Science.gov

Sample records for a-site cation substitution

  1. Effects of cation disorder and size on metamagnetism in A-site substituted Pr0.5Ca0.5MnO3 system

    NASA Astrophysics Data System (ADS)

    Mavani, K. R.; Paulose, P. L.

    2005-04-01

    The effects of A-site cation disorder and size on metamagnetism of ABO3 type charge and orbital ordered Pr0.5Ca0.5MnO3 system have been studied by substituting Ba+2 for Ca+2 or La+3 for Pr+3. Substitution of 5% Ba+2 or 5% La+3 drastically reduces the critical magnetic field (Hc) for metamagnetism and induces successive steplike metamagnetic transitions at low temperatures. Interestingly, with further increase in substitution, Hc rises. We find that there is a sharp decrease in electrical resistivity corresponding to the metamagnetic transitions, which is indicative of strongly correlated magnetic and electronic transitions in these manganites.

  2. The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals.

    PubMed

    Atuchin, V V; Kesler, V G; Meng, Guangsi; Lin, Z S

    2012-10-10

    The electronic structure of RbTiOPO(4) has been investigated with x-ray photoemission spectroscopy. Detailed photoemission spectra of the element core levels have been recorded under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The chemical bonding parameters are compared to those reported for complex titanates and phosphates. The band structures of KTiOPO(4), RbTiOPO(4), K(0.535)R(0.465)TiOPO(4) and TlTiOPO(4) have been calculated by ab initio methods and compared to available experimental results. It is found that the band structure of KTP-type phosphate crystals is weakly dependent on the nature of the A-site (A=K, Rb, Tl) element.

  3. Computational study of cation substitutions in apatites

    SciTech Connect

    Tamm, Toomas . E-mail: tamm@yki.ttu.ee; Peld, Merike

    2006-05-15

    Density-functional theory plane-wave modeling of fluor- and hydroxyapatites has been performed, where one or two calcium ions per unit cell were replaced with cadmium or zinc cations. It was found that cadmium ions favor Ca(1) positions in fluorapatites and Ca(2) positions in hydroxyapatites, in agreement with experiment. A similar pattern is predicted for zinc substitutions. In the doubly substituted cases, where only hydroxyapatites were modeled, a preference for the substituting ions to be located in Ca(2) position was also observed. Displacement of the hydroxide ions from their symmetrical positions on the hexagonal axis can be used to explain the preferred configurations of substituting ions around the axis. -- Deformation of the hydroxide ion chain due to substitutions around the ion channel in substituted hydroxyapatites.

  4. Improving the alkaline stability of imidazolium cations by substitution.

    PubMed

    Dong, Huilong; Gu, Fenglou; Li, Min; Lin, Bencai; Si, Zhihong; Hou, Tingjun; Yan, Feng; Lee, Shuit-Tong; Li, Youyong

    2014-10-06

    Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.

  5. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  6. Heterovalent cation substitutional doping for quantum dot homojunction solar cells.

    PubMed

    Stavrinadis, Alexandros; Rath, Arup K; de Arquer, F Pelayo García; Diedenhofen, Silke L; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-01-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%.

  7. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-12-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%.

  8. Heterovalent cation substitutional doping for quantum dot homojunction solar cells

    PubMed Central

    Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García; Diedenhofen, Silke L.; Magén, César; Martinez, Luis; So, David; Konstantatos, Gerasimos

    2013-01-01

    Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%. PMID:24346430

  9. Theoretical studies on the dimerization of substituted paraphenylenediamine radical cations

    NASA Astrophysics Data System (ADS)

    Punyain, Kraiwan; Kelterer, Anne-Marie; Grampp, Günter

    2011-12-01

    Organic radical cations form dicationic dimers in solution, observed experimentally as diamagnetic species in temperature-dependent EPR and low temperature UV/Vis spectroscopy. Dimerization of paraphenylenediamine, N,N-dimethyl-paraphenylenediamine and 2,3,5,6-tetramethyl-paraphenylenediamine radical cation in ethanol/diethylether mixture was investigated theoretically according to geometry, energetics and UV/Vis spectroscopy. Density Functional Theory including dispersion correction describes stable dimers after geometry optimization with conductor-like screening model of solvation and inclusion of the counter-ion. Energy corrections were done on double-hybrid Density Functional Theory with perturbative second-order correlation (B2PLYP-D) including basis set superposition error (BSSE), and multireference Møller-Plesset second-order perturbation theory method (MRMP2) based on complete active space method (CASSCF(2,2)) single point calculation, respectively. All three dication π-dimers exhibit long multicenter π-bonds around 2.9 ± 0.1 Å with strongly interacting orbitals. Substitution with methyl groups does not influence the dimerization process substantially. Dispersion interaction and electrostatic attraction from counter-ion play an important role to stabilize the dication dimers in solution. Dispersion-corrected double hybrid functional B2PLYP-D and CASSCF(2,2) can describe the interaction energetics properly. Vertical excitations were computed with Tamm-Dancoff approximation for time-dependent Density Functional Theory (TDA-DFT) at the B3LYP level with the cc-pVTZ basis set including ethanol solvent molecules explicitly. A strong interaction of the counter-ion and the solvent ethanol with the monomeric species is observed, whereas in the dimers the strong interaction of both radical cation species is the dominating factor for the additional peak in UV/Vis spectra.

  10. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-06-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  11. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3.

    PubMed

    Wang, Y L; Liu, M F; Liu, R; Xie, Y L; Li, X; Yan, Z B; Liu, J-M

    2016-06-14

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  12. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    PubMed Central

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-01-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder. PMID:27297396

  13. Preparing cationic cotton linter cellulose with high substitution degree by ultrasonic treatment.

    PubMed

    Zhang, Fulong; Pang, Zhiqiang; Dong, Cuihua; Liu, Zong

    2015-11-05

    As an important cellulose derivative, cationic cellulose has becoming an attractive material. However, it remains challenging to produce cationic cellulose with high substitute degree. In this paper, we successfully increased the substitute degree of cationic cellulose by introducing ultrasonic treatment, which efficiently breaks hydrogen bonds of the chemical structure of cationic cellulose. Properties of cationic cellulose were studied by scanning electron spectroscope (SEM), contact angle, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Experimental results show that the cationic cellulose has rougher surface and lower crystallinity degree as compared to the original sample. TGA analysis verifies that the thermostability of CLC decreases after the cationic modification. The residual of the cationic cellulose (25 wt%) after pyrolysis increases significantly as compared to that of the original cellulose (15 wt%).

  14. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    SciTech Connect

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  15. Suitability of cation substituted cobalt ferrite materials for magnetoelastic sensor applications

    SciTech Connect

    Nlebedim, Ikenna Catjetan; Jiles, David C

    2015-02-01

    The results of a study on the suitability of materials derived from cobalt ferrite for sensor and actuator applications are presented. The mechanism responsible for the superior sensor properties of Ge-substituted cobalt ferrite compared with Ti and other cation substituted cobalt ferrite materials is believed to be due to the tetrahedral site preference of Ge4+ and its co-substitution with Co2+. Results also showed that the higher strain derivative of Ge-substituted cobalt ferrite compared with Ti-substitution is due to a higher magnetostrictive coupling in response to applied field in the material.

  16. Structure and dynamics of ionic liquids: Trimethylsilylpropyl-substituted cations and bis(sulfonyl)amide anions.

    PubMed

    Wu, Boning; Yamashita, Yuki; Endo, Takatsugu; Takahashi, Kenji; Castner, Edward W

    2016-12-28

    Ionic liquids with cationic organosilicon groups have been shown to have a number of useful properties, including reduced viscosities relative to the homologous cations with hydrocarbon substituents on the cations. We report structural and dynamical properties of four ionic liquids having a trimethylsilylpropyl functional group, including 1-methyl-3-trimethylsilylpropylimidazolium (Si-C3-mim(+)) cation paired with three anions: bis(fluorosulfonyl)imide (FSI(-)), bis(trifluoromethanesulfonyl)imide (NTf2(-)), and bis(pentafluoroethanesulfonyl)imide (BETI(-)), as well as the analogous N-methyl-N-trimethylsilylpropylpyrrolidinium (Si-C3-pyrr(+)) cation paired with NTf2(-). This choice of ionic liquids permits us to systematically study how increasing the size and hydrophobicity of the anions affects the structural and transport properties of the liquid. Structure factors for the ionic liquids were measured using high energy X-ray diffraction and calculated from molecular dynamics simulations. The liquid structure factors reveal first sharp diffraction peaks (FSDPs) for each of the four ionic liquids studied. Interestingly, the domain size for Si-C3-mim(+)/NTf2(-) indicated by the maxima for these peaks is larger than for the more polar ionic liquid with a similar chain length, 1-pentamethyldisiloxymethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide (SiOSi-mim(+)/NTf2(-)). For the series of Si-C3-mim(+) ionic liquids, as the size of the anion increases, the position of FSDP indicates that the intermediate range order domains decrease in size, contrary to expectation. Diffusivities for the anions and cations are compared for a series of both hydrocarbon-substituted and silicon-substituted cations. All of the anions show the same scaling with temperature, size, and viscosity, while the cations show two distinct trends-one for hydrocarbon-substituted cations and another for organosilicon-substituted cations, with the latter displaying increased friction.

  17. Structure of ionic liquids with cationic silicon-substitutions

    NASA Astrophysics Data System (ADS)

    Wu, Boning; Shirota, Hideaki; Lall-Ramnarine, Sharon; Castner, Edward W.

    2016-09-01

    Significantly lower viscosities result when a single alkyl carbon is replaced by a silicon atom on the side chain of an ionic liquid cation. To further explore this effect, we compare liquid structure factors measured using high-energy X-ray scattering and calculated using molecular dynamics simulations. Four ionic liquids are studied that each has a common anion, bis(trifluoromethylsulfonyl)amide ( NTf2 - ). The four cations for this series of NTf2 - -anion ionic liquids are 1-methyl-3-trimethylsilylmethylimidazolium (Si-mim+), 1-methyl-3-neopentylimidazolium (C-mim+), 1-methyl-3-pentamethyldisiloxymethylimidazolium (SiOSi-mim+), and 1-methyl-1-trimethylsilylmethylpyrrolidinium (Si-pyrr+). To achieve quantitative agreement between the structure factors measured using high-energy X-ray scattering and molecular dynamics simulations, new transferable parameters for silicon were calibrated and added to the existing force fields.

  18. Emission spectra of the cations of some fluoro-substituted phenols in the gaseous phase

    USGS Publications Warehouse

    Maier, John Paul; Marthaler, O.; Mohraz, Manijeh; Shiley, R.H.

    1980-01-01

    Emission spectra of the cations of 2,5- and 3,5-difluorophenol, of 2,3,4- and 2,4,5-trifluorophenol, of 2,3,5,6-tetrafluorophenol and of 2,3,4,5,6-pentafluorophenol have been obtained in the gas phase using low-energy electron beam excitation. The band systems are assigned to the B??(??-1) ??? X??(??-1) electronic transitions of these cations by reference to photoelectron spectroscopic data. The He(I??) photoelectron spectra and the ionisation energies of ten fluoro-substituted phenols are reported. The symmetries of the four lowest electronic states of these cations are inferred from the radiative decay studies. The lifetimes of the lowest vibrational levels of the B??(??-1) state of the six fluoro-substituted phenol cations above have also been measured. ?? 1980.

  19. Bismuth cuprate high-Tc superconductors using cationic substitution

    NASA Astrophysics Data System (ADS)

    Tarascon, J.-M.; Barboux, P.; Hull, G. W.; Ramesh, R.; Greene, L. H.; Giroud, M.; Hegde, M. S.; McKinnon, W. R.

    1989-03-01

    The Bi4Sr4Ca2-xRxCu4BOy materials (R is a rare-earth element) were studied to determine their structural and physical properties. For most of the rare-earth elements, a complete solid solution exists up to x=2. Below x=0.5,Tc is not affected and for each added rare-earth element we find that about 0.5 oxygen atom is added to the structure. However, the structural modulation observed along the b axis for the undoped material persists and remains of the same amplitude for the rare-earth-doped samples. When more than one R(x>=1) is substituted, Tc is depressed and the compound becomes semiconducting beyond x=1.5. The depression in the Tc from 85 K (x=0) to less than 4.2 K (x=1.5) correlates to a decrease in the formal valence of copper and is independent whether the rare-earth element is magnetic or nonmagnetic. No evidence for magnetic ordering over the range of temperature 1.7-400 K has been observed in all the substituted compounds. The substitution for Cu by 3d metals or for Sr by rare-earth elements fails for the 85-K Bi phase but succeeds for the 10-K Bi phase. Consequently, the following series Bi2Sr2Cu1-xMxOy (M=Fe, Co) and Bi2RCaCuOy (R=La, Pr, Nd, Sm) were made for study. These substitutions result in an uptake of oxygen (0.5 for each substituted element). But the materials become semiconducting even though the formal valence of Cu remains greater than 2. An antiferromagnetic transition at 140 K has been found for the Co sample for which Co is found to be in the +3 state.

  20. Unravelling the low thermal expansion coefficient of cation-substituted YBaCo4O7+δ

    DOE PAGES

    Manthiram, Arumugam; Huq, Ashfia; Kan, Wang Hay; ...

    2016-01-12

    With an aim to understand the origin of the low thermal expansion coefficients (TECs), cation substituted YBaCo4O7-type oxides have been investigated by in-situ neutron diffraction, bond valence sum (BVS), thermogravimetric analysis, and dilatometry. The compositions YBaCo4O7+δ, Y0.9ln0.1BaCo3ZnO7+δ, and Y0.9ln0.1BaCo3Zn0.6Fe0.4O7+δ) were synthesized by solid-state reaction at 1200 °C. Here, Rietveld refinement of the joint synchrotron X-ray and neutron diffraction data shows that the Zn and Fe dopants have different preferences to substitute the Co ions in the 6c and 2a sites.

  1. Size dependent mechanical and magnetic properties of Zn substituted cobalt ferrite below A-site percolation threshold

    NASA Astrophysics Data System (ADS)

    Acharya, Prashant; Parmar, Harshida

    2017-05-01

    Nanomagnetic particles of Co0.3Zn0.7Fe2O4 were synthesized using chemicalcoprecipitation technique followed by hydrothermal treatment and by controlling the preparative parameters pH and digestion time (td). Polydispersed nature and clear grain boundaries of the particles have been observed from the typical SEM image. EDX results confirmed the stoichiometric composition of the samples. XRD analysis shows the formation of a single phase spinel structure. Particle size ranging 5.5nm-9.0nm, calculated using Scherrer's formula, observed to be a function of pH and td. Cation distribution (Zn0.7Fe0.3)A[Co0.3Fe1.7]B is obtained from Rietveld analysis of XRD patterns. Lattice parameters and oxygen parameters are observed almost same showing the present synthesis technique is found to be effective to prepare particles of different size without changing the cation distribution and structural parameters. FTIR analysis and magnetic measurements reveals size dependent mechanical and magnetic properties of Zn substituted cobalt ferrite below A-site percolation threshold.

  2. Bond Dissociation Energies for Substituted Polycyclic Aromatic Hydrocarbons and Their Cations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute bond energies for a series of substituted benzene, naphthalene, and anthracene molecules and their cations. The benzene bond energies are compared with experiment. The trends in the bond energies are discussed. The ionization energies are also reported and compared with available experiments.

  3. Bond Dissociation Energies for Substituted Polycyclic Aromatic Hydrocarbons and Their Cations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute bond energies for a series of substituted benzene, naphthalene, and anthracene molecules and their cations. The benzene bond energies are compared with experiment. The trends in the bond energies are discussed. The ionization energies are also reported and compared with available experiments.

  4. Mass analyzed threshold ionization spectroscopy of p -aminophenol cation and the substitution effect

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Lin, Jung Lee; Tzeng, Wen Bih

    2004-10-01

    The mass analyzed threshold ionization (MATI) spectra of p-aminophenol have been recorded by ionizing via the vibrationless 0 0 and vibrational 6a 1, 12 1, and 1 1 levels in the S 1 state. The adiabatic ionization energy (IE) of this molecule is determined to be 58,822 ± 5 cm -1. The frequencies of ring vibrational modes 6a, 12, 1, and 18b of the cation are measured to be 458, 768, 835, and 1181 cm -1, respectively. Comparing these new data of p-aminophenol with those of several p-substituted anilines and p-substituted phenols leads to a better understanding about the substitution effects on the IE as well as the cation vibration.

  5. An NMR crystallographic approach to monitoring cation substitution in the aluminophosphate STA-2.

    PubMed

    Seymour, Valerie R; Eschenroeder, Eike C V; Wright, Paul A; Ashbrook, Sharon E

    2015-02-01

    The substitution of the divalent cations Mg(2+) and Zn(2+) into the aluminophosphate (AlPO) framework of STA-2 has been studied using an "NMR crystallographic" approach, combining multinuclear solid-state NMR spectroscopy, X-ray diffraction and first-principles calculations. Although the AlPO framework itself is inherently neutral, the positive charge of the organocation template in an as-made material is usually balanced either by the coordination to the framework of anions from the synthesis solution, such as OH(-) or F(-), and/or by the substitution of aliovalent cations. However, the exact position and distribution of the substituted cations can be difficult to determine, but can have a significant impact upon the catalytic properties a material exhibits once calcined. For as-made Mg substituted STA-2, the positive charge of the organocation template is balanced by the substitution of Mg(2+) for Al(3+) and, where required, by hydroxide anions coordinated to the framework [27] Al MAS NMR spectra show that Al is present in both tetrahedral and five-fold coordination, with the latter dependent on the amount of substituted cations, and confirms the bridging nature of the hydroxyl groups, while high-resolution MQMAS spectra are able to show that Mg appears to preferentially substitute on the Al1 site. This conclusion is also supported by first-principles calculations. The calculations also show that (31)P chemical shifts depend not only on the topologically-distinct site in the SAT framework, but also on the number of next-nearest-neighbour Mg species, and the exact nature of the coordinated hydroxyls (whether the P atom forms part of a six-membered ring, P(OAl)2OH, where OH bridges between two Al atoms). The calculations demonstrate a strong correlation between the (31)P isotropic chemical shift and the average 〈P-O-M〉 bond angle. In contrast, for Zn substituted STA-2, both X-ray diffraction and NMR spectroscopy show less preference for substitution onto Al1 or

  6. Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR

    NASA Astrophysics Data System (ADS)

    Grigg, Andrew T.; Mee, Martin; Mallinson, Phillip M.; Fong, Shirley K.; Gan, Zhehong; Dupree, Ray; Holland, Diane

    2014-04-01

    The substitution of aluminium, gallium and sodium cations into β-tricalcium phosphate (β-TCP; Ca3(PO4)2) has been investigated, and the Ca sites involved successfully determined, using a combination of 1D 31P, 27Al, 71Ga, 23Na and 43Ca (natural abundance) NMR and 2D 27Al{31P}, 71Ga{31P} and 23Na{31P} rotary-resonance-recoupled heteronuclear multiple-quantum correlation (R3-HMQC) NMR. Over the compositional range studied, substitution of Ca2+ by Al3+ or Ga3+ was observed only on the Ca(5) site, whilst substitution by Na+ was confined to the Ca(4) site. Some AlPO4 or GaPO4 second phase was observed at the highest doping levels in the Al3+ and Ga3+ substituted samples.

  7. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOEpatents

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  8. Electron Doping of the Parent Cuprate La2CuO4 without Cation Substitution

    NASA Astrophysics Data System (ADS)

    Wei, Haofei I.; Adamo, Carolina; Nowadnick, Elizabeth A.; Lochocki, Edward B.; Chatterjee, Shouvik; Ruf, Jacob P.; Beasley, Malcolm R.; Schlom, Darrell G.; Shen, Kyle M.

    2016-09-01

    In the cuprates, carrier doping of the Mott insulating parent state is necessary to realize superconductivity as well as a number of other exotic states involving charge or spin density waves. Cation substitution is the primary method for doping carriers into these compounds, and is the only known method for electron doping in these materials. Here, we report electron doping without cation substitution in epitaxially stabilized thin films of La2CuO4 grown via molecular-beam epitaxy. We use angle-resolved photoemission spectroscopy to directly measure their electronic structure and conclusively determine that these compounds are electron doped with a carrier concentration of 0.09 ±0.02 e-/Cu . We propose that intrinsic defects, most likely oxygen vacancies, are the sources of doped electrons in these materials. Our results suggest a new approach to electron doping in the cuprates, one which could lead to a more detailed experimental understanding of their properties.

  9. Substitution Effects and Linear Free Energy Relationships During Reduction of 4- Benzoyl-n-(4-substituted Benzyl)pyridinium Cations

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    In analogy to 4-(para-substituted benzoyl)-N-methylpyridinium cations (1-X's), the title species (2-X's, -X = -OCH3, -CH3, -H, -Br, -COCH3, -NO2) undergo two reversible, well-separated (E(sub 1/2) greater than or equal to 650 mV) one-electron reductions. The effect of substitution on the reduction potentials of 2-X's is much weaker than the effect of the same substituents on 1-X's: the Hammett rho-values are 0.80 and 0.93 for the 1st- and 2nd-e reduction of 2-X's vs. 2.3 and 3.3 for the same reductions of 1-X's, respectively. Importantly, the nitro group of 2-NO2 undergoes reduction before the 2nd-e reduction of the 4-benzoylpyridinium system. These results suggest that the redox potentials of the 4-benzoylpyridinium system can be course-tuned via p-benzoyl substitution and fine-tuned via para-benzyl substitution. Introducing the recently derived substituent constant of the -NO2(sup)- group (sigma para-NO2(sup)- = -0.97) yields an excellent correlation for the 3rd-e reduction of 2- NO2 (corresponding to the reduction of the carbonyl group) with the 2nd-e reduction of the other 2-X's, and confirms the electron donating properties of -NO2(sup)-.

  10. FeCl3 mediated intramolecular olefin-cation cyclization of cinnamates for the synthesis of highly substituted indenes.

    PubMed

    Dethe, Dattatraya H; Murhade, Ganesh M

    2013-09-21

    Highly substituted indene derivatives were readily prepared in excellent yields with high regioselectivity under very mild reaction conditions by the FeCl3 mediated intramolecular olefin-cationic cyclization of cinnamates.

  11. XMCD and Magnetic Evidence for Cation Reordering in Synthetic Mg- and Al-substituted Titanomagnetites

    NASA Astrophysics Data System (ADS)

    Lappe, S. C. L. L.; Bowles, J.; Jackson, M.; Keavney, D.

    2014-12-01

    The titanomagnetite (TM) solid solution (Fe3-xTixO4, 0 ≤ x ≤ 1) is one of the most important natural magnetic minerals used in paleomagnetic studies. Natural TMs with Mg- and Al-substitution have recently been shown to have Curie temperatures (TC) that vary strongly with thermal history, and these variations have been indirectly linked to cation reordering in the crystal lattice (Bowles et al. 2013). Here we present the first direct evidence for cation reordering linked to these TC variations. We have synthesized TMs with varying degrees of Mg2+ and Al3+ substitution to better understand the mechanism at work in the natural samples. TC was determined by measuring magnetic susceptibility as function of temperature under Argon atmosphere. Isothermal annealing experiments between 10-1 to 103 h at temperatures between 300-500°C were conducted. Subsequent TC measurements showed that TC on warming increases for longer anneal times and higher anneal temperatures, whereas TC on cooling decreases. These resulting TC changes can be linked to cation ordering within the crystal structure. Splits of the same samples were studied via X-ray magnetic circular dichroism (XMCD), which is sensitive to both Fe valence state and site occupancy. Preliminary results suggest differences in Fe2+/Fe3+ site occupancy for samples of different compositions for different annealing treatments. Using the data collected for these synthetic samples we hope to gain further insight into the complex relationship between thermal history and cation distribution leading to changes in TC. So far, our understanding of the acquisition of thermal remanent magnetization (TRM) in TMs is predicated on the assumption that TC is a constant only depending on the mineral composition. However, the distribution of the magnetic Fe2+ and Fe3+ cations within the crystal lattice has a strong influence on the value of TC and cation (dis-)/ordering processes can result in large changes in TC. In natural samples

  12. Homogeneous cationic substitution for two-dimensional layered metal oxide nanosheets via a galvanic exchange reaction.

    PubMed

    Lim, Joohyun; Lee, Jang Mee; Park, Boyeon; Jin, Xiaoyan; Hwang, Seong-Ju

    2017-01-05

    The galvanic exchange reaction of an exfoliated 2D layered metal oxide nanosheet (NS) with excess substituent metal cations enables the synthesis of a mixed metal oxide 2D NS with controllable cation compositions and physicochemical properties. The reaction of the exfoliated MnO2 NS with Fe(2+) or Sn(2+) ions at 90 °C induces the uniform galvanic replacement of Mn ions with these substituent ions, whereas the same reaction at 25 °C results in the intercalative restacking of the negatively-charged MnO2 NS with Fe(2+) or Sn(2+) cations. Upon the galvanic exchange reaction, the highly anisotropic MnO2 2D NS retains its original 2D morphology and layered structure, which is in stark contrast to 0D nanoparticles yielding hollow nanospheres via the galvanic exchange reaction. This observation is attributable to the thin thickness of the 2D NS allowing the simultaneous replacement of all the component surface-exposed metal ions. The resulting substitution of the MnO2 NS with Fe and Sn ions remarkably improves the electrode performance of the carbon-coated derivatives of the MnO2 NS for lithium ion batteries. The present study clearly demonstrates that the galvanic exchange reaction can provide an efficient method not only to tailor cation compositions but also to improve the functionalities of 2D metal oxide NSs and their carbon-coated derivatives.

  13. Cationized IVIg as a potential substitute to IVIg for the treatment of experimental immune thrombocytopenia.

    PubMed

    Trépanier, Patrick; St-Amour, Isabelle; Bazin, Renée

    2013-08-01

    In this study, we evaluated the possibility of using cationized IVIg (cIVIg) instead of IVIg as a more effective therapy for the treatment of experimental immune thrombocytopenia in mice. The pharmacokinetics (PK) and biodistribution of cIVIg and IVIg in mice were compared. cIVIg displayed a shorter plasma half-life and an increased organ uptake in both the spleen and liver compared to IVIg, suggesting that cIVIg could be more potent than IVIg to prevent platelet clearance in a mouse model of thrombocytopenia. However, although the biodistribution of cIVIg in the spleen and liver was improved, its ability to prevent platelet clearance in mice remained similar to that of IVIg. Altogether, our data demonstrate the possibility of using chemical cationization of IVIg preparations to increase organ uptake, and also highlight the challenges of developing effective substitutes to IVIg.

  14. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOEpatents

    Manthiram, Arumugam; Choi, Wonchang

    2010-05-18

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  15. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading.

  16. Aluminium substitution in iron(II-III)-layered double hydroxides: Formation and cationic order

    SciTech Connect

    Ruby, Christian Abdelmoula, Mustapha; Aissa, Rabha; Medjahdi, Ghouti; Brunelli, Michela; Francois, Michel

    2008-09-15

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe{sub 4}{sup II}Fe{sub (2-6y)}{sup III}Al{sub 6y}{sup III} (OH){sub 12} SO{sub 4}, 8H{sub 2}O are followed by pH titration curves, Moessbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO{sub 4}{sup 2-}), i.e. y=0, in which a bilayer of sulphate anions points to the Fe{sup 3+} species. A cationic order is proposed to occur in both GR(SO{sub 4}{sup 2-}) and aluminium-substituted hydroxysulphate green rust when y<0.08. Variation of the cell parameters and a sharp decrease in average crystal size and anisotropy are detected for an aluminium content as low as y=0.01. The formation of Al-GR(SO{sub 4}{sup 2-}) is preceded by the successive precipitation of Fe{sup III} and Al{sup III} (oxy)hydroxides. Adsorption of more soluble Al{sup III} species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount (y{approx}0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe{sup II} species of the material. - Graphical abstract: (a) Crystallographical structure of sulphated green rust: SO{sub 4}{sup 2-} point to the Fe{sup 3+} cations (red) that form an ordered array with the Fe{sup 2+} cations (green). (b) Width and asymmetry of the synchrotron XRD peaks increase rapidly when some Al{sup 3+} species substitute the Fe{sup 3+} cations; z is molar ratio Al{sup 3+}/Fe{sup 3+}.

  17. Effects of substituents and substitution positions on alkaline stability of imidazolium cations and their corresponding anion-exchange membranes.

    PubMed

    Si, Zhihong; Qiu, Lihua; Dong, Huilong; Gu, Fenglou; Li, Youyong; Yan, Feng

    2014-03-26

    Imidazolium cations with butyl groups at various substitution positions (N1-, C2-, and N3-), 1-butyl-2,3-dimethylimidazolium ([N1-BDMIm](+)), 2-butyl-1,3-dimethylimidazolium ([C2-BDMIm](+)), and 3-butyl-1,2-dimethylimidazolium ([N3-BDMIm](+)), were synthesized. Quantitative (1)H NMR spectra and density functional theory calculation were applied to investigate the chemical stability of the imidazolium cations in alkaline solutions. The results suggested that the alkaline stability of the imidazolium cations was drastically affected by the C2-substitution groups. The alkaline stability of imidazolium cations with various substitution groups at the C2-position, including 2-ethyl-1-butyl-3-methylimidazolium ([C2-EBMIm](+)), 1,2-dibutyl-3-methylimidazolium ([C2-BBMIm](+)), and 2-hydroxymethyl-1-butyl-3-methylimidazolium ([C2-HMBMIm](+)), was further studied. The butyl group substituted imidazolium cation ([C2-BBMIm](+)) exhibited the highest alkaline stability at the elevated temperatures. The synthesized anion-exchange membranes based on the [C2-BBMIm](+) cation showed promising alkaline stability. These observations should pave the way to the practical application of imidazolium-based anion exchange membrane fuel cells.

  18. Time- and temperature-dependent cation ordering in synthetic Mg- and Al-substituted titanomagnetites

    NASA Astrophysics Data System (ADS)

    Lappe, S. L.; Bowles, J. A.; Jackson, M. J.

    2013-12-01

    The thermoremanent magnetization (TRM) of titanomagnetites (TM) (Fe3-xTixO4, 0 ≤ x ≤ 1) is a vital source of information about geomagnetic field history and tectonic plate motions. Seafloor basalts containing TM60 (x = 0.6) are the principal source of data for the geomagnetic polarity timescale for post-Paleozoic time, as well as providing important records of shorter-period paleofield variations. The vast majority of absolute paleointensity data and a significant fraction of paleodirectional data is derived from TM-bearing lava flows. For proper analyses and interpretations of these data, we rely on a thorough understanding of the magnetic mineralogy and the physical mechanisms involved. Yet there are fundamental aspects of titanomagnetite mineral magnetism that remain inadequately understood, particularly concerning the arrangement of cations in the crystal structure, changes in cation distribution with temperature, and resulting changes in important magnetic properties. Newly acquired data [Bowles et al. 2013] strongly suggests that natural titanomagnetites showing cation substitution of Mg2+ and Al3+ undergo temperature-dependent cation ordering at moderate temperatures (300-500°C) and over timescales of hours to months. The ordering/disordering process has profound effects on magnetic properties including Curie temperature, TC, (which varies by >150°C) and has major implications for the acquisition, retention, and demagnetization of partial thermoremanence and thermoviscous remanence. To better understand the exact mechanism at work in the natural samples we have synthesized titanomagnetites of varying compositions and with varying degrees of cation substitution of Mg2+ and Al3+. For this purpose powders of Fe2O3, TiO2, Fe, MgO and Al2O3 were ground up together under acetone, tightly packed into silver capsules and annealed in evacuated quartz at 900°C for 7 days. X-ray powder diffraction data prove the formation of titanomagnetite. Initial Curie

  19. XMCD and XAS examination of cation ordering in synthetic Mg- and Al-substituted titanomagnetites

    NASA Astrophysics Data System (ADS)

    Lappe, S. C. L. L.; Bowles, J.; Jackson, M.; Arenholz, E.

    2015-12-01

    Many paleomagnetic studies use natural magnetic minerals of the titanomagnetite (TM) solid solution series (Fe3-xTixO4, 0 ≤ x ≤ 1). So far our understanding of the acquisition of thermal remanent magnetisation (TRM) in those minerals was based on the assumption that their Curie temperature (TC) only depends on composition. However, it has been shown that TC of some natural TMs with Al- and Mg-substitution also strongly depends on thermal history and TC changes up to >150°C on timescales and at temperatures relevant to laboratory and geological processes were observed (Bowles et al. 2013). These variations in TC are thought to result from cation reordering within the crystal lattice. Those processes may have major effects on the acquisition, retention and demagnetisation of partial TRM and thermoviscous remanence and may have significant consequences for many paleomagnetic studies. However, so far no direct evidence for this cation reordering has been established. To gain further insight into the mechanisms at work, we have synthesised TMs of varying Ti-content (0.25 ≤ x ≤ 60) and with different degrees of Al- and Mg- substitution. Measuring the magnetic susceptibility as function of temperature TC was determined. Subsequently the samples were subjected to isothermal annealing at temperatures between 325-400°C for 10 to 103 hours. We observe an increase of TC on warming with anneal time up to 80°, whereas TC on cooling decreases slightly. The magnitude of the change in TC on warming varies with anneal temperature, and the temperature of maximum change depends on composition. Splits of the samples were studied using X-ray magnetic circular dichroism (XMCD) of the Fe L2,3-edge, which is sensitive to valence state and site occupancy of the Fe cations. The results suggest different Fe2+/Fe3+ site occupancy for different sample compositions but there seem to be no consistent differences between the XMCD spectra of annealed and un-annealed samples of one

  20. Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution

    SciTech Connect

    Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh; Fu, Deyi; Park, Joonsuk; Jung, Hee Joon; Chen, Yabin; Ko, Changhyun; Jang, Chaun; Sun, Yinghui; Sinclair, Robert; Chang, Joonyeon; Tongay, Sefaattin; Wu, Junqiao

    2014-12-10

    Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS₂) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p–n junctions of MoS₂, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS₂ by substitutional niobium (Nb) doping, leading to a degenerate hole density of ~3 × 10¹⁹ cm⁻³. Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS₂ by replacing the Mo cations in the host lattice. van der Waals p–n homojunctions based on vertically stacked MoS₂ layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS₂. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

  1. Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle

    PubMed Central

    Fukui, Hiroshi; Yoneda, Akira; Nakatsuka, Akihiko; Tsujino, Noriyoshi; Kamada, Seiji; Ohtani, Eiji; Shatskiy, Anton; Hirao, Naohisa; Tsutsui, Satoshi; Uchiyama, Hiroshi; Baron, Alfred Q. R.

    2016-01-01

    Seismological observations show that, in some regions of the lower mantle, an increase in bulk sound velocity, interestingly, occurs in the same volume where there is a decrease in shear velocity. We show that this anti-correlated behavior occurs on cation substitution in bridgmanite by making single crystal elasticity measurements of MgSiO3 and (Mg,Fe,Al)(Si,Al)O3 using inelastic x-ray scattering in the ambient conditions. Cation substitution of ferrous iron and aluminum may explain large low shear velocity provinces in the lower mantle. PMID:27642083

  2. Size effects on cation heats of formation. IV. Methyl and ethyl substitutions in methyl, methylene, acetylene and ethene

    NASA Astrophysics Data System (ADS)

    Leach, Sydney

    2015-08-01

    An empirical relation between the heat of formation of molecular ions and cation size is used to study the effects of methyl and ethyl substitution of hydrogen atoms on the cations of the CnHm hydrocarbons methyl, methylene, acetylene and ethene. The results provide tests of the graphical method, revealing regularities and irregularities in the empirical size relation used, as well as its value as a predictive tool for determining cation and neutral heats of formation. Of the 36 CnHm cations studied, only 5 have heats of formation listed in the renowned ATcT tables. Some CnHm cation heats of formation are questioned or eliminated, mainly in cases where multiple choices are available in the literature. Proposals are made for investigating or re-investigating the ionisation energies and the heats of formation of several of the molecules studied where no data previously exist or where our analysis suggests that more reliable values are needed. The relative effects of methyl and ethyl substitution on the thermodynamic stability of the series of alkyl-substituted CnHm cations are discussed.

  3. Gas-phase infrared spectra of cationized nitrogen-substituted polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Alvaro Galué, H.; Pirali, O.; Oomens, J.

    2010-07-01

    Gas-phase infrared spectra of several ionized nitrogen substituted polycyclic aromatic hydrocarbons (PANHs) have been recorded in the 600-1600 cm-1 region via IR multiple-photon dissociation (IRMPD) spectroscopy. The UV photoionized PANH ions are trapped and isolated in a quadrupole ion trap where they are irradiated with an IR free electron laser. The PANHs were studied in their radical cation (PANH+) and protonated (H+PANH) forms, and include quinoline, isoquinoline, phenanthridine, benzo[h]quinoline, acridine, and dibenzo[f,h]quinoline. Experimental IRMPD spectra were interpreted with the aid of density functional theory methods. The PANH+ IR spectra are found to resemble those of their respective non-nitrogenated PAH cations. The IR spectra of H+PANHs are significantly different owing to the NH inplane bending vibration, which generally couples very well with the aromatic CH bending and CC stretching modes. Implications of the NPAH (+, H+) laboratory spectra are discussed for the astrophysical IR emissions and, in particular, for the band at 6.2 μm.

  4. Photo-fragmentation behavior of methyl- and methoxy-substituted derivatives of hexa-peri-hexabenzocoronene (HBC) cations

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Castellanos, Pablo; Linnartz, Harold; Tielens, Alexander G. G. M.

    2016-11-01

    A systematic study, using ion trap time-of-flight mass spectrometry, is presented for the photo-fragmentation of methyl- and methoxy-substituted derivatives of HBC cations, (OCH3)6HBC+ and (CH3)4(OCH3)2HBC+. Both substituted HBC cations fragment through sequential loss of CH3CO units upon laser (595nm) irradiation, resulting in a PAH-like derivative C36H12+ and a methyl-substituted PAH derivative C44H24+ , respectively. Upon ongoing irradiation, these species further fragment. For lower laser energy C44H24+ dehydrogenates and photo-fragments through CH3 and CHCH2 unit losses; for higher laser energy isomerization takes place, yielding a regular PAH-like configuration, and both stepwise dehydrogenation and C2/C2H2 loss pathways are found. C36H12+ follows largely this latter fragmentation scheme upon irradiation. It is concluded that the photo-dissociation mechanism of the substituted PAH cations studied here is site selective in the substituted subunit. This work also shows experimental evidence that photo-fragmentation of substituted PAHs may contribute to the formation in space of smaller species that are normally considered to form by merging atoms and molecules.

  5. Special quasirandom structure modeling of fluorite-structured oxide solid solutions with aliovalent cation substitutions

    NASA Astrophysics Data System (ADS)

    Wolff-Goodrich, Silas; Hanken, Benjamin E.; Solomon, Jonathan M.; Asta, Mark

    2015-07-01

    The accuracy of the special quasirandom structure (SQS) approach for modeling the structure and energetics of fluorite-structured oxide solid solutions with aliovalent cation substitutions is assessed in an ionic-pair potential study of urania and ceria based systems mixed with trivalent rare-earth ions. Mixing enthalpies for SQS supercells containing 96 and 324 lattice sites were calculated using ionic pair potentials for U0.5La0.5O1.75, U0.5Y0.5O1.75, Ce0.5La0.5O1.75, Ce0.5Y0.5O1.75, and Ce0.5Gd0.5O1.75, which all have stoichiometries of pyrochlores. The SQS results were compared to benchmark values for random substitutional disorder obtained using large supercell models. The calculations show significant improvement of the mixing enthalpy for the larger 324 site SQS, which is attributed to a better description of the structural distortions, as characterized by the radial distribution functions in relaxed systems.

  6. Aluminium substitution in iron(II III)-layered double hydroxides: Formation and cationic order

    NASA Astrophysics Data System (ADS)

    Ruby, Christian; Abdelmoula, Mustapha; Aissa, Rabha; Medjahdi, Ghouti; Brunelli, Michela; François, Michel

    2008-09-01

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe4IIFe(2-6y)IIIAl6yIII (OH) 12 SO 4, 8H 2O are followed by pH titration curves, Mössbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO 42-), i.e. y=0, in which a bilayer of sulphate anions points to the Fe 3+ species. A cationic order is proposed to occur in both GR(SO 42-) and aluminium-substituted hydroxysulphate green rust when y<0.08. Variation of the cell parameters and a sharp decrease in average crystal size and anisotropy are detected for an aluminium content as low as y=0.01. The formation of Al-GR(SO 42-) is preceded by the successive precipitation of Fe III and Al III (oxy)hydroxides. Adsorption of more soluble Al III species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount ( y˜0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe II species of the material.

  7. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site.

    PubMed

    Belik, Alexei A; Yi, Wei

    2014-04-23

    ABO3 perovskites with small cations at the A site (A = Sc(3+), In(3+) and Mn(2+) and B = Al(3+) and transition metals) are reviewed. They extend the corresponding families of perovskites with A(3+) = Y, La-Lu, and Bi and A(2+) = Cd, Ca, Sr and Ba and exhibit the largest structural distortions. As a result of these large distortions, they show, in many cases, distinct structural and magnetic properties. These are manifested in: B-site-ordered monoclinic structures of ScMnO3 and 'InMnO3'; an unusual superstructure of ScRhO3 and InRhO3; antiferromagnetic ground states and multiferroic properties of Sc2NiMnO6 and In2NiMnO6; two magnetic transitions in ScCrO3 and InCrO3 with very close transition temperatures; a Pnma-to-P-1 structural transition and k = (½, 0, ½) magnetic ordering in ScVO3; and incommensurate magnetic ordering of Mn(2+) spins in metallic MnVO3. A large number of simple ScBO3, InBO3 and MnBO3 perovskites has not been synthesized yet, and the number of experimental and theoretical works on each known ScBO3, InBO3 and MnBO3 perovskites counts to only one or two (except for ScAlO3). The synthesis, crystal chemistry and physics of perovskites with small cations at the A site is an emerging field in perovskite science.

  8. Micro-, to nano-structural relationships in natural serpentines, derived from cationic substitutions.

    NASA Astrophysics Data System (ADS)

    Munoz, M.; Farges, F.; Andreani, M.; Ulrich, M.; Marcaillou, C.; Mathon, O.

    2014-12-01

    The understanding of the crystal chemistry of serpentine minerals (incl. antigorite, lizardite and chrysotile) is fundamental since serpentinization processes concern very large scientific domains: e.g., natural abiotic hydrogen production (Marcaillou et al., 2011), origins of life (Russell et al., 2010), fluid properties and mobility of metals in subduction zones (Kelley and Cottrell, 2009). This study aims at characterizing relations between the micro-, and nano-structures of the most abundant serpentine polytypes in the oceanic crust. Serpentine theoretical formula is Mg3Si2O5(OH)4 but several natural substitutions are possible and the formula may be written such as: (Mg,Fe2+,Fe3+,Al)3(Si,Al,Fe3+)2O5(OH)4; showing that Fe and Al may play an important role in the crystallization of serpentines. Preliminary crystal chemistry studies, suggest that, 1) the Al content alone cannot be directly correlated to serpentine polytypes (Andreani et al., 2008), 2) the amounts of tetrahedral iron can be significant in the presence of ferric iron (Marcaillou et al., 2011). Because magnetite is usually associated to serpentine, the Fe-speciation characterization of serpentine is delicate. Here, we provide the study of 33 magnetite-free serpentines containing various amounts of Fe and Al. The samples were characterized by SEM, Raman, XRF, as well as XANES, pre-edge, and EXAFS spectroscopy at the Fe K-edge. XANES experimental data were crosschecked and interpreted thanks to ab initio calculations and EXAFS shell-fitting. Also, preliminary 27Al-RMN data is presented. Results suggest relationships between the type and amount of substitution of trivalent cations in minerals, and the microstructures observed. Chrysotile incorporates less trivalent cations than other varieties, which tends to preserve the so-called misfit between the TO layers, and therefore the tubular structure of the mineral. Lizardites mainly involve Fe/Al Tschermak-type substitutions, while M-site vacancy charge

  9. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

    NASA Astrophysics Data System (ADS)

    Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2016-10-01

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04-1.51 eV with high optical-absorption coefficients (~104 cm-1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales.

  10. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

    PubMed Central

    Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2016-01-01

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04–1.51 eV with high optical-absorption coefficients (~104 cm−1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales. PMID:27748406

  11. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance.

    PubMed

    Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K; Bahadur, D; Medhekar, N V; Aslam, M

    2016-10-17

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04-1.51 eV with high optical-absorption coefficients (~10(4) cm(-1)) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm(2). The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales.

  12. Improved antimicrobial therapy with cationic tetra- and octa-substituted phthalocyanines

    NASA Astrophysics Data System (ADS)

    Angelov, I.; Mantareva, V.; Kussovski, V.; Woehrle, D.; Borisova, E.; Avramov, L.

    2008-12-01

    Photodynamic therapy (PDT) today is an innovative and not yet widespread light-drug initiated treatment that is based on the photoactive compound irradiated with proper light to produce oxygen species that are toxic to the pathogenic biological objects- bacteria, viruses, tumor cells. The obstacles that limited the efficacy of PDT concern to the selectivity and multi-drug resistance prolong time for cellular release and side effects of skin photosensitivity for commercial porphyrin originated photosensitizers (PS). Now there are very intensive investigations for introducing in practice a new, with a least side effects PSs for PDT. The usefulness of the more extended macromolecules structured with proper substituents refers not only to the improved optical properties like far-red and with intensive absorption and emission capacity, but mainly to the ability for selective delivery and adhesion to the target cells, such as bacteria or other pathogens. The present study focuses on the charge effect of photodynamic agent on the uptake capacity toward gram-negative bacteria cells and their further photoinactivation. The multi-drug resistant microorganism Aeromanas hydrophilla, which is causing diseases to fishes and humans, is treated. The new octa-cationic phthalocyanines are designed to compare PDT efficacy to the efficacy of tetra-substituted derivatives with the same functional peripheral substituents. The higher cellular accumulation to the bacteria cells as a result of the high number of positive charges of photosensitizer, leading to the better adhesion to the cellular membranes and improved photoinactivation of bacteria causing superficial and intraorgan infections. These results set a base of a rationale design of covalently octa-substituted phthalocyanines with positive charge for a successful treatment of microorganisms.

  13. Relaxor or classical ferroelectric behavior in A-site substituted perovskite type Ba 1- x(Sm 0.5Na 0.5) xTiO 3

    NASA Astrophysics Data System (ADS)

    Abdelmoula, N.; Chaabane, H.; Khemakhem, H.; Von der Mühll, R.; Simon, A.

    2006-08-01

    New ferroelectric ceramics of ABO 3 perovskite type were synthetized in the Ba 1- x(Sm 0.5Na 0.5) xTiO 3 system by solid state reaction technique. The effect of the replacement of barium by samarium and sodium in the A cationic site on structural and physical properties was investigated. These compounds crystallize with tetragonal or cubic symmetry. The material is classical ferroelectric for 0⩽x⩽0.1 and x⩾0.5, and present a relaxor behavior for 0.2⩽x<0.4. The dielectric behavior depends upon the cationic disorder in the A-site and the cell size. Small rate substitution allows a ferroelectric-paraelectric transition. For higher rate of substitution the possible random position of the Sm-Na cations brings to a relaxor state and when the substitution rate x becomes higher than 0.5, the material comes back to a ferroelectric state due to the reduced cell size. Some of these new compositions are of interest for applications due to their physical properties and environmentally friendly character.

  14. Cp*-Substituted Boron Cations: The Effect of NHC, NHO, and CAAC Ligands.

    PubMed

    Huang, Jih-Sheng; Lee, Wan-Hua; Shen, Chao-Tang; Lin, Ya-Fan; Liu, Yi-Hung; Peng, Shie-Ming; Chiu, Ching-Wen

    2016-12-05

    The effect of a ligand on the electron deficiency and Lewis acidity of the Cp*-substituted boron dication has been investigated experimentally and theoretically. In addition to the reported IMes- and N-heterocyclic olefin (NHO)-stabilized boron dications, the related cyclic alkylamino carbene (CAAC)-coordinated boron mono- and dications have also been synthesized and structurally characterized. An electrochemical study of dications [3a-3c](2+) confirms the higher electron deficiency of the dicationic system than the related boron monocations. Moreover, the presence of a π-acidic CAAC ligand is critical for realizing stable radical species generated from the chemical reduction of boron cations. The nature of the axial ligand also significantly affects the selectivity of the hydride addition reaction of boron dications. While bulky superhydride reacts with [3a-3c](2+) in the same manner to give the cyclic boreniums, [BH4](-) attacks three different electrophilic sites of boron dications: the sp(2) carbon of Cp* of the IMes-coordinated system ([3a](2+)), the central boron atom of the NHO-stabilized analogue ([3b](2+)), and the ylidene carbon of the CAAC-containing boron dication ([3c](2+)).

  15. Structure and magnetism in S r1 -xAxTc O3 perovskites: Importance of the A -site cation

    NASA Astrophysics Data System (ADS)

    Reynolds, Emily; Avdeev, Maxim; Thorogood, Gordon J.; Poineau, Frederic; Czerwinski, Kenneth R.; Kimpton, Justin A.; Yu, Michelle; Kayser, Paula; Kennedy, Brendan J.

    2017-02-01

    The S r1 -xB axTc O3 (x =0 , 0.1, 0.2) oxides were prepared and their solid-state and magnetic structure studied as a function of temperature by x-ray and neutron powder diffraction. The refined Tc moments at room temperature and Néel temperatures for B a0.1S r0.9Tc O3 and B a0.2S r0.8Tc O3 were 2.32 (14 ) μβ and 2.11 (13 ) μβ and 714 ∘C and 702 ∘C , respectively. In contrast to expectations, the Néel temperature in the series S r1 -xAxTc O3 decreases with increasing Ba content. This observation is consistent with previous experimental measurements for the two series A M O3 (M =Ru , Mn; A =Ca , Sr, Ba) where the maximum magnetic ordering temperature was observed for A =Sr . Taken with these previous results the current work demonstrates the critical role of the A -site cation in the broadening of the π* bandwidth and ultimately the magnetic ordering temperature.

  16. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies

    NASA Astrophysics Data System (ADS)

    Antanovich, Artsiom; Prudnikau, Anatol; Gurin, Valerij; Artemyev, Mikhail

    2015-07-01

    We examine conversion of magic-sized CdSe clusters (MSCs) into HgSe ones by means of Cd/Hg cation exchange. With this procedure Cd8Cd17- and Cd32-selenide clusters can be converted into corresponding Hg8-, Hg17- and Hg32-selenide ones. Upon cationic exchange MSCs behavior differs from that of bulkier counterparts - larger (2-3 nm) quantum dots. Unlike CdSe colloidal quantum dots, magic-sized clusters are converted in fast and complete manner without a formation of intermediate mixed CdxHg1-x compounds that was established on the basis of optical absorption spectroscopy and chemical composition analysis. These assumptions were supported by DFT quantum chemical calculations performed for Cd8-, Cd17- and Hg8-, Hg17-selenide model clusters. Energies of experimental and calculated optical transitions were compared in order to prove the isostructural character of cationic substitution in magic-sized clusters.

  17. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives.

    PubMed

    Cindro, Nikola; Antol, Ivana; Mlinarić-Majerski, Kata; Halasz, Ivan; Wan, Peter; Basarić, Nikola

    2015-12-18

    Three m-substituted phenol derivatives, each with a labile benzylic alcohol group and bearing either protoadamantyl 4, homoadamantyl 5, or a cyclohexyl group 6, were synthesized and their thermal acid-catalyzed and photochemical solvolytic reactivity studied, using preparative irradiations, fluorescence measurements, nanosecond laser flash photolysis, and quantum chemical calculations. The choice of m-hydroxy-substitution was driven by the potential for these phenolic systems to generate m-quinone methides on photolysis, which could ultimately drive the excited-state pathway, as opposed to forming simple benzylic carbocations in the corresponding thermal route. Indeed, thermal acid-catalyzed reactions gave the corresponding cations, which undergo rearrangement and elimination from 4, only elimination from 5, and substitution and elimination from 6. On the other hand, upon photoexcitation of 4-6 to S1 in a polar protic solvent, proton dissociation from the phenol, coupled with elimination of the benzylic OH (as hydroxide ion) gave zwitterions (formal m-quinone methides). The zwitterions exhibit reactivity different from the corresponding cations due to a difference in charge distribution, as shown by DFT calculations. Thus, protoadamantyl zwitterion has a less nonclassical character than the corresponding cation, so it does not undergo 1,2-shift of the carbon atom, as observed in the acid-catalyzed reaction.

  18. Cation- and Anion-Substituted Potassium Manganese Phosphate, KMnP3 O9 : Luminescence and Photocatalytic Studies.

    PubMed

    Chandiri, Sudhakar Reddy; Gundeboina, Ravi; Kurra, Sreenu; Guje, Ravinder; Maligi, Malathi; Muga, Vithal

    2017-03-01

    Phosphates as multifunctional materials were of vital importance in the environmental and energy fields. In the present work, a new cyclophosphate, potassium manganese phosphate (KMnP3 O9 ) (hereafter KMPO), was prepared by solid state method. Cations (Ag(+) and Cu(2+) ) and anion (N(3-) ) were substituted into KMPO lattice via ion-exchange and solid state methods, respectively. The as-prepared materials were characterized by powder X-ray diffraction, SEM-EDS and UV-visible diffuse reflectance spectra. Rietveld refinement was carried out for parent material. All the prepared materials were found to crystallize in the hexagonal lattice and isomorphous with KCoP3 O9 . The nitrogen content in N(3-) -substituted KMPO was estimated by EDS and O-N-H analysis. The bandgap energy of the cation- and anion-substituted samples was lower compared to that of pristine KMPO. Gouy method was employed to determine the magnetic susceptibility of KMPO. The photoluminescence property of Mn(2+) in all the samples was studied, and the color coordinates were calculated using CIE 1931 chromaticity. The photocatalytic activity of visible light active material, N(3-) -substituted KMPO, was examined against the degradation of methylene blue and methyl violet at ambient conditions.

  19. Tuning optical absorption and photoexcited recombination dynamics in La1-xSrxFeO3-δ through A-site substitution and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven

    We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  20. Halogenated benzene radical cations and ground state degeneracy splitting by asymmetric substitution

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.R.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    The absorption and laser induced fluorescence of several halogenated benzene radical cations were studied in solid Ne matrices. The spectra of 1,2,4-trifluorobenzene, l,3-dichloro-5-fluorobenzene, and l-chloro-3,5- difluorobenzene radical cations are observed and analyzed. Studies of fluorescence polarization and a photoselection technique were used to examine the splitting of the degeneracy of the benzene cation ground state by asymmetric subsitution. ?? 1981 American Institute of Physics.

  1. Influence of cation and anion substitutions on the thermoelectric properties of pnictide skutterudite compounds

    NASA Astrophysics Data System (ADS)

    Watcharapasorn, Anucha

    A good thermoelectric material is characterized by a high thermoelectric figure of merit (ZT), which involves high Seebeck coefficient, low electrical resistivity and low thermal conductivity. In 1995, it was discovered by a research group at the Jet Propulsion Laboratory that a skutterudite compound, CeFe4Sb12, had a higher ZT than that of the currently used materials. This discovery was partly based on a suggestion of Dr. Glenn A. Slack that skutterudite compounds might possess good thermoelectric properties because of their ability to accept extra atoms into its open structure which can then rattle and scatter heat-carrying phonons, hence reducing the lattice thermal conductivity. Since then, a number of research studies were initiated to investigate the preparation and thermoelectric properties of the skutterudites and other related compounds. This study involved the synthesis and thermoelectric property measurements of a number of phosphide and arsenide skutterudite compounds. The goal was to investigate their transport properties and to make a comparison with their antimonide counterparts. It was found that while the binary phosphide CoP 3 had very low resistivity, it possessed low Seebeck coefficient and high thermal conductivity which resulted in low ZT values. Replacing Co with Ir to form IrP3 resulted in a larger Seebeck coefficient and lower thermal conductivity, but the electrical resistivity was too high to give a high efficiency. The study of lanthanum filled CoP3 and a CoP3-xAsx solid solution, however, showed an improvement in the thermoelectric figure of merit. This was mainly due to an enhancement in the Seebeck coefficient and lower thermal conductivity, while their electrical resistivities were not significantly affected by the cation or anion substitutions. The study of ternary compounds, RT4X12 (R = Ce and Pr, T = Fe and Ru, X = P and As), showed that cerium-phosphorus based compounds exhibited semiconducting properties while the others showed

  2. Red Shifted Absorbance of A-site Substituted Bismuth Titanate Pyrochlore: Characterization and Stability Analysis from First Principles

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric; Huda, Muhammad

    2015-03-01

    Transition metal inclusion has enhanced photocatalytic activity of bismuth titanate (Bi2Ti2O7) up to an impurity threshold concentration. Beyond the threshold, spectral absorbance is continually red shifted but increased photocurrent is not reciprocated. We investigated, from first principles, the origin of decreased photocurrent in modified Bi2Ti2O7 (BTO) by calculating the electronic structures of a representative set of doping configurations and by performing a phase stability analysis of the doping. We report our theoretical/computational strategy of analyzing free energy space and show an explicit dependence of pure phase synthesis on changes in free energy. Also, we present a probability distribution of the doping configurations based on formation enthalpy to better understand the nature of doping in BTO. We found that transition metal substitutions are favorable at the A-sites due to unchanging coordination with O ions. This work is supported by National Science Foundation, Award No. 1133672.

  3. Efficient red phosphor double-perovskite Ca3WO6 with A-site substitution of Eu3+.

    PubMed

    Zhao, Xin; Wang, Jiajia; Fan, Li; Ding, Yufeng; Li, Zhaosheng; Yu, Tao; Zou, Zhigang

    2013-10-07

    Luminescent properties of Eu(3+) activated double perovskite structure Ca3WO6 were investigated. It emits an ideal red color centered at the wavelength of 618 nm with suitable excitation from f-f transitions of Eu(3+) ions (360-550 nm) matching the near ultraviolet and blue LEDs. Charge compensation effect of Li(+), Na(+), and K(+) was investigated, and K(+) proved to be the best. The co-doping ion K(+) has a great effect on the lattice distortion of the host matrix Ca3WO6, which facilitates the red emission of Eu(3+). The substitution site for Ca in Ca3WO6 was analyzed in detail by Raman spectra and calculation results. A-site substitution is responsible for the red emission of Eu(3+) activated Ca3WO6. The integrated emission intensity of optimal Ca3WO6:K(+),Eu(3+) excited at 395 nm is about 3.5 times greater than that of Y2O2S:Eu(3+) commercial phosphors, which makes it a promising red phosphor for white LEDs.

  4. Structural and thermoelectric properties of A-site substituted (Sr1-x-yCaxNdy)TiO3 perovskites

    NASA Astrophysics Data System (ADS)

    Somaily, Hamoud H.

    Detailed structural results and models are reported for a special class of A-site substituted perovskites, (Sr1-x-yCaxNd y)TiO3, obtained with high resolution NPD data as a function of temperature and Nd composition. Two series with various A-site concentrations were synthesized and investigated. Each series was designed to have a nominally constant tolerance factor. At room temperature (RT), I determine the space groups of the Sr-rich and Sr poor series as being tetragonal I4/mcm and orthorhombic Pbnm, respectively. The RT structures remain unchanged upon increasing the Nd3+ content. However, three different orthorhombic phases, Pbnm, Ibmm, Pbcm, are determined for the Sr-rich series as a function of decreasing temperature; whereas, for the Sr-poor series the orthorhombic Pbnm structure is found to persist throughout the full range of measured temperatures. A phase diagram is constructed and proposed in the temperature range 0-1000 K. Thermoelectric properties of (Sr 1-x-yCaxNdy)TiO3 were also investigated and the best figure of merit ZT=0.07 was obtained with the Sr-rich series.

  5. Unravelling the low thermal expansion coefficient of cation-substituted YBaCo4O7+δ

    SciTech Connect

    Manthiram, Arumugam; Huq, Ashfia; Kan, Wang Hay; Lai, Ke -Yu

    2016-01-12

    With an aim to understand the origin of the low thermal expansion coefficients (TECs), cation substituted YBaCo4O7-type oxides have been investigated by in-situ neutron diffraction, bond valence sum (BVS), thermogravimetric analysis, and dilatometry. The compositions YBaCo4O7+δ, Y0.9ln0.1BaCo3ZnO7+δ, and Y0.9ln0.1BaCo3Zn0.6Fe0.4O7+δ) were synthesized by solid-state reaction at 1200 °C. Here, Rietveld refinement of the joint synchrotron X-ray and neutron diffraction data shows that the Zn and Fe dopants have different preferences to substitute the Co ions in the 6c and 2a sites.

  6. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  7. Diverse functions of cationic Mn(III) substituted N-pyridylporphyrins, known as SOD mimics

    PubMed Central

    Batinic-Haberle, Ines; Rajic, Zrinka; Tovmasyan, Artak; Ye, Xiaodong; Leong, Kam W.; Dewhirst, Mark W.; Vujaskovic, Zeljko; Benov, Ludmil; Spasojevic, Ivan

    2011-01-01

    Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO−, H2O2, ·OH, CO3·−, and ·NO2. Therefore, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N′-disubstituted imidazolylporphyrins (MnPs), some of them with kcat(O2·−) similar to the kcat of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP5+, MnTnHex-2-PyP5+, and MnTDE-2-ImP5+. The ability to disproportionate O2·− parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO−. The same structural feature that gives rise to the high kcat (O2·−) and kred (ONOO−), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP5+ and MnTDE-2-ImP5+ are potent in numerous animal models of diseases, the lipophilic analogues were developed to cross blood brain barrier and target central nervous system and critical cellular compartment, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP5+ was the first efficacy study performed successfully with non

  8. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics.

    PubMed

    Batinic-Haberle, Ines; Rajic, Zrinka; Tovmasyan, Artak; Reboucas, Julio S; Ye, Xiaodong; Leong, Kam W; Dewhirst, Mark W; Vujaskovic, Zeljko; Benov, Ludmil; Spasojevic, Ivan

    2011-09-01

    Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO⁻, H₂O₂, •OH, CO₃•⁻, and •NO₂. Hence, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N'-disubstituted imidazolylporphyrins (MnPs), some of them with k(cat)(O₂·⁻) similar to the k(cat) of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP⁵⁺, MnTnHex-2-PyP⁵⁺, and MnTDE-2-ImP⁵⁺. The ability to disproportionate O₂·⁻ parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO⁻. The same structural feature that gives rise to the high k(cat)(O₂·⁻) and k(red)(ONOO⁻), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP⁵⁺ and MnTDE-2-ImP⁵⁺ are potent in numerous animal models of diseases, the lipophilic analogues, such as MnTnHex-2-PyP⁵⁺, were developed to cross blood brain barrier and target central nervous system and critical cellular compartments, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-Py

  9. Activation of Methane by the Pyridine Radical Cation and its Substituted Forms in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Stewart, Hamish; Liu, Zeyu; Wang, Yongcheng; Stace, Anthony J.

    2015-08-01

    We present an experimental study of methane activation by pyridine cation and its substituents in the gas phase. Mass spectrometric experiments in an ion trap demonstrate that pyridine cation and some of its substituent cations are able to react with methane. The deuterated methane experiment has confirmed that the hydrogen atom in the ionic product of reaction does come from methane. The collected information about kinetic isotope effects has been used to distinguish the nature of the bond activation as a hydrogen abstraction. Furthermore, experimental results demonstrated that the substituent groups on the pyridine ring can crucially influence their reactivity in methane bond activation processes. Density functional calculation (DFT) was employed to study the electronic structures of the complex and reaction mechanism of CH4+C5H5N+. The calculations confirmed the hypothesis from the experimental observation, namely, the reaction is rapid with no energy barrier.

  10. Mass analyzed threshold ionization spectroscopy of p-methylanisole cation and the substitution effect

    NASA Astrophysics Data System (ADS)

    Huang, Jiangou; Li, Changyong; Tzeng, Wen Bih

    2005-10-01

    The adiabatic ionization energy of p-methylanisole is measured to be 63 972 ± 5 cm -1, which is red-shifted with respect to those of anisole and toluene. This indicates that the interaction of either CH 3 or OCH 3 group with the ring is stronger in the cationic D 0 state than that in the neutral S 0 state. Most of the observed MATI bands result from in-plane ring vibrations. The frequencies of vibrations 9b, 6a, and 1 of the p-methylanisole cation are found to be 407, 515, and 811 cm -1, respectively.

  11. Spectroscopy and decay dynamics of several methyl-and fluorine-substituted benzene radical cations

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    Spectra of several fluorobenzene cation radicals containing 1-3 methyl substituents were observed in solid Ne matrix and analyzed. Comparisons between these compounds and other fluorobenzenes studied previously as well as comparisons between the B?? state lifetimes in the gas phase and in the matrix are used to gain a deeper insight into the B?? state decay dynamics. ?? 1981 American Chemical Society.

  12. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  13. Donor-substituted phosphanes - surprisingly weak Lewis donors for phosphenium cation stabilisation.

    PubMed

    Clark, Ewan R; Borys, Andryj M; Pearce, Kyle

    2016-10-18

    Paradoxically, N- and O-donor substituted tri-arylphosphanes are shown to be weaker donors than PPh3 when binding the soft Lewis acid moiety [PPh2](+). This arises from internal solvation and rehybridisation at phosphorus, precluding chelation and increasing steric demand, in direct contrast to coordination modes observed for metal complexes.

  14. Structure and cation distribution in perovskites with small cations at the A site: the case of ScCoO3

    NASA Astrophysics Data System (ADS)

    Yi, Wei; Presniakov, Igor A.; Sobolev, Alexey V.; Glazkova, Yana S.; Matsushita, Yoshitaka; Tanaka, Masahiko; Kosuda, Kosuke; Tsujimoto, Yoshihiro; Yamaura, Kazunari; Belik, Alexei A.

    2015-04-01

    We synthesize ScCoO3 perovskite and its solid solutions, ScCo1-xFexO3 and ScCo1-xCrxO3, under high pressure (6 GPa) and high temperature (1570 K) conditions. We find noticeable shifts from the stoichiometric compositions, expressed as (Sc1-xMx)MO3 with x = 0.05-0.11 and M = Co, (Co, Fe) and (Co, Cr). The crystal structure of (Sc0.95Co0.05)CoO3 is refined using synchrotron x-ray powder diffraction data: space group Pnma (No. 62), Z = 4 and lattice parameters a = 5.26766(1) Å, b = 7.14027(2) Å and c = 4.92231(1) Å. (Sc0.95Co0.05)CoO3 crystallizes in the GdFeO3-type structure similar to other members of the perovskite cobaltite family, ACoO3 (A3+ = Y and Pr-Lu). There is evidence that (Sc0.95Co0.05)CoO3 has non-magnetic low-spin Co3+ ions at the B site and paramagnetic high-spin Co3+ ions at the A site. In the iron-doped samples (Sc1-xMx)MO3 with M = (Co, Fe), Fe3+ ions have a strong preference to occupy the A site of such perovskites at small doping levels.

  15. Cesium complexes of naphthalimide substituted carboxylate ligands: Unusual geometries and extensive cation-π interactions

    NASA Astrophysics Data System (ADS)

    Reger, Daniel L.; Leitner, Andrew; Smith, Mark D.

    2015-07-01

    The reactions of (1,8-naphthalimido)ethanoic acid (HLgly), and (S)-2-(1,8-naphthalimido)-3-hydroxypropanoic acid (HLser), protonated forms of ligands that contain a carboxylate donor group and a 1,8-naphthalimide π⋯π stacking supramolecular tecton, with cesium hydroxide followed by solvothermal treatment in ethanol led to the formation of crystalline Cs(Lgly) (1) and Cs(Lene) (2), where the Lene- ligand, 2-(1,8-naphthalimido)acrylate, is formed from the dehydration of the HLser starting material. The X-ray studies show that 1 crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 30.430(7) Å, b = 4.9820(12) Å, c = 16.566(4) Å, β = 101.951(4)° and 2 in the monoclinic space group P21/n with unit cell dimensions a = 13.6049(15) Å, b = 6.8100(8) Å, c = 14.4187(16) Å, β = 105.345(2)°. The solid state structure of 1 contains two types of 6-coordinate cesium cations linked into sheets by bridging carboxylate oxygen atoms. One cation has a distorted octahedral environment, while the other is in an unusual planar, hexagonal O6-coordination geometry. The latter geometry is stabilized on both sides of the plane by η2-coordination of naphthalimide rings. The 1,8-naphthalimide rings are involved in intra-sheet π⋯π stacking interactions. The O6 coordination sphere of complex 2 is distorted and only half-filled with the oxygen atoms, which link the cations into rods that are further linked into sheets by bridging interactions of naphthalimide carbonyls with cesium cations from adjacent rods. The open face on the cation has unique η2:η1 interactions with two methylene groups in the ligands. These sheets are linked into a 3D supramolecular structure by interdigitated 1,8-naphthalimide rings involved in strong π⋯π interactions. Both complexes show naphthalimide based fluorescence.

  16. Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect

    NASA Astrophysics Data System (ADS)

    Li, Changyong; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    The adiabatic ionization energy of p-cyanophenol has been determined to be 72 698 ± 5 cm -1 (9.0134 ± 0.0006 eV) on the basis of mass analyzed threshold ionization (MATI) spectrscopy. Analysis of the newly obtained MATI spectra gives the respective frequencies of 399, 517 and 820 cm -1 for the ring deformation 6a, C-CN bending, and breathing vibrations of the p-cyanophenol cation. Comparing these experimental data with those of phenol leads to a better understanding about the influence of the CN substituent on the ionization energy and molecular vibration.

  17. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion.

    PubMed

    Wang, Ze; Shi, Zejiao; Li, Taotao; Chen, Yonghua; Huang, Wei

    2017-01-24

    In recent years, organometal trihalide perovskites have emerged as promising materials for low-cost, flexible, and highly efficient solar cells. Despite their processing advantages, before the technology can be commercialized the poor stability of the organic-inorganic hybrid perovskite materials with regard to humidity, heat, light, and oxygen has be to overcome. Herein, we distill the current state-of-the-art and highlight recent advances in improving the chemical stability of perovskite materials by substitution of the A-cation and X-anion. Our hope is to pave the way for the rational design of perovskite materials to realize perovskite solar cells with unprecedented improvement in stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and distribution of cations in substituted lead phosphate lacunar apatites

    SciTech Connect

    Hamdi, Besma; Feki, Hafed El; Savariault, Jean-Michel . E-mail: savariau@cemes.fr; Salah, Abdelhamid Ben

    2007-02-15

    Synthesis of apatites, Pb{sub 7.4}Bi{sub 0.3}Na{sub 2.3}(PO{sub 4}){sub 6} (I), Pb{sub 7.36}Bi{sub 0.32}Na{sub 2.08}Li{sub 0.24}(PO{sub 4}){sub 6} (II) and Pb{sub 5.78}Bi{sub 0.81}Ca{sub 0.60}Na{sub 2.81}(PO{sub 4}){sub 6} (III), with anion vacancy were carried out during solid state reactions. The three compounds of apatite-type structure crystallize in the hexagonal system, space group P6{sub 3}/m. In every compound, a preferential occupation of the (6h) site by Pb and Bi cations is shown revealing the influence of their lone electronic pair. The introduction of calcium increases the quantity of bismuth in these apatites. Alkaline metals occupy mainly the (4f) site. Infrared spectroscopy is correlated to the bonding scheme. A connection between the cations occupying (4f) sites and the c cell parameters is presented.

  19. The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation

    NASA Astrophysics Data System (ADS)

    Dolgos, Michelle R.; Paraskos, Alexandra M.; Stoltzfus, Matthew W.; Yarnell, Samantha C.; Woodward, Patrick M.

    2009-07-01

    The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d-O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( Eg=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1-xBi xVO 4 (0≤ x≤0.5) and Ce 1-xY xVO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals.

  20. Unprecedented strong Lewis bases--synthesis and methyl cation affinities of dimethylamino-substituted terpyridines.

    PubMed

    Hommes, Paul; Fischer, Christina; Lindner, Christoph; Zipse, Hendrik; Reissig, Hans-Ulrich

    2014-07-14

    A versatile method for the synthesis of functionalized 2,2':6',2''-terpyridines by assembly of the terminal pyridine rings is presented. The cyclization precursors-bis-β-ketoenamides-are prepared from 4-substituted 2,6-pyridinedicarboxylic acids and acetylacetone or its corresponding enamino ketone. Treatment with trimethylsilyl trifluoromethanesulfonate induces a twofold intramolecular condensation providing an efficient access to 4,4''-di- and 4,4',4''-trifunctionalized 6,6''-dimethyl-2,2':6',2''-terpyridines. Using this method, hitherto unknown 4,4''-bis(dimethylamino)- and 4,4',4''-tris(dimethylamino)terpyridines have been prepared that show remarkably high calculated Lewis basicities.

  1. The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation

    SciTech Connect

    Dolgos, Michelle R.; Paraskos, Alexandra M.; Stoltzfus, Matthew W.; Yarnell, Samantha C.; Woodward, Patrick M.

    2009-07-15

    The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba{sub 3}(VO{sub 4}){sub 2}, Pb{sub 3}(VO{sub 4}){sub 2}, YVO{sub 4}, BiVO{sub 4}, CeVO{sub 4} and Ag{sub 3}VO{sub 4} were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba{sub 3}(VO{sub 4}){sub 2} and YVO{sub 4} have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb{sub 3}(VO{sub 4}){sub 2} and BiVO{sub 4} the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6s orbitals with nonbonding O 2p states at the top of the valence band, and (b) overlap of empty 6p orbitals with antibonding V 3d-O 2p states at the bottom of the conduction band. In Ag{sub 3}VO{sub 4} mixing between filled Ag 4d and O 2p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (E{sub g}=2.2 eV). In CeVO{sub 4} excitations from partially filled 4f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce{sub 1-x}Bi{sub x}VO{sub 4} (0<=x<=0.5) and Ce{sub 1-x}Y{sub x}VO{sub 4} (x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi{sup 3+} or Y{sup 3+} are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4f orbitals. - Graphical abstract: The electronic structures of six vanadate salts, Ba{sub 3}(VO{sub 4}){sub 2}, Pb{sub 3}(VO{sub 4}){sub 2}, YVO{sub 4}, BiVO{sub 4}, Ag{sub 3}VO{sub 4} and CeVO{sub 4}, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the

  2. Cationic technetium-99m complexes of N-substituted pyridoxal derivatives as renal function agents

    SciTech Connect

    Karube, Yoshiharu; Iwamoto, Koji; Takata, Jiro

    1994-10-01

    New cationic technetium-chelating agents containing a pyridinium group have been synthesized and evaluated as potential renal radiopharmaceuticals. The pyridinium compounds used in the study are N-methyl pyridoxal chloride, N-ethyl pyridoxal chloride, N-propyl pyridoxal chloride, 1-methyl-3-hydroxy-4-formylpyridinium chloride, 1-methyl-2-formyl-3-hydroxpyridinium chloride and the Schiff`s bases of N-methyl pyridoxal chloride with amino acid, amino acid ester and amino acid amide. Complexes of these chelating agents with {sup 22m}Tc were prepared using a Na{sub 2}S{sub 2}O{sub 4} or a SnCl{sub 2} solution as a reducing agent. The purity of the {sup 99m}Tc complexes was determined by paper electrophoresis in 0.1 Mtris buffer. Electrophoresis indicates slightly positive-charged species. The log P values of these complexes showed a hydrophilic nature. Urinary excretion of the {sup 99m}Tc N-alkylated pyridoxal derivatives, {sup 99m}Tc-diethylenetriaminepentaacetic acid, {sup 99m}Tc-mercaptoacetylglycylglycylglycine (MAG3) and {sup 131}I-o-iodohippurate were determined in mice and rats at different time intervals. In a rat model, the pyridoxal-derived {sup 99m}Tc complexes are rapidly excreted in urine and provide clear renal scintigrams. Hepatobiliary excretion was negligible, reducing scan interference from the intestines. Total clearances were lower than that of {sup 131}I-hippurate and {sup 99m}Tc-MAG3. The rate of urinary clearance of the new tracers was not significantly faster than {sup 99m}Tc diethylenetriaminepentaacetic acid and the inhibitor N{sup 1}-methylnicotinamide had only a minimal effect on the renal behavior. Though the new tracers have cationic properties, the pyridinium group did not contribute largely to the excretion of active transport. 21 refs., 4 figs., 4 tabs.

  3. Formation of porphyrin pi cation radical in zinc-substituted horseradish peroxidase.

    PubMed

    Kaneko, Y; Tamura, M; Yamazaki, I

    1980-12-09

    Zinc-substituted horseradish peroxidase is oxidized by K2IrCl6 to a characteristic state which retains one oxidizing equivalent more than the zinc peroxidase. The oxidized enzyme gives an optical absorption spectrum similar to that of compound I of peroxidase and catalase, and a g = 2 electron paramagnetic resonance signal which has an intensity corresponding to the porphyrin content. It is reduced back to the zinc peroxidase by a stoichiometric amount of ferrocyanide or by a large excess of K3IrCl6. From the equilibrium data, the value of E0' for the zinc peroxidase couple is estimated to be 0.74 V at pH 6. The oxidized zinc peroxidase is also formed by the addition of H2O2 or upon illumination with white light. The rate constants for the oxidation by K2IrCl6 and H2O2 at pH 8.0 are 8 x 10(5) and 8 x 10(2) M-1 s-1, respectively. No essential spectral change can be observed when K2IrCl6 is added to the metal-free peroxidase (protoporphyrin--apoperoxidase complex) or to zinc-substituted sperm whale myoglobin.

  4. Synthesis and Molecular Structure of a Novel Compound Containing a Carbonate-Bridged Hexacalcium Cluster Cation Assembled on a Trimeric Trititanium(IV)-Substituted Wells-Dawson Polyoxometalate.

    PubMed

    Hoshino, Takahiro; Isobe, Rina; Kaneko, Takuya; Matsuki, Yusuke; Nomiya, Kenji

    2017-08-21

    A novel compound containing a hexacalcium cluster cation, one carbonate anion, and one calcium cation assembled on a trimeric trititanium(IV)-substituted Wells-Dawson polyoxometalate (POM), [{Ca6(CO3)(μ3-OH)(OH2)18}(P2W15Ti3O61)3Ca(OH2)3](19-) (Ca7Ti9Trimer), was obtained as the Na7Ca6 salt (NaCa-Ca7Ti9Trimer) by the reaction of calcium chloride with the monomeric trititanium(IV)-substituted Wells-Dawson POM species "[P2W15Ti3O59(OH)3](9-)" (Ti3Monomer). Ti3Monomer was generated in situ under basic conditions from the separately prepared tetrameric species with bridging Ti(OH2)3 groups and an encapsulated Cl(-) ion, [{P2W15Ti3O59(OH)3}4{μ3-Ti(H2O)3}4Cl](21-) (Ti16Tetramer). The Na7Ca6 salt of Ca7Ti9Trimer was characterized by complete elemental analysis, thermogravimetric (TG) and differential thermal analyses (DTA), FTIR, single-crystal X-ray structure analysis, and solution (183)W and (31)P NMR spectroscopy. X-ray crystallography revealed that the [Ca6(CO3)(μ3-OH)(OH2)18](9+) cluster cation was composed of six calcium cations linked by one μ6-carbonato anion and one μ3-OH(-) anion. The cluster cation was assembled, together with one calcium ion, on a trimeric species composed of three tri-Ti(IV)-substituted Wells-Dawson subunits linked by Ti-O-Ti bonds. Ca7Ti9Trimer is an unprecedented POM species containing an alkaline-earth-metal cluster cation and is the first example of alkaline-earth-metal ions clustered around a titanium(IV)-substituted POM.

  5. Oxygen isotope geochemistry of the amphiboles: Isotope effects of cation substitutions in minerals

    SciTech Connect

    Kohn, M.J.; Valley, J.W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition {sup 18}O in the order: hornblende {much_lt} gedrite < cummingtonite {le} anthophyllite. The observed fractionations at {approximately}575 C are: {Delta}(Ged-Hbl) = 0.8%, {Delta}(Cum-Hbl) = 0.9, {Delta}(Cum-Ged) = 0.2, {Delta}(Ath-Ged) = 0.3, and {Delta}(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that {Delta}(Act-Hbl) {approximately} 0.2, {Delta}(Gin-Grt) {much_gt} 1, and {Delta}(Hbl-Grt) {approximately} 0. Thus, glaucophane strongly partitions {sup 18}O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components. Applications of the exchange component method reproduce measured amphibole fractionations to within {+-}0.1 to {+-}0.2%, whereas other predictive methods cause misfit for typical metamorphic hornblende of {ge}0.5% at 575 C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium {delta}{sup 18}O differences of 2--9%. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  6. High Substitution Rate in TiO 2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage

    SciTech Connect

    Li, Wei; Corradini, Dario; Body, Monique; Legein, Christophe; Salanne, Mathieu; Ma, Jiwei; Chapman, Karena W.; Chupas, Peter J.; Rollet, Anne-Laure; Julien, Christian; Zhagib, Karim; Duttine, Mathieu; Demourgues, Alain; Groult, Henri; Dambournet, Damien

    2015-06-24

    Doping is generally used to tune and enhance the properties of metal oxides. However, their chemical composition cannot be readily modified beyond low dopant amounts without disrupting the crystalline atomic structure. In the case of anatase TiO2, we introduce a new solution-based chemical route allowing the composition to be significantly modified, substituting the divalent O2- anions by monovalent F- and OH- anions resulting in the formation of cationic Ti4+ vacancies (square) whose concentration can be controlled by the reaction temperature. The resulting polyanionic anatase has the general composition Ti1-x-y square x+yO2-4(x+y)F4x(OH)4y, reaching vacancy concentrations of up to 22%, i.e., Ti0.78 square 0.22O1.12F0.4(OH)0.48. Solid-state F-19 NMR spectroscopy reveals that fluoride ions can accommodate up to three different environments, depending on Ti and vacancies (i.e. Ti3-F, Ti-2 square 1-F, and Ti-1 square 2-F), with a preferential location close to vacancies. DFT calculations further confirm the fluoride/vacancy ordering. When its characteristics were evaluated as an electrode for reversible Li-ion storage, the material shows a modified lithium reaction mechanism, which has been rationalized by the occurrence of cationic vacancies acting as additional lithium hosting sites within the anatase framework. Finally, the material shows a fast discharging/charging behavior, compared to TiO2, highlighting the benefits of the structural modifications and paving the way for the design of advanced electrode materials, based on a defect mediated mechanism.

  7. A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Haixue; Li, Chengen; Zhou, Jiaguang; Zhu, Weimin; He, Lianxin; Song, Yuxin

    2000-11-01

    We investigated the effect of A-site compound substitution on the structures and properties of Ca0.8(MCe)0.1Bi4Ti4O15 (M denotes Li, Na and K) ceramics. The samples were prepared by the conventional ceramic technique. Sintering characteristics of Ca0.8(MCe)0.1Bi4Ti4O15 and CaBi4Ti4O15 ceramics were discussed. X-ray powder diffraction patterns of the three modified CBT-based compounds show a single phase of bismuth oxide layer type structure with m=4. The hysteresis loops of polarization versus electric field of the four compounds were also measured. A-site compound substitution improves the piezoelectric properties and the high-temperature resistivity of these materials. A-site (LiCe) and (KCe) substitution not only improves the Curie temperature but also decreases the temperature coefficient of dielectric constant (TK\\varepsilon). Among the three modified ceramics, only the Curie temperature of Ca0.8(NaCe)0.1Bi4Ti4O15 is lower than that of CaBi4Ti4O15; however, its TK\\varepsilon is the lowest. As a result, all the three modified CBT-based ceramics were found to be excellent high-temperature piezoelectric materials.

  8. Effect of A-site cations on the broadband-sensitive upconversion of AZrO3:Er3+,Ni2+ (A = Ca, Sr, Ba) phosphors

    NASA Astrophysics Data System (ADS)

    Luitel, Hom Nath; Mizuno, Shintaro; Tani, Toshihiko; Takeda, Yasuhiko

    2017-02-01

    We investigated broadband-sensitive upconversion processes in a series of AZrO3 type perovskites codoped with Ni2+ and Er3+, especially giving focus on the effect of the A-site host cations viz. Ca, Sr, Ba. Absorption and Stokes emission of the Ni2+ changed remarkably according to the A-site cations making difference in the Ni2+ to Er3+ energy transfer efficiency. The energy transfer extent from the Ni2+ sensitizers to the Er3+ emitters and the back transfer from the Er3+ to the Ni2+ were studied to clarify the guide for efficient broadband-sensitive upconversion. The Ni2+ to Er3+ energy transfer efficiency and hence the Er3+ upconversion emission intensity was dependent on the extent of overlap between the Er3+ absorption and the Ni2+ emission bands. Larger the overlap, faster was the energy transfer from the Ni2+ to the Er3+, leading to more intense Er3+ upconversion emission. However, back energy transfer from the Er3+ to the Ni2+ due to significant overlap of the Er3+ emission band with the Ni2+ absorption band reduced the upconversion emission intensity. Another important factor is the upconversion efficiency of the Er3+ emitters themselves after the energy transfer from the Ni2+ sensitizers, which was significantly improved when the symmetry around the Er3+ was lowered. As a result of these combined effects, the CaZrO3 host exhibited the most intense Ni2+-sensitized upconversion emission compared to the Sr and Ba analogues. Thus, for the efficient broadband-sensitive upconversion to be realized, a low symmetry host to manifest efficient upconversion of the Er3+ emitters and controlled Ni2+ absorption and emission bands to suppress the back energy transfer while maintaining efficient energy transfer in the forward direction are essential.

  9. Effect of framework and extra-framework cations substitutions on the zeolite structure: Single-crystal X-ray diffraction analysis of analcime and wairakite solid solutions

    NASA Astrophysics Data System (ADS)

    Sugano, N.; Kyono, A.

    2015-12-01

    There are a large number of natural and synthetic zeolites having a microporous structure, which is generally composed of Si/AlO4 three-dimensional framework. Analcime, NaAlSi2O6·H2O, is one of the most common naturally occurring zeolites. It forms a variety of solid solutions with wairakite, (Ca,Na2)Al2Si4O12·2H2O, pollucite (CsAlSi2O6·nH2O), and hsianghualite (Ca3Li2Be3Si3O12·F2). This study aimed to clarify structural variations in the solid solution between analcime and wairakite. Single crystals with compositions between analcime and wairakite were synthesized using hydrothermal synthesis method. Aluminium sulfate and sodium metasilicate nonahydrate gelled with distilled water were heated for 24 hours under 200 °C. The hydrothermally synthesized crystalline materials were analyzed by scanning electron microscope (SEM). SEM images showed that the grown single crystals exhibited euhedral trapezohedron shape up to 400μm in size. The effect of the cations substitution on the structural variation was examined by single-crystal X-ray diffraction analysis and electron probe micro-analyser (EPMA). Structure refinements based on the single-crystal X-ray diffraction data exhibited that crystal structures between analcime and wairakite belong to the cubic Ia-3d and kept approximately unchanged. Lattice parameter was monotonously reduced from 13.713 (1) Å to 13.650 (1) Å as a function of Ca concentration. In addition, the lattice parameter was also varied with Si/Al framework cation ratio. The contraction of the 6-membered oxygen rings was closely associated with exchanged cations and substituted framework cations. This study indicates that a geometry of micro-porous zeolite structure is significantly influenced by substitution of not only extra-framework cations but framework cations.

  10. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations

    PubMed Central

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    Abstract CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations. PMID:27877870

  11. Effects of Divalent Cation Substitution on Sinterability and Electrical Properties of LaCrO 3 Ceramics

    NASA Astrophysics Data System (ADS)

    Jin, Fuxue; Endo, Tadashi; Takizawa, Hirotsugu; Shimada, Masahiko

    1994-11-01

    A series of LaCr1-xMxO3 (M = Mg, Cu, Zn, Ni) ceramics was fabricated by a conventional sintering process in air and Ar gas. Relative density, electrical conductivity, and magnetic susceptibility were measured to investigate the electrical conduction mechanism of the doped LaCrO3 ceramic. The apparent density was improved up to 95% of theoretical density, especially in the cases of M = Cu2+ and Zn2+. The electrical conductivity (σ) increased with increasing quantities of doped divalent cation (x), and log(σT) showed a linear relationship to (1/T). Magnetic data and chemical analysis indicated that the presence of Cr4+, rather than oxygen deficiencies, is preferential for the charge compensation. As a result, the electrical conduction was substantially governed by the hopping of small polarons between Cr3+ and Cr4+ ions. The substitution of Ni ions resulted in lower than expected unit cell volumes, somewhat different conductivities, and a different antiferromagnetic response, all of which pointed to the role of Ni3+ as of the source of an additional band conduction mechanism.

  12. La2SrCr2O7: Controlling the Tilting Distortions of n = 2 Ruddlesden-Popper Phases through A-Site Cation Order.

    PubMed

    Zhang, Ronghuan; Abbett, Brian M; Read, Gareth; Lang, Franz; Lancaster, Tom; Tran, T Thao; Halasyamani, P Shiv; Blundell, Stephen J; Benedek, Nicole A; Hayward, Michael A

    2016-09-06

    Structural characterization by neutron diffraction, supported by magnetic, SHG, and μ(+)SR data, reveals that the n = 2 Ruddlesden-Popper phase La2SrCr2O7 adopts a highly unusual structural configuration in which the cooperative rotations of the CrO6 octahedra are out of phase in all three Cartesian directions (ΦΦΦz/ΦΦΦz; a(-)a(-)c(-)/a(-)a(-)c(-)) as described in space group A2/a. First-principles DFT calculations indicate that this unusual structural arrangement can be attributed to coupling between the La/Sr A-site distribution and the rotations of the CrO6 units, which combine to relieve the local deformations of the chromium-oxygen octahedra. This coupling suggests new chemical "handles" by which the rotational distortions or A-site cation order of Ruddlesden-Popper phases can be directed to optimize physical behavior. Low-temperature neutron diffraction data and μ(+)SR data indicate La2SrCr2O7 adopts a G-type antiferromagnetically ordered state below TN ∼ 260 K.

  13. Evaluation of the α-phenylvinyl cation as a chemical ionization reagent for the differentiation of isomeric substituted phenols in an ITMS.

    PubMed

    Begala, Michela

    2015-04-01

    Ion-molecule reactions between the α-phenylvinyl cation and isomeric naturally occurring phenols were investigated using a quadruple ion trap mass spectrometer. The α-phenylvinyl cation m/z 103, generated by chemical ionization from phenylacetylene, reacts with neutral aromatic compounds to form the characteristic species: [M + 103](+) adduct ions and the trans-vinylating product ions [M + 25](+) , which correspond to [M + 103](+) adduct after the loss of benzene. Isomeric differentiation of several ring-substituted phenols was achieved by using collision-induced dissociation of the [M + 103](+) adduct ions. This method also showed to be effective in the differentiation of 4-ethylguaiacol from one of its structural isomers that displays identical EI and EI/MS/MS spectra. The effects of gas-phase alkylation with phenylvinyl cation on the dissociation behavior were examined using mass spectrometry(n) and labeled derivatives. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Effects of In{sub 3+} substitution on structural properties, cation distribution and Mössbauer spectra of CoFe{sub 2}O{sub 4} ferrite

    SciTech Connect

    Kumar, Ravi; Pandit, Rabia; Sharma, K. K.; Kaur, Pawanpreet

    2014-04-24

    The use of non-destructive, high resolution technique namely Mössbauer spectroscopy is discussed in detail for the investigation of structural and magnetic properties of Fe based indium substituted cobalt ferrites. The polycrystalline samples of CoFe{sub 2−x}In{sub x}O{sub 4} (x = 0.2, 0.6) were prepared by double sintering solid state reaction method. To ensure a single phase formation of the as prepared samples the X-ray diffraction (XRD) data of the powdered samples was Rietveld refined using Fd3m space group. An excellent agreement is obtained between the integrated intensity ratios of 57 Fe spectra at A- and B-sites and those calculated on the basis of cation distribution the cation distribution obtained data analysis. The results of Mössbauer spectra and cation distribution are also correlated well with magnetization versus applied field (M-H) study.

  15. Topotactic reductive synthesis of A-site cation-ordered perovskite YBaCo2O x (x = 4.5-5.5) epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2016-04-01

    A-site cation-ordered perovskite YBaCo2O x epitaxial films were synthesized by combining pulsed-laser deposition and topotactic reduction using CaH2. The oxygen contents (x) of the films could be controlled in a range of 4.5-5.5 by adjusting the reaction temperature. The c-axis length of the YBaCo2O x films decreased with decreasing x when x ≥ 5.3 but drastically increased when x ˜ 4.5. In contrast, the in-plane lattice constants remained locked-in by the substrate after the reaction. The metal insulator transition observed in bulk YBaCo2O5.5 was substantially suppressed in the present film, likely because of the epitaxial strain effect. The resistivity of the films was significantly enhanced by changing the x value from ˜5.5 to ˜4.5, reflecting the distortion of the CoO x layers.

  16. A-site substitution effect of perovskite-type cobalt and manganese oxides on two-step water splitting reaction for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroshi; Hasegawa, Takumi; Mori, Kohei

    2017-06-01

    The perovskite type metal oxides (ABO3: A and B are metal elements) are attractive material for the two-step water splitting process to produce solar hydrogen, because the diversity of perovskite compound with substitution of metal ion makes its reducibility changeable. The perovskite-type cobalt and manganese oxides are prepared with substitution of metal ion in the A-site, and the performance of two-step water splitting reaction is investigated. The LaCoO3 and Ca0.45Sr0.4La0.15MnO3-δ, containing more trivalent metal ions in the A-site of perovskite structure, are most promising materials for solar hydrogen production. It is found that the two-step water-splitting reaction with Ca0.45Sr0.4La0.15MnO3-δ of the perovskite-type manganese oxide proceed stoichiometrically and Ca0.45Sr0.4La0.15MnO3-δ can produce much H2 gas (4cm3/g-sample) at the reduction temperature of 1400 °C.

  17. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream.

  18. Synthesis and photoluminescence control of Ca10.5-1.5xLax(PO4)7:Eu2+ phosphors by aliovalent cation substitution

    NASA Astrophysics Data System (ADS)

    Fan, Yanting; Tang, Miao; Qiu, Zhongxian; Zhang, Jilin; Yu, Liping; Li, Chengzhi; Lian, Shixun; Zhou, Wenli

    2017-02-01

    A range of Ca10.5-1.5xLax(PO4)7:Eu2+phosphors were synthesized by high temperature solid state method. Subsequently we studied the crystal structures and luminescent properties through X-ray diffraction, photoluminescence and photoluminescence excitation, diffuse reflection spectra, Raman spectra and decay curves systematically. Based on the special crystal structure ofβ-Ca3(PO4)2:Eu2+, its emission undergoes a variation from violet-blue to cyan through introducing La3+. The substitution of La3+ for Ca2+ could form some cation vacancies in Ca(4) sites according to the scheme 3Ca2+= 2La3++ □ due to the different ion valence, which compels Eu2+ to migrate from Ca(4) site to other sites. Additionally, the formation of the cation vacancies can further reduce the thermal stability of phosphors.

  19. Effect of cation substitution in Cs1-2 x Ba x H2PO4 on structural properties and proton conductivity

    NASA Astrophysics Data System (ADS)

    Ponomareva, V. G.; Bagryantseva, I. N.; Shutova, E. S.

    2017-07-01

    We synthesized compounds with partial substitution of Cs+ cations in CsH2PO4 by Ba2+ cations. The structural, electron transport and thermodynamic properties of Cs1-2 x Ba x H2PO4 ( x = 0-0.15) were studied for the first time with the help of a set of physicochemical methods: infrared and impedance spectroscopy, X-ray diffraction and synchronous thermal analysis. The proton conductivity of Cs1-2 x Ba x H2PO4 at 50-230°C was investigated in detail by impedance measurements. The formation of solid substitution solutions isostructural with CsH2PO4 ( P21/ m) is observed in the range of substitution degrees of x = 0-0.1, with a slight decrease in the unit cell parameters and some salt amorphization. The conductivity of disordered Cs1-2 x Ba x H2PO4 in the low-temperature region increases by two orders of magnitude at x = 0.02 and increases with an increasing fraction of barium cations by three or four orders of magnitude at x = 0.05-0.1; the superionic phase transition practically disappears. At x = 0.15, heterophase systems based on salts are formed, showing high conductivity and a further decrease in the activation energy of conductivity to 0.63 eV. The conductivity of the high-temperature phase of Cs1-2 x Ba x H2PO4 does not change with increasing fraction of the substituent.

  20. Self-assembly of [UO2X4]2- (X=Cl, Br) dianions with γ substituted pyridinium cations: Structural systematics and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Surbella, Robert G.; Andrews, Michael B.; Cahill, Christopher L.

    2016-04-01

    Room temperature self-assembly of [UO2X4]2- (X=Cl, Br) with γ substituted pyridinium cations has resulted in the formation of twelve compounds that were studied via single crystal X-ray diffraction and fluorescence spectroscopy. Systematic variation of electron donating groups on the pyridinium species is shown to influence the presence and/or strength of various supramolecular synthons, including hydrogen bonding and pi interactions. Combinations of such non-covalent interactions (NCIs) have given rise to a range of supramolecular assemblies, and are shown to influence uranyl emission by way of second sphere coordination to equatorial ligands.

  1. Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics

    PubMed Central

    Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin

    2014-01-01

    Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings. PMID:25351166

  2. Multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics.

    PubMed

    Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin

    2014-10-29

    Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La(3+), Mg(2+) and Al(3+) ions with large ionic radius Ba(2+), Zn(2+) and Ti(4+), respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings.

  3. Effects of the A-site cation number on the properties of Ln{sub 5/8}M{sub 3/8}MnO{sub 3} manganites

    SciTech Connect

    Collado, J.A.; Garcia-Munoz, J.L.; Aranda, M.A.G.

    2010-05-15

    The properties of manganites can be tuned by changing the doping level x in Ln{sub 1-x}M{sub x}MnO{sub 3}. A second mechanism allows tuning of magnetic and electronic properties, for fixed x values, by varying the average A-cation radius, . Moreover, for fixed x and values, the changes in the A-cation size variance, sigma{sup 2}, also modify the ferromagnetic and metal-insulator transition temperatures. Here, we investigate the influence of the number of A-site cations on Ln{sub 5/8}M{sub 3/8}MnO{sub 3} manganites, where x, and sigma{sup 2} values are kept constant, and in the absence of phase separation phenomena. We have found that the number of cation species at the A site (N{sub A}) has a strong influence on the width of the ferromagnetic and metal-insulator transitions, and a small influence on the average transition temperature. This behavior is opposite to that observed for increasing values of the variance sigma{sup 2} in manganites, with the same x and values, where average transition temperatures are strongly reduced. - Graphical abstract: In this paper the influence of A-site cation number is shown, see attached schematic figure, on the magnetotransport properties of T{sub c}-optimized manganites, Ln{sub 5/8}M{sub 3/8}MnO{sub 3}.

  4. Effects of arginine and leucine substitutions on anti-endotoxic activities and mechanisms of action of cationic and amphipathic antimicrobial octadecapeptide from rice α-amylase.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Toyoda, Ryu; Sato, Teppei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2017-03-01

    Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI-1-18 from rice α-amylase (AmyI-1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI-1-18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI-1-18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI-1-18. In the present study, anti-inflammatory (anti-endotoxic) activities of five AmyI-1-18 analogs containing arginine or leucine substitutions were investigated. Two single arginine-substituted and two single leucine-substituted AmyI-1-18 analogs inhibited the production of LPS-induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI-1-18. These data indicate that enhanced cationic and hydrophobic properties of AmyI-1-18 are associated with improved anti-endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50 ) of the three AmyI-1-18 analogs (G12R, D15R, and E9L) were 0.11-0.13 μm, indicating higher anti-endotoxic activity than that of AmyI-1-18 (IC50, 0.22 μm), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI-1-18 analogs. In addition, AmyI-1-18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti-inflammatory and LPS-neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine-substituted and leucine-substituted AmyI-1-18 analogs with improved anti-endotoxic and antimicrobial activities have clinical potential as dual-function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley

  5. Antimicrobial activity against Porphyromonas gingivalis and mechanism of action of the cationic octadecapeptide AmyI-1-18 and its amino acid-substituted analogs.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Takahashi, Kiyoshi; Nakamichi, Shun-Ichi; Nomoto, Takafumi; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-12-01

    The antimicrobial peptide AmyI-1-18 is a cationic α-helical octadecapeptide derived from α-amylase in rice (Oryza sativa L. japonica) that contains four cationic amino acid residues (two arginines and two lysines). To enhance the antibacterial activity of AmyI-1-18 against Porphyromonas gingivalis (a bacterium associated with periodontal disease), we synthesized 12 analogs bearing substitutions with alanine, leucine, and/or arginine that were designed based on helical wheel projections and investigated their antibacterial properties. The antibacterial properties of four analogs bearing substitution of a single arginine or lysine with alanine were almost similar to those of AmyI-1-18, suggesting that the antibacterial properties depend on the presence of three cationic amino acid residues. Of three single arginine-substituted analogs, AmyI-1-18(G12R) exhibited an antibacterial activity 2.8-fold higher [50% growth-inhibitory concentration (IC50): 4.6 μM] than that of AmyI-1-18 (IC50: 13 μM). Likewise, the antibacterial properties of two single leucine-substituted analogs were significantly enhanced; in particular, AmyI-1-18(N3L) exhibited an antibacterial activity (IC50: 2.5 μM) 5.2-fold higher than that of AmyI-1-18. The hemolytic activity of AmyI-1-18(N3L) against mammalian red blood cells was low (2% at 50 μM). A membrane-depolarization assay using a membrane potential-sensitive fluorescent dye revealed that, similar to AmyI-1-18, the antibacterial activity of AmyI-1-18(N3L) was not dependent on its membrane-disrupting activity. Our results demonstrate that the antibacterial properties of AmyI-1-18 against P. gingivalis are significantly improved, without a significant increase in hemolytic activity, by replacing asparagine with leucine at position 3. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Mass-analyzed threshold ionization spectroscopy of p-methylphenol and p-ethylphenol cations and the alkyl substitution effect

    NASA Astrophysics Data System (ADS)

    Lin, Jung Lee; Li, Changyong; Tzeng, Wen Bih

    2004-06-01

    The mass-analyzed threshold ionization (MATI) spectra of p-methylphenol and p-ethylphenol have been recorded by ionizing via various vibronic levels. The adiabatic ionization energies (IEs) of p-methylphenol and p-ethylphenol are determined to be 65918±5 and 65628±5 cm-1, which are less than that of phenol by 2707 and 2997 cm-1, respectively. This redshift indicates that the interaction between the alkyl group and the ring of alkylphenols in the cationic D0 state is greater than that in the neutral S0 state. Moreover, a longer alkyl group gives rise to a greater redshift in the IE. Analysis of the MATI spectra shows that most of the active modes are related to the in-plane ring vibrations of these two cations. However, the length of the alkyl group has an insignificant effect on the frequency of the observed ring vibrations. No band with frequency less than 350 cm-1 is observed for the p-methylphenol cation. In contrast, many low-frequency bands resulting from the characteristic motions (e.g., the C-C2H5 torsion and C-C2H5 and C-OH bending vibrations) appear in the MATI spectra of p-ethylphenol. The present results show that the ethyl group enhances the substituent-sensitive and many large-amplitude vibrations of the cation.

  7. Cation control of diastereoselectivity in iridium-catalyzed allylic substitutions. Formation of enantioenriched tertiary alcohols and thioethers by allylation of 5H-oxazol-4-ones and 5H-thiazol-4-ones.

    PubMed

    Chen, Wenyong; Hartwig, John F

    2014-01-08

    We report highly diastereo- and enantioselective allylations of substituted 5H-oxazol-4-ones and 5H-thiazol-4-ones catalyzed by a metallacyclic iridium complex. Enantioselective Ir-catalyzed allylation of substituted 5H-oxazol-4-ones occurs with high diastereoselectivity by employing the corresponding zinc enolates; enantioselective Ir-catalyzed allylation of substituted 5H-thiazol-4-ones occurs with the corresponding magnesium enolates with high diastereoselectivity. The allylation of substituted 5H-oxazol-4-ones provides rapid access to enantioenriched tertiary α-hydroxy acid derivatives unavailable through Mo-catalyzed allylic substitution. The allylation of substituted 5H-thiazol-4-ones provides a novel method to synthesize enantioenriched tertiary thiols and thioethers. The observed cation effect implies a novel method to control the diastereoselectivity in Ir-catalyzed allylic substitution.

  8. Cation Control of Diastereoselectivity in Iridium-Catalyzed Allylic Substitutions. Formation of Enantioenriched Tertiary Alcohols and Thioethers by Allylation of 5H-Oxazol-4-ones and 5H-Thiazol-4-ones

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2014-01-01

    We report a highly diastereo- and enantioselective allylation of substituted 5H-oxazol-4-ones and 5H-thiazol-4-ones catalyzed by the metallacyclic iridium complex. Enantioselective Ir-catalyzed allylation of substituted 5H-oxazol-4-ones occurs with high diastereoselectivity by employing the corresponding zinc enolates; enantioselective Ir-catalyzed allylation of substituted 5H-thiazol-4-ones requires the corresponding magnesium enolates to achieve high diastereoselectivity. The allylation of substituted 5H-oxazol-4-ones provides rapid access to enantioenriched tertiary α-hydroxy acid derivatives unavailable through Mo-catalyzed allylic substitution. The allylation of substituted 5H-thiazol-4-ones provides a novel method to synthesize enantioenriched tertiary thiols and thioethers. The observed cation effect implies a novel method to control the diastereoselectivity in Ir-catalyzed allylic substitution. PMID:24295427

  9. Total scattering analysis of cation coordination and vacancy pair distribution in Yb substituted δ-Bi2O3.

    PubMed

    Leszczynska, M; Liu, X; Wrobel, W; Malys, M; Norberg, S T; Hull, S; Krok, F; Abrahams, I

    2013-11-13

    Reverse Monte Carlo (RMC) modelling of neutron total scattering data, combined with conventional Rietveld analysis of x-ray and neutron data, has been used to describe the cation coordination environments and vacancy pair distribution in the oxide ion conducting electrolyte Bi3YbO6. The thermal variation of the cubic fluorite unit cell volume, monitored by variable temperature x-ray and neutron experiments, reveals significant curvature, which is explained by changes in the oxide ion distribution. There is a significant increase in tetrahedral oxide ion vacancy concentration relative to δ-Bi2O3, due to the creation of Frenkel defects associated with the Yb(3+) cation. The tetrahedral oxide ion vacancy concentration increases from room temperature to 800 °C, but little change is observed in the vacancy pair distribution with temperature. The vacancy pair distributions at both temperatures are consistent with a favouring of [100] vacancy pairs.

  10. Tetraalkyl- and dialkyl-substituted BEDT-TTF derivatives and their cation-radical salts : synthesis, structure, and properties.

    SciTech Connect

    Kini, A. M.; Parakka, J. P.; Geiser, U.; Wang, H.-H.; Rivas, F.; DiNino, E.; Thomas, S.; Dudek, J. D.; Williams, J. M.

    1999-01-01

    Tetraalkyl and dialkyl derivatives, where alkyl=ethyl and propyl, of the organic electron donor molecule bis(ethylenedithio)tetrathiafulvalene, BEDT-TTF or ET, have been synthesized via the Diels-Alder approach. Several cation-radical salts of these new donors have been prepared and structurally characterized, and found to contain donor molecules in nominally higher oxidation states (+1, +1.5 and +2) than the typically observed oxidation state of +0.5 in BEDT-TTF salts. The higher solubility of the tetraalkyl and dialkyl derivatives in solvents used for crystal growth is proposed as the principal reason for this finding. Surprisingly, X-ray crystallographic studies reveal that the alkyl groups in the neutral tetraethyl-ET as well as the oxidized tetraethyl-ET and diethyl-ET molecules in their cation-radical salts adopt axial configurations, rather than the expected equatorial configurations. Electrical properties of the cation-radical salts have been found to be either insulating or semiconducting, consistent with the higher oxidation states of the donor molecules in the salts and the crystal structures.

  11. Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broad-spectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations.

    PubMed

    Huang, Liyi; Krayer, Michael; Roubil, John G S; Huang, Ying-Ying; Holten, Dewey; Lindsey, Jonathan S; Hamblin, Michael R

    2014-12-01

    Three stable synthetic mono-substituted cationic bacteriochlorins (BC37, BC38 and BC39) were recently reported to show exceptional activity (low nanomolar) in mediating photodynamic killing of human cancer cells after a 24h incubation upon excitation with near-infrared light (730 nm). The presence of cationic quaternary ammonium groups in each compound suggested likely activity as antimicrobial photosensitizers. Herein this hypothesis was tested against a panel of pathogenic microorganisms that have all recently drawn attention due to increased drug-resistance (Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis; Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii; and fungal yeasts, Candida albicans and Cryptococcus neoformans). All three bacteriochlorins were highly effective against both Gram-positive species (>6 logs of eradication at ⩽ 200 nM and 10 J/cm(2)). The dicationic bacteriochlorin (BC38) was best against the Gram-negative species (>6 logs at 1-2 μM) whereas the lipophilic monocationic bacteriochlorin (BC39) was best against the fungi (>6 logs at 1 μM). The bacteriochlorins produced substantial singlet oxygen (and apparently less Type-1 reactive-oxygen species such as hydroxyl radical) as judged by activation of fluorescent probes and comparison with 1H-phenalen-1-one-2-sulfonic acid; the order of activity was BC37 > BC38 > BC39. A short incubation time (30 min) resulted in selectivity for microbial cells over HeLa human cells. The highly active photodynamic inactivation of microbial cells may stem from the amphiphilic and cationic features of the bacteriochlorins.

  12. Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broad-spectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations

    PubMed Central

    Huang, Liyi; Krayer, Michael; Roubil, John G. S.; Huang, Ying-Ying; Holten, Dewey; Lindsey, Jonathan S.; Hamblin, Michael R.

    2014-01-01

    A set of three stable synthetic mono-substituted cationic bacteriochlorins (BC37, BC38 and BC39) were recently reported to show exceptional activity (low nanomolar) in mediating photodynamic killing of human cancer cells after a 24 h incubation upon excitation with near-infrared light (730 nm). The presence of cationic quaternary ammonium groups in each compound suggested likely activity as antimicrobial photosensitizers. Herein this hypothesis was tested against a panel of pathogenic microorganisms that have all recently drawn attention due to increased drug-resistance (Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis; Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii; and fungal yeasts Candida albicans and Cryptococcus neoformans). All three bacteriochlorins were highly effective against both Gram-positive species (> 6 logs of eradication at ≤ 200 nM and 10 J/cm2). The dicationic bacteriochlorin (BC38) was best against the Gram-negative species (> 6 logs at 1–2 μM) and the lipophilic monocationic bacteriochlorin (BC39) was best against the fungi (> 6 logs at 1 μM). The bacteriochlorins produced substantial singlet oxygen (and apparently less Type-1 reactive-oxygen species such as hydroxyl radical) as judged by activation of fluorescent probes and comparison with 1H-phenalen-1-one-2-sulfonic acid; the order of activity was BC37 > BC38 > BC39. A short incubation time (30 min) resulted in selectivity for microbial cells over HeLa human cells. The highly active photodynamic inactivation of microbial cells may stem from the amphiphilic and cationic features of the bacteriochlorins. PMID:25463659

  13. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

    PubMed Central

    2009-01-01

    Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural

  14. F-/OH- substitution in [H4tren]4+ and [H3tren]3+ hydroxyfluorotitanates(IV) and classification of tren cation configurations

    NASA Astrophysics Data System (ADS)

    Lhoste, Jérôme; Body, Monique; Legein, Christophe; Ribaud, Annie; Leblanc, Marc; Maisonneuve, Vincent

    2014-09-01

    Three [H3tren]3+ or [H4tren]4+ hydroxyfluorotitanates(IV) are solvothermally synthesized from TiO2, tren amine, 40% HF aqueous solution and ethanol under microwave heating at 120 °C and 190 °C. [H4tren]·(TiF4.6(OH)1.4)2·2.7H2O (I) and β-[H3tren]·(TiF4.5(OH)1.5)·(F) (II) are described for the first time. The third compound, α-[H3tren]·(TiF4.7(OH)1.3)·(F) (III), was previously reported as a pure fluorotitanate. The structure determinations are performed from single crystal (I) and powder (II) X-ray diffraction data. The F-/OH- substitution, expected from the presence of water in the reaction medium, is characterized by chemical analyses and 19F MAS solid state NMR experiments: all three structures are built up from Ti(F,OH)62- octahedra and “free” fluoride ions or water molecules. “Free” fluoride ions are not affected by F-/OH- substitution. The electroneutrality is ensured by triprotonated or tetraprotonated tren amines which adopt specific configurations. Additionally, based on the analysis of [H3tren]3+ or [H4tren]4+ hydroxo/oxo/fluorometalates, a classification of the configurations of tren cations is proposed.

  15. Amination of the pyridinium cations in betaines. Synthesis of substituted pyrimido(5,6-c)-1'-azaquinolizine and its dihydro analogs

    SciTech Connect

    Kochkanyan, R.O.; Lukanyuk, S.S.

    1987-11-01

    The pyridinium cations within betaines can be aminated under mild conditions with aqueous ammonia, ultimately undergoing cyclization to a new tricyclic system: 4-substituted-3,5-dioxopyrimido(5,6-c)-1'-azaquinolizine. Intermediates in the reaction are 4-substituted-3,5-dioxo-2,2-dihydropyrimido(5,6-c)-6H-1'-quinolizines. Formation of the methylene group is coupled with transfer of an atom of hydrogen or deuterium from the ..cap alpha..-carbon of the dihydropyridine in compound II to the carbon atom of the azomethine group. The NMR spectrum is represented by the methylene proton signal (3.96 ppm) and by the multiplets of the pyridine and phenyl protons centered at 7.63 and 6.38 ppm respectively. Upon chloranil oxidation, and upfield shift of the pyridine protons is observed: the ..cap alpha..-proton forms a doublet (10.05 ppm, J= 6 Hz), the ..beta..-protons form a doublet and a triplet with centers at 8.57 (J = 8 Hz) and 8.22 (J = 7 Hz) ppm respectively, and the ..gamma..-proton forms a triplet at 8.8 (J = 7 Hz) ppm.

  16. The importance of cerium substituted phosphates as cation exchanger-some unique properties and related application potentials.

    PubMed

    Nilchi, A; Khanchi, A; Ghanadi Maragheh, M

    2002-03-04

    Seven different samples of an inorganic ion exchanger, cerium phosphate, suitable for column use have been prepared under varying conditions. The property of these exchangers has been characterized by Inductively Coupled Plasma Spectroscopy. These exchangers are stable in water, dilute mineral acids, ethanol, methanol, acetone and ether. However, in concentrated HCl and HNO(3) they decompose. They retain about 50% of their exchange value after drying at 80 degrees C, and can be regenerated twice without any decrease in exchange capacity. The distribution coefficient measurements for alkaline earth metals, tellurium, iodine and molybdenum using these seven ion exchangers were studied. This revealed the relative affinity for each exchanger, where the sorption in general was most effective at pH 6-8. The titration curves of cerium phosphate (disodium) with alkaline earth metals showed that the selectivity sequence Ba(2+)>Sr(2+)>Ca(2+)>Mg(2+) is observed. Furthermore, it could be deduced that the adsorption of alkaline earth metal cations greatly depends on the cation. These studies have also shown that cerium phosphates with divalent ions are strongly preferred to monovalent ones. Therefore, as for the cerium phosphates with large monovalent ions, the lack of exchange for Ba(2+), Mg(2+) or other alkali earth metal ions should be essentially due to steric hindrance and this could include any one of the following: the large crystalline radius of metal ions or large hydrated ionic radius and high energy of hydration for other divalent ions. Three binary separations of Te(IV)-Mo(VI), Te(IV)-I(I) and Mo(VI)-I(I) has been developed and the recovery ranging from 90 to 100% has been achieved on cerium phosphate (disodium) columns.

  17. Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice.

    PubMed

    Taniguchi, Masayuki; Takahashi, Nobuteru; Takayanagi, Tomohiro; Ikeda, Atsuo; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki

    2014-01-01

    The antimicrobial activity of analogs obtained by substituting arginine and lysine in CL(14-25), a cationic α-helical dodecapeptide, with alanine against Porphyromonas gingivalis, a periodontal pathogen, varied significantly depending on the number and position of cationic amino acids. The alanine-substituted analogs had no hemolytic activity, even at a concentration of 1 mM. The antimicrobial activities of CL(K20A) and CL(K20A, K25A) were 3.8-fold and 9.1-fold higher, respectively, than that of CL(14-25). The antimicrobial activity of CL(R15A) was slightly lower than that of CL(14-25), suggesting that arginine at position 15 is not essential but is important for the antimicrobial activity. The experiments in which the alanine-substituted analogs bearing the replacement of arginine at position 24 and/or lysine at position 25 were used showed that arginine at position 24 was crucial for the antimicrobial activity whenever lysine at position 25 was substituted with alanine. Helical wheel projections of the alanine-substituted analogs indicate that the hydrophobicity in the vicinity of leucine at position 16 and alanines at positions 18 and/or 21 increased by substituting lysine at positions 20 and 25 with alanine, respectively. The degrees of diSC3 -5 release from P. gingivalis cells and disruption of GUVs induced by the alanine-substituted analogs with different positive charges were not closely related to their antimicrobial activities. The enhanced antimicrobial activities of the alanine-substituted analogs appear to be mainly attributable to the changes in properties such as hydrophobicity and amphipathic propensity due to alanine substitution and not to their extents of positive charge (cationicity).

  18. Cation Distribution and Magnetic Interactions in Substituted Iron-Containing Garnets: Characterization by Iron-57 Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Berry, Frank J.; Dávalos, Juan Z.; Gancedo, J. Ramón; Greaves, Colin; Marco, José F.; Slater, Peter; Vithal, Muga

    1996-02-01

    Some new compounds with garnet-related structures have been examined by57Fe Mössbauer spectroscopy. The results show that in compounds of the type YCa2SbFe4-xGaxO12(x= 2, 3) the gallium is distributed over both the octahedral and tetrahedral sites. In these compounds, together with materials of composition Y3-2xCa2xSbxFe5-xO12(x= 1.25, 1.5) and Y3-xCaxSnxFe5-xO12(x= 1, 2), the results show evidence of more than one tetrahedral environment for the Fe3+ions. The quadrupole splitting data for the Fe3+ions in tetrahedral sites in some of these compounds are significantly larger than those previously reported for Fe3+in tetrahedral sites in other garnets. The compounds YCa2SbFe4O12and Y2CaSnFe4O12magnetically order at similar temperatures and show comparable octahedral- and tetrahedral-hyperfine magnetic fields at 18 K. The substitution of Fe3+by diamagnetic Sb5+on the octahedral sites results in a considerable lowering of the magnetic ordering temperature. The compounds Y0.5Ca2.5Sb1.25Fe3.75O12and Ca3Sb1.5Fe3.5O12show magnetic ordering on both the octahedral and tetrahedral sublattices at 18 K. A similar effect is observed in the compound YCa2SbFe3GaO12where 33% of the Fe3+ions located at the tetrahedral sites are substituted by diamagnetic Ga3+ions. The importance ofa-dantiferromagnetic superexchange interactions is demonstrated in compounds of the type YCa2SbFe2Ga2O12and YCa2SbFeGa3O12where the Ga3+ions substitute the Fe3+ions on both the octahedral and tetrahedral sites. In these compounds the dilution of the magnetic ions at the tetrahedral sites results in the frustration of magnetic ordering on both thed- anda-sublattices. The compound YCa2Sn2Fe3O12which does not contain Fe3+on the octahedral sites shows magnetic ordering on thed-sublattice in the absence of magnetic ions on theasublattice. The result demonstrates the importance ofd-dantiferromagnetic superexchange interactions.

  19. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    PubMed Central

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  20. Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4

    NASA Astrophysics Data System (ADS)

    Shirsath, Sagar E.; Patange, S. M.; Kadam, R. H.; Mane, M. L.; Jadhav, K. M.

    2012-09-01

    Ni-Zn ferrite samples with the chemical formula Ni1-xZnxFe2O4 (x = 0.0 to x = 1.0) were prepared by solid state reaction. Using the Rietveld refinement the discrepancy factor, interatomic distance, atomic coordinates, cation occupancy and degree of inversion have been determined. SEM images revealed that the Zn2+ promotes grain growth in NiFe2O4. The IR spectra show two absorption bands in the wave number range of 400-600 cm-1. The IR data have been used to calculate elastic moduli such as stiffness constant (C11, C12), longitudinal wave velocity (Vl), shear wave velocity (VS), mean wave velocity (Vm), Young modulus (E), bulk modulus (K), rigidity modulus (G), Poisson ratio (σ) and Debye temperature (θE). The values of elastic moduli and Debye temperature decreases with increasing Zn2+ composition x. AC susceptibility measurement confirms the decrease in Curie temperature with increasing Zn2+ content. Dielectric loss (ɛ″) increases with increasing Zn2+ content.

  1. Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand

    PubMed Central

    Hasan, Kamrul; Bansal, Ashu K.; Samuel, Ifor D.W.; Roldán-Carmona, Cristina; Bolink, Henk J.; Zysman-Colman, Eli

    2015-01-01

    The synthesis, characterization and evaluation in solid-state devices of a series of 8 cationic iridium complexes bearing different numbers of methoxy groups on the cyclometallating ligands are reported. The optoelectronic characterization showed a dramatic red shift in the absorption and the emission and a reduction of the electrochemical gap of the complexes when a methoxy group was introduced para to the Ir-C bond. The addition of a second or third methoxy group did not lead to a significant further red shift in these spectra. Emission maxima over the series ranged from 595 to 730 nm. All complexes possessing a motif with a methoxy group at the 3-position of the cyclometalating ligands showed very short emission lifetimes and poor photoluminescence quantum yields whereas complexes having a methoxy group at the 4-position were slightly blue shifted compared to the unsubstituted parent complexes, resulting from the inductively electron withdrawing nature of this directing group on the Ir-C bond. Light-emitting electrochemical cells were fabricated and evaluated. These deep red emitters generally showed poor performance with electroluminescence mirroring photoluminescence. DFT calculations accurately modelled the observed photophysical and electrochemical behavior of the complexes and point to an emission from a mixed charge transfer state. PMID:26179641

  2. Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand

    NASA Astrophysics Data System (ADS)

    Hasan, Kamrul; Bansal, Ashu K.; Samuel, Ifor D. W.; Roldán-Carmona, Cristina; Bolink, Henk J.; Zysman-Colman, Eli

    2015-07-01

    The synthesis, characterization and evaluation in solid-state devices of a series of 8 cationic iridium complexes bearing different numbers of methoxy groups on the cyclometallating ligands are reported. The optoelectronic characterization showed a dramatic red shift in the absorption and the emission and a reduction of the electrochemical gap of the complexes when a methoxy group was introduced para to the Ir-C bond. The addition of a second or third methoxy group did not lead to a significant further red shift in these spectra. Emission maxima over the series ranged from 595 to 730 nm. All complexes possessing a motif with a methoxy group at the 3-position of the cyclometalating ligands showed very short emission lifetimes and poor photoluminescence quantum yields whereas complexes having a methoxy group at the 4-position were slightly blue shifted compared to the unsubstituted parent complexes, resulting from the inductively electron withdrawing nature of this directing group on the Ir-C bond. Light-emitting electrochemical cells were fabricated and evaluated. These deep red emitters generally showed poor performance with electroluminescence mirroring photoluminescence. DFT calculations accurately modelled the observed photophysical and electrochemical behavior of the complexes and point to an emission from a mixed charge transfer state.

  3. Elucidating the impact of A-site cation change on photocatalytic H2 and O2 evolution activities of perovskite-type LnTaON2 (Ln = La and Pr).

    PubMed

    Hojamberdiev, Mirabbos; Bekheet, Maged F; Hart, Judy N; Vequizo, Junie Jhon M; Yamakata, Akira; Yubuta, Kunio; Gurlo, Aleksander; Hasegawa, Masashi; Domen, Kazunari; Teshima, Katsuya

    2017-08-23

    Transition metal (oxy)nitrides with perovskite-type structures have been regarded as one of the promising classes of inorganic semiconductor materials that can be used in solar water splitting systems for the production of hydrogen as a renewable and storable energy carrier. The performance of transition metal (oxy)nitrides in solar water splitting is strongly influenced by the crystal structure-related dynamics of photogenerated charge carriers. Here, we have systematically assessed the influence of A-site cation exchange on the visible-light-induced photocatalytic H2 and O2 evolution activities, photoanodic response, and dynamics of photogenerated charge carriers of perovskite-type LnTaON2 (Ln = La and Pr). The structural refinement results reveal the orthorhombic Imma and Pnma structures for LaTaON2 and PrTaON2, respectively; the latter has a more distorted crystal structure from the ideal cubic perovskite due to the smaller size of Pr(3+) cations. Compared with LaTaON2, PrTaON2 exhibits lower photocatalytic H2 and O2 gas evolution activities and photoanodic response owing to an excessive amount of intrinsic defects associated with anionic vacancies and reduced tantalum species stemming from a long high-temperature nitridation process under reductive NH3 atmosphere. Transient absorption signals evidence the faster decay of photogenerated electrons (holes) in Pt (CoOx)-loaded LaTaON2 than that in Pt (CoOx)-loaded PrTaON2, consistent with the photocatalytic and photoelectrochemical performance of the two photocatalysts. This study suggests that in addition to selecting a suitable A-site cation, it is prerequisite to synthesize LnTaON2 (Ln = La and Pr) crystals with a low defect density to improve their photo-conversion efficiency for solar water splitting.

  4. Structural and magnetic effects of meso-substitution in alkyl-substituted metalloporphyrinate pi-cation radicals: characterization of [Fe(TalkylP*)(Cl)]SbCl6 (alkyl = ethyl and n-propyl).

    PubMed

    Li, Ming; Neal, Teresa J; Wyllie, Graeme R A; Schulz, Charles E; Scheidt, W Robert

    2010-09-06

    We report the preparation and characterization of two meso-alkyl substituted porphyrin pi-cation radical derivatives, [Fe(TalkylP(*))(Cl)]SbCl(6) (alkyl = ethyl or propyl). Both complexes have been characterized by UV/vis/near-IR, IR, and Mossbauer spectroscopy, temperature-dependent solid-state magnetic susceptibility measurements, and X-ray structure determinations. All data for both oxidized species are consistent with the formulation of the complexes as ring-oxidized iron(III) porphyrin species. The molecular structures of the two five-coordinate species have the typical square-pyramidal coordination group of high-spin iron(III) derivatives. The crystal structures also reveal that the species form cofacial pi-pi dimers with lateral shifts of 1.44 A and 3.22 A, respectively, for the propyl and ethyl radical derivatives. Both radicals exhibit porphyrin cores with alternating bond distance patterns in the inner 16-membered ring. In addition, [Fe(TEtP(*))(Cl)]SbCl(6) and [Fe(TPrP(*))(Cl)]SbCl(6) have been characterized by temperature-dependent (6-300 K) magnetic susceptibility studies, the best fitting of the temperature-dependent moments reveal strong coupling between iron spins and porphyrin radical, and a smaller magnitude of antiferromagnetic coupling between ring radicals, which are opposite to those found in the five-coordinate iron(III) OEP radicals. The differences in structure and properties of the cation radical meso-alkyl and beta-alkyl derivatives possibly reflect differences in properties of a(1u)- and a(2u)-forming radicals.

  5. Magnetodielectric effects in A -site cation-ordered chromate spinels Li M C r4O8 (M =Ga and In)

    NASA Astrophysics Data System (ADS)

    Saha, Rana; Fauth, Francois; Avdeev, Maxim; Kayser, Paula; Kennedy, Brendan J.; Sundaresan, A.

    2016-08-01

    We report the occurrence of a magnetodielectric effect and its correlation with structure and magnetism in the A -site ordered chromate spinel oxides Li M C r4O8 (M =Ga , In). In addition to magnetic and dielectric measurements, temperature dependent synchrotron and neutron diffraction experiments have been carried out for the Ga compound. The results are compared and contrasted with that of a corresponding conventional B -site magnetic chromate spinel oxide, ZnC r2O4 . Like ZnC r2O4 , the A -site ordered chromate spinels exhibit a magnetodielectric effect at the magnetic ordering temperature (TN˜13 -15 K ), resulting from magnetoelastic coupling through a spin Jahn-Teller effect. While the presence of a broad magnetic anomaly, associated with a short-range magnetic ordering (TSO˜45 K ) in ZnC r2O4 , does not cause any dielectric anomaly, a sharp change in dielectric constant has been observed in LiInC r4O8 at the magnetic anomaly, which is associated with the opening of a spin gap (TSG˜60 K ). Contrary to the In compound, a broad dielectric anomaly exists at the onset of short-range antiferromagnetic ordering (TSO˜55 K ) in LiGaC r4O8 . The differences in dielectric behavior of these compounds have been discussed in terms of breathing distortion of the C r4 tetrahedra.

  6. A series of three-dimensional architectures constructed from lanthanide-substituted polyoxometalosilicates and lanthanide cations or lanthanide-organic complexes as linkers.

    PubMed

    An, Haiyan; Zhang, Hua; Chen, Zhaofei; Li, Yangguang; Liu, Xuan; Chen, Hao

    2012-07-21

    Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.

  7. Role of the A -site cation in determining the properties of the hybrid perovskite CH3NH3PbBr3

    NASA Astrophysics Data System (ADS)

    Sarkar, Sagar; Mahadevan, Priya

    2017-06-01

    The presence of a molecule at the A site of an organic perovskite leads to unusual behavior compared to its inorganic counterpart. Considering the case of CH3NH3 , we find that it is both the size of the molecule as well as its orientation in the cage formed by the Pb and Br atoms which determine the favored structure. At the microscopic level, the basic energetics which come into play are steric effects as well as hydrogen bonding. While the molecule is asymmetrically placed in the cuboctahedral cavity, a mapping of the ab initio band structure to a tight-binding model reveals that the movement of the amine end of the molecule towards the Br atoms is driven primarily by electrostatic considerations. While the hydrogen bonding is responsible for driving the octahedral tilts, the energy lowering considerations do not follow a simple prescription of minimizing H-Br bond lengths. The presence of several competing energetics results in a complex low-energy landscape with deep valleys and high barriers between them which could explain the glassy dynamics seen even at low temperatures in the orthorhombic structure where the dipoles are believed to be frozen.

  8. One-pot synthesis of 2-substituted 4H-3,1-benzoxazin-4-one derivatives under mild conditions using iminium cation from cyanuric chloride/dimethylformamide as a cyclizing agent

    PubMed Central

    2013-01-01

    Background The derivatives of 2-substituted 4H-3,1-benzoxazin-4-one belong to a significant category of heterocyclic compounds, which have shown a wide spectrum of medical and industrial applications. Results A new and effective one-pot method for the synthesis of 2-substituted 4H-3,1-benzoxazin-4-one derivatives is described in this paper. By using the iminium cation from a mixture of cyanuric chloride and dimethylformamide as a cyclizing agent, a series of 2-substituted 4H-3,1-benzoxazin-4-one derivatives was synthesized in high yield under mild conditions and simple workup. Conclusions The iminium cation from a mixture of cyanuric chloride and N,N-dimethylformamide is an effective cyclizing agent for the room temperature one-pot synthesis of 2-substituted 4H-3,1-benzoxazin-4-one derivatives in high yields through a cyclodehydration reaction. Furthermore, the method was performed under mild conditions characterized by simplified pathways and workup, minimized energy, and fewer reaction steps, compared with the previous methods. The proposed method, which is a simpler alternative than the published methods, is applicable for the synthesis of other 2-substituted 4H-3,1-benzoxazin-4-one derivatives. PMID:23537478

  9. Electron-doping through La{sup III}-for-Sr{sup II} substitution in (Sr{sub 1-} {sub x} La {sub x} ){sub 2}FeTaO{sub 6}: Effects on the valences and ordering of the B-site cations, Fe and Ta

    SciTech Connect

    Rautama, E.-L.; Chan, T.S.; Liu, R.S.; Chen, J.M.; Yamauchi, H.; Karppinen, M. . E-mail: karppinen@msl.titech.ac.jp

    2006-01-15

    We have employed aliovalent A-site cation substitution, La{sup III}-for-Sr{sup II}, to dope the Sr(Fe{sub 0.5}Ta{sub 0.5})O{sub 3} perovskite oxide with electrons. Essentially single-phase samples of (Sr{sub 1-} {sub x} La {sub x} )(Fe{sub 0.5}Ta{sub 0.5})O{sub 3} were successfully synthesized up to x{approx}0.3 in a vacuum furnace at 1400 deg. C. The samples were found to crystallize (rather than with orthorhombic symmetry) in monoclinic space group P2{sub 1}/n that accounts for the partial ordering of the B-site cations, Fe and Ta. With increasing La-substitution level, x, the degree of Fe/Ta order was found to increase such that the La-richest compositions are best described by the B-site ordered double-perovskite formula (Sr,La){sub 2}FeTaO{sub 6}. From Fe L {sub 3} and Ta L {sub 3} XANES spectra it was revealed that upon electron doping the two B-site cations, Fe{sup III} and Ta{sup V}, are both prone to reduction. Magnetic susceptibility measurements showed spin-glass type behaviour for all the samples with a transition temperature slightly increasing with increasing x. -- Graphical abstract: Valence states of Fe and Ta are controlled in the partially ordered perovskite oxide (Sr,La){sub 2}FeTaO{sub 6}, through aliovalent La{sup III}-for-Sr{sup II} substitu0010ti.

  10. The Effect of 24c-Site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7-xLa3-xAxZr2O12 Garnet-Based Ceramic Electrolyte

    DTIC Science & Technology

    2013-01-01

    added [18,19] and a dense (relative density > 90%) material with a cubic structure was ob- tained. Geiger et al. [17] have suggested that Al substitutes...5þ) on the 16a site (Zr 4þ), that reduces the Li content and/or increases Li vacancy concentration to stabilize the cubic structure [22,23

  11. Origin of the magnetic susceptibility maximum in CaCu3Ru4O12 and electronic states in the A-site substituted compounds

    NASA Astrophysics Data System (ADS)

    Kao, Ting-Hui; Sakurai, Hiroya; Yu, Shan; Kato, Harukazu; Tsujii, Naohito; Yang, Hung-Duen

    2017-07-01

    CaCu3Ru4O12 shows a broad maximum at around 200 K in temperature dependence of magnetic susceptibility, whose origin is under debate. The present study addresses this problem, using high-quality samples of Ca1 -xAxCu3Ru4O12 (A = La, Na, and Sr) made by high-pressure synthesis technique. Unlike in a previous report, the maximum shifts to lower temperatures for the La substitution, becomes obscure by the Na substitution, and is less influenced by the Sr substitution. This behavior strongly suggests that the susceptibility maximum is caused by a sharp peak in the density of states just above the Fermi level, which induces strong spin fluctuations. Furthermore, the nature of electronic states of LaCu3Ru4O12 and NaCu3Ru4O12 are discussed; the former likely bears a Kondo character, and the latter has spin fluctuations of different origin below approximately 150 K.

  12. Effects of cation size disorder and lattice distortion on metamagnetism in phase-separated manganites

    NASA Astrophysics Data System (ADS)

    Mavani, K. R.; Paulose, P. L.

    2005-07-01

    The effects of A-site cation size disorder in ABO 3 type charge-ordered and antiferromagnetic Pr 0.5Ca 0.5MnO 3 system have been studied by substituting La 3+, Sr 2+ or Ba 2+, while keeping the valency of Mn ions and the tolerance factor ( t=0.921) constant in the substituted compounds. We find that the substitutions by these larger cations induce successive sharp step-like metamagnetic transitions at 2.5 K. The critical field for metamagnetism is the lowest for 3% Ba substituted compound, which has the largest A-site cation size disorder and the least distorted MnO 6 octahedra, among the compounds reported here. These cation substitutions give rise to ferromagnetic clusters within antiferromagnetic matrix, indicating phase-separation at low temperatures. The growth of the clusters is found to vary with the substitution amount. The local lattice distortion of MnO 6 octahedra enhances the charge ordering temperature and reduces the magnetization at high fields (>1 T) in these manganites.

  13. Probing cation and vacancy ordering in the dry and hydrated yttrium-substituted BaSnO3 perovskite by NMR spectroscopy and first principles calculations: implications for proton mobility.

    PubMed

    Buannic, Lucienne; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2012-09-05

    Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.

  14. Magnetic moment directions and distributions of cations in Cr (Co) substituted spinel ferrites Ni{sub 0.7}Fe{sub 2.3}O{sub 4}

    SciTech Connect

    Xue, L. C.; Lang, L. L.; Li, Z. Z.; Qi, W. H.; Tang, G. D. Wu, L. Q.; Xu, J.

    2015-09-15

    Powder samples of the spinel ferrites M{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (M = Cr, Co and 0.0 ≤ x ≤ 0.3) and Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0 ≤ x ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μ{sub exp}) per formula both at 10 K and 300 K increased with Co substitution, while the values of μ{sub exp} decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr{sup 2+} and Cr{sup 3+} lie antiparallel to those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μ{sub exp}, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.

  15. Time-Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals [The Dynamic Mechanical Properties of Lead-Halide Perovskite Single Crystals are Independent of A-site Cation Chemistry

    DOE PAGES

    Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; ...

    2017-05-02

    The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudesmore » of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. In conclusion, this contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.« less

  16. Unraveling the effect of La A-site substitution on oxygen ion diffusion and oxygen catalysis in perovskite BaFeO3 by data-mining molecular dynamics and density functional theory.

    PubMed

    Chen, Chi; Baiyee, Zarah Medina; Ciucci, Francesco

    2015-10-07

    BaFeO3 (BFO) is a promising parent material for high-temperature oxygen catalysis. The effects of La substitution on the oxygen ion diffusion and oxygen catalysis in A-site La-substituted BFO are studied by combining data-driven molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The data-driven MD simulations are capable of providing atomic level information regarding oxygen jumps at different sites, bridging the resolution gap of analysis between MD and DFT. The simulations identify several effects due to the introduction of La. First, according to simple electroneutrality considerations and DFT calculations, La tends to decrease the concentration of oxygen vacancies in BFO. Second, La substitution lowers the activation energy of local oxygen migration, providing faster paths for oxygen diffusion. The MD analysis predicts a higher hopping rate through La-containing bottlenecks as well as easier oxygen jumps from the La-rich cages and lower dwell times of oxygen in those cages. DFT calculations confirm a lower migration energy through La-containing bottlenecks. Third, the electrocatalytic activity of the material decreases with La, as indicated by a lower O p-band center and higher oxygen vacancy formation energies.

  17. Trivalent Cation Substitution Effect into Layered Double Hydroxides Co 2Fe y Al 1- y(OH) 6Cl· nH 2O: Study of the Local Order . Ionic Conductivity and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Intissar, Mourad; Segni, Rachid; Payen, Christophe; Besse, Jean-Pierre; Leroux, Fabrice

    2002-09-01

    A series of layered double hydroxide materials of composition Co 2Fe yAl 1- y(OH) 6Cl· nH 2O (0≤ y≤1) was prepared via chimie douce. The crystalline parameter related to the cation to cation distance obeys the expected variation, showing that the substitution is effective over the entire range. Local order around Co and Fe cations is studied by X-ray absorption spectroscopy. Moduli of the Fourier transform at the Fe K-edge are superimposable, in agreement with an ordered model, although present in small domains since no superlattice is depicted. The ionic resistivity of the samples is highly dependent on the water molecule content. The conductivity is found to be thermally assisted, and the variation of the slope in the Arrhenius diagram is explained by a Vogel-Tamman-Fulcher-type behavior. Magnetic susceptibility measurements support the proposed cation composition and indicate the onset of local magnetic order at low temperature (below 10 K). The inter-sheet distance influences the magnetic response at low temperature, showing the presence of weak interactions between lamellae.

  18. Self-assembly of [UO{sub 2}X{sub 4}]{sup 2−} (X=Cl, Br) dianions with γ substituted pyridinium cations: Structural systematics and fluorescence properties

    SciTech Connect

    Surbella, Robert G.; Andrews, Michael B.; Cahill, Christopher L.

    2016-04-15

    Room temperature self-assembly of [UO{sub 2}X{sub 4}]{sup 2−} (X=Cl, Br) with γ substituted pyridinium cations has resulted in the formation of twelve compounds that were studied via single crystal X-ray diffraction and fluorescence spectroscopy. Systematic variation of electron donating groups on the pyridinium species is shown to influence the presence and/or strength of various supramolecular synthons, including hydrogen bonding and pi interactions. Combinations of such non-covalent interactions (NCIs) have given rise to a range of supramolecular assemblies, and are shown to influence uranyl emission by way of second sphere coordination to equatorial ligands. - Graphical abstract: Supramolecular assembly of the [UO{sub 2}Cl{sub 4}]{sup 2−} dianion with pyridinium cations is a viable synthetic route to the growth of uranyl containing single crystals.

  19. The influence of A-site rare-earth for barium substitution on the chemical structure and ferroelectric properties of BZT thin films

    SciTech Connect

    Ostos, C.; Martinez-Sarrion, M.L.; Mestres, L.; Prieto, P.

    2009-10-15

    Rare-earth (RE) doped Ba(Zr,Ti)O{sub 3} (BZT) thin films were prepared by rf-magnetron sputtering from a Ba{sub 0.90}Ln{sub 0.067}Zr{sub 0.09}Ti{sub 0.91}O{sub 3} (Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 deg. C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a <001> epitaxial crystal growth on Nb-doped SrTiO{sub 3}, <001> and <011> growth on single-crystal Si, and a <111>-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO{sub 3}-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO{sub 6}-octahedra distortion (M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system. - Graphical abstract: XPS narrow-scan spectra of Ti 2p doublets of the Nd-doped BZT films deposited on Pt-coated Si substrate.

  20. The influence of A-site rare-earth for barium substitution on the chemical structure and ferroelectric properties of BZT thin films

    NASA Astrophysics Data System (ADS)

    Ostos, C.; Martínez-Sarrión, M. L.; Mestres, L.; Delgado, E.; Prieto, P.

    2009-10-01

    Rare-earth ( RE) doped Ba(Zr,Ti)O 3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba 0.90Ln0.067Zr 0.09Ti 0.91O 3 ( Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a <001> epitaxial crystal growth on Nb-doped SrTiO 3, <001> and <011> growth on single-crystal Si, and a <111>-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2 p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO 3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO 6-octahedra distortion ( M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/ RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system.

  1. F{sup −}/OH{sup −} substitution in [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} hydroxyfluorotitanates(IV) and classification of tren cation configurations

    SciTech Connect

    Lhoste, Jérôme Body, Monique Legein, Christophe Ribaud, Annie Leblanc, Marc Maisonneuve, Vincent

    2014-09-15

    Three [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxyfluorotitanates(IV) are solvothermally synthesized from TiO{sub 2}, tren amine, 40% HF aqueous solution and ethanol under microwave heating at 120 °C and 190 °C. [H{sub 4}tren]·(TiF{sub 4.6}(OH){sub 1.4}){sub 2}·2.7H{sub 2}O (I) and β-[H{sub 3}tren]·(TiF{sub 4.5}(OH){sub 1.5})·(F) (II) are described for the first time. The third compound, α-[H{sub 3}tren]·(TiF{sub 4.7}(OH){sub 1.3})·(F) (III), was previously reported as a pure fluorotitanate. The structure determinations are performed from single crystal (I) and powder (II) X-ray diffraction data. The F{sup −}/OH{sup −} substitution, expected from the presence of water in the reaction medium, is characterized by chemical analyses and {sup 19}F MAS solid state NMR experiments: all three structures are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” fluoride ions or water molecules. “Free” fluoride ions are not affected by F{sup −}/OH{sup −} substitution. The electroneutrality is ensured by triprotonated or tetraprotonated tren amines which adopt specific configurations. Additionally, based on the analysis of [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxo/oxo/fluorometalates, a classification of the configurations of tren cations is proposed. - Graphical abstract: The ratio of the relative intensities of the {sup 19}F NMR lines assigned to F atoms belonging to isolated TiF{sub 6−x}(OH){sub x} octahedra and to “free” fluoride ions shows that the F{sup −}/OH{sup −} substitution concerns only F atoms bonded to titanium. - Highlights: • Three tren templated hydroxyfluorotitanates(IV) have been solvothermally synthesized. • They are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” F{sup −} ions or H{sub 2}O molecules. • F{sup −}/OH{sup −} substitution does not affect “free” F{sup −} sites. • [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} cations adopt specific

  2. Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7.

    PubMed

    Okazaki, Takashi; Nagaoka, Yasuo; Asami, Koji

    2007-05-01

    Alamethicin forms voltage-gated ion channels that have moderate cation-selectivity. The enhancement of the cation-selectivity by introducing negatively charged residues at positions 7 and 18 has been studied using the tethered homodimers of alamethicin with Q7 and E18 (di-alm-Q7E18) and its analog with E7 and Q18 (di-alm-E7Q18). In the dimeric peptides, monomer peptides are linked at the N-termini by a disulfide bond. Both the peptides formed long lasting ion channels at cis-positive voltages when added to the cis-side membrane. Their long open duration enabled us to obtain current-voltage (I-V(m)) relations and reversal potentials at the single-channel level by applying a voltage ramp during the channel opening. The reversal potentials measured in asymmetric KCl solutions indicated that ionized E7 provided strong cation-selectivity, whereas ionized E18 little influenced the charge selectivity. This was also the case for the macroscopic charge selectivity determined from the reversal potentials obtained by the macroscopic I-V(m) measurements. The results are accounted for by stronger electrostatic interactions between permeant ions and negatively charged residues at the narrowest part of the pore than at the pore mouth.

  3. Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Nakamura, Kaoru; Higuchi, Sadao; Ohnuma, Toshiharu

    2016-03-01

    Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e33 of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e33 into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhance the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d33 was predicted to reach ˜200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.

  4. Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory

    SciTech Connect

    Nakamura, Kaoru Higuchi, Sadao; Ohnuma, Toshiharu

    2016-03-21

    Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhance the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.

  5. Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum.

    PubMed

    Lewis, Lisa A; Choudhury, Biswa; Balthazar, Jacqueline T; Martin, Larry E; Ram, Sanjay; Rice, Peter A; Stephens, David S; Carlson, Russell; Shafer, William M

    2009-03-01

    The capacity of Neisseria gonorrhoeae to cause disseminated gonococcal infection requires that such strains resist the bactericidal action of normal human serum. The bactericidal action of normal human serum against N. gonorrhoeae is mediated by the classical complement pathway through an antibody-dependent mechanism. The mechanism(s) by which certain strains of gonococci resist normal human serum is not fully understood, but alterations in lipooligosaccharide structure can affect such resistance. During an investigation of the biological significance of phosphoethanolamine extensions from lipooligosaccharide, we found that phosphoethanolamine substitutions from the heptose II group of the lipooligosaccharide beta-chain did not impact levels of gonococcal (strain FA19) resistance to normal human serum or polymyxin B. However, loss of phosphoethanolamine substitution from the lipid A component of lipooligosaccharide, due to insertional inactivation of lptA, resulted in increased gonococcal susceptibility to polymyxin B, as reported previously for Neisseria meningitidis. In contrast to previous reports with N. meningitidis, loss of phosphoethanolamine attached to lipid A rendered strain FA19 susceptible to complement killing. Serum killing of the lptA mutant occurred through the classical complement pathway. Both serum and polymyxin B resistance as well as phosphoethanolamine decoration of lipid A were restored in the lptA-null mutant by complementation with wild-type lptA. Our results support a role for lipid A phosphoethanolamine substitutions in resistance of this strict human pathogen to innate host defenses.

  6. Activation of electrophilicity of stable Y-delocalized carbamate cations in intramolecular aromatic substitution reaction: evidence for formation of diprotonated carbamates leading to generation of isocyanates.

    PubMed

    Kurouchi, Hiroaki; Kawamoto, Kyoko; Sugimoto, Hiromichi; Nakamura, Satoshi; Otani, Yuko; Ohwada, Tomohiko

    2012-10-19

    Although cations with three heteroatoms, such as monoprotonated guanidine and urea, are stabilized by Y-shaped conjugation and such Y-conjugated cations are sufficiently basic to be further protonated (or protosolvated) to dications in strongly acid media, only O-monoprotonated species have been detected in the case of carbamates even in magic acid. We found that the trifluoromethanesulfonic acid-catalyzed cyclization of arylethylcarbamates proceeds to afford dihydroisoquinolones in high yield. In strong acids, methyl carbamates are fully O-monoprotonated, and these monocations do not undergo cyclization even under heating. But, as the acidity of the reaction medium is further increased, the cyclization reaction of methyl phenethylcarbamates starts to proceed as a first-order reaction, with a linear relationship between rate and acidity. The sign and magnitude of the entropy of activation ΔS(‡) were found to be similar to those of other A(Ac)1 reactions. These results strongly support the idea that further protonation of the O-protonated carbamates is involved in the cyclization, but the concentration of the dications is very low and suggests that the rate-determining step is dissociation of methanol from the diprotonated carbamate to generate protonated isocyanate, which reacts with the aromatic ring. Therefore, O-protonated carbamates are weak bases in sharp contrast to other Y-shaped monocations.

  7. Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6-xO4 (0.1 ⩽ x ⩽ 0.6): Cation distribution, structural, magnetic and electrical properties

    NASA Astrophysics Data System (ADS)

    Singhal, Sonal; Jauhar, Sheenu; Lakshmi, N.; Bansal, S.

    2013-04-01

    The substitution of Mn3+ ions in cobalt-cadmium ferrites (synthesized via sol-gel auto-combustion method) is found to remarkably influence their structural, magnetic and electrical properties. The structural evolutions of the nanophase, investigated using powder X-ray diffraction (XRD) studies reveal the formation of single-phased cubic spinel structures, with Fd-3m space group. As the Mn3+ concentration is increased, the values of the structural parameters like lattice constant, crystallite size, X-ray density, bulk density and porosity undergo significant changes. The value of lattice constant is found to be ˜8.40 Å and the average crystallite size is in the range of 41-45 nm. The porosity in the entire ferrite samples is low (4.0-10.2%). The magnetic properties, like saturation magnetization and coercivity, show a decreasing trend with increase in Mn3+ concentration. Using the values of saturation magnetization, the cation distribution has been proposed. The proposed cation distribution is further correlated with the electrical properties. It is observed that the D.C. resistivity increases with Mn3+ concentration, suggesting occupancy of Mn3+ ions in the octahedral B-sites which leads to the dilution of Fe2+-Fe3+ conduction. The activation energy calculated from the D.C. resistivity vs temperature curves is found to be ˜0.50 eV.

  8. Comparison of reversed-phase liquid chromatography and hydrophilic interaction/cation-exchange chromatography for the separation of amphipathic alpha-helical peptides with L- and D-amino acid substitutions in the hydrophilic face.

    PubMed

    Hartmann, Eva; Chen, Yuxin; Mant, Colin T; Jungbauer, Alois; Hodges, Robert S

    2003-08-15

    Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) is a novel high-performance technique which has excellent potential for peptide separations. Separations by HILIX/CEX are carried out by subjecting peptides to linear increasing salt gradients in the presence of high levels of acetonitrile, which promotes hydrophilic interactions overlaid on ionic interactions with the cation-exchange matrix. In the present study, HILIC/CEX has been compared to reversed-phase liquid chromatography (RP-HPLC) for separation of mixtures of diastereomeric amphipathic alpha-helical peptide analogues, where L- and D-amino acid substitutions were made in the centre of the hydrophilic face of the amphipathic alpha-helix. Unlike RP-HPLC, temperature had a substantial effect on HILIC/CEX of the peptides, with a rise in temperature from 25 to 65 degrees C increasing the retention times of the peptides as well as improving resolution. Our results again highlight the potential of HILIC/CEX as a peptide separation mode in its own right as well as an excellent complement to RP-HPLC.

  9. Effect of hydroxyl group substituted spacer group of cationic gemini surfactants on solvation dynamics and rotational relaxation of Coumarin-480 in aqueous micelles.

    PubMed

    Tiwari, Amit K; Sonu; Saha, Subit K

    2014-04-03

    The solvation dynamics and rotational relaxation of Coumarin 480 (C-480) have been investigated in the micelles of a series of gemini surfactants, 12-4(OH)n-12 (n = 0, 1, and 2), with increasing hydroxyl group substitution within the spacer group. Steady-state and time-correlated single photon counting (TCSPC) fluorescence spectroscopic techniques have been used to carry out such study. Steady-state and TCSPC fluorescence data support the location of probe molecule at the Stern layer. The solvation dynamics is found to be slower on hydroxyl substitution of spacer group due to the formation of hydrogen bonds between water molecules and hydroxyl group(s) of spacer group. Such kind of hydrogen bonding protects the probe molecule from its contact with water molecules and also results in restricted mobility of water molecules. The average rotational relaxation time increases on increasing number of substituted hydroxyl group on a spacer group. It is because of formations of more and more close packed micelles and larger extent of intermolecular hydrogen bonding interactions between C-480 and hydroxyl group(s). For micelles of each of 12-4-12 and 12-4(OH)-12, the slow rotational relaxation is dominated by the lateral diffusion of the fluorophore along the spherical surface of the micelle. However, for 12-4(OH)2-12, the slow rotational relaxation is mainly due to the rotational motion of the micelle as a whole. Because of high microviscosity of micelles of 12-4(OH)2-12 and greater extent of hydrogen bonding interactions with C-480, the relaxation time corresponding to the lateral diffusion of the fluorophore is very high in this case.

  10. Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests.

    PubMed

    Garcia, Chantal; Humilière, Delphine; Riva, Nathalie; Collet, André; Dutasta, Jean-Pierre

    2003-06-21

    To investigate the origin of the high selectivity of cryptophane-E (1) towards Me3NH+, Me4N+, and CHCl3, and particularly to discriminate the different contributions that stabilize the supramolecular complexes, we have synthesized the new cryptophane 2 bearing six MeS groups instead of MeO groups in 1. This led to a decrease of the negative charge density in the equatorial region of 2 without affecting notably the size of the molecular cavity. The binding properties of 1 and 2 towards the three guests were examined in solution and showed a slight decrease of the deltaGa favoring the complexes of 1, accompanied by a significant modification of the deltaHa vs. deltaSa balance. The binding of the ammonium guests to 1 and 2 was strongly entropy driven, while that of CHCl3 was purely enthalpy driven. A combination of spectroscopic and computational techniques was used to assign the main intermolecular interactions that occurred during the inclusion process. The neutral CHCl3 molecule is more stabilized in the less negatively charged CTV cap of 1. The different behavior towards the ammonium cations can be explained in term of interactions with the electronegative heteroatoms and cation-pi interactions. Moreover, this study revealed a considerable slowing down of the guest exchange kinetics with host 2, for which the association and dissociation rates are reduced by a factor 10(3) to 10(4) with respect to 1. For example, at room temperature, the Me4N+@2 complex exhibits a half-life of ca. 2 years, instead of a few hours for the corresponding complex of 1.

  11. Substitution of Li for Cu in Cu2ZnSnS4: Toward Wide Band Gap Absorbers with Low Cation Disorder for Thin Film Solar Cells.

    PubMed

    Lafond, A; Guillot-Deudon, C; Vidal, J; Paris, M; La, C; Jobic, S

    2017-03-06

    The substitution of lithium for copper in Cu2ZnSnS4 (CZTS) has been experimentally and theoretically investigated. Formally, the (Cu1-xLix)ZnSnS4 system exhibits two well-defined solid solutions. Indeed, single crystal structural analyses demonstrate that the low (x < 0.4) and high (x > 0.6) lithium-content compounds adopt the kesterite structure and the wurtz-kesterite structure, respectively. For x between 0.4 and 0.6, the two aforementioned structure types coexist. Moreover, (119)Sn NMR analyses carried out on a (Cu0.7Li0.3)2ZnSnS4 sample clearly indicate that lithium replaces copper preferentially on two of the three available 2-fold crystallographic sites commonly occupied by Cu and Zn in disordered kesterite. Furthermore, the observed individual lines in the NMR spectrum suggest that the propensity of Cu and Zn atoms to be randomly distributed over the 2c and 2d crystallographic sites is lowered when lithium is partially substituted for copper. Additionally, the first-principles calculations provide insights into the arrangement of Li atoms as a function of the Cu/Zn disorder and its effect on the structural (lattice parameters) and optical properties of CZTS (band gap evolution). Those calculations agree with the experimental observations and account for the evolutions of the unit cell parameters as well as for the increase of band gap when the Li-content increases. The calculation of the formation enthalpy of point defect unambiguously indicates that Li modifies the Cu/Zn disorder in a manner similar to the change of Cu/Zn disorder induced by Ag alloying. Overall, it was found that Li alloying is a versatile way of tuning the optoelectronic properties of CZTS making it a good candidate as wide band gap materials for the top cells of tandem solar cells.

  12. Substitution of ether linkage for ester bond in phospholipids increases permeability of bilayer lipid membrane for SkQ1-type penetrating cations.

    PubMed

    Il'yasova, T M; Rokitskaya, T I; Severina, I I; Antonenko, Y N; Skulachev, V P

    2012-09-01

    Using dialkylphospholipid (diphytanyl phosphatidylcholine) instead of the conventional diacylphospholipid (diphytanoyl phosphatidylcholine) in planar lipid bilayer membranes (BLM) led to an increase in the diffusion potential of the penetrating cation plastoquinonyl-decyl-triphenylphosphonium (SkQ1), making it close to the Nernst value, and accelerated translocation of SkQ1 across the BLM as monitored by the kinetics of a decrease in the transmembrane electric current after applying a voltage (current relaxation). The consequences of changing from an ester to an ether linkage between the head groups and the hydrocarbon chains are associated with a substantial reduction in the membrane dipole potential known to originate from dipoles of tightly bound water molecules and carbonyl groups in ester bonds. The difference in the dipole potential between BLM formed of the ester phospholipid and that of the ether phospholipid was estimated to be 100 mV. In the latter case, suppression of SkQ1-mediated proton conductivity of the BLM was also observed.

  13. Cation substitution in synthetic meridianiite (MgSO4·11H2O) I: X-ray powder diffraction analysis of quenched polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Fortes, A. Dominic; Browning, Frank; Wood, Ian G.

    2012-05-01

    Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4-H2O system. Lower hydrates in the MgSO4-H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20-30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an `intermediate' phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu

  14. Mass analyzed threshold ionization spectroscopy of deuterium substituted N-methylaniline and N-ethylaniline cations: isotope effect on transition energy and large amplitude vibrations

    NASA Astrophysics Data System (ADS)

    Lin, Jieli; Lin, Jung Lee; Tzeng, Wen Bih

    2003-12-01

    We have recorded the resonant two-photon ionization (R2PI) and mass analyzed threshold ionization (MATI) spectra of deuterium substituted N-methylaniline (NMA-d1) and N-ethylaniline (NEA-d1) to investigate the influence of the N-deuteration on the transition energy and the large amplitude alkyl vibration. The origin of the S 1←S 0 electronic transition (EE) and the adiabatic ionization energy (IE) of NMA-d1 are determined to be 33,294 ± 1 and 59,801 ± 5 cm -1, whereas those of NEA-d1 are 33,301 ± 1 and 59,185 ± 5 cm -1, respectively. Comparing these data with those of NMA and NEA suggests that N-deuteration give rise to a blue shift of 2-4 cm -1 in the EE and a red shift of 19-21 cm -1 in the IE. These isotope shifts are little affected by the length of the alkyl group attached to the nitrogen atom. The present results also show that the N-deuteration influences more on the large amplitude motions of the CH 3 torsion, the C 2H 5 bending, and the N-inversion than the localized benzene ring vibrations.

  15. A theoretical survey of substituent effects on the properties of pnicogen and hydrogen bonds in cationic complexes of PH4(+) with substituted benzonitrile.

    PubMed

    Bagheri, Sotoodeh; Masoodi, Hamid Reza; Akrami-Mohajeri, Ali Reza

    2017-08-12

    In this paper, we analyze the substituent effects on the nature and characteristics of P⋯N and H⋯N interactions in X-PhCN:PH4(+) complexes (X=H, F, Cl, Br, CN, NH2, NO2, CH3 and N(CH3)2) as a working model at MP2(FC)/6-311++G(d,p) level of theory. The natural bond orbital (NBO) method as well as the quantum theory of atoms in molecules (AIM) is applied to characterize interactions in the studied complexes. In general, the pnicogen bonded systems are more stable than the corresponding hydrogen bonded cases. The strength of the interactions generally correlates well with the magnitudes of the negative electrostatic potentials of the nitrogen atom of isolated substituted benzonitrile (Vs,min(N)). The results indicate that increase in the electron withdrawing power of substituents is accompanied by decrease in the absolute value of Vs,min(N). Also, there are meaningful relationships between Vs,min(N) values and the results of AIM and NBO analyses in studied systems. Moreover, it is found that substituent effects on characteristics of P⋯N pnicogen and H⋯N hydrogen bonds can be expressed by Hammett constants. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Pure and N-substituted Small Cyclic Hydrocarbon Cations and Anions Synthesis in The Ionosphere of Titan: An Ab-Initio Quantum Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Bera, P. P.

    2015-12-01

    The instruments on board the CASSINI spacecraft observed large carbonaceous molecules in the upper atmosphere of Titan. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions, including positive and negative ions, especially large anions, are in abundance in the ionosphere of Titan. Barrier-less ion-molecule interactions may play a major role ­- ions provide electrostatic steering force - in guiding molecules towards each other and initiating reactions. We study these condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. We employ accurate quantum chemical methods to investigate the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules with major ions observed in the upper atmosphere of Titan, e.g. C2H5+ and HCNH+, apart from a whole host of small hydrocarbons. We also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge. We found the molecular building blocks of polycyclic aromatic hydrocarbons such as phenyl cations can form very easily by the combination of smaller hydrocarbons followed by hydrogen loss. We have investigated how nitrogen atoms are incorporated into the carbon ring during growth. Specifically, we explored the mechanisms by which the synthesis of pyrimidine will be feasible in the atmosphere of Titan in conjunction with ion-mobility experiments. Futher, we study the formation process of anions, and study their potential energy surfaces. We have used accurate ab initio coupled cluster theory, Møller-Plesset perturbation theory, density functional theory (DFT), and coupled cluster theory

  17. Synergistic combination of multi-Zr(IV) cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate.

    PubMed

    Huang, Ling; Wang, Sa-Sa; Zhao, Jun-Wei; Cheng, Lin; Yang, Guo-Yu

    2014-05-28

    Synergistic directing roles of six lacunary fragments resulted in an unprecedented Zr24-cluster substituted poly(polyoxotungstate) Na10K22[Zr24O22(OH)10(H2O)2(W2O10H)2(GeW9O34)4(GeW8O31)2]·85H2O (Na10K22·1·85H2O), which contains the largest [Zr24O22(OH)10(H2O)2] (Zr24) cluster in all the Zr-based poly(polyoxometalate)s to date. The most remarkable feature is that the centrosymmetric Zr24-cluster-based hexamer contains two symmetry-related [Zr12O11(OH)5(H2O)(W2O10H)(GeW9O34)2(GeW8O31)](16-) trimers via six μ3-oxo bridges and was simultaneously trapped by three types of different segments of B-α-GeW9O34, B-α-GeW8O31, and W2O10. The other interesting characteristic is that there are two pairs of intriguing triangular atom alignments: one is composed of the Zr(2,4,6,8,11) and W21 atoms and the other contains the Ge(1-3), Zr(3,5,7,9,10,12) and W26 atoms, and the Zr5 atom is inside the triangle; a linking mode is unobserved. The oxygenation reactions of thioethers by H2O2 were evaluated when Na10K22·1·85H2O served as a catalyst. Results show that it is an effective catalyst for oxygenation of thioethers by H2O2. The unique redox property of oxygen-enriched polyoxotungstate fragments and Lewis acidity of the Zr cluster imbedded in Na10K22·1·85H2O provide a sufficient driving force for the catalytic conversion from thioethers to sulfoxides/sulfones.

  18. Structure and luminescence properties of Ce3+ doped KBa1-x(Mg/Zn)xY(BO3)2 and K1-yNayBaY(BO3)2 phosphors evolved from cation substitution

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Liang, Yujun; Liu, Shiqi; Zhu, Yingli; Wu, Xingya; Li, Kai; Zhou, Wei

    2017-08-01

    The tunable blue-emitting KBa1-x(Mg/Zn)xY0.95(BO3)2:0.05Ce3+ and K1-yNayBaY0.95(BO3)2:0.05Ce3+ phosphors have been investigated via cation substitution of Mg2+/Zn2+ for Ba2+ and Na+ for K+ in KBaY(BO3)2 host. The crystal structures, photoluminescence properties, thermal stability and the effect of Mg2+/Zn2+/Na+ concentration on the luminescence characteristics were investigated in detail. The XRD analysis implied that KBa1-x(Mg/Zn)xY(BO3)2 solid solutions were limited, while continuous solid solution was possible in K1-yNayBaY(BO3)2 system. Upon the excitation at 365 nm, the emission peaks of KBa1-x(Mg/Zn)xY0.95(BO3)2:0.05Ce3+ (0 ⩽ x ⩽ 0.6) blue-shifted from 435 to 424 nm, and K1-yNayBaY0.95(BO3)2:0.05Ce3+ (0 ⩽ y ⩽ 1) blue-shifted from 435 to 427 nm with the Mg2+/Zn2+/Na+ doping concentration increase. The thermal stabilities of KBa1-x(Mg/Zn)xY0.95(BO3)2:0.05Ce3+ phosphors were enhanced from 20 °C to 200 °C by increasing the concentration of Mg2+ and Zn2+. The substitution of Na+ for K+ led to a decrease in the proportion of 5D-2F5/2 and 5D-2F7/2 corresponding to the Gaussian fitting of Ce3+ in K1-yNayBaY0.95(BO3)2:0.05Ce3+ phosphors. At the temperature increased, the full width at half maximum of photoluminescence band of K0.8Na0.2BaY0.95(BO3)2:0.05Ce3+ decreased. However, the decreasing trend of FWHM became less obvious with the increasing concentration of Na+ in the temperature dependent photoluminescence spectra of K1-yNayBaY0.95(BO3)2:0.05Ce3+ phosphors.

  19. Investigation of cation (Sn2+) and anion (N3-) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10.

    PubMed

    Kumar, Vinod; Govind; Uma, S

    2011-05-15

    Noticeable lowering of the energy gaps have been achieved for the layered perovskite K(2)La(2)Ti(3)O(10) as a result of the attempts made to incorporate Sn(2+) and N(3-) ions. Incorporation of Sn(2+) ions was carried out by the ion-exchange reaction of K(2)La(2)Ti(3)O(10) with aqueous tin(II) chloride solution. Nitrogen incorporation was attempted by the solid state reaction of the parent oxide with urea around 400 °C in air. The resultant oxides have been characterized by power X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy. Room temperature ion-exchange was sufficient to introduce Sn(2+) ions with the resulting product of composition (Sn(0.45)K(0.2)H(0.9))La(2)Ti(3)O(10) · H(2)O. Visible light absorption was observed with the absorption edge red shift of ∼ 100 nm from that of the parent K(2)La(2)Ti(3)O(10). The lowering of the band gap was as expected by the contribution of Sn 5s orbitals to the O 2p orbitals in the formation of the valence band. Nitridation using urea resulted not only in nitrogen doping but with the additional sensitization by the presence of carbon nitride (CN) polymers, which again resulted in visible light absorption. The product oxides obtained as a result of cation and anion intended substitutional studies have been found to be useful for the visible light photocatalytic decomposition of organic dyes such as rhodamine B. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9}: The first osmium perovskites containing alkali cations at the 'A' site

    SciTech Connect

    Mogare, Kailash M.; Klein, Wilhelm; Jansen, Martin

    2012-07-15

    K{sub 2}NaOsO{sub 5.5} and K{sub 3}NaOs{sub 2}O{sub 9} were obtained from solid-state reactions of potassium superoxide, sodium peroxide and osmium metal at elevated oxygen pressures. K{sub 2}NaOsO{sub 5.5} crystallizes as an oxygen-deficient cubic double perovskite in space group Fm3{sup Macron }m with a=8.4184(5) A and contains isolated OsO{sub 6} octahedra. K{sub 3}NaOs{sub 2}O{sub 9} crystallizes hexagonally in P6{sub 3}/mmc with a=5.9998(4) A and c=14.3053(14) A. K{sub 3}NaOs{sub 2}O{sub 9} consists of face sharing Os{sub 2}O{sub 9} pairs of octahedra. According to magnetic measurements K{sub 2}NaOsO{sub 5.5} is diamagnetic, whereas K{sub 3}NaOs{sub 2}O{sub 9} displays strong antiferromagnetic coupling (T{sub N}=140 K), indicating enhanced magnetic interactions within the octahedral pair. - Graphical abstract: High oxidation states of Os, obtained by high oxygen pressure synthesis, are accommodated in double and triple perovskite matrices. K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions. Highlights: Black-Right-Pointing-Pointer New osmates containing highly oxidized Os were obtained by high O{sub 2} pressure synthesis. Black-Right-Pointing-Pointer High oxidation states of Os are accommodated in double and triple perovskite matrices. Black-Right-Pointing-Pointer Both compounds represent the first Os perovskites with an alkali metal at the A site. Black-Right-Pointing-Pointer K{sub 3}NaOs{sub 2}O{sub 9} displays enhanced magnetic interactions within the octahedral pair.

  1. Substituted hydroxyapatites for bone repair.

    PubMed

    Shepherd, Jennifer H; Shepherd, David V; Best, Serena M

    2012-10-01

    Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.

  2. Peptoid transporters: effects of cationic, amphipathic structure on their cellular uptake.

    PubMed

    Huang, Wei; Seo, Jiwon; Lin, Jennifer S; Barron, Annelise E

    2012-10-01

    Two cationic, amphipathic peptoids (poly-N-substituted glycines) were developed as new molecular transporters, which have extensive cellullar uptake and utilize different internalization mechanisms from purely cationic polyguanidine comparators.

  3. The Effect of 24c-site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7-xLa3-xAxZr2O12 Garnet-Based Ceramic Electrolyte

    DTIC Science & Technology

    2012-12-27

    vacancy concentration to stabilize the cubic structure [22,23]. Substitution on the Zr (4þ) site will not block the Li-ion pathways and thus leads to...contamination from alumina crucibles [10,17]. Later Al was intentionally added [18,19] and a dense (relative density > 90%) material with a cubic ... structure was ob- tained. Geiger et al. [17] have suggested that Al substitutes for Li and thereby stabilizes the cubic phase. A similar stabilization of

  4. Computational Modeling of Degradation of Substituted Benzyltrimethyl Ammonium: Preprint

    SciTech Connect

    Long, H.; Pivovar, B. S.

    2014-09-01

    The degradation of cations on the alkaline exchange membranes is the major challenge for alkaline membrane fuel cells. In this paper, we investigated the degradation barriers by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations, which is one of the most commonly used cations for alkaline exchange membranes. We found that substituted cations with electron-releasing substituent groups at meta-position of the benzyl ring could result in improved degradation barriers. However, after investigating more than thirty substituted BTMA+ cations with ten different substituent groups, the largest improvement of degradation barriers is only 1.6 kcal/mol. This implies that the lifetime of alkaline membrane fuel cells could increase from a few months to a few years by using substituted BTMA+ cations, an encouraging but still limited improvement for real-world applications.

  5. Effect of Co Substitution on the Crystal and Magnetic Structure of SrFeO2.75-δ: Stabilization of the "314-Type" Oxygen Vacancy Ordered Structure without A-Site Ordering.

    PubMed

    Marik, Sourav; Chennabasappa, Madhu; Fernández-Sanjulián, Javier; Petit, Emmanuel; Toulemonde, Olivier

    2016-10-03

    A study of the structure-composition-properties correlation is reported for the oxygen-deficient SrFe1-xCoxO2.75-δ (x = 0.1-0.85) materials. The introduction of Co in the parent SrFeO2.75 (Sr4Fe4O11) structure revealed an interesting structural transformation. At room temperature (RT), an orthorhombic (space group Cmmm, 2√2ap × 2ap × √2ap type, ap = lattice parameter of the cubic perovskite) → tetragonal (space group P4/mmm, ap × ap × 2ap type) → tetragonal (space group I4/mmm, 2ap × 2ap × 4ap type) structural transformation is observed in parallel with increasing Co content and decreasing oxygen content in the structure. At the same time, a rich variation in the magnetic properties is explored. The samples with x = 0.25, 0.3 show temperature-induced magnetization reversal. With increasing Co content in the structure, magnetic interactions start to weaken due to the random distribution of Fe and Co in the structure; the x = 0.5 sample shows frustration in the magnetic behavior with much smaller magnetization value. With a further increase in the Co content in the structure, RT ferrimagnetic-type behavior is observed for the sample with x = 0.85. The nuclear and magnetic structure refinements using RT and low-temperature neutron powder diffraction (NPD, 10 K) patterns confirm the formation of a "314-type" novel oxygen vacancy ordered phase for the sample with x = 0.85, which is the first case of "314-type" novel oxygen vacancy ordering without A-site (ABO3-δ type perovskite) ordering. The magnetic structure is G-type antiferromagnetic starting at room temperature. Further, the stabilization of the "314-type" complex superstructure is related to the ordering of oxygen vacancies in the oxygen-deficient Co-O layers, and the same assists in building a network of Co ions with different coordination environments, each with different spin states, and forms the spin-state ordering.

  6. “Ba{sub 6}Nb{sub 4}RuO{sub 18}” and “LaBa{sub 4}Nb{sub 3}RuO{sub 15}” – The structural consequences of substituting paramagnetic cations into A{sub n}B{sub n−1}O{sub 3n} cation-deficient perovskite oxides

    SciTech Connect

    Kamil, Elynor L.; Morgan, Harry W.T.; Hayward, Michael A.

    2016-06-15

    The B-cation deficient perovskite phases Ba{sub 6}Nb{sub 4}RuO{sub 18} and LaBa{sub 4}Nb{sub 3}RuO{sub 15} were prepared by ceramic synthesis. Neutron powder diffraction analysis indicates that rather than the 6-layer and 5-layer cation-deficient perovskite structures expected for these phases (by analogy to the known structures of Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}) they adopt 5-layer and 4-layer B-cation deficient perovskite structures respectively, and are better described as Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}. The factors that lead to the compositionally analogous Nb/Ru and Nb/Ti phases adopting different structures are discussed on the basis of the difference between d{sup 0} and non-d{sup 0} transition metal cations. - Graphical abstract: The ruthenium-containing B-cation deficient perovskite phases, Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}, adopt 5-layer and 4-layer structures respectively, rather than the 6-layer and 5-layer cation-deficient structures adopted by the analogous titanium-containing phases Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}. Display Omitted - Highlights: • B-cation deficient perovskite containing paramagnetic cations. • B-cation deficient structure determined by neutron powder diffraction. • Low ‘solubility’ of BaRuO{sub 3} in Ba{sub 5}Nb{sub 4}O{sub 15} leads to novel structure.

  7. Effect of local A-site strain on dipole stability in A6GaNb9O30 (A = Ba, Sr, Ca) tetragonal tungsten bronze relaxor dielectrics.

    PubMed

    Miller, Andrew J; Rotaru, Andrei; Arnold, Donna C; Morrison, Finlay D

    2015-06-21

    A series of isovalently A-site substituted relaxor dielectric tetragonal tungsten bronzes of general formula Ba(6-x-y)Sr(x)Ca(y)GaNb(9)O(30) were investigated. The long-range (average) crystal structure as determined by conventional diffraction techniques varies monotonically according to Vegard's law. The dielectric properties, however, do not display a similar, simple "average size" dependence and instead show a dependence on the statistical size variance, i.e. size mismatch, of the A-cation. The difficulties in Vogel-Fulcher analysis of relative permittivity and the complementary approach of using dielectric loss data fitted to Jonscher's empirical universal dielectric relaxation model is discussed.

  8. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  9. Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cation-π Interactions.

    PubMed

    Simó Padial, Joan; Poater, Jordi; Nguyen, D Thao; Tinnemans, Paul; Bickelhaupt, F Matthias; Mecinović, Jasmin

    2017-09-15

    Energetically favorable cation-π interactions play important roles in numerous molecular recognition processes in chemistry and biology. Herein, we present synergistic experimental and computational physical-organic chemistry studies on 2,6-diarylanilines that contain flanking meta/para-substituted aromatic rings adjacent to the central anilinium ion. A combination of measurements of pKa values, structural analyses of 2,6-diarylanilinium cations, and quantum chemical analyses based on the quantitative molecular orbital theory and a canonical energy decomposition analysis (EDA) scheme reveal that through-space cation-π interactions essentially contribute to observed trends in proton affinities and pKa values of 2,6-diarylanilines.

  10. Substitute Solutions.

    ERIC Educational Resources Information Center

    Jones, Kevin R.; Hawkins, Amber

    2000-01-01

    In summer 1999, a group of Park City, Utah, school administrators, personnel directors, human-resource specialists, and substitute teacher coordinators brainstormed on improving the recruitment, training, and retention of substitute teachers. Providing effective preservice and on-the-job training and professional recognition are key suggestions.…

  11. [Bone substitutes].

    PubMed

    Jordana, Fabienne; Le Visage, Catherine; Weiss, Pierre

    2017-01-01

    Bone substitutes, used to fill a defect after a surgery or a trauma, provide a mechanical support and might induce bone healing. They constitute an alternative to autogenous bone grafts, the 'gold standard' which remains the reference despite its risk of postoperative complications. The clinician choice of a bone substitute is based on the required bone volume, the handling (injectability, malleability) and mechanical properties (setting time, viscosity, resorbability among others) of the material. Bone substitutes are commonly used in orthopedic surgery, neurosurgery, stomatology and dental applications. Their use increases steadily, with the recent clinical development of injectable forms. In addition, novel technologies by subtractive or additive techniques allow today the production of controlled architecture materials. Here, we present a bone substitutes classification according to their origin (natural or synthetic) and chemical composition, and the most common use of these substitutes. © 2017 médecine/sciences – Inserm.

  12. Skin Substitutes

    PubMed Central

    Howe, Nicole; Cohen, George

    2014-01-01

    In a relatively short timespan, a wealth of new skin substitutes made of synthetic and biologically derived materials have arisen for the purpose of wound healing of various etiologies. This review article focuses on providing an overview of skin substitutes including their indications, contraindications, benefits, and limitations. The result of this overview was an appreciation of the vast array of options available for clinicians, many of which did not exist a short time ago. Yet, despite the rapid expansion this field has undergone, no ideal skin substitute is currently available. More research in the field of skin substitutes and wound healing is required not only for the development of new products made of increasingly complex biomolecular material, but also to compare the existing skin substitutes. PMID:25371771

  13. Metalated Nitriles: Cation-Controlled Cyclizations

    PubMed Central

    Fleming, Fraser F.; Wei, Yunjing; Liu, Wang; Zhang, Zhiyu

    2008-01-01

    Judicious choice of cation allows the selective cyclization of substituted γ-hydroxynitriles to trans- or cis-decalins and trans- or cis-bicyclo[5.4.0]-undecanes. The stereoselectivities are consistent with deprotonations generating two distinctly different metalated nitriles: an internally coordinated nitrile anion with BuLi, and a C-magnesiated nitrile with i-PrMgCl. Employing cations to control the geometry of metalated nitriles permits stereodivergent cyclizations with complete control over the stereochemistry of the quaternary, nitrile-bearing carbon. PMID:17579448

  14. Tuning magnetic frustration on the diamond lattice of the A-site magnetic spinels CoA12-xGax04: lattice expansion versus site disorder

    SciTech Connect

    Proffen, Thomas E; Melot, Brent C; Page, Katharine; Seshadri, Ramzy; Stoudenmire, E M; Balents, Leon; Bergman, Doron L

    2008-01-01

    The spinels CoB{sub 2}O{sub 4} with magnetic Co{sup 2+} ions on the diamond lattice A site can be frustrated because of competing near-neighbor (J{sub 1}) and next-near neighbor (J{sub 2}) interactions. Here we describe attempts to tune the relative strengths of these interactions by substitution on the non-magnetic B-site. The system we employ is CoAl{sub 2-x}Ga{sub x}O{sub 4}, where Al is systematically replaced by the larger Ga, ostensibly on the B site. As expected, Ga substitution expands the lattice, resulting in Co atoms on the A-site being pushed further from one other and thereby weakening magnetic interactions. In addition, Ga distributes between the B and the A site in a concentration dependent manner displacing an increasing amount of Co from the A site with increasing x. This increased inversion, which is confirmed by neutron diffraction studies carried out at room temperature, affects magnetic ordering very significantly, and changes the nature of the ground state. Modeling of the magnetic coupling illustrates the complexity that arises from the cation site disorder.

  15. Comparative analysis of cation/proton antiporter superfamily in plants

    SciTech Connect

    Ye, Chuyu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-01-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant specieswas reported.We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiospermspecies. Sliding windowanalysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and foundmostmotifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.

  16. Nonlinearity of cationic aromatic amine sorption to aluminosilicates and soils: role of intermolecular cation-π interactions.

    PubMed

    Vasudevan, Dharni; Arey, Teresa A; Dickstein, Daniel R; Newman, Mark H; Zhang, Tina Y; Kinnear, Heather M; Bader, Mohammad M

    2013-12-17

    Through the study of substituted anilines and benzylamines, we demonstrated that cooperative cation-π, π-π, and van der Waals interactions can increase aromatic cationic amine sorption to Na/Ca-montmorillonite well beyond the extent expected by cation exchange alone. Cationic amines exhibiting cooperative interactions displayed nonlinear S-shaped isotherms and increased affinity for the sorbent at low surface coverage; parallel cation exchange and cooperative interactions were noted above a sorption threshold of 0.3-2.3% of exchange sites occupied. Our experiments revealed the predominance of intermolecular cation-π interactions, which occurred between the π system of a compound retained on the surface via cation exchange and the cationic amine group of an adjacent molecule. Compounds with greater amine charge/area and electron-donating substituents that allowed for greater electron density at the center of the aromatic ring showed a greater potential for cation-π interactions on montmorillonite surfaces. However, benzylamine sorption to nine soils, at charge loadings comparable to the experiments with montmorillonite, revealed no significant cooperative interactions. It appears that cation-π interactions may be likely in soils with exceptionally high cation exchange capacities (>0.7 mol charge/kg) and low organic matter contents, abundant in montmorillonite and other expanding clay minerals.

  17. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones.

    PubMed

    Rosen, Joachim; Than, Ni Ni; Koch, Dorothea; Poeggeler, Burkhard; Laatsch, Hartmut; Hardeland, Rüdiger

    2006-11-01

    Melatonin had previously been shown to reduce up to four 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) cation radicals (ABTS*+) via a scavenger cascade ending with N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). However, when melatonin is added to the reaction system in much lower quantities than ABTS*+, the number of radicals scavenged per melatonin molecule is considerably higher and can attain a value of ten. Under conditions allowing for such a stoichiometry, novel products have been detected which derive from AFMK (1). These were separated by repeated chromatography and the major compounds were characterized by spectroscopic methods, such as mass spectrometry (HPLC-MS, EI-MS and ESI-HRMS), 1H nuclear magnetic resonance (NMR) and 13C NMR, heteronuclear multiple bond connectivity (HMBC) correlations. The identified substances are formed by re-cyclization and represent 3-indolinones carrying the side chain at C2; the N-formyl group can be maintained, but deformylated analogs seem to be also generated, according to MS. The primary product from AFMK (1) is N-(1-formyl-5-methoxy-3-oxo-2,3-dihydro-1H-indol-2-ylidenemethyl)-acetamide (2), which is obtained after purification as E- and Z-isomers (2a, 2b); a secondary product has been identified as N-(1-formyl-2-hydroxy-5-methoxy-3-oxo-2,3-dihydro-1H-indol-2-ylmethyl)-acetamide (3). When H2O2 is added to the ABTS*+ reaction mixture in quantities not already leading to substantial reduction of this radical, compound 3 is isolated as the major product, whereas 2a and 2b are virtually absent. The substances formed differ from all previously known oxidation products which derive from melatonin and are, among these, the first 3-indolinones. Moreover, the aliphatic side chain at C2 is reminiscent of other substances which have been synthesized in the search for melatonin receptor ligands.

  18. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  19. Structural Modification of the Cation-Ordered Ruddlesden-Popper Phase YSr2Mn2O7 by Cation Exchange and Anion Insertion.

    PubMed

    Zhang, Ronghuan; Gibbs, Alexandra S; Zhang, Weiguo; Halasyamani, P Shiv; Hayward, Michael A

    2017-08-21

    Calcium-for-strontium cation substitution of the a(-)b(0)c(0)/b(0)a(-)c(0)-distorted, cation-ordered, n = 2 Ruddlesden-Popper phase, YSr2Mn2O7, leads to separation into two phases, which both retain an a(-)b(0)c(0)/b(0)a(-)c(0)-distorted framework and have the same stoichiometry but exhibit different degrees of Y/Sr/Ca cation order. Increasing the calcium concentration to form YSr0.5Ca1.5Mn2O7 leads to a change in the cooperative tilting on the MnO6 units to a novel a(-)b(-)c(-)/b(-)a(-)c(-) arrangement described in space group P21/n11. Low-temperature, topochemical fluorination of YSr2Mn2O7 yields YSr2Mn2O5.5F3.5. In contrast to many other fluorinated n = 2 Ruddlesden-Popper oxide phases, YSr2Mn2O5.5F3.5 retains the a(-)b(0)c(0)/b(0)a(-)c(0) lattice distortion and P42/mnm space group symmetry of the parent oxide phase. The resilience of the a(-)b(0)c(0)/b(0)a(-)c(0)-distorted framework of YSr2Mn2O7 to resist symmetry-changing deformations upon both cation substitution and anion insertion/exchange is discussed on the basis the A-site cation order of the lattice and the large change in the ionic radius of manganese upon oxidation from Mn(3+) to Mn(4+). The structure property relations observed in the Y-Sr-Ca-Mn-O-F system provide insight into assisting in the synthesis of n = 2 Ruddlesden-Popper phases, which adopt cooperative structural distortions that break the inversion symmetry of the extended lattice and therefore act as a route for the preparation of ferroelectric and multiferroic materials.

  20. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  1. Effects of cationic xylan from annual plants on the mechanical properties of paper.

    PubMed

    Deutschle, Alexander L; Römhild, Katrin; Meister, Frank; Janzon, Ron; Riegert, Christiane; Saake, Bodo

    2014-02-15

    Xylan from oat spelt and wheat was used as an additive to enhance the dry strength of paper. The absorption of xylan by the cellulose fibers was increased by cationization to different degrees of substitution. Paper hand sheets with different doses of xylan and industrial cationic starch were produced, and the mechanical properties were determined. Absorption measurements of cationic oat spelt xylan on pulp fibers explained the differing influences of low and high cationized xylan addition on paper strength. The addition of cationic oat spelt xylan with a degree of substitution of 0.1 at a 4% dose provided the largest improvement in the tensile-index (67%), burst-index (105%) and tear-index (77%). Compared to cationic starch, cationic oat spelt xylan additives led to similar paper strength values, excepting the tear strength. The structural differences and protein impurities made the wheat xylan unsuitable as a strength additive for paper pulp. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study

    SciTech Connect

    Long, Hai; Pivovar, Bryan S.

    2014-11-01

    The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.

  3. Contribution of cation-π interactions in iminium catalysis.

    PubMed

    Mori, Yukie; Yamada, Shinji

    2012-02-21

    Ab initio calculations were carried out for a benzyl-substituted iminium cation derived from (E)-crotonaldehyde and a chiral imidazolidinone that was developed as an organocatalyst by MacMillan et al. At the MP2 level of theory it is predicted that the phenyl group is close to the iminium moiety in the most stable conformer, suggesting that the cation-π interaction contributes to the stabilization of this conformer. Energy decomposition analyses on model systems indicate that the electrostatic and polarization terms make significant contribution to the attractive interactions between the benzene ring and the iminium cation.

  4. Hydroxide Degradation Pathways for Imidazolium Cations. A DFT Study

    SciTech Connect

    Long, H.; Pivovar, B.

    2014-05-15

    Imidazolium cations are promising candidates as covalently tetherable cations for application in anion exchange membranes. They have generated specific interest in alkaline membrane fuel cell applications where ammonium-based cations have been the most commonly applied but have been found to be susceptible to hydroxide attack. In the search for high stability cations, a detailed understanding of the degradation pathways and reaction barriers is required. In this work, we investigate imidazolium and benzimidazolium cations in the presence of hydroxide using density functional theory calculations for their potential in alkaline membrane fuel cells. Moreover, the dominant degradation pathway for these cations is predicted to be the nucleophilic addition–elimination pathway at the C-2 atom position on the imidazolium ring. Steric interferences, introduced by substitutions at the C-2, C-4, and C-5 atom positions, were investigated and found to have a significant, positive impact on calculated degradation energy barriers. Benzimidazolium cations, with their larger conjugated systems, are predicted to degrade much faster than their imidazolium counterparts. Our results provide important insight into designing stable cations for anion exchange membranes. Some of the molecules studied have significantly increased degradation energy barriers suggesting that they could possess significantly improved (several orders of magnitude) durability compared to traditional cations and potentially enable new applications.

  5. Cation binding by bacteriorhodopsin

    SciTech Connect

    Chang, C.H.; Chen, J.G.; Govindjee, R.; Ebrey, T.

    1984-01-01

    It was found that extensively washed purple membrane has about 1 calcium and 3-4 magnesium ions bound per bacteriorhodopsin molecule. When these divalent cations are removed by any of a variety of means, the pigment changes its color from purple to blue (lambda/sub max/ approx. = 600 nm). This blue pigment, which can be formed at near neutral pH, is probably very similar to blue species formed when the pH of a purple membrane sample is lowered to approx. = 2. When any of a wide variety of cations are added to a blue membrane preparation, the characteristic purple color of bacteriorhodopsin returns. Divalent and trivalent cations are much more efficient than monovalent cations in restoring the purple color and are effective at a ratio approaching one cation per pigment molecule. Besides shifting the absorption spectrum, removal of the divalent cations drastically alters the photochemical cycle of bacteriorhodopsin, including abolishing the unprotonated Schiff base (M-type) intermediate. Finally, lanthanum not only displaces the divalent cations normally bound to the purple membrane but also greatly reduces both the rate of decay of the M412 intermediate and proton uptake.

  6. Orientation in methylation and phenylation of alkylbenzenes by cations generated by the nuclear chemical method

    SciTech Connect

    Sinotova, E.N.; Krylov, E.N.

    1987-11-10

    The distribution of the isomers and the relative activity of alkylbenzenes in electrophilic methylation and phenylation with methyl and phenyl cations generated by the nuclear chemical method are examined. These reactions are a convenient model of aromatic electrophilic substitution. Free methyl cations were generated by radioactive ..beta../sup -/ decay of tritium in totally tritiated methane. Free phenyl cations were generated from totally tritiated benzene C/sub 6/T/sub 6/ according to a similar scheme. During the reaction with alkylbenzenes methyl cations form isomeric alkyltoluenes and tritium-labeled toluene. The phenyl cations react with the alkylbenzenes and form isomeric alkyldiphenyls and tritium-labeled diphenyl. Both the Nathan-Baker substrate and position effects caused by the steric effect of the alkyl substitutents are observed in methylation and phenylation of alkylbenzenes by CT/sub 3//sup +/ and C/sub 6/T/sub 5//sup +/ cations generated by the nuclear chemical method.

  7. Monensin-induced cation movements in bovine erythrocytes.

    PubMed

    Dixon, E

    1990-01-01

    Monensin is a carboxylic ionophore that has been observed to increase cation permeability across the membrane of several cell types. Additionally, it is used commercially as an anticoccidial agent and has been found to increase feed efficiency in cattle. The objectives of these experiments were to determine the ability of monensin to stimulate cation (Na and K) transport across the bovine erythrocyte membrane and determine the effects of anion substitution on the action of the compound. Erythrocyte cation analyses revealed that all of the animals used in this study were low potassium (LK). Red cells were incubated in an artificial medium in the presence or absence of monensin, and cell sodium, potassium and water were determined at several time periods. It was observed that monensin stimulated the movement of sodium and potassium down their respective concentration gradients. Cell water content ("D") was observed to increase in response to an elevation in cell cation content. In synthetic media containing acetate, sulfate, citrate, thiocynate and gluconate substituted for chloride as the anion specie in the presence of monensin, there were measureable differences in intracellular sodium and water during the incubation period. The addition of DIDS to the control media containing chloride was observed to inhibit from 60 to 80 percent of the monensin-stimulated sodium movements. The results of this study show that monensin stimulates cation movements in bovine erythrocytes and anion substitutes may alter the action of this ionophore. Additionally, it was demonstrated that the action of monensin can be modified by inhibition of Band 3.

  8. Taming furfuryl cations for the synthesis of privileged structures and novel scaffolds.

    PubMed

    Dhiman, Seema; Ramasastry, S S V

    2013-07-14

    Furfuryl cations are generated via a highly efficient bismuth-catalyzed reaction of furfuryl alcohols. This systematic study provides insight on the reactivity profile of furfuryl cations towards nucleophilic substitution reactions. Novel C-C, C-N, C-O and C-S bond forming reactions of furfuryl cations have been developed, thus providing access to a diverse array of building blocks for further manipulations.

  9. Cation and anion sequences in dark-adapted Balanus photoreceptor

    PubMed Central

    1977-01-01

    Anion and cation permeabilities in dark-adapted Balanus photoreceptors were determined by comparing changes in the membrane potential in response to replacement of the dominant anion (Cl-) or cation (Na+) by test anions or cations in the superfusing solution. The anion permeability sequence obtained was PI greater than PSO4 greater than PBr greater than PCl greater than Pisethionate greater than Pmethanesulfonate. Gluconate, glucuronate, and glutamate generally appeared more permeable and propionate less permeable than Cl-. The alkali-metal cation permeability sequence obtained was PK greater than PRb greater than PCx greater than PNa approximately PLi. This corresponds to Eisenman's IV which is the same sequencethat has been obtained for other classes of nerve cells in the resting state. The values obtained for the permeability ratios of the alkali-metal cations are considered to be minimal. The membrane conductance measured by passing inward current pulses in the different test cations followed the sequence, GK greater than GRb greater than GCs greater than GNa greater than GLi. The conductance ratios obtained for a full substitution of the test cation agreed quite well with permeability ratios for all the alkali-metal cations except K+ which was generally higher. PMID:199688

  10. Planar Chiral, Ferrocene-Stabilized Silicon Cations.

    PubMed

    Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin

    2016-04-04

    The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29)Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3))-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen.

  11. Nutrient-substituted hydroxyapatites: synthesis and characterization.

    PubMed

    Golden, D C; Ming, D W

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  12. Nutrient-substituted hydroxyapatites: synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  13. Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Shan, D.; Qu, Y. F.; Song, J. J.

    2007-01-01

    The dielectric properties of Ba(Zr 0.25Ti 0.75)O 3+ xY 2O 3 ceramics are investigated. We believe that, integrating with the lattice parameters, there is an alternation of substitution preference of yttrium ions for the host cations in perovskite lattice that is responsible for the Curie point. The Tc rises with the increase of Y 3+ doping when the doping content is less than 0.05 at%, owing to the replacement of Y 3+ ions for Ba 2+ ions at the A-site; when the Y 3+ content is more than 0.05 at%, Y 3+ ions tend to occupy the B-site in perovskite lattice, causing a drop of Tc. Owing to the modifications of Y 3+ doping, the loss tangent of BZT ceramics is depressed remarkably, making it a superior candidate to replace widely used lead-contained ceramics.

  14. Infrared spectrum of the chloromethylene hydroperoxide cation in solid argon

    NASA Astrophysics Data System (ADS)

    Chen, Mohua; Zhou, Mingfei

    2013-07-01

    Infrared spectrum of the chloromethylene hydroperoxide cation, HC(Cl)OOH+ in solid argon is reported. The cation is produced by co-condensation of dichloromethane and dioxygen mixtures with high-frequency discharged argon at 4 K followed by visible light excitation. On the basis of isotopic substitutions as well as quantum chemical frequency calculations, absorptions at 3452.7, 3052.0, 1499.6, 976.9, 855.4 and 956.1 cm-1 are assigned to the O-H, C-H, Cdbnd O, C-Cl and O-O stretching and out-of-plane CH wagging vibrations of the chloromethylene hydroperoxy cation. The cation was predicted to have a singlet ground state with planar Cs symmetry.

  15. Gas-Phase Chemistry of Benzyl Cations in Dissociation of N-Benzylammonium and N-Benzyliminium Ions Studied by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Wang, Lin; Sun, Hezhi; Guo, Cheng; Pan, Yuanjiang

    2012-05-01

    In this study, the fragmentation reactions of various N-benzylammonium and N-benzyliminium ions were investigated by electrospray ionization mass spectrometry. In general, the dissociation of N-benzylated cations generates benzyl cations easily. Formation of ion/neutral complex intermediates consisting of the benzyl cations and the neutral fragments was observed. The intra-complex reactions included electrophilic aromatic substitution, hydride transfer, electron transfer, proton transfer, and nucleophilic aromatic substitution. These five types of reactions almost covered all the potential reactivities of benzyl cations in chemical reactions. Benzyl cations are well-known as Lewis acid and electrophile in reactions, but the present study showed that the gas-phase reactivities of some suitably ring-substituted benzyl cations were far richer. The 4-methylbenzyl cation was found to react as a Brønsted acid, benzyl cations bearing a strong electron-withdrawing group were found to react as electron acceptors, and para-halogen-substituted benzyl cations could react as substrates for nucleophilic attack at the phenyl ring. The reactions of benzyl cations were also related to the neutral counterparts. For example, in electron transfer reaction, the neutral counterpart should have low ionization energy and in nucleophilic aromatic substitution reaction, the neutral counterpart should be piperazine or analogues. This study provided a panoramic view of the reactions of benzyl cations with neutral N-containing species in the gas phase.

  16. Gas-phase chemistry of benzyl cations in dissociation of N-benzylammonium and N-benzyliminium ions studied by mass spectrometry.

    PubMed

    Chai, Yunfeng; Wang, Lin; Sun, Hezhi; Guo, Cheng; Pan, Yuanjiang

    2012-05-01

    In this study, the fragmentation reactions of various N-benzylammonium and N-benzyliminium ions were investigated by electrospray ionization mass spectrometry. In general, the dissociation of N-benzylated cations generates benzyl cations easily. Formation of ion/neutral complex intermediates consisting of the benzyl cations and the neutral fragments was observed. The intra-complex reactions included electrophilic aromatic substitution, hydride transfer, electron transfer, proton transfer, and nucleophilic aromatic substitution. These five types of reactions almost covered all the potential reactivities of benzyl cations in chemical reactions. Benzyl cations are well-known as Lewis acid and electrophile in reactions, but the present study showed that the gas-phase reactivities of some suitably ring-substituted benzyl cations were far richer. The 4-methylbenzyl cation was found to react as a Brønsted acid, benzyl cations bearing a strong electron-withdrawing group were found to react as electron acceptors, and para-halogen-substituted benzyl cations could react as substrates for nucleophilic attack at the phenyl ring. The reactions of benzyl cations were also related to the neutral counterparts. For example, in electron transfer reaction, the neutral counterpart should have low ionization energy and in nucleophilic aromatic substitution reaction, the neutral counterpart should be piperazine or analogues. This study provided a panoramic view of the reactions of benzyl cations with neutral N-containing species in the gas phase.

  17. Evaluation of the emulsifying properties of some cationic starches.

    PubMed

    Vermeire, A; Kiekens, F; Corveleyn, S; Remon, J P

    1999-03-01

    Different cationic potato, maize, and waxy maize starches were evaluated for their emulsifying properties. Emulsions were prepared using 20% (w/w) arachidic oil and 80% (w/w) water. Emulsions with the cationic starches as emulsifier in a concentration ranging from 1% to 5% (w/w) were prepared and characterized by droplet size and viscosity measurements, and the stability was evaluated visually and by electrical conductance measurements. None of the cationic potato, waxy maize starches, and maize starches with a low degree of substitution (DS) showed adequate emulsifying properties. Emulsions prepared using non-pregelatinized (C [symbol: see text] bond 05914, 2% and 5% w/w; C [symbol: see text] bond 05907, 5% w/w) and pregelatinized (C [symbol: see text] bond 12504, 5% w/w) cationic maize starches with high-DS were visually stable. The initial mean droplet volume diameter of the emulsions prepared with these cationic starches in a 5% (w/w) concentration was similar and ranged from 2.40 to 2.84 microns; however, there was an important difference in droplet size distribution. The droplet size distribution of the emulsions prepared using the non-pregelatinized high-DS cationic starches was markedly narrower than in the case of the emulsions prepared using the pregelatinized high-DS cationic starches. The droplet size of the emulsions remained almost constant during 120 days of storage. Visual inspection and electrical conductance measurements showed that these emulsions were stable for at least 120 days.

  18. Understanding the role of A-site and B-site cations on piezoelectric instability in lead--free (1-x) BaTiO3 -- xA(Cu1/3Nb2/3)O3 (A = Sr, Ca, Ba) solid solutions

    NASA Astrophysics Data System (ADS)

    Maurya, Deepam; Zhou, Yuan; Priya, Shashank

    2013-03-01

    This study provides fundamental understanding of the enhanced piezoelectric instability in lead-free piezoelectric (1-x) BaTiO3-xA(Cu1/3Nb2/3) O3(A: Sr, Ba and Ca and x = 0.0-0.03) solid solutions. These compositions were found to exhibit large longitudinal piezoelectric constant (d33) of ~330 pC/N and electromechanical planar coupling constant (kp) ~ 46% at room temperature. The X-ray diffraction coupled with atomic pair distribution functions (PDF)s indicated increase in local polarization. Raman scattering and electron paramagnetic resonance (EPR) analysis revealed that substitutions on A and B-site both substantially perturbed the local octahedral dynamics and resulted in localized nano polar regions with lower symmetry. The presence of nano domains and local structural distortions smears the Curie peak resulting in diffuse order-disorder type phase transitions. The effect of these distortions on the variations in physical property was modeled and analyzed within the context of nanodomains and phase transitions. *spriya@vt.edu The financial support from National Science Foundation and Office of Basic Energy Science, Department of Energy (Microscopy analysis) is gratefully acknowledged. The authors would also like to acknowledge the support from KIMS (new piezoelectric)

  19. Modification of potato peel waste with base hydrolysis and subsequent cationization.

    PubMed

    Lappalainen, Katja; Kärkkäinen, Johanna; Joensuu, Päivi; Lajunen, Marja

    2015-11-05

    Potato peel waste (PW) is a starch containing biomaterial produced in large amounts by food processing industry. In this work, the treatment of PW by alkaline hydrolysis and cationization in the water phase is reported. In order to improve the cationization of starch, PW was hydrolyzed by heating with alkaline (NaOH) ethanol solution (80%) in a water bath. The impact of variable molar ratios of anhydroglucose unit (AGU):NaOH, heating temperatures and times was studied on the degradation of starch and the molecular size distribution of the product. The hydrolyzed PW was cationized subsequently in water by using glycidyltrimethylammonium chloride and catalyzed by NaOH under microwave irradiation or in an oil bath. The impact of the various reaction conditions on the cationization and degree of substitution of starch was studied. The degree of substitution of the cationized starch varied in the range of 0-0.35. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  1. Electrospray Ionization Tandem Mass Spectrometry of Ammonium Cationized Polyethers

    NASA Astrophysics Data System (ADS)

    Nasioudis, Andreas; Heeren, Ron M. A.; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F.

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  2. Low cation coordination in oxide melts

    SciTech Connect

    Skinner, Lawrie; Benmore, Chris J; Du, Jincheng; Weber, Richard; Neuefeind, Joerg C; Tumber, Sonia; Parise, John B

    2014-01-01

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  3. Diaryldichalcogenide radical cations.

    PubMed

    Mallow, Ole; Khanfar, Monther A; Malischewski, Moritz; Finke, Pamela; Hesse, Malte; Lork, Enno; Augenstein, Timo; Breher, Frank; Harmer, Jeffrey R; Vasilieva, Nadezhda V; Zibarev, Andrey; Bogomyakov, Artem S; Seppelt, Konrad; Beckmann, Jens

    2015-01-01

    One-electron oxidation of two series of diaryldichalcogenides (C6F5E)2 (13a-c) and (2,6-Mes2C6H3E)2 (16a-c) was studied (E = S, Se, Te). The reaction of 13a and 13b with AsF5 and SbF5 gave rise to the formation of thermally unstable radical cations [(C6F5S)2]˙(+) (14a) and [(C6F5Se)2]˙(+) (14b) that were isolated as [Sb2F11](-) and [As2F11](-) salts, respectively. The reaction of 13c with AsF5 afforded only the product of a Te-C bond cleavage, namely the previously known dication [Te4](2+) that was isolated as [AsF6](-) salt. The reaction of (2,6-Mes2C6H3E)2 (16a-c) with [NO][SbF6] provided the corresponding radical cations [(2,6-Mes2C6H3E)2]˙(+) (17a-c; E = S, Se, Te) in the form of thermally stable [SbF6](-) salts in nearly quantitative yields. The electronic and structural properties of these radical cations were probed by X-ray diffraction analysis, EPR spectroscopy, and density functional theory calculations and other methods.

  4. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure-Stability Relationships.

    PubMed

    Hugar, Kristina M; Kostalik, Henry A; Coates, Geoffrey W

    2015-07-15

    Highly base-stable cationic moieties are a critical component of anion exchange membranes (AEMs) in alkaline fuel cells (AFCs); however, the commonly employed organic cations have limited alkaline stability. To address this problem, we synthesized and characterized the stability of a series of imidazolium cations in 1, 2, or 5 M KOH/CD3OH at 80 °C, systematically evaluating the impact of substitution on chemical stability. The substituent identity at each position of the imidazolium ring has a dramatic effect on the overall cation stability. We report imidazolium cations that have the highest alkaline stabilities reported to date, >99% cation remaining after 30 days in 5 M KOH/CD3OH at 80 °C.

  5. Cation diffusion in titanomagnetites

    NASA Astrophysics Data System (ADS)

    Aragon, R.; McCallister, R. H.; Harrison, H. R.

    1984-02-01

    Interdiffusion couple experiments were performed with titanomagnetite single crystals at 1,000°C, 1,100° C and 1,200° C in various buffered atmospheres. The dependence of the interdiffusion coefficient on oxygen fugacity, composition and temperature was interpreted in terms of point defect structure. Estimates of the cation tracer diffusivities indicate that Fe migrates via a point defect mechanism, involving mixed tetrahedral-octahedral site jumps, with an activation energy of 33 Kcal/mole; whereas Ti migration is one to two orders of magnitude slower, is restricted to octahedral sites and has an activation energy of 60 Kcal/mole.

  6. Secondary hydrogen isotope effects on the structure and stability of cation-pi complexes (cation = Li(+), Na(+), K(+) and pi = acetylene, ethylene, benzene).

    PubMed

    Moreno, Diego V; González, Sergio A; Reyes, Andrés

    2010-09-02

    Secondary hydrogen isotope effects on the geometries, electronic wave functions and binding energies of cation-pi complexes (cation = Li(+), Na(+), K(+) and pi = acetylene, ethylene, benzene) are investigated with NEO/HF and NEO/MP2 methods. These methods determine both electronic and nuclear wave functions simultaneously. Our results show that an increase of the hydrogen nuclear mass leads to the elongation of the cation-pi bond distance and the decrease in its binding energy. An explanation to this behavior is given in terms of the changes in the pi-molecule electronic structure and electrostatic potential induced by isotopic substitutions.

  7. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications.

  8. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  9. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  10. Static and dynamic optical properties of La1-xSrxFeO3-δ: The effects of A-site and oxygen stoichiometry

    DOE PAGES

    Sergey Y. Smolin; Sfeir, Matthew Y.; Scafetta, Mark D.; ...

    2015-12-09

    Perovskite oxides are a promising material class for photovoltaic and photocatalytic applications due to their visible band gaps, nanosecond recombination lifetimes, and great chemical diversity. However, there is limited understanding of the link between composition and static and dynamic optical properties, despite the critical role these properties play in the design of light-harvesting devices. To clarify these relationships, we systemically studied the optoelectronic properties in La1-xSrxFeO3-δ epitaxial films, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and amore » red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. Furthermore, these results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics.« less

  11. Contributions of cation-π interactions to the collagen triple helix stability.

    PubMed

    Chen, Chia-Ching; Hsu, Wei; Hwang, Kuo-Chu; Hwu, Jih Ru; Lin, Chun-Cheng; Horng, Jia-Cherng

    2011-04-01

    Cation-π interactions are found to be an important noncovalent force in proteins. Collagen is a right-handed triple helix composed of three left-handed PPII helices, in which (X-Y-Gly) repeats dominate in the sequence. Molecular modeling indicates that cation-π interactions could be formed between the X and Y positions in adjacent collagen strands. Here, we used a host-guest peptide system: (Pro-Hyp-Gly)(3)-(Pro-Y-Gly-X-Hyp-Gly)-(Pro-Hyp-Gly)(3), where X is an aromatic residue and Y is a cationic residue, to study the cation-π interaction in the collagen triple helix. Circular dichroism (CD) measurements and Tm data analysis show that the cation-π interactions involving Arg have a larger contribution to the conformational stability than do those involving Lys, and Trp forms a weaker cation-π interaction with cationic residues than expected as a result of steric effects. The results also show that the formation of cation-π interactions between Arg and Phe depends on their relative positions in the strand. Moreover, the fluorinated and methylated Phe substitutions show that an electron-withdrawing or electron-donating substituent on the aromatic ring can modulate its π-electron density and the cation-π interaction in collagen. Our data demonstrate that the cation-π interaction could play an important role in stabilizing the collagen triple helix.

  12. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.

  13. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.

  14. Aryl cation and carbene intermediates in the photodehalogenation of chlorophenols.

    PubMed

    Manet, Ilse; Monti, Sandra; Fagnoni, Maurizio; Protti, Stefano; Albini, Angelo

    2004-12-17

    The photochemistry of 2,6-dimethyl-4-chlorophenol (6) has been studied in methanol and trifluoroethanol (TFE) through product studies and transient absorption spectroscopy. Chloride loss from triplet 6 gave triplet hydroxyphenyl cation 14, which equilibrated with triplet oxocyclohexadienylydene 15 within a few tens of nanoseconds; the cation can, however, be selectively trapped by allyltrimethylsilane (k(ad) = 10(8)-10(9) m(-1) s(-1)) to give a phenonium ion and the allylated phenol. In neat alcohols, 14 and 15 are reduced through different mechanisms, namely by hydrogen transfer through radical cation 17 and via phenoxyl radical 16, respectively. The mechanistic rationalization has been substantiated by the parallel study of an O-silylated derivative. The work shows that the chemistry of the highly (but selectively) reactive phenyl cation 14 can not only be discriminated from that of the likewise highly reactive carbene 15, but also exploited for synthetically useful reactions, as in this case with alkenes. Photolysis of electron-donating substituted halobenzenes may be the method of choice for the mild generation of some classes of phenyl cations.

  15. First principles investigation of substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek

    This dissertation investigates how the magnetic properties of strontium hexaferrite change upon the substitution of foreign atoms at the Fe sites. Strontium hexaferrite, SrFe12O19, is a commonly used hard magnetic material and is produced in large quantities (around 500,000 tons per year). For different applications of strontium hexaferrite, its magnetic properties can be tuned by a proper substitution of the foreign atoms. Experimental screening for a proper substitution is a cost-intensive and time-consuming process, whereas computationally it can be done more efficiently. We used the 'density functional theory' a first principles based method to study substituted strontium hexaferrite. The site occupancies of the substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate the magnetic properties of substituted strontium hexaferrite. In the first study, Al-substituted strontium hexaferrite, SrFe12-x AlxO19 with x=0.5 and x=1.0 were investigated. It was found that at the annealing temperature the non-magnetic Al +3 ions preferentially replace Fe+3 ions from the 12 k and 2a sites. We found that the magnetization decreases and the magnetic anisotropy field increases as the fraction, x of the Al atoms increases. In the second study, SrFe12-xGaxO19 and SrFe12-xInxO19 with x=0.5 and x=1.0 were investigated. In the case of SrFe12-xGaxO19, the sites where Ga+3 ions prefer to enter are: 12 k, 2a, and 4f1. For SrFe12-xInxO19, In+3 ions most likely to occupy the 12k, 4f1 , and 4f2 sites. In both cases the magnetization was found to decrease slightly as the fraction of substituted atom increases. The magnetic anisotropy field increased for SrFe12-xGaxO 19, and decreased for SrFe12-xInxO19 as the concentration of substituted atoms increased. In the third study, 23 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12-xMxO 19

  16. Spin structure, magnetism, and cation distributions of NiFe2-xAlxO4 solid solutions

    NASA Astrophysics Data System (ADS)

    Kamali, Saeed

    2017-07-01

    Low temperature Mössbauer spectroscopy together with isothermal magnetization and zero-field-cooled and field-cooled measurements have been used to perform a systematic investigation of the cation distributions and magnetic properties of solid solutions of NiFe2-xAlxO4 with x = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0. Mössbauer spectroscopy for the starting member of the series, NiFe2O4, shows that nickel atoms occupy the octahedral sites and are in 2+ oxidation state, while iron atoms, all in 3+ oxidation state, occupy equally the tetrahedral and the octahedral sites. When low concentration of aluminum, x = 0.4, is incorporated into the system, they substitute preferentially iron atoms in the octahedral sites. As the concentration of aluminum is increased, there are distributions of them in both the tetrahedral and octahedral sites leading to complex cation distributions. The magnetic characters of iron and nickel atoms and the diamagnetic nature of aluminum atoms and the complex cation distributions result in interesting magnetic properties for this class of materials. As the concentration of aluminum increases, the saturation magnetization decreases drastically and then gradually increases. In the end member of the series, NiAl2O4, the absent of any super-exchange interaction between the A-sites and the B-sites due to presence of Ni ions as the only magnetic atoms in the B-sites results in a paramagnetic structure and a magnetization close to zero although the nickel atoms have a spin moment of 2μB . This paramagnetic feature makes this compound to be considered as a magnetic resonant imaging agent. Another very interesting feature is the back and forth switching of the dominance of the magnetic moments in the tetrahedral sites and the octahedral sites as aluminum concentration increases.

  17. Isotope effect and cation disorder in manganites

    NASA Astrophysics Data System (ADS)

    Babushkina, N. A.; Chistotina, E. A.; Balagurov, A. M.; Pomjakushin, V. Yu.; Gorbenko, O. Yu.; Kaul, A. R.; Kartavtseva, M. S.

    2006-05-01

    The measurements of temperature dependence of electrical resistivity ρ(T) and magnetic susceptibility χ(T) as well as neutron diffraction studies were performed for three groups of R1-xSrxMnO3 manganites. Each group was characterized by the same average ionic radius of rare earth R, but by different degree of cation disorder σ2=xiri2-2. For each composition, the isotope-substituted samples ( O16→O18) were also prepared. It was shown that the increase in σ2 at fixed leads to appreciable changes in electrical and magnetic properties, as well as to a more pronounced isotope effect. Large values of σ2 give rise to a significant scatter in the values of the electron hopping integral for neighboring Mn sites. This favors the electron localization and the tendency to antiferromagnetism in the phase-separated state, thus enhancing the effect of oxygen isotope substitution.

  18. Probing optical band gaps at nanoscale from tetrahedral cation vacancy defects and variation of cation ordering in NiCo2O4 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Dileep, K.; Loukya, B.; Silwal, P.; Gupta, A.; Datta, R.

    2014-10-01

    High resolution electron energy loss spectroscopy (HREELS) is utilized to probe the optical band gaps at the nanoscale in epitaxial NiCo2O4 (NCO) thin films with different structural order (cation/charge). The structure of NCO deviates from the ideal inverse spinel (non-magnetic and insulating) for films grown at higher temperatures (>500 °C) towards a mixed cation structure (magnetic with metallic conductivity) at lower deposition temperatures (<450 °C). This significantly modifies the electronic structure as well as the nature of the band gap of the material. Nanoscale regions with unoccupied tetrahedral A site cations are additionally observed in all the samples and direct measurement from such areas reveals considerably lower band gap values as compared to the ideal inverse spinel and mixed cation configurations. Experimental values of band gaps have been found to be in good agreement with the theoretical mBJLDA exchange potential based calculated band gaps for various cation ordering and consideration of A site cation vacancy defects. The origin of rich variation in cation ordering observed in this system is discussed.

  19. The Cation-π Interaction

    PubMed Central

    DOUGHERTY, DENNIS A.

    2014-01-01

    CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction – Li+ binds to benzene with 38 kcal/mol of binding energy; NH4+ with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) Cδ−–Hδ+ bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li+>Na+>K+>Rb+: as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane

  20. A Hand to Substitutes

    ERIC Educational Resources Information Center

    Javernick, Ellen

    2005-01-01

    In the days before computers, passing on information to substitutes was difficult. Now teachers can individualize their lesson plans to guarantee that substitute teachers and the students will both have a good day. This article provides some plan-ahead procedures that have worked for the author.

  1. Working with Substitute Teachers.

    ERIC Educational Resources Information Center

    Wilson, Karen

    1999-01-01

    Resolving the perennial problem of substitute teachers' high turnover and low availability is feasible, if principals welcome, orient, and assign them properly. Regular teachers should prepare a folder containing class lists, daily schedules, seating charts, expectations of students, and meaningful lesson plans. Substitutes should be treated as…

  2. Florida's Substitute Teachers.

    ERIC Educational Resources Information Center

    Odutola, Adeniji A.; Etemadi, Judy N.

    2002-01-01

    Describes the statutory duties of the Florida Education Standards Commission, highlighting a study of the working conditions of Florida's substitute teachers. Researchers collected data on school board policies regarding substitutes' educational levels required, initial training and staff development opportunities required, salary schedules, and…

  3. Cationic Nitrogen Doped Helical Nanographenes.

    PubMed

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sustainability and substitutability.

    PubMed

    Fenichel, Eli P; Zhao, Jinhua

    2015-02-01

    Developing a quantitative science of sustainability requires bridging mathematical concepts from fields contributing to sustainability science. The concept of substitutability is central to sustainability but is defined differently by different fields. Specifically, economics tends to define substitutability as a marginal concept while fields such as ecology tend to focus on limiting behaviors. We explain how to reconcile these different views. We develop a model where investments can be made in knowledge to increase the elasticity of substitution. We explore the set of sustainable and optimal trajectories for natural capital extraction and built and knowledge capital accumulation. Investments in substitutability through knowledge stock accumulation affect the value of natural capital. Results suggest that investing in the knowledge stock, which can enhance substitutability, is critical to desirable sustainable outcomes. This result is robust even when natural capital is not managed optimally. This leads us to conclude that investments in the knowledge stock are of first order importance for sustainability.

  5. DFT and TDDFT study on cation-π complexes of diboryne (NHC → B ≡ B←NHC).

    PubMed

    Bania, Kusum K; Guha, Ankur Kanti; Bhattacharyya, Pradip K

    2016-11-14

    In this study, density functional theory calculation on mono-cationic cation-π complexes of diborynes has been made to understand the interaction in cation-π complexes of diboryne. Results suggest that apart from the smaller cations Li(+) and Na(+), larger cation like K(+) ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis (11)B, (13)C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li(+)) with high electronegativity interacts more strongly compared to larger cation (K(+)). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.(11)B-NMR, (13)C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

  6. DFT and TDDFT study on cation-π complexes of diboryne (NHC → B ≡ B←NHC)

    NASA Astrophysics Data System (ADS)

    Bania, Kusum K.; Guha, Ankur Kanti; Bhattacharyya, Pradip K.

    2016-11-01

    In this study, density functional theory calculation on mono-cationic cation-π complexes of diborynes has been made to understand the interaction in cation-π complexes of diboryne. Results suggest that apart from the smaller cations Li+ and Na+, larger cation like K+ ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis 11B, 13C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li+) with high electronegativity interacts more strongly compared to larger cation (K+). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.11B-NMR, 13C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

  7. Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kargar, Z.; Asgarian, S. M.; Mozaffari, M.

    2016-05-01

    Single phase copper substituted nickel ferrite Ni1-xCuxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles were synthesized by the sol-gel method. TEM images of the samples confirm formation of nano-sized particles. The Rietveld refinement of the X-ray diffraction patterns showed that lattice constant increase with increase in copper content from 8.331 for x = 0.0 to 8.355 Å in x = 0.5. Cation distribution of samples has been determined by the occupancy factor, using Rietveld refinement. The positron lifetime spectra of the samples were convoluted into three lifetime components. The shortest lifetime is due to the positrons that do not get trapped by the vacancy defects. The second lifetime is ascribed to annihilation of positrons in tetrahedral (A) and octahedral (B) sites in spinel structure. It is seen that for x = 0.1 and 0.3 samples, positron trapped within vacancies in A sites, but for x = 0.0 and 0.5, the positrons trapped and annihilated within occupied B sites. The longest lifetime component attributed to annihilation of positrons in the free volume between nanoparticles. The obtained results from coincidence Doppler broadening spectroscopy (CDBS) confirmed the results of positron annihilation lifetime spectroscopy (PALS) and also showed that the vacancy clusters concentration for x = 0.3 is more than those in other samples. Average defect density in the samples, determined from mean lifetime of annihilated positrons reflects that the vacancy concentration for x = 0.3 is maximum. The magnetic measurements showed that the saturation magnetization for x = 0.3 is maximum that can be explained by Néel's theory. The coercivity in nanoparticles increased with increase in copper content. This increase is ascribed to the change in anisotropy constant because of increase of the average defect density due to the substitution of Cu2+ cations and magnetocrystalline anisotropy of Cu2+ cations. Curie temperature of the samples reduces with increase in copper content which

  8. Broad Scope Aminocyclization of Enynes with Cationic JohnPhos-Gold(I) Complex as the Catalyst.

    PubMed

    Miller, Ricarda; Carreras, Javier; Muratore, Michael E; Gaydou, Morgane; Camponovo, Francesco; Echavarren, Antonio M

    2016-03-04

    A practical aminocyclization of 1,6-enynes with a wide variety of substituted anilines, including N-alkyl anilines, has been achived by using cationic [JohnPhosAu(MeCN)]SbF6 as a general purpose catalyst. The resulting adducts can be easily converted into polycyclic compounds by palladium- and gold-catalyzed reactions.

  9. Broad Scope Aminocyclization of Enynes with Cationic JohnPhos–Gold(I) Complex as the Catalyst

    PubMed Central

    2016-01-01

    A practical aminocyclization of 1,6-enynes with a wide variety of substituted anilines, including N-alkyl anilines, has been achived by using cationic [JohnPhosAu(MeCN)]SbF6 as a general purpose catalyst. The resulting adducts can be easily converted into polycyclic compounds by palladium- and gold-catalyzed reactions. PMID:26839084

  10. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.

    SciTech Connect

    Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J.

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium

  11. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 2. Imidazolium cations.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Hatcher, Jasmine L; Wishart, James F

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual

  12. Physical and biological properties of cationic triesters of phosphatidylcholine

    PubMed Central

    MacDonald, RC; Ashley, GW; Shida, MM; Rakhmanova, VA; Tarahovsky, YS; Pantazatos, DP; Kennedy, MT; Pozharski, EV; Baker, KA; Jones, RD; Rosenzweig, HS; Choi, KL; Qiu, R; McIntosh, TJ

    1999-01-01

    The properties of a new class of phospholipids, alkyl phosphocholine triesters, are described. These compounds were prepared from phosphatidylcholines through substitution of the phosphate oxygen by reaction with alkyl trifluoromethylsulfonates. Their unusual behavior is ascribed to their net positive charge and absence of intermolecular hydrogen bonding. The O-ethyl, unsaturated derivatives hydrated to generate large, unilamellar liposomes. The phase transition temperature of the saturated derivatives is very similar to that of the precursor phosphatidylcholine and quite insensitive to ionic strength. The dissociation of single molecules from bilayers is unusually facile, as revealed by the surface activity of aqueous liposome dispersions. Vesicles of cationic phospholipids fused with vesicles of anionic lipids. Liquid crystalline cationic phospholipids such as 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine triflate formed normal lipid bilayers in aqueous phases that interacted with short, linear DNA and supercoiled plasmid DNA to form a sandwich-structured complex in which bilayers were separated by strands of DNA. DNA in a 1:1 (mol) complex with cationic lipid was shielded from the aqueous phase, but was released by neutralizing the cationic charge with anionic lipid. DNA-lipid complexes transfected DNA into cells very effectively. Transfection efficiency depended upon the form of the lipid dispersion used to generate DNA-lipid complexes; in the case of the O-ethyl derivative described here, large vesicle preparations in the liquid crystalline phase were most effective. PMID:10545361

  13. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  14. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  15. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  16. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  17. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  18. Structural roles of monovalent cations in the HDV ribozyme.

    PubMed

    Ke, Ailong; Ding, Fang; Batchelor, Joseph D; Doudna, Jennifer A

    2007-03-01

    The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.

  19. Sugar substitutes during pregnancy

    PubMed Central

    Pope, Eliza; Koren, Gideon; Bozzo, Pina

    2014-01-01

    Abstract Question I have a pregnant patient who regularly consumes sugar substitutes and she asked me if continuing their use would affect her pregnancy or child. What should I tell her, and are there certain options that are better for use during pregnancy? Answer Although more research is required to fully determine the effects of in utero exposure to sugar substitutes, the available data do not suggest adverse effects in pregnancy. However, it is recommended that sugar substitutes be consumed in moderate amounts, adhering to the acceptable daily intake standards set by regulatory agencies. PMID:25392440

  20. Sugar substitutes during pregnancy.

    PubMed

    Pope, Eliza; Koren, Gideon; Bozzo, Pina

    2014-11-01

    I have a pregnant patient who regularly consumes sugar substitutes and she asked me if continuing their use would affect her pregnancy or child. What should I tell her, and are there certain options that are better for use during pregnancy? Although more research is required to fully determine the effects of in utero exposure to sugar substitutes, the available data do not suggest adverse effects in pregnancy. However, it is recommended that sugar substitutes be consumed in moderate amounts, adhering to the acceptable daily intake standards set by regulatory agencies. Copyright© the College of Family Physicians of Canada.

  1. DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position.

    PubMed

    Mettath, S; Munson, B R; Pandey, R K

    1999-01-01

    A series of mono- and disubstituted cationic porphyrins (1-8) were synthesized and investigated for their ability to bind and cleave DNA in the presence of light. In these porphyrins, the cationic substituents were introduced at various peripheral positions, i.e., the non-meso positions of the porphyrin system. The modes of binding of these porphyrins to DNA were investigated by UV-vis spectroscopy, circular dichroism, and an unwinding assay. The intrinsic binding constants Kb of these porphyrins to calf thymus DNA was found to be in the range 10(4)-10(5) M-1. Two of the zinc(II) complexes of non-meso-substituted cationic porphyrins (5 and 8) were found to bind to DNA via intercalation, which is in contrast to the previously reported outside-binding mode for the Zn(II) complexes of meso-substituted cationic porphyrins. Except for monocationic porphyrin 1 and Ni(II) dicationic porphyrin 6, all the other porphyrins were found to be efficient photocleavers of DNA. The DNA photocleavage characteristics of this series of cationic porphyrins were found to depend on the structural characteristics of the poprhyrins such as (a) length of the side chain of the cationic substituents (2 vs 4), (b) the position of the side chain on the porphyrin ring (4 vs 7), and (c) the presence of the chelating metal in 3, 5, and 8 as compared to the nonmetallo porphyrins 2, 4, and 7, respectively.

  2. Protonation switching to the least-basic heteroatom of carbamate through cationic hydrogen bonding promotes the formation of isocyanate cations.

    PubMed

    Kurouchi, Hiroaki; Sumita, Akinari; Otani, Yuko; Ohwada, Tomohiko

    2014-07-07

    We found that phenethylcarbamates that bear ortho-salicylate as an ether group (carbamoyl salicylates) dramatically accelerate OC bond dissociation in strong acid to facilitate generation of isocyanate cation (N-protonated isocyanates), which undergo subsequent intramolecular aromatic electrophilic cyclization to give dihydroisoquinolones. To generate isocyanate cations from carbamates in acidic media as electrophiles for aromatic substitution, protonation at the ether oxygen, the least basic heteroatom, is essential to promote CO bond cleavage. However, the carbonyl oxygen of carbamates, the most basic site, is protonated exclusively in strong acids. We found that the protonation site can be shifted to an alternative basic atom by linking methyl salicylate to the ether oxygen of carbamate. The methyl ester oxygen ortho to the phenolic (ether) oxygen of salicylate is as basic as the carbamate carbonyl oxygen, and we found that monoprotonation at the methyl ester oxygen in strong acid resulted in the formation of an intramolecular cationic hydrogen bond (>CO(+) H⋅⋅⋅O<) with the phenolic ether oxygen. This facilitates OC bond dissociation of phenethylcarbamates, thereby promoting isocyanate cation formation. In contrast, superacid-mediated diprotonation at the methyl ester oxygen of the salicylate and the carbonyl oxygen of the carbamate afforded a rather stable dication, which did not readily undergo CO bond dissociation. This is an unprecedented and unknown case in which the monocation has greater reactivity than the dication.

  3. Synthesis of substituted pyrazines

    SciTech Connect

    Pagoria, Philip F.; Zhang, Mao Xi

    2016-10-04

    A method for synthesizing a pyrazine-containing material according to one embodiment includes contacting an iminodiacetonitrile derivative with a base and a reagent selected from a group consisting of hydroxylamine, a hydroxylamine salt, an aliphatic primary amine, a secondary amine, an aryl-substituted alkylamine a heteroaryl-substituted alkyl amine, an alcohol, an alkanolamine and an aryl alcoholamine. Additional methods and several reaction products are presented. ##STR00001##

  4. Substitution of anticonvulsant drugs

    PubMed Central

    Steinhoff, Bernhard J; Runge, Uwe; Witte, Otto W; Stefan, Hermann; Hufnagel, Andreas; Mayer, Thomas; Krämer, Günter

    2009-01-01

    Changing from branded drugs to generic alternatives, or between different generic formulations, is common practice aiming at reducing health care costs. It has been suggested that antiepileptic drugs (AEDs) should be exempt from substitution because of the potential negative consequences of adverse events and breakthrough seizures. Controlled data are lacking on the risk of substitution. However, retrospective data from large medical claims databases suggest that switching might be associated with increased use of AED and non-AED medications, and health care resources (including hospitalization). In addition, some anecdotal evidence from patients and health care providers’ surveys suggest a potentially negative impact of substitution. Well-controlled data are needed to assess the real risk associated with substitution, allowing health care professionals involved in the care of patients with epilepsy to make informed decisions. This paper reviews currently available literature, based on which the authors suggest that the decision to substitute should be made on an individual basis by the physician and an informed patient. Unendorsed or undisclosed substitution at the pharmacy level should be discouraged. PMID:19707254

  5. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in

  6. Static and dynamic optical properties of La1-xSrxFeO3-δ: The effects of A-site and oxygen stoichiometry

    SciTech Connect

    Sergey Y. Smolin; Sfeir, Matthew Y.; Scafetta, Mark D.; Choquette, Amber K.; Baxter, Jason B.; May, Steven J.

    2015-12-09

    Perovskite oxides are a promising material class for photovoltaic and photocatalytic applications due to their visible band gaps, nanosecond recombination lifetimes, and great chemical diversity. However, there is limited understanding of the link between composition and static and dynamic optical properties, despite the critical role these properties play in the design of light-harvesting devices. To clarify these relationships, we systemically studied the optoelectronic properties in La1-xSrxFeO3-δ epitaxial films, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. Furthermore, these results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics.

  7. Intermetallic charge transfer between A-site Cu and B-site Fe in A-site-ordered double perovskites

    NASA Astrophysics Data System (ADS)

    Long, Youwen; Shimakawa, Yuichi

    2010-06-01

    In this review article, we describe in detail the temperature-induced intermetallic charge transfer between A-site Cu and B-site Fe ions in the A-site-ordered double perovskites RCu3Fe4O12 (R=La, Bi). In these compounds, a very rare Cu3+ valence state at the square-planar-coordinated A sites was stabilized by high-pressure synthesis. By increasing the temperature, a Cu-Fe intermetallic charge transfer producing a high Fe3.75+ valence state occurred. This charge transfer gave rise to a first-order isostructural phase transition with unusual volume contraction, as well as to antiferromagnetism-to-paramagnetism and insulator-to-metal transitions. The substitution of Bi for La stabilized the low-temperature phase containing Cu3+ and increased the charge transfer transition temperature from 393 K for LaCu3Fe4O12 to 428 K for BiCu3Fe4O12.

  8. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment.

    PubMed

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-09-29

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca(2+) in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  9. Cationic Noncovalent Interactions: Energetics and Periodic Trends.

    PubMed

    Rodgers, M T; Armentrout, P B

    2016-05-11

    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  10. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  11. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  12. Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2-xO4, 0 ⩽ x ⩽ 1) synthesized using sol gel auto combustion method

    NASA Astrophysics Data System (ADS)

    Singhal, Sonal; Jauhar, Sheenu; Singh, Jagdish; Chandra, Kailash; Bansal, Sandeep

    2012-03-01

    The structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2-xO4, x = 0.2, 0.4, 0.6, 0.8 and 1.0), have been investigated and on the basis of the saturation magnetization values, the cation distribution in the ferrite samples has been proposed. It is suggested that both Co2+ ions as well as Cr3+ ions seek to the octahedral sites of the ferrite sub-lattice. However, a small amount of Co2+ ions are also incorporated in the tetrahedral sites of the ferrite sub-lattice. This causes a decrease in the saturation magnetization (Ms) values with increasing Cr3+ concentration. The increase in Cr3+ ion composition in the ferrite sample decreases the value of saturation magnetization from 77 emu/g to 13 emu/g, indicative of the fact that the lesser magnetic Cr3+ ions substitute Fe3+ ions in the octahedral sub-lattice of the ferrites. A significant decrease in the saturation magnetization is observed in CoCrFeO4, attributing to the weakening of the A-B interaction as iron enters into the A site. The magnetic moments calculated from the proposed cation distribution (using Neel's two sub-lattice model) are in conformity with those obtained from Ms values. The effect of annealing temperature on structural, magnetic, electrical and optical properties has also been investigated.

  13. Physicochemical properties of granular and non-granular cationic starches prepared under ultra high pressure.

    PubMed

    Chang, Yoon-Je; Choi, Hyun-Wook; Kim, Hyun-Seok; Lee, Hyungjae; Kim, Wooki; Kim, Dae-Ok; Kim, Byung-Yong; Baik, Moo-Yeol

    2014-01-01

    Granular and non-granular cationic starches were prepared through the reaction of tapioca and corn starches with 2,3-epoxypropyl trimethyl ammonium chloride (ETMAC) using conventional and ultra high pressure (UHP)-assisted reactions. The cationic starches were characterized with respect to morphology, degree of substitution (DS), FT-IR, (13)C NMR, X-ray diffraction pattern, solubility and swelling power, pasting viscosity, and flocculating activity. Non-granular (relative to granular) cationic starches possessed higher DS values. While DS values of non-granular cationic starches were lower for UHP-assisted (relative to conventional) reaction, granular cationic starches did not differ for both reactions. For flocculation activity, granular cationic starches with lower solubility and higher swelling power were higher than non-granular counterparts with reversed patterns in solubility and swelling power, regardless of conventional and UHP-assisted reactions. Overall results suggested that flocculation activity of cationic starches may be directly associated with their swelling powers (relative to DS values).

  14. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    NASA Astrophysics Data System (ADS)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  15. Aryl substitution of pentacenes

    PubMed Central

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  16. Cation reordering in natural titanomagnetites and implications for paleointensity studies

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Jackson, M. J.; Gee, J. S.

    2013-05-01

    Successful paleointensity experiments hinge on the underlying assumption of reciprocity; the remanence acquired over a particular temperature range should be fully removed over the same temperature range, and vice versa. This means that the blocking (TB) and unblocking (TUB) temperature spectra are identical and do not change during the course of the experiment. We will present the results of recent work demonstrating that some natural titanomagnetites undergo cation reordering on laboratory timescales and at temperatures at or below the Curie temperature (TC). The bulk composition of the titanomagnetites (Fe3-xTixO4) varies between approximately 0.2 < x < 0.4, with moderate degrees of Mg and Al substitution. Although there is no attendant structural or chemical alteration, the re-distribution of ferric and ferrous iron cations results in reversible changes in Curie temperature of up to 150°C. This necessarily changes the blocking temperature spectrum as a function of prior thermal history. These changes in TC, TUB and TB clearly pose problems for all paleointensity experiments, but the effects may be most apparent during Thellier-type experiments where the sample is step-wise heated to increasingly higher temperatures. The blocking temperature distribution will be expected to change over the course of the experiment even in the absence of chemical alteration, and one can expect the experiment to fail. We will explore the effects of cation redistribution on paleointensity experiments through numerical models and by comparison with paleointensity data from pumice samples taken from the 1980 pyroclastic flows at Mt. St. Helens (MSH). In the MSH samples, two phases are typically present: a predominantly multi-domain, homogeneous titanomagnetite (associated with the cation reordering) and an oxyexsolved, single-domain to pseudo-single-domain phase with ilmenite lamellae in a magnetite-rich host. Samples that result in technically successful paleointensity experiments

  17. Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells.

    PubMed

    Salado, Manuel; Calio, Laura; Berger, Rüdiger; Kazim, Samrana; Ahmad, Shahzada

    2016-10-05

    Lead halide based perovskite solar cells are presently the flagship among the third generation solution-processed photovoltaic technologies. The organic cation part in the perovskite plays an important role in terms of crystal structure tuning from tetragonal to trigonal or pseudocubic or vice versa depending on the organic cations used, while it also displays different microstructure. In this paper, we demonstrate the influence of the organic cation part with respect to optical properties, hysteresis behavior, and stability. This study offers a clear understanding of the perovskite properties and how they can be modulated by compositional engineering. With a rational choice, light harvesting abilities and hysteresis behavior can be controlled in these systems. The substitution of formamidinium cation by methylammonium cation allows achieving low temperature annealing and inducing stability in perovskites together with enhanced photovoltaic properties. By the use of in-situ scanning force microscopy experiments the conversion of precursors to perovskite at a particular temperature can be visualized.

  18. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  19. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis.

    PubMed

    Danby, Phillip M; Withers, Stephen G

    2017-08-09

    Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 β-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s(-1). Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.

  20. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    PubMed

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  1. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  2. Mechanisms for monovalent cation-dependent depletion of intracellular Mg2+:Na+-independent Mg2+ pathways in guinea-pig smooth muscle

    PubMed Central

    Nakayama, Shinsuke; Nomura, Hideki; Smith, Lorraine M; Clark, Joseph F; Uetani, Tadayuki; Matsubara, Tatsuaki

    2003-01-01

    It has been suggested that magnesium deficiency is correlated with many diseases. 31P NMR experiments were carried out in order to investigate the effects of Na+ substitution on Mg2+ depletion in smooth muscle under divalent cation-free conditions. In the taenia of guinea-pig caeci, the intracellular free Mg2+ concentration ([Mg2+]i) was estimated from the chemical shifts of (1) the β-ATP peak alone and (2) β- and γ-ATP peaks. Both estimations indicated that [Mg2+]i decreased only very slowly in Mg2+-free, Ca2+-free solutions in which Na+ was substituted with large cations such as NMDG (N-methyl-D-glucamine) and choline. Furthermore, the measurements of tension development supported the suggestion of preservation of intracellular Mg2+ with NMDG substitution. Substituting extracellular Na+ with the small cation, Li+, also shifted the β-ATP peak towards a lower frequency, but the frequency shift was significantly less than that seen upon Na+ substitution with K+. The estimated [Mg2+]i depletion was, however, comparable with that seen after Na+ substitution with K+ using the titration curves of metal-free and Mg2+-bound ATP obtained in Li+-based model solutions. It was concluded that Mg2+ rapidly decreases only when small cations were the major electrolyte of the extracellular medium. Na+ substitutions with NMDG, choline or Li+ had little effect on intracellular ATP concentration after 100 min treatment. PMID:12844514

  3. Nucleophilic Addition of Nitrogen to Aryl Cations: Mimicking Titan Chemistry

    NASA Astrophysics Data System (ADS)

    Li, Anyin; Jjunju, Fred P. M.; Cooks, R. Graham

    2013-11-01

    The reactivity of aryl cations toward molecular nitrogen is studied systematically in an ion trap mass spectrometer at 102 Pascal of nitrogen, the pressure of the Titan main haze layer. Nucleophilic addition of dinitrogen occurs and the nature of aryl group has a significant influence on the reactivity, through inductive effects and by changing the ground state spin multiplicity. The products of nitrogen activation, aryldiazonium ions, react with typical nitriles, aromatic amines, and alkynes (compounds that are relevant as possible Titan atmosphere constituents) to form covalently bonded heterocyclic products. Theoretical calculations at the level [DFT(B3LYP)/6-311++G(d,p)] indicate that the N2 addition reaction is exothermic for the singlet aryl cations but endothermic for their triplet spin isomers. The -OH and -NH2 substituted aryl ions are calculated to have triplet ground states, which is consistent with their decreased nitrogen addition reactivity. The energy needed for the generation of the aryl cations from their protonated precursors (ca. 340 kJ/mol starting with protonated aniline) is far less than that required to directly activate the nitrogen triple bond (the lowest energy excited state of N2 lies ca. 600 kJ/mol above the ground state). The formation of aza-aromatics via arene ionization and subsequent reactions provide a conceivable route to the genesis of nitrogen-containing organic molecules in the interstellar medium and Titan haze layers.

  4. Nucleophilic addition of nitrogen to aryl cations: mimicking Titan chemistry.

    PubMed

    Li, Anyin; Jjunju, Fred P M; Cooks, R Graham

    2013-11-01

    The reactivity of aryl cations toward molecular nitrogen is studied systematically in an ion trap mass spectrometer at 10(2) Pascal of nitrogen, the pressure of the Titan main haze layer. Nucleophilic addition of dinitrogen occurs and the nature of aryl group has a significant influence on the reactivity, through inductive effects and by changing the ground state spin multiplicity. The products of nitrogen activation, aryldiazonium ions, react with typical nitriles, aromatic amines, and alkynes (compounds that are relevant as possible Titan atmosphere constituents) to form covalently bonded heterocyclic products. Theoretical calculations at the level [DFT(B3LYP)/6-311++G(d,p)] indicate that the N2 addition reaction is exothermic for the singlet aryl cations but endothermic for their triplet spin isomers. The -OH and -NH2 substituted aryl ions are calculated to have triplet ground states, which is consistent with their decreased nitrogen addition reactivity. The energy needed for the generation of the aryl cations from their protonated precursors (ca. 340 kJ/mol starting with protonated aniline) is far less than that required to directly activate the nitrogen triple bond (the lowest energy excited state of N2 lies ca. 600 kJ/mol above the ground state). The formation of aza-aromatics via arene ionization and subsequent reactions provide a conceivable route to the genesis of nitrogen-containing organic molecules in the interstellar medium and Titan haze layers.

  5. Cationic porphyrin derivatives for application in photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Prack McCormick, Bárbara P.; Florencia Pansa, M.; Milla Sanabria, Laura N.; Carvalho, Carla M. B.; Faustino, M. Amparo F.; Neves, Maria Graça P. M. S.; Cavaleiro, José A. S.; Rumie Vittar, Natalia B.; Rivarola, Viviana A.

    2014-04-01

    Current studies in photodynamic therapy (PDT) against cancer are focused on the development of new photosensitizers (PSs), with higher phototoxic action. The aim of this study was to compare the therapeutic efficiency of tri-cationic meso-substituted porphyrin derivatives (Tri-Py+-Me-PF, Tri-Py+-Me-Ph, Tri-Py+-Me-CO2Me and Tri-Py+-Me-CO2H) with the well-known tetra-cationic T4PM. The phototoxic action of these derivatives was assessed in human colon adenocarcinoma cells by cell viability, intracellular localization and nuclear morphology analysis. In the experimental conditions used we determined that after light activation -PF, -Ph and -CO2Me cause a more significant decline of cell viability compared to -CO2H and T4PM. These results suggest that the nature of the peripheral substituent influences the extent of cell photodamage. Moreover, we have demonstrated that PS concentration, physicochemical properties and further light activation determine the PDT response. All porphyrins were clearly localized as a punctuated pattern in the cytoplasm of the cells, and the PDT scheme resulted in apoptotic cell death after 3 h post-PDT. The tri-cationic porphyrin derivatives Tri-Py+-Me-PF, Tri-Py+-Me-Ph and Tri-Py+-Me-CO2Me showed a promising ability, making them good photosensitizer candidates for oncological PDT.

  6. Performing Substitute Teaching

    ERIC Educational Resources Information Center

    Bletzer, Keith V.

    2010-01-01

    Formal education is both a right and an obligation bestowed on young people in most all nations of the world. Teachers (adults) and students (youth) form a co-present dyadic contract that must be maintained within the classroom. Substitute teachers fill a role in sustaining the integrity of this teacher-student link, whenever teachers are absent.…

  7. The Age of Substitutability

    ERIC Educational Resources Information Center

    Goeller, H. E.; Weinberg, Alvin M.

    1976-01-01

    Dwindling mineral resources might cause a shift from nonrenewable resources to renewable resources and inexhaustible elements such as iron and aluminum. Alternative energy sources such as breeder, fusion, solar, and geothermal power must be developed for production and recycling of materials. Substitution and, hence, living standards ultimately…

  8. No cheap substitutes.

    PubMed

    Griffiths, Peter

    2016-06-15

    The Nuffield Trust report on reshaping the healthcare workforce was published last month. Its conclusions were widely reported as a recommendation to 'train up' nurses as a solution to junior doctor shortages, with support workers, in turn, substituting for registered nurses.

  9. The Age of Substitutability

    ERIC Educational Resources Information Center

    Goeller, H. E.; Weinberg, Alvin M.

    1976-01-01

    Dwindling mineral resources might cause a shift from nonrenewable resources to renewable resources and inexhaustible elements such as iron and aluminum. Alternative energy sources such as breeder, fusion, solar, and geothermal power must be developed for production and recycling of materials. Substitution and, hence, living standards ultimately…

  10. Performing Substitute Teaching

    ERIC Educational Resources Information Center

    Bletzer, Keith V.

    2010-01-01

    Formal education is both a right and an obligation bestowed on young people in most all nations of the world. Teachers (adults) and students (youth) form a co-present dyadic contract that must be maintained within the classroom. Substitute teachers fill a role in sustaining the integrity of this teacher-student link, whenever teachers are absent.…

  11. Screening Substitute Teachers.

    ERIC Educational Resources Information Center

    Kakkuri, Mark

    2000-01-01

    The screening process a school district uses in hiring substitute teachers is critical to striking a balance between required qualifications and immediate need. Typically, screening involves at least one of the following: pre-screening, paper and pencil screening, interviews, and background checks, each of which is used to different degrees…

  12. Organizing Substitute Teachers.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    2000-01-01

    Many substitute teachers are underpaid, undertrained, and "invisible" employees lacking health benefits and respect from regular colleagues. Grass-roots organizing efforts have improved working conditions for subs in two Florida and California districts. Districts' improvement initiatives should be guided by concerns for student…

  13. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  14. Calorimetric study of cationic photopolymerization

    NASA Astrophysics Data System (ADS)

    Czajlik, I.; Hedvig, P.; Ille, A.; Dobó, J.

    1996-03-01

    The photopolymerization of penta-erythritol tetra-glycidyl ether (initiator Degacure KI-85) was studied by a du Pont 910 type DSC. From our experimental results the following conclusions can be drawn: (1) During the cationic polymerization reaction the lifetime of the initiating centers are long compared to the lifetime of free radicals in case of radical polymerization. (2) The rate of deactivation of the initiating centers increases with increasing temperature.

  15. Spectroscopic evidence of 'jumping and pecking' of cholinium and H-bond enhanced cation-cation interaction in ionic liquids.

    PubMed

    Knorr, Anne; Fumino, Koichi; Bonsa, Anne-Marie; Ludwig, Ralf

    2015-12-14

    The subtle energy-balance between Coulomb-interaction, hydrogen bonding and dispersion forces governs the unique properties of ionic liquids. To measure weak interactions is still a challenge. This is in particular true in the condensed phase wherein a melange of different strong and directional types of interactions is present and cannot be detected separately. For the ionic liquids (2-hydroxyethyl)-trimethylammonium (cholinium) bis(trifluoro-methylsulfonyl)amide and N,N,N-trimethyl-N-propylammonium bis(trifluoromethylsulfonyl)amide which differ only in the 2-hydroxyethyl and the propyl groups of the cations, we could directly observe distinct vibrational signatures of hydrogen bonding between the cation and the anion indicated by 'jumping and pecking' motions of cholinium. The assignment could be confirmed by isotopic substitution H/D at the hydroxyl group of cholinium. For the first time we could also find direct spectroscopic evidence for H-bonding between like-charged ions. The repulsive Coulomb interaction between the cations is overcome by cooperative hydrogen bonding between the 2-hydroxyethyl functional groups of cholinium. This H-bond network is reflected in the properties of protic ionic liquids (PILs) such as viscosities and conductivities.

  16. Exfoliation and thermal transformations of Nb-substituted layered titanates

    SciTech Connect

    Song Haiyan; Sjastad, Anja O.; Fjellvag, Helmer; Okamoto, Hiroshi; Vistad, Ornulv B.; Arstad, Bjornar; Norby, Poul

    2011-12-15

    Single-layer Nb-substituted titanate nanosheets of ca. 1 nm thickness were obtained by exfoliating tetrabutylammonium (TBA)-intercalated Nb-substituted titanates in water. AFM images and turbidity measurements reveal that the exfoliated nanosheets crack and corrugate when sonicated. Upon heating, the thermal transformation into anatase and further to rutile is retarded. This suppression of the phase transition upon higher valent substitution may promote technological applications of anatase thin films, hereunder development of films with TCO properties. Depending on the oxygen partial pressure during the transformation, the Nb-substitution into TiO{sub 2} provokes different defect situations and also electronic properties. At reducing conditions, Nb is incorporated as Nb{sup V} and an equivalent amount of Ti{sup IV} is transformed to Ti{sup III} as evidenced by XPS. Magnetic susceptibility data show accordingly paramagnetic behavior. For samples heated in air Ti{sup IV} and Nb{sup V} cations prevail, the latter is compensated by cation vacancies. {sup 93}Nb MAS NMR data prove that Nb is finely dispersed into the transformed (Ti,Nb)O{sub 2} oxide matrices without sign of Nb{sub 2}O{sub 5} (nano)precipitates. The Nb-O-Ti bonds and defects at cation sites are considered key factors for increasing the transformation temperatures for conversion of the nanosheets to anatase and finally into rutile. It is further tempting to link the delay in crystallization to morphology limitations originating from the nanosheets. The present work shows that layered Nb-titanates are appropriate precursors for formation of highly oriented Nb-substituted anatase thin films via delamination, reconstruction and subsequent heat treatment. - Graphical abstract: Layered Nb-titanates are appropriate precursors for formation of highly oriented Nb-substituted anatase thin films via delamination, reconstruction and subsequent heat treatment. Highlights: Black-Right-Pointing-Pointer Single layer Nb-substituted

  17. Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae.

    PubMed

    Martin, Julia E; Giedroc, David P

    2016-01-19

    Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens. Streptococcus pneumoniae expresses two homologous CDF efflux transporters, MntE and CzcD. Cells lacking mntE or czcD are sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology to Escherichia coli YiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in the ND-DD A-site motif of MntE and the most N-terminal His in the HD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity. Cation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates. The respiratory

  18. Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae

    PubMed Central

    Martin, Julia E.

    2016-01-01

    ABSTRACT Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens. Streptococcus pneumoniae expresses two homologous CDF efflux transporters, MntE and CzcD. Cells lacking mntE or czcD are sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology to Escherichia coli YiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in the ND-DD A-site motif of MntE and the most N-terminal His in the HD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity. IMPORTANCE Cation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates

  19. Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

    PubMed Central

    Andersson, M. P.; Dideriksen, K.; Sakuma, H.; Stipp, S. L. S.

    2016-01-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase. PMID:27352933

  20. Modelling how incorporation of divalent cations affects calcite wettability-implications for biomineralisation and oil recovery

    NASA Astrophysics Data System (ADS)

    Andersson, M. P.; Dideriksen, K.; Sakuma, H.; Stipp, S. L. S.

    2016-06-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase.

  1. A combined calorimetric and computational study of the energetics of rare earth substituted UO 2 systems

    SciTech Connect

    Zhang, Lei; Solomon, Jonathan M.; Asta, Mark; Navrotsky, Alexandra

    2015-09-01

    The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towards increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.

  2. Functional Mn–Mg{sub k} cation complexes in GaN featured by Raman spectroscopy

    SciTech Connect

    Devillers, T. Bonanni, A.; Leite, D. M. G.; Dias da Silva, J. H.

    2013-11-18

    The evolution of the optical branch in the Raman spectra of (Ga,Mn)N:Mg epitaxial layers as a function of the Mn and Mg concentrations, reveals the interplay between the two dopants. We demonstrate that the various Mn-Mg-induced vibrational modes can be understood in the picture of functional Mn–Mg{sub k} complexes formed when substitutional Mn cations are bound to k substitutional Mg through nitrogen atoms, the number of ligands k being driven by the ratio between the Mg and the Mn concentrations.

  3. Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles.

    PubMed

    Bakka, Thomas A; Strøm, Morten B; Andersen, Jeanette H; Gautun, Odd R

    2017-03-01

    A library of 28 small cationic 1,4-substituted 1,2,3-triazoles was prepared for studies of antimicrobial activity. The structures addressed the pharmacophore model of small antimicrobial peptides and an amphipathic motif found in marine antimicrobials. Eight compounds showed promising antimicrobial activity, of which the most potent compound 10b displayed minimum inhibitory concentrations of 4-8μg/mL against Streptococcus agalacticae, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. The simple syntheses and low degree of functionalization make these 1,4-substituted 1,2,3-triazoles interesting for further optimizations.

  4. Structure-substitution limit correlation study on Cr{sup 3+} substituted polycrystalline yttrium iron garnet

    SciTech Connect

    Modi, K. B.; Saija, K. G.; Sharma, P. U.; Lakhani, V. K.; Vasoya, N. H.; Pathak, T. K.; Zankat, K. B.

    2016-05-06

    Polycrystalline samples of Cr{sup 3+} - substituted yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) system with general chemical formula, Y{sub 3}Fe{sub 5-x}Cr{sub x}O{sub 12}, x = 0.0, 0.2, 0.4 and 0.6 were synthesized by double sintering ceramic technique and characterized by X-ray powder diffractometry. The Rietveld fitted X-ray diffraction patterns analysis revealed mono phase formation for x = 0.0 - 0.4 compositions while x = 0.6 composition possesses mixed phase character. The observed substitution limit has been discussed in the light of ionic size of substituent, electrostatic energy, electronic configuration and synthesis parameters. These observations strongly suggest that the electronic configuration of Cr{sup 3+}, which is favorable to the formation of d2sp3 (octahedral) type bonds, must be important. In the case of Cr{sup 3+}, the substitution does not appear to proceed well for x much greater than 0.5, this limitation probably is a consequence of the strong preference of a smaller ion Cr{sup 3+}, for a larger octahedral site which quickly leads to a condition not comparable with the requirement of the structure. The distribution of cations, mean ionic radii and theoretical lattice constant values have been determined.

  5. Kinetic Analysis of Cation Exchange in Birnessite using Time-resolved Synchrotron X-ray Diffraction

    SciTech Connect

    C Lopano; P Heaney; J Bandstra; J Post; S Brantley

    2011-12-31

    In this study, we applied time-resolved synchrotron X-ray diffraction (TRXRD) to develop kinetic models that test a proposed two-stage reaction pathway for cation exchange in birnessite. These represent the first rate equations calculated for cation exchange in layered manganates. Our previous work has shown that the substitution of K, Cs, and Ba for interlayer Na in synthetic triclinic birnessite induces measurable changes in unit-cell parameters. New kinetic modeling of this crystallographic data supports our previously postulated two-stage reaction pathway for cation exchange, and we can correlate the kinetic steps with changes in crystal structure. In addition, the initial rates of cation exchange, R ({angstrom}{sup 3} min{sup -1}), were determined from changes in unit-cell volume to follow these rate laws: R = 1.75[K{sup +}{sub (aq)}]{sup 0.56}, R = 41.1[Cs{sup +}{sub (aq)}]{sup 1.10}, R = 1.15[Ba{sup 2+}{sub (aq)}]{sup 0.50}. Thus, the exchange rates for Na in triclinic birnessite decreased in the order: Cs >> K > Ba. These results are likely a function of hydration energy differences of the cations and the preference of the solution phase for the more readily hydrated cation.

  6. Sensory Substitution for Wounded Servicemembers

    DTIC Science & Technology

    2009-10-28

    traumatic brain injury (TBI) and two civilians, all with partial visual impairment , evaluated the vision sensory substitution systems. The servicemember...Mobility Augmentation; Wounded Service Members; Human-Centered Computing; Vision Augmentation, Vision , Balance and Hearing; Sensory Substitution-enabled...mitigation of vision sensory and mobility losses. 2) Improved the usefulness of available sensory substitution technologies for injured military

  7. Emission spectra of the cations of 1,3- and 1,4-dibromotetrafluorobenzene and of 1,3,5-tribromotrifluorobenzene in the gaseous phase

    USGS Publications Warehouse

    Maier, John Paul; Marthaler, O.; Mohraz, Manijeh; Shiley, R.H.

    1980-01-01

    A search was made for radiative decay of electronically excited cations of 24 bromobenzenes and of their fluoro-substituted derivatives in the gaseous phase. The only emission spectra detected were for the cations of 1,3- and 1,4-dibromotetrafluorobenzene and of 1,3,5-tribromotrifluorobenzene. The band systems, which are found between 670 and 830 nm, are assigned to the B(??-1) ??? A(??-1), X(??-1) electronic transitions of these cations. The assignments are based on the Ne(I) photoelectron spectra which are also presented for some of the studied species. The interpretation for the absence of detectable emission is that the nature of the B cationic states is ??-1, except in the case of 1,3- and 1,4-dibromobenzene cations for which B states are still formed by ??-1 processes. Possible reasons for these observations are discussed. The symmetries of the lowest three electronic states of the studied cations are given. ?? 1980.

  8. Local A-Site Layering in Rare-Earth Orthochromite Perovskites by Solution Synthesis.

    PubMed

    Daniels, Luke M; Kashtiban, Reza J; Kepaptsoglou, Demie; Ramasse, Quentin M; Sloan, Jeremy; Walton, Richard I

    2016-12-19

    Cation size effects were examined in the mixed A-site perovskites La0.5 Sm0.5 CrO3 and La0.5 Tb0.5 CrO3 prepared through both hydrothermal and solid-state methods. Atomically resolved electron energy loss spectroscopy (EELS) in the transmission electron microscope shows that while the La and Sm cations are randomly distributed, increased cation-radius variance in La0.5 Tb0.5 CrO3 results in regions of localised La and Tb layers, an atomic arrangement exclusive to the hydrothermally prepared material. Solid-state preparation gives lower homogeneity resulting in separate nanoscale regions rich in La(3+) and Tb(3+) . The A-site layering in hydrothermal La0.5 Tb0.5 CrO3 is randomised upon annealing at high temperature, resulting in magnetic behaviour that is dependent on synthesis route. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Infrared spectra of substituted polycylic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W. Jr; Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of a methyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H and C triple bond N stretches near 2900 and 2200 cm-1, respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron-withdrawing group induces sufficient partial charge on the ring to give the neutral molecule spectra characteristics of the anthracene cation. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than those for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  10. Infrared Spectra of Substituted Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Hudgins, Douglas M.; Sandford, Scott A.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of amethyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H stretch and C-N stretch (near 2200/cm), respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron withdrawing group induces sufficient partial charge on the ring to give the neutral molecule characteristics of the anthracene cation spectrum. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  11. Influence of gallium substitutions on the structure, dielectric and piezoelectric properties of BiScO3-PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Kaleva, G. M.; Mosunov, A. V.; Segalla, A. H.

    2014-04-01

    Ceramics with compositions close to the morphotropic boundary in the (1 - x)Bi(Sc1-yGay)O3-xPbTiO3 system were prepared by the conventional solid-state reaction method. The influence of substituting Ga3+ cations for Sc3+ cations on the structural parameters and the dielectric and piezoelectric properties was studied. It was proved that variations in the relative content of the tetragonal and rhombohedral phases depended on the tolerance-factor t value determined by the B-cation substitutions. The highest values of the piezoelectric coefficient d33 were observed in the compositions with the largest proportion of the tetragonal phase.

  12. Reactivity of 1,4-dihydropyridines toward alkyl, alkylperoxyl radicals, and ABTS radical cation.

    PubMed

    López-Alarcón, C; Navarrete, P; Camargo, C; Squella, J A; Núñez-Vergara, L J

    2003-02-01

    A series of C4-substituted 1,4-dihydropyridines (DHP) with either secondary or tertiary nitrogen in the dihydropyridine ring were synthesized. All of these compounds together with some commercial DHP derivatives were tested for potential scavenger effects toward alkyl, alkylperoxyl radicals, and ABTS radical cation in aqueous media at pH 7.4. Kinetic rate constants were assessed either by UV/vis spectroscopy or GC/MS techniques. Tested compounds reacted faster toward alkylperoxyl radicals and ABTS radical cation than alkyl ones. N-Ethyl-substituted DHPs showed the lowest reactivity. Kinetic results were compared with either trolox or nisoldipine. Using deuterium kinetic isotope effect studies, we have proved that the hydrogen of the 1-position of the DHP ring is involved in the proposed mechanism. This fact is mostly noticeable in the case of alkyl radicals. In all cases, the respective pyridine derivative was detected as the main product of the reaction.

  13. The radical cationic repair pathway of cyclobutane pyrimidine dimer: the effect of sugar-phosphate backbone.

    PubMed

    Ebrahimi, Ali; Habibi-Khorassani, Mostafa; Shahraki, Asiyeh

    2013-01-01

    Radical cationic repair process of cis-syn thymine dimer has been investigated when (1) sugar-phosphate backbones were substituted by hydrogen atoms, (2) phosphate group was substituted by two hydrogen atoms each on a sugar ring and (3) sugar-phosphate backbone was taken into account. The effect of the interactions between N1 and N1' lone pairs and the C6-C6' antibonding orbital are the most important evidences for the cleavage of the C6-C6' bond in the first step of radical cationic repair mechanism in the absence of the sugar-phosphate backbone. The impact of the N1 and N1' lone pairs on the C6-C6' bond cleavage decreases and the energy barrier of the cleavage of that bond significantly increases in the presence of the deoxynucleoside sugars and the sugar-phosphate backbone. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  14. Cationization of kappa- and iota-carrageenan--Characterization and properties of amphoteric polysaccharides.

    PubMed

    Barahona, Tamara; Prado, Héctor J; Bonelli, Pablo R; Cukierman, Ana L; Fissore, Eliana L; Gerschenson, Lia N; Matulewicz, María C

    2015-08-01

    Commercial kappa- and iota carrageenans were cationized with 3-chloro-2-hydroxypropyltrimethylammonium chloride in aqueous sodium hydroxide solution. For kappa-carrageenan three derivatives with different degrees of substitution were obtained. Native and amphoteric kappa-carrageenans were characterized by NMR and infrared spectroscopy, scanning electron and atomic force microscopy; methanolysis products were studied by electrospray ionization mass spectrometry. Young moduli and the strain at break of films, differential scanning calorimetry, rheological and flocculation behavior were also evaluated; the native and the amphoteric derivatives showed different and interesting properties. Cationization of iota-carrageenan was more difficult, indicating as it was previously observed for agarose, that substitution starts preferentially on the 2-position of 3,6-anhydrogalactose residues; in iota-carrageenan this latter unit is sulfated.

  15. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    PubMed Central

    Puentes, Cira Mollings

    2017-01-01

    The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III) and ytterbium(III) further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins. PMID:28179947

  16. Determination of an ion exchange constant by the use of a kinetic probe: a new semiempirical kinetic approach involving the effects of 3-F- and 4-F-substituted benzoates on the rate of piperidinolysis of anionic phenyl salicylate in aqueous cationic micelles.

    PubMed

    Yusof, Nor Saadah M; Khan, M Niyaz

    2010-07-06

    Pseudo-first-order rate constants (k(obs)) for the nucleophilic substitution reaction of piperidine (Pip) with ionized phenyl salicylate (PS(-)), obtained at a constant [Pip](T) (= 0.1 M), [PS(-)](T) (= 2 x 10(-4) M), [CTABr](T) (cetyltrimethylammonium bromide), < or = 0.06 M NaOH, and a varying concentration of MX (= 3-FC(6)H(4)CO(2)Na, 3-FBzNa and 4-FC(6)H(4)CO(2)Na, 4-FBzNa), follow the kinetic relationship k(obs) = (k(0) + thetaK(X/S)[MX])/(1 + K(X/S)[MX]) which is derived by the use of the pseudophase micellar (PM) model coupled with an empirical equation. The empirical equation explains the effects of [MX] on CTABr micellar binding constant (K(S)) of PS(-) that occur through X(-)/PS(-) ion exchange. Empirical constants theta and K(X/S) give the parameters F(X/S) and K(X/S), respectively. The magnitude of F(X/S) gives the measure of the fraction of micellized PS(-) transferred to the aqueous phase by the limiting concentration of X(-) through X(-)/PS(-) ion exchange. The values of F(X/S) and K(X/S) have been used to determine the usual thermodynamic ion exchange constant (K(X)(Y)) for ion exchange process X(-)/Y(-) on the CTABr micellar surface. The values of K(X)(Br) (where Br = Y) have been calculated for X = 3-FBzNa and 4-FBzNa. The mean values of K(X)(Br) are 12.8 +/- 0.9 and 13.4 +/- 0.6 for X(-) = 3-FBz(-) and 4-FBz(-), respectively. Nearly 3-fold-larger values of K(X)(Br) for X = 3-FBz(-) and 4-FBz(-) than those for X = Bz(-), 2-ClBz(-), 2-CH(3)Bz(-), and the 2,6-dichlorobenzoate ion (2,6-Cl(2)Bz(-)) are attributed to the presence of wormlike micelles in the presence of > 50 mM 3-FBz(-) and 4-FBz(-) in the [CTABr](T) range of 5-15 mM. Rheological properties such as shear thinning behavior of plots of shear viscosity versus the shear rate at a constant [3-FBz(-)] or [4-FBz(-)] as well as shear viscosity (at a constant shear rate) maxima as a function of the concentrations of 3-FBz(-) and 4-FBz(-) support the conclusion, derived from the values of K

  17. Cation disorder in shocked orthopyroxene.

    NASA Technical Reports Server (NTRS)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  18. Anti-arthritis activity of cationic materials

    PubMed Central

    Dong, Lei; Xia, Suhua; Chen, Huan; Chen, Jiangning; Zhang, Junfeng

    2010-01-01

    Abstract Cationic materials exhibit remarkable anti-inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant-induced arthritis (AIA) models were used to test cationic materials for their anti-inflammatory activity. Cationic dextran (C-dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti-inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)-γ receptor-deficient mice and macrophage-depleted rats were used to examine the possible mechanisms of the anti-inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti-inflammatory characters. The anti-inflammatory activity of C-dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)-12 expression in peritoneal macrophages, and strong stimulation of IFN-γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL-12 and IFN-γ were enhanced by the cationic materials. Using IFN-γ receptor knockout mice and macrophage-depleted rats, we found that IFN-γ and macrophages played key roles in the anti-inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C-dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL-12 secretion, and that IL-12 promotes the expression of IFN-γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN-γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites. PMID:19538477

  19. On the Gold-Catalyzed Generation of Vinyl Cations from 1,5-Diynes.

    PubMed

    Wurm, Thomas; Bucher, Janina; Duckworth, Sarah B; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2017-03-13

    Conjugated 1,5-diynes bearing two aromatic units at the alkyne termini were converted in the presence of a gold catalyst. Under mild conditions, aryl-substituted dibenzopentalenes were generated. Calculations predict that aurated vinyl cations are key intermediates of the reaction. A bidirectional approach provided selective access to the angular annulated product in high yield, which was explained by calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.

    PubMed

    Saini, Seema; Yücel Falco, Çiğdem; Belgacem, Mohamed Naceur; Bras, Julien

    2016-01-01

    In the last decade, a new fiber pretreatment has been proposed to make easy cellulose fibrillation into microfibrils. In this context, different surface cationized MFC was prepared by optimizing the experimental parameters for cellulose fibers pretreatment before fibrillation. All MFCs were characterized by conductometric titration to establish degree of substitution, field emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and optical microscopy assessed the effect of pretreatment on the morphology of the ensuing MFCs. Antibacterial activities of neat and cationized MFC samples were investigated against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus) and Gram negative bacteria (Escherichia coli). The CATMFC sample at DS greater than 0.18 displayed promising results with antibacterial properties without any leaching of quaternary ammonium into the environment. This work proved the potential of cationic MFCs with specific DS for contact active antimicrobial surface applications in active food packaging, medical packaging or in health and cosmetic field.

  1. Synthesis, characterization and cation-induced dimerization of new aza-crown ether-appended metalloporphyrins.

    PubMed

    Mikhalitsyna, Elena A; Tyurin, Vladimir S; Zamylatskov, Ilia A; Khrustalev, Victor N; Beletskaya, Irina P

    2012-07-07

    New metalloporphyrins bearing one or two aryl-aza-crown ether moieties at meso-positions have been synthesized using a palladium catalyzed amination reaction and fully characterized by spectral techniques. X-Ray structural data have been presented for the zinc and copper complexes of mono-substituted aza-crown ether appended metalloporphyrins. UV-Vis and (1)H NMR spectroscopic studies showed that addition of K(+) cations to a solution of monomeric aza-crowned porphyrins in CHCl(3)/MeOH led to cation-induced dimerization of these porphyrins, whereas addition of Na(+) cations yielded a monomeric complex. Axial coordination of the exobidentate ligand (DABCO) to zinc complexes of aza-crowned porphyrins and following binding metal ions led to formation of sandwich complexes with high stability constants.

  2. A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery

    PubMed Central

    Murphy, John E.; Uno, Tetsuo; Hamer, Janice D.; Cohen, Fred E.; Dwarki, Varavani; Zuckermann, Ronald N.

    1998-01-01

    A family of N-substituted glycine oligomers (peptoids) of defined length and sequence are shown to condense plasmid DNA into small particles, protect it from nuclease degradation, and efficiently mediate the transfection of several cell lines. The oligomers were discovered by screening a combinatorial library of cationic peptoids that varied in length, density of charge, side-chain shape, and hydrophobicity. Transfection activity and peptoid–DNA complex formation are shown to be highly dependent on the peptoid structure. The most active peptoid is a 36-mer that contains 12 cationic aminoethyl side chains. This molecule can be synthesized efficiently from readily available building blocks. The peptoid condenses plasmid DNA into uniform particles 50–100 nm in diameter and mediates the transfection of a number of cell lines with efficiencies greater than or comparable to DMRIE-C, Lipofectin, and Lipofectamine. Unlike many cationic lipids, peptoids are capable of working in the presence of serum. PMID:9465047

  3. Methodologies in Creating Skin Substitutes

    PubMed Central

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-01-01

    The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with clinically better results. PMID:27154041

  4. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  5. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  6. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  7. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Solomon, A. K.

    1961-01-01

    Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply. PMID:13909521

  8. Plan a Site Visit with Your Legislator

    ERIC Educational Resources Information Center

    Ochs, Mike

    2005-01-01

    When members of Congress head home for a recess, participants in the grassroots network have an opportunity to use one of their effective education tools: the site visit. A site visit occurs when a legislator actually visits one's business, school, or organization to see one's work firsthand. A local site visit is effective because grassroots…

  9. Dialogue as a Site of Transformative Possibility

    ERIC Educational Resources Information Center

    Sinha, Shilpi

    2010-01-01

    This article examines how affect allows us to view the relational form of dialogue, as built upon the work of Derrida and Levinas, to be a site of transformative possibility for students as they encounter and address issues of social justice and difference in the classroom. The understanding of affect that attends this form of dialogue demands…

  10. The infrared signature of water associated with trivalent cations in olivine

    NASA Astrophysics Data System (ADS)

    Berry, Andrew J.; O'Neill, Hugh St. C.; Hermann, Jörg; Scott, Dean R.

    2007-09-01

    Forsterite crystals were synthesised under water saturated conditions at 1400 °C and 1.5 GPa doped with trace amounts of either B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ga, Y, Zr, In, Sm, Gd, Dy, Tm, or Lu. The common and intense hydroxyl stretching bands in the infrared spectra of spinel peridotite olivine, at 3572 and 3525 cm -1, were only reproduced in the presence of Ti. Those samples where the trace element substitutes as the trivalent cation on the Mg 2+ site were identified from a systematic variation in concentration with the trivalent ionic radius. The hydroxyl region of all samples is essentially identical except for between 3300 and 3400 cm -1. This region is characterised by one or more bands, with the energy of the most intense feature being correlated with the ionic radius of the trivalent cation. The integrated intensity of these hydroxyl bands also correlates with the concentration of the trivalent cation. These correlations provide unambiguous evidence that bands, or peaks, in this region correspond to water at defect sites associated with trivalent cations. "Trivalent peaks" are sometimes observed in samples of mantle olivine and most likely indicate water associated with Fe 3+. The water at this site is not incorporated under normal mantle conditions and should not be included in estimates of the water capacity of mantle olivine. These results emphasise the importance of identifying the infrared signature of different water substitution mechanisms.

  11. Polyimides comprising substituted benzidines

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1991-01-01

    A new class of polyimides and copolyimides made from substituted benzidines and aromatic dianhydrides and other aromatic diamines. The polyimides obtained with said diamines are distinguished by excellent thermal, excellent solubility, excellent electrical properties such as very low dielectric constants, excellent clarity and mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular or gas separation, as fibers in molecular composites, as high tensile strength, high compression strength fibers, as film castable coatings, or as fabric components.

  12. Structural investigation of the A-site vacancy in scheelites and the luminescence behavior of two continuous solid solutions A(1-1.5x)Eu(x)□(0.5x)WO₄ and A(0.64-0.5y)Eu(0.24)Li(y)□(0.12-0.5y)WO₄ (A = Ca, Sr; □ = vacancy).

    PubMed

    Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2015-04-07

    Scheelite compounds with Eu(3+) substitution are well-known red-phosphors. We prepared and performed a detailed structural characterization of A(1-1.5x)Eu(x)□(0.5x)WO4 and A(0.64-0.5y)Eu(0.24)Li(y)□(0.12-0.5y)WO4 (A = Ca, Sr; □ = vacancy) to confirm the A-site vacancy mechanism for charge balance when bivalent A cations were substituted by Eu(3+). All compounds crystallize in I4₁/a with a disordered arrangement of A(2+), Eu(3+), □ at the A-site. The title compounds are all good red phosphors with a high R/O ratio (∼10), indicating that Eu(3+) is located at a significantly distorted cavity. A(1-1.5x)Eu(x)□(0.5x)WO4 shows a saturation phenomenon at a high doping level, x = 0.20. With the incorporation of Li(+), the emission intensity was generally enhanced compared to the Li(+)-free samples, moreover, an increase of the Li(+) content reduces the content of vacancies, resulting in further increase of the luminescence intensity.

  13. Liquid Crystalline Polymers by Cationic Polymerization,

    DTIC Science & Technology

    1986-01-01

    cation mechanism of Scholl reaction the Lewis acid and by the benzylic carbocations . Hydride transfer to benzylic carbenium ions leads to methyl groups...reviewed. Examples from ring-opening, carbocationic , and radical-cation poly- merizations and oligomerizations are discussed. Accesion For DrIC TAB3...Examples from ring- opening, carbocationic , and radical-cation polymeri- zations and oligomerizations are discussed. INTRODUCTION This paper will

  14. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  15. Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb

    NASA Astrophysics Data System (ADS)

    Bechaieb, Rim; Ben Akacha, Azaiez; Gérard, Hélène

    2016-10-01

    In this paper, we examined the structural, electronic and energetic data associated to the Mg-substitution in chlorophyll by three major toxic pollutants: Cd2+, Hg2+ and Pb2+. We evidenced a highly versatile bonding of the cations with the pheophytin ligand, with a strong out-of-plane distortion for Hg and Pb. The binding energies ranged from slightly stronger than Mg2+ in the case of Hg2+ to much smaller for Pb2+. Nevertheless, our various approaches of free cations solvation allowed us to evidence that Mg-substitution should be possible for all title elements.

  16. In situ FT-IR microscopic investigation of metal substituted AlPO 4-5 single crystals

    NASA Astrophysics Data System (ADS)

    Müller, G.; Bódis, J.; Eder-Mirth, G.; Kornatowski, J.; Lercher, J. A.

    1997-06-01

    First direct spectroscopic evidence for the existence of Brønsted acid sites in AlPO 4-5 (AFI) single crystal molecular sieves substituted with divalent metal cations is reported. Ammonia and pyridine were used as probe molecules. Compared with unsubstituted AlPO 4-5 single crystals, the metal substituted samples exhibit well-developed bands of isolated hydroxyl groups and a broad absorption band indicating the existence of hydrogen bonded OH groups. Upon adsorption of pyridine on the metal substituted samples the formation of a new, relatively free vibrating hydroxyl group ( νoh = 3690-3694 cm -1 was observed, giving evidence for a strong Lewis type interaction leading to the cleavage of a metal-oxygen bond close or at the position of the substituting metal cation.

  17. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    NASA Astrophysics Data System (ADS)

    Mallick, Arindam; Basak, Durga

    2017-07-01

    Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO2 clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 1020 cm-3 due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  18. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  19. Cation-coupled bicarbonate transporters.

    PubMed

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-10-01

    Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.

  20. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, Stephen R.; Anderson, Kenneth B.; Song, Kang; Yuchs, Steven E.; Marshall, Christopher L.

    1998-01-01

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  1. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar

    2000-01-01

    Explicit substitution calculi are extensions of the lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda sigma- and lambda S(e)-calculi.

  2. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar; Busnell, Dennis M. (Technical Monitor)

    2000-01-01

    Explicit substitution calculi are extensions of the Lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda(sigma)- and lambda(s(e))-calculi.

  3. Carboxy, carboalkoxy and carbamile substituted isonitrile radionuclide complexes

    DOEpatents

    Jones, Alun G.; Davison, Alan; Kronauge, James; Abrams, Michael J.

    1988-04-05

    A coordination complex comprising a radionuclide selected from the class consisting of radioactive isotopes of Tc, Ru, Co, Pt and Re and an isonitrile ligand of the formula: (CNX)R, where X is a lower alkyl group having 1 to 4 carbon atoms, wherein R is selected from the group consisting of COOR.sup.1 and CONR.sup.2 R.sup.3 where R.sup.1 can be H, a pharmaceutically acceptable cation, or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, R.sup.2, and R.sup.3 can be H, or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and R.sup.2 and R.sup.3 can be the same or different is disclosed. Kits that can be used to form these complexes are also disclosed.

  4. Carboxy, carboalkoxy and carbamile substituted isonitrile radionuclide complexes

    DOEpatents

    Jones, Alun G.; Davison, Alan; Kronauge, James; Abrams, Michael J.

    1989-01-01

    A coordination complex comprising a radionuclide selected from the class consisting of radioactive isotopes of Tc, Ru, Co, Pt and Re and an isonitrile ligand of the formula: (CNX)R, where X is a lower alkyl group having 1 to 4 carbon atoms, wherein R is selected from the group consisting of COOR.sup.1 and CONR.sup.2 R.sup.3 where R.sup.1 can be H, a pharmaceutically acceptable cation, or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms. R.sup.2, and R.sup.3 can be H, or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and R.sup.2 and R.sup.3 can be the same of different is disclosed. Kits that can be used to form these complexes are also disclosed.

  5. Enantioselective synthesis of (--)-gilbertine via a cationic cascade cyclization.

    PubMed

    Jiricek, Jan; Blechert, Siegfried

    2004-03-24

    Described is the first enantioselective synthesis of (-)-gilbertine (2), a member of the uleine-type family, and the determination of the absolute configuration of this natural product is reported. The key step employs a cationic cascade reaction for a tetrahydropyrane and piperidine ring formation and the construction of the pentacyclic framework in one step. The synthetic strategy utilizes the Shibasaki reaction to build up the first stereogenic center. A formylation reaction of a 3-substituted cyclohexanone derivative was achieved, giving only the desired regioisomer. The Japp-Klingemann Fischer indole protocol was used successfully as a convergent synthetic approach for the construction of the desired tetrahydrocarbazole (20). Furthermore, an unexpected behavior of this 2,3-disubstituted cyclohexanone derivative during an epimerization process was investigated, resulting in different chemical behavior of the enantiomers and the racemate. The diastereomeric resolution was achieved via the cationic cascade reaction, demonstrating the versatility of this approach. Significantly, the synthetic 17-step sequence was easy to execute, giving (-)-gilbertine in 5.5% overall yield.

  6. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  7. Highly conducting divalent Mg{sup 2+} cation solid electrolytes with well-ordered three-dimensional network structure

    SciTech Connect

    Tamura, Shinji; Yamane, Megumi; Hoshino, Yasunori; Imanaka, Nobuhito

    2016-03-15

    A three-dimensionally well-ordered NASICON-type Mg{sup 2+} cation conductor, (Mg{sub x}Hf{sub 1−x}){sub 4/(4−2x)}Nb(PO{sub 4}){sub 3}, was firstly developed by partial substitution of lower valent Mg{sup 2+} cation onto the Hf{sup 4+} sites in a HfNb(PO{sub 4}){sub 3} solid to realize high Mg{sup 2+} cation conductivity even at moderate temperatures. Due to the formation of well-ordered NASICON-type structure, both the high Mg{sup 2+} cation conductivity below 450 °C and the low activation energy for Mg{sup 2+} cation migration was successfully realized for the (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} solid. Pure Mg{sup 2+} cation conduction in the NASICON-type (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} solid was directly and quantitatively demonstrated by means of two kinds of dc electrolysis. - Graphical abstract: Image of the Mg{sup 2+} cation conduction in NASICON-type (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} and its Mg{sup 2+} conductivity. - Highlights: • We develop a three-dimensionally well-ordered NASICON-type Mg{sup 2+} cation conductor. • A high magnesium cation conductivity is realized even at moderate temperatures. • Divalent magnesium cation conduction is demonstrated directly and quantitatively.

  8. Dimethyl sulfoxide at high concentrations inhibits non-selective cation channels in human erythrocytes.

    PubMed

    Nardid, Oleg A; Schetinskey, Miroslav I; Kucherenko, Yuliya V

    2013-03-01

    Dimethyl sulfoxide (DMSO), a by-product of the pulping industry, is widely used in biological research, cryobiology and medicine. On cellular level DMSO was shown to suppress NMDA-AMPA channels activation, blocks Na+ channel activation and attenuates Ca2+ influx (Lu and Mattson 2001). In the present study we explored the whole-cell patch-clamp to examine the acute effect of high concentrations of DMSO (0.1-2 mol/l) on cation channels activity in human erythrocytes. Acute application of DMSO (0.1-2 mol/l) dissolved in Cl--containing saline buffer solution significantly inhibited cation conductance in human erythrocytes. Inhibition was concentration-dependent and had an exponential decay profile. DMSO (2 mol/l) induced cation inhibition in Cl-- containing saline solutions of: 40.3 ± 3.9% for K+, 35.4 ± 3.1% for Ca2+ and 47.4 ± 1.9% for NMDG+. Substitution of Cl- with gluconate- increased the inhibitory effect of DMSO on the Na+ current. Inhibitory effect of DMSO was neither due to high permeability of erythrocytes to DMSO nor to an increased tonicity of the bath media since no effect was observed in 2 mol/l glycerol solution. In conclusion, we have shown that high concentrations of DMSO inhibit the non-selective cation channels in human erythrocytes and thus protect the cells against Na+ and Ca2+ overload. Possible mechanisms of DMSO effect on cation conductance are discussed.

  9. Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic-Inorganic Mixed Cations.

    PubMed

    Zhang, Xiaoli; Liu, He; Wang, Weigao; Zhang, Jinbao; Xu, Bing; Karen, Ke Lin; Zheng, Yuanjin; Liu, Sheng; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-03-07

    Organic-inorganic hybrid perovskite materials with mixed cations have demonstrated tremendous advances in photovoltaics recently, by showing a significant enhancement of power conversion efficiency and improved perovskite stability. Inspired by this development, this study presents the facile synthesis of mixed-cation perovskite nanocrystals based on FA(1-x) Csx PbBr3 (FA = CH(NH2 )2 ). By detailed characterization of their morphological, optical, and physicochemical properties, it is found that the emission property of the perovskite, FA(1-x) Csx PbBr3 , is significantly dependent on the substitution content of the Cs cations in the perovskite composition. These mixed-cation perovskites are employed as light emitters in light-emitting diodes (LEDs). With an optimized composition of FA0.8 Cs0.2 PbBr3 , the LEDs exhibit encouraging performance with a highest reported luminance of 55 005 cd m(-2) and a current efficiency of 10.09 cd A(-1) . This work provides important instructions on the future compositional optimization of mixed-cation perovskite for obtaining high-performance LEDs. The authors believe this work is a new milestone in the development of bright and efficient perovskite LEDs.

  10. Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films.

    PubMed

    Baiutti, Federico; Gregori, Giuliano; Wang, Yi; Suyolcu, Y Eren; Cristiani, Georg; van Aken, Peter A; Maier, Joachim; Logvenov, Gennady

    2016-10-12

    The exploration of interface effects in complex oxide heterostructures has led to the discovery of novel intriguing phenomena in recent years and has opened the path toward the precise tuning of material properties at the nanoscale. One recent example is space-charge superconductivity. Among the complex range of effects which may arise from phase interaction, a crucial role is played by cationic intermixing, which defines the final chemical composition of the interface. In this work, we performed a systematic study on the local cationic redistribution of two-dimensionally doped lanthanum cuprate films grown by oxide molecular beam epitaxy, in which single LaO layers in the epitaxial crystal structure were substituted by layers of differently sized and charged dopants (Ca, Sr, Ba, and Dy). In such a model system, in which the dopant undergoes an asymmetric redistribution across the interface, the evolution of the cationic concentration profile can be effectively tracked by means of atomically resolved imaging and spectroscopic methods. This allowed for the investigation of the impact of the dopant chemistry (ionic size and charge) and of the growth conditions (temperature) on the final superconducting and structural properties. A qualitative model for interface cationic intermixing, based on thermodynamic considerations, is proposed. This work highlights the key role which cationic redistribution may have in the definition of the final interface properties and represents a further step forward the realization of heterostructures with improved quality.

  11. Cation exchange capacity of pine bark substrates

    USDA-ARS?s Scientific Manuscript database

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  12. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  13. Structural and energetic study of cation-π-cation interactions in proteins.

    PubMed

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  14. ESR study of the guanine cation

    NASA Astrophysics Data System (ADS)

    Close, David M.; Sagstuen, Einar; Nelson, William H.

    1985-05-01

    It has been proposed that the primary direct radiation damage products in DNA are guanine cations and thymine anions. Experiments reported here characterize a guanine cation observed in a single crystal of guanine:HCl:H2O. ESR experiments were performed by x-irradiating and observing the crystals at 15 K. Spectral parameters for the cation include N3 and N10 hyperfine couplings, a C8-Hα hyperfine coupling, and two small exchangeable couplings presumably from the N10 protons. The computed spin densities of ρ(N3)=0.283, ρ(N10)=0.168, and ρ(C8)=0.182 agree nicely with those observed for the guanine cation in DNA. In the single crystal the native molecule is protonated at N7. It is proposed that once the native molecule is oxidized it rapidly deprotonates at N7 to form the cation observed.

  15. Effect of methoxy group position on biological properties of (18)F-labeled benzyl triphenylphosphonium cations.

    PubMed

    Chen, Shuting; Zhao, Zuoquan; Zhang, Ying; Fang, Wei; Lu, Jie; Zhang, Xianzhong

    2017-06-01

    (18)F-labeled phosphonium cations targeting mitochondrial membrane potential would be promising for positron emission tomography (PET) myocardial perfusion imaging (MPI). The purpose of this study was to examine the influence of additional methoxy group and its different positions on myocardium uptake and pharmacokinetics properties of (18)F-labeled benzyl triphenylphosphonium cations. In this study, three novel (18)F-labeled phosphonium cations, [(18)F]4-(fluoromethyl)benzyltris(4-methoxyphenyl) phosphonium cation (1b), [(18)F]4-(fluoromethyl)benzyltris(2-methoxyphenyl) phosphonium cation (2b) and [(18)F]4-(fluoromethyl)benzyltris(3-methoxyphenyl) phosphonium cation (3b), were efficiently prepared by a One-Pot method starting from the substitution of non-carried-added fluoride-18. Radiotracers were purified by HPLC. Physicochemical properties, in vitro cell uptake assay, in vivo mice biodistribution and rat micro-PET imaging were investigated. Results suggested that the position of methoxy group exhibited significant effect on the biological properties of (18)F-labeled benzyl triphenylphosphonium cations. The addition of methoxy group on orth- or meta-position of the radiotracers accelerated the radioactivity clearance from liver. The para-radiotracer had the highest uptake in the heart and other non-targeting organs. According to the biodistribution data, 2b (ortho-) displayed the fastest liver clearance and highest heart-to-background ratios. And its rat micro-PET images at 60min post-injection revealed a good visualization of heart and favorable heart-to-background contrast. Nevertheless, 2b exhibited a lower initial liver uptake and quicker liver clearance compared with (99m)Tc-sestamibi. The ortho- compound (2b) displayed the most favorable biological properties as a potential MPI agent to acquire high contrast images early after injection. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Formation of cationic [RP5Cl](+)-cages via insertion of [RPCl](+)-cations into a P-P bond of the P4 tetrahedron.

    PubMed

    Holthausen, Michael H; Feldmann, Kai-Oliver; Schulz, Stephen; Hepp, Alexander; Weigand, Jan J

    2012-03-19

    Fluorobenzene solutions of RPCl(2) and a Lewis acid such as ECl(3) (E = Al, Ga) in a 1:1 ratio are used as reactive sources of chlorophosphenium cations [RPCl](+), which insert into P-P bonds of dissolved P(4). This general protocol represents a powerful strategy for the synthesis of new cationic chloro-substituted organophosphorus [RP(5)Cl](+)-cages as illustrated by the isolation of several monocations (21a-g(+)) in good to excellent yields. For singular reaction two possible reaction mechanisms are proposed on the basis of quantum chemical calculations. The intriguing NMR spectra and structures of the obtained cationic [RP(5)Cl](+)-cages are discussed. Furthermore, the reactions of dichlorophosphanes and the Lewis acid GaCl(3) in various stoichiometries are investigated to obtain a deeper understanding of the species involved in these reactions. The formation of intermediates such as RPCl(2)·GaCl(3) (14) adducts, dichlorophosphanylchlorophosphonium cations [RPCl(2)-RPCl](+) (16(+)) and [RPCl(2)-RPCl-GaCl(3)](+) (17(+)) in reaction mixtures of RPCl(2) and GaCl(3) in fluorobenzene strongly depends on the basicity of the dichlorophosphane RPCl(2) (R = tBu, Cy, iPr, Et, Me, Ph, C(6)F(5)) and the reaction stoichiometry.

  17. Temperature-induced vesicle to micelle transition in cationic/cationic mixed surfactant systems.

    PubMed

    Yang, Yanjuan; Liu, Lifei; Huang, Xin; Tan, Xiuniang; Luo, Tian; Li, Wei

    2015-12-07

    Temperature-induced vesicle to micelle transition (VMT), which has rarely been reported in cationic/cationic mixed surfactant systems, was systemically studied in a didodecyldimethylammonium bromide (DDAB)/dodecyltrimethylammonium chloride (DTAC) aqueous solution. We investigated the effect of temperature on DDAB/DTAC aqueous solutions by means of turbidity, conductivity, cryo-TEM, a UV-vis spectrophotometer, and a steady-state fluorescence spectrometer. It was found that increasing temperature could induce the transformation from the vesicle to the micelle in this cationic/cationic mixed surfactant system. The degree of transformation can be easily controlled by the operation temperature. Additionally, by adjusting the proportion of the mixed cationic/cationic systems and employing cationic surfactants with different chain-lengths, we were able to conclude that the hydrophobic tail length of the surfactant affects the aggregation behavior of cationic/cationic mixed surfactant systems as a function of temperature. It is universal to induce the transformation from the vesicle to the micelle by temperature in cationic/cationic mixed surfactant systems. A possible mechanism for the temperature-induced VMT was proposed based on the experimental results.

  18. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    PubMed

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  19. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  20. Substitute Teachers: The Professional Contradiction.

    ERIC Educational Resources Information Center

    Shreeve, William C.; And Others

    The substitute teacher's public image was investigated by means of an informal survey of part-time and full-time teachers in Washington. Survey results revealed that working conditions appeared to be the largest factor in damaging the self-image of most substitute teachers. The majority of full-time teachers and administrators surveyed were…

  1. Substitution in recreation choice behavior

    Treesearch

    George L. Peterson; Daniel J. Stynes; Donald H. Rosenthal; John F. Dwyer

    1985-01-01

    This review discusses concepts and theories of substitution in recreation choice. It brings together the literature of recreation research, psychology, geography, economics, and transportation. Parallel and complementary developments need integration into an improved theory of substitution. Recreation decision behavior is characterized as a nested or sequential choice...

  2. Formative Assessment for Substitute Teachers.

    ERIC Educational Resources Information Center

    Shepherd, Ron

    2001-01-01

    Describes one school district's mandatory 2-hour workshop designed to certify substitute teachers. The workshop explains the district's expectations of substitute teachers, provides information and instructional techniques to facilitate learning and proper classroom control, and allows questions and concerns to be raised and clarified by…

  3. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  4. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Epstein, Wolfgang; Solomon, A. K.

    1963-01-01

    The resuspension of K-poor, Na-rich stationary phase E. coli in fresh medium at pH 7.0 results in a rapid uptake of K and extrusion of Na by the cells. In all experiments net K uptake exceeded net Na extrusion. An investigation of the uptake of glucose, PO4, and Mg and the secretion of H by these cells indicates that the excess K uptake is not balanced by the simultaneous uptake of anions but must be accompanied by the extrusion of cations from the cell. The kinetics of net K uptake are consistent with the existence of two parallel influx processes. The first is rapid, of brief duration, and accounts for approximately 60 per cent of the total net K uptake. This process is a function of the extracellular K concentration, is inhibited in acid media, and appears to be a 1 for 1 exchange of extracellular K for intracellular H. The second influx process has a half-time of approximately 12 minutes, and is not affected by acid media. This process is a function of the intracellular Na concentration, is dependent upon the presence of K in the medium, and may be ascribed to a 1 for 1 exchange of extracellular K for intracellular Na. PMID:14080819

  5. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  6. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  7. Effect of ionic substitutions on the structure and dielectric properties of hafnia: A first principles study

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric

    2008-04-01

    First principles calculations were used to study the effects of Si, Ti, Zr, and Ta (+N) substitutional impurities on the structure and dielectric properties of crystalline HfO2. The dielectric constant of monoclinic HfO2 can be enhanced by substituting more polarizable ions for Hf, but the band gap is decreased. Enhancing the permittivity without decreasing the band gap requires forming the tetragonal or cubic phase of HfO2. Among the ions studied, Si alone is found to stabilize a nonmonoclinic phase of HfO2 relative to the monoclinic phase, but only at an atomic concentration above about 20%. Various experiments have reported the formation of nonmonoclinic phases of HfO2 with increased permittivity when other ions are substituted for Hf. It is concluded that these structures are, in general, either metastable or are stabilized by extrinsic factors or by a layered arrangement of the substitutional cations.

  8. Antioxidant effectiveness generated by one or two phenolic hydroxyl groups in coumarin-substituted dihydropyrazoles.

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2013-10-01

    A cascade operation was designed to synthesize nine coumarin-substituted dihydropyrazoles with only one or two phenolic hydroxyl groups contained. Antioxidant abilities of the obtained compounds were evaluated by inhibiting 2,2'-azobis(2-amidinopropanehydrochloride) (AAPH)-, Cu2+/glutathione (GSH)-, and .OH-induced oxidation of DNA. It was found that less phenolic hydroxyl groups can enhance the abilities of coumarin-substituted dihydropyrazoles to protect DNA against the oxidation. Moreover, these coumarin-substituted dihydropyrazoles were employed to scavenge 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+.), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively. It was found that double phenolic hydroxyl groups were more beneficial for enhancing the abilities of coumarin-substituted dihydropyrazoles to quench the aforementioned radicals. Therefore, dihydropyrazole linked with coumarin exhibited powerful antioxidant effectiveness even in the case of less phenolic hydroxyl groups involved.

  9. Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site.

    PubMed

    Billoni, Orlando V; Pomiro, Fernando; Cannas, Sergio A; Martin, Christine; Maignan, Antoine; Carbonio, Raul E

    2016-11-30

    In this work, we have performed Monte Carlo simulations in a classical model for RFe1-x Cr x O3 with R  =  Y and Lu, comparing the numerical simulations with experiments and mean field calculations. In the analyzed compounds, the antisymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction induced a weak ferromagnetism due to a canting of the antiferromagnetically ordered spins. This model is able to reproduce the magnetization reversal (MR) observed experimentally in a field cooling process for intermediate x values and the dependence with x of the critical temperatures. We also analyzed the conditions for the existence of MR in terms of the strength of DM interactions between Fe(3+) and Cr(3+) ions with the x values variations.

  10. Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site

    NASA Astrophysics Data System (ADS)

    Billoni, Orlando V.; Pomiro, Fernando; Cannas, Sergio A.; Martin, Christine; Maignan, Antoine; Carbonio, Raul E.

    2016-11-01

    In this work, we have performed Monte Carlo simulations in a classical model for RFe1-x Cr x O3 with R  =  Y and Lu, comparing the numerical simulations with experiments and mean field calculations. In the analyzed compounds, the antisymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction induced a weak ferromagnetism due to a canting of the antiferromagnetically ordered spins. This model is able to reproduce the magnetization reversal (MR) observed experimentally in a field cooling process for intermediate x values and the dependence with x of the critical temperatures. We also analyzed the conditions for the existence of MR in terms of the strength of DM interactions between Fe3+ and Cr3+ ions with the x values variations.

  11. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    PubMed

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Organic anion and cation transport in vitro by dog choroid plexus: effects of neuroleptics and tricyclic antidepressants.

    PubMed

    Bárány, E H

    1979-02-01

    Dog lateral choroid plexus accumulates the cation 14C-emepronium and the divalent anion 125I-iodipamide in vitro. At 10 micron, high potency neuroleptics with a substituted piperazine side chain and also haloperidol depress only the uptake of the cation and even stimulate the uptake of the anion. In contrast, at 1--10 micron, the accumulation of both test substances is inhibited by neuroleptics and tricyclic antidepressants with an aliphatic side chain. Such unspecific effects on seemingly unrelated transport systems at concentrations reached clinically in the CSF might explain some side actions of low potency neuroleptics and antidepressants.

  13. How Do Substitute Teachers Substitute? An Empirical Study of Substitute-Teacher Labor Supply

    ERIC Educational Resources Information Center

    Gershenson, Seth

    2012-01-01

    This paper examines the daily labor supply of a potentially important, but often overlooked, source of instruction in U.S. public schools: substitute teachers. I estimate a sequential binary-choice model of substitute teachers' job-offer acceptance decisions using data on job offers made by a randomized automated calling system. Importantly, this…

  14. How Do Substitute Teachers Substitute? An Empirical Study of Substitute-Teacher Labor Supply

    ERIC Educational Resources Information Center

    Gershenson, Seth

    2012-01-01

    This paper examines the daily labor supply of a potentially important, but often overlooked, source of instruction in U.S. public schools: substitute teachers. I estimate a sequential binary-choice model of substitute teachers' job-offer acceptance decisions using data on job offers made by a randomized automated calling system. Importantly, this…

  15. Cation effects in doped La2CuO4 superconductors

    NASA Astrophysics Data System (ADS)

    Attfield, J. P.; Kharlanov, A. L.; McAllister, J. A.

    1998-07-01

    The critical temperatures of (Ln1-xMx)2CuO4 superconductors, in which Ln3+ (La and other lanthanides) and M2+ (Ca, Sr, Ba) cations are randomly distributed amongst the `type A' lattice sites, are known to depend on the doping level, x, and the mean A-site cation radius, (refs 2, 3). Here we show, by studying series of compositions with the same doping level and , that the critical temperature decreases linearly with increasing A-site disorder, as quantified by the variance in the distribution of A-site cation radii. From this, we are able to show that, in the absence of disorder, the critical temperature should increase quadratically with for superconductors containing a single CuO2 layer. Our results therefore show that the critical temperature is very sensitive to lattice strains, as has also been shown for the metal to insulator transition temperature in the magnetoresistive (Ln1-xMx)MnO3 perovskites.

  16. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  17. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  18. Slow permeation of organic cations in acetylcholine receptor channels

    PubMed Central

    1986-01-01

    Block, permeation, and agonist action of small organic amine compounds were studied in acetylcholine receptor (AChR) channels. Single channel conductances were calculated from fluctuation analysis at the frog neuromuscular junction and measured by patch clamp of cultured rat myotubes. The conductance was depressed by a few millimolar external dimethylammonium, arginine, dimethyldiethanolammonium, and Tris. Except with dimethylammonium, the block was intensified with hyperpolarization. A two-barrier Eyring model describes the slowed permeation and voltage dependence well for the three less permeant test cations. The cations were assumed to pause at a site halfway across the electric field of the channel while passing through it. For the voltage- independent action of highly permeant dimethylammonium, a more appropriate model might be a superficial binding site that did not prevent the flow of other ions, but depressed it. Solutions of several amine compounds were found to have agonist activity at millimolar concentrations, inducing brief openings of AChR channels on rat myotubes in the absence of ACh. PMID:2425045

  19. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase.

    PubMed

    Martin, C J

    1995-05-01

    The reaction of alkaline phosphatase (APase) with the complexes of myo-inositol hexakisphosphate (IHP) and various cations at pH 7.2 results in a decrease in activity. Singly, neither IHP nor metal ions induce such changes. IHP-Mn(II) complexes were the least effective. Using the ions of nickel or cadmium, activity was reduced by > 95%. A similar large decrease (> 99%) was seen previously in the reaction of APase with IHP-Cu(II) complexes. With Co(II) and IHP as reactants, the activity was reduced to 10-12% of that of the native enzyme. When the apoprotein, prepared by reaction of the enzyme with either EDTA or 1,10-phenanthroline, was titrated with Co(II), the activity was equal to that resulting from the reaction of the enzyme with IHP-Co(II) complexes. Titration with zinc restored 95% of the original activity. The products are metal-substituted derivatives in which the resident catalytic (A-site) zinc ions, at least, are replaced by the cation of the IHP complex that was used. The rates of such reactions were fastest with the complexes of Cu(II) and Cd(II) (0.12 min-1), less so with Co(II) as the ion (0.056 min-1), and slowest with complexes of nickel and manganese (0.01 min-1). In every case, the rate of reaction, but not its extent of change, was inhibited by zinc ions that reduced rate constants to 0.0014-0.0054 min-1. Magnesium ions had no effect. Likewise, Mn(II), with but one exception, did not affect the reactions. When present along with IHP-Ni(II) complexes, the rate was increased and the enzyme activity further decreased. If Zn(II) was also present, this enhancement was eliminated. All changes in enzyme activity were reversible by treatment with EDTA followed by reconstitution with zinc. Approximately 95% conversion to the original activity could be attained. Reactivation of modified APase preparation also could be attained, in some cases, by pre-incubation with Zn(II) at pH 8. For example, conversion of the Cd(II)-substituted APase to the zinc enzyme

  20. Effects of cationic substitutions on delayed rectifier current in type I vestibular hair cells.

    PubMed

    Rennie, K J; Correia, M J

    2000-01-15

    The resting potassium current (I(KI)) in gerbil dissociated type I vestibular hair cells has been characterized under various ionic conditions in whole cell voltage-clamp. When all K(+) in the patch electrode solution was replaced with Na(+), (Na(+))(in) or Cs(+), (Cs(+))(in), large inward currents were evoked in response to voltage steps between -90 and -50 mV. Activation of these currents could be described by a Hodgkin-Huxley-type kinetic scheme, the order of best fit increasing with depolarization. Above approximately -40 mV currents became outward and inactivated with a monoexponential time course. Membrane resistance was inversely correlated with external K(+) concentration. With (Na(+))(in), currents were eliminated when K(+) was removed from the external solution or following extracellular perfusion of 4-aminopyridine, indicating that currents flowed through I(KI) channels. Also, reduction of K(+) entry through manipulation of membrane potential reduced the magnitude of the outward current. Under symmetrical Cs(+), 0 K(+) conditions I(KI) is highly permeable to Cs(+). However, inward currents were reduced when small amounts of external K(+) were added. Higher concentrations of K(+) resulted in larger currents indicating an anomalous mole fraction effect in mixtures of external Cs(+) and K(+).

  1. Cation or Solvent-Induced Supermolecular Phthalocyanine Formation: Crown Ether Substituted Phthalocyanines.

    DTIC Science & Technology

    1987-06-01

    DISTRIBUTION LIST, 051A Dr. M. A. El-Sayed Dr. Carmen Ortiz Department of Chemistry Consejo Superior de University of California Investigaciones ... Cientificas Los Angeles, California 90024 Serrano 121 Madrid 6, SPAIN Dr. E. R. Bernstein Department of Chemistry Dr. Kent R. Wilson Colorado State

  2. Functionalization of metallabenzenes through nucleophilic aromatic substitution of hydrogen.

    PubMed

    Clark, George R; Ferguson, Lauren A; McIntosh, Amy E; Söhnel, Tilo; Wright, L James

    2010-09-29

    The cationic metallabenzenes [Ir(C(5)H(4){SMe-1})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (1) and [Os(C(5)H(4){SMe-1})(CO)(2)(PPh(3))(2)][CF(3)SO(3)] (2) undergo regioselective nucleophilic aromatic substitution of hydrogen at the metallabenzene ring position γ to the metal in a two-step process that first involves treatment with appropriate nucleophiles and then oxidation. Thus, reaction between compound 1 and NaBH(4), MeLi, or NaOEt gives the corresponding neutral iridacyclohexa-1,4-diene complexes Ir(C(5)H(3){SMe-1}{H-3}{Nu-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2) (Nu = H (3), Me (4), OEt (5)). Similarly, reaction between 2 and NaBH(4) or MeLi gives the corresponding osmacyclohexa-1,4-diene complexes Os(C(5)H(3){SMe-1}{H-3}{Nu-3})(CO)(2)(PPh(3))(2) (Nu = H (8), Me (9)). The metallacyclohexa-1,4-diene rings in all these compounds are rearomatized on treatment with the oxidizing agent O(2), CuCl(2), or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Accordingly, the cationic metallabenzene 1 or 2 is returned after reaction between 3 and DDQ/NEt(4)PF(6) or between 8 and DDQ/NaO(3)SCF(3), respectively. The substituted cationic iridabenzene [Ir(C(5)H(3){SMe-1}{Me-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (6) or [Ir(C(5)H(4){SMe-1}{OEt-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (7) is produced in a similar manner through reaction between 4 or 5, respectively, and DDQ/NEt(4)PF(6), and the substituted cationic osmabenzene [Os(C(5)H(3){SMe-1}{Me-3})(CO)(2)(PPh(3))(2)]Cl (10) is formed in good yield on treatment of 9 with CuCl(2). The starting cationic iridabenzene 1 is conveniently prepared by treatment of the neutral iridabenzene Ir(C(5)H(4){SMe-1})Cl(2)(PPh(3))(2) with NaS(2)CNEt(2) and NEt(4)PF(6), and the related starting cationic osmabenzene 2 is obtained by treatment of Os(C(5)H(4){S-1})(CO)(PPh(3))(2) with CF(3)SO(3)CH(3) and CO. The stepwise transformations of 1 into 6 or 7 as well as 2 into 10 provide the first examples in metallabenzene chemistry of regioselective

  3. In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives.

    PubMed

    Severina, Inna I; Severin, Fedor F; Korshunova, Galina A; Sumbatyan, Natalya V; Ilyasova, Tatyana M; Simonyan, Ruben A; Rogov, Anton G; Trendeleva, Tatyana A; Zvyagilskaya, Renata A; Dugina, Vera B; Domnina, Lidia V; Fetisova, Elena K; Lyamzaev, Konstantin G; Vyssokikh, Mikhail Yu; Chernyak, Boris V; Skulachev, Maxim V; Skulachev, Vladimir P; Sadovnichii, Viktor A

    2013-06-27

    Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series.

  4. Components of an Effective Substitute Teacher Program.

    ERIC Educational Resources Information Center

    Purvis, Johnny R.; Garvey, Ruth C.

    1993-01-01

    Discusses the need for a comprehensive substitute teacher program in schools along with the important components of such a program. Identifies the roles of the principal, regular teacher, substitute teacher, and the superintendent in an effective substitute teacher program. (HB)

  5. Cation-π Interactions: Mimicking mussel mechanics

    NASA Astrophysics Data System (ADS)

    Birkedal, Henrik

    2017-05-01

    Gluing materials together underwater is a mighty challenge faced -- and overcome -- by mussels. It requires good adhesion and cohesion. Molecular-level mechanical measurements have now shown that cation-π interactions provide surprisingly strong cohesive abilities.

  6. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  7. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion.

    PubMed

    Knorr, Anne; Ludwig, Ralf

    2015-12-02

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3-4 kJmol(-1). The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

  8. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  9. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  10. Mechanisms of fragmentation of cationic peptide ions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Adams, Jeanette

    1993-06-01

    Fragmentation mechanisms for formation of several commonly occurring product ions in high-energy collision-induced induced decomposition spectra of either (M + Cat2+ - H)+ ions of peptides cationized with alkaline earth metal ions, (M + Ca+)+ ions cationized with alkali metal ions, or (M + H)+ ions are evaluated by using deuterium-labelled peptides. The different sources of hydrogen transferred in the reactions are identified. Our study supports some previously proposed mechanisms but also provides evidence for others.

  11. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  12. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  13. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry.

    PubMed

    Bythell, Benjamin J; Abutokaikah, Maha T; Wagoner, Ashley R; Guan, Shanshan; Rabus, Jordan M

    2016-11-28

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the (0,2) A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies. Graphical Abstract ᅟ.

  14. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  15. Cation-dependent stability of subtilisin.

    PubMed

    Alexander, P A; Ruan, B; Bryan, P N

    2001-09-04

    Subtilisin BPN' contains two cation binding sites. One specifically binds calcium (site A), and the other can bind both divalent and monovalvent metals (site B). By binding at specific sites in the tertiary structure of subtilisin, cations contribute their binding energy to the stability of the native state and increase the activation energy of unfolding. Deconvoluting the influence of binding sites A and B on the inactivation rate of subtilisin is complicated, however. This paper examines the stabilizing effects of cation binding at site B by using a mutant of subtilisin BPN' which lacks calcium site A. Using this mutant, we show that calcium binding at site B has relatively little effect on stability in the presence of moderate concentrations of monovalent cations. At [NaCl] =100 mM, site B is >or=98% occupied with sodium, and therefore its net occupancy with a cation varies little as subtilisin is titrated with calcium. Exchanging sodium for calcium results in a 5-fold decrease in the rate of inactivation. In contrast, because of the high selectivity of site A for calcium, its occupancy changes dramatically as calcium concentration is varied, and consequently the inactivation rate of subtilisin decreases approximately 200-fold as site A becomes saturated with calcium, irrespective of the concentration of monovalent cations.

  16. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G(1) LLKR(5) IKT(8) LL-NH2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly(1) , Arg(5) , and Thr(8) and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF(5) IKK(8) LL-NH2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Effect of monovalent-divalent cation exchange on the swelling of polyacrylate hydrogels in physiological salt solutions.

    PubMed

    Horkay, F; Tasaki, I; Basser, P J

    2001-01-01

    The volume transition induced by monovalent-divalent cation exchange of fully neutralized polyacrylate hydrogels was investigated in aqueous NaCl solutions. The variation of the osmotic swelling pressure, shear modulus, and mixing pressure was measured when Na(+) ions were substituted by divalent or trivalent cations. Alkali metal salts move freely throughout the entirely network, and alkaline earth metal salts (CaCl(2), SrCl(2)) promote aggregation of polyacrylate chains, but these aggregates are relatively weak. Transition metal salts (CoCl(2), NiCl(2)) form stronger interchain associates. Rare earth cations (La(3+) and Ce(3+)) bind practically irreversibly to the polymer. Experimental data indicate that transition metal cations modify both the elastic and mixing components of the free energy, while alkaline earth metal cations affect primarily the mixing term. The behavior of freely swollen gels was compared with similar gels subjected to uniaxial compression. In uniaxially compressed gels, volume transition occurs at lower cation concentrations than in the corresponding undeformed gels. The shift of the transition point increases with the deformation ratio and is larger for Co(2+) than for Ca(2+).

  18. Electrochemical and Fluorescent Ferrocene-Imidazole-Based Dyads as Ion-Pair Receptors for Divalent Metal Cations and Oxoanions.

    PubMed

    Alfonso, María; Espinosa Ferao, Arturo; Tárraga, Alberto; Molina, Pedro

    2015-08-03

    In the tricyclic bis(heteroaryl)substituted ferrocenyl-imidazo-quinoxalines 7 and 8, the presence of redox and fluorescent units at the heteroaromatic core, which can act as a ditopic binding site, made these molecules potential candidates as electro-optical ion-pair recognition receptors. In this context, both molecules behave as ion-pair receptors for cations and anions, which individually had demonstrated their ability to form the corresponding cationic and anionic complexes. These receptors also show an important enhancement of anion binding by co-bound cations, whereas no affinity of the free receptors by the anion is observed. Similarly, receptors 7 and 8 display a dramatic increase in the cation binding by the action of their anionic complexes, while no affinity of the free receptors by the cations was detected. Interestingly, both receptors exhibit a remarkable enhancement of anions and cations binding, although no affinity of the free receptors by the ions is observed. In all cases, the ion-pair formation is detected by a perturbation of the redox potential of the ferrocene moiety and a remarkable enhancement in the emission band.

  19. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  20. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  1. Nucleophilic Substitution by Benzodithioate Anions.

    ERIC Educational Resources Information Center

    Bonnans-Plaisance, Chantal; Gressier, Jean-Claude

    1988-01-01

    Describes a two-session experiment designed to provide a good illustration of, and to improve student knowledge of, the Grignard reaction and nucleophilic substitution. Discusses the procedure, experimental considerations, and conclusion of this experiment. (CW)

  2. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    NASA Astrophysics Data System (ADS)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  3. Blood substitutes based on nanobiotechnology.

    PubMed

    Chang, Thomas Ming Swi

    2006-08-01

    Stimulated by concerns of potential infective agents in donated blood, commercial enterprises have attempted to develop blood substitutes since the 1900s. After several years of development, a few of the many leads are showing promise. In this article, nanobiotechnological approaches that are now in phase III clinical trials are reviewed, followed by a discussion of how important basic knowledge gained is being used to develop new generations of blood substitutes based on nanobiotechnology.

  4. Effect of cationic charge and hydrophobic index of cellulose-based polymers on the semipermanent dyestuff process for hair.

    PubMed

    Ballarin, B; Galli, S; Mogavero, F; Morigi, M

    2011-06-01

    In this work, the effects of a new class of polymers generally used in hair and skin cleansing products, the SoftCAT (SofCAT SL and SoftCAT SX), on the dye uptake on the hair fibre and the fading effects has been studied. These polymers, based on quaternary ammonium salts of hydroxyethylcellulose, are cationic products that differ in viscosity, hydrophobic substitution index (HS) and/or cationic substitution (CS, % N). UV-Vis spectroscopy has been used to analyse the extracted dyes from the hair cuticle and the cortex. The results indicate that the presence of polymers in the dye bath improve both the quality of the dyeing process and the anti-fading effect during the washing cycles. This phenomenon is postulated to be attributable to the polymers hydrophobically bonding with the dyes and so facilitating their increased penetration into the hair.

  5. Identifying the charge generation dynamics in Cs(+)-based triple cation mixed perovskite solar cells.

    PubMed

    Salado, Manuel; Kokal, Ramesh K; Calio, Laura; Kazim, Samrana; Deepa, Melepurath; Ahmad, Shahzada

    2017-08-30

    Triple cation based perovskite solar cells offer enhanced moisture tolerance and stability compared to mixed perovskites. Slight substitution of methyl ammonium or formamidinium cation by cesium (Cs(+)), was also reported to eliminate halide segregation due to its smaller size. To elucidate the device kinetics and understand the role of the Cs, we undertook different modes of scanning probe microscopy and electrochemical impedance spectroscopy (EIS) experiments. Kelvin probe force microscopy revealed that the incorporation of the Cs cation increases the contact potential difference (CPD), this CPD further increases when Spiro-OMeTAD is used as a hole transport material. The current at the nanoscale level shows improvement with Cs inclusion and further enhancement by the Spiro-OMeTAD deposition, studied under light illumination, which supports the high photocurrent density obtained from the cells. EIS demonstrates that in a triple cation environment, reduced carrier recombination at the TiO2/perovskite interface was also obtained which in turn allow us to achieve a higher Voc value.

  6. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  7. Nazarov reactions intercepted by (4 + 3) cycloadditions with oxygen-substituted dienes.

    PubMed

    LeFort, François M; Mishra, Vinayak; Dexter, Graham D; Morgan, Timothy D R; Burnell, D Jean

    2015-06-05

    The oxyallyl cation intermediate from the Lewis acid mediated Nazarov reaction of an allenyl vinyl ketone was intercepted by acyclic, 2-silyloxy-substituted butadienes by highly regioselective (4 + 3) cycloadditions. Stereoselectivity was often modest, but in some instances steric interactions were responsible for high selectivity. The results are consistent with concerted (4 + 3) cycloadditions. In many instances, the (4 + 3) products were susceptible to fragmentation or rearrangement in the presence of the Lewis acid.

  8. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors.

  9. A neutron diffraction and isotopic substitution measurement of the structure of liquid Cu2Se

    NASA Astrophysics Data System (ADS)

    Hamilton, M. A.; Barnes, A. C.; Beck, U.; Buchanan, P.; Howells, W. S.

    2000-11-01

    The partial structure factors and pair distribution functions of liquid Cu2Se have been determined by neutron diffraction with isotopic substitution. The structure shows characteristics typical of those of an ionic 2:1 melt consisting of Cu+ and Se2- ions with the cations moving through a more ordered Se2- sub-structure. A detailed comparison has been made with recent results obtained for liquid Ag2Se. The structure is similar although there is no evidence of the double peak structure in the cation-cation partial structure factor, SCuCu(Q), as has been found in SAgAg(Q) for liquid Ag2Se and, to a more limited extent, for liquid Ag2Te. There is also less order in the Se2- sub-structure based on a comparison of SSeSe(Q) and the Bhatia-Thornton concentration-concentration structure factor, SCC(Q), for the two liquids.

  10. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Methyl Substitution and Loss of H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP approach, in conjunction with the 4-31G basis set, is used to compute the harmonic frequencies of 1- and 2-methylnaphthalene, 1-, 2-, and 9-methylanthracene, and their cations. The IR spectra of the methyl substituted species are very similar to the parent spectra, except for the addition of the methyl C-H stretch at lower frequency than the aromatic C-H stretch. The loss of a single hydrogen from naphthalene, anthracene, and their cations is shown to have a very small effect on the IR spectra. Loss of a methyl hydrogen from 1- or 2-methylnaphthalene, or their cations, is shown to shift the side group C-H frequencies from below aromatic hydrogen stretching frequencies to above them. The loss of IT from 2-methylenenaphthalene shows only a small shift in the side group C-H stretching frequency.

  11. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Methyl Substitution and Loss of H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP approach, in conjunction with the 4-31G basis set, is used to compute the harmonic frequencies of 1- and 2-methylnaphthalene, 1-, 2-, and 9-methylanthracene, and their cations. The IR spectra of the methyl substituted species are very similar to the parent spectra, except for the addition of the methyl C-H stretch at lower frequency than the aromatic C-H stretch. The loss of a single hydrogen from naphthalene, anthracene, and their cations is shown to have a very small effect on the IR spectra. Loss of a methyl hydrogen from 1- or 2-methylnaphthalene, or their cations, is shown to shift the side group C-H frequencies from below aromatic hydrogen stretching frequencies to above them. The loss of IT from 2-methylenenaphthalene shows only a small shift in the side group C-H stretching frequency.

  12. Controlled orientation of substitution in betaines. Synthesis and conformational analysis of new heterocyclic compounds with phosphorus

    SciTech Connect

    Kochkanyan, R.O.; Dmitruk, T.A.; Korzhenevskaya, N.G.; Lukanyuk, S.S.

    1985-07-01

    The orientation of nucleophilic substitution in betaines and ylides, which also include nucleotides, has certain features that are due to the presence of charges. In this work it was found that azole betaines containing a heteroaromatic cation and a formyl group in the anionic part, when protonated by mineral acids, react with triphenylphosphine to replace the cation with triphenylphosphonium to form 4-triphenylphosphonium-5-formylazolinones. In acetic acid the cation is replaced by the oxygen of the formyl group, by a sigmatropic rearrangement, to form new bicyclic systems of the oxaphospholeno(4,5-d)azolinone type. Conditions were found for the formation of the trans-(E) and cis-(Z) isomers of 1-phenyl-5-triphenylphosphoniummethylidenimidazolidin-2,4-dione perchlorate, and their conformational analysis is shown.

  13. Stereoselective Formation of Substituted 1,3-Dioxolanes through a Three-Component Assembly during the Oxidation of Alkenes with Hypervalent Iodine(III).

    PubMed

    Shimogaki, Mio; Fujita, Morifumi; Sugimura, Takashi

    2015-09-17

    Stereoselective formation of substituted 1,3-dioxolanes was achieved through an assembly of three components: alkene, carboxylic acid and silyl enol ether. The reaction proceeded via stereospecific generation of a 1,3-dioxolan-2-yl cation intermediate during oxidation of alkene substrates with hypervalent iodine. The stereoselective trapping of the cation intermediate with silyl enol ether completed the formation of the dioxolane product.

  14. Structural effects on the reactivity 1,4-dihydropyridines with alkylperoxyl radicals and ABTS radical cation.

    PubMed

    Yáñez, C; López-Alarcón, C; Camargo, C; Valenzuela, V; Squella, J A; Núñez-Vergara, L J

    2004-05-01

    A series of eight commercial C-4 substituted 1,4-dihydropyridines and other synthesized related compounds were tested for direct potential scavenger effect towards alkylperoxyl radicals and ABTS radical cation in aqueous Britton-Robinson buffer pH7.4. A direct quenching radical species was established. The tested 1,4-dihydropyridines were 8.3-fold more reactive towards alkylperoxyl radicals than ABTS cation radical, expressed by their corresponding kinetic rate constants. Furthermore, NPD a photolyte of nifedipine and the C-4 unsubstituted 1,4-DHP were the most reactive derivatives towards alkylperoxyl radicals. The pyridine derivative was confirmed by GC/MS technique as the final product of reaction. In consequence, the reduction of alkylperoxyl and ABTS radicals by 1,4-dihydropyridines involved an electron transfer process. Also, the participation of the hydrogen of the 1-position appears as relevant on the reactivity. Results of reactivity were compared with Trolox.

  15. INORGANIC CATIONS IN THE CELL NUCLEUS

    PubMed Central

    Tres, Laura L.; Kierszenbaum, A. L.; Tandler, C. J.

    1972-01-01

    Earlier reports indicated the presence of significant amounts of inorganic salts in the nucleus. In the present study the possibility that this might be related to the transcription process was tested on seminiferous epithelium of the adult mouse, using potassium pyroantimonate as a fixative. The results indicated that a correlation exists between the inorganic cations comprising the pyroantimonate-precipitable fraction and the RNA synthetic activity. During meiotic prophase an accumulation of cation-antimonate precipitates occurs dispersed through the middle pachytene nuclei, the stage in which RNA synthesis reaches a maximum. At other stages (zygotene to diplotene), where RNA synthesis falls to a low level, that pattern is not seen; cation-antimonate deposits are restricted to a few masses in areas apparently free of chromatin. The condensed sex chromosomes, the heterochromatin of the "basal knobs," the axial elements, and the synaptonemal complexes are devoid of antimonate deposits during the meiotic prophase. The Sertoli cells, active in RNA synthesis in both nucleoplasm and nucleolus, show cation-antimonate deposits at these sites. In the nucleoplasm some "patches" of precipitates appear coincident with clusters of interchromatin granules; in the nucleolus the inorganic cations are mainly located in the fibrillar and/or amorphous areas, whereas relatively few are shown by the granular component. The condensed chromatin bodies associated with the nucleolus were always free of antimonate precipitates. It is suggested that the observed sites of inorganic cation accumulation within the nucleus may at least partially indicate the presence of RNA polymerases, the activity of which is dependent on divalent cations. PMID:4112542

  16. Aromatic Cations from Oxidative Carbon–Hydrogen Bond Cleavage in Bimolecular Carbon–Carbon Bond Forming Reactions

    PubMed Central

    Clausen, Dane J.

    2012-01-01

    Chromenes and isochromenes react quickly with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to form persistent aromatic oxocarbenium ions through oxidative carbon–hydrogen cleavage. This process is tolerant of electron-donating and electron-withdrawing groups on the benzene ring and additional substitution on the pyran ring. A variety of nucleophiles can be added to these cations to generate a diverse set of structures. PMID:22780559

  17. Magnetic and magnetostrictive properties of Cu substituted Co-ferrites

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, B.; Rao, G. S. N.; Caltun, O. F.; Dhana Lakshmi, B.; Parvatheeswara Rao, B.; Subba Rao, P. S. V.

    2016-01-01

    Copper substituted cobalt ferrite, Co1-xCuxFe2O4 (x=0.00-0.25), nanoparticles were synthesized by sol-gel autocombustion method. X-ray diffraction analysis on the samples was done to confirm the cubic spinel structures and Scherrer equation was used to estimate the mean crystallite size as 40 nm. Using the obtained nanoparticles, fabrication of the sintered pellets was done by standard ceramic technique. Magnetic and magnetostrictive measurements on the samples were made by strain gauge and vibrating sample magnetometer techniques, respectively. Maximum magnetostriction and strain derivative values were deduced from the field dependent magnetostriction curves while the magnetic parameters such as saturation magnetization (51.7-61.9 emu/g) and coercivity (1045-1629 Oe) on the samples were estimated from the obtained magnetic hysteresis loops. Curie temperature values (457-315 °C) were measured by a built in laboratory set-up. Copper substituted cobalt ferrites have shown improved strain derivative values as compared to the pure cobalt ferrite and thus making them suitable for stress sensing applications. The results have been explained on the basis of cationic distributions, strength of exchange interactions and net decreased anisotropic contributions due to the increased presence of Co2+ ions in B-sites as a result of Cu substitutions.

  18. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-05

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Open frameworks based on mono-lanthanide-substituted polyoxometaloaluminate building units: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Li, Xin-Xiong; Cheng, Lin; Yang, Guo-Yu

    2013-07-01

    Metal-substituted polyoxometalates are one of the most important research branch in polyoxometalate chemistry and have attached an increasing attention due to not only their intriguing structural diversity but also their special properties applicable to material science. In this paper, A series of novel lanthanide-substituted polyoxometaloaluminates (LSPs), K2(H2O)4Ln(H2O)7[Ln(H2O)3HAlW11O39]·nH2O (Ln=Pr 1, Nd 2, Sm 3, Eu 4, Gd 5, Tb 6; for 1, n=8; for 2,4,5,6, n=7; for 3, n=9), have been hydrothermally made and characterized by infrared (IR) spectra, thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction, respectively. The experimental results indicate these compounds exhibit 3-D frameworks with Gra-type topology constructed by lanthanide cations, mono- lanthanide-substituted [Gd(H2O)3HAlW11O39]5- cluster units and K+ cations. The photoluminescence measurements show that Compounds 2, 4, 6 exhibit the characteristic emission for Nd3+, Eu3+ and Tb3+ cations, respectively. In addition, this series of LSPs show weak second harmonic generation effects and ferroelectric properties. The success in making 1-6 not only provides innovative examples in search of new POM species, but also may open up possibilities for the design of LSP-based materials with related functions.

  20. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    SciTech Connect

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E. )

    1991-04-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation.

  1. Using Ylide Functionalization to Stabilize Boron Cations

    PubMed Central

    Scherpf, Thorsten; Feichtner, Kai‐Stephan

    2017-01-01

    Abstract The metalated ylide YNa [Y=(Ph3PCSO2Tol)−] was employed as X,L‐donor ligand for the preparation of a series of boron cations. Treatment of the bis‐ylide functionalized borane Y2BH with different trityl salts or B(C6F5)3 for hydride abstraction readily results in the formation of the bis‐ylide functionalized boron cation [Y−B−Y]+ (2). The high donor capacity of the ylide ligands allowed the isolation of the cationic species and its characterization in solution as well as in solid state. DFT calculations demonstrate that the cation is efficiently stabilized through electrostatic effects as well as π‐donation from the ylide ligands, which results in its high stability. Despite the high stability of 2 [Y−B−Y]+ serves as viable source for the preparation of further borenium cations of type Y2B+←LB by addition of Lewis bases such as amines and amides. Primary and secondary amines react to tris(amino)boranes via N−H activation across the B−C bond. PMID:28185370

  2. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Reports substitution. 1260.55 Section...

  3. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Reports substitution. 1260.55 Section...

  4. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Reports substitution. 1260.55 Section...

  5. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Reports substitution. 1260.55 Section...

  6. The Successful Substitute Teacher. Fastback 475.

    ERIC Educational Resources Information Center

    McHugh, Sheila J.

    This booklet discusses how to develop successful substitute teachers, explaining that most substitutes do not receive the respect necessary to be effective. School districts must take such steps as adopting fair substitute hiring practices, allowing for the regular placement of substitutes in the same school over the year, and including…

  7. The effect of dietary cation-anion difference concentration and cation source on milk production and feed efficiency in lactating dairy cows.

    PubMed

    Iwaniuk, M E; Weidman, A E; Erdman, R A

    2015-03-01

    Feed costs currently account for 55% or more of the total cost of milk production in US dairy herds, and dairy producers are looking for strategies to improve feed efficiency [FE; 3.5% fat-corrected milk (FCM) per dry matter (DM) intake]. Increasing dietary cation-anion difference [DCAD; Na+K-Cl (mEq/kg of DM)] has been shown to increase milk production, FCM, and FE. However, the optimal DCAD concentration for maximal FE has yet to be determined. The objectives of this research were to test the effects of DCAD concentration and cation source on dairy FE. Sixty Holstein dairy cows (20 cows per experiment) were used in three 4×4 Latin square design experiments with 3-wk experimental periods. In experiments 1 and 2, we tested the effect of DCAD concentration: cows were fed a basal diet containing ~250 mEq/kg of DM DCAD that was supplemented with potassium carbonate at 0, 50, 100, and 150 mEq/kg of DM or 0, 125, 250, and 375 mEq/kg of DM in experiments 1 and 2, respectively. In experiment 3, we tested the effect of cation source: sodium sesquicarbonate replaced 0, 33, 67, and 100% of the supplemental potassium carbonate (150 mEq/kg of DM DCAD). The DCAD concentration had no effect on milk production, milk protein concentration, or milk protein yield in experiments 1 and 2. Dry matter intake was not affected by DCAD concentration in experiment 1 or by cation source in experiment 3. However, DMI increased linearly with increasing DCAD in experiment 2. We detected a linear increase in milk fat concentration and yield with increasing DCAD in experiments 1 and 2 and by substituting sodium sesquicarbonate for potassium carbonate in experiment 3. Increased milk fat concentration with increasing DCAD led to increases in 3.5% FCM in experiments 1 and 2. Maximal dairy FE was achieved at a DCAD concentration of 426 mEq/kg of DM in experiments 1 and 2 and by substituting Na for K in experiment 3. The results of these experiments suggest that both DCAD concentration and the cation

  8. Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities.

    PubMed

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-09-26

    Reverse Electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain - next to monovalent ions - also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities due to both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg2+ and Ca2+) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The newly developed multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  9. Synthesis and characterization of a novel potato starch derivative with cationic acetylcholine groups.

    PubMed

    Zhang, Bing; Ni, Boli; Lü, Shaoyu; Cui, Dapeng; Liu, Mingzhu; Gong, Honghong; Han, Fei

    2012-04-01

    A novel substance, cationic acetylcholine potato starch (CAPS), was developed for the first time. The synthesis process had three steps: first, carboxymethyl potato starch (CMPS) was synthesized under sodium hydroxide alkaline condition and in isopropyl alcohol organic media; second, bromocholine chloride (BCC) was synthesized with sulphuric acid as a catalytic agent; finally, CAPS was synthesized by the reaction of CMPS with BCC in N,N'-dimethylformamide (DMF). The degree of substitution (DS) of CAPS was determined by ammonia gas-sensing electrode and elemental analysis. CAPS was characterized by Fourier transformed infrared (FTIR) and near infrared (FTNIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC).

  10. [Progress of bone graft substitute].

    PubMed

    Zhang, Yongguang; Wang, Zhiqiang

    2008-10-01

    To sum up the recent progress of common bone graft substitute and to forecast the possible directions for further research. Recent original articles about investigation and application for bone graft substitute were extensively reviewed. Several common bone graft substitutes were selected and expounded in different categories. Bone graft was an essential treatment in order to provide structural support, fill bone cavity and promote bone defect healing. The gold standard for bone graft was autograft which is subject to many restrictions. In recent years, the research and development of bone graft substitute have received public attention. A very great progress has been made in the research and application of allograft bones, synthetic bones and engineered bones, and some research results have been put into use for real products. There still exist many problems in present bone graft substitutes. Combining various biomaterials and using the specific processing technology to develop a biomaterial which has the similar mechanical and chemical properties and physical structures to autograft so as to promote bone defect healing is the direction for future research.

  11. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  12. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  13. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  14. Divalent cation signaling in immune cells

    PubMed Central

    Chaigne-Delalande, Benjamin

    2016-01-01

    Divalent cations of two alkaline earth metals Ca2+ and Mg2+ and the transition metal Zn2+ play vital roles in the immune system, and several immune disorders are associated with disturbances of their function. Until recently, only Ca2+ was considered to serve as a second messenger. However, signaling roles for Mg2+ and Zn2+ have been recently described, leading to a reevaluation of their role as potential second messengers. Here we review the roles of these cations as second messengers in light of recent advances in Ca2+, Mg2+ and Zn2+ signaling in the immune system. Developing a better understanding of these signaling cations may lead to new therapeutic strategies for immune disorders. PMID:24932518

  15. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  16. Magnesium substitution in brushite cements.

    PubMed

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals.

  17. Bone Graft Substitution and Augmentation.

    PubMed

    Nauth, Aaron; Lane, Joseph; Watson, J Tracy; Giannoudis, Peter

    2015-12-01

    Selection of appropriate bone graft or bone graft substitute requires careful recognition of the bone healing needs of the patient's specific clinical problem and a thorough understanding of the different properties possessed by the available bone grafts and substitutes. Although autogenous iliac crest bone graft remains the gold standard of treatment for delayed unions, nonunions, and bone defects, there are a number of promising alternatives available, and emerging evidence suggests that they can be very effective when used in the proper setting. Among these, reamer-irrigator-aspirator bone graft, bone marrow concentrate, bone morphogenetic proteins, and calcium phosphate cements have received a great deal of attention in the literature. This review describes these grafts in detail along with the evidence for their use. In addition, a framework is provided for selecting the appropriate graft or substitute based on their provided properties.

  18. Substitution systems and nonextensive statistics

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2015-12-01

    Substitution systems evolve in time by generating sequences of symbols from a finite alphabet: At a certain iteration step, the existing symbols are systematically replaced by blocks of Nk symbols also within the alphabet (with Nk, a natural number, being the length of the kth block of the substitution). The dynamics of these systems leads naturally to fractals and self-similarity. By using B-calculus (García-Morales, 2012) universal maps for deterministic substitution systems both of constant and non-constant length, are formulated in 1D. It is then shown how these systems can be put in direct correspondence with Tsallis entropy. A 'Second Law of Thermodynamics' is also proved for these systems in the asymptotic limit of large words.

  19. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  20. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  1. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  2. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  3. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine amino...

  4. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine amino...

  5. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine amino...

  6. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine amino...

  7. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine amino...

  8. 40 CFR 721.10040 - Substituted acridine naphtha substituted benzamide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acridine naphtha... Significant New Uses for Specific Chemical Substances § 721.10040 Substituted acridine naphtha substituted... substance identified generically as a substituted acridine naphtha substituted benzamide (PMN P-02-522) is...

  9. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows.

    PubMed

    Catterton, T L; Erdman, R A

    2016-08-01

    Many studies have focused on the influence of dietary cation-anion difference (DCAD) on animal performance but few have examined the effect of DCAD on the rumen ionic environment. The objective of this study was to examine the effects of DCAD, cation source (Na vs. K), and anion source (Cl vs. bicarbonate or carbonate) on rumen environment and fermentation. The study used 5 rumen-fistulated dairy cows and 5 dietary treatments that were applied using a 5×5 Latin square design with 2-wk experimental periods. Treatments consisted of (1) the basal total mixed ration (TMR); (2) the basal TMR plus 340mEq/kg of Na (dry matter basis) using NaCl; (3) the basal TMR plus 340mEq/kg of K using KCl; (4) the basal TMR plus 340mEq/kg of Na using NaHCO3; and (5) the basal TMR plus 340mEq/kg of K using K2CO3. On the last day of each experimental period, rumen samples were collected and pooled from 5 different locations at 0, 1.5, 3, 4.5, 6, 9, and 12h postfeeding for measurement of rumen pH and concentrations of strong ions and volatile fatty acids (VFA). Dietary supplementation of individual strong ions increased the corresponding rumen ion concentration. Rumen Na was decreased by 24mEq/L when K was substituted for Na in the diet, but added dietary Na had no effect on rumen K. Rumen Cl was increased by 10mEq/L in diets supplemented with Cl. Cation source had no effect on rumen pH or total VFA concentration. Increased DCAD increased rumen pH by 0.10 pH units and increased rumen acetate by 4mEq/L but did not increase total VFA. This study demonstrated that rumen ion concentrations can be manipulated by dietary ion concentrations. If production and feed efficiency responses to DCAD and ionophores in the diet are affected by rumen Na and K concentrations, then manipulating dietary Na and K could be used either to enhance or diminish those responses. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  11. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  12. Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions

    NASA Astrophysics Data System (ADS)

    Ghanbari, F.; Arab, A.; Shishe Bor, M.; Mardaneh, M. R.

    2017-04-01

    La/Ni-substituted strontium hexaferrite Sr0.8La0.2Ni x Fe12- x O19 ( x = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe3+ by Ni2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.

  13. Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions

    NASA Astrophysics Data System (ADS)

    Ghanbari, F.; Arab, A.; Shishe Bor, M.; Mardaneh, M. R.

    2017-01-01

    La/Ni-substituted strontium hexaferrite Sr0.8La0.2Ni x Fe12-x O19 (x = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe3+ by Ni2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.

  14. Hypoxic radiosensitizers: substituted styryl derivatives.

    PubMed

    Nudelman, A; Falb, E; Odesa, Y; Shmueli-Broide, N

    1994-10-01

    A number of novel styryl epoxides, N-substituted-styryl-ethanolamines, N-mono and N,N'-bis-(2-hydroxyethyl)-cinnamamides--analogues to the known radiosensitizers RSU-1069, pimonidazole and etanidazole--display selective hypoxic radiosensitizing activity. The styryl group, especially when substituted by electron withdrawing groups, was found to be bioisosteric to the nitroimidazolyl functionality. The most active derivative 2-(2'-nitrophenyl)ethen-1-yl-oxirane 8a displayed a sensitizer enhancement ratio (SER) of 5 relative to misonidazole.

  15. Substituted decision making: elder guardianship.

    PubMed

    Leatherman, Martha E; Goethe, Katherine E

    2009-11-01

    The goal of this column is to help experienced clinicians navigate the judicial system when they are confronted with requests for capacity evaluations that involve guardianship (conservatorship). The interface between the growing elderly medical population and increasing requests for substituted decision making is becoming more complex. This column will help practicing psychiatrists understand the medical, legal, and societal factors involved in adult guardianship. Such understanding is necessary in order to effectively perform guardianship evaluations and adequately inform courts, patients, and families about the psychiatric diagnoses central to substituted decision making.

  16. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    PubMed

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  17. Precise through-space control of an abiotic electrophilic aromatic substitution reaction

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle E.; Bocanegra, Jessica L.; Liu, Xiaoxi; Chau, H.-Y. Katharine; Lee, Patrick C.; Li, Jianing; Schneebeli, Severin T.

    2017-04-01

    Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms--positioned above the planes of aromatic rings--enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C-H...O]-hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C-H...N]-hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.

  18. Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor.

    PubMed

    Watcharatharapong, Teeraphat; Minakshi Sundaram, Manickam; Chakraborty, Sudip; Li, Dan; Shafiullah, G M; Aughterson, Robert D; Ahuja, Rajeev

    2017-05-31

    The race for better electrochemical energy storage systems has prompted examination of the stability in the molybdate framework (MMoO4; M = Mn, Co, or Ni) based on a range of transition metal cations from both computational and experimental approaches. Molybdate materials synthesized with controlled nanoscale morphologies (such as nanorods, agglomerated nanostructures, and nanoneedles for Mn, Co, and Ni elements, respectively) have been used as a cathode in hybrid energy storage systems. The computational and experimental data confirms that the MnMoO4 crystallized in β-form with α-MnMoO4 type whereas Co and Ni cations crystallized in α-form with α-CoMoO4 type structure. Among the various transition metal cations studied, hybrid device comprising NiMoO4 vs activated carbon exhibited excellent electrochemical performance having the specific capacitance 82 F g(-1) at a current density of 0.1 A g(-1) but the cycling stability needed to be significantly improved. The specific capacitance of the NiMoO4 electrode material is shown to be directly related to the surface area of the electrode/electrolyte interface, but the CoMoO4 and MnMoO4 favored a bulk formation that could be suitable for structural stability. The useful insights from the electronic structure analysis and effective mass have been provided to demonstrate the role of cations in the molybdate structure and its influence in electrochemical energy storage. With improved cycling stability, NiMoO4 can be suitable for renewable energy storage. Overall, this study will enable the development of next generation molybdate materials with multiple cation substitution resulting in better cycling stability and higher specific capacitance.

  19. Thermohalochromism of phenolate dyes conjugated with nitro-substituted aryl groups

    NASA Astrophysics Data System (ADS)

    Hermosilla, Laura; Rezende, Marcos Caroli; Machado, Vanderlei Gageiro; Stock, Rafaela I.

    2017-02-01

    The cationic halochromism and thermohalochromism of four phenolate dyes conjugated with aryl moieties substituted with one or two nitro groups were investigated in the presence of organic (tetra-n-butylammonium bromide and benzyltriethylammonium chloride) and inorganic (sodium perchlorate) salts, in hydrogen-bond donating (water, 1-propanol, 1-butanol and 2-propanol) and hydrogen-bond accepting (acetonitrile and dimethylsulfoxide) solvents. Although a positive halochromic response was observed in water for tetraalkylammonium salts, their thermohalochromic behavior was negligible. A negative halochromic behavior was observed for the dyes in all solvents, when the added cation was Na+. Plots of Δλmaxvs. c (Na+) allowed the apparent association constants for the solvated phenolate-cation pair to be estimated. In most cases, a positive thermohalochromism was observed in the range of 25-50 °C, exceptions being the more sterically hindered phenolate dyes in the less polar solvents 2-propanol and acetonitrile. The observed variations were rationalized by invoking the effect of temperature on the phenolate-cation, phenolate-solvent and cation-solvent interactions.

  20. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    SciTech Connect

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1996-12-31

    The problems associated with the disposal of toxic metals in an environmentally acceptable manner continues to plague industry. Such metals as nickel, vanadium, molybdenum, cobalt, iron, and antimony present physiological and ecological challenges that are best addressed through minimization of exposure and dispersion. A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  1. Restructuring of a Peat in Interaction with Multivalent Cations: Effect of Cation Type and Aging Time

    PubMed Central

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for Ca

  2. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    PubMed

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for

  3. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

    PubMed Central

    Finnerty, Justin John

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  4. Application of a site-binding, electrical, double-layer model to nuclear waste disposal

    SciTech Connect

    Relyea, J.F.; Silva, R.J.

    1981-09-01

    A site-binding, electrical, double-layer adsorption model has been applied to adsorption of Cs for both a montmorillonite clay and powdered SiO/sub 2/. Agreement between experimental and predicted results indicates that C/sub s//sup +/ is adsorbed by a simple cation-exchange mechanism. Further application of a combination equilibrium thermodynamic model and site-binding, electrical, double-layer adsorption model has been made to predict the behavior of U(VI) in solutions contacting either the montmorillonite clay or powdered SiO/sub 2/. Experimentally determined U solution concentrations have been used to select what is felt to be the best available thermodynamic data for U under oxidizing conditions. Given the existing information about the probable U solution species, it was possible to determine that UO/sub 2//sup +2/ is most likely adsorbed by cation-exchange at pH 5. At higher values (pH 7 and 9), it was shown that UO/sub 2/(OH)/sub 2//sup 0/ is probably the most strongly adsorbed U solution species. It was also found that high NaCl solution concentrations at higher pH values lowered U concentrations (either because of enhanced sorption or lowered solubility); however, the mechanism responsible for this behavior has not been determined.

  5. Process and apparatus for the production of Bi-213 cations

    SciTech Connect

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  6. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  7. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  8. Characterizations of cationic γ-carbolines binding with double-stranded DNA by spectroscopic methods and AFM imaging.

    PubMed

    Jia, Tao; Wang, Jing; Guo, Peng; Yu, Junping

    2015-01-28

    Two cationic γ-carbolines, 2-methyl-5H-pyrido[4,3-b]indolium iodide (MPII) and 2,5-dimethyl-5H-pyrido[4,3-b]indolium iodide (DPII), were synthesized, and the DNA-binding properties of the cationic γ-carbolines were elucidated. Through a series of experiments, we proved that the two cationic γ-carbolines could strongly interact with DNA by intercalative binding. However, DPII, with a methyl group substituting H atom of 5-NH, has shown a stronger intercalative interaction with DNA compared to MPII. The dissociation of H from the 5-NH of MPII resulted in better water solubility and less binding affinity to DNA. Atomic force microscopy (AFM) images of pBR322 showed that both MPII and DPII strongly interacted with DNA and induced conformational changes in DNA. Moreover, the CT-DNA circular dichroism (CD) spectra changes and the statistics of the node numbers of pBR322 in AFM images indicated that MPII had more profound effects on DNA conformations compared to DPII. Furthermore, our studies have shown that the interactions between cationic γ-carbolines and DNA were sensitive to ionic strength. Increased ionic strength in the buffer caused the DNA helix to shrink, and the base stacking would be more compact, which resulted in minimal intercalation of cationic γ-carbolines into DNA.

  9. Mutation in pore domain uncovers cation- and voltage-sensitive recovery from inactivation in KAT1 channel.

    PubMed Central

    Moroni, A; Gazzarrini, S; Cerana, R; Colombo, R; Sutter, J U; DiFrancesco, D; Gradmann, D; Thiel, G

    2000-01-01

    Effects of threonine substitution by glutamine at position 256 in the pore of the KAT1 channel have been investigated by voltage-clamp, using heterologous gene expression in Xenopus oocytes. The major discrepancy in T256Q from the wild-type channel (wt) was cation specific. While K(+) currents were reduced in a largely scalar fashion, the NH(4)(+) current exhibited slow, voltage-dependent inhibition during hyperpolarization. The same effects could be induced in wt, or intensified in T256Q, by addition of the impermeant cation methylammonium (MA(+)) to the bath. This stresses that both the mutation and MA(+) affect a mechanism already present in the wt. Assuming that current inhibition could be described as entry of the channel into an inactive state, we modeled in both wt and in T256Q the relaxation kinetics of the clamp currents by a C-O-I gating scheme, where C (closed) and I (inactivated) are nonconductive states, and O is an open state allowing K(+) and NH(4)(+) passage. The key reaction is the transition I-O. This cation-sensitive transition step ensures release of the channel from the inactive state and is approximately 30 times smaller in T256Q compared to wt. It can be inhibited by external MA(+) and is stimulated strongly by K(+) and weakly by NH(4)(+). This sensitivity of gating to external cations may prevent K(+) leakage from cation-starved cells. PMID:10733966

  10. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  11. Substitute Teaching: Sink or Swim.

    ERIC Educational Resources Information Center

    Duebber, Diane

    2000-01-01

    Advises new substitute teachers to be prepared, tote emergency activity folders, dress professionally (but wear flamingo earrings), be early, figure out the game plan, communicate expectations to students, enforce consequences, have a gimmick to reward cooperation, relish the teachable moment, leave the room tidy, and believe in themselves. (MLH)

  12. Potential for structural lumber substitutes

    Treesearch

    Theodore L. Laufenberg

    1985-01-01

    The potential for substitution of structural wood composites into solid-sawn lumber markets is presented from the technological viewpoint. Technological limitations of existing composite processes and products are reviewed in the context of the present laminated veneer lumber (LVL), flakeboard, and fiber/ paper industries. The limits of mechanical property potential...

  13. Substitute Teaching: Sink or Swim.

    ERIC Educational Resources Information Center

    Duebber, Diane

    2000-01-01

    Advises new substitute teachers to be prepared, tote emergency activity folders, dress professionally (but wear flamingo earrings), be early, figure out the game plan, communicate expectations to students, enforce consequences, have a gimmick to reward cooperation, relish the teachable moment, leave the room tidy, and believe in themselves. (MLH)

  14. Tissue-engineered skin substitutes.

    PubMed

    Mansbridge, Jonathan

    2002-01-01

    The last two years have seen new tissue-engineered skin substitutes come onto the market and begin to resolve the various roles to which each is best suited. It is becoming evident that some of the very expensive cell-based products have cost-benefit advantage despite their high price and are valuable within the restricted applications for which they are intended. The use of skin substitutes for testing purposes has extended from epidermal keratinocytes to other integumentary epithelia and into preparations containing multiple cell types in which reactions resulting from paracrine interactions can be examined. Challenges remain in the application of gene therapy techniques to skin substitutes, both the control of transgene expression and in the selection of suitable genes to transfect. A coming challenge is the production of tissue-engineered products without the use of animal products other than human cells. A challenge that may be diminishing is the importance of acute rejection of allogeneic tissue-engineered skin substitutes.

  15. No Substitute Teacher Left behind

    ERIC Educational Resources Information Center

    O'Connor, Kevin

    2009-01-01

    Schools and districts routinely recruit, retain, and support highly qualified teachers to ensure that students receive the best learning opportunities. However, even if one's school employs highly qualified full-time teachers, it is important to acknowledge that substitute teachers also have a significant impact on the education of students. One…

  16. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  17. ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS

    EPA Science Inventory

    The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

  18. ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS

    EPA Science Inventory

    The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

  19. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Pesticide Factsheets

    Toxicity data for the impact of nano-silver on anaerobic degradation.This dataset is associated with the following publication:Gitipour, A., S. Thiel, K. Scheckel, and T. Tolaymat. Anaerobic Toxicity of Cationic Silver Nanoparticles. D. Barcelo Culleres, and J. Gan SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 557: 363-368, (2016).

  20. Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery.

    PubMed

    Leber, Nadine; Nuhn, Lutz; Zentel, Rudolf

    2017-06-12

    Short pharmaceutical active oligonucleotides such as small interfering RNA (siRNA) or cytidine-phosphate-guanosine (CpG) are considered as powerful therapeutic alternatives, especially to medicate hard-to-treat diseases (e.g., liver fibrosis or cancer). Unfortunately, these molecules are equipped with poor pharmacokinetic properties that prevent them from translation. Well-defined nanosized carriers can provide opportunities to optimize their delivery and guide them to their site of action. Among several concepts, this Feature Article focuses on cationic nanohydrogel particles as a universal delivery system for small anionic molecules including siRNA and CpG. Cationic nanohydrogels are derived from preaggregated precursor block copolymers, which are further cross-linked to obtain well-defined nanoparticles of tunable sizes and with (degradable) cationic cores. Novel opportunities for oligonucleotide delivery in vitro and in vivo with respect to liver fibrosis therapies will be highlighted as well as perspectives toward modulating the immune system. In general, the approach of covalently stabilized cationic carrier systems can contribute to find advanced oligonucleotide therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Concave binding of cationic Li to quadrannulene.

    PubMed

    Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang; Nagase, Shigeru

    2017-08-09

    Binding of Li(+) to quadrannulene and its influence on buckybowl functionalization are introduced. The concave-trapped Li(+) acts as a Lewis acid and the rate of Diels-Alder cycloaddition is enhanced 10(8) times. A sandwiched bowl-Li(+)-bowl structure is stabilized via concave-cation-convex interactions, indicating the promoted role of Li(+) in buckybowl assembly.

  2. Hybrids of cationic porphyrins with nanocarbons.

    PubMed

    Girek, Beata; Sliwa, Wanda

    In the review hybrids of cationic porphyrins (i.e. porphyrins functionalized by quaternary pyridinium groups) with nanocarbons such as fullerenes, carbon nanotubes and graphene are described. Selected examples of these species are characterized in regard of their properties and possible applications.

  3. Viscoelastic cationic polymers containing the urethane linkage

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1972-01-01

    A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.

  4. Influence of pendant chiral C(γ)-(alkylideneamino/guanidino) cationic side-chains of PNA backbone on hybridization with complementary DNA/RNA and cell permeability.

    PubMed

    Jain, Deepak R; Anandi V, Libi; Lahiri, Mayurika; Ganesh, Krishna N

    2014-10-17

    Intrinsically cationic and chiral C(γ)-substituted peptide nucleic acid (PNA) analogues have been synthesized in the form of γ(S)-ethyleneamino (eam)- and γ(S)-ethyleneguanidino (egd)-PNA with two carbon spacers from the backbone. The relative stabilization (ΔTm) of duplexes from modified cationic PNAs as compared to 2-aminoethylglycyl (aeg)-PNA is better with complementary DNA (PNA:DNA) than with complementary RNA (PNA:RNA). Inherently, PNA:RNA duplexes have higher stability than PNA:DNA duplexes, and the guanidino PNAs are superior to amino PNAs. The cationic PNAs were found to be specific toward their complementary DNA target as seen from their significantly lower binding with DNA having single base mismatch. The differential binding avidity of cationic PNAs was assessed by the displacement of DNA duplex intercalated ethidium bromide and gel electrophoresis. The live cell imaging of amino/guanidino PNAs demonstrated their ability to penetrate the cell membrane in 3T3 and MCF-7 cells, and cationic PNAs were found to be accumulated in the vicinity of the nuclear membrane in the cytoplasm. Fluorescence-activated cell sorter (FACS) analysis of cell permeability showed the efficiency to be dependent upon the nature of cationic functional group, with guanidino PNAs being better than the amino PNAs in both cell lines. The results are useful to design new biofunctional cationic PNA analogues that not only bind RNA better but also show improved cell permeability.

  5. Silica-based cationic bilayers as immunoadjuvants

    PubMed Central

    Lincopan, Nilton; Santana, Mariana RA; Faquim-Mauro, Eliana; da Costa, Maria Helena B; Carmona-Ribeiro, Ana M

    2009-01-01

    Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris.HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001–1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid. PMID:19152701

  6. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations.

    PubMed

    Castaldi, Paola; Santona, Laura; Enzo, Stefano; Melis, Pietro

    2008-08-15

    In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.

  7. Infrared and electronic spectroscopy of benzene-ammonia cluster radical cations [C(6)H(6)(NH(3))(1,2)](+): observation of isolated and microsolvated σ-complexes.

    PubMed

    Mizuse, Kenta; Hasegawa, Hayato; Mikami, Naohiko; Fujii, Asuka

    2010-10-28

    We report infrared (IR) and electronic spectra of benzene-ammonia cluster radical cations [C(6)H(6)(NH(3))(n)](+) (n = 1 and 2) in the gas phase to explore cluster structures and chemical reactivity of the simplest aromatic radical cation with base (nucleophile) molecules. The electronic spectra in the visible region indicate that these cluster cations no longer have the benzene cation chromophore as a result of an intracluster reaction. Analyses of the IR spectra, on the basis quantum chemical calculations and the vibration-internal rotation analysis, reveal that both [C(6)H(6)(NH(3))(1,2)](+) form σ-complex structures, in which the ammonia moiety is covalently bonded to the benzene moiety due to the intracluster nucleophilic addition. For [C(6)H(6)(NH(3))(2)](+), it is also shown that the second ammonia molecule solvates the σ-complex core via a N-H···N hydrogen bond. Such σ-complex structures are generally supposed to be a key intermediate of aromatic substitution reactions. The observed mass spectra and energetics calculations, however, show that [C(6)H(6)(NH(3))(n)](+) systems are inert for aromatic substitutions. The present experimental observations indicate the inherent stability of these σ-complex structures, even though they do not show the aromatic substitution reactivity.

  8. Pressure-induced cation-cation bonding in V2O3

    DOE PAGES

    Bai, Ligang; Li, Quan; Corr, Serena A.; ...

    2015-10-09

    A pressure-induced phase transition, associated with the formation of cation-cation bonding, occurs in V2O3 by combining synchroton x-ray diffraction in a diamond anvil cell and ab initio evolutionary calculations. The high-pressure phase has a monoclinic structure with a C2/c space group, and it is both energetically and dynamically stable at pressures above 47 GPa to at least 105 GPa. this phase transition can be viewed as a two-dimensional Peierls-like distortion, where the cation-cation dimer chains are connected along the c axis of the monoclinic cell. In conclusion, this finding provides insights into the interplay of electron correlation and lattice distortionmore » in V2O3, and it may also help to understand novel properties of other early transition-metal oxides.« less

  9. Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed

    2017-03-01

    Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.

  10. Mixed-valent neptunium(IV/V) compound with cation-cation-bound six-membered neptunyl rings.

    PubMed

    Jin, Geng Bang

    2013-11-04

    A new mixed-valent neptunium(IV/V) compound has been synthesized by evaporation of a neptunium(V) acidic solution. The structure of the compound features cation-cation-bound six-membered neptunyl(V) rings. These rings are further connected by Np(IV) ions through cation-cation interactions (CCIs) into a three-dimensional neptunium cationic open framework. This example illustrates the possibility of isolating neptunyl(V) CCI oligomers in inorganic systems using other cations to compete with Np(V) in bonding with the neptunyl oxygen.

  11. Substitution effects on optical properties of iminonitroxide- substituted iminonitroxide diradical

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryota; Shigeta, Yasuteru; Okuno, Katsuki; Hasegawa, Miki; Fukushima, Mayuko; Suzuki, Shuichi; Kozaki, Masatoshi; Okada, Keiji; Nakano, Masayoshi

    2015-02-01

    Absorption spectra of iminonitroxide-substituted iminonitroxide diradical (IN-IN) are calculated by means of time-dependent density functional theory. Since IN-IN has two different conformations with small singlet-triplet gaps, the statistical average of the absorption spectrum is compared with the experimental one. We also investigate the substitution effects of CN, OMe, and NH2 groups and found that the introduction of OMe and NH2 groups results in the redshift of the longer wavelength region due to the delocalisation of the lowest unoccupied molecular orbital over lone pair of OMe from the analyses on molecular orbitals of an IN monomeric unit instead of IN-IN. On the other hand, there is no explicit difference in the short-wavelength region in spite of the introduction of these functional groups.

  12. Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins.

    PubMed

    Jadbabaei, Nastaran; Zhang, Huichun

    2014-12-16

    Understanding the sorption mechanism of organic contaminants on cation exchange resins (CXRs) will enable application of these resins for the removal of cationic organic compounds from contaminated water. In this study, sorption of a diverse set of 12 organic cations and 8 neutral aromatic solutes on two polystyrene CXRs, MN500 and Amberlite 200, was examined. MN500 showed higher sorbed concentrations due to its microporous structure. The sorbed concentrations followed the same trend of aromatic cations > aliphatic cations > neutral solutes for both resins. Generally, solute-solvent interactions, nonpolar moiety of the solutes, and resin matrix can affect selectivity of the cations. Sorbed concentrations of the neutral compounds were significantly less than those of the cations, indicating a combined effect of electrostatic and nonelectrostatic interactions. By conducting multiple linear regression between Gibbs free energy of sorption and Abraham descriptors for all 20 compounds, polarity/polarizability (S), H-bond acidity (A), induced dipole (E), and electrostatic (J(+)) interactions were found to be involved in the sorption of the cations by the resins. After converting the aqueous sorption isotherms to sorption from the ideal gas-phase by water-wet resins, a more significant effect of J(+) was observed. Predictive models were then developed based on the linear regressions and validated by accurately estimating the sorption of different test set compounds with a root-mean-square error range of 0.91-1.1 and 0.76-0.85 for MN500 and Amberlite 200, respectively. The models also accurately predicted sorption behavior of aniline and imidazole between pH 3 and 10.

  13. Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method.

    PubMed

    Su, Yuting; Du, Hongying; Huo, Yinqiang; Xu, Yongliang; Wang, Jie; Wang, Liying; Zhao, Siming; Xiong, Shanbai

    2016-06-01

    The cationic starch flocculants were synthesized by the reaction of maize starch which was activated by a ball-milling treatment with 2,3-epoxypropyl trimethyl ammonium chlorides (ETMAC) using the dry method. The cationic starches were characterized by several approaches including scanning electron microscope (SEM), degree of substitution (DS), infrared spectrum (IR), X-ray diffraction (XRD), flocculating activity, electron spin resonance (ESR), and solid-state nuclear magnetic resonance (NMR). The effect of mechanical activation on starch etherifying modification was investigated. The mechanical activation cracked starch granules and destructed their crystal structures. This resulted in enhancements to the reaction activity and reaction efficiency, which was approved by ESR and solid state NMR. The starch flocculants, synthesized by the reaction of mechanically activated starches at 90°C for 2.5h with ETMAC at molar ratio of 0.40:1.00, showed good flocculation activity. The substitution degree (0.300) and reaction efficiency (75.06%) of starch flocculants synthesized with mechanically activated starches were significantly greater than those of starch flocculants with native starches (P<0.05).

  14. Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes.

    PubMed

    Dale, Edward J; Vermeulen, Nicolaas A; Juríček, Michal; Barnes, Jonathan C; Young, Ryan M; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-16

    Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor-acceptor interactions to form host-guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with boxlike geometries, dubbed Ex(n)Boxm(4+) for short, have been prepared by altering a number of variables: (i) n, the number of "horizontal" p-phenylene spacers between adjoining pyridinium units, to modulate the "length" of the cavity; (ii) m, the number of "vertical" p-phenylene spacers, to modulate the "width" of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles (ExBoxes) and macrobicycles (ExCages), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry. Ex(1)Box(4+) (or simply ExBox(4+)) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host-guest complexes allow the development of artificial photosystems. Ex(2)Box(4+) boasts the ability to bind both π-electron-rich and -poor aromatic

  15. An oxygen-deficiency modulated multiferroic: Cobalt-substituted perovskite

    NASA Astrophysics Data System (ADS)

    Florez, Juan Manuel

    In this work, we use density functional theory to model recently demonstrated room temperature ferromagnetism and ferroelectricity in polycrystalline and single crystal Cobalt-substituted SrTiO3 thin films (SrTi0.70Co0.30O3-d), deposited at different oxygen pressures to change their oxygen vacancy concentration. The modeling indicates an origin for both magnetism and electric polarization in the interactions between oxygen vacancies and the B-site cations. The magnetization saturation increases with the oxygen deficiency as a result of valence spin states changes, which depend on whether the oxygen octahedral of the respective local B-site cations are complete or not. On the other hand, a finite electric polarization appears as a result of a non-centrosymmetric distribution of different resulting local charges and such a polarization increases when the oxygen vacancies increase. Increasing of both order parameters, magnetic and ferroelectric, are analyzed respect to all possible Co-sites and O-vacancies distributions, showing that these results suggest a class of multiferroic materials with properties controlled by their oxygen stoichiometry. Agreement and discrepancies between experiments and modeling are discussed. 1J M Florez and P Vargas thank Fondecyt 1130950 and 11130128, all authors thank the MISTI MIT-Chile, and CAR thanks the (S3TEC) and DoE under DE-SC0001299.

  16. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    NASA Astrophysics Data System (ADS)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  17. Triazolium based ionic liquid crystals: Effect of asymmetric substitution

    DOE PAGES

    Stappert, K.; Mudring, A. -V.

    2015-01-27

    A new series of ten different asymmetrical 1-dodecyl-3-alkyl-triazolium bromides, [C12CnTr][Br], has been synthesized and their mesomorphic behavior studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). The influence of the chain length of the triazolium salts is investigated to explore the effect of asymmetric substitution on the phase behaviour of these compounds. For that reason, the length of one alkyl chain was varied from 14 to 1 carbon atoms (n = 14, 12, 10, 8–4, 2, 1) while the other alkyl chain was kept at 12 carbon. Single crystal X-ray structure analysis ofmore » compounds [C12C12Tr][Br] and [C12C5Tr][Br] reveal that the cations adopt a U-shaped conformation with head-to-head arranged triazolium cores. In contrast, for [C12C1Tr][Br], a rod like shape of the cation with interdigitated alkyl chains is found. All investigated compounds are thermotropic liquid crystals. Higher ordered smectic phases, smectic C as well as smectic A phases were found depending on the chain length of the cation. Moreover, the clearing point temperature decreases with decreasing chain length with exception for the n-dodecyl-3-alkyltrizoliumbromides with the two shortest alkyl chains, [C12C2Tr][Br] and [C12C1Tr][Br], which present higher clearing temperatures (86 and 156 °C) and are structurally distinctly different.« less

  18. Triazolium based ionic liquid crystals: Effect of asymmetric substitution

    SciTech Connect

    Stappert, K.; Mudring, A. -V.

    2015-01-27

    A new series of ten different asymmetrical 1-dodecyl-3-alkyl-triazolium bromides, [C12CnTr][Br], has been synthesized and their mesomorphic behavior studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). The influence of the chain length of the triazolium salts is investigated to explore the effect of asymmetric substitution on the phase behaviour of these compounds. For that reason, the length of one alkyl chain was varied from 14 to 1 carbon atoms (n = 14, 12, 10, 8–4, 2, 1) while the other alkyl chain was kept at 12 carbon. Single crystal X-ray structure analysis of compounds [C12C12Tr][Br] and [C12C5Tr][Br] reveal that the cations adopt a U-shaped conformation with head-to-head arranged triazolium cores. In contrast, for [C12C1Tr][Br], a rod like shape of the cation with interdigitated alkyl chains is found. All investigated compounds are thermotropic liquid crystals. Higher ordered smectic phases, smectic C as well as smectic A phases were found depending on the chain length of the cation. Moreover, the clearing point temperature decreases with decreasing chain length with exception for the n-dodecyl-3-alkyltrizoliumbromides with the two shortest alkyl chains, [C12C2Tr][Br] and [C12C1Tr][Br], which present higher clearing temperatures (86 and 156 °C) and are structurally distinctly different.

  19. The interdigitated gel phase in mixtures of cationic and zwitterionic phospholipids.

    PubMed

    Smith, Eric A; Dea, Phoebe K

    2015-01-01

    To examine the phase behavior of mixtures of zwitterionic and cationic lipids we used three derivatives of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). All three lipids are uniquely capable of spontaneously forming the interdigitated gel phase (LβI) under typical hydration conditions. The P-O-ethyl derivative, 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (EDPPC), was chosen as the cationic lipid. For the zwitterionic lipids, we use the ether-linked 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine, (DHPC) and the fluorine substituted 1-palmitoyl-2-(16-fluoropalmitoyl)-sn-glycero-3-phosphocholine (F-DPPC). Differential scanning calorimetry (DSC) and fluorescence spectroscopy were used to analyze the lipid mixtures. The F-DPPC/EDPPC mixtures are interdigitated at all lipid ratios below the main transition temperature (Tm). In addition, EDPPC stabilizes the interdigitated gel phase of DHPC until the ripple gel phase (Pβ') is eliminated and only the LβI to liquid crystalline phase (Lα) main transition remains. These results demonstrate that mixtures of cationic and zwitterionic lipids can be compatible with the interdigitated phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ultrasonic preparation of cationic cotton and its application in ultrasonic natural dyeing.

    PubMed

    Guesmi, A; Ladhari, N; Sakli, F

    2013-01-01

    Cationization of cotton fabric was conferred by the sonicator reaction of cellulose with bromoacetyl bromide, followed by substitution of the terminal bromo groups by triethylamine. Experiments showed that the optimal volume of bromoacetyl bromide necessary to succeed the first stage was 0.4 mL. The order of weight gain for various processes indicates, ultrasound, 25 kHz> ultrasound, 40 kHz> mechanical stirring. Also, for the second stage the order of nitrogen contents indicates ultrasound, 25 kHz> ultrasound, 40 kHz> mechanical stirring. The structures of both untreated and cationic fibres were investigated by FTIR spectroscopy. Modified cotton fabric was subsequently dyed in both conventional and ultrasonic techniques with isosalipurposide dye isolated from Acacia cyanophylla yellow flowers. The effect of dye bath pH, ultrasonic power and frequency, dyeing time and temperature were studied and the order of K/S values indicates ultrasound, 25 kHz > ultrasound, 40 kHz > CH. ultrasound was also found to enhance the dye uptake and the overall fastness properties. Analysis of the sorption isotherms of isosalipurposide dye on cationic cotton fabric shows that the Languimir isotherm equation is best able to correlate the data.

  1. Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis

    SciTech Connect

    Carrado, K.A.; Botto, R.E.; Winans, R.E. ); Forman, J.E. )

    1993-04-01

    Phthalocyanines (Pc) and metallophthalocyanines were incorporated into the galleries of anionic and cationic clays via ion exchange and in situ crystallization of the synthetic clay layers. Intercalation compounds between the layered magnesium silicate clay hectorite and cationic phthalocyanines were directly prepared by refluxing for 2 days aqueous solutions of silica sol, magnesium hydroxide, lithium flouride, and either alcian blue dyes (Cu(II)Pc) or 15-crown-5 tetra-substituted phthalocyanine (15C5Pc). The CuPc dyes are tetrapositively charged through peripheral quaternary ammonium groups, whereas the 15C5Pc is electrically neutral. Anionic clays prepared by hydrolysis of mixed solutions of aluminum nitrate, magnesium nitrate, and copper(II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs) in sodium hydroxide resulted in crystallization of an intercalation compound between a layered double hydroxide (LDH) and this anionic Pc. The material prepared by ion exchange of CuPcTs into a wet, freshly prepared LDH was superior in crystallinity. The phthalocyanines are oriented parallel to cationic hectorite clay layers (gallery heights 4.5-6.5[angstrom]) and perpendicular to anionic layered double hydroxide clay layers (gallery height 18,2[angstrom]) in correlation with their hosts' respective layer charge densities. 32 refs., 4 figs., 2 tabs.

  2. Learning from Host-Defense Peptides: Cationic, Amphipathic Peptoids with Potent Anticancer Activity

    PubMed Central

    Willingham, Stephen B.; Czyzewski, Ann M.; Gonzalgo, Mark L.; Weissman, Irving L.; Barron, Annelise E.

    2014-01-01

    Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance. PMID:24587350

  3. Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity.

    PubMed

    Huang, Wei; Seo, Jiwon; Willingham, Stephen B; Czyzewski, Ann M; Gonzalgo, Mark L; Weissman, Irving L; Barron, Annelise E

    2014-01-01

    Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance.

  4. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 7; Phenazine, a Dual Substituted Polycyclic Aromatic Nitrogen Heterocycle

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2004-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.

  5. [Evolution of urinary bladder substitution].

    PubMed

    Kock, N G

    1992-11-01

    The historical background to the currently used methods for continent bladder substitution is shortly outlined. The significance for the patient's quality of life of various methods for bladder reconstruction or urinary diversion is briefly discussed. The importance of reservoir configuration for achieving a high compliant urinary receptacle is pointed out. Factors affecting reabsorption of urinary constituents are stressed and the significance of an antireflux mechanism is discussed. Currently the majority of patients undergoing cystectomy for cancer or for other reasons can be offered bladder substitutes providing continence and easy emptying; that is, complete control over voiding. This can be achieved by orthotopic bladder reconstruction or by diverting the urine to the augmented and valved rectum or to the skin via a continent intestinal reservoir.

  6. Assessment of asbestos insulation substitutes

    SciTech Connect

    Fourroux, J.D.; Frank, R.L. Jr.; Newberry, T.W. Jr. )

    1990-03-01

    A state-of-the-art study of asbestos insulation alternatives has been conducted to identify the best substitute material for steam lines in power plants. A survey of utilities across the nation showed that calcium silicate is the most commonly employed material today, followed by mineral wool, fiberglass, and ceramic fibers. However, the calcium silicate was found to be dusty and to become brittle once exposed to elevated temperatures. Although it is asbestos-free, studies on its carcinogenicity are incomplete. Characteristic data on existing substitute materials is compiled and an optimum choice of insulation combination is configured. Potential cost savings of using this combination is evaluated for a major utility. A PC-based computer program is developed to assist utility personnel in selecting the proper insulation materials for steam lines. 31 refs., 8 figs.

  7. Zener Polarons Ordering Variants Induced by A-Site Ordering in Half-Doped Manganites

    NASA Astrophysics Data System (ADS)

    Daoud-Aladine, Aziz

    2006-03-01

    Zener Polaron (ZP) ordering [1] provides a still polemic [2] and elusive interpretation of the charge ordering (CO) phenomenon in A site disordered half doped (A1/2Ca1/2) MnO3, which is classically pictured by the Goodenough model (GM) of Mn^3+ and Mn^4+ CO [3,4]. ZP ordering considers instead the ordering of pre-formed ferromagnetic Mn pairs sharing an charge and keeping Mn in a Mn^+3.5 valence state. The recently synthesized A site cation ordered ABaMn2O6 were shown to not present the generic magnetic CE state found of (A1/2Ca1/2)MnO3 [5]. We present our magnetic structure determination of YBaMn2O6: the non- collinear magnetic order obtained unexpectedly reveals ferromagnetic plaquettes of four Mn attributable to larger 4-Mn ZPs, whose presence additionally fits very well the effective paramagnetic moments inferred from susceptibility measurements. The results unambiguously reveal the possible existence of ZP ordering variant in charge ordered manganites. [1] A. Daoud-Aladine et al., Phys. Rev. Lett. 89, 097205 (2002) [2] S. Grenier et al., Phys. Rev. B 69, 134419 (2004) [3] J. B. Goodenough, Phys. Rev. 100, 564 (1955) [4] P.G. Radaelli et al., Phys. Rev. B, 55, 3015 (1997) [5] T. Arima et al., Phys. Rev. B 66, 140408 (2002)

  8. 40 CFR 192.42 - Substitute provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Substitute provisions. 192.42 Section... § 192.42 Substitute provisions. The regulatory agency may, with the concurrence of EPA, substitute for any provisions of § 192.41 of this subpart alternative provisions it deems more practical that...

  9. Tele-substitutions in Heterocyclic Chemistry.

    PubMed

    Tišler, Miha

    2011-03-01

    Particular and rare examples of aromatic nucleophilic substitution are described as tele-substitution. Usually strong nucleophiles are involved and the entering group is introduced at a position distant from the expected leaving group. Examples of tele-substitution in various heteroaromatic systems are presented.

  10. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687) is...

  11. Expectations and Experiences of Substitute Teachers

    ERIC Educational Resources Information Center

    Duggleby, Patricia; Badali, Sal

    2007-01-01

    This article explores the expectations of support for and the experiences of substitute teachers in an urban school division in Saskatchewan. Data were collected in semistructured interviews with seven substitute teachers. The purpose of the study was to explore how substitute teachers frame their professional experiences and construct their roles…

  12. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  13. Substitutes for School Nurses in Illinois

    ERIC Educational Resources Information Center

    Vollinger, Linda Jeno; Bergren, Martha Dewey; Belmonte-Mann, Frances

    2011-01-01

    The purpose of this descriptive study was to explore utilization of nurse substitutes in the school setting in Illinois. The literature described personnel who staff the school health office in the absence of the school nurse and the barriers to obtaining nurse substitutes. There were no empirical studies conducted on school nurse substitutes in…

  14. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  15. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  16. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  17. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  18. 40 CFR 721.4420 - Substituted hydroxylamine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted hydroxylamine. 721.4420... Substances § 721.4420 Substituted hydroxylamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydroxylamine (PMN P-84-492) is...

  19. 40 CFR 721.4420 - Substituted hydroxylamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted hydroxylamine. 721.4420... Substances § 721.4420 Substituted hydroxylamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydroxylamine (PMN P-84-492) is...

  20. 40 CFR 721.4420 - Substituted hydroxylamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted hydroxylamine. 721.4420... Substances § 721.4420 Substituted hydroxylamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydroxylamine (PMN P-84-492) is...