZR singlet state (i.e., 3d(9)L, L denotes an oxygen hole). First principles GGA + U calculations affirm that the B-site cation controls the degree of Cu-O hybridization and, thus, the Cu valency. These findings introduce another avenue for the study and manipulation of cuprates, bypassing the complexities inherent to conventional chemical doping (i.e. disorder) that hinder the relevant physics.

  14. Zhang-Rice physics and anomalous copper states in A-site ordered perovskites

    PubMed Central

    Meyers, D.; Mukherjee, Swarnakamal; Cheng, J.-G.; Middey, S.; Zhou, J.-S.; Goodenough, J. B.; Gray, B. A.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J.

    2013-01-01

    In low dimensional cuprates several interesting phenomena, including high Tc superconductivity, are deeply connected to electron correlations on Cu and the presence of the Zhang-Rice (ZR) singlet state. Here, we report on direct spectroscopic observation of the ZR state responsible for the low-energy physical properties in two isostructural A-site ordered cuprate perovskites, CaCu3Co4O12 and CaCu3Cr4O12 as revealed by resonant soft x-ray absorption spectroscopy on the Cu L3,2- and O K-edges. These measurements reveal the signature of Cu in the high-energy 3+ (3d8), the typical 2+ (3d9), as well as features of the ZR singlet state (i.e., 3d9L, L denotes an oxygen hole). First principles GGA + U calculations affirm that the B-site cation controls the degree of Cu-O hybridization and, thus, the Cu valency. These findings introduce another avenue for the study and manipulation of cuprates, bypassing the complexities inherent to conventional chemical doping (i.e. disorder) that hinder the relevant physics. PMID:23666066

  15. Zhang-Rice physics and anomalous copper states in A-site ordered perovskites

    NASA Astrophysics Data System (ADS)

    Meyers, D.; Mukherjee, Swarnakamal; Cheng, J.-G.; Middey, S.; Zhou, J.-S.; Goodenough, J. B.; Gray, B. A.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J.

    2013-05-01

    In low dimensional cuprates several interesting phenomena, including high Tc superconductivity, are deeply connected to electron correlations on Cu and the presence of the Zhang-Rice (ZR) singlet state. Here, we report on direct spectroscopic observation of the ZR state responsible for the low-energy physical properties in two isostructural A-site ordered cuprate perovskites, CaCu3Co4O12 and CaCu3Cr4O12 as revealed by resonant soft x-ray absorption spectroscopy on the Cu L3,2- and O K-edges. These measurements reveal the signature of Cu in the high-energy 3+ (3d8), the typical 2+ (3d9), as well as features of the ZR singlet state (i.e., 3d9L, L denotes an oxygen hole). First principles GGA + U calculations affirm that the B-site cation controls the degree of Cu-O hybridization and, thus, the Cu valency. These findings introduce another avenue for the study and manipulation of cuprates, bypassing the complexities inherent to conventional chemical doping (i.e. disorder) that hinder the relevant physics.

  16. Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography.

    PubMed

    Madadkar, Pedram; Sadavarte, Rahul; Butler, Michael; Durocher, Yves; Ghosh, Raja

    2017-06-15

    Cation exchange (CEX) chromatography is widely used for large-scale separation of monoclonal antibody (mAb) aggregates. The aggregates bind more strongly to CEX media and hence elute after the monomeric mAb in a salt gradient. However, monomer-aggregate resolution that is typically obtained is poor, which results in low product recovery. In the current study we address this challenge through the use of cation-exchange laterally-fed membrane chromatography (LFMC). Three different LFMC devices, each containing a bed of strong cation-exchange (S) membranes were used for preparative-scale removal of mAb aggregates. Trastuzumab (IgG1) biosimilar derived from human embryonic kidney 293 (293) cells was used as the primary model mAb in our study. The other mAbs investigated were Chinese hamster ovary (CHO) cell line derived Alemtuzumab (Campath-1H) and a heavy chain chimeric mAb EG2-hFc. In each of these case-studies, aggregates were well-resolved from the respective monomer. The separated and collected monomer and aggregate fractions were analyzed using techniques such as hydrophobic interaction membrane chromatography (HIMC), native polyacrylamide gel electrophoresis (or PAGE), and size-exclusion high-performance liquid chromatography (SE-HPLC). The high efficiency of separation obtained in each case was due to a combination of the small membrane pore size (3-5μm), and the use of LFMC technology, which has been shown to be suitable for high-resolution, multi-component protein separations. Also, the LFMC based separation processes reported in this study were more than an order of magnitude faster than equivalent resin-based, cation exchange chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 °C

    NASA Astrophysics Data System (ADS)

    Lee, Song Hi; Rasaiah, Jayendran C.

    1994-10-01

    We describe a series of molecular dynamics simulations performed on model cation-water systems at 25 °C representing the behavior of Li+, Na+, K+, Rb+, and Cs+ in an electric field of 1.0 V/nm and in its absence. The TIP4P model was used for water and TIPS potentials were adapted for the ion-water interactions. The structure of the surrounding water molecules around the cations was found to be independent of the applied electric field. Some of the dynamic properties, such as the velocity and force autocorrelation functions of the cations, are also field independent. However, the mean-square displacements of the cations, their average drift velocities, and the distances traveled by them are field dependent. The mobilities of the cations calculated directly from the drift velocity or the distance traveled by the ion are in good agreement with each other and they are in satisfactory agreement with the mobilities determined from the mean-square displacement and the velocity autocorrelation function in the absence of the field. They also show the same trends with ionic radii that are observed experimentally; the magnitudes are, however, smaller than the experimental values in real water by almost a factor of 2. It is found that the water molecules in the first solvation shell around the small Li+ ion are stuck to the ion and move with it as an entity for about 190 ps, while the water molecules around the Na+ ion remain for 35 ps, and those around the large cations stay for 8-11 ps before significant exchange with the surroundings occurs. The picture emerging from this analysis is that of a solvated cation whose mobility is determined by its size as well as the static and dynamic properties of its solvation sheath and the surrounding water. The classical solventberg model describes the mobility of Li+ ions in water adequately but not those of the other ions.

  18. U(VI) uranyl cation-cation interactions in framework germanates.

    PubMed

    Morrison, Jessica M; Moore-Shay, Laura J; Burns, Peter C

    2011-03-21

    The isomorphous compounds NH(4)[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (1), K[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (2), Li(3)O[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (3), and Ba[(UO(6))(2)(UO(2))(9)(GeO(4))(2)] (4) were synthesized by hydrothermal reaction at 220 °C. The structures were determined using single crystal X-ray diffraction and refined to R(1) = 0.0349 (1), 0.0232 (2), 0.0236 (3), 0.0267 (4). Each are trigonal, P(3)1c. 1: a = 10.2525(5), c = 17.3972(13), V = 1583.69(16) Å(3), Z = 2; 2: a = 10.226(4), c = 17.150(9), V = 1553.1(12) Å(3), Z = 2; 3: a = 10.2668(5), c = 17.0558(11), V = 1556.94(15) Å(3), Z = 2; 4: a = 10.2012(5), c = 17.1570(12), V = 1546.23(15) Å(3), Z = 2. There are three symmetrically independent U sites in each structure, two of which correspond to typical (UO(2))(2+) uranyl ions and the other of which is octahedrally coordinated by six O atoms. One of the uranyl ions donates a cation-cation interaction, and accepts a different cation-cation interaction. The linkages between the U-centered polyhedra result in a relatively dense three-dimensional framework. Ge and low-valence sites are located within cavities in the framework of U-polyhedra. Chemical, thermal, and spectroscopic characterizations are provided.

  19. Organic cation rhodamines for screening organic cation transporters in early stages of drug development.

    PubMed

    Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U

    The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {Vmax=14.08±2.074, Km=1821±380.4 (rhodamine-B); Vmax=6.555±0.4106, Km=1353±130.4 (rhodamine-123) and Vmax=0.3056±0.01402, Km=702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations.

    PubMed Central

    Dani, J A

    1986-01-01

    Many ion channels have wide entrances that serve as transition zones to the more selective narrow region of the pore. Here some physical features of these vestibules are explored. They are considered to have a defined size, funnel shape, and net-negative charge. Ion size, ionic screening of the negatively charged residues, cation binding, and blockage of current are analyzed to determine how the vestibules influence transport. These properties are coupled to an Eyring rate theory model for the narrow length of the pore. The results include the following: Wide vestibules allow the pore to have a short narrow region. Therefore, ions encounter a shorter length of restricted diffusion, and the channel conductance can be greater. The potential produced by the net-negative charge in the vestibules attracts cations into the pore. Since this potential varies with electrolyte concentration, the conductance measured at low electrolyte concentrations is larger than expected from measurements at high concentrations. Net charge inside the vestibules creates a local potential that confers some cation vs. anion, and divalent vs. monovalent selectivity. Large cations are less effective at screening (diminishing) the net-charge potential because they cannot enter the pore as well as small cations. Therefore, at an equivalent bulk concentration the attractive negative potential is larger, which causes large cations to saturate sites in the pore at lower concentrations. Small amounts of large or divalent cations can lead to misinterpretation of the permeation properties of a small monovalent cation. PMID:2421791

  1. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  2. Effects of cationic hydroxyethyl cellulose on glucose tolerance and obesity

    USDA-ARS?s Scientific Manuscript database

    Cholestyramine is a cationic polymer prescribed to lower cholesterol in humans. We investigated the effects of cationic hydroxyethyl cellulose (cHEC) on weight loss and metabolic disorders associated with obesity using both hamster and diet-induced obese mouse models. Golden Syrian hamsters and ob...

  3. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    DOEpatents

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  4. Cation and anion sequences in dark-adapted Balanus photoreceptor

    PubMed Central

    1977-01-01

    Anion and cation permeabilities in dark-adapted Balanus photoreceptors were determined by comparing changes in the membrane potential in response to replacement of the dominant anion (Cl-) or cation (Na+) by test anions or cations in the superfusing solution. The anion permeability sequence obtained was PI greater than PSO4 greater than PBr greater than PCl greater than Pisethionate greater than Pmethanesulfonate. Gluconate, glucuronate, and glutamate generally appeared more permeable and propionate less permeable than Cl-. The alkali-metal cation permeability sequence obtained was PK greater than PRb greater than PCx greater than PNa approximately PLi. This corresponds to Eisenman's IV which is the same sequencethat has been obtained for other classes of nerve cells in the resting state. The values obtained for the permeability ratios of the alkali-metal cations are considered to be minimal. The membrane conductance measured by passing inward current pulses in the different test cations followed the sequence, GK greater than GRb greater than GCs greater than GNa greater than GLi. The conductance ratios obtained for a full substitution of the test cation agreed quite well with permeability ratios for all the alkali-metal cations except K+ which was generally higher. PMID:199688

  5. Cationized milled pine bark as an adsorbent for orthophosphate anions

    Treesearch

    Mandla A. Tshabalala; K.G. Karthikeyan; D. Wang

    2004-01-01

    More efficient adsorption media are needed for removing dissolved phosphorus in surface water runoff. We studied the use of cationized pine bark as a sorbent for dissolved phosphorus in water. Cationized pine bark was prepared by treating extracted milled pine bark with polyallylamine hydrochloride (PAA HCl) and epichlorohydrin (ECH) in aqueous medium. Attachment of...

  6. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  7. Modification of Wyoming montmorillonite surfaces using a cationic surfactant.

    PubMed

    Xi, Yunfei; Frost, Ray L; He, Hongping; Kloprogge, Theo; Bostrom, Thor

    2005-09-13

    Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.

  8. Comprehensive study of tartrazine/cationic surfactant interaction.

    PubMed

    Shahir, Afshin Asadzadeh; Javadian, Soheila; Razavizadeh, Bi Bi Marzieh; Gharibi, Hussein

    2011-12-15

    Interaction of a food dye, tartrazine, with some cationic conventional and gemini surfactants, tetradecyltrimethylammonium bromide (TTAB), N,N'-ditetradecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (14,4,14), and N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (12,4,12), were first investigated comprehensively employing conductometry, tensiometry, and UV-visible spectroscopy. Tartrazine was found to behave in the same manner as aromatic counterions. The formation of ion pairs reflected as a considerable increase of the surfactant efficiency in tensiometry plots and their stoichiometry were determined by Job's method of continuous variations. For the tartrazine/TTAB system, nonionic DS(3), ionic DS(2-), and/or DS(2)(-) ion pairs, their small premicelles, and tartrazine-rich micelles were constituted as well as dye-containing TTAB-rich micelles. Insoluble J-aggregates of DS(-) ion pairs and cylindrical surfactant-rich micelles were also formed in tartrazine/gemini surfactant systems and recognized by transmission electron microscopy. The zeta potential and the size of the aggregates were determined using dynamic light scattering and confirmed the suggested models for the processes happening in each system. Cyclic voltammetry was applied successfully to track all of these species using tartrazine's own reduction peak current for the first time.

  9. 40 CFR 60.4805 - What is a siting analysis?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such alternatives, the analysis may consider costs, energy impacts, nonair environmental impacts, or... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage... siting analysis must consider air pollution control alternatives that minimize, on a site-specific...

  10. 40 CFR 60.2895 - What is a siting analysis?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... health or the environment. In considering such alternatives, you may consider costs, energy impacts... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis § 60.2895 What is a siting analysis? (a) The siting analysis must consider air pollution control...

  11. 40 CFR 60.4805 - What is a siting analysis?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such alternatives, the analysis may consider costs, energy impacts, nonair environmental impacts, or... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage... siting analysis must consider air pollution control alternatives that minimize, on a site-specific...

  12. 40 CFR 60.2050 - What is a siting analysis?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Commercial and... alternatives that minimize, on a site-specific basis, to the maximum extent practicable, potential risks to public health or the environment. In considering such alternatives, the analysis may consider...

  13. 40 CFR 60.4805 - What is a siting analysis?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such alternatives, the analysis may consider costs, energy impacts, nonair environmental impacts, or... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage... siting analysis must consider air pollution control alternatives that minimize, on a site-specific...

  14. 40 CFR 60.2050 - What is a siting analysis?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Commercial and... alternatives that minimize, on a site-specific basis, to the maximum extent practicable, potential risks to public health or the environment. In considering such alternatives, the analysis may consider...

  15. 40 CFR 60.2895 - What is a siting analysis?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... health or the environment. In considering such alternatives, you may consider costs, energy impacts... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Other Solid... What is a siting analysis? (a) The siting analysis must consider air pollution control...

  16. 40 CFR 60.2895 - What is a siting analysis?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... health or the environment. In considering such alternatives, you may consider costs, energy impacts... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Other Solid... What is a siting analysis? (a) The siting analysis must consider air pollution control...

  17. 40 CFR 60.4805 - What is a siting analysis?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such alternatives, the analysis may consider costs, energy impacts, nonair environmental impacts, or... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage... siting analysis must consider air pollution control alternatives that minimize, on a site-specific...

  18. 40 CFR 60.2895 - What is a siting analysis?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... health or the environment. In considering such alternatives, you may consider costs, energy impacts... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis § 60.2895 What is a siting analysis? (a) The siting analysis must consider air pollution control...

  19. 40 CFR 60.1115 - What is a siting analysis?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a siting analysis? 60.1115 Section 60.1115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Preconstruction Requirements: Siting Analysis...

  20. 40 CFR 60.2895 - What is a siting analysis?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a siting analysis? 60.2895 Section 60.2895 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis § 60.2895...

  1. 40 CFR 60.1115 - What is a siting analysis?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a siting analysis? 60.1115 Section 60.1115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Modification or Reconstruction is Commenced After June 6, 2001 Preconstruction Requirements: Siting Analysis...

  2. Handle with CARE: A Site-Based Character Development Project.

    ERIC Educational Resources Information Center

    Theel, Ronald K.

    Van Duyn Elementary School (Syracuse, New York) implemented a site-based project to develop student character. The neighborhood is a racially mixed, stable, private home community with 58 percent of students eligible for free or reduced price lunches. The school's objectives as part of a shared decision making, pilot school process were to have…

  3. 12. VIEW OF A SITE RETURN WEAPONS COMPONENT. AFTER SEGREGATION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF A SITE RETURN WEAPONS COMPONENT. AFTER SEGREGATION, PLUTONIUM MATERIALS WERE EITHER RETURNED TO THE BUILDING 776 FOUNDRY WHERE THEY WERE CAST INTO FEED INGOTS, OR UNDERWENT CHEMICAL RECOVERY FOR PURIFICATION. (8/7/62) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  4. 11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS WERE NUCLEAR WEAPONS SHIPPED TO THE ROCKY FLATS PLANT FROM THE NUCLEAR WEAPON STOCKPILE FOR RETIREMENT, TESTING, OR UPGRADING. FISSILE MATERIALS (PLUTONIUM, URANIUM, ETC.) AND RARE MATERIALS (BERYLLIUM) WERE RECOVERED FOR REUSE, AND THE REMAINDER WAS DISPOSED. (8/7/62) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  5. Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation.

    PubMed

    Danelon, Christophe; Suenaga, Atsushi; Winterhalter, Mathias; Yamato, Ichiro

    2003-07-01

    Ion current through single outer membrane protein F (OmpF) trimers was recorded and compared to molecular dynamics simulation. Unidirectional insertion was revealed from the asymmetry in channel conductance. Single trimer conductance showed particularly high values at low symmetrical salt solution. The conductance values of various alkali metal ion solutions were proportional to the monovalent cation mobility values in the bulk phase, LiClsize preference for smaller cations. These results suggest that there are specific interactions between the permeating cation and charged residues lining the channel walls. This hypothesis was supported by computational study which predicted that monovalent cations bind to Asp113 at low concentration. Here, free energy calculations revealed that the affinity of the alkali metal ions to its binding site increased with their atomic radii, Li(+) approximately Na(+)cations under applied voltage by increasing their local concentration relative to the bulk solution.

  6. The pi-Cation Radical of Chlorophyll a.

    PubMed

    Borg, D C; Fajer, J; Felton, R H; Dolphin, D

    1970-10-01

    Chlorophyll a undergoes reversible one-electron oxidation in dichloromethane and butyronitrile. Removal of the electron by controlled potential electrolysis or by stoichiometric charge transfer to a known cation radical yields a radical (epr line width = 9 gauss, g = 2.0025 +/- 0.0001) whose optical spectrum is bleached relative to that of chlorophyll. Upon electrophoresis this bleached species behaves as a cation. By comparison with the known properties of pi-cation radicals of porphyrins and chlorins, the chlorophyll radical is also identified as a pi-cation. Further correlation of optical and epr properties with published studies on photosynthesis leads to the conclusion that oxidized P700, the first photochemical product of photosystem I in green plants, contains a pi-cation radical of the chlorin component of chlorophyll a. This radical is the likely source of the rapidly-decaying, narrow epr signal of photosynthesis.

  7. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  8. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Jen; Sung, Calvin T.; Aljuffali, Ibrahim A.; Huang, Yu-Jie; Fang, Jia-You

    2013-08-01

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92-134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g-1 it could be increased to 50 nmol g-1 after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.

  9. Radical cation cyclization of 1,5-hexadiene to cyclohexene via the cyclohexane-2,5-diyl radical cation intermediate

    SciTech Connect

    Guo, Q.X.; Qin, X.Z.; Wang, J.T.; Williams, F.

    1988-03-16

    The classical example of a neutral carbon-centered radical cyclization reaction is the regioselective 1,5-ring closure (exocyclization) of the 5-hexenyl radical to the cyclopentylcarbinyl radical. Here the authors report the title reaction, a comparable addition process whereby an ..cap alpha.., omega-diene radical cation reacts by endocyclization and hydrogen shift(s) to produce a cycloolefin radical cation.

  10. Hydrogen motion in proton sponge cations: a theoretical study.

    PubMed

    Horbatenko, Yevhen; Vyboishchikov, Sergei F

    2011-04-18

    This work presents a study of intramolecular NHN hydrogen bonds in cations of the following proton sponges: 2,7-bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (1), 1,6-diazabicyclo[4.4.4.]tetradecane (2), 1,9-bis(dimethylamino)dibenzoselenophene (3), 1,9-bis(dimethylamino)dibenzothiophene (4), 4,5-bis(dimethylamino)fluorene (5), quino[7,8-h]quinoline (6) 1,2-bis(dimethylamino)benzene (7), and 1,12-bis(dimethylamino)benzo[c]phenantrene (8). Three different patterns were found for proton motion: systems with a single-well potential (cations 1-2), systems with a double-well potential and low proton transfer barrier, ΔEe (cations 3-5), and those with a double-well potential and a high barrier (cations 6-8). Tests of several density functionals indicate that the PBEPBE functional reproduces the potential-energy surface (PES) obtained at the MP2 level well, whereas the B3LYP, MPWB1K, and MPW1B95 functionals overestimate the barrier. Three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved for selected cases of cation 1 (with a single-well potential), cation 4 (with a ΔEe value of 0.1 kcal mol(-1) at the MP2 level), and cations 6 (ΔEe = 2.4 kcal mol(-1)) and 7 (ΔEe=3.4 kcal mol(-1)). The PES is highly anharmonic in all of these cases. The analysis of the three-dimensional ground-state vibrational wave function shows that the proton is delocalized in cations 1 and 4, but is rather localized around the energy minima for cation 7. Cation 6 is an intermediate case, with two weakly pronounced maxima and substantial tunneling. This allows for classification of proton sponge cations into those with localized and those with delocalized proton behavior, with the borderline between them at ΔEe values of about 1.5 kcal mol(-1). The excited vibrational states of proton sponge cations with a low barrier can be described within the framework of a simple particle-in-a-box model. Each cation can be assigned an effective box width.

  11. Cation Exchange Capacity of Biochar: An urgent method modification

    NASA Astrophysics Data System (ADS)

    Munera, Jose; Martinsen, Vegard; Mulder, Jan; Tau Strand, Line; Cornelissen, Gerard

    2017-04-01

    A better understanding of the cation exchange capacity (CEC) values of biochar and its acid neutralizing capacity (ANC) is crucial when tailoring a single biochar for a particular soil and crop. Literature values for the CEC of biochar are surprisingly variable, commonly ranging from 5 to 50 cmol+/Kg even as high as 69 to 204 cmol+/Kg and often poorly reproducible, suggesting methodological problems. Ashes and very fine pores in biochar may complicate the analysis and thus compromise the results. Here, we modify and critically assess different steps in a common method for CEC determination in biochar and investigate how the measured CEC may be affected by slow cation diffusion from micro-pores. We modified the existing ammonium acetate (NH4-OAc) method (buffered at pH 7), based on displaced ammonium (NH4+) in potassium chloride (KCl) extracts after removing excess NH4-OAc with alcohol in batch mode. We used pigeon pea biochar (produced at 350 ˚C; particle size 0.5mm to 2mm) to develop the method and we tested its reproducibility in biochars with different ANC. The biochar sample (1.00g) was pH-adjusted to 7 after 2 days of equilibration, using hydrochloric acid (HCl), and washed with water until the conductivity of the water was <200µScm-1.Thus, we removed the soluble ash component, while simultaneously allowing the NH4-OAc to buffer at pH 7. To assess the importance of diffusion limitation of replacing cations (NH4+ and K+) in micro-pores, we equilibrated the biochar with NH4-OAc for 1 and 7 days, and after washing with alcohol, for 1, 3 and 7 days with KCl. The effects of the washing volume of alcohol (15, 30 and 45 ml) and of the biochar to NH4OAc solution ratio (1:15, 1:30 and 1:45) were also tested. The CEC values were corrected for dry matter content and mass losses during the process. Results indicate that the measured CEC values of the modified method were highly reproducible and that 1 day shaking with NH4OAc and KCl is enough to saturate the exchange

  12. Isotope effect and cation disorder in manganites

    NASA Astrophysics Data System (ADS)

    Babushkina, N. A.; Chistotina, E. A.; Balagurov, A. M.; Pomjakushin, V. Yu.; Gorbenko, O. Yu.; Kaul, A. R.; Kartavtseva, M. S.

    2006-05-01

    The measurements of temperature dependence of electrical resistivity ρ(T) and magnetic susceptibility χ(T) as well as neutron diffraction studies were performed for three groups of R1-xSrxMnO3 manganites. Each group was characterized by the same average ionic radius of rare earth R, but by different degree of cation disorder σ2=xiri2-2. For each composition, the isotope-substituted samples ( O16→O18) were also prepared. It was shown that the increase in σ2 at fixed leads to appreciable changes in electrical and magnetic properties, as well as to a more pronounced isotope effect. Large values of σ2 give rise to a significant scatter in the values of the electron hopping integral for neighboring Mn sites. This favors the electron localization and the tendency to antiferromagnetism in the phase-separated state, thus enhancing the effect of oxygen isotope substitution.

  13. Cationic nanofibrillar cellulose with high antibacterial properties.

    PubMed

    Chaker, Achraf; Boufi, Sami

    2015-10-20

    Cationic nanofibrillar cellulose (C-NFC) has been prepared via a high pressure homogenization using quaternized cellulose fibers with glycidyltrimethylammonium chloride. It has been shown that the quaternization of dried softwood pulp facilitated the defibrillation processes and prevented clogging of the homogenizer. The effects of the trimethylammonium chloride content on the fibrillation yield, the transparency degree of the gel, the rheological behavior of the NFC suspension and their electrokinetic properties were investigated. AFM observation showed that the NFC suspension consisted of individualized cellulose I nanofibrils 4-5nm in width and length in the micronic scale. In addition to their strong reinforcing potential, the inclusion of C-NFC into a polymer matrix was shown to efficiently enhance the antibacterial activity. The reinforcing potential of C-NFC, studied by dynamic mechanical analysis (DMA), was compared to anionic NFC and the difference was explained in terms of the nanofibrils capacities to build up a strong networks held by hydrogen bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A phosphotyrosine switch regulates organic cation transporters.

    PubMed

    Sprowl, Jason A; Ong, Su Sien; Gibson, Alice A; Hu, Shuiying; Du, Guoqing; Lin, Wenwei; Li, Lie; Bharill, Shashank; Ness, Rachel A; Stecula, Adrian; Offer, Steven M; Diasio, Robert B; Nies, Anne T; Schwab, Matthias; Cavaletti, Guido; Schlatter, Eberhard; Ciarimboli, Giuliano; Schellens, Jan H M; Isacoff, Ehud Y; Sali, Andrej; Chen, Taosheng; Baker, Sharyn D; Sparreboom, Alex; Pabla, Navjotsingh

    2016-03-16

    Membrane transporters are key determinants of therapeutic outcomes. They regulate systemic and cellular drug levels influencing efficacy as well as toxicities. Here we report a unique phosphorylation-dependent interaction between drug transporters and tyrosine kinase inhibitors (TKIs), which has uncovered widespread phosphotyrosine-mediated regulation of drug transporters. We initially found that organic cation transporters (OCTs), uptake carriers of metformin and oxaliplatin, were inhibited by several clinically used TKIs. Mechanistic studies showed that these TKIs inhibit the Src family kinase Yes1, which was found to be essential for OCT2 tyrosine phosphorylation and function. Yes1 inhibition in vivo diminished OCT2 activity, significantly mitigating oxaliplatin-induced acute sensory neuropathy. Along with OCT2, other SLC-family drug transporters are potentially part of an extensive 'transporter-phosphoproteome' with unique susceptibility to TKIs. On the basis of these findings we propose that TKIs, an important and rapidly expanding class of therapeutics, can functionally modulate pharmacologically important proteins by inhibiting protein kinases essential for their post-translational regulation.

  15. Cationic Noncovalent Interactions: Energetics and Periodic Trends.

    PubMed

    Rodgers, M T; Armentrout, P B

    2016-05-11

    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  16. Radical Cations and Acid Protection during Radiolysis

    SciTech Connect

    Bruce J. Mincher; Christopher A. Zarzana; Stephen P. Mezyk

    2016-09-01

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  17. Cationic Hydrophobic Peptides with Antimicrobial Activity

    PubMed Central

    Stark, Margareta; Liu, Li-Ping; Deber, Charles M.

    2002-01-01

    The MICs of cationic, hydrophobic peptides of the prototypic sequence KKAAAXAAAAAXAAWAAXAAAKKKK-amide (where X is one of the 20 commonly occurring amino acids) are in a low micromolar range for a panel of gram-negative and gram-positive bacteria, with no or low hemolytic activity against human and rabbit erythrocytes. The peptides are active only when the average segmental hydrophobicity of the 19-residue core is above an experimentally determined threshold value (where X is Phe, Trp, Leu, Ile, Met, Val, Cys, or Ala). Antimicrobial activity could be increased by using peptides that were truncated from the prototype length to 11 core residues, with X being Phe and with 6 Lys residues grouped at the N terminus. We propose a mechanism for the interaction between these peptides and bacterial membranes similar to the “carpet model,” wherein the Lys residues interact with the anionic phospholipid head groups in the bacterial membrane surface and the hydrophobic core portion of the peptide is then able to interact with the lipid bilayer, causing disruption of the bacterial membrane. PMID:12384369

  18. Is Iodate a Strongly Hydrated Cation?

    SciTech Connect

    Baer, Marcel D.; Pham, Thai V.; Fulton, John L.; Schenter, Gregory K.; Balasubramanian, Mahalingam; Mundy, Christopher J.

    2011-10-06

    We show, through a combination of density function theory based molecular dynamics simulations (DFTMD) and experimental x-ray absorption fine structure spectroscopy (XAFS) studies, that the iodate ion (IO3-) is a zwitterion in solution. The local region adjoining the I atom is sufficiently electropositive that three hydrating waters are oriented with their O’s atoms directly interacting with the iodine atom at an I-OH2O distance of 2.95 Å. This is the orientation of water hydrating a cation. Further, approximately 2-3 water molecules hydrate each O of IO3 - through a single H atom in an orientation of the water that is expected for an anion at an IOH2O distance of 3.85 Å. We predict that this structure persists, although to a much lesser degree, for BrO3 -, and ClO3 -. This type of local microstructure profoundly affects the behavior of the "anion" at interfaces and how it interacts with other ionic species in solution.

  19. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF