Science.gov

Sample records for a-site finger revealed

  1. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    PubMed

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    PubMed

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  3. Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation

    PubMed Central

    Liang, Jian; Song, Wenjun; Tromp, Gail; Kolattukudy, Pappachan E.; Fu, Mingui

    2008-01-01

    Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family. PMID:18682727

  4. Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes.

    PubMed

    Srinivasachary; Dida, Mathews M; Gale, Mike D; Devos, Katrien M

    2007-08-01

    Finger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each. Each of the remaining three finger millet groups were orthologous to two rice chromosomes, and in all the three cases one rice chromosome was inserted into the centromeric region of a second rice chromosome to give the finger millet chromosomal configuration. All observed rearrangements were, among the grasses, unique to finger millet and, possibly, the Chloridoideae subfamily. Gene orders between rice and finger millet were highly conserved, with rearrangements being limited largely to single marker transpositions and small putative inversions encompassing at most three markers. Only some 10% of markers mapped to non-syntenic positions in rice and finger millet and the majority of these were located in the distal 14% of chromosome arms, supporting a possible correlation between recombination and sequence evolution as has previously been observed in wheat. A comparison of the organization of finger millet, Panicoideae and Pooideae genomes relative to rice allowed us to infer putative ancestral chromosome configurations in the grasses.

  5. EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques.

    PubMed

    Slobounov, S; Tutwiler, R; Rearick, M; Challis, J H

    1999-10-01

    The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.

  6. Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition.

    PubMed

    Berns, G S; Song, A W; Mao, H

    1999-07-15

    Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.

  7. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  8. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  9. Mallet finger - aftercare

    MedlinePlus

    Baseball finger - aftercare; Drop finger - aftercare; Avulsion fracture - mallet finger - aftercare ... away from the rest of the bone (avulsion fracture) Mallet finger most often occurs when something hits ...

  10. Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism.

    PubMed

    Bavassi, M Luz; Tagliazucchi, Enzo; Laje, Rodrigo

    2013-02-01

    Time processing in the few hundred milliseconds range is involved in the human skill of sensorimotor synchronization, like playing music in an ensemble or finger tapping to an external beat. In finger tapping, a mechanistic explanation in biologically plausible terms of how the brain achieves synchronization is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to evoke other nonlinear effects like saturation. We build a nonlinear mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations. While previous authors have used two different model mechanisms for fitting different perturbation types, or have fitted different parameter value sets for different perturbation magnitudes, we propose the first unified description of the behavior following all perturbation types and magnitudes as the dynamical response of a compound model with fixed terms and a single set of parameter values. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Smashed fingers

    MedlinePlus

    ... Crushed digits Images Smashed fingers References Brunton LM, Graham TJ, Atkinson RE. Hand injuries. In: Miller MD, ... Review Date 4/18/2017 Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder ...

  12. Trigger Finger

    MedlinePlus

    ... in a bent position. People whose work or hobbies require repetitive gripping actions are at higher risk ... developing trigger finger include: Repeated gripping. Occupations and hobbies that involve repetitive hand use and prolonged gripping ...

  13. Trigger finger

    MedlinePlus

    ... by: C. Benjamin Ma, MD, Assistant Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic Surgery. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Finger Injuries and Disorders ...

  14. Finger Multiplication

    ERIC Educational Resources Information Center

    Holmes, Bill

    2010-01-01

    The author has been prompted to write this article about finger multiplication for a number of reasons. Firstly there are a number of related articles in past issues of "Mathematics Teaching" ("MT") which have connections to this algorithm. Secondly, very few of his primary teaching students and professional colleagues appear to be aware of the…

  15. Differences in finger localisation performance of patients with finger agnosia.

    PubMed

    Anema, Helen A; Kessels, Roy P C; de Haan, Edward H F; Kappelle, L Jaap; Leijten, Frans S; van Zandvoort, Martine J E; Dijkerman, H Chris

    2008-09-17

    Several neuropsychological studies have suggested parallel processing of somatosensory input when localising a tactile stimulus on one's own by pointing towards it (body schema) and when localising this touched location by pointing to it on a map of a hand (body image). Usually these reports describe patients with impaired detection, but intact sensorimotor localisation. This study examined three patients with a lesion of the angular gyrus with intact somatosensory processing, but with selectively disturbed finger identification (finger agnosia). These patients performed normally when pointing towards the touched finger on their own hand but failed to indicate this finger on a drawing of a hand or to name it. Similar defects in the perception of other body parts were not observed. The findings provide converging evidence for the dissociation between body image and body schema and, more importantly, reveal for the first time that this distinction is also present in higher-order cognitive processes selectively for the fingers.

  16. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  17. Robotic hand and fingers

    SciTech Connect

    Salisbury, Curt Michael; Dullea, Kevin J.

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  18. Trigger Finger (Stenosing Tenosynovitis)

    MedlinePlus

    ... Trigger Finger Find a hand surgeon near you. Videos Trigger Finger Animation Trigger Finger Close Popup Close ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  19. Perceiving fingers in single-digit arithmetic problems.

    PubMed

    Berteletti, Ilaria; Booth, James R

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  20. Perceiving fingers in single-digit arithmetic problems

    PubMed Central

    Berteletti, Ilaria; Booth, James R.

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582

  1. Exome Sequencing of a Pedigree Reveals S339L Mutation in the TLN2 Gene as a Cause of Fifth Finger Camptodactyly.

    PubMed

    Deng, Hao; Deng, Sheng; Xu, Hongbo; Deng, Han-Xiang; Chen, Yulan; Yuan, Lamei; Deng, Xiong; Yang, Shengbo; Guan, Liping; Zhang, Jianguo; Yuan, Hong; Guo, Yi

    2016-01-01

    Camptodactyly is a digit deformity characterized by permanent flexion contracture of one or both fifth fingers at the proximal interphalangeal joints. Though over 60 distinct types of syndromic camptodactyly have been described, only one disease locus (3q11.2-q13.12) for nonsyndromic camptodactyly has been identified. To identify the genetic defect for camptodactyly in a four-generation Chinese Han family, exome and Sanger sequencings were conducted and a missense variant, c.1016C>T (p.S339L), in the talin 2 gene (TLN2) was identified. The variant co-segregated with disease in the family and was not observed in 12 unaffected family members or 1,000 normal controls, suggesting that p.S339L is a pathogenic mutation. Two asymptomatic carriers in the family indicated incomplete penetrance or more complicated compensated mechanism. Most of p.S339L carriers also have relatively benign cardiac phenotypes. Expression of wild and mutant TLN2 in HEK293 cells suggested the predominant localization in cytoplasm. Our data suggest a potential molecular link between TLN2 and camptodactyly pathogenesis.

  2. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.

    PubMed

    Nunez, Noelia; Clifton, Molly M K; Funnell, Alister P W; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G R; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C M; Mackay, Joel P; Crossley, Merlin

    2011-11-04

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.

  3. The Multi-zinc Finger Protein ZNF217 Contacts DNA through a Two-finger Domain*

    PubMed Central

    Nunez, Noelia; Clifton, Molly M. K.; Funnell, Alister P. W.; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G. R.; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C. M.; Mackay, Joel P.; Crossley, Merlin

    2011-01-01

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif. PMID:21908891

  4. Multiple Fingers - One Gestalt.

    PubMed

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.

  5. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  6. Multi-fingered robotic hand

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  7. Finger Lakes LPG

    EPA Pesticide Factsheets

    Finger Lakes LPG Storage, LLC; Two Brush Creek Blvd, Suite 200; Kansas City; Missouri 64112 (Applicant) has applied to the U.S. Environmental Protection Agency (EPA) under the provisions of the Safe Drinking Water Act, 42 U.S.C. 300f et. seq (the Act), for

  8. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  9. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity.

    PubMed

    Toogood, Helen S; Fryszkowska, Anna; Hulley, Martyn; Sakuma, Michiyo; Mansell, David; Stephens, Gill M; Gardiner, John M; Scrutton, Nigel S

    2011-03-21

    We have conducted a site-specific saturation mutagenesis study of H181 and H184 of flavoprotein pentaerythritol tetranitrate reductase (PETN reductase) to probe the role of these residues in substrate binding and catalysis with a variety of α,β-unsaturated alkenes. Single mutations at these residues were sufficient to dramatically increase the enantiopurity of products formed by reduction of 2-phenyl-1-nitropropene. In addition, many mutants exhibited a switch in reactivity to predominantly catalyse nitro reduction, as opposed to CC reduction. These mutants showed an enhancement in a minor side reaction and formed 2-phenylpropanal oxime from 2-phenyl-1-nitropropene. The multiple binding conformations of hydroxy substituted nitro-olefins in PETN reductase were examined by using both structural and catalytic techniques. These compounds were found to bind in both active and inhibitory complexes; this highlights the plasticity of the active site and the ability of the H181/H184 couple to coordinate with multiple functional groups. These properties demonstrate the potential to use PETN reductase as a scaffold in the development of industrially useful biocatalysts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Manipulation of viscous fingering in a radially tapered cell geometry

    NASA Astrophysics Data System (ADS)

    Bongrand, Grégoire; Tsai, Peichun Amy

    2018-06-01

    When a more mobile fluid displaces another immiscible one in a porous medium, viscous fingering propagates with a partial sweep, which hinders oil recovery and soil remedy. We experimentally investigate the feasibility of tuning such fingering propagation in a nonuniform narrow passage with a radial injection, which is widely used in various applications. We show that a radially converging cell can suppress the common viscous fingering observed in a uniform passage, and a full sweep of the displaced fluid is then achieved. The injection flow rate Q can be further exploited to manipulate the viscous fingering instability. For a fixed gap gradient α , our experimental results show a full sweep at a small Q but partial displacement with fingering at a sufficient Q . Finally, by varying α , we identify and characterize the variation of the critical threshold between stable and unstable displacements. Our experimental results reveal good agreement with theoretical predictions by a linear stability analysis.

  11. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  12. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Bridgwater, Lyndon (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  13. Finger Forces in Clarinet Playing

    PubMed Central

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player

  14. Surface electromyogram for the control of anthropomorphic teleoperator fingers.

    PubMed

    Gupta, V; Reddy, N P

    1996-01-01

    Growing importance of telesurgery has led to the need for the development of synergistic control of anthropomorphic teleoperators. Synergistic systems can be developed using direct biological control. The purpose of this study was to develop techniques for direct biocontrol of anthropomorphic teleoperators using surface electromyogram (EMG). A computer model of a two finger teleoperator was developed and controlled using surface EMG from the flexor digitorum superficialis during flexion-extension of the index finger. The results of the study revealed a linear relationship between the RMS EMG and the flexion-extension of the finger model. Therefore, surface EMG can be used as a direct biocontrol for teleoperators and in VR applications.

  15. Hidradenocarcinoma of the finger.

    PubMed

    Nazerali, Rahim S; Tan, Cynthia; Fung, Maxwell A; Chen, Steven L; Wong, Michael S

    2013-04-01

    Hidradenocarcinoma is a rare adnexal neoplasm representing the malignant counterpart of hidradenoma derived from eccrine sweat glands. Misdiagnosis of this disease is common due to the wide variety of histological patterns and rarity of this malignancy. We report an 87-year-old man presenting with a rare case of biopsy-proven hidradenocarcinoma of the finger. There is no standard care of treatment of hidradenocarcinoma, especially of those tumors in rare locations such as the fingers, given its rarity, variable tumor behavior and histology. Although limited treatment strategies exist, detailed data including TNM, location, histologic type and grade, and patient age should be gathered for optimal treatment strategy. The literature supports a 3-fold approach to these malignancies involving margin-free resection, sentinel lymph node biopsy to evaluate possible metastasis, and long-term follow-up given high risk of recurrence. Our treatment strategy involved a 4-fold, multidisciplinary approach involving reconstruction to optimize tumor-free remission and hand function.

  16. Finger vein recognition based on finger crease location

    NASA Astrophysics Data System (ADS)

    Lu, Zhiying; Ding, Shumeng; Yin, Jing

    2016-07-01

    Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.

  17. Competition between anisotropic viscous fingers

    NASA Astrophysics Data System (ADS)

    Pecelerowicz, M.; Budek, A.; Szymczak, P.

    2014-09-01

    We consider viscous fingers created by injection of low viscosity fluid into the network of capillaries initially filled with a more viscous fluid (motor oil). Due to the anisotropy of the system and its geometry, such a setup promotes the formation of long-and-thin fingers which then grow and compete for the available flow, interacting through the pressure field. The interaction between the fingers is analyzed using the branched growth formalism of Halsey and Leibig (Phys. Rev. A 46, 7723, 1992) using a number of simple, analytically tractable models. It is shown that as soon as the fingers are allowed to capture the flow from one another, the fixed point appears in the phase space, corresponding to the asymptotic state in which the growth of one of the fingers in hindered by the other. The properties of phase space flows in such systems are shown to be remarkably insensitive to the details of the dynamics.

  18. Surgery for trigger finger.

    PubMed

    Fiorini, Haroldo Junior; Tamaoki, Marcel Jun; Lenza, Mário; Gomes Dos Santos, Joao Baptista; Faloppa, Flávio; Belloti, Joao Carlos

    2018-02-20

    Trigger finger is a common clinical disorder, characterised by pain and catching as the patient flexes and extends digits because of disproportion between the diameter of flexor tendons and the A1 pulley. The treatment approach may include non-surgical or surgical treatments. Currently there is no consensus about the best surgical treatment approach (open, percutaneous or endoscopic approaches). To evaluate the effectiveness and safety of different methods of surgical treatment for trigger finger (open, percutaneous or endoscopic approaches) in adults at any stage of the disease. We searched CENTRAL, MEDLINE, Embase and LILACS up to August 2017. We included randomised or quasi-randomised controlled trials that assessed adults with trigger finger and compared any type of surgical treatment with each other or with any other non-surgical intervention. The major outcomes were the resolution of trigger finger, pain, hand function, participant-reported treatment success or satisfaction, recurrence of triggering, adverse events and neurovascular injury. Two review authors independently selected the trial reports, extracted the data and assessed the risk of bias. Measures of treatment effect for dichotomous outcomes calculated risk ratios (RRs), and mean differences (MDs) or standardised mean differences (SMD) for continuous outcomes, with 95% confidence intervals (CIs). When possible, the data were pooled into meta-analysis using the random-effects model. GRADE was used to assess the quality of evidence for each outcome. Fourteen trials were included, totalling 1260 participants, with 1361 trigger fingers. The age of participants included in the studies ranged from 16 to 88 years; and the majority of participants were women (approximately 70%). The average duration of symptoms ranged from three to 15 months, and the follow-up after the procedure ranged from eight weeks to 23 months.The studies reported nine types of comparisons: open surgery versus steroid injections (two

  19. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships

    PubMed Central

    Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles

    2015-01-01

    Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. PMID:26631145

  20. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships.

    PubMed

    Dempsey-Jones, Harriet; Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles; Makin, Tamar R

    2016-03-01

    Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. Copyright © 2016 the American Physiological Society.

  1. Finger-Circumference-Measuring Device

    NASA Technical Reports Server (NTRS)

    Le, Suy

    1995-01-01

    Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.

  2. Neural correlates of finger gnosis.

    PubMed

    Rusconi, Elena; Tamè, Luigi; Furlan, Michele; Haggard, Patrick; Demarchi, Gianpaolo; Adriani, Michela; Ferrari, Paolo; Braun, Christoph; Schwarzbach, Jens

    2014-07-02

    Neuropsychological studies have described patients with a selective impairment of finger identification in association with posterior parietal lesions. However, evidence of the role of these areas in finger gnosis from studies of the healthy human brain is still scarce. Here we used functional magnetic resonance imaging to identify the brain network engaged in a novel finger gnosis task, the intermanual in-between task (IIBT), in healthy participants. Several brain regions exhibited a stronger blood oxygenation level-dependent (BOLD) response in IIBT than in a control task that did not explicitly rely on finger gnosis but used identical stimuli and motor responses as the IIBT. The IIBT involved stronger signal in the left inferior parietal lobule (IPL), bilateral precuneus (PCN), bilateral premotor cortex, and left inferior frontal gyrus. In all regions, stimulation of nonhomologous fingers of the two hands elicited higher BOLD signal than stimulation of homologous fingers. Only in the left anteromedial IPL (a-mIPL) and left PCN did signal strength decrease parametrically from nonhomology, through partial homology, to total homology with stimulation delivered synchronously to the two hands. With asynchronous stimulation, the signal was stronger in the left a-mIPL than in any other region, possibly indicating retention of task-relevant information. We suggest that the left PCN may contribute a supporting visuospatial representation via its functional connection to the right PCN. The a-mIPL may instead provide the core substrate of an explicit bilateral body structure representation for the fingers that when disrupted can produce the typical symptoms of finger agnosia. Copyright © 2014 the authors 0270-6474/14/339012-12$15.00/0.

  3. Finger-Jointed Wood Products.

    DTIC Science & Technology

    1981-04-01

    these melamines do not have the same Urea resins are generally marketed adhesives does not always develop resistance to weathering as do in liquid form...OF durable, colorless glueline is required. been developed for use in RF curing. FINGER JOINTS MelamineUrea Resins IN STRUCTURAL Melamine - urea resins ...finger duced either by dry blending urea and moplastic, softening if temperature is joints, strength is expressed as a melamine resins or by blending

  4. Effects of Finger Counting on Numerical Development – The Opposing Views of Neurocognition and Mathematics Education

    PubMed Central

    Moeller, Korbinian; Martignon, Laura; Wessolowski, Silvia; Engel, Joachim; Nuerk, Hans-Christoph

    2011-01-01

    Children typically learn basic numerical and arithmetic principles using finger-based representations. However, whether or not reliance on finger-based representations is beneficial or detrimental is the subject of an ongoing debate between researchers in neurocognition and mathematics education. From the neurocognitive perspective, finger counting provides multisensory input, which conveys both cardinal and ordinal aspects of numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills and that training finger gnosis, or “finger sense,” enhances mathematical skills. Therefore neurocognitive researchers conclude that elaborate finger-based numerical representations are beneficial for later numerical development. However, research in mathematics education recommends fostering mentally based numerical representations so as to induce children to abandon finger counting. More precisely, mathematics education recommends first using finger counting, then concrete structured representations and, finally, mental representations of numbers to perform numerical operations. Taken together, these results reveal an important debate between neurocognitive and mathematics education research concerning the benefits and detriments of finger-based strategies for numerical development. In the present review, the rationale of both lines of evidence will be discussed. PMID:22144969

  5. Self-Expression or Teacher Influence: The Shaw System of Finger-Painting.

    ERIC Educational Resources Information Center

    Stankiewicz, Mary Ann

    1984-01-01

    Finger painting is often regarded as the epitome of free expression for children. However, a careful review of the history of Ruth Shaw's finger-painting system reveals that it was dominated by specific techniques and stylistic conventions taught without a critical understanding of art history or appreciation. (IS)

  6. Mesofluidic controlled robotic or prosthetic finger

    DOEpatents

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  7. Structural Insight Into Histone Recognition by the ING PHD Fingers

    PubMed Central

    Champagne, Karen S.; Kutateladze, Tatiana G.

    2009-01-01

    The Inhibitor of Growth (ING) tumor suppressors are implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis. All members of the ING family contain unique amino-terminal regions and a carboxy-terminal plant homeodomain (PHD) finger. While the amino-terminal domains associate with a number of protein effectors including distinct components of histone deacetylase (HDAC) and histone acetyltransferase (HAT) complexes, the PHD finger binds strongly and specifically to histone H3 trimethylated at lysine 4 (H3K4me3). In this review we describe the molecular mechanism of H3K4me3 recognition by the ING1-5 PHD fingers, analyze the determinants of the histone specificity and compare the biological activities and structures within subsets of PHD fingers. The atomic-resolution structures of the ING PHD fingers in complex with a H3K4me3 peptide reveal that the histone tail is bound in a large and deep binding site encompassing nearly one-third of the protein surface. An extensive network of intermolecular hydrogen bonds, hydrophobic and cation-π contacts, and complementary surface interactions coordinate the first six residues of the H3K4me3 peptide. The trimethylated Lys4 occupies an elongated groove, formed by the highly conserved aromatic and hydrophobic residues of the PHD finger, whereas the adjacent groove accommodates Arg2. The two grooves are connected by a narrow channel, the small size of which defines the PHD finger’s specificity, excluding interactions with other modified histone peptides. Binding of the ING PHD fingers to H3K4me3 plays a critical role in regulating chromatin acetylation. The ING proteins function as tethering molecules that physically link the HDAC and HAT enzymatic complexes to chromatin. In this review we also highlight progress recently made in understanding the molecular basis underlying biological and tumorigenic activities of the ING tumor suppressors. PMID:19442115

  8. EMG finger movement classification based on ANFIS

    NASA Astrophysics Data System (ADS)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  9. Design of a finger base-type pulse oximeter

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  10. Design of a finger base-type pulse oximeter.

    PubMed

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  11. Radiation safety education reduces the incidence of adult fingers on neonatal chest radiographs.

    PubMed

    Sahota, N; Burbridge, B E; Duncan, M D

    2014-06-01

    A previous audit revealed a high frequency of adult fingers visualised on neonatal intensive care unit (NICU) chest radiographs-representing an example of inappropriate occupational radiation exposure. Radiation safety education was provided to staff and we hypothesised that the education would reduce the frequency of adult fingers visualised on NICU chest radiographs. Two cross-sectional samples taken before and after the administration of the education were compared. We examined fingers visualised directly in the beam, fingers in the direct beam but eliminated by technologists editing the image, and fingers under the cones of the portable x-ray machine. There was a 46.2% reduction in fingers directly in the beam, 50.0% reduction in fingers directly in the beam but cropped out, and 68.4% reduction in fingers in the coned area. There was a 57.1% overall reduction in adult fingers visualised, which was statistically significant (Z value - 7.48, P < 0.0001). This study supports radiation safety education in minimising inappropriate occupational radiation exposure.

  12. Finger posture modulates structural body representations

    PubMed Central

    Tamè, Luigi; Dransfield, Elanah; Quettier, Thomas; Longo, Matthew R.

    2017-01-01

    Patients with lesions of the left posterior parietal cortex commonly fail in identifying their fingers, a condition known as finger agnosia, yet are relatively unimpaired in sensation and skilled action. Such dissociations have traditionally been interpreted as evidence that structural body representations (BSR), such as the body structural description, are distinct from sensorimotor representations, such as the body schema. We investigated whether performance on tasks commonly used to assess finger agnosia is modulated by changes in hand posture. We used the ‘in between’ test in which participants estimate the number of unstimulated fingers between two touched fingers or a localization task in which participants judge which two fingers were stimulated. Across blocks, the fingers were placed in three levels of splay. Judged finger numerosity was analysed, in Exp. 1 by direct report and in Exp. 2 as the actual number of fingers between the fingers named. In both experiments, judgments were greater when non-adjacent stimulated fingers were positioned far apart compared to when they were close together or touching, whereas judgements were unaltered when adjacent fingers were stimulated. This demonstrates that BSRs are not fixed, but are modulated by the real-time physical distances between body parts. PMID:28223685

  13. [When doors slam, fingers jam!].

    PubMed

    Claudet, I; Toubal, K; Carnet, C; Rekhroukh, H; Zelmat, B; Debuisson, C; Cahuzac, J-P

    2007-08-01

    Epidemiological analysis in a universitary paediatric emergency unit of children admitted after accidental injuries resulting from fingers crushed in a door. Prospective, descriptive cohort study from September 6th, 2004 to July 1st, 2005 included all children admitted for finger injuries crushed in a non-automatic door. included accidents due to automatic doors, toy's or refrigerator doors, families who refused to participate to the study or families who had left the waiting area before medical examination. Collected data were patient and family characteristics, accident characteristics and its management. Three hundred and forty children affected by 427 digital lesions were included. The mean age was 5.5+/-3.8 years (range 4 months - 15.5 years). Male/female ratio was equal to 1.2: 1. Fifty-eight percent of patients belonged to families composed of 3 or more siblings. Ninety-three per cent of families came to hospital within the first 2 hours after the accident (mean delay 99+/-162 min, median range 54 minutes). Location of the accident was: domestic (62%, at home (64%)), at school (17%). Locations within the home were: the bedroom (33%), bathroom and toilets (21%). An adult was present in 75% of cases and responsible for the trauma in 25% of accidents, another child in 44%. The finger or fingers were trapped on the hinge side in 57% of patients. No specific safeguard devices were used by 94% of families. Among victims, 20% had several crushed digits; left and right hand were injured with an equal frequency. The commonest involved digits were: the middle finger (29%), the ring finger (23%). The nail plate was damaged in 60% of digital lesions, associated with a wound (50%), a distal phalanx fracture (P3) (12%). Six children had a partial or complete amputation of P3, 2 children a lesion of the extensor tendon, 1 child had a rupture of the external lateral ligament. Three percent of children required an admission to the paediatric orthopaedic surgery unit. Post

  14. Optimization for Guitar Fingering on Single Notes

    NASA Astrophysics Data System (ADS)

    Itoh, Masaru; Hayashida, Takumi

    This paper presents an optimization method for guitar fingering. The fingering is to determine a unique combination of string, fret and finger corresponding to the note. The method aims to generate the best fingering pattern for guitar robots rather than beginners. Furthermore, it can be applied to any musical score on single notes. A fingering action can be decomposed into three motions, that is, a motion of press string, release string and move fretting hand. The cost for moving the hand is estimated on the basis of Manhattan distance which is the sum of distances along fret and string directions. The objective is to minimize the total fingering costs, subject to fret, string and finger constraints. As a sequence of notes on the score forms a line on time series, the optimization for guitar fingering can be resolved into a multistage decision problem. Dynamic programming is exceedingly effective to solve such a problem. A level concept is introduced into rendering states so as to make multiple DP solutions lead a unique one among the DP backward processes. For example, if two fingerings have the same value of cost at different states on a stage, then the low position would be taken precedence over the high position, and the index finger would be over the middle finger.

  15. Impact of Finger Type in Fingerprint Authentication

    NASA Astrophysics Data System (ADS)

    Gafurov, Davrondzhon; Bours, Patrick; Yang, Bian; Busch, Christoph

    Nowadays fingerprint verification system is the most widespread and accepted biometric technology that explores various features of the human fingers for this purpose. In general, every normal person has 10 fingers with different size. Although it is claimed that recognition performance with little fingers can be less accurate compared to other finger types, to our best knowledge, this has not been investigated yet. This paper presents our study on the topic of influence of the finger type into fingerprint recognition performance. For analysis we employ two fingerprint verification software packages (one public and one commercial). We conduct test on GUC100 multi sensor fingerprint database which contains fingerprint images of all 10 fingers from 100 subjects. Our analysis indeed confirms that performance with small fingers is less accurate than performance with the others fingers of the hand. It also appears that best performance is being obtained with thumb or index fingers. For example, performance deterioration from the best finger (i.e. index or thumb) to the worst fingers (i.e. small ones) can be in the range of 184%-1352%.

  16. Particle-induced viscous fingering

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon

    2017-11-01

    An inclusion of non-colloidal particles in a Newtonian liquid can fundamentally change the interfacial dynamics and even cause interfacial instabilities. In this talk, we report a particle-induced fingering instability when a mixture of particles and viscous oil is injected radially into a Hele-Shaw cell. Our experimental results show that the onset and characteristics of fingering are most directly affected by the particle volume fraction but also depend on the ratio of the particle diameter to gap size. In particular, the formation of a particle band is observed on the interface only when the particle diameter is comparable to the channel gap thickness. This work demonstrates the complex coupling between suspensions and fluid-fluid interfaces and has broad relevance in suspension processing, particle self-assembly, and oil recovery processes. The physical mechanism behind the instability and a quantitative model are also discussed.

  17. Integration of tactile input across fingers in a patient with finger agnosia.

    PubMed

    Anema, Helen A; Overvliet, Krista E; Smeets, Jeroen B J; Brenner, Eli; Dijkerman, H Chris

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested a finger agnosic patient (GO) on two tasks that measured the ability to keep tactile information simultaneously perceived by individual fingers separate. In experiment 1 GO performed a haptic search task, in which a target (the absence of a protruded line) needed to be identified among distracters (protruded lines). The lines were presented simultaneously to the fingertips of both hands. Similarly to the controls, her reaction time decreased when her fingers were aligned as compared to when her fingers were stretched and in an unaligned position. This suggests that she can keep tactile input from different fingers separate. In experiment two, GO was required to judge the position of a target tactile stimulus to the index finger, relatively to a reference tactile stimulus to the middle finger, both in fingers uncrossed and crossed position. GO was able to indicate the relative position of the target stimulus as well as healthy controls, which indicates that she was able to keep tactile information perceived by two neighbouring fingers separate. Interestingly, GO performed better as compared to the healthy controls in the finger crossed condition. Together, these results suggest the GO is able to implicitly distinguish between tactile information perceived by multiple fingers. We therefore conclude that finger agnosia is not caused by minor disruptions of low-level somatosensory processing. These findings further underpin the idea of a selective impaired higher order body representation restricted to the fingers as underlying cause of finger agnosia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Viscous Fingering in Deformable Systems

    NASA Astrophysics Data System (ADS)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  19. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    SciTech Connect

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less

  20. Numerical study on tilting salt finger in a laminar shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng

    2018-02-01

    Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.

  1. Instrumented Glove Measures Positions Of Fingers

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  2. Prosthetic Hand With Two Gripping Fingers

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell B.; Vest, Thomas W.; Carden, James R.

    1993-01-01

    Prosthetic hand developed for amputee who retains significant portion of forearm. Outer end of device is end effector including two fingers, one moved by rotating remaining part of forearm about its longitudinal axis. Main body of end effector is end member supporting fingers, roller bearing assembly, and rack-and-pinion mechanism. Advantage of rack-and-pinion mechanism enables user to open or close gap between fingers with precision and force.

  3. Spontaneous eye blinks are entrained by finger tapping.

    PubMed

    Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W

    2010-02-01

    We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.

  4. Electrokinetic Control of Viscous Fingering

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin Z.

    2017-10-01

    We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.

  5. Fingering instability of Bingham fluids

    NASA Astrophysics Data System (ADS)

    Ghadge, Shilpa; Myers, Tim

    2005-11-01

    Contact line instabilities have been extensively studied and many useful results obtained for industrial applications. Our research in this area is to explore these instabilities for non-Newtonian fluids which has wide scope in geological, biological as well as industrial areas. In this talk, we will present an analysis of fingering instability near a contact line of the thin sheet of fluid flowing down on a moderately inclined plane. This instability has been well studied for Newtonian fluids. We explore the effect of a yield strength of the fluid on this instability. We have conveniently assumed the presence of the precussor film of small thickness ahead of the fluid film to avoid some mathematical singularities. Using a lubrication-type approximation, we perform a linear stability analysis of a straight contact line. We will show comparison with some experimental results using suspensions of kaolin in silicone oil as a yield strength fluid.

  6. Finger gnosis predicts a unique but small part of variance in initial arithmetic performance.

    PubMed

    Wasner, Mirjam; Nuerk, Hans-Christoph; Martignon, Laura; Roesch, Stephanie; Moeller, Korbinian

    2016-06-01

    Recent studies indicated that finger gnosis (i.e., the ability to perceive and differentiate one's own fingers) is associated reliably with basic numerical competencies. In this study, we aimed at examining whether finger gnosis is also a unique predictor for initial arithmetic competencies at the beginning of first grade-and thus before formal math instruction starts. Therefore, we controlled for influences of domain-specific numerical precursor competencies, domain-general cognitive ability, and natural variables such as gender and age. Results from 321 German first-graders revealed that finger gnosis indeed predicted a unique and relevant but nevertheless only small part of the variance in initial arithmetic performance (∼1%-2%) as compared with influences of general cognitive ability and numerical precursor competencies. Taken together, these results substantiated the notion of a unique association between finger gnosis and arithmetic and further corroborate the theoretical idea of finger-based representations contributing to numerical cognition. However, the only small part of variance explained by finger gnosis seems to limit its relevance for diagnostic purposes. Copyright © 2016. Published by Elsevier Inc.

  7. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments

    PubMed Central

    Kodama, Kentaro; Furuyama, Nobuhiro; Inamura, Tetsunari

    2015-01-01

    Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure. PMID:26070119

  8. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, E.V.

    1997-11-18

    A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

  9. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, Eduardo V.

    1997-01-01

    A method for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change.

  10. Experimental characterization of 3-dimensional gravity-driven fingering in a porous medium

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2017-11-01

    When water infiltrates a dry porous media, a gravity-driven instability can be observed. Water will penetrate the porous media along preferential paths, called fingers. This gravity-driven unstable multiphase flow has important implications for natural phenomena such as rainwater infiltration in soil and secondary oil migration in reservoir rocks. While several experimental and numerical studies have described the instability in 2-dimensional (2D) settings, fundamental questions remain on the morphodynamics of gravity fingering in 3D. We developed a 3D experimental set-up based on planar laser-induced fluorescence of index-matched fluids that allows us to image this phenomenon dynamically. We study the impact of some crucial parameters such as rainfall rate or grain size on the finger size and velocity. In addition, experiments in stratified media reveal interesting dynamics of finger flow across material interfaces, an essential aspect towards the understanding of water infiltration in soils.

  11. More efficient swimming by spreading your fingers

    NASA Astrophysics Data System (ADS)

    van de Water, Willem; van Houwelingen, Josje; Willemsen, Dennis; Breugem, Wim Paul; Westerweel, Jerry; Delfos, Rene; Grift, Ernst Jan

    2016-11-01

    A tantalizing question in free-style swimming is whether the stroke efficiency during the pull phase depends on spreading the fingers. It is a subtle effect-not more than a few percent-but it could make a big difference in a race. We measure the drag of arm models with increasing finger spreading in a wind tunnel and compare forces and moments to the results of immersed boundary simulations. Virtual arms were used in the simulations and their 3D-printed real versions in the experiment. We find an optimal finger spreading, accompanied by a marked increase of coherent vortex shedding. A simple actuator disk model explains this optimum.

  12. Control of viscous fingering by nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabet, Nasser; Hassanzadeh, Hassan; Abedi, Jalal

    2017-12-01

    A substantial viscosity increase by the addition of a low dose of nanoparticles to the base fluids can well influence the dynamics of viscous fingering. There is a lack of detailed theoretical studies that address the effect of the presence of nanoparticles on unstable miscible displacements. In this study, the impact of nonreactive nanoparticle presence on the stability and subsequent mixing of an originally unstable binary system is examined using linear stability analysis (LSA) and pseudospectral-based direct numerical simulations (DNS). We have parametrized the role of both nondepositing and depositing nanoparticles on the stability of miscible displacements using the developed static and dynamic parametric analyses. Our results show that nanoparticles have the potential to weaken the instabilities of an originally unstable system. Our LSA and DNS results also reveal that nondepositing nanoparticles can be used to fully stabilize an originally unstable front while depositing particles may act as temporary stabilizers whose influence diminishes in the course of time. In addition, we explain the existing inconsistencies concerning the effect of the nanoparticle diffusion coefficient on the dynamics of the system. This study provides a basis for further research on the application of nanoparticles for control of viscosity-driven instabilities.

  13. Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement.

    PubMed

    Jones, Christopher L; Kamper, Derek G

    2018-01-01

    Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb ( p  < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing ( p  < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI ( p  < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm ( p  < 0.001). A greater effect was seen during the opening phase ( p  < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for

  14. Finger blood flow in Antarctica

    PubMed Central

    Elkington, E. J.

    1968-01-01

    1. Finger blood flow was estimated, by strain-gauge plethysmography, before and during a 1 hr immersion in ice water, on twenty-five men throughout a year at Wilkes, Antarctica. A total of 121 satisfactory immersions were made. 2. Blood flow before and during immersion decreased significantly in the colder months of the year, and the increase caused by cold-induced vasodilatation (CIVD) became less as the year progressed. The time of onset, blood flow at onset, and frequency of the cycles of CIVD showed no significant relation to the coldness of the weather (as measured by mean monthly wind chill) or the time in months. Comparisons of blood flow before and after five field trips (average duration 42 days), on which cold exposure was more severe than at Wilkes station, gave similar results. 3. The results suggest that vasoconstrictor tone increased. This interpretation agrees with previous work on general acclimatization in Antarctica, but contrasts with work elsewhere on local acclimatization of the hands. PMID:5684034

  15. Freezing temperature of finger skin.

    PubMed

    Wilson, O; Goldman, R F; Molnar, G W

    1976-10-01

    In 45 subjects, 154 frostnips of the finger were induced by cooling in air at -15 degrees C with various wind speeds. The mean supercooled skin temperature at which frostnip appeared was -9.4 degrees C. The mean skin temperature rise due to heat of fusion at ice crystallization was 5.3 degrees C. The skin temperature rose to what was termed the apparent freezing point. The relation of this point to the supercooled skin temperature was analyzed for the three wind speeds used. An apparent freezing point for a condition of no supercooling was calculated, estimating the highest temperature at which skin freezes at a given wind speed. The validity of the obtained differences in apparent freezing point was tested by an analysis of covariance. Although not statistically significant, the data suggest that the apparent freezing point with no supercooling decreases with increasing wind velocity. The highest calculated apparent freezing point at -15 degrees C and 6.8 m/s was 1.2 degrees C lower than the true freezing point for skin previously determined in brine, which is a statistically significant difference.

  16. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  17. Aesthetic finger prosthesis with silicone biomaterial

    PubMed Central

    Raghu, K M; Gururaju, C R; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-01-01

    The fabrication of finger prosthesis is as much an art as it is science. The ideally constructed prosthesis must duplicate the missing structures so precisely that patients can appear in public without fear of attracting unwanted attraction. A 65-years-old patient reported with loss of his right index finger up to the second phalanx and wanted to get it replaced. An impression of the amputated finger and donor were made. A wax pattern of the prosthesis was fabricated using the donor impression; a trial was performed and flasked. Medical grade silicone was intrinsically stained to match the skin tone, following which it was packed, processed and finished. This clinical report describes a method of attaining retention by selective scoring of the master cast of partially amputated finger to enhance the vacuum effect at par with the proportional distribution of the positive forces on the tissues exerted by the prosthesis. PMID:23975917

  18. Two-finger (TF) SPUDT cells.

    PubMed

    Martin, Guenter; Biryukov, Sergey V; Schmidt, Hagen; Steiner, Bernd; Wall, Bert

    2011-03-01

    SPUDT cells including two fingers are only known thus far for so-called NSPUDT directions. In that case, usual solid-finger cells are used. The purpose of the present paper is to find SPUDT cell types consisting of two fingers only for pure mode directions. Two-finger (TF) cells for pure mode directions on substrates like 128°YX LiNbO(3) and YZ LiNbO(3) were found by means of an optimization procedure. The forward direction of a TF-cell SPUDT on 128°YX LiNbO(3) was determined experimentally. The properties of the new cells are compared with those of conventional SPUDT cells. The reflectivity of TF cells on 128°YX LiNbO(3) turns out to be two to three times larger than that of distributed acoustic reflection transducer (DART) and Hanma-Hunsinger cells at the same metal layer thickness.

  19. Finger vein recognition based on the hyperinformation feature

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Yang, Lu

    2014-01-01

    The finger vein is a promising biometric pattern for personal identification due to its advantages over other existing biometrics. In finger vein recognition, feature extraction is a critical step, and many feature extraction methods have been proposed to extract the gray, texture, or shape of the finger vein. We treat them as low-level features and present a high-level feature extraction framework. Under this framework, base attribute is first defined to represent the characteristics of a certain subcategory of a subject. Then, for an image, the correlation coefficient is used for constructing the high-level feature, which reflects the correlation between this image and all base attributes. Since the high-level feature can reveal characteristics of more subcategories and contain more discriminative information, we call it hyperinformation feature (HIF). Compared with low-level features, which only represent the characteristics of one subcategory, HIF is more powerful and robust. In order to demonstrate the potential of the proposed framework, we provide a case study to extract HIF. We conduct comprehensive experiments to show the generality of the proposed framework and the efficiency of HIF on our databases, respectively. Experimental results show that HIF significantly outperforms the low-level features.

  20. Finger Lake Region, NY State, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the central portion of upstate New York, centers on the Finger Lakes. The large city on the shore of Lake Ontario, is Rochester. Although the city, being a business, educational and technical center, has no heavy industry, the outline of the city shows fairly well in the snow, but not as well as the outlines of industrial cities elsewhere in the world. The Finger Lakes are large linear lakes carved out by glaciers during the last ice age.

  1. Experimental and failure analysis of the prosthetic finger joint implants

    NASA Astrophysics Data System (ADS)

    Naidu, Sanjiv H.

    Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.

  2. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  3. Scattering Removal for Finger-Vein Image Restoration

    PubMed Central

    Yang, Jinfeng; Zhang, Ben; Shi, Yihua

    2012-01-01

    Finger-vein recognition has received increased attention recently. However, the finger-vein images are always captured in poor quality. This certainly makes finger-vein feature representation unreliable, and further impairs the accuracy of finger-vein recognition. In this paper, we first give an analysis of the intrinsic factors causing finger-vein image degradation, and then propose a simple but effective image restoration method based on scattering removal. To give a proper description of finger-vein image degradation, a biological optical model (BOM) specific to finger-vein imaging is proposed according to the principle of light propagation in biological tissues. Based on BOM, the light scattering component is sensibly estimated and properly removed for finger-vein image restoration. Finally, experimental results demonstrate that the proposed method is powerful in enhancing the finger-vein image contrast and in improving the finger-vein image matching accuracy. PMID:22737028

  4. Ribosomal DNA variation in finger millet and wild species of Eleusine (Poaceae).

    PubMed

    Hilu, K W; Johnson, J L

    1992-04-01

    Finger millet is an important cereal crop in the semi-arid regions of Africa and India. The crop belongs to the grass genus Eleusine, which includes nine annual and perennial species native to Africa except for the New World species E. tristachya. Ribosomal DNA (rDNA) variation in finger millet and related wild species was used to provide information on the origin of the genomes of this tetraploid crop and point out genetic relationships of the crop to other species in the genus. The restriction endonucleases used revealed a lack of variability in the rDNA spacer region in domesticated finger millet. All the rDNA variants of the crop were found in the proposed direct tetraploid ancestor, E. coracana subsp. africana. Wild and domesticated finger millet displayed the phenotypes found in diploid E. indica. Diploid Eleusine tristachya showed some similarity to the crop in some restriction sites. The remaining species were quite distinct in rDNA fragment patterns. The study supports the direct origin of finger millet from subspecies africana shows E. indica to be one of the genome donors of the crop, and demonstrates that none of the other species examined could have donated the second genome of the crop. The rDNA data raise the possibility that wild and domesticated finger millet could have originated as infraspecific polyploid hybrids from different varieties of E. indica.

  5. OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618

    SciTech Connect

    Balick, Bruce; Huarte-Espinosa, Martin; Frank, Adam

    2013-07-20

    Our ultimate goal is to probe the nature of the collimator of the outflows in the pre-planetary nebula CRL 618. CRL 618 is uniquely suited for this purpose owing to its multiple, bright, and carefully studied finger-shaped outflows east and west of its nucleus. We compare new Hubble Space Telescope images to images in the same filters observed as much as 11 yr ago to uncover large proper motions and surface brightness changes in its multiple finger-shaped outflows. The expansion age of the ensemble of fingers is close to 100 yr. We find strong brightness variations at the fingertips duringmore » the past decade. Deep IR images reveal a multiple ring-like structure of the surrounding medium into which the outflows propagate and interact. Tightly constrained three-dimensional hydrodynamic models link the properties of the fingers to their possible formation histories. We incorporate previously published complementary information to discern whether each of the fingers of CRL 618 are the results of steady, collimated outflows or a brief ejection event that launched a set of bullets about a century ago. Finally, we argue on various physical grounds that fingers of CRL 618 are likely to be the result of a spray of clumps ejected at the nucleus of CRL 618 since any mechanism that form a sustained set of unaligned jets is unprecedented.« less

  6. Finger tapping ability in healthy elderly and young adults.

    PubMed

    Aoki, Tomoko; Fukuoka, Yoshiyuki

    2010-03-01

    The maximum isometric force production capacity of the fingers decreases with age. However, little information is available on age-related changes in dynamic motor capacity of individual fingers. The purpose of this study was to compare the dynamic motor function of individual fingers between elderly and young adults using rapid single-finger and double-finger tapping. Fourteen elderly and 14 young adults performed maximum frequency tapping by the index, middle, ring, or little finger (single-finger tapping) and with alternate movements of the index-middle, middle-ring, or ring-little finger-pair (double-finger tapping). The maximum pinch force between the thumb and each finger, tactile sensitivity of each fingertip, and time taken to complete a pegboard test were also measured. Compared with young subjects, the older subjects had significantly slower tapping rates in all fingers and finger-pairs in the tapping tasks. The age-related decline was also observed in the tactile sensitivities of all fingers and in the pegboard test. However, there was no group difference in the pinch force of any finger. The tapping rate of each finger did not correlate with the pinch force or tactile sensitivity for the corresponding finger in the elderly subjects. Maximum rate of finger tapping was lower in the elderly adults compared with the young adults. The decline of finger tapping ability in elderly adults seems to be less affected by their maximum force production capacities of the fingers as well as tactile sensitivities at the tips of the fingers.

  7. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play

    PubMed Central

    2014-01-01

    Background This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero®a. The goal was to make FINGER capable of assisting with motions where precise timing is important. Methods FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero® while connected to FINGER. Results Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (−3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject’s success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects’ effort and finger individuation while playing the game. Conclusions Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke. PMID:24495432

  8. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.

    PubMed

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicki; Gray, Kyle; Bower, Curtis; Reinkensmeyer, David J; Wolbrecht, Eric T

    2014-02-04

    This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.

  9. Quantifying Parkinson's disease finger-tapping severity by extracting and synthesizing finger motion properties.

    PubMed

    Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo

    2016-06-01

    We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.

  10. Ultrafast High-Resolution Mass Spectrometric Finger Pore Imaging in Latent Finger Prints

    NASA Astrophysics Data System (ADS)

    Elsner, Christian; Abel, Bernd

    2014-11-01

    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record `three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high- spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals.

  11. Viscous fingering with partially miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2017-10-01

    Viscous fingering—the fluid-mechanical instability that takes place when a low-viscosity fluid displaces a high-viscosity fluid—has traditionally been studied under either fully miscible or fully immiscible fluid systems. Here we study the impact of partial miscibility (a common occurrence in practice) on the fingering dynamics. Through a careful design of the thermodynamic free energy of a binary mixture, we develop a phase-field model of fluid-fluid displacements in a Hele-Shaw cell for the general case in which the two fluids have limited (but nonzero) solubility into one another. We show, by means of high-resolution numerical simulations, that partial miscibility exerts a powerful control on the degree of fingering: fluid dissolution hinders fingering while fluid exsolution enhances fingering. We also show that, as a result of the interplay between compositional exchange and the hydrodynamic pattern-forming process, stronger fingering promotes the system to approach thermodynamic equilibrium more quickly.

  12. Prediction of fingering in porous media

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Feyen, Jan; Elrick, David E.

    1998-09-01

    Immiscible displacement, involving two fluids in a porous medium, can be unstable and fingered under certain conditions. In this paper, the original linear instability criterion of Chuoke et al. [1959] is generalized, considering wettability of two immiscible fluids to the porous medium. This is then used to predict 24 specific flow and porous medium conditions for the onset of wetting front instability in the subsurface. Wetting front instability is shown to be a function of the driving fluid wettability to the medium, differences in density and viscosity of the fluids, the magnitude of the interfacial tension, and the direction of flow with respect to gravity. Scenarios of water and nonaqueous-phase liquid infiltration into the vadose zone are examined to predict preferential flow and contamination of groundwater. The mechanisms of finger formation, propagation, and persistence in the vadose zone are reviewed, and the existing equations for calculating the size, the number and velocity of fingers are simplified for field applications. The analyses indicate that fingers initiate and propagate according to spatial and temporal distribution of the dynamic breakthrough (water- or air-entry) pressures in the porous medium. The predicted finger size and velocity are in close agreement with the experimental results.

  13. Finger Interdependence: Linking the Kinetic and Kinematic Variables

    PubMed Central

    Kim, Sun Wook; Shim, Jae Kun; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2008-01-01

    We studied the dependence between voluntary motion of a finger and pressing forces produced by the tips of other fingers of the hand. Subjects moved one of the fingers (task finger) of the right hand trying to follow a cyclic, ramp-like flexion-extension template at different frequencies. The other fingers (slave fingers) were restricted from moving; their flexion forces were recorded and analyzed. Index finger motion caused the smallest force production by the slave fingers. Larger forces were produced by the neighbors of the task finger; these forces showed strong modulation over the range of motion of the task finger. The enslaved forces were higher during the flexion phase of the movement cycle as compared to the extension phase. The index of enslaving expressed in N/rad was higher when the task finger moved through the more flexed postures. The dependence of enslaving on both range and direction of task finger motion poses problems for methods of analysis of finger coordination based on an assumption of universal matrices of finger inter-dependence. PMID:18255182

  14. Laterality of repetitive finger movement performance and clinical features of Parkinson's disease.

    PubMed

    Stegemöller, Elizabeth; Zaman, Andrew; MacKinnon, Colum D; Tillman, Mark D; Hass, Chris J; Okun, Michael S

    2016-10-01

    Impairments in acoustically cued repetitive finger movement often emerge at rates near to and above 2Hz in persons with Parkinson's Disease (PD) in which some patients move faster (hastening) and others move slower (bradykinetic). The clinical features impacting this differential performance of repetitive finger movement remain unknown. The purpose of this study was to compare repetitive finger movement performance between the more and less affected side, and the difference in clinical ratings among performance groups. Forty-one participants diagnosed with idiopathic PD completed an acoustically cued repetitive finger movement task while "on" medication. Eighteen participants moved faster, 10 moved slower, and 13 were able to maintain the appropriate rate at rates above 2Hz. Clinical measures of laterality, disease severity, and the UPDRS were obtained. There were no significant differences between the more and less affected sides regardless of performance group. Comparison of disease severity, tremor, and rigidity among performance groups revealed no significant differences. Comparison of posture and postural instability scores revealed that the participants that demonstrated hastening had worse posture and postural instability scores. Consideration of movement rate during the clinical evaluation of repetitive finger movement may provide additional insight into varying disease features in persons with PD. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Finger millet [Eleusine coracana (L.) Gaertn].

    PubMed

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation.

  16. Evidence appraisal of Arrowsmith VA, Taylor R. Removal of nail polish and finger rings to prevent surgical infection (Review). Cochrane Database Syst Rev. 2014;8:CD003325.

    PubMed

    Girard, Nancy

    2015-06-01

    This systematic review revealed that there remains no evidence to indicate whether removing nail polish and finger rings affects the rate of SSIs after surgery. Given that there are no new studies on this topic, there is insufficient evidence to determine whether wearing finger rings or nail polish affects the number of bacteria on the skin after surgical hand scrubbing.

  17. Finger forces in fastball baseball pitching.

    PubMed

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S

    2017-08-01

    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  19. Fluctuation of biological rhythm in finger tapping

    NASA Astrophysics Data System (ADS)

    Yoshinaga, H.; Miyazima, S.; Mitake, S.

    2000-06-01

    By analyzing biological rhythms obtained from finger tapping, we have investigated the differences of two biological rhythms between healthy and handicapped persons caused by Parkinson, brain infraction, car accident and so on. In this study, we have observed the motion of handedness of all subjects and obtained a slope a which characterizes a power-law relation between frequency and amplitude of finger-tapping rhythm. From our results, we have estimated that the slope a=0.06 is a rough criterion in order to distinguish healthy and handicapped persons.

  20. Interaction of finger enslaving and error compensation in multiple finger force production.

    PubMed

    Martin, Joel R; Latash, Mark L; Zatsiorsky, Vladimir M

    2009-01-01

    Previous studies have documented two patterns of finger interaction during multi-finger pressing tasks, enslaving and error compensation, which do not agree with each other. Enslaving is characterized by positive correlation between instructed (master) and non-instructed (slave) finger(s) while error compensation can be described as a pattern of negative correlation between master and slave fingers. We hypothesize that pattern of finger interaction, enslaving or compensation depends on the initial force level and the magnitude of the targeted force change. Subjects were instructed to press with four fingers (I index, M middle, R ring, and L little) from a specified initial force to target forces following a ramp target line. Force-force relations between master and each of three slave fingers were analyzed during the ramp phase of trials by calculating correlation coefficients within each master-slave pair and then two-factor ANOVA was performed to determine effect of initial force and force increase on the correlation coefficients. It was found that, as initial force increased, the value of the correlation coefficient decreased and in some cases became negative, i.e. the enslaving transformed into error compensation. Force increase magnitude had a smaller effect on the correlation coefficients. The observations support the hypothesis that the pattern of inter-finger interaction--enslaving or compensation--depends on the initial force level and, to a smaller degree, on the targeted magnitude of the force increase. They suggest that the controller views tasks with higher steady-state forces and smaller force changes as implying a requirement to avoid large changes in the total force.

  1. Treatment of mallet finger deformity with a modified palmaris longus tendon graft through a bone tunnel.

    PubMed

    Liu, Zengbing; Ma, Kai; Huang, Dong

    2018-01-01

    To investigate the clinical effect of treating mallet finger deformity using a modified palmaris longus tendon graft through a bone tunnel. Altogether, 21 patients with mallet finger deformity (16 men, 5 women; average age 31 years, range 19-47 years) were treated with a modified palmaris longus tendon graft through a bone tunnel during 18 months (2014-2016). Four index fingers, seven middle fingers, eight ring fingers, and two little fingers were treated for four cutting injuries, eleven finger sprains, four crush injuries, and two twist injuries (7 open and 14 closed injuries). Duration from injury to surgery was 9 h to 13 weeks. Three patients underwent surgery after 6 weeks of unsuccessful conservative treatment. No tendon was attached to the extensor tendon insertion in 16 patients, and 5 had residual tendon of <0.2 cm attached. All patients had distal segment flexion deformity and dorsiflexion disorder. Surgery comprised transverse penetration and vertical drilling of the base of the distal phalanx (2.0 and 2.5 mm diameter drills). Equal shallow semitendinosus pieces of the palmaris longus tendon (4 cm) were obtained from the sagittal end and were passed through a dorsal bone hole, emerging from a transverse bone hole. The two bundles were sutured to the main tendon. Tension was adjusted, and the broken ends were sutured. The distal interphalangeal joints were fixed in hyperextension. All patients were followed for 7-16 months (average 6.0 ± 0.3 months) postoperatively. All 21 patients had grade A wound healing, with no complications (e.g., necrotic wound, recurrence, joint stiffness). The mallet finger deformity was corrected with good appearance, no obvious abnormalities, and satisfactory flexion and extension. Two patients had a superficial wound infection. Each recovered after symptomatic treatment. One patient had a mild result, with limited extension. There were no recurrences. Results were evaluated according to Patel et al.'s system, which revealed

  2. Evolution of finger millet: evidence from random amplified polymorphic DNA.

    PubMed

    Hilu, K W

    1995-04-01

    Finger millet (Eleusine coracana ssp. coracana) is an annual tetraploid member of a predominantly African genus. The crop is believed to have been domesticated from the tetraploid E. coracana ssp. africana. Cytogenetic and isozyme data point to the allopolyploid nature of the species and molecular information has shown E. indica to be one of the genomic donors. A recent isozyme study questioned the proposed phylogenetic relationship between finger millet and its direct ancestor subspecies africana. An approach using random amplified polymorphic DNA (RAPD) was employed in this study to examine genetic diversity and to evaluate hypotheses concerning the evolution of domesticated and wild annual species of Eleusine. Unlike previous molecular approaches, the RAPD study revealed genetic diversity in the crop. The pattern of genetic variation was loosely correlated to geographic distribution. The allotetraploid nature of the crop was confirmed and molecular markers that can possibly identify the other genomic donor were proposed. Genotypes of subspecies africana did not group closely with those of the crop but showed higher affinities to E. indica, reflecting the pattern of similarity revealed by the isozyme study. The multiple origin of subspecies africana could explain the discrepancy between the isozyme-RAPD evidence and previous information. The RAPD study showed the close genetic affinity of E. tristachya to the E. coracana--E. indica group and understood the distinctness of E. multiflora.

  3. [Treatment of trigger finger with located needle knife].

    PubMed

    Zhang, Qi-Feng; Yang, Jiang; Xi, Sheng-Hua

    2016-07-25

    To investigate the clinical effects of located needle knife in the treatment of trigger finger. The clinical data of 133 patients(145 fingers) with trigger finger underwent treatment with located needle knife from September 2010 to March 2014 were retrospectively analyzed. There were 37 males(40 fingers) and 96 females (105 fingers), aged from 18 to 71 years old with a mean of 51.8 years. Course of disease was from 1 to 19 months with an average of 8.2 months. Affected fingers included 82 thumbs, 12 index fingers, 11 middle fingers, 36 ring fingers, and 4 little fingers. According to the standard of Quinnell grade, 42 fingers were grade III, 92 fingers were grade IV, and 11 fingers were grade V. Firstly the double pipe gab was put into the distal edge of hypertrophic tendon sheath, then small knife needle was used to release the sheath proximally along the tendon line direction. The informations of wound healing and nerve injury, postoperative finger function, finger pain at 6 months were observed. The operation time was from 8 to 25 min with an average of 9.8 min. All the patients were followed up from 6 to 26 months with an average of 12.5 months. No complications such as the wound inflammation and seepage, vascular or nerve injuries were found. According to the standard of Quinnell grade, 123 fingers got excellent results, 15 good, 7 poor. It's a good choice to treat trigger finger with located needle knife in advantage of minimal invasion, simple safe operation, and it should be promoted in clinic.

  4. Arrhythmokinesis is evident during unimanual not bimanual finger tapping in Parkinson's disease.

    PubMed

    Trager, Megan H; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren; Quinn, Emma; Bronte-Stewart, Helen

    2015-01-01

    Arrhythmokinesis, the variability in repetitive movements, is a fundamental feature of Parkinson's disease (PD). We hypothesized that unimanual repetitive alternating finger tapping (AFT) would reveal more arrhythmokinesis compared to bimanual single finger alternating hand tapping (SFT), in PD. The variability of inter-strike interval (CVISI) and of amplitude (CVAMP) during AFT and SFT were measured on an engineered, MRI-compatible keyboard in sixteen PD subjects off medication and in twenty-four age-matched controls. The CVISI and CVAMP of the more affected (MA) and less affected (LA) sides in PD subjects were greater during AFT than SFT (P < 0.05). However, there was no difference between AFT and SFT for controls. Both CVISI and CVAMP were greater in the MA and LA hands of PD subjects versus controls during AFT (P < 0.01). The CVISI and CVAMP of the MA, but not the LA hand, were greater in PDs versus controls during SFT (P < 0.05). Also, AFT, but not SFT, detected a difference between the MA and LA hands of PDs (P < 0.01). Unimanual, repetitive alternating finger tapping brings out more arrhythmokinesis compared to bimanual, single finger tapping in PDs but not in controls. Arrhythmokinesis during unimanual, alternating finger tapping captured a significant difference between both the MA and LA hands of PD subjects and controls, whereas that during a bimanual, single finger tapping task only distinguished between the MA hand and controls. Arrhythmokinesis underlies freezing of gait and may also underlie the freezing behavior documented in fine motor control if studied using a unimanual alternating finger tapping task.

  5. Finger tapping analysis in patients with Parkinson's disease and atypical parkinsonism.

    PubMed

    Djurić-Jovičić, Milica; Petrović, Igor; Ječmenica-Lukić, Milica; Radovanović, Saša; Dragašević-Mišković, Nataša; Belić, Minja; Miler-Jerković, Vera; Popović, Mirjana B; Kostić, Vladimir S

    2016-08-01

    The goal of this study was to investigate repetitive finger tapping patterns in patients with Parkinson's disease (PD), progressive supranuclear palsy-Richardson syndrome (PSP-R), or multiple system atrophy of parkinsonian type (MSA-P). The finger tapping performance was objectively assessed in PD (n=13), PSP-R (n=15), and MSA-P (n=14) patients and matched healthy controls (HC; n=14), using miniature inertial sensors positioned on the thumb and index finger, providing spatio-temporal kinematic parameters. The main finding was the lack or only minimal progressive reduction in amplitude during the finger tapping in PSP-R patients, similar to HC, but significantly different from the sequence effect (progressive decrement) in both PD and MSA-P patients. The mean negative amplitude slope of -0.12°/cycle revealed less progression of amplitude decrement even in comparison to HC (-0.21°/cycle, p=0.032), and particularly from PD (-0.56°/cycle, p=0.001), and MSA-P patients (-1.48°/cycle, p=0.003). No significant differences were found in the average finger separation amplitudes between PD, PSP-R and MSA-P patients (pmsa-pd=0.726, pmsa-psp=0.363, ppsp-pd=0.726). The lack of clinically significant sequence effect during finger tapping differentiated PSP-R from both PD and MSA-P patients, and might be specific for PSP-R. The finger tapping kinematic parameter of amplitude slope may be a neurophysiological marker able to differentiate particular forms of parkinsonism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  7. Fingers Make a Comeback in Math

    ERIC Educational Resources Information Center

    Brooks, Andree

    1978-01-01

    Describes a new idea in finger-counting developed by 31 year old Hang Young Pai, a Korean teacher living in New York. It is called Chisanbop and it comes from a more advanced hand-calculation system used in the Orient in conjunction with the abacus. It is applicable for both elementary students and for more advanced mathematical applications, such…

  8. Repair of webbed fingers or toes

    MedlinePlus

    ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Finger Injuries and Disorders Read more Toe Injuries ...

  9. Viscous fingering of HCI through gastric mucin

    NASA Astrophysics Data System (ADS)

    Bhaskar, K. Ramakrishnan; Garik, Peter; Turner, Bradley S.; Bradley, James Douglas; Bansil, Rama; Stanley, H. Eugene; Lamont, J. Thomas

    1992-12-01

    THE HCI in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium1-4 and acts as a diffusion barrier5,6 Bicarbonate ions secreted by the gastric epithelium7 are trapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface8-10. How does HCI, secreted at the base of gastric glands by parietal cells, traverse the mucus layer without acidifying it? Here we demonstrate that injection of HCI through solutions of pig gastric mucin produces viscous fingering patterns11-18 dependent on pH, mucin concentration and acid flow rate. Above pH 4, discrete fingers are observed, whereas below pH 4, HCI neither penetrates the mucin solution nor forms fingers. Our in vitro results suggest that HCI secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7) through narrow fingers, whereas HC1 in the lumen (pH 2) is prevented from diffusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal side.

  10. PN 2017-24: Finger Lakes LPG

    EPA Pesticide Factsheets

    Finger Lakes LPG Storage, LLC; Two Brush Creek Blvd, Suite 200; Kansas City; Missouri 64112 (Applicant) has applied to the U.S. Environmental Protection Agency (EPA) under the provisions of the Safe Drinking Water Act, 42 U.S.C. 300f et. seq (the Act), for

  11. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    PubMed

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multi-Finger Interaction and Synergies in Finger Flexion and Extension Force Production

    PubMed Central

    Park, Jaebum; Xu, Dayuan

    2017-01-01

    The aim of this study was to discover finger interaction indices during single-finger ramp tasks and multi-finger coordination during a steady state force production in two directions, flexion, and extension. Furthermore, the indices of anticipatory adjustment of elemental variables (i.e., finger forces) prior to a quick pulse force production were quantified. It is currently unknown whether the organization and anticipatory modulation of stability properties are affected by force directions and strengths of in multi-finger actions. We expected to observe a smaller finger independency and larger indices of multi-finger coordination during extension than during flexion due to both neural and peripheral differences between the finger flexion and extension actions. We also examined the indices of the anticipatory adjustment between different force direction conditions. The anticipatory adjustment could be a neural process, which may be affected by the properties of the muscles and by the direction of the motions. The maximal voluntary contraction (MVC) force was larger for flexion than for extension, which confirmed the fact that the strength of finger flexor muscles (e.g., flexor digitorum profundus) was larger than that of finger extensor (e.g., extensor digitorum). The analysis within the uncontrolled manifold (UCM) hypothesis was used to quantify the motor synergy of elemental variables by decomposing two sources of variances across repetitive trials, which identifies the variances in the uncontrolled manifold (VUCM) and that are orthogonal to the UCM (VORT). The presence of motor synergy and its strength were quantified by the relative amount of VUCM and VORT. The strength of motor synergies at the steady state was larger in the extension condition, which suggests that the stability property (i.e., multi-finger synergies) may be a direction specific quantity. However, the results for the existence of anticipatory adjustment; however, no difference between the

  13. Linguistic and perceptual-motor contributions to the kinematic properties of the braille reading finger.

    PubMed

    Hughes, Barry; Van Gemmert, Arend W A; Stelmach, George E

    2011-08-01

    Recordings of the dominant finger during the reading of braille sentences by experienced readers reveal that the velocity of the finger changes frequently during the traverse of a line of text. These changes, not previously reported, involve a multitude of accelerations and decelerations, as well as reversals of direction. We investigated the origin of these velocity intermittencies (as well as movement reversals) by asking readers to twice read out-loud or silently sentences comprising high- or low-frequency words which combined to make grammatical sentences that were either meaningful or nonmeaningful. In a control condition we asked braille readers to smoothly scan lines of braille comprised of meaningless cell combinations. Word frequency and re-reading each contribute to the kinematics of finger movements, but neither sentence meaning nor the mode of reading do so. The velocity intermittencies were so pervasive that they are not easily attributable either to linguistic processing, text familiarity, mode of reading, or to sensory-motor interactions with the textured patterns of braille, but seem integral to all braille finger movements except reversals. While language-related processing can affect the finger movements, the effects are superimposed on a highly intermittent velocity profile whose origin appears to lie in the motor control of slow movements. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    PubMed Central

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  15. Experimental viscous fingering in a tapered radial Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Bongrand, Gregoire; Tsai, Peichun Amy; Complex Fludis Group Team

    2017-11-01

    The fluid-fluid displacement in porous media is a common process that finds direct applications in various fields, such as enhanced oil recovery and geological CO2 sequestration. In this work, we experimentally investigate the influence of converging cells on viscous fingering instabilities using a radially-tapered cell. For air displacing oil, in contrast to the classical Saffman-Taylor fingering, our results show that a converging gradient in a radial propagation can provide a stabilizing effect and hinder fingering. For a fixed gap gradient and thickness, with increasing injection rates we find a stable displacement under small flow rates, whereas unstable fingering occurs above a certain threshold. We further investigate this critical flow rate delineating the stable and unstable regimes for different gap gradients. These results reveal that the displacement efficiency not only depends on the fluid properties but also on the interfacial velocity and channel structure. The latter factors provide a useful and convenient control to either trigger or inhibit fingering instability. NSERC Discovery, Accelerator, and CRC programs.

  16. Investigation of an alleged mechanism of finger injury in an automobile crash.

    PubMed

    Stacey, Stephen; Kent, Richard

    2006-07-01

    This investigation centers on the case of an adult male whose finger was allegedly amputated by the steering wheel of his car during a crash. The subject claimed to have been driving with his left index finger inserted through a hole in the spoke of his steering wheel and was subsequently involved in an offset frontal collision with a tree. The finger was found to be cleanly severed at the mid-shaft of the proximal phalanx after the crash. This injury was alleged to have been caused by inertial loading from the rotation of the steering wheel during the crash. To determine whether this injury mechanism was plausible, three laboratory tests representing distinct loading scenarios were carried out with postmortem human surrogates loaded dynamically by the subject's steering wheel. It was found that the inertial loads generated in this loading scenario are insufficient to amputate the finger. Additionally, artificially constraining the finger to force an amputation to occur revealed that a separation at the proximal interphalangeal joint occurs rather than a bony fracture of the proximal phalanx. Based on these biomechanical tests, it can be concluded that the subject's injury did not occur during the automobile crash in question. Furthermore, it can be shown that the injury was self-inflicted to fraudulently claim on an insurance policy.

  17. Robot-Assisted Guitar Hero for Finger Rehabilitation after Stroke

    PubMed Central

    Taheri, Hossein; Rowe, Justin B.; Gardner, David; Chan, Vicky; Reinkensmeyer, David J.; Wolbrecht, Eric T.

    2014-01-01

    This paper describes the design and testing of a robotic device for finger therapy after stroke: FINGER (Finger Individuating Grasp Exercise Robot). FINGER makes use of stacked single degree-of-freedom mechanisms to assist subjects in moving individual fingers in a naturalistic grasping pattern through much of their full range of motion. The device has a high bandwidth of control (−3dB at approximately 8 Hz) and is backdriveable. These characteristics make it capable of assisting in grasping tasks that require precise timing. We therefore used FINGER to assist individuals with a stroke (n = 8) and without impairment (n = 4) in playing a game similar to Guitar Hero©. The subjects attempted to move their fingers to target positions at times specified by notes that were graphically streamed to popular music. We show here that by automatically adjusting the robot gains, it is possible to use FINGER to modulate the subject’s success rate at the game, across a range of impairment levels. Modulating success rates did not alter the stroke subject’s effort, although the unimpaired subjects exerted more force when they were made less successful. We also present a novel measure of finger individuation that can be assessed as individuals play Guitar Hero with FINGER. The results demonstrate the ability of FINGER to provide controlled levels of assistance during an engaging computer game, and to quantify finger individuation after stroke. PMID:23366783

  18. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device intended...

  19. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device intended...

  20. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device intended...

  1. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device intended...

  2. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device intended...

  3. Tide-induced fingering flow during submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Greskowiak, Janek

    2013-04-01

    Submarine groundwater discharge (SGD) is a relevant component of the hydrological cycle (Moore, 2010). The discharge of fresh groundwater that originated from precipitation on the land typically occurs at the near shore scale (~ 10m-100m) and the embayment scale (~ 100m - 10km) (Bratton, 2010). In the recent years a number of studies revealed that tidal forcing has an important effect on the fresh SGD pattern in the beach zone, i.e., it leads to the formation of an upper saline recirculation cell and a lower "freshwater discharge tube" (Boufadel, 2000, Robinson et al., 2007; Kuan et al., 2012). Thereby the discharge of the fresh groundwater occurs near the low-tide mark. The shape and extent of the upper saline recirculation cell is mainly defined by the tidal amplitude, beach slope, fresh groundwater discharge rate and hydraulic conductivity (Robinson et al., 2007). In spite of fact that in this case sea water overlies less denser freshwater, all previous modeling studies suggested that the saline recirculation cell and the freshwater tube are rather stable. However, new numerical investigations indicate that there maybe realistic cases where the upper saline recirculation cell becomes unstable as a result of the density contrast to the underlying freshwater tube. In these cases salt water fingers develop and move downward, thereby penetrating the freshwater tube. To the author's knowledge, the present study is the first that illustrate the possibility of density induced fingering flow during near shore SGD. A total of 240 high resolution simulations with the density dependent groundwater modelling software SEAWAT-2000 (Langevin et al., 2007) has been carried out to identify the conditions under which salt water fingering starts to occur. The simulations are based on the field-scale model setup employed in Robinson et al. (2007). The simulation results indicate that a very flat beach slope of less than 1:35, a hydraulic conductivity of 10 m/d and already a tidal

  4. Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement

    PubMed Central

    Jones, Christopher L.; Kamper, Derek G.

    2018-01-01

    Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct

  5. Unveiling the Biometric Potential of Finger-Based ECG Signals

    PubMed Central

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  6. Unveiling the biometric potential of finger-based ECG signals.

    PubMed

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

  7. The fickle finger of fate

    PubMed Central

    de la Fuente, Luis; Helms, Jill A.

    2005-01-01

    In this issue of the JCI, Niedermaier and colleagues demonstrate that a chromosomal inversion in mice results in dysregulation of Sonic hedgehog (Shh), such that Shh is ectopically expressed in a skeletogenic domain typically occupied by Indian hedgehog (Ihh). This molecular reversal eliminates phalangeal joint spaces, and consequently, Short digits (Dsh) heterozygotes (Dsh/+) have brachydactyly (shortened digits). Ihh is normally downregulated in regions that will become the joint space, but in Dsh/+ mice, Shh bypasses this regulatory control and persists; accordingly, cells maintain their chondrogenic fate and the developed digits are shorter than normal. The significance of these data extends far beyond the field of skeletal biology: they hint at the very real possibility that the endogenous Shh regulatory region contains a repressor designed to segregate the activity of Shh from Ihh. The existence of such a repressor provides a window into the distant past, revealing that Shh and Ihh must once have shared responsibilities in establishing tissue boundaries and orchestrating vertebrate tissue morphogenesis. PMID:15841172

  8. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion

    PubMed Central

    van den Noort, Josien C.; van Beek, Nathalie; van der Kraan, Thomas; Veeger, DirkJan H. E. J.; Stegeman, Dick F.; Veltink, Peter H.; Maas, Huub

    2016-01-01

    The variability in the numerous tasks in which we use our hands is very large. However, independent movement control of individual fingers is limited. To assess the extent of finger independency during full-range finger flexion including all finger joints, we studied enslaving (movement in non-instructed fingers) and range of independent finger movement through the whole finger flexion trajectory in single and multi-finger movement tasks. Thirteen young healthy subjects performed single- and multi-finger movement tasks under two conditions: active flexion through the full range of movement with all fingers free to move and active flexion while the non-instructed finger(s) were restrained. Finger kinematics were measured using inertial sensors (PowerGlove), to assess enslaving and range of independent finger movement. Although all fingers showed enslaving movement to some extent, highest enslaving was found in adjacent fingers. Enslaving effects in ring and little finger were increased with movement of additional, non-adjacent fingers. The middle finger was the only finger affected by restriction in movement of non-instructed fingers. Each finger showed a range of independent movement before the non-instructed fingers started to move, which was largest for the index finger. The start of enslaving was asymmetrical for adjacent fingers. Little finger enslaving movement was affected by multi-finger movement. We conclude that no finger can move independently through the full range of finger flexion, although some degree of full independence is present for smaller movements. This range of independent movement is asymmetric and variable between fingers and between subjects. The presented results provide insight into the role of finger independency for different types of tasks and populations. PMID:27992598

  9. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties.

    PubMed

    Hittalmani, Shailaja; Mahesh, H B; Shirke, Meghana Deepak; Biradar, Hanamareddy; Uday, Govindareddy; Aruna, Y R; Lohithaswa, H C; Mohanrao, A

    2017-06-15

    Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.

  10. Crossover from capillary fingering to viscous fingering in a rough fracture

    NASA Astrophysics Data System (ADS)

    Hu, R.; Chen, Y.; Wu, D. S.

    2017-12-01

    Controlled by the competition between capillary and viscous forces, the displacement patterns of one fluid displacing another more viscous one exhibit capillary fingering, viscous fingering, and the crossover between the two. Although extensive studies have investigated viscous and capillary fingerings in porous and fractured media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture visualization system, we studied how the competition impacts the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M = 1/1000, 1/500, 1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. In addition, we proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between the capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse and backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.

  11. Analysis of prosody in finger braille using electromyography.

    PubMed

    Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira

    2006-01-01

    Finger braille is one of the communication methods for the deaf blind. The interpreter types braille codes on the fingers of deaf blind. Finger braille seems to be the most suitable medium for real-time communication by its speed and accuracy of transmitting characters. We hypothesize that the prosody information exists in the time structure and strength of finger braille typing. Prosody is the paralinguistic information that has functions to transmit the sentence structure, prominence, emotions and other form of information in real time communication. In this study, we measured the surface electromyography (sEMG) of finger movement to analyze the typing strength of finger braille. We found that the typing strength increases at the beginning of a phrase and a prominent phrase. The result shows the possibility that the prosody in the typing strength of finger braille can be applied to create an interpreter system for the deafblind.

  12. Finger vein recognition with personalized feature selection.

    PubMed

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-08-22

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG.

  13. Finger Vein Recognition with Personalized Feature Selection

    PubMed Central

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-01-01

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG. PMID:23974154

  14. Fingering instabilities in bacterial community phototaxis

    NASA Astrophysics Data System (ADS)

    Vps, Ritwika; Man Wah Chau, Rosanna; Casey Huang, Kerwyn; Gopinathan, Ajay

    Synechocystis sp PCC 6803 is a phototactic cyanobacterium that moves directionally in response to a light source. During phototaxis, these bacterial communities show emergent spatial organisation resulting in the formation of finger-like projections at the propagating front. In this study, we propose an analytical model that elucidates the underlying physical mechanisms which give rise to these spatial patterns. We describe the migrating front during phototaxis as a one-dimensional curve by considering the effects of phototactic bias, diffusion and surface tension. By considering the propagating front as composed of perturbations to a flat solution and using linear stability analysis, we predict a critical bias above which the finger-like projections appear as instabilities. We also predict the wavelengths of the fastest growing mode and the critical mode above which the instabilities disappear. We validate our predictions through comparisons to experimental data obtained by analysing images of phototaxis in Synechocystis communities. Our model also predicts the observed loss of instabilities in taxd1 mutants (cells with inactive TaxD1, an important photoreceptor in finger formation), by considering diffusion in mutually perpendicular directions and a lower, negative bias.

  15. Multi-finger Prehension: An overview

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.

    2009-01-01

    This paper reviews the available experimental evidence on what people do when they grasp an object with several digits and then manipulate it. In addition to the Introduction, the paper includes three parts each addressing a specific aspect of multi-finger prehension. Part II discusses manipulation forces, i.e. the resultant force and moment of force exerted on the object, and the digits contribution to such force production. Part III deals with internal forces defined as forces that cancel each other and do not disturb object equilibrium. The role of the internal forces in maintaining the object stability is discussed with respect to such issues as slip prevention, tilt prevention and resistance to perturbations. Part IV is devoted to the motor control of prehension. It covers such topics as prehension synergies, chain effects, the principle of superposition, inter-finger connection matrices and reconstruction of neural commands, mechanical advantage of the fingers, and the simultaneous digit adjustment to several mutually reinforcing or conflicting demands. PMID:18782719

  16. Visual Foraging With Fingers and Eye Gaze

    PubMed Central

    Thornton, Ian M.; Smith, Irene J.; Chetverikov, Andrey; Kristjánsson, Árni

    2016-01-01

    A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints. PMID:27433323

  17. Fusarium verticillioides from finger millet in Uganda.

    PubMed

    Saleh, Amgad A; Esele, J P; Logrieco, Antonio; Ritieni, Alberto; Leslie, John F

    2012-01-01

    Finger millet (Eleusine coracana) is a subsistence crop grown in Sub-Saharan Africa and the Indian Sub-continent. Fusarium species occurring on this crop have not been reported. Approximately 13% of the Fusarium isolates recovered from finger millet growing at three different locations in eastern Uganda belong to Fusarium verticillioides, and could produce up to 18,600 µg/g of total fumonisins when cultured under laboratory conditions. These strains are all genetically unique, based on AFLP analyses, and form fertile perithecia when crossed with the standard mating type tester strains for this species. All but one of the strains is female-fertile and mating-type segregates 13:20 Mat-1:Mat-2. Three new sequences of the gene encoding translation elongation factor 1-α were found within the population. These results indicate a potential health risk for infants who consume finger millet gruel as a weaning food, and are consistent with the hypothesis that F. verticillioides originated in Africa and not in the Americas, despite its widespread association with maize grown almost anywhere worldwide.

  18. Distractor objects affect fingers' angular distances but not fingers' shaping during grasping.

    PubMed

    Ansuini, Caterina; Tognin, Veronica; Turella, Luca; Castiello, Umberto

    2007-04-01

    The aim of the present study was to determine whether and how hand shaping was affected by the presence of a distractor object adjacent to the to-be-grasped object. Twenty subjects were requested to reach towards and grasp a 'convex' or a 'concave' object in the presence or absence of a distractor object either of the same or different shape than the target object. Flexion/extension at the metacarpal-phalangeal (MCP) and proximal interphalangeal joints of all digits, and abduction angle between digits were measured by resistive sensors embedded in a glove. The results indicate robust interference effects at the level of reach duration and the extent of fingers' abduction angles together with changes at the level of a single joint for the thumb. No distractor effects on individual fingers' joints except for the MCP of the middle and little fingers were found. These findings suggest that the presence of distractor object affects hand shaping in terms of fingers' abduction angles, but not at the level of 'shape dependent' fingers' angular excursions. Furthermore, they support the importance of the thumb for the guidance of selective reach-to-grasp movements. We discuss these results in the context of current theories proposed to explain the object selection processes underlying the control of hand action.

  19. Writing in the Air: Contributions of Finger Movement to Cognitive Processing

    PubMed Central

    Itaguchi, Yoshihiro; Yamada, Chiharu; Fukuzawa, Kazuyoshi

    2015-01-01

    The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life. PMID:26061273

  20. Writing in the Air: Contributions of Finger Movement to Cognitive Processing.

    PubMed

    Itaguchi, Yoshihiro; Yamada, Chiharu; Fukuzawa, Kazuyoshi

    2015-01-01

    The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life.

  1. Optimization of illuminating system to detect optical properties inside a finger

    NASA Astrophysics Data System (ADS)

    Sano, Emiko; Shikai, Masahiro; Shiratsuki, Akihide; Maeda, Takuji; Matsushita, Masahito; Sasakawa, Koichi

    2007-01-01

    Biometrics performs personal authentication using individual bodily features including fingerprints, faces, etc. These technologies have been studied and developed for many years. In particular, fingerprint authentication has evolved over many years, and fingerprinting is currently one of world's most established biometric authentication techniques. Not long ago this technique was only used for personal identification in criminal investigations and high-security facilities. In recent years, however, various biometric authentication techniques have appeared in everyday applications. Even though providing great convenience, they have also produced a number of technical issues concerning operation. Generally, fingerprint authentication is comprised of a number of component technologies: (1) sensing technology for detecting the fingerprint pattern; (2) image processing technology for converting the captured pattern into feature data that can be used for verification; (3) verification technology for comparing the feature data with a reference and determining whether it matches. Current fingerprint authentication issues, revealed in research results, originate with fingerprint sensing technology. Sensing methods for detecting a person's fingerprint pattern for image processing are particularly important because they impact overall fingerprint authentication performance. The following are the current problems concerning sensing methods that occur in some cases: Some fingers whose fingerprints used to be difficult to detect by conventional sensors. Fingerprint patterns are easily affected by the finger's surface condition, such noise as discontinuities and thin spots can appear in fingerprint patterns obtained from wrinkled finger, sweaty finger, and so on. To address these problems, we proposed a novel fingerprint sensor based on new scientific knowledge. A characteristic of this new method is that obtained fingerprint patterns are not easily affected by the finger

  2. Actinomycosis of Distal Phalanx Twenty Years after Flap Reconstruction of Index Finger: A Case Report.

    PubMed

    Prashant, N; Azuhairy, A

    2018-03-01

    Actinomycosis is a chronic granulomatous suppurative infection caused by anaerobic bacteria from genus Actinomyces which are normal flora of mouth, colon and vagina. Actinomycosis of upper extremity is rare. We report a case of actinomycosis of the distal phalanx of finger many years after flap reconstruction. The patient presented with two months' history of chronic discharging sinus from the tip of his right index finger, which had sustained a degloving injury 20 years previously. It had been treated with an anterior chest wall flap which had healed uneventfully but was bulky due to excess tissue from the donor site. Radiograph revealed osetomyelitis changes of distal phalanx. Debulking surgery with curettage of the distal phalanx was done. Wound healing was uneventful. He was treated with six weeks of metronidazole and ciprofloxacin. The discharge from the distal phalanx cultured actinomycosis odontolyticus . Histopathology of the debrided tissue showed chronic inflammation. As far as we are aware, there are no reports of actinomycosis in a flap involving the finger treated previously with a chest wall skin flap. The infection was probably dormant for many years before manifesting as a discharging sinus. Although the finger flap was bulky, it was not problematic until it started to have serous discharge. With a thorough debridement of all infected tissue, six weeks of antibiotic was adequate. Ciprofloxacin was prescribed based on discharge culture sensitivity. Metronidazole was added as actinomycosis is anaerobic. Response was prompt as patient was not immunocompromised. At follow-up six months post-surgery the finger had recovered with good function. If not for the discharging sinus, patient would probably have tolerated his bulky finger for the rest of his life.

  3. Drop finger caused by 8th cervical nerve root impairment: a clinical case series.

    PubMed

    Koda, Masao; Furuya, Takeo; Rokkaku, Tomoyuki; Murakami, Masazumi; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Orita, Sumihisa; Inage, Kazuhide; Yamazaki, Masashi; Mannoji, Chikato

    2017-04-01

    Recently, it has been reported that impairment by an 8th cervical nerve root lesion can cause drop finger, namely C8 drop finger. Here, we report a clinical case series of C8 drop finger to reveal the clinical outcome of surgical treatments to allow for a better choice of treatment. The present study included 17 consecutive patients who were diagnosed as having C8 drop finger, in which muscle strength of the extensor digitorum communis (EDC) showed a manual muscle testing (MMT) grade of 3 or less. We retrospectively investigated the clinical characteristics of C8 drop finger and recovery of muscle power was measured by subtraction of preoperative MMT of the EDC from the final follow-up values. Nine cases showed recovery of muscle power of EDC, whereas the remaining eight cases did not show any recovery including two cases of deterioration. None of the conservatively treated patients showed any recovery. Surgically treated cases included two cases of deterioration. In the cases showing recovery, recovery began 9.9 months after surgery on average and recovery took 13.8 months after surgery on average. There was a significant difference in the recovery of MMT grade between the groups treated conservatively and surgically (p = 0.049). Preoperative MMT grade of EDC showed a moderate correlation with postoperative recovery (r 2  = 0.45, p = 0.003). In other words, the severity of preoperative muscular weakness correlated negatively with postoperative recovery. C8 drop finger is better treated by surgery than conservative therapy.

  4. Genotyping-by-Sequencing Analysis for Determining Population Structure of Finger Millet Germplasm of Diverse Origins.

    PubMed

    Kumar, Anil; Sharma, Divya; Tiwari, Apoorv; Jaiswal, J P; Singh, N K; Sood, Salej

    2016-07-01

    Finger millet [ (L.) Gaertn.] is grown mainly by subsistence farmers in arid and semiarid regions of the world. To broaden its genetic base and to boost its production, it is of paramount importance to characterize and genotype the diverse gene pool of this important food and nutritional security crop. However, as a result of nonavailability of the genome sequence of finger millet, the progress could not be made in realizing the molecular basis of unique qualities of the crop. In the present investigation, attempts have been made to characterize the genetically diverse collection of 113 finger millet accessions through whole-genome genotyping-by-sequencing (GBS), which resulted in a genome-wide set of 23,000 single-nucleotide polymorphisms (SNPs) segregating across the entire collection and several thousand SNPs segregating within every accession. A model-based population structure analysis reveals the presence of three subpopulations among the finger millet accessions, which are in parallel with the results of phylogenetic analysis. The observed population structure is consistent with the hypothesis that finger millet was domesticated first in Africa, and from there it was introduced to India some 3000 yr ago. A total of 1128 gene ontology (GO) terms were assigned to SNP-carrying genes for three main categories: biological process, cellular component, and molecular function. Facilitated access to high-throughput genotyping and sequencing technologies are likely to improve the breeding process in developing countries, and as such, this data will be very useful to breeders who are working for the genetic improvement of finger millet. Copyright © 2016 Crop Science Society of America.

  5. Speed invariance of independent control of finger movements in pianists

    PubMed Central

    Soechting, John F.

    2012-01-01

    Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists. PMID:22815403

  6. Does finger training increase young children's numerical performance?

    PubMed

    Gracia-Bafalluy, Maria; Noël, Marie-Pascale

    2008-04-01

    Butterworth (1999) suggested that fingers are important in representing numerosities. Furthermore, scores on a finger gnosis test are a better predictor of numerical performance up to 3 years later than intellectual measures (Marinthe et al., 2001; Noël, 2005). We hypothesised that training in finger differentiation would increase finger gnosis and might also improve numerical performance. Accordingly, 47 first-grade children were selected and divided into 3 groups: children with poor finger gnosis who followed the finger-differentiation training programme (G1), a control-intervention who were trained in story comprehension (G2), and a group with high finger gnosis scores who just continued with normal school lessons (G3). The finger training consisted of 2 weekly sessions of half an hour each, for 8 weeks. Before the training period, children in G3 performed better in finger gnosis and enumeration than children in the two other groups. After the training period this pattern remained for the children in G2 and G3, but the children in G1 were significantly better than those in G2 at finger gnosis, representation of numerosities with fingers, and quantification tasks; they also tended to be better at the processing of Arabic digits. These results indicate that improving finger gnosis in young children is possible and that it can provide a useful support to learning mathematics. Such an approach could be particularly appropriate for children with a developmental Gerstmann syndrome. Theoretically, these results are important because they suggest a functional link between finger gnosis and number skills.

  7. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    PubMed

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  8. Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Fang, Shu; Wu, Dong-Sheng; Hu, Ran

    2017-09-01

    Immiscible fluid-fluid displacement in permeable media is important in many subsurface processes, including enhanced oil recovery and geological CO2 sequestration. Controlled by capillary and viscous forces, displacement patterns of one fluid displacing another more viscous one exhibit capillary and viscous fingering, and crossover between the two. Although extensive studies investigated viscous and capillary fingering in porous media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture-visualization system, we studied how the two forces impact the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M=1/1000,1/500,1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. We also proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse/backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.

  9. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    PubMed

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    amplification of handle vibration at the fingers. The fingers' vibration transmission performance of gloves were further evaluated using a proposed finger frequency-weighting W f apart from the standardized W h -weighting. It is shown that the W h weighting generally overestimates the VR glove effectiveness in limiting the fingers vibration in the high (H: 200-1250 Hz) frequency range. Both the weightings, however, revealed comparable performance of gloves in the mid (M: 25-200 Hz) frequency range. The VR gloves, with the exception of the leather glove, showed considerable reductions in the grip strength (27-41%), while the grip strength reduction was not correlated with the glove material thickness. It is suggested that effectiveness of VR gloves should be assessed considering the vibration transmission to both the palm and fingers of the hand together with the hand grip strength reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Role of Vision in the Development of Finger-Number Interactions: Finger-Counting and Finger-Montring in Blind Children

    ERIC Educational Resources Information Center

    Crollen, Virginie; Mahe, Rachel; Collignon, Olivier; Seron, Xavier

    2011-01-01

    Previous research has suggested that the use of the fingers may play a functional role in the development of a mature counting system. However, the role of developmental vision in the elaboration of a finger numeral representation remains unexplored. In the current study, 14 congenitally blind children and 14 matched sighted controls undertook…

  11. An fMRI study of finger tapping in children and adults.

    PubMed

    Turesky, Ted K; Olulade, Olumide A; Luetje, Megan M; Eden, Guinevere F

    2018-04-02

    Functional brain imaging studies have characterized the neural bases of voluntary movement for finger tapping in adults, but equivalent information for children is lacking. When contrasted to adults, one would expect children to have relatively greater activation, reflecting compensation for an underdeveloped motor system combined with less experience in the execution of voluntary movement. To test this hypothesis, we acquired functional magnetic resonance imaging (fMRI) data on 17 healthy right-handed children (7.48 ± 0.66 years) and 15 adults (24.9 ± 2.9 years) while they performed an irregularly paced finger-tapping task in response to a visual cue (left- and right-hand examined separately). Whole-brain within-group analyses revealed that finger tapping in either age group and for either hand activated contralateral SM1, SMA, ipsilateral anterior cerebellum, and occipital cortices. We used an ANOVA factorial design to test for main effects of Age Group (children vs adults), Hand (left vs. right), and their interactions. For main effects of Age Group, children showed relatively greater activity in left SM1 (extending into bilateral SMA), and, surprisingly, adults exhibited relatively greater activity in right pre-SMA/SMA (extending into left pre-SMA/SMA), right lateral globus pallidus, left putamen, and right anterior cerebellum. The interaction of Age Group × Hand revealed that while both groups activated right SM1 during left finger tapping and exhibited signal decreases (i.e., below fixation baseline) during right finger tapping, both these responses were attenuated in children relative to adults. These data provide an important foundation by which to study children with motor disorders. © 2018 Wiley Periodicals, Inc.

  12. Finger agnosia and cognitive deficits in patients with Alzheimer's disease.

    PubMed

    Davis, Andrew S; Trotter, Jeffrey S; Hertza, Jeremy; Bell, Christopher D; Dean, Raymond S

    2012-01-01

    The purpose of this study was to examine the presence of finger agnosia in patients with Alzheimer's disease (AD) and to determine if level of finger agnosia was related to cognitive impairment. Finger agnosia is a sensitive measure of cerebral impairment and is associated with neurofunctional areas implicated in AD. Using a standardized and norm-referenced approach, results indicated that patients with AD evidenced significantly decreased performance on tests of bilateral finger agnosia compared with healthy age-matched controls. Finger agnosia was predictive of cognitive dysfunction on four of seven domains, including: Crystallized Language, Fluid Processing, Associative Learning, and Processing Speed. Results suggest that measures of finger agnosia, a short and simple test, may be useful in the early detection of AD.

  13. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Wampler, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  14. Erosion waves: Transverse instabilities and fingering

    NASA Astrophysics Data System (ADS)

    Malloggi, F.; Lanuza, J.; Andreotti, B.; Clément, E.

    2006-09-01

    Two laboratory scale experiments of dry and underwater avalanches of non-cohesive granular materials are investigated. We trigger solitary waves and study the conditions under which the front is transversally stable. We show the existence of a linear instability followed by a coarsening dynamics and finally the onset of a fingering pattern. Due to the different operating conditions, both experiments strongly differ by the spatial and time scales involved. Nevertheless, the quantitative agreement between the stability diagram, the wavelengths selected and the avalanche morphology suggest a common scenario for an erosion/deposition process.

  15. Finger Injuries in Football and Rugby.

    PubMed

    Elzinga, Kate E; Chung, Kevin C

    2017-02-01

    Football and rugby athletes are at increased risk of finger injuries given the full-contact nature of these sports. Some players may return to play early with protective taping, splinting, and casting. Others require a longer rehabilitation period and prolonged time away from the field. The treating hand surgeon must weigh the benefits of early return to play for the current season and future playing career against the risks of reinjury and long-term morbidity, including post-traumatic arthritis and decreased range of motion and strength. Each player must be comprehensively assessed and managed with an individualized treatment plan. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mucosal human papillomavirus types in squamous cell carcinomas of the uterine cervix and subsequently on fingers.

    PubMed

    Forslund, O; Nordin, P; Hansson, B G

    2000-06-01

    Human papillomavirus (HPV), especially type 16, is causally involved in the pathogenesis of anogenital cancer. There is an increasing number of reports of HPV infections in squamous cell carcinoma (SCC) of the fingers. A search of the Swedish cancer register covering the period 1958-94 inclusive for women with a history of genital and upper extremity SCC revealed 63 cases. Archival material from both cervical and cutaneous lesions was traced and analysed for the presence of HPV DNA in 32 of these patients. A newly developed 'neighbour primer' polymerase chain reaction (PCR) for HPV 16 DNA, aimed at overcoming the obstacle of cross-linked target DNA, was shown to be superior to conventional general and type-specific HPV PCR tests. HPV DNA was significantly more frequently found in digital tumours than in tumours at other cutaneous sites of the upper extremities [67% (10 of 15) vs. 7% (three of 43); P < 0.001]. Among 13 patients with a history of both cervical and finger SCC, HPV 16 was found in cervical samples from seven patients. From five of these seven patients, HPV 16 was also present in the corresponding finger lesions. The results support the hypothesis of a possible transmission of patients' genital HPV infections to fingers.

  17. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements

    PubMed Central

    Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N

    2012-01-01

    Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776

  18. Vertical Finger Displacement Is Reduced in Index Finger Tapping During Repeated Bout Rate Enhancement.

    PubMed

    Mora-Jensen, Mark Holten; Madeleine, Pascal; Hansen, Ernst Albin

    2017-10-01

    The present study analyzed (a) whether a recently reported phenomenon of repeated bout rate enhancement in finger tapping (i.e., a cumulating increase in freely chosen finger tapping frequency following submaximal muscle activation in the form of externally unloaded voluntary tapping) could be replicated and (b) the hypotheses that the faster tapping was accompanied by changed vertical displacement of the fingertip and changed peak force during tapping. Right-handed, healthy, and recreationally active individuals (n = 24) performed two 3-min index finger tapping bouts at freely chosen tapping frequency, separated by 10-min rest. The recently reported phenomenon of repeated bout rate enhancement was replicated. The faster tapping (8.8 ± 18.7 taps/min, corresponding to 6.0 ± 11.0%, p = .033) was accompanied by reduced vertical displacement (1.6 ± 2.9 mm, corresponding to 6.3 ± 14.9%, p = .012) of the fingertip. Concurrently, peak force was unchanged. The present study points at separate control mechanisms governing kinematics and kinetics during finger tapping.

  19. Extrinsic versus intrinsic hand muscle dominance in finger flexion.

    PubMed

    Al-Sukaini, A; Singh, H P; Dias, J J

    2016-05-01

    This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18-74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted. © The Author(s) 2016.

  20. Finger-Vein Verification Based on Multi-Features Fusion

    PubMed Central

    Qin, Huafeng; Qin, Lan; Xue, Lian; He, Xiping; Yu, Chengbo; Liang, Xinyuan

    2013-01-01

    This paper presents a new scheme to improve the performance of finger-vein identification systems. Firstly, a vein pattern extraction method to extract the finger-vein shape and orientation features is proposed. Secondly, to accommodate the potential local and global variations at the same time, a region-based matching scheme is investigated by employing the Scale Invariant Feature Transform (SIFT) matching method. Finally, the finger-vein shape, orientation and SIFT features are combined to further enhance the performance. The experimental results on databases of 426 and 170 fingers demonstrate the consistent superiority of the proposed approach. PMID:24196433

  1. Numerical Simulations and an Experimental Investigation of a Finger Seal

    NASA Technical Reports Server (NTRS)

    Braun, Minel; Pierson, Hazel; Li, H.; Dong, Dingeng

    2006-01-01

    Besides sealing, the other main goal of a successful finger seal design is to exhibit appropriate compliance to outside forces. The ability of the seal to ride or float along the rotor without rubbing or excessive heating is essential to the successful operation of the seal. The compliance of the finger must only occur in the radial plane; The seal needs to be as sturdy as possible in the axial direction. The compliant finger that moves radially outward with rotor growth and motion has to be able to ride the rotor back down as the rotor diameter recovers or the rotor moves "away". Thus there is an optimum stiffness for the finger.

  2. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study.

    PubMed

    Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C

    2001-11-09

    The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.

  3. EPR spectroscopic investigation of psoriatic finger nails.

    PubMed

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke

    2013-11-01

    Nail lesions are common features of psoriasis and found in almost half of the patients. However, there is no feasible spectroscopic method evaluating changes and severity of nail psoriasis. EPR (electron paramagnetic resonance) might be feasible for evaluating nail conditions in the patients of psoriasis. Finger nails of five cases with nail psoriasis, (three females and two males) were examined. Nail samples were subjected to the EPR assay. The small piece of the finger nail (1.5 × 5 mm(2)) was incubated in ~50 μM 5-DSA (5-doxylstearic acid) aqueous solutions for about 60 min at 37°C. After rinsing and wiping off the excess 5-DSA solution, the nail samples were measured by EPR. EPR spectra were analyzed using the intensity ratio (Fast/Slow) of the two motions at the peaks of the lower magnetic field. We observed two distinguishable sites on the basis of the EPR results. In addition, the modern EPR calculation was performed to analyze the spectra obtained. The nail psoriasis-related region is 2~3 times higher than that of the control. The present EPR results show that there are two distinguishable sites in the nail. In the case of nail psoriasis, the fragile components are 2~3 times more than those of the control. Thus, the EPR method is thought to be a novel and reliable method of evaluating the nail psoriasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Finger-Powered Electro-Digital-Microfluidics.

    PubMed

    Peng, Cheng; Ju, Y Sungtaek

    2017-01-01

    Portable microfluidic devices are promising for point-of-care (POC) diagnosis and bio- and environmental surveillance in resource-constrained or non-laboratory environments. Lateral-flow devices, some built off paper or strings, have been widely developed but the fixed layouts of their underlying wicking/microchannel structures limit their flexibility and present challenges in implementing multistep reactions. Digital microfluidics can circumvent these difficulties by addressing discrete droplets individually. Existing approaches to digital microfluidics, however, often require bulky power supplies/batteries and high voltage circuits. We present a scheme to drive digital microfluidic devices by converting mechanical energy of human fingers to electrical energy using an array of piezoelectric elements. We describe the integration our scheme into two promising digital microfluidics platforms: one based on the electro-wetting-on-dielectric (EWOD) phenomenon and the other on the electrophoretic control of droplet (EPD). Basic operations of droplet manipulations, such as droplet transport, merging and splitting, are demonstrated using the finger-powered digital-microfluidics.

  5. Teleoperation of Robonaut Using Finger Tracking

    NASA Technical Reports Server (NTRS)

    Champoux, Rachel G.; Luo, Victor

    2012-01-01

    With the advent of new finger tracking systems, the idea of a more expressive and intuitive user interface is being explored and implemented. One practical application for this new kind of interface is that of teleoperating a robot. For humanoid robots, a finger tracking interface is required due to the level of complexity in a human-like hand, where a joystick isn't accurate. Moreover, for some tasks, using one's own hands allows the user to communicate their intentions more effectively than other input. The purpose of this project was to develop a natural user interface for someone to teleoperate a robot that is elsewhere. Specifically, this was designed to control Robonaut on the international space station to do tasks too dangerous and/or too trivial for human astronauts. This interface was developed by integrating and modifying 3Gear's software, which includes a library of gestures and the ability to track hands. The end result is an interface in which the user can manipulate objects in real time in the user interface. then, the information is relayed to a simulator, the stand in for Robonaut, at a slight delay.

  6. Rehabilitation for bilateral amputation of fingers

    USGS Publications Warehouse

    Stapanian, Martin A.; Stapanian, Adrienne M.P.; Staley, Keith E.

    2010-01-01

    We describe reconstructive surgeries, therapy, prostheses, and adaptations for a patient who experienced bilateral amputation of all five fingers of both hands through the proximal phalanges in January 1992. The patient made considerable progress in the use of his hands in the 10 mo after amputation, including nearly a 120% increase in the active range of flexion of metacarpophalangeal joints. In late 1992 and early 1993, the patient had "on-top plasty" surgeries, in which the index finger remnants were transferred onto the thumb stumps, performed on both hands. The increased web space and functional pinch resulting from these procedures made many tasks much easier. The patient and occupational therapists set challenging goals at all times. Moreover, the patient was actively involved in the design and fabrication of all prostheses and adaptations or he developed them himself. Although he was discharged from occupational therapy in 1997, the patient continues to actively find new solutions for prehension and grip strength 18 yr after amputation.

  7. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  8. Oxidation-Mediated Fingering in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Hight, David C.; O'Regan, John D.; Dickey, Michael D.; Daniels, Karen E.

    2017-10-01

    We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D =1.3 ±0.05 ) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

  9. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  10. Finger movement at birth in brachial plexus birth palsy

    PubMed Central

    Nath, Rahul K; Benyahia, Mohamed; Somasundaram, Chandra

    2013-01-01

    AIM: To investigate whether the finger movement at birth is a better predictor of the brachial plexus birth injury. METHODS: We conducted a retrospective study reviewing pre-surgical records of 87 patients with residual obstetric brachial plexus palsy in study 1. Posterior subluxation of the humeral head (PHHA), and glenoid retroversion were measured from computed tomography or Magnetic resonance imaging, and correlated with the finger movement at birth. The study 2 consisted of 141 obstetric brachial plexus injury patients, who underwent primary surgeries and/or secondary surgery at the Texas Nerve and Paralysis Institute. Information regarding finger movement was obtained from the patient’s parent or guardian during the initial evaluation. RESULTS: Among 87 patients, 9 (10.3%) patients who lacked finger movement at birth had a PHHA > 40%, and glenoid retroversion < -12°, whereas only 1 patient (1.1%) with finger movement had a PHHA > 40%, and retroversion < -8° in study 1. The improvement in glenohumeral deformity (PHHA, 31.8% ± 14.3%; and glenoid retroversion 22.0° ± 15.0°) was significantly higher in patients, who have not had any primary surgeries and had finger movement at birth (group 1), when compared to those patients, who had primary surgeries (nerve and muscle surgeries), and lacked finger movement at birth (group 2), (PHHA 10.7% ± 15.8%; Version -8.0° ± 8.4°, P = 0.005 and P = 0.030, respectively) in study 2. No finger movement at birth was observed in 55% of the patients in this study group. CONCLUSION: Posterior subluxation and glenoid retroversion measurements indicated significantly severe shoulder deformities in children with finger movement at birth, in comparison with those lacked finger movement. However, the improvement after triangle tilt surgery was higher in patients who had finger movement at birth. PMID:23362472

  11. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  12. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.

    PubMed

    Iwai, Kosuke; Shih, Kuan Cheng; Lin, Xiao; Brubaker, Thomas A; Sochol, Ryan D; Lin, Liwei

    2014-10-07

    Point-of-care (POC) and disposable biomedical applications demand low-power microfluidic systems with pumping components that provide controlled pressure sources. Unfortunately, external pumps have hindered the implementation of such microfluidic systems due to limitations associated with portability and power requirements. Here, we propose and demonstrate a 'finger-powered' integrated pumping system as a modular element to provide pressure head for a variety of advanced microfluidic applications, including finger-powered on-chip microdroplet generation. By utilizing a human finger for the actuation force, electrical power sources that are typically needed to generate pressure head were obviated. Passive fluidic diodes were designed and implemented to enable distinct fluids from multiple inlet ports to be pumped using a single actuation source. Both multilayer soft lithography and injection molding processes were investigated for device fabrication and performance. Experimental results revealed that the pressure head generated from a human finger could be tuned based on the geometric characteristics of the pumping system, with a maximum observed pressure of 7.6 ± 0.1 kPa. In addition to the delivery of multiple, distinct fluids into microfluidic channels, we also employed the finger-powered pumping system to achieve the rapid formation of both water-in-oil droplets (106.9 ± 4.3 μm in diameter) and oil-in-water droplets (75.3 ± 12.6 μm in diameter) as well as the encapsulation of endothelial cells in droplets without using any external or electrical controllers.

  13. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    PubMed Central

    Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  14. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    PubMed

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  15. Robust finger vein ROI localization based on flexible segmentation.

    PubMed

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-10-24

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

  16. Rediscovering Ruth Faison Shaw and Her Finger-Painting Method

    ERIC Educational Resources Information Center

    Mayer, Veronica

    2005-01-01

    Ruth Faison Shaw was an art educator who developed a nontraditional educational perspective of teaching and a different vision about children's art. As such, she is considered by some to be the initiator of finger-painting in America (The History of Art Education Timeline 1930-1939, 2002.) Shaw developed the technique of finger-painting and a…

  17. Automated Finger Spelling by Highly Realistic 3D Animation

    ERIC Educational Resources Information Center

    Adamo-Villani, Nicoletta; Beni, Gerardo

    2004-01-01

    We present the design of a new 3D animation tool for self-teaching (signing and reading) finger spelling the first basic component in learning any sign language. We have designed a highly realistic hand with natural animation of the finger motions. Smoothness of motion (in real time) is achieved via programmable blending of animation segments. The…

  18. Number magnitude to finger mapping is disembodied and topological.

    PubMed

    Plaisier, Myrthe A; Smeets, Jeroen B J

    2011-03-01

    It has been shown that humans associate fingers with numbers because finger counting strategies interact with numerical judgements. At the same time, there is evidence that there is a relation between number magnitude and space as small to large numbers seem to be represented from left to right. In the present study, we investigated whether number magnitude to finger mapping is embodied (related to the order of fingers on the hand) or disembodied (spatial). We let healthy human volunteers name random numbers between 1 and 30, while simultaneously tapping a random finger. Either the hands were placed directly next to each other, 30 cm apart, or the hands were crossed such that the left hand was on the right side of the body mid-line. The results show that naming a smaller number than the previous one was associated with tapping a finger to the left of the previously tapped finger. This shows that there is a spatial (disembodied) mapping between number magnitude and fingers. Furthermore, we show that this mapping is topological rather than metrically scaled.

  19. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    PubMed Central

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-01-01

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769

  20. Finger vein extraction using gradient normalization and principal curvature

    NASA Astrophysics Data System (ADS)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  1. Population Structure and Diversity in Finger Millet (Eleusine coracana) Germplasm.

    USDA-ARS?s Scientific Manuscript database

    A genotypic analysis of 79 finger millet accessions (E. coracana subsp. coracana) from 11 African and 5 Asian countries, plus 14 wild E. coracana subsp. africana lines collected in Uganda and Kenya was conducted with 45 SSR markers distributed across the finger millet genome. Phylogenetic and popula...

  2. Evaluation of finger plate and flat plate connection design.

    DOT National Transportation Integrated Search

    2016-01-01

    This project investigates the cause(s) of premature deterioration of MoDOT finger plate and flat plate expansion devices : under high traffic volumes and then uses that information to design new Load and Resistance Factor Design (LRFD) : finger plate...

  3. Finger impedance evaluation by means of hand exoskeleton.

    PubMed

    Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio

    2011-12-01

    Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.

  4. 21 CFR 890.5410 - Powered finger exerciser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...

  5. 21 CFR 890.5410 - Powered finger exerciser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...

  6. 21 CFR 890.5410 - Powered finger exerciser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...

  7. 21 CFR 890.5410 - Powered finger exerciser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...

  8. 21 CFR 890.5410 - Powered finger exerciser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered finger exerciser. 890.5410 Section 890.5410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5410 Powered finger...

  9. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics-An Important Nutri-Cereal of Future.

    PubMed

    Sood, Salej; Kumar, Anil; Babu, B Kalyana; Gaur, Vikram S; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [ Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.

  10. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics—An Important Nutri-Cereal of Future

    PubMed Central

    Sood, Salej; Kumar, Anil; Babu, B. Kalyana; Gaur, Vikram S.; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2–4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet. PMID:27881984

  11. Dangers of neglect: partially embedded ring upon a finger.

    PubMed

    Kumar, Anand; Edwards, Huw; Lidder, Surjit; Mestha, Prabhakar

    2013-05-09

    Digital swelling is a common presentation in clinical practice. Patients presenting with swollen fingers to the emergency department will often have rings on their finger, which can be removed using a variety of simple non-operative techniques or by cutting the ring off and thus avoiding any long-term consequences. Very rarely, when there is a delay in presentation of these patients, serious consequences may proceed, including finger ischaemia, infection, tendon attrition or ultimately the need for surgical amputation. We present an unusual case of patient with psychiatric illness who presented late with a ring that had embedded upon the volar aspect of the index finger. The difficulties faced by the emergency care practitioners in such circumstances, the consequences of rings acting as a tourniquet and strategies for removal of rings on swollen fingers are highlighted.

  12. Development of a CPM Machine for Injured Fingers.

    PubMed

    Fu, Yili; Zhang, Fuxiang; Ma, Xin; Meng, Qinggang

    2005-01-01

    Human fingers are easy to be injured. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To develop a CPM machine for the clinic application in the rehabilitation of injured fingers is a significant task. Therefore, based on the theories of evidence based medicine (EBM) and CPM, we've developed a set of biomimetic mechanism after modeling the motions of fingers and analyzing its kinematics and dynamics analysis. We also design an embedded operating system based on ARM (a kind of 32-bit RISC microprocessor). The equipment can achieve the precise control of moving scope of fingers, finger's force and speed. It can serves as a rational checking method and a way of assessment for functional rehabilitation of human hands. Now, the first prototype has been finished and will start the clinical testing in Harbin Medical University shortly.

  13. A finger exoskeleton for rehabilitation and brain image study.

    PubMed

    Tang, Zhenjin; Sugano, Shigeki; Iwata, Hiroyasu

    2013-06-01

    This paper introduces the design, fabrication and evaluation of the second generation prototype of a magnetic resonance compatible finger rehabilitation robot. It can not only be used as a finger rehabilitation training tool after a stroke, but also to study the brain's recovery process during the rehabilitation therapy (ReT). The mechanical design of the current generation has overcome the disadvantage in the previous version[13], which can't provide precise finger trajectories during flexion and extension motion varying with different finger joints' torques. In addition, in order to study the brain activation under different training strategies, three control modes have been developed, compared to only one control mode in the last prototype. The current prototype, like the last version, uses an ultrasonic motor as its actuator to enable the patient to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger. Finally, experiments have been carried out to evaluate the performances of this device.

  14. Finger Injuries in Football and Rugby

    PubMed Central

    Elzinga, Kate E.; Chung, Kevin C.

    2016-01-01

    SYNOPSIS Football and rugby athletes are at increased risk of finger injuries given the full contact nature of these sports. Depending on the injury and the position played, some players may return to play early with protective taping, splinting, and casting. Other injuries, particularly in players requiring the full use of their hand for their position, require a longer rehabilitation period and prolonged time away from the field. The treating hand surgeon must carefully weigh the benefits of early return to play for the athlete’s current season and future playing career against the risks of re-injury and long-term morbidity, including post-traumatic arthritis and decreased range of motion and strength. Each player must be comprehensively assessed and managed with an individualized treatment plan. PMID:27886831

  15. Innervated boomerang flap for finger pulp reconstruction.

    PubMed

    Chen, Shao-Liang; Chiou, Tai-Fung

    2007-11-01

    The boomerang flap originates from the dorsolateral aspect of the proximal phalanx of an adjacent digit and is supplied by the retrograde blood flow through the vascular arcades between the dorsal and palmar digital arteries. To provide sensation of the boomerang flap for finger pulp reconstruction, the dorsal sensory branch of the proper digital nerve and the superficial sensory branch of the corresponding radial or ulnar nerve are included within the skin flap. After transfer of the flap to the injured site, epineural neurorrhaphies are done between the digital nerves of the pulp and the sensory branches of the flap. We used this sensory flap in five patients, with more than 1 year follow-up, and all patients achieved measurable two-points discrimination. The boomerang flap not only preserves the proper palmar digital artery but also provides an extended and innervated skin paddle. It seems to be an alternative choice for one-stage reconstruction of major pulp defect.

  16. Mechanics of finger-tip electronics

    NASA Astrophysics Data System (ADS)

    Su, Yewang; Li, Rui; Cheng, Huanyu; Ying, Ming; Bonifas, Andrew P.; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang

    2013-10-01

    Tactile sensors and electrotactile stimulators can provide important links between humans and virtual environments, through the sensation of touch. Soft materials, such as low modulus silicones, are attractive as platforms and support matrices for arrays sensors and actuators that laminate directly onto the fingertips. Analytic models for the mechanics of three dimensional, form-fitting finger cuffs based on such designs are presented here, along with quantitative validation using the finite element method. The results indicate that the maximum strains in the silicone and the embedded devices are inversely proportional to the square root of radius of curvature of the cuff. These and other findings can be useful in formulating designs for these and related classes of body-worn, three dimensional devices.

  17. The impact of finger counting habits on arithmetic in adults and children.

    PubMed

    Newman, Sharlene D; Soylu, Firat

    2014-07-01

    Here, we explored the impact of finger counting habits on arithmetic in both adults and children. Two groups of participants were examined, those that begin counting with their left hand (left-starters) and those that begin counting with their right hand (right-starters). For the adults, performance on an addition task in which participants added 2 two-digit numbers was compared. The results revealed that left-starters were slower than right-starters when adding and they had lower forward and backward digit-span scores. The children (aged 5-12) showed similar results on a single-digit timed addition task-right-starters outperformed left-starters. However, the children did not reveal differences in working memory or verbal and non-verbal intelligence as a function of finger counting habit. We argue that the motor act of finger counting influences how number is represented and suggest that left-starters may have a more bilateral representation that accounts for the slower processing.

  18. Computerized measures of finger tapping: reliability, malingering and traumatic brain injury.

    PubMed

    Hubel, Kerry A; Yund, E William; Herron, Timothy J; Woods, David L

    2013-01-01

    We analyzed computerized finger tapping metrics in four experiments. Experiment 1 showed tapping-rate differences associated with hand dominance, digits, sex, and fatigue that replicated those seen in a previous, large-scale community sample. Experiment 2 revealed test-retest correlations (r = .91) that exceeded those reported in previous tapping studies. Experiment 3 investigated subjects simulating symptoms of traumatic brain injury (TBI); 62% of malingering subjects produced abnormally slow tapping rates. A tapping-rate malingering index, based on rate-independent tapping patterns, provided confirmatory evidence of malingering in 48% of the subjects with abnormal tapping rates. Experiment 4 compared tapping in 24 patients with mild TBI (mTBI) and a matched control group; mTBI patients showed slowed tapping without evidence of malingering. Computerized finger tapping measures are reliable measures of motor speed, useful in detecting subjects performing with suboptimal effort, and are sensitive to motor abnormalities following mTBI.

  19. Finger vein verification system based on sparse representation.

    PubMed

    Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong

    2012-09-01

    Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.

  20. Management of the Stiff Finger: Evidence and Outcomes

    PubMed Central

    Yang, Guang; McGlinn, Evan P.; Chung, Kevin C.

    2014-01-01

    SYNOPSIS The term “stiff finger” refers to a reduction in the range of motion in the finger, and it is a condition that has many different causes and involves a number of different structures. Almost all injuries of the fingers and some diseases can cause finger stiffness. Hand surgeons often face difficulty treating stiff fingers that are affected by irreversible soft tissues fibrosis. Stiff fingers can be divided into flexion and extension deformities. They can also be sub-classified into four categories according to the involved tissues extending from the skin to the joint capsule. Prevention of stiff fingers by judicious mobilization of the joints is prudent to avoid more complicated treatment after established stiffness occurs. Static progressive and dynamic splints have been considered as effective non-operative interventions to treat stiff fingers. Most authors believe force of joint distraction and time duration of stretching are two important factors to consider while applying a splint or cast. We also introduce the concepts of capsulotomy and collateral ligament release and other soft tissue release of the MCP and PIP joint in this article. Future outcomes research is vital to assessing the effectiveness of these surgical procedures and guiding postoperative treatment recommendations. PMID:24996467

  1. Response to reflected-force feedback to fingers in teleoperations

    NASA Technical Reports Server (NTRS)

    Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.

    1989-01-01

    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

  2. A hierarchical classification method for finger knuckle print recognition

    NASA Astrophysics Data System (ADS)

    Kong, Tao; Yang, Gongping; Yang, Lu

    2014-12-01

    Finger knuckle print has recently been seen as an effective biometric technique. In this paper, we propose a hierarchical classification method for finger knuckle print recognition, which is rooted in traditional score-level fusion methods. In the proposed method, we firstly take Gabor feature as the basic feature for finger knuckle print recognition and then a new decision rule is defined based on the predefined threshold. Finally, the minor feature speeded-up robust feature is conducted for these users, who cannot be recognized by the basic feature. Extensive experiments are performed to evaluate the proposed method, and experimental results show that it can achieve a promising performance.

  3. Energy harvesting from mouse click of robot finger using piezoelectrics

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2017-04-01

    In this paper, we investigate the feasibility of energy harvesting from the mouse click motion using a piezoelectric energy transducer. Specifically, we use a robotic finger to realize repeatable mouse click motion. The robotic finger wears a glove with a pocket for including the piezoelectric material as an energy transducer. We propose a model for the energy harvesting system through the inverse kinematic framework of parallel joints in the finger and the electromechanical coupling equations of the piezoelectric material. Experiments are performed to elucidate the effect of the load resistance and the mouse click motion on energy harvesting.

  4. Finger rafting: a generic instability of floating elastic sheets.

    PubMed

    Vella, Dominic; Wettlaufer, J S

    2007-02-23

    Colliding ice floes are often observed to form a series of interlocking fingers. We show that this striking phenomenon is not a result of some peculiar property of ice but rather a general and robust mechanical phenomenon reproducible in the laboratory with other floating materials. We determine the theoretical relationship between the width of the resulting fingers and the material's mechanical properties and present experimental results along with field observations to support the theory. The generality of this "finger rafting" suggests that analogous processes may be responsible for creating the large-scale structures observed at the boundaries between Earth's convergent tectonic plates.

  5. Effect of mechanical forces on finger nail curvature: an analysis of the effect of occupation on finger nails.

    PubMed

    Sano, Hitomi; Shionoya, Kaori; Ogawa, Rei

    2014-04-01

    We studied the relationship between mechanical force and nail curvature. The effect of different frequencies and strengths of mechanical force on nail curvature was assessed. In Study 1, 63 carpenters and 63 office workers were enrolled, and the configurations of their thumb nails were assessed by measuring the curve index (defined as nail height/width) and pinch strength. In Study 2, nail curvature and pinch strength of jazz bassists, who characteristically do not use the right fourth and fifth fingers but use the left fifth finger a lot, were compared. In Study 3, the thumb nail curvature and pinch strength of the dominant and nondominant sides of the 126 participants from Study 1 were compared. Study 1: Carpenters had a significantly lower mean thumb nail curve index and higher mean pinch strength. Study 2: The nails of the unused right fourth and fifth fingers were much more curved than the nails of the frequently used left fourth and fifth fingers. The pinch strength of the right fifth finger was much weaker than the pinch strength of the left fifth finger. Study 3: The dominant side had a significantly lower nail curve index and higher pinch strength. The frequency and strength of mechanical forces on finger nails significantly affect nail appearance. © 2014 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  6. The fibrous flexor sheaths of the fingers.

    PubMed Central

    Jones, M M; Amis, A A

    1988-01-01

    The structure of the digital fibrous flexor sheath was examined by dissection and histology. The presence of a specific system of named fibrous tissue bands, forming annular and cruciate pulleys, was noted confirming details which are well established in the surgical literature although not detailed by the anatomical texts. These pulleys were linked by thin parts of the sheath. When the inner aspect of the sheath was examined, it was found that it was not a continuous smooth surface, as depicted in both anatomical and surgical texts. The thin parts of the sheath often overlapped the free edges of the pulleys before attaching to their superficial aspects, so that the pulleys possessed free edges within the sheath. Forty eight cadaveric fingers were examined in order to determine the frequency of occurrence and sizes of these overlaps. The largest and most frequent overlap was found at the distal end of the A2 pulley (which attaches to the proximal phalanx). Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 (cont.) Fig. 7 Fig. 8 Fig. 9 PMID:3417546

  7. Examiner's finger-mounted fetal tissue oximetry.

    PubMed

    Kanayama, Naohiro; Niwayama, Masatsugu

    2014-06-01

    The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO₂) with the new tissue oximeter. Neonatal StO₂ was measured at any position of the head regardless of amount of hair. Neonatal StO₂ was found to be around 77%. Fetal StO₂ was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO₂ without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO₂ in any condition of the fetus.

  8. Examiner's finger-mounted fetal tissue oximetry

    NASA Astrophysics Data System (ADS)

    Kanayama, Naohiro; Niwayama, Masatsugu

    2014-06-01

    The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO2) with the new tissue oximeter. Neonatal StO was measured at any position of the head regardless of amount of hair. Neonatal StO was found to be around 77%. Fetal StO was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO in any condition of the fetus.

  9. Finger Length Ratios in Serbian Transsexuals

    PubMed Central

    Vujović, Svetlana; Popović, Srdjan; Mrvošević Marojević, Ljiljana; Ivović, Miomira; Tančić-Gajić, Milina; Stojanović, Miloš; Marina, Ljiljana V.; Barać, Marija; Barać, Branko; Kovačević, Milena; Duišin, Dragana; Barišić, Jasmina; Djordjević, Miroslav L.; Micić, Dragan

    2014-01-01

    Atypical prenatal hormone exposure could be a factor in the development of transsexualism. There is evidence that the 2nd and 4th digit ratio (2D : 4D) associates negatively with prenatal testosterone and positively with estrogens. The aim was to assess the difference in 2D : 4D between female to male transsexuals (FMT) and male to female transsexuals (MFT) and controls. We examined 42 MFT, 38 FMT, and 45 control males and 48 control females. Precise measurements were made by X-rays at the ventral surface of both hands from the basal crease of the digit to the tip using vernier calliper. Control male and female patients had larger 2D : 4D of the right hand when compared to the left hand. Control male's left hand ratio was lower than in control female's left hand. There was no difference in 2D : 4D between MFT and control males. MFT showed similar 2D : 4D of the right hand with control women indicating possible influencing factor in embryogenesis and consequently finger length changes. FMT showed the lowest 2D : 4D of the left hand when compared to the control males and females. Results of our study go in favour of the biological aetiology of transsexualism. PMID:24982993

  10. Differing roles for zinc fingers in DNA recognition: Structure of a six-finger transcription factor IIIA complex

    PubMed Central

    Nolte, Robert T.; Conlin, Rachel M.; Harrison, Stephen C.; Brown, Raymond S.

    1998-01-01

    The crystal structure of the six NH2-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound with 31 bp of the 5S rRNA gene promoter has been determined at 3.1 Å resolution. Individual zinc fingers are positioned differently in the major groove and across the minor groove of DNA to span the entire length of the duplex. These results show how TFIIIA can recognize several separated DNA sequences by using fewer fingers than necessary for continuous winding in the major groove. PMID:9501194

  11. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  12. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  13. Fuzzy based finger vein recognition with rotation invariant feature matching

    NASA Astrophysics Data System (ADS)

    Ezhilmaran, D.; Joseph, Rose Bindu

    2017-11-01

    Finger vein recognition is a promising biometric with commercial applications which is explored widely in the recent years. In this paper, a finger vein recognition system is proposed using rotation invariant feature descriptors for matching after enhancing the finger vein images with an interval type-2 fuzzy method. SIFT features are extracted and matched using a matching score based on Euclidian distance. Rotation invariance of the proposed method is verified in the experiment and the results are compared with SURF matching and minutiae matching. It is seen that rotation invariance is verified and the poor quality issues are solved efficiently with the designed system of finger vein recognition during the analysis. The experiments underlines the robustness and reliability of the interval type-2 fuzzy enhancement and SIFT feature matching.

  14. Fingered bola body, bola with same, and methods of use

    NASA Technical Reports Server (NTRS)

    Dzenitis, John M. (Inventor); Billica, Linda W. (Inventor)

    1994-01-01

    The present invention discloses bola bodies, bolas, and a snaring method which makes use such devices. A bola body, according to the present invention, is nonspherical or irregular in shape rather than a smooth sphere or ovoid body. One or more fingers extends from the bola body. These fingers may be relatively straight or they may have crooked or bent portions to enhance entanglement with a bola line or lines or with each other. Two or more of such fingers may be used and may be regularly or irregularly spaced apart on a bola body. A bola with such bodies includes lines which are connected to the other bodies. In one particular embodiment of a bola body, according to the present invention, the body has an irregular shape with a bottom rectangular portion and a top pyramid portion forming a nose. A plurality of fingers is extended from the pyramidal top portion with one finger extended up and away from each of four corners of the top portion. Such a bola body tends to be initially oriented with its nose and fingers against an object being snared since the body is pulled nose first when a bola line is secured at the tip of the pyramidal portion of the bola body. With such a bola, an unwrapping bola body can slip around a target member so that two of the rod-shaped fingers catch a bola line and guide it into an area or crook between the fingers and a side of the top pyramidal portion of the bola body. Tension on the bola line maintains the line in the crook and tends to press the fingers against the unwrapped target member to stabilize the wrapping of the line about the target member. With such a bola, it is difficult for two or more lines unwrapping in different directions to move past one another without being forced together by line tension. Also, the fingers of such bola bodies may hook and hold each other. The fingers may also hook or entangle some object on or portion of the target member. A probable known target member has known dimensions and shapes so that

  15. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  16. Early Hematopoietic Zinc Finger Protein Prevents Tumor Cell Recognition by Natural Killer Cells1

    PubMed Central

    La Rocca, Rosanna; Fulciniti, Mariateresa; Lakshmikanth, Tadepally; Mesuraca, Maria; Ali, Talib Hassan; Mazzei, Valerio; Amodio, Nicola; Catalano, Lucio; Rotoli, Bruno; Ouerfelli, Ouathek; Grieco, Michele; Gulletta, Elio; Bond, Heather M.; Morrone, Giovanni; Ferrone, Soldano; Carbone, Ennio

    2009-01-01

    Early hematopoietic zinc finger/zinc finger protein 521 (EHZF/ZNF521) is a novel zinc finger protein expressed in hematopoietic stem and progenitor cells and is down-regulated during their differentiation. Its transcript is also abundant in some hematopoietic malignancies. Analysis of the changes in the antigenic profile of cells transfected with EHZF cDNA revealed up-regulation of HLA class I cell surface expression. This phenotypic change was associated with an increased level of HLA class I H chain, in absence of detectable changes in the expression of other Ag-processing machinery components. Enhanced resistance of target cells to NK cell-mediated cytotoxicity was induced by enforced expression of EHZF in the cervical carcinoma cell line HeLa and in the B lymphoblastoid cell line IM9. Preincubation of transfected cells with HLA class I Ag-specific mAb restored target cell susceptibility to NK cell-mediated lysis, indicating a specific role for HLA class I Ag up-regulation in the NK resistance induced by EHZF. A potential clinical significance of these findings is further suggested by the inverse correlation between EHZF and MHC class I expression levels, and autologous NK susceptibility of freshly explanted multiple myeloma cells. PMID:19342626

  17. Downward finger displacement distinguishes Parkinson disease dementia from Alzheimer disease.

    PubMed

    Lieberman, Abraham; Deep, Aman; Shi, Jiong; Dhall, Rohit; Shafer, Saulena; Moguel-Cobos, Guillermo; Dhillon, Ravneet; Frames, Christopher W; McCauley, Margaret

    2018-02-01

    Purpose/Aim of the study: To study finger displacement in patients with Parkinson disease dementia (PDD) and in patients with Alzheimer disease (AD). We examined 56 patients with PDD and 35 with AD. Patients were examined during their regular outpatient clinic visit. Finger displacement was measured by observers not actively involved in the study using a creative grid ruler for all PDD and AD patients. Finger displacement was examined by asking patients to point their index fingers toward the grid ruler with the nails facing upward. Patients were asked to maintain the pointing position for 15 s. After 15 s, patients were asked to close their eyes for another 15 s while maintaining the same position. A positive result was downward index finger displacement of ≥5 cm within the 15-second time window with eyes closed. Of the 56 PDD patients, 53 had bilateral finger displacement of >5 cm. In comparison, of the 35 AD patients, only 1 patient had minimal displacement. Results of the non-invasive finger displacement test may provide insight, on an outpatient basis, of the integrity of subcortical-cortical circuits. Downward finger displacement, especially bilateral downward displacement, may signal the extensive disruption of subcortical-cortical circuits that occurs in PDD patients. AChE: acetylcholinesterase; AD: Alzheimer disease; DLB: dementia with Lewy bodies; ET: essential tremor; MDS-UPDRS: Movement Disorder Society-sponsored Unified Parkinson's Disease Rating Scale; MMSE: Mini-Mental State Examination; PD: Parkinson disease; PDD: Parkinson disease dementia.

  18. Finger blood content, light transmission, and pulse oximetry errors.

    PubMed

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.

  19. Sticky-Finger Manipulation with a Multi-Touch Interface

    DTIC Science & Technology

    2011-07-01

    accessible, which makes them cost -effective potential replacements for traditional teleoperation interfaces. Perhaps the most important benefit that a multi...responses. Their model also took into account cloth thickness. A number of systems attempt to simulate cloth using position-based approaches instead of...can be stuck to the finger. Currently, the system does not take into account the exact shape and area of finger contact on the multi-touch screen and

  20. Patterns of Dupuytren disease in fingers: studying correlations with a multivariate ordinal logit model.

    PubMed

    Lanting, Rosanne; Nooraee, Nazanin; Werker, Paul M N; van den Heuvel, Edwin R

    2014-09-01

    Dupuytren disease affects fingers in a variable fashion. Knowledge about specific disease patterns (phenotype) based on location and severity of the disease is lacking. In this cross-sectional study, 344 primary affected hands with Dupuytren disease were physically examined. The Pearson correlation coefficient between the coexistence of Dupuytren disease in pairs of fingers was calculated, and agglomerative hierarchical clustering was applied to identify possible clusters of affected fingers. With a multivariate ordinal logit model, the authors studied the correlation on severity, taking into account age and sex, and tested hypotheses on independence between groups of fingers. The ring finger was most frequently affected by Dupuytren disease, and contractures were seen in 15.1 percent of affected rays. The severity of thumb and index finger, middle and ring fingers, and middle and little fingers was significantly correlated. Occurrences in pairs of fingers were highest in the middle and ring fingers and lowest in the thumb and index finger. Correlation between the ring and little fingers and a correlation between fingers from the ulnar and radial sides could not be demonstrated. Rays on the ulnar side of the hand are predominantly affected. The middle finger is substantially correlated with other fingers on the ulnar side, and the thumb and index finger are correlated; however, there was no evidence that the ulnar side and the radial side were correlated in any way, which suggests that occurrence on one side of the hand does not predict Dupuytren disease on the other side of the hand. Risk, III.

  1. Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet.

    PubMed

    Sen, Saswati; Kundu, Sangeeta; Dutta, Samir Kr

    2016-11-01

    Jasmonic acid (JA) signaling pathway in plants is activated against various developmental processes as well as biotic and abiotic stresses. The Jasmonate ZIM-domain (JAZ) protein family, the key regulator of plant JA signaling pathway, also participates in phytohormone crosstalk. This is the first study revealing the in vivo interactions of finger millet (Eleusine coracana (L.) Gaertn.) JAZ protein (EcJAZ) under methyl jasmonate (MJ) treatment. The aim of the study was to explore not only the JA signaling pathway but also the phytohormone signaling crosstalk of finger millet, a highly important future crop. From the MJ-treated finger millet seedlings, the EcJAZ interacting proteins were purified by affinity chromatography with the EcJAZ-matrix. Twenty-one proteins of varying functionalities were successfully identified by MALDI-TOF-TOF Mass spectrometry. Apart from the previously identified JAZ binding proteins, most prominently, EcJAZ was found to interact with transcription factors like NAC, GATA and also with Cold responsive protein (COR), etc. that might have extended the range of functionalities of JAZ proteins. Moreover, to evaluate the interactions of EcJAZ in the JA-co-receptor complex, we generated ten in-silico models containing the EcJAZ degron and the COI1-SKP1 of five monocot cereals viz., rice, wheat, maize, Sorghum and Setaria with JA-Ile or coronatine. Our results indicated that the EcJAZ protein of finger millet could act as the signaling hub for the JA and other phytohormone signaling pathways, in response to a diverse set of stressors and developmental cues to provide survival fitness to the plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Integrating optical finger motion tracking with surface touch events

    PubMed Central

    MacRitchie, Jennifer; McPherson, Andrew P.

    2015-01-01

    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732

  3. A transition in the viscous fingering instability in miscible fluids

    NASA Astrophysics Data System (ADS)

    Videbaek, Thomas; Nagel, Sidney R.

    2017-11-01

    The viscous fingering instability in a quasi-two dimensional Hele-Shaw cell is an example of complex structure formation from benign initial conditions. When the invading fluid has the lesser viscosity, the interface between the two fluids is unstable to finger formation. Here, we study the instability between pairs of miscible fluids in a circular cell with fluid injected at its center. As the injection rate is decreased, diffusion will smooth out the discontinuity in the gap-averaged viscosity at the interface between the fluids. At high injection rates (i.e., high Péclet number, Pe), fingering is associated with three-dimensional structure within the gap between the confining plates. On lowering Pe, we find a sharp transition in the finger morphology at a critical value, Pec (ηi /ηo) 1 / 2 , with ηi (ηo) being the viscosity of the inner (outer) fluid; at this point, the width of the fingers jumps, the length of the fingers shrinks towards zero and the three-dimensional structure goes from half filling to fully filling the gap. Thus, by controlling the viscosity contrast at the interface, one can alter and even completely suppress the instability.

  4. Integrating optical finger motion tracking with surface touch events.

    PubMed

    MacRitchie, Jennifer; McPherson, Andrew P

    2015-01-01

    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.

  5. Non-contact finger vein acquisition system using NIR laser

    NASA Astrophysics Data System (ADS)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  6. Multi-scale recordings for neuroprosthetic control of finger movements.

    PubMed

    Baker, Justin; Bishop, William; Kellis, Spencer; Levy, Todd; House, Paul; Greger, Bradley

    2009-01-01

    We trained a rhesus monkey to perform individuated and combined finger flexions and extensions of the thumb, index, and middle finger. A Utah Electrode Array (UEA) was implanted into the hand region of the motor cortex contralateral to the monkey's trained hand. We also implanted a microwire electrocorticography grid (microECoG) epidurally so that it covered the UEA. The microECoG grid spanned the arm and hand regions of both the primary motor and somatosensory cortices. Previously this monkey had Implantable MyoElectric Sensors (IMES) surgically implanted into the finger muscles of the monkey's forearm. Action potentials (APs), local field potentials (LFPs), and microECoG signals were recorded from wired head-stage connectors for the UEA and microECoG grids, while EMG was recorded wirelessly. The monkey performed a finger flexion/extension task while neural and EMG data were acquired. We wrote an algorithm that uses the spike data from the UEA to perform a real-time decode of the monkey's finger movements. Also, analyses of the LFP and microECoG data indicate that these data show trial-averaged differences between different finger movements, indicating the data are potentially decodeable.

  7. Contribution of finger tracing to the recognition of Chinese characters.

    PubMed

    Yim-Ng, Y Y; Varley, R; Andrade, J

    2000-01-01

    Finger tracing is a simulation of the act of writing without the use of pen and paper. It is claimed to help in the processing of Chinese characters, possibly by providing additional motor coding. In this study, blindfolded subjects were equally good at identifying Chinese characters and novel visual stimuli through passive movements made with the index finger of the preferred hand and those made with the last finger of that hand. This suggests that finger tracing provides a relatively high level of coding specific to individual characters, but non-specific to motor effectors. Beginning each stroke from the same location, i.e. removing spatial information, impaired recognition of the familiar characters and the novel nonsense figures. Passively tracing the strokes in a random sequence also impaired recognition of the characters. These results therefore suggest that the beneficial effect of finger tracing on writing or recall of Chinese characters is mediated by sequence and spatial information embedded in the motor movements, and that proprioceptive channel may play a part in mediating visuo-spatial information. Finger tracing may be a useful strategy for remediation of Chinese language impairments.

  8. Child labour. Refuting the "nimble fingers" argument.

    PubMed

    1996-01-01

    According to an International Labor Organization (ILO) study, approximately 130,000 children work in India's hand-knotted carpet industry. In one-loom enterprises, children comprise 14% of all weavers; in businesses with five or more looms, this rate increases to 33%. India's Factories Act, which applies costly health, safety, and labor regulations to larger firms, has led to a proliferation of cottage industries. The finding that children are more likely to work on low-quality rather than highest-quality carpets refutes the "nimble fingers" argument used by apologists of child labor. Although child and adult weavers have similar productivity, children earn less while apprentices than trained weavers and serve to depress wages throughout the industry. According to ILO estimates, replacing the 22% of the work force currently occupied by children with adults would cause wages to rise by about 5%. The overall savings in production costs from the use of child labor are very small when compared to the foreign retail price of the carpets, which is often four times the Indian export price. The ILO has urged an international approach to the elimination of child labor, in which all carpet-producing countries simultaneously implement a no-child-labor strategy to avoid placing any one country at a competitive disadvantage. Given the thousands of cottages where one or two carpets are woven per year, strategies such as labelling and regulation are likely to be ineffective. Solutions that address the general problems of poverty, while developing alternative sources of education and employment, are most likely to be effective in reducing child labor in countries such as India.

  9. Surgery for Dupuytren's contracture of the fingers.

    PubMed

    Rodrigues, Jeremy N; Becker, Giles W; Ball, Cathy; Zhang, Weiya; Giele, Henk; Hobby, Jonathan; Pratt, Anna L; Davis, Tim

    2015-12-09

    Dupuytren's disease is a benign fibroproliferative disorder that causes the fingers to be drawn into the palm via formation of new tissue under the glabrous skin of the hand. This disorder causes functional limitations, but it can be treated through a variety of surgical techniques. As a chronic condition, it tends to recur. To assess the benefits and harms of different surgical procedures for treatment of Dupuytren's contracture of the index, middle, ring and little fingers. We initially searched the following databases on 17 September 2012, then re-searched them on 10 March 2014 and on 20 May 2015: the Cochrane Central Register of Controlled Trials (CENTRAL), The Cochrane Library, the British Nursing Index and Archive (BNI), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, the Latin American Caribbean Health Sciences Literature (LILACS), Ovid MEDLINE, Ovid MEDLINE-In-Process and Other Non-Indexed Citations, ProQuest (ABI/INFORM Global and Dissertations & Theses), the Institute for Scientific Information (ISI) Web of Science and clinicaltrials.gov. We reviewed the reference lists of short-listed articles to identify additional suitable studies. We included randomised clinical trials and controlled clinical trials in which groups received surgical intervention for Dupuytren's disease of the index, middle, ring or little finger versus control, or versus another intervention (surgical or otherwise). We excluded the thumb, as cords form on the radial aspect of the thumb and thus are not readily accessible in terms of angular deformity. Furthermore, thumb disease is rare. A minimum of two review authors independently reviewed search results to select studies for inclusion by using pre-specified criteria, assessed risk of bias of included studies and extracted data from included studies.We grouped outcomes into the following categories: (1) hand function, (2) other patient-reported outcomes (e.g. satisfaction, pain), (3) early objective

  10. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.

    PubMed

    Klug, Aaron

    2010-02-01

    A long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically. Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome. The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated. The first example of the

  11. Factors affecting finger and hand pain in workers with HAVS.

    PubMed

    House, R; Krajnak, K; Jiang, D

    2016-06-01

    Pain and its management are important aspects of hand-arm vibration syndrome (HAVS). To determine the factors associated with finger and hand pain in workers with HAVS and, specifically, to assess the impact of several neurological variables as well as the vascular component of HAVS, grip strength and age. We assessed men with HAVS at a hospital occupational medicine clinic over 2 years. Subjects scored finger and hand pain separately using the Borg Scale (0-10). The possible predictors we evaluated included the Stockholm Neurological Scale (SNS) and Stockholm Vascular Scale (SVS) stages, current perception threshold (CPT), carpal tunnel syndrome (CTS), ulnar neuropathy, grip strength and age. We carried out nerve conduction testing to confirm the presence of CTS and ulnar neuropathy and measured CPT in the fingers at 2000 Hz, 250 Hz and 5 Hz corresponding to A-beta (large myelinated), A-delta (small myelinated) and C (unmyelinated) fibres, respectively. We calculated Spearman rank correlations to examine the relation between finger and hand pain and possible predictor variables. Among the 134 subjects, the median (25th-75th percentile) pain scores were 6 (4-8) for the fingers and 5 (1-7) for the hands. We found statistically significant correlations with finger pain for the SVS stage (r = 0.239; P < 0.01) and CTS (r = 0.184; P < 0.05). The only statistically significant correlation identified for hand pain was a negative correlation with grip strength (r = -0.185; P < 0.05). Management of finger and hand pain in HAVS should focus on the correlates we have identified. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control.

    PubMed

    Birdwell, J Alexander; Hargrove, Levi J; Weir, Richard F ff; Kuiken, Todd A

    2015-01-01

    Fine-wire intramuscular electrodes were used to obtain electromyogram (EMG) signals from six extrinsic hand muscles associated with the thumb, index, and middle fingers. Subjects' EMG activity was used to control a virtual three-degree-of-freedom (DOF) hand as they conformed the hand to a sequence of hand postures testing two controllers: direct EMG control and pattern recognition control. Subjects tested two conditions using each controller: starting the hand from a predefined neutral posture before each new posture and starting the hand from the previous posture in the sequence. Subjects demonstrated their abilities to simultaneously, yet individually, move all three DOFs during the direct EMG control trials; however, results showed subjects did not often utilize this feature. Performance metrics such as failure rate and completion time showed no significant difference between the two controllers.

  13. Activation of transcriptional activity of HSE by a novel mouse zinc finger protein ZNFD specifically expressed in testis.

    PubMed

    Xu, Fengqin; Wang, Weiping; Lei, Chen; Liu, Qingmei; Qiu, Hao; Muraleedharan, Vinaydhar; Zhou, Bin; Cheng, Hongxia; Huang, Zhongkai; Xu, Weian; Li, Bichun; Wang, Minghua

    2012-04-01

    Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.

  14. Nailfold Capillaroscopy of Fingers and Toes - Variations of Normal.

    PubMed

    Lambova, Sevdalina Nikolova; Muller-Ladner, Ulf

    2018-04-20

    Nailfold capillaroscopy is the only method for morphological assessment of nutritive capillaries. The literature data about capillaroscopic findings in healthy individuals are scarce. To evaluate and compare the capillaroscopic findings of fingers and toes in healthy subjects. 22 healthy individuals were included in the study. Capillaroscopic examination was performed with videocapillaroscope Videocap 3.0 (DS Medica). Exclusion criteria were as follows: history of vasospasm, presence of accompanying diseases, taking any medications, arterial hypertension in first degree relatives, overweight or obesity (body mass index > 25kg/m2) and presence of chronic arterial or venous insufficiency. Poor visibility of nailfold capillaries was found significantly more frequently in the toes (22.7%, 5/22) as compared with fingers (0/22). Slight irregularities in capillary distribution and orientation to their parallel axis were significantly more common in the toes (31.8%, 7/22) as compared with fingers (9%, 2/22), (p<0.05). The mean diameter of the arterial (0.012±0.002mm) and the venous limb (0.017±0.002mm) of the toes did not differ significantly as compared to the respective parameters in the fingers (0.013±0.002mm for the arterial limb, p=0.46 and 0.018±0.002mm for the venous limb, p=0.25). The mean capillary density also did not differ significantly in the fingers and toes. The mean capillary length of the toes (0.165±0.096mm) was shorter as compared with hands (0.220±0.079mm), but the difference was not statistically significant (p=0.37). Presence of tortuous capillaries (>10%) was found significantly more often in the toes (12/22) as compared with fingers (6/22, χ2=6.769, p<0.05). Short capillary loops (length<100µm) were observed significantly more often in the toes (11/22 - toes, 1/22 - fingers, χ2=14.666, p<0.05). Capillaroscopic examination of the toes shows some differences as compared to those of the fingers such as greater number of cases with poor

  15. The biometric recognition on contactless multi-spectrum finger images

    NASA Astrophysics Data System (ADS)

    Kang, Wenxiong; Chen, Xiaopeng; Wu, Qiuxia

    2015-01-01

    This paper presents a novel multimodal biometric system based on contactless multi-spectrum finger images, which aims to deal with the limitations of unimodal biometrics. The chief merits of the system are the richness of the permissible texture and the ease of data access. We constructed a multi-spectrum instrument to simultaneously acquire three different types of biometrics from a finger: contactless fingerprint, finger vein, and knuckleprint. On the basis of the samples with these characteristics, a moderate database was built for the evaluation of our system. Considering the real-time requirements and the respective characteristics of the three biometrics, the block local binary patterns algorithm was used to extract features and match for the fingerprints and finger veins, while the Oriented FAST and Rotated BRIEF algorithm was applied for knuckleprints. Finally, score-level fusion was performed on the matching results from the aforementioned three types of biometrics. The experiments showed that our proposed multimodal biometric recognition system achieves an equal error rate of 0.109%, which is 88.9%, 94.6%, and 89.7% lower than the individual fingerprint, knuckleprint, and finger vein recognitions, respectively. Nevertheless, our proposed system also satisfies the real-time requirements of the applications.

  16. High-Speed, High-Temperature Finger Seal Test Evaluated

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2003-01-01

    A finger seal, designed and fabricated by Honeywell Engines, Systems and Services, was tested at the NASA Glenn Research Center at surface speeds up to 1200 ft/s, air temperatures up to 1200 F, and pressures across the seal of 75 psid. These are the first test results obtained with NASA s new High-Temperature, High-Speed Turbine Seal Test Rig (see the photograph). The finger seal is an innovative design recently patented by AlliedSignal Engines, which has demonstrated considerably lower leakage than commonly used labyrinth seals and is considerably cheaper than brush seals. The cost to produce finger seals is estimated to be about half of the cost to produce brush seals. Replacing labyrinth seals with fingers seals at locations that have high-pressure drops in gas turbine engines, typically main engine and thrust seals, can reduce air leakage at each location by 50 percent or more. This directly results in a 0.7- to 1.4-percent reduction in specific fuel consumption and a 0.35- to 0.7-percent reduction in direct operating costs . Because the finger seal is a contacting seal, this testing was conducted to address concerns about its heat generation and life capability at the higher speeds and temperatures required for advanced engines. The test results showed that the seal leakage and wear performance are acceptable for advanced engines.

  17. The genetic map of finger millet, Eleusine coracana.

    PubMed

    Dida, Mathews M; Srinivasachary; Ramakrishnan, Sujatha; Bennetzen, Jeffrey L; Gale, Mike D; Devos, Katrien M

    2007-01-01

    Restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E. coracana subsp. coracana cv. Okhale-1 and its wild progenitor E. coracana subsp. africana acc. MD-20. Duplicated loci were used to identify homoeologous groups. Assignment of linkage groups to the A and B genome was done by comparing the hybridization patterns of probes in Okhale-1, MD-20, and Eleusine indica acc. MD-36. E. indica is the A genome donor to E. coracana. The maps span 721 cM on the A genome and 787 cM on the B genome and cover all 18 finger millet chromosomes, at least partially. To facilitate the use of marker-assisted selection in finger millet, a first set of 82 SSR markers was developed. The SSRs were identified in small-insert genomic libraries generated using methylation-sensitive restriction enzymes. Thirty-one of the SSRs were mapped. Application of the maps and markers in hybridization-based breeding programs will expedite the improvement of finger millet.

  18. A Method for Recognizing State of Finger Flexure and Extension

    NASA Astrophysics Data System (ADS)

    Terado, Toshihiko; Fujiwara, Osamu

    In our country, the handicapped and the elderly people in bed increase rapidly. In the bedridden person’s daily life, there may be limitations in the physical movement and the means of mutual communication. For the support of their comfortable daily lives, therefore, the development of human interface equipment becomes an important task. The equipment of this kind is being already developed by means of laser beam, eye-tracking, breathing motion and myo-electric signals, while the attachment and handling are normally not so easy. In this study, paying attention to finger motion, we have developed human interface equipment easily attached to the body, which enables one to measure the finger flexure and extension for mutual communication. The state of finger flexure and extension is identified by a threshold level analysis from the 3D-locus data for the finger movement, which can be measured through the infrared rays from the LED markers attached to a glove with the previously developed prototype system. We then have confirmed from an experiment that nearly 100% recognition for the finger movement can be achieved.

  19. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  20. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  1. A man with an infected finger: a case report.

    PubMed

    Gathier, Pieter J; Schönberger, Titus J A

    2015-05-23

    Whitlow is an infection of a finger or around the fingernails, generally caused by bacterium. However, in rare cases, it may also be caused by the herpes simplex virus. As herpetic whitlow is not seen often, it may go under-recognised or be mistaken for a different kind of infection of the finger. Delayed recognition and/or treatment puts patients at risk of complications ranging from superinfection to herpetic encephalitis. A 23-year-old Caucasian man with no medical history was referred by his primary care physician because of erythema and swelling of the little finger of his left hand. The primary care physician had already treated him with the oral antibiotic Augmentin® (amoxicillin-clavulanic acid) and incision of the finger, but this had not resolved his complaints. He had multiple vesicles on the finger, which led to the diagnosis of herpetic whitlow, which we confirmed by polymerase chain reaction testing. All cutaneous abnormalities disappeared after treatment. Whitlow is rarely caused by the herpes simplex virus, but this disease requires a swift recognition and treatment to prevent complications. This case serves to emphasise that not all whitlow is caused by a bacterial infection, and that it is important to differentiate between herpetic and bacterial whitlow, as these diseases require a different treatment.

  2. Development of cylindrical-type finger force measuring system using force sensors and its characteristics evaluation

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Min; Yoon, Joungwon; Shin, Hee-Suk; Kim, Gab-Soon

    2012-02-01

    Some patients cannot use their hands because of the paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a plastic cylinder, which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the plastic cylinder. In this paper, the development of two cylindrical-type finger force measuring systems with four force sensors for left hand and right hand were developed. The developed finger force measuring system can measure the grasping force of patients' each finger (forefinger, middle finger, ring finger and little finger), and the measured results could be used to judge the rehabilitation extent of a finger patient. The grasping force tests of men and women were performed using the developed cylindrical-type finger force measuring systems. The tests confirm that the average finger forces of right hand and left hand for men were about 194 N and 179 N, and for women, 108 N and 95 N.

  3. Using the international classification of functioning to examine the impact of trigger finger.

    PubMed

    Langer, Danit; Maeir, Adina; Michailevich, Michael; Applebaum, Yael; Luria, Shai

    2016-12-01

    To evaluate the impact of trigger finger (TF) on hand motor function, activity and participation (A&P) and quality of life (QOL), and to evaluate the association between personal factors (age and gender, disease severity) and body functions (dexterity and strength) with A&P and QOL in patients with TF. Sixty-six patients with TF (study group) and 66 healthy volunteers (control group) participated in the study. TF symptoms were graded using the Quinnell classification. A&P was evaluated using the Disabilities of Arm Shoulder and Hand questionnaire and the QOL using the World Health Organization Quality of Life questionnaire. Dexterity was evaluated using the Functional Dexterity Test and the Purdue Pegboard Test; hand strength was evaluated using the Jamar Dynamometer and Pinch Gauge. The comparisons between the study and control groups revealed significant differences in all measures. The study group reported lower perceived QOL, A&P and reduced hand strength and dexterity. Hierarchical regression analyses revealed that (a) the severity of TF contributed significantly to the explained variance of QOL, while demographics and hand functioning did not; (b) demographics, TF severity and hand function all contributed significantly to the explained variance of A&P. The findings of the study point to the importance of addressing the functional implications and QOL of individuals with TF. Implications for Rehabilitation Although trigger finger is considered to be a mild hand pathology, it has a wide-ranging impact on hand functioning, daily activities and quality of life. Clinicians should include assessments of these outcomes in the treatment of individuals with trigger finger. Treatment efficacy should be evaluated with International Classification of Functioning outcomes, and not limited to symptomatology.

  4. Instability of long fingers in Hele--Shaw flows

    SciTech Connect

    Park, C.W.; Homsy, G.M.

    1985-06-01

    Experiments on steady fingers and their stability in Hele--Shaw cells, are reported. It is shown that the shape of steady fingers scales with a modified capillary number, Ca', as suggested by McLean and Saffman (J. Fluid. Mech. 102, 455 (1981) and our previous analysis (J. Fluid Mech. 139, 291 (1984)). The behavior at large Ca' is investigated by using a wide Hele--Shaw cell. It is observed that such fingers are unstable for Ca'>100, in agreement with the prediction by Taylor and Saffman (second symposium on naval hydrodynamics, 1958, p. 277) of instability as Ca'..-->..infinity. The mechanism is identified as onemore » of tip-splitting, which occurs periodically in the weakly supercritical regime, and in a more complex fashion for large Ca'.« less

  5. Design of rehabilitation robot hand for fingers CPM training

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfu; Chan, T. W.; Tong, K. Y.; Kwong, K. K.; Yao, Xifan

    2008-10-01

    This paper presents a low-cost prototype for rehabilitation robot aide patient do hands CPM (continuous passive motion) training. The design of the prototype is based on the principle of Rutgers Master II glove, but it is better in performance for more improvement made. In the design, it uses linear motors to replace pneumatic actuators to make the product more portable and mobile. It increases finger training range to 180 degree for the full range training of hand finger holding and extension. Also the prototype can not only be wearing on palm and fore arm do training for face to face with finger move together, but also be put in the opposite hand glove wear direction for hand rehabilitation training. During the research, Solidworks is used as the tool for mechanical design and movement simulation. It proved through experiment that the prototype made in the research is appropriate for hand do CPM training.

  6. Controlling Viscous Fingering Using Time-Dependent Strategies

    SciTech Connect

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  7. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  8. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  9. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  10. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE PAGES

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    2015-10-20

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  11. Fingering in a channel and tripolar Loewner evolutions.

    PubMed

    Durán, Miguel A; Vasconcelos, Giovani L

    2011-11-01

    A class of Laplacian growth models in the channel geometry is studied using the formalism of tripolar Loewner evolutions, in which three points, namely, the channel corners and the point at infinity, are kept fixed. Initially, the problem of fingered growth, where growth takes place only at the tips of slitlike fingers, is revisited and a class of exact solutions of the corresponding Loewner equation is presented for the case of stationary driving functions. A model for interface growth is then formulated in terms of a generalized tripolar Loewner equation and several examples are presented. It is shown that the growing interface evolves into a steadily moving finger and that tip competition arises for nonsymmetric initial configurations with multiple tips.

  12. Fingering in a channel and tripolar Loewner evolutions

    NASA Astrophysics Data System (ADS)

    Durán, Miguel A.; Vasconcelos, Giovani L.

    2011-11-01

    A class of Laplacian growth models in the channel geometry is studied using the formalism of tripolar Loewner evolutions, in which three points, namely, the channel corners and the point at infinity, are kept fixed. Initially, the problem of fingered growth, where growth takes place only at the tips of slitlike fingers, is revisited and a class of exact solutions of the corresponding Loewner equation is presented for the case of stationary driving functions. A model for interface growth is then formulated in terms of a generalized tripolar Loewner equation and several examples are presented. It is shown that the growing interface evolves into a steadily moving finger and that tip competition arises for nonsymmetric initial configurations with multiple tips.

  13. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  14. Initial results of finger imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    van Es, Peter; Biswas, Samir K.; Moens, Hein J. Bernelot; Steenbergen, Wiendelt; Manohar, Srirang

    2014-06-01

    We present a photoacoustic computed tomography investigation on a healthy human finger, to image blood vessels with a focus on vascularity across the interphalangeal joints. The cross-sectional images were acquired using an imager specifically developed for this purpose. The images show rich detail of the digital blood vessels with diameters between 100 μm and 1.5 mm in various orientations and at various depths. Different vascular layers in the skin including the subpapillary plexus could also be visualized. Acoustic reflections on the finger bone of photoacoustic signals from skin were visible in sequential slice images along the finger except at the location of the joint gaps. Not unexpectedly, the healthy synovial membrane at the joint gaps was not detected due to its small size and normal vascularization. Future research will concentrate on studying digits afflicted with rheumatoid arthritis to detect the inflamed synovium with its heightened vascularization, whose characteristics are potential markers for disease activity.

  15. Traumatic fifth finger amputation due to pontoon boat railing design.

    PubMed

    Sullivan, John C; Buckner, Billy; Pigott, David C

    2012-12-01

    Boating is a common recreational activity that may subject its participants to specific patterns of injury. We describe two unrelated cases of fifth-finger amputation associated with a specific pontoon boat guardrail design. The individuals in these cases sustained an avulsion-type amputation injury to the fifth finger when their fingers became entrapped in a narrowed portion of the boat railing before jumping into the water. Given the widespread use of this type of recreational boat, this apparent design flaw may place additional individuals at risk of significant hand injury with cosmetic and functional loss. Methods to reduce the public health impact of this type of injury are also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.

    PubMed

    Brayer, Kathryn J; Segal, David J

    2008-01-01

    Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.

  17. Custom-Made Finger Guard to Prevent Wire-Stick Injury to the Operator's Finger while Performing Intermaxillary Fixation.

    PubMed

    Kumaresan, Ramesh; Ponnusami, Karthikeyan; Karthikeyan, Priyadarshini

    2014-12-01

    The treatment of maxillofacial fractures involves different methods from bandages and splinting to methods of open reduction and internal fixation and usually requires control of the dental occlusion with the help of intermaxillary fixation (IMF). Different wiring techniques have been used to aid in IMF including placement of custom-made arch bars, eyelet etc. However, these wiring techniques are with a constant danger of trauma to the surgeon's fingers by their sharp ends. Though there exist a variety of commercially available barrier products and customized techniques to prevent wire-stick injury, cost factor, touch sensitivity, and comfort aspect restrain their acquirement and exploit. This technical note describes the construction of a simple and economical finger guard made of soft thermoplastic material that provides an added protection to fingers from wire-stick type injuries, and its flexible nature permits a comfortable finger flexion movement and acceptable touch sensitivity. This is a simple, economical, reusable puncture, and cut-resistance figure guard by which we can avoid wire-stick type injury to the operator's fingers during wiring technique.

  18. The influence of intrinsic sympathomimetic activity and beta-1 receptor selectivity on the recovery of finger skin temperature after finger cooling in normotensive subjects.

    PubMed

    Lenders, J W; Salemans, J; de Boo, T; Lemmens, W A; Thien, T; van't Laar, A

    1986-03-01

    A double-blind randomized study was designed to investigate differences in the recovery of finger skin temperature after finger cooling during dosing with placebo or one of four beta-blockers: propranolol, atenolol, pindolol, and acebutolol. In 11 normotensive nonsmoking subjects, finger skin temperature was measured with a thermocouple before and 20 minutes after immersion of one hand in a water bath at 16 degrees C. This finger cooling test caused no significant changes in systemic hemodynamics such as arterial blood pressure, heart rate, and forearm blood flow. The recovery of finger skin temperature during propranolol dosing was better than that during pindolol and atenolol dosing. There were no differences between the recoveries of skin temperature during pindolol, atenolol, and acebutolol dosing. Thus we could demonstrate no favorable effect of intrinsic sympathomimetic activity or beta 1-selectivity on the recovery of finger skin temperature after finger cooling.

  19. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  20. Grasping and fingering (active or haptic touch) in healthy newborns.

    PubMed

    Adamson-Macedo, Elvidina Nabuco; Barnes, Christopher R

    2004-12-01

    The traditional view that the activity of the baby's hands are triggered by a stimulus in an automatic, compulsory, stereotyped way and persisting view that fingering does not occur prior to 4 months of age, have led perception researchers to the assumption that the processing, encoding, and retainment of sensory information could not take place through the manual mode. This study aims to investigate whether fingering and different types of grasping occur before 3 months of age and can be modulated by surface texture of three objects. Using naturalistic observations, this small sample developmental study applied the AB experimental design to achieve aims above. Babies were video taped every week for 12 weeks. Three special manual stimuli were developed for this study. Focal sampling method with either zero-sampling or instantaneous sampling recording rules were used to analyse data with the Observer Video Pro. Each session comprising baseline and 3 experimental conditions lasted for four minutes. Fingering or 'proto fingering' as it is suggested in this article emerges as early as the first week of postnatal life; texture of a handled object modulates both 'proto-palm' and hand-grasp behaviour of healthy newborns. Results suggest that texture also modulates 'proto-fingering' and challenge persisting current assumption that fingering does not occur before four months of age, and further validates the phrase 'neo-haptic' touch to describe hands-on exploration of the newborn. The author suggests that some 'mental representation' of the stimulus is present during 'neo-haptic' recognition of the objects which is in accordance to a constructivist approach to (touch) perception.

  1. Finger displacement in Parkinson disease: up? down? sideways?

    PubMed

    Lieberman, Abraham; Dhall, Rohit; Salins, Naomi; Sadreddin, Arshia; Moguel-Cobos, Guillermo; Karis, John; Krishnamurthi, Narayanan

    2014-05-01

    We previously reported that patients with tremor preponderant Parkinson disease (PD) displayed upward or lateral displacement of their more tremulous finger when they pointed both their index fingers at a target and closed their eyes for 15 seconds. In this study, we examined the phenomenon in 104 PD patients: 72 patients without tremor and 32 with minimal tremor to see if the displacement is related to the disease or the tremor. Sixty-eight of the 72 patients without tremor, 94%, exhibited finger displacement suggesting the phenomenon is related to the disease. None of the 104 patients were demented: mini-mental status examination (MMSE) score 29.0 ± 0. 75. Ninety patients displayed upward displacement (56 patients) or lateral or medial displacement (34 patients). MMSE score of the 90 patients: 29.2 ± 0.74 with no score < 28. Eight patients (6 without tremor) displayed downward displacement. MMSE score of the 8 patients: 27.5 ± 0.35 with 5 having MMSE score of 27. Although not significant the results suggest that patients with downward displacement and lower MMSE score may be evolving a dementia. Upward displacement with eyes closed for 15 seconds requires an ability to "remember" the position of the finger in space and to alter tone to overcome gravity. Downward displacement implies an inability to "remember" the position of the finger in space an inability to overcome the effects of gravity. This may be more likely in patients who are evolving a dementia. Two patients, with PD-like symptoms, and specific anatomical abnormalities are also presented as they illustrate the anatomy of finger displacement.

  2. Finger vein recognition using local line binary pattern.

    PubMed

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).

  3. Pattern formation of frictional fingers in a gravitational potential

    NASA Astrophysics Data System (ADS)

    Eriksen, Jon Alm; Toussaint, Renaud; Mâløy, Knut Jørgen; Flekkøy, Eirik; Galland, Olivier; Sandnes, Bjørnar

    2018-01-01

    Aligned finger structures, with a characteristic width, emerge during the slow drainage of a liquid-granular mixture in a tilted Hele-Shaw cell. A transition from vertical to horizontal alignment of the finger structures is observed as the tilting angle and the granular density are varied. An analytical model is presented, demonstrating that the alignment properties are the result of the competition between fluctuating granular stresses and the hydrostatic pressure. The dynamics is reproduced in simulations. We also show how the system explains patterns observed in nature, created during the early stages of a dike formation.

  4. Finger doses for staff handling radiopharmaceuticals in nuclear medicine.

    PubMed

    Pant, Gauri S; Sharma, Sanjay K; Rath, Gaura K

    2006-09-01

    Radiation doses to the fingers of occupational workers handling 99mTc-labeled compounds and 131I for diagnostic and therapeutic procedures in nuclear medicine were measured by thermoluminescence dosimetry. The doses were measured at the base of the ring finger and the index finger of both hands in 2 groups of workers. Group 1 (7 workers) handled 99mTc-labeled radiopharmaceuticals, and group 2 (6 workers) handled 131I for diagnosis and therapy. Radiation doses to the fingertips of 3 workers also were measured. Two were from group 1, and 1 was from group 2. The doses to the base of the fingers for the radiopharmacy staff and physicians from group 1 were observed to be 17+/-7.5 (mean+/-SD) and 13.4+/-6.5 microSv/GBq, respectively. Similarly, the dose to the base of the fingers for the 3 physicians in group 2 was estimated to be 82.0+/-13.8 microSv/GBq. Finger doses for the technologists in both groups could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts that accumulated in 1 wk. The doses to the fingertips of the radiopharmacy worker and the physician in group 1 were 74.3+/-19.8 and 53.5+/-21.9 microSv/GBq, respectively. The dose to the fingertips of the physician in group 2 was 469.9+/-267 microSv/GBq. The radiation doses to the fingers of nuclear medicine staff at our center were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y), except for a physician who handled large quantities of 131I for treatment. Because all of these workers are on rotation and do not constantly handle radioactivity throughout the year, the doses to the base of the fingers or the fingertips should not exceed the prescribed annual limit of 500 mSv.

  5. Finger Vein Recognition Using Local Line Binary Pattern

    PubMed Central

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670

  6. Orofacial and thumb-index finger ramp-and-hold isometric force dynamics in young neurotypical adults.

    PubMed

    Barlow, Steven M; Hozan, Mohsen; Lee, Jaehoon; Greenwood, Jake; Custead, Rebecca; Wardyn, Brianna; Tippin, Kaytlin

    2018-04-27

    The relation among several parameters of the ramp-and-hold isometric force contraction (peak force and dF/dt max during the initial phase of force recruitment, and the proportion of hold-phase at target) was quantified for the right and left thumb-index finger pinch, and lower lip midline compression in 40 neurotypical right-handed young adults (20 female/20 males) using wireless force sensors and data acquisition technology developed in our laboratory. In this visuomotor control task, participants produced ramp-and-hold isometric forces as 'rapidly and accurately' as possible to end-point target levels at 0.25, 0.5, 1 and 2 Newtons presented to a computer monitor in a randomized block design. Significant relations were found between the parameters of the ramp-and-hold lip force task and target force level, including the peak rate of force change (dF/dt max ), peak force, and the criterion percentage of force within ±5% of target during the contraction hold phase. A significant performance advantage was found among these force variables for the thumb-index finger over the lower lip. The maximum voluntary compression force (MVCF) task revealed highly significant differences in force output between the thumb-index fingers and lower lip (∼4.47-4.70 times greater for the digits versus lower lip), a significant advantage of the right thumb-index finger over the non-dominant left thumb-index finger (12% and 25% right hand advantage for males and females, respectively), and a significant sex difference (∼1.65-1.73 times greater among males). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    PubMed

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  8. An estimation of finger-tapping rates and load capacities and the effects of various factors.

    PubMed

    Ekşioğlu, Mahmut; İşeri, Ali

    2015-06-01

    The aim of this study was to estimate the finger-tapping rates and finger load capacities of eight fingers (excluding thumbs) for a healthy adult population and investigate the effects of various factors on tapping rate. Finger-tapping rate, the total number of finger taps per unit of time, can be used as a design parameter of various products and also as a psychomotor test for evaluating patients with neurologic problems. A 1-min tapping task was performed by 148 participants with maximum volitional tempo for each of eight fingers. For each of the tapping tasks, the participant with the corresponding finger tapped the associated key in the standard position on the home row of a conventional keyboard for touch typing. The index and middle fingers were the fastest fingers for both hands, and little fingers the slowest. All dominant-hand fingers, except little finger, had higher tapping rates than the fastest finger of the nondominant hand. Tapping rate decreased with age and smokers tapped faster than nonsmokers. Tapping duration and exercise had also significant effect on tapping rate. Normative data of tapping rates and load capacities of eight fingers were estimated for the adult population. In designs of psychomotor tests that require the use of tapping rate or finger load capacity data, the effects of finger, age, smoking, and tapping duration need to be taken into account. The findings can be used for ergonomic designs requiring finger-tapping capacity and also as a reference in psychomotor tests. © 2015, Human Factors and Ergonomics Society.

  9. Finger materials for air cushion vehicles. Volume 1: Flexible coatings for finger materials

    NASA Astrophysics Data System (ADS)

    Conn, P. K.; Snell, I. C.; Klemens, W.

    1984-12-01

    Twenty polymer formulations from ten selected gum rubber polymers or polymer blends and fourteen formulations of castable liquid polyurethane polymers were characterized as coatings for the coated fabric that is the type material used to make flexible fingers for air cushion vehicles. The formulations were screened for crack growth and flexural fatigue resistance; the results were compared to results from a natural rubber/cisabutadiene blend control coating. In addition, selected polymers were evaluated with primary and secondary characterization tests and the results compared to results from the control formulation. One polymer also was used to evaluate the use of a reticulated carbon black to improve thermal conductivity. Several polymers had better crack growth resistance and a number had better flexural fatique resistance than the control polymer. A clorinated polyethylene polymer coated on nylon fabric had properties equivalent to the control polymer coated on nylon fabric. Hysteresis tests at different rates of deformation yielded results which suggested that the standard tests may not identify polymers with improved performance on air cushion vehicles. Woven fabric, knit, and mat structures were evaluated as reinforcements for polymer coatings; the knit and mat structures were not as efficient on a strength-to-weight basis as woven fabrics.

  10. Intensity Variation Normalization for Finger Vein Recognition Using Guided Filter Based Singe Scale Retinex

    PubMed Central

    Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2015-01-01

    Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy. PMID:26184226

  11. Intensity Variation Normalization for Finger Vein Recognition Using Guided Filter Based Singe Scale Retinex.

    PubMed

    Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2015-07-14

    Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy.

  12. Adhesive strips: a simple and inexpensive trick for finger holding in hand surgery.

    PubMed

    Brutus, J P; Nikolis, A; Ortiz, S; Cordoba, C

    2002-12-01

    Many finger holding devices have been developed to retract digits and provide exposure during hand surgery. We describe a simple, and cheap trick to keep fingers out of the way using adhesive strips that has proven efficient and helpful.

  13. Design and analysis of an underactuated anthropomorphic finger for upper limb prosthetics.

    PubMed

    Omarkulov, Nurdos; Telegenov, Kuat; Zeinullin, Maralbek; Begalinova, Ainur; Shintemirov, Almas

    2015-01-01

    This paper presents the design of a linkage based finger mechanism ensuring extended range of anthropomorphic gripping motions. The finger design is done using a path-point generation method based on geometrical dimensions and motion of a typical index human finger. Following the design description, and its kinematics analysis, the experimental evaluation of the finger gripping performance is presented using the finger 3D printed prototype. The finger underactuation is achieved by utilizing mechanical linkage system, consisting of two crossed four-bar linkage mechanisms. It is shown that the proposed finger design can be used to design a five-fingered anthropomorphic hand and has the potential for upper limb prostheses development.

  14. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  15. Moving Fingers under a Stick: A Laboratory Activity

    ERIC Educational Resources Information Center

    Massalha, Taha; Lanir, Yuval; Gluck, Paul

    2011-01-01

    We consider a demonstration in which pupils alternately slide and stop their fingers under a long horizontal rod which they support. The changeover is described in terms of the relevant kinetic and static friction. We present a model calculation, performed on a spreadsheet, which clarifies the process and describes graphically the stepwise…

  16. Movement Kinematics of the Braille-Reading Finger

    ERIC Educational Resources Information Center

    Hughes, Barry

    2011-01-01

    A new means of measuring the movement properties of the braille-reading finger is described and exemplified in an experiment in which experienced readers of braille encountered sentences comprised of keywords in which word and orthographic frequencies were manipulated. These new data are considered in theoretical and practical terms. (Contains 2…

  17. Some Numerical Simulations and an Experimental Investigation of Finger Seals

    NASA Technical Reports Server (NTRS)

    Braun, Minel J.; Smith, Ian; Marie, Hazel

    2007-01-01

    All seal types have been shown to lift effectively, and experience only minor wear during startup. .. The double pad design outperforms previous seals, providing lower operating temperatures, and less leakage at higher pressures. .. Future experimentation at higher pressures, temperatures, and operating speeds will show the full potential of finger sealing technology.

  18. Variations in the nerves of the thumb and index finger.

    PubMed

    Wallace, W A; Coupland, R E

    1975-11-01

    The digital nerves to the thumb and index finger have been studied by dissecting twenty-five embalmed upper limbs. The palmar digital nerves to the thumb were constant in position and course, with a short lateral cutaneous branch from the radial palmar digital nerve in 30 per cent of cases. The palmar digital nerves to the index finger had a variable pattern, the commonest arrangement, well described in Gray's Anatomy, occurring in 74 per cent of cases. The variations and their frequency are described. By examining histological cross-sections of the index finger it was found that of about 5,000 endoneurial tubes entering the finger, 60 per cent passed beyond the distal digital crease to supply the pulp and nail bed. The depth of the palmar digital nerves was about 3 millimetres, but less at the digital creases, and their diameter lay between 1 and 1.5 millimetres as far as the distal digital crease. Clinical applications of the findings are discussed.

  19. Radial fingering under arbitrary viscosity and density ratios

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Dias, Eduardo O.; Miranda, José A.

    2017-08-01

    We study viscous fingering formation in radial Hele-Shaw cell geometry considering the combined action of capillary and inertial effects for arbitrary values of viscosity and density ratios. We tackle the problem by employing a perturbative mode-coupling approach and focus our attention on weakly nonlinear stages of the dynamics. If inertial effects are neglected, our theoretical results indicate that the shape of the resulting interfacial patterns is significantly affected by changes in the viscosity ratio. Under such conditions, the growing fingers tend to proliferate through a repeated ramification process (e.g., by finger bifurcation, quadrifurcation, etc.) as the capillary number is increased. Nevertheless, we find that this scenario is dramatically altered when inertia is taken into account. When inertia is relevant, the conventional finger splitting morphologies are replaced by three-lobed structures, characterized by the occurrence of sidebranching phenomena. We verify that slightly different types of sidebranched patterns arise, presenting either wide or sharp fingertips, for a range of capillary numbers and density ratios.

  20. Lifecycle of miscible viscous fingering: onset to shutdown

    NASA Astrophysics Data System (ADS)

    Nijjer, Japinder S.; Hewitt, Duncan R.; Neufeld, Jerome A.

    2017-11-01

    When a viscous fluid is injected into a porous medium or Hele-Shaw cell that is initially saturated with a more viscous fluid, the flow can be unstable to viscous fingering. We investigate the long-time dynamics of miscible viscous fingering in a homogeneous, planar, two-dimensional porous medium using high-resolution numerical simulations. At late times, we identify a new flow regime which consists of a pair of counter-propagating fingers that diffuse and slow, leaving a linearly well-mixed interior. We derive an analytic solution for this regime, and show that, in contrast to previous suggestions, the flow always evolves to this regime irrespective of the viscosity ratio and Peclet number. As a consequence, we find the instability can only ever generate a finite amount of advective mixing. We also describe the full life-cycle of miscible viscous fingering, which can be partitioned into three regimes: an early-time linearly unstable regime, an intermediate-time non-linear regime, and a late-time exchange-flow regime. We identify, using linear stability theory, a critical Peclet number below which the flow is always stable, and derive a model for the evolution of the transversely averaged concentration in the intermediate-time regime, which extends previous empirical models.

  1. Singing Greeting Card Beeper as a Finger Pulse Sensor

    ERIC Educational Resources Information Center

    Belusic, Gregor; Zupancic, Gregor

    2010-01-01

    We constructed a robust and low-priced finger pulse sensor from a singing greeting card beeper. The beeper outputs the plethysmographic signal, which is indistinguishable from that of commercial grade sensors. The sensor can be used in school for a number of experiments in human cardiovascular physiology.

  2. Alpha trimmed correlation for touchless finger image mosaicing

    NASA Astrophysics Data System (ADS)

    Rao, Shishir P.; Rajendran, Rahul; Agaian, Sos S.; Mulawka, Marzena Mary Ann

    2016-05-01

    In this paper, a novel technique to mosaic multiview contactless finger images is presented. This technique makes use of different correlation methods, such as, the Alpha-trimmed correlation, Pearson's correlation [1], Kendall's correlation [2], and Spearman's correlation [2], to combine multiple views of the finger. The key contributions of the algorithm are: 1) stitches images more accurately, 2) provides better image fusion effects, 3) has better visual effect on the overall image, and 4) is more reliable. The extensive computer simulations show that the proposed method produces better or comparable stitched images than several state-of-the-art methods, such as those presented by Feng Liu [3], K Choi [4], H Choi [5], and G Parziale [6]. In addition, we also compare various correlation techniques with the correlation method mentioned in [3] and analyze the output. In the future, this method can be extended to obtain a 3D model of the finger using multiple views of the finger, and help in generating scenic panoramic images and underwater 360-degree panoramas.

  3. The Three-Fingers Technique: Does It Reduce Test Anxiety?

    ERIC Educational Resources Information Center

    Maycock, George

    The utility of brief exposure to a mental focusing aid, the Three-Fingers Technique (TFT), in reducing test anxiety was studied for 15 college students. One week before their final examination, the students were given a 15-minute classroom introduction to the TFT, part of the Silva Mental Training Method (1983). After the introduction to this…

  4. Science Fair Report: Flight of the Split-Fingered Fastball.

    ERIC Educational Resources Information Center

    Mitchell, Richard J.

    1991-01-01

    Reports on the results of an eighth grade student's experiments, conducted with a moving car, concerning the aerodynamics of a baseball in flight. Describes the peculiar diving ability of the split-fingered fastball, as well as the dancing and weaving effect of the knuckleball. (JJK)

  5. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance.

    PubMed

    Vergara, Rodrigo C; Moënne-Loccoz, Cristóbal; Maldonado, Pedro E

    2017-01-01

    Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple linear regression models, we evaluated which variable(s) were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  6. Malignant Mixed Tumor of the Finger: A Case Report.

    PubMed

    Nakanishi, Akito; Honoki, Kanya; Omokawa, Shohei; Tanaka, Yasuhito

    2018-06-01

    We present a very rare case of malignant chondroid syringoma of the fingertip in a 44-year-old man that was reconstruced by neurovascular island flap after the complete tumor resection of the fingertip. Although it is a rare tumor at an unusual area, it should be included in the differential diagnosis of the finger tumors.

  7. Pedicled unipolar latissimus dorsi flap for reconstruction of finger extensor *

    PubMed Central

    Takahashi, Mitsuhiko; Kasai, Tokio; Hibino, Naohito; Ishii, Seiji; Mitsuhashi, Tadashi

    2017-01-01

    Abstract We describe the use of a pedicled unipolar latissimus dorsi flap to restore finger extension. The patient had large defects in the radial nerve and extensor musculature. A long-tailed, 50-cm-long flap was prepared, which enabled the end of the flap to be sutured to the extensor digitorum. PMID:28470032

  8. Circumferential finger measurements utilizing a torque meter to increase reliability.

    PubMed

    King, T I

    1993-01-01

    The purpose of this study was to compare the reliabilities of two methods of measuring finger circumference. Traditionally, finger circumference is determined clinically by the use of a tape measure. In this study, a tape-measure device for recording finger circumference utilizing a torque meter was compared with the traditional method to determine reliability differences. Ninety-two occupational therapists and occupational therapy students obtained circumferential measurements of the author's left index finger at the middle of the proximal phalanx utilizing the two methods. The readings obtained for each method were analyzed to determine the coefficient of variation and to compare their variances. The coefficient of variation for the traditional method was 2.92 and for the device utilizing the torque meter was 0.75. The F ratio was 15.63, which is significant at the 0.01 level. The results of this study indicate greater interrater reliability using a device that can accurately measure torque and allow the therapist to control the amount of tension applied when obtaining circumferential measurements using a tape measure.

  9. Viscous and gravitational fingering in multiphase compositional and compressible flow

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  10. Impact of Motile Bacterial Suspensions on Viscous Fingering and Mixing

    NASA Astrophysics Data System (ADS)

    Chui, Jane; Auradou, Harold; de Anna, Pietro; Fahrner, Karen; Berg, Howard; Juanes, Ruben

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous one. Instead of progressing as a uniform front, the less viscous fluid forms fingers to create complex patterns. Understanding how these patterns and their associated gradients evolve over time is of critical importance in characterizing the mixing of two fluids, which in turn is important to applications such as enhanced oil recovery, bioremediation, and microfluidics. Here, we investigate the impact of replacing the less viscous fluid with an active suspension of motile bacteria. In this series of experiments, a suspension of motile Escherichia coli capable of collective swimming is injected into a microfluidic Hele-Shaw cell under viscous fingering conditions. Through videomicroscopy, we obtain high-resolution concentration fields to determine the evolution of the mixing zone (region with concentration gradients). We quantify the impact that active suspensions have on the formation of viscous fingering patterns and mixing efficiency between the two fluids, and-conversely-report details of the collective swimming behavior in the presence of a viscous-gradient front.

  11. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.

    PubMed

    Tripathi, Bhumika; Platel, Kalpana

    2010-01-01

    Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.

  12. Mercury Accumulation in Biota of Tributaries of the Finger Lakes, New York

    NASA Astrophysics Data System (ADS)

    Cleckner, L.; Razavi, R.; Cushman, S. F.; Massey, T.

    2016-12-01

    watersheds, but Blacknose Dace did reveal significant differences among the five lake watersheds investigated. This presentation will include results of a mixed effects general linear model to assess land use and DOC as predictors of Finger Lakes tributary biota Hg concentrations.

  13. Advanced analysis of finger-tapping performance: a preliminary study.

    PubMed

    Barut, Cağatay; Kızıltan, Erhan; Gelir, Ethem; Köktürk, Fürüzan

    2013-06-01

    The finger-tapping test is a commonly employed quantitative assessment tool used to measure motor performance in the upper extremities. This task is a complex motion that is affected by external stimuli, mood and health status. The complexity of this task is difficult to explain with a single average intertap-interval value (time difference between successive tappings) which only provides general information and neglects the temporal effects of the aforementioned factors. This study evaluated the time course of average intertap-interval values and the patterns of variation in both the right and left hands of right-handed subjects using a computer-based finger-tapping system. Cross sectional study. Thirty eight male individuals aged between 20 and 28 years (Mean±SD = 22.24±1.65) participated in the study. Participants were asked to perform single-finger-tapping test for 10 seconds of test period. Only the results of right-handed (RH) 35 participants were considered in this study. The test records the time of tapping and saves data as the time difference between successive tappings for further analysis. The average number of tappings and the temporal fluctuation patterns of the intertap-intervals were calculated and compared. The variations in the intertap-interval were evaluated with the best curve fit method. An average tapping speed or tapping rate can reliably be defined for a single-finger tapping test by analysing the graphically presented data of the number of tappings within the test period. However, a different presentation of the same data, namely the intertap-interval values, shows temporal variation as the number of tapping increases. Curve fitting applications indicate that the variation has a biphasic nature. The measures obtained in this study reflect the complex nature of the finger-tapping task and are suggested to provide reliable information regarding hand performance. Moreover, the equation reflects both the variations in and the general

  14. Multi-finger prehension: control of a redundant mechanical system.

    PubMed

    Latash, Mark L; Zatsiorsky, Vladimir M

    2009-01-01

    The human hand has been a fascinating object of study for researchers in both biomechanics and motor control. Studies of human prehension have contributed significantly to the progress in addressing the famous problem of motor redundancy. After a brief review of the hand mechanics, we present results of recent studies that support a general view that the apparently redundant design of the hand is not a source of computational problems but a rich apparatus that allows performing a variety of tasks in a reliable and flexible way (the principle of abundance). Multi-digit synergies have been analyzed at two levels of a hypothetical hierarchy involved in the control of prehensile actions. At the upper level, forces and moments produced by the thumb and virtual finger (an imagined finger with a mechanical action equal to the combined mechanical action of all four fingers of the hand) co-vary to stabilize the gripping action and the orientation of the hand-held object. These results support the principle of superposition suggested earlier in robotics with respect to the control of artificial grippers. At the lower level of the hierarchy, forces and moments produced by individual fingers co-vary to stabilize the magnitude and direction of the force vector and the moment of force produced by the virtual finger. Adjustments to changes in task constraints (such as, for example, friction under individual digits) may be local and synergic. The latter reflect multi-digit prehension synergies and may be analyzed with the so-called chain effects: Sequences of relatively straightforward cause-effect links directly related to mechanical constraints leading to non-trivial strong co-variation between pairs of elemental variables. Analysis of grip force adjustments during motion of hand-held objects suggests that the central nervous system adjusts to gravitational and inertial loads differently. The human hand is a gold mine for researchers interested in the control of natural human

  15. Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Delgado, Irebert R.

    2009-01-01

    The baseline non-contacting finger seal is a NASA patented design. The primary difference between it and Gul Aroras design patented by AlliedSignal is that there are no lift pads on the high pressure fingers. The baseline non-contacting finger seal is comprised of a back plate, aft spacer, aft (or low pressure) finger element, forward (or high pressure) finger element, forward spacer, and front plate. The components are held together with 20 flat head screws. A typical seal would have a back plate of approximately the same thickness as the front plate and would be riveted together. The thicker back plate allows use of threaded fasteners so that different finger elements can be tested without having to replace all the individual seal components. The finger elements are essentially washers made of thin sheet stock with multiple curved slots machined around the inner diameter to form the fingers. They are clocked so that the fingers of one cover the slots of the other. The aft finger element fingers have axial extensions or "lift pads" at the seal id that are concentric to the rotor. The fingers act as cantilever beams and flex in response to rotor dynamic motion and radial growth of the rotor due to centrifugal or thermal forces.

  16. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in commercial...

  17. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in commercial...

  18. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented prosthesis...

  19. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented prosthesis...

  20. 21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint metal/polymer constrained cemented... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer..., 1996 for any finger joint metal/polymer constrained cemented prosthesis that was in commercial...

  1. 76 FR 77769 - North Finger Grazing Authorization Project, Malheur National Forest, Grant County, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... allotments within the North Finger Landscape. These allotments are within the Upper Deer Creek, Basin Creek... is to authorize grazing on all or portions of the North Finger landscape in such a manner that will... incorporating adaptive management strategies across the North Finger landscape. Adaptive Management is defined...

  2. 21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/polymer constrained cemented... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer..., 1996 for any finger joint metal/polymer constrained cemented prosthesis that was in commercial...

  3. 21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint metal/polymer constrained cemented... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer..., 1996 for any finger joint metal/polymer constrained cemented prosthesis that was in commercial...

  4. 21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint metal/polymer constrained cemented... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer..., 1996 for any finger joint metal/polymer constrained cemented prosthesis that was in commercial...

  5. 21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint metal/polymer constrained cemented... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer..., 1996 for any finger joint metal/polymer constrained cemented prosthesis that was in commercial...

  6. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    PubMed

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  7. Business as a Site of Language Contact.

    ERIC Educational Resources Information Center

    Harris, Sandra; Bargiela-Chiappini, Francesca

    2003-01-01

    Discusses the field of language for business. Argues for redressing the balance of research into business as a site of language contact in favor of less well-represented languages and cultures through indigenous discourse studies, and notes the increasing frequency and importance of work involving Asian languages. (Author/VWL)

  8. Freely Chosen Index Finger Tapping Frequency Is Increased in Repeated Bouts of Tapping.

    PubMed

    Hansen, Ernst Albin; Ebbesen, Brian Duborg; Dalsgaard, Ane; Mora-Jensen, Mark Holten; Rasmussen, Jakob

    2015-01-01

    Healthy individuals (n = 40) performed index finger tapping at freely chosen frequency during repeated bouts and before and after near-maximal muscle action consisting of 3 intense flexions of the index finger metacarpal phalangeal joint. One experiment showed, unexpectedly, that a bout of tapping increased the tapping frequency in the subsequent bout. Thus, a cumulating increase of 8.2 ± 5.4% (p < .001) occurred across 4 bouts, which were all separated by 10 min rest periods. Follow-up experiments revealed that tapping frequency was still increased in consecutive bouts when rest periods were extended to 20 min. Besides, near-maximal muscle activation, followed by 5 min rest, did not affect the tapping frequency. In conclusion, freely chosen tapping frequency was increased in repeated bouts of tapping, which were separated by 10-20 min rest periods. The observed phenomenon is suggested to be termed repeated bout rate enhancement.

  9. Identification of microRNAs and their targets in Finger millet by high throughput sequencing.

    PubMed

    Usha, S; Jyothi, M N; Sharadamma, N; Dixit, Rekha; Devaraj, V R; Nagesh Babu, R

    2015-12-15

    MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Unilateral congenital terminal finger absences: a condition that differs from symbrachydactyly.

    PubMed

    Knight, Jeffrey B; Pritsch, Tamir; Ezaki, Marybeth; Oishi, Scott N

    2012-01-01

    To describe a type of nonhereditary unilateral transverse deficiency, which we have named hypodactyly, that is distinct from symbrachydactyly or amniotic disruption sequence. We identified 19 patients with unilateral congenital anomalies consisting of absent or short bulbous fingers that lack terminal ectodermal elements. Medical records and radiographs were retrospectively reviewed and contrasted with the typical findings of symbrachydactyly and amniotic disruption sequence. No associated syndromes or potentially causative diagnoses were identified in the hypodactyly patients. The digital absences were of a truncated pattern with thickened, tubular soft tissue coverage. Radiographs revealed a pattern of severity progression that is different from that of symbrachydactyly. Distal phalanges were the bony elements absent most frequently, followed sequentially by the middle phalanx and proximal phalanx. In all cases, metacarpals were present. Unlike symbrachydactyly, the ulnar 2 digits were more involved than the index and long fingers, and the thumb was the least involved digit. Hypodactyly appears to be a congenital hand anomaly that is clinically and radiographically different from symbrachydactyly or amniotic disruption sequence and is presumed to be caused by a distinct pathomechanism. Prognostic IV. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols.

    PubMed

    Chethan, S; Dharmesh, Shylaja M; Malleshi, Nagappa G

    2008-12-01

    Retinopathy is a major cause of blindness in the Western world, while cataract is one of the three major causes of blindness worldwide. Diabetes is one of the major risk factor in retinopathy and cataract. The prevalence of blindness in India is 15 per 1000 while cataract alone accounts for 80% of this blindness. Diabetes induced cataract is characterized by an accumulation of sorbitol which is mediated by the action of a key enzyme aldose reductase (AR). Non-enzymatic glycation (binding of glucose to protein molecule) induced during diabetes appear to be the key factor for AR mediated sugar-induced cataract. Finger millet polyphenols (FMP) being a major anti-diabetic and antioxidant component, we have evaluated them for AR inhibiting activity. Phenolic constituents in FMP such as gallic, protocatechuic, p-hydroxy benzoic, p-coumaric, vanillic, syringic, ferulic, trans-cinnamic acids and the quercetin inhibited cataract eye lens effectively, the latter was more potent with an IC(50) of 14.8nM. Structure function analysis revealed that phenolics with OH group at 4th position was important for aldose reductase inhibitory property. Also the presence of neighboring O-methyl group in phenolics denatured the AR activity. Finger millet seed coat polyphenols (SCP) has been found to inhibit AR reversibly by non-competitive inhibition. Results thus, provide a stronger evidence for the potentials of FMP in inhibiting cataractogenesis in humans.

  12. Intercalary non-vascularised toe phalanx transplantation for short finger-type symbrachydactyly.

    PubMed

    Kanauchi, Yumiko; Takahara, Masatoshi; Ogino, Toshihiko; Kashiwa, Hideo; Ishigaki, Daisuke

    2003-12-01

    A two-year-old boy with short finger-type symbrachydactyly involving the index, middle, and ring fingers was treated with intercalary nonvascularised toe phalanx transplantation into the middle finger to obtain stability of the middle finger before syndactyly release. He underwent syndactyly release one year after the transplantation. Two years after the transplantation, the clinical result was satisfactory, although X-ray showed fibrous union between the transplanted phalanx and the host phalanx. Intercalary nonvascularised toe phalanx transplantation is one of the way of stabilising a finger after syndactyly release.

  13. Finger-specific loss of independent control of movements in musicians with focal dystonia.

    PubMed

    Furuya, S; Altenmüller, E

    2013-09-05

    The loss of independent control of finger movements impairs the dexterous use of the hand. Focal hand dystonia is characterised by abnormal structural and functional changes at the cortical and subcortical regions responsible for individuated finger movements and by the loss of surround inhibition in the finger muscles. However, little is known about the pathophysiological impact of focal dystonia on the independent control of finger movements. Here we addressed this issue by asking pianists with and without focal dystonia to repetitively strike a piano key with one of the four fingers as fast as possible while the remaining digits kept the adjacent keys depressed. Using principal component analysis and cluster analysis to the derived keystroke data, we successfully classified pianists according to the presence or absence of dystonic symptoms with classification rates and cross-validation scores of approximately 90%. This confirmed the effects of focal dystonia on the individuated finger movements. Interestingly, the movement features that contributed to successful classification differed across fingers. Compared to healthy pianists, pianists with an affected index finger were characterised predominantly by stronger keystrokes, whereas pianists with affected middle or ring fingers exhibited abnormal temporal control of the keystrokes, such as slowness and rhythmic inconsistency. The selective alternation of the movement features indicates a finger-specific loss of the independent control of finger movements in focal dystonia of musicians. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors

    PubMed Central

    Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung

    2017-01-01

    Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods. PMID:28587269

  15. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.

    PubMed

    Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung

    2017-06-06

    Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.

  16. Finger-vein and fingerprint recognition based on a feature-level fusion method

    NASA Astrophysics Data System (ADS)

    Yang, Jinfeng; Hong, Bofeng

    2013-07-01

    Multimodal biometrics based on the finger identification is a hot topic in recent years. In this paper, a novel fingerprint-vein based biometric method is proposed to improve the reliability and accuracy of the finger recognition system. First, the second order steerable filters are used here to enhance and extract the minutiae features of the fingerprint (FP) and finger-vein (FV). Second, the texture features of fingerprint and finger-vein are extracted by a bank of Gabor filter. Third, a new triangle-region fusion method is proposed to integrate all the fingerprint and finger-vein features in feature-level. Thus, the fusion features contain both the finger texture-information and the minutiae triangular geometry structure. Finally, experimental results performed on the self-constructed finger-vein and fingerprint databases are shown that the proposed method is reliable and precise in personal identification.

  17. A New Clinical Sign of Lumbrical Plus Finger.

    PubMed

    Schuind, Frédéric A; Moungondo, Fabian; Van Wetter, Pierre

    2018-06-01

    Paradoxical finger extension is the classical clinical presentation of the lumbrical plus syndrome. We report a new additional sign, increased metacarpophalangeal flexion of the involved finger when the patient tries to make a fist. Three cases of lumbrical tightness are discussed, illustrating this new sign in 3 different clinical settings. The new sign was present in all 3 cases. Lumbrical tenotomy corrected the paradoxical interphalangeal extension and partly the increased metacarpophalangeal flexion. The lumbrical tendon has a relatively high moment arm relative to the metacarpophalangeal joint, which could explain the basis of this clinical sign. This new physical examination sign may help in diagnosing the lumbrical plus syndrome, a subtle complication of flexor digitorum profundus lesions that is not easily diagnosed but which is easily addressed. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Enhancement of particle-induced viscous fingering in bidisperse suspensions

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Lee, Sungyon

    2017-11-01

    The novel particle-induced fingering instability is observed when bidisperse particle suspensions displace air in a Hele-Shaw cell. Leading to the instability, we observe that larger particles consistently enrich the fluid-fluid interface at a faster rate than the small particles. This size-dependent enrichment of the interface leads to an earlier onset of the fingering instability for bidisperse suspensions, compared to their monodisperse counterpart. Careful experiments are carried out by either systematically varying the ratio of large to small particles at fixed total concentrations, or by changing the total concentrations while the large particle concentrations are held constant. Experimental results show that the presence of large particle causes the instability to occur at concentrations as much as 5% lower than the pure small particle case. We also discuss the physical mechanism that drives the enrichment and the subsequent instability based on the modified suspension balance model.

  19. When pliers become fingers in the monkey motor system

    PubMed Central

    Umiltà, M. A.; Escola, L.; Intskirveli, I.; Grammont, F.; Rochat, M.; Caruana, F.; Jezzini, A.; Gallese, V.; Rizzolatti, G.

    2008-01-01

    The capacity to use tools is a fundamental evolutionary achievement. Its essence stands in the capacity to transfer a proximal goal (grasp a tool) to a distal goal (e.g., grasp food). Where and how does this goal transfer occur? Here, we show that, in monkeys trained to use tools, cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for “reverse pliers,” an implement that requires finger opening, instead of their closing, to grasp an object. We conclude that the capacity to use tools is based on an inherently goal-centered functional organization of primate cortical motor areas. PMID:18238904

  20. Finger-gate manipulated quantum transport in Dirac materials

    NASA Astrophysics Data System (ADS)

    Kleftogiannis, Ioannis; Tang, Chi-Shung; Cheng, Shun-Jen

    2015-05-01

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch.

  1. [10 congenital trigger fingers. Apropos of a case report].

    PubMed

    Moutet, F; Lebrun, C; Sartorius, C

    1987-01-01

    Ten congenital triggers fingers have been treated on a 3 years old girl after correction of congenital bilateral club feet. Such a case, without any other congenital malformation seems to be unique in the French literature and only found twice in the English one. This child in spite of a normal growth and good psychomotor development, presents an unusual face, with a mouth a little bit too small, but her karyotype is normal. No trismus and no microstomia were found to enable this case to be classified in a specific syndrome. The right diagnosis may be a non evolutive arthrogryposis of the extremities. Dividing the ten proximal pulleys (A1) let 10 voluminous nodules pass through and allowed full range of motion in nine out of ten fingers. A remaining flexion deformity of the proximal interphalangeal joint needed an anterior arthrolysis, the final result was good.

  2. New Optical Methods for Liveness Detection on Fingers

    PubMed Central

    Dolezel, Michal; Vana, Jan; Brezinova, Eva; Yim, Jaegeol; Shim, Kyubark

    2013-01-01

    This paper is devoted to new optical methods, which are supposed to be used for liveness detection on fingers. First we describe the basics about fake finger use in fingerprint recognition process and the possibilities of liveness detection. Then we continue with introducing three new liveness detection methods, which we developed and tested in the scope of our research activities—the first one is based on measurement of the pulse, the second one on variations of optical characteristics caused by pressure change, and the last one is based on reaction of skin to illumination with different wavelengths. The last part deals with the influence of skin diseases on fingerprint recognition, especially on liveness detection. PMID:24151584

  3. Hypothyroidism presenting as destructive arthropathy of the fingers.

    PubMed Central

    Gerster, J. C.; Quadri, P.; Saudan, Y.

    1985-01-01

    A patient presenting with destructive arthropathy of the proximal interphalangeal (PIP) joints of the hands is described. She was initially believed to have rheumatoid arthritis but non-steroidal anti-inflammatory drugs were of no help. The patient was subsequently found to have hypothyroidism and erosive osteoarthritis of the fingers. Joint swelling, pain and stiffness responded dramatically to thyroid hormone substitution. The PIP joint spaces reappeared on the radiographs within 9 months. This case suggest that hypothyroidism may induce destructive arthropathy of the finger joints. As thyroxine replacement may reverse the rheumatic complaints, hypothyroidism should be considered in the differential diagnosis of a destructive arthropathy of unclear aetiology. Images Figure 1 Figure 2 PMID:3983045

  4. Charge pumping with finger capacitance for body sensor energy harvesting.

    PubMed

    Zhou, Alyssa Y; Maharbiz, Michel M

    2017-07-01

    Sensors are becoming ubiquitous and increasingly integrated with and on the human body; powering such "body network" devices remains an outstanding problem. In this paper, we demonstrate a touch interrogation powered energy harvesting system. This system transforms the kinetic energy of a human finger to electric energy, with each tap producing approximately 1 nJ of energy at a storage capacitor. As is well known for touch display devices, the proximity of a finger can alter the effective value of small capacitances; we demonstrate that these capacitance changes can drive a current which is rectified to charge a capacitor. As a demonstration, an untethered circuit charged this way can deliver enough instantaneous power to light a red LED every ~ 10 seconds. This technology illustrates the ability to communicate with and operate low-power sensors with motions already used for interfacing to devices.

  5. Acute Calcific Tendinitis of the Index Finger in a Child.

    PubMed

    Walocko, Frances M; Sando, Ian C; Haase, Steven C; Kozlow, Jeffrey H

    2017-09-01

    Calcific tendinitis is characterized by calcium hydroxyapatite crystal deposition within tendons and is a common cause of musculoskeletal pain in adults. Its clinical manifestations may be acute, chronic, or asymptomatic. Acute calcific tendinitis is self-resolving condition that is rarely reported in the pediatric population and may be overlooked for more common processes, leading to unnecessary treatment. A chart reivew was performed of a single case of acute calcific tendonitis of the index finger in a child. We describe a case of calcific tendinitis of the index finger in a 9-year-old boy who was referred to us for a second opinion after surgical exploration of an acutely inflamed digit was recommended based on his initial presentation. The calcifications and symptoms resolved over time without operative management. Although rare in children, acute calcific tendinitis can present similar to an infection. However, appropriate managment is non-operative as the symptoms and radiographic findings resolve over time.

  6. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  7. Frequency domain surface EMG sensor fusion for estimating finger forces.

    PubMed

    Potluri, Chandrasekhar; Kumar, Parmod; Anugolu, Madhavi; Urfer, Alex; Chiu, Steve; Naidu, D; Schoen, Marco P

    2010-01-01

    Extracting or estimating skeletal hand/finger forces using surface electro myographic (sEMG) signals poses many challenges due to cross-talk, noise, and a temporal and spatially modulated signal characteristics. Normal sEMG measurements are based on single sensor data. In this paper, array sensors are used along with a proposed sensor fusion scheme that result in a simple Multi-Input-Single-Output (MISO) transfer function. Experimental data is used along with system identification to find this MISO system. A Genetic Algorithm (GA) approach is employed to optimize the characteristics of the MISO system. The proposed fusion-based approach is tested experimentally and indicates improvement in finger/hand force estimation.

  8. Automatic finger joint synovitis localization in ultrasound images

    NASA Astrophysics Data System (ADS)

    Nurzynska, Karolina; Smolka, Bogdan

    2016-04-01

    A long-lasting inflammation of joints results between others in many arthritis diseases. When not cured, it may influence other organs and general patients' health. Therefore, early detection and running proper medical treatment are of big value. The patients' organs are scanned with high frequency acoustic waves, which enable visualization of interior body structures through an ultrasound sonography (USG) image. However, the procedure is standardized, different projections result in a variety of possible data, which should be analyzed in short period of time by a physician, who is using medical atlases as a guidance. This work introduces an efficient framework based on statistical approach to the finger joint USG image, which enables automatic localization of skin and bone regions, which are then used for localization of the finger joint synovitis area. The processing pipeline realizes the task in real-time and proves high accuracy when compared to annotation prepared by the expert.

  9. Finger tips detection for two handed gesture recognition

    NASA Astrophysics Data System (ADS)

    Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj

    2011-10-01

    In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.

  10. Finger pad friction and its role in grip and touch

    PubMed Central

    Adams, Michael J.; Johnson, Simon A.; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-01-01

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function. PMID:23256185

  11. A Search for Plasma "Fingers" in the Io Torus

    NASA Astrophysics Data System (ADS)

    Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.

    1996-09-01

    We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.

  12. [Risk factors associated with trigger finger. Case-control study].

    PubMed

    De la Parra-Márquez, Miguel Leonardo; Tamez-Cavazos, Roberto; Zertuche-Cedillo, Luis; Martínez-Pérez, Juan José; Velasco-Rodríguez, Víctor; Cisneros-Pérez, Vicente

    2008-01-01

    We undertook this study to identify risk factors in our population associated with trigger finger. The study was conducted at the Instituto Mexicano del Seguro Social, UMAE 21, Monterrey, Nuevo Leon, Mexico. This was a case-control, retrospective, and observational study. There were 250 patients in each group. For cases, patients who were operated on for trigger finger from March 2006 to August 2006 were included. Controls included patients admitted to the Emergency Department with hand injuries that fulfilled the selection criteria. Risk factors analyzed were diabetes, hypertension, smoking, sex, age, weight, and 19 different occupations. Mean age of the cases was 52 years (SE +/- 14.19 years) with a median and mode of 53 years. The right hand was the most common with the middle, thumb, ring, index and little fingers, respectively. A significant statistical relationship was found: females (OR 7.57, 95% CI 5.07-11.31); diabetes (OR 3.72, 95% CI 2.43-5.70); obesity (OR 1.49, 95% CI 1.02-2.19). With regard to occupation, a statistical relationship was found: homemaker (OR 2.44, 95% CI 1.62-3.69); seamstress (OR 4.8, 95% CI 1.3-21.6); and secretary (OR 2.74, 95% CI 1.38-5.52). Trigger finger is a common pathology in our population and is more frequent in women >53 years old. It may be related to diabetes, body mass index (obesity) and certain occupations such as secretary, seamstress and homemaker.

  13. The "Haptic Finger"- a new device for monitoring skin condition.

    PubMed

    Tanaka, Mami; Lévêque, Jean Luc; Tagami, Hachiro; Kikuchi, Katsuko; Chonan, Seifi

    2003-05-01

    Touching the skin is of great importance for the Clinician for assessing roughness, softness, firmness, etc. This type of clinical assessment is very subjective and therefore non-reproducible from one Clinician to another one or even from time to time for the same Clinician. In order to objectively monitor skin texture, we developed a new sensor, placed directly on the Clinician's finger, which generate some electric signal when slid over the skin surface. The base of this Haptic Finger sensor is a thin stainless steel plate on which sponge rubber, PVDF foil, acetate film and gauze are layered. The signal generated by the sensor was filtered and digitally stored before processing. In a first in vitro experiment, the sensor was moved over different skin models (sponge rubber covered by silicon rubber) of varying hardness and roughness. These experiments allowed the definition of two parameters characterizing textures. The first parameter is variance of the signal processed using wavelet analysis, representing an index of roughness. The second parameter is dispersion of the power spectrum density in the frequency domain, corresponding to hardness. To validate these parameters, the Haptic Finger was used to scan skin surfaces of 30 people, 14 of whom displayed a skin disorder: xerosis (n = 5), atopic dermatitis (n = 7), and psoriasis (n = 2). The results obtained by means of the sensor were compared with subjective, clinical evaluations by a Clinician who scored both roughness and hardness of the skin. Good agreement was observed between clinical assessment of the skin and the two parameters generated using the Haptic Finger. Use of this sensor could prove extremely valuable in cosmetic research where skin surface texture (in terms of tactile properties) is difficult to measure.

  14. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  15. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.

    PubMed

    Dupan, Sigrid S G; Stegeman, Dick F; Maas, Huub

    2018-06-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks. Twelve participants performed single finger flexion presses at 20% of maximum voluntary contraction, while simultaneously the electromyographic activity of several intrinsic and extrinsic muscles associated with all four fingers was recorded using 8 electrode pairs in the hand and two 30-electrode grids on the lower arm. The forces exerted by each of the fingers, in both flexion and extension direction, were recorded with individual force sensors. This study shows distinct activation patterns in intrinsic and extrinsic hand muscles. Intrinsic muscles exhibited individuation, where the agonistic and antagonistic muscles associated with the instructed fingers showed the highest activation. This activation in both agonistic and antagonistic muscles appears to facilitate finger stabilisation during the isometric force task. Extrinsic muscles show an activation independent from instructed finger in both agonistic and antagonistic muscles, which appears to be associated with stabilisation of the wrist, with an additional finger-dependent modulation only present in the agonistic extrinsic muscles. These results indicate distinct muscle patterns in intrinsic and extrinsic hand muscles during single finger isometric force pressing. We conclude that the finger specific activation of intrinsic muscles is not sufficient to fully counteract enslaving caused by the broad activation of the extrinsic muscles. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. ZifBASE: a database of zinc finger proteins and associated resources.

    PubMed

    Jayakanthan, Mannu; Muthukumaran, Jayaraman; Chandrasekar, Sanniyasi; Chawla, Konika; Punetha, Ankita; Sundar, Durai

    2009-09-09

    Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP) to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available) and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones), the number of finger units in each of the zinc finger proteins (with multiple fingers), the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public databases like UniprotKB, PDB, ModBase and Protein Model

  17. Index finger somatosensory evoked potentials in blind Braille readers.

    PubMed

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p < 0.05). The amplitudes of N9 and N13 SEP and the latencies of all recorded SEPs showed no significant differences. Blindness has a profound effect on the Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  18. An experimental study of miscible viscous fingering of annular ring

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Othman, Hamirul Bin; Mishra, Manoranjan

    2017-11-01

    Understanding the viscous fingering (VF) dynamics of finite width sample is important in the fields especially such as liquid chromatography and groundwater contamination and mixing in microfluidics. In this paper, we experimentally investigate such hydrodynamical morphology of VF using a Hele-Shaw flow system in which a miscible annular ring of fluid is displaced radially. Experiments are performed to investigate the effects of the sample volume, the effects of dispersion and log mobility ratio R on the dynamics of VF pattern and onset of such instability. Depending whether the finite width ring is more or less viscous than the carrier fluid, the log mobility ratio R becomes positive or negative respectively. The experiments are successfully conducted to obtain the VF patterns for R>0 and R<0, of the finite annular ring at the inner and outer radial interfaces, respectively. It is found that in the radial displacement, the inward finger moves slower than the outward finger. The experimental results are found to be qualitatively in good agreement with the corresponding linear stability analysis and non-linear simulations results available in the literature.

  19. Direct Numerical Simulation of Fingering Instabilities in Coating Flows

    NASA Astrophysics Data System (ADS)

    Eres, Murat H.; Schwartz, Leonard W.

    1998-11-01

    We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.

  20. Abnormal maximal finger tapping in abstinent cannabis users.

    PubMed

    Flavel, Stanley C; White, Jason M; Todd, Gabrielle

    2013-11-01

    To investigate movement speed and rhythmicity in abstinent cannabis users, we hypothesized that abstinent cannabis users exhibit decreased maximal finger tapping frequency and increased variability of tapping compared with non-drug users. The study involved 10 healthy adult cannabis users and 10 age-matched and gender-matched controls with no history of illicit drug use. Subjects underwent a series of screening tests prior to participation. Subjects were then asked to tap a strain gauge as fast as possible with the index finger of their dominant hand (duration 5 s). The average intertap interval did not significantly differ between groups, but the coefficient of variation of the intertap interval was significantly greater in the cannabis group than in controls (p=0.011). The cannabis group also exhibited a slow tapping frequency at the beginning of the task. Rhythmicity of finger tapping is abnormal in individuals with a history of cannabis use. The abnormality appears to be long lasting and adds to the list of functional changes present in abstinent cannabis users. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Quantification of Finger-Tapping Angle Based on Wearable Sensors

    PubMed Central

    Djurić-Jovičić, Milica; Jovičić, Nenad S.; Roby-Brami, Agnes; Popović, Mirjana B.; Kostić, Vladimir S.; Djordjević, Antonije R.

    2017-01-01

    We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns. The obtained tapping angles were compared with results of a motion capture camera system, demonstrating excellent accuracy. The root-mean-square (RMS) error between the two sets of data is, on average, below 4°, and the intraclass correlation coefficient is, on average, greater than 0.972. Data obtained by the proposed method may be used together with scores from clinical tests to enable a better diagnostic. Along with hardware simplicity, this makes the proposed method a promising candidate for use in clinical practice. Furthermore, our definition of the tapping angle can be applied to all tapping assessment systems. PMID:28125051

  2. Quantification of Finger-Tapping Angle Based on Wearable Sensors.

    PubMed

    Djurić-Jovičić, Milica; Jovičić, Nenad S; Roby-Brami, Agnes; Popović, Mirjana B; Kostić, Vladimir S; Djordjević, Antonije R

    2017-01-25

    We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns. The obtained tapping angles were compared with results of a motion capture camera system, demonstrating excellent accuracy. The root-mean-square (RMS) error between the two sets of data is, on average, below 4°, and the intraclass correlation coefficient is, on average, greater than 0.972. Data obtained by the proposed method may be used together with scores from clinical tests to enable a better diagnostic. Along with hardware simplicity, this makes the proposed method a promising candidate for use in clinical practice. Furthermore, our definition of the tapping angle can be applied to all tapping assessment systems.

  3. Ultrasound of the fingers for human identification using biometrics.

    PubMed

    Narayanasamy, Ganesh; Fowlkes, J Brian; Kripfgans, Oliver D; Jacobson, Jon A; De Maeseneer, Michel; Schmitt, Rainer M; Carson, Paul L

    2008-03-01

    It was hypothesized that the use of internal finger structure as imaged using commercially available ultrasound (US) scanners could act as a supplement to standard methods of biometric identification, as well as a means of assessing physiological and cardiovascular status. Anatomical structures in the finger including bone contour, tendon and features along the interphalangeal joint were investigated as potential biometric identifiers. Thirty-six pairs of three-dimensional (3D) gray-scale images of second to fourth finger (index, middle and ring) data taken from 20 individuals were spatially registered using MIAMI-Fuse software developed at our institution and also visually matched by four readers. The image-based registration met the criteria for matching successfully in 14 out of 15 image pairs on the same individual and did not meet criteria for matching in any of the 12 image pairs from different subjects, providing a sensitivity and specificity of 0.93 and 1.00, respectively. Visual matching of all image pairs by four readers yielded 96% successful match. Power Doppler imaging was performed to calculate the change in color pixel density due to physical exercise as a surrogate of stress level and to provide basic physiological information. (E-mail: gnarayan@umich.edu).

  4. An effective 3-fingered augmenting exoskeleton for the human hand.

    PubMed

    Gearhart, C J; Varone, B; Stella, M H; BuSha, B F

    2016-08-01

    Every year, thousands of Americans suffer from pathological and traumatic events that result in loss of dexterity and strength of the hand. Although many supportive devices have been designed to restore functional hand movement, most are very complex and expensive. The goal of this project was to design and implement a cost-effective, electrically powered exoskeleton for the human hand that could improve grasping strength. A 3-D printed thermoplastic exoskeleton that allowed independent and enhanced movement of the index, middle and ring fingers was constructed. In addition, a 3-D printed structure was designed to house three linear actuators, an Arduino-based control system, and a power supply. A single force sensing resistor was located on the lower inner-surface of the index fingertip which was used to proportionally activate the three motors, one motor per finger, as a function of finger force applied to the sensor. The device was tested on 4 normal human subjects. Results showed that the activation of the motor control system significantly reduced the muscle effort needed to maintain a sub-maximal grasp effort.

  5. Numerical simulation of double‐diffusive finger convection

    USGS Publications Warehouse

    Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard

    2005-01-01

    A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.

  6. Post-exercise cortical depression following repetitive passive finger movement.

    PubMed

    Otsuka, Ryohei; Sasaki, Ryoki; Tsuiki, Shota; Kojima, Sho; Onishi, Hideaki

    2017-08-24

    This study aimed to clarify the influence of range of repetitive passive finger movement on corticospinal excitability. Thirteen healthy subjects participated in this study. Passive index finger adduction-abduction movements were performed from 15° abduction to 15° adduction, 15° abduction to 0°, 0° to 15° adduction, and 15° adduction to 30° adduction, each at 15°/s for 10min on separate days. Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and M- and F-waves were measured before and after each repetitive passive index finger movement protocol to evaluate changes in corticospinal excitability. MEP amplitude significantly decreased after all passive movements, while F-wave amplitude, F-wave persistence, and M-wave amplitude remained stable. These results suggest that cortical excitability decreases after repetitive passive movement. However, the range of repetitive passive movement does not markedly influence the magnitude of cortical depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production.

    PubMed

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves

    2008-04-01

    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  8. Sliding Window-Based Region of Interest Extraction for Finger Vein Images

    PubMed Central

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-01-01

    Region of Interest (ROI) extraction is a crucial step in an automatic finger vein recognition system. The aim of ROI extraction is to decide which part of the image is suitable for finger vein feature extraction. This paper proposes a finger vein ROI extraction method which is robust to finger displacement and rotation. First, we determine the middle line of the finger, which will be used to correct the image skew. Then, a sliding window is used to detect the phalangeal joints and further to ascertain the height of ROI. Last, for the corrective image with certain height, we will obtain the ROI by using the internal tangents of finger edges as the left and right boundary. The experimental results show that the proposed method can extract ROI more accurately and effectively compared with other methods, and thus improve the performance of finger vein identification system. Besides, to acquire the high quality finger vein image during the capture process, we propose eight criteria for finger vein capture from different aspects and these criteria should be helpful to some extent for finger vein capture. PMID:23507824

  9. Multimodal biometric method that combines veins, prints, and shape of a finger

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo

    2011-01-01

    Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.

  10. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses.

    PubMed

    Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Vinod, K K; Kalpana, Krishnan; Al-Dhabi, N A; Ignacimuthu, S

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  11. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses

    PubMed Central

    Ramakrishnan, M.; Antony Ceasar, S.; Duraipandiyan, V.; Vinod, K. K.; Kalpana, Krishnan; Al-Dhabi, N. A.; Ignacimuthu, S.

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  12. Association between finger tapping, attention, memory, and cognitive diagnosis in elderly patients.

    PubMed

    Rabinowitz, Israel; Lavner, Yizhar

    2014-08-01

    This study examined the association between spontaneous finger tapping and cognitive function, with a detailed analysis of the two main phases of finger tapping, the touch-phase and the off-phase. 170 elderly patients (83 men, 87 women; M age = 82.1 yr., SD = 6.2) underwent cognitive assessment including the Mini-Mental State Examination, a forward digit span test, and 15 sec. of finger tapping. Results indicated a significant increase in the length and variability of the finger-touch phase among participants with mild cognitive impairment or dementia compared to participants with no cognitive impairment, suggesting a relationship between finger tapping and attention, short-term memory, and cognitive diagnosis. Pattern classification analyses on the finger tapping parameters indicated a specificity of 0.91 and sensitivity of 0.52 for ruling out cognitive impairment.

  13. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  14. Dose-response patterns for vibration-induced white finger

    PubMed Central

    Griffin, M; Bovenzi, M; Nelson, C

    2003-01-01

    Aims: To investigate alternative relations between cumulative exposures to hand-transmitted vibration (taking account of vibration magnitude, lifetime exposure duration, and frequency of vibration) and the development of white finger (Raynaud's phenomenon). Methods: Three previous studies have been combined to provide a group of 1557 users of powered vibratory tools in seven occupational subgroups: stone grinders, stone carvers, quarry drillers, dockyard caulkers, dockyard boilermakers, dockyard painters, and forest workers. The estimated total operating duration in hours was thus obtained for each subject, for each tool, and for all tools combined. From the vibration magnitudes and exposure durations, seven alternative measurements of cumulative exposure were calculated for each subject, using expressions of the form: dose = ∑amiti, where ai is the acceleration magnitude on tool i, ti is the lifetime exposure duration for tool i, and m = 0, 1, 2, or 4. Results: For all seven alternative dose measures, an increase in dose was associated with a significant increase in the occurrence of vibration-induced white finger, after adjustment for age and smoking. However, dose measures with high powers of acceleration (m > 1) faired less well than measures in which the weighted or unweighted acceleration, and lifetime exposure duration, were given equal weight (m = 1). Dose determined solely by the lifetime exposure duration (without consideration of the vibration magnitude) gave better predictions than measures with m greater than unity. All measures of dose calculated from the unweighted acceleration gave better predictions than the equivalent dose measures using acceleration frequency-weighted according to current standards. Conclusions: Since the total duration of exposure does not discriminate between exposures accumulated over the day and those accumulated over years, a linear relation between vibration magnitude and exposure duration seems appropriate for predicting

  15. Density fingering in spatially modulated Hele-Shaw cells

    SciTech Connect

    Toth, Tamara; Horvath, Dezso; Toth, Agota

    Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.

  16. Invariantly propagating dissolution fingers in finite-width systems

    NASA Astrophysics Data System (ADS)

    Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Dissolution fingers are formed in porous medium due to positive feedback between transport of reactant and chemical reactions [1-4]. We investigate two-dimensional semi-infinite systems, with constant width W in one direction. In numerical simulations we solve the Darcy flow problem combined with advection-dispersion-reaction equation for the solute transport to track the evolving shapes of the fingers and concentration of reactant in the system. We find the stationary, invariantly propagating finger shapes for different widths of the system, flow and reaction rates. Shape of the reaction front, turns out to be controlled by two dimensionless numbers - the (width-based) Péclet number PeW = vW/Dφ0 and Damköhler number DaW = ksW/v, where k is the reaction rate, s - specific reactive surface area, v - characteristic flow rate, D - diffusion coefficient of the solute, and φ0 - initial porosity of the rock matrix. Depending on PeW and DaW stationary shapes can be divided into seperate classes, e.g. parabolic-like and needle-like structures, which can be inferred from theoretical predictions. In addition we determine velocity of propagating fingers in time and concentration of reagent in the system. Our simulations are compared with natural forms (solution pipes). P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, 287, 1008-1040 (1987). M. L. Hoefner, and H. S. Fogler. Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal 34, 45-54 (1988). C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chemical Engineering Science 63, 3088-3099 (2008). P. Szymczak and A. J. C. Ladd, Reactive-infiltration nstabilities in rocks. Part II: Dissolution of a porous matrix, J. Fluid Mech. 738, 591-630 (2014).

  17. Kinematic analysis of the finger exoskeleton using MATLAB/Simulink.

    PubMed

    Nasiłowski, Krzysztof; Awrejcewicz, Jan; Lewandowski, Donat

    2014-01-01

    A paralyzed and not fully functional part of human body can be supported by the properly designed exoskeleton system with motoric abilities. It can help in rehabilitation, or movement of a disabled/paralyzed limb. Both suitably selected geometry and specialized software are studied applying the MATLAB environment. A finger exoskeleton was the base for MATLAB/Simulink model. Specialized software, such as MATLAB/Simulink give us an opportunity to optimize calculation reaching precise results, which help in next steps of design process. The calculations carried out yield information regarding movement relation between three functionally connected actuators and showed distance and velocity changes during the whole simulation time.

  18. Viscous fingering and channeling in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Dutta, Sourav

    2017-11-01

    We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.

  19. Classification of finger movements by using the ultra-wide band radar.

    PubMed

    Eldosoky, Mohamed A A

    2010-12-01

    The coding system of finger movements depends on the differences in the characteristics of the muscles that are responsible for these movements. The ability of ultra-wide band (UWB) radar for use as a tool for identifying the movements of each finger is presented. This will facilitate the ability of the UWB radar in designing a coding system for the movement of fingers of each hand.

  20. Compliant finger sensor for sensorimotor studies in MEG and MR environment

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yong, X.; Cheung, T. P. L.; Menon, C.

    2016-07-01

    Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are widely used for functional brain imaging. The correlations between the sensorimotor functions of the hand and brain activities have been investigated in MEG/fMRI studies. Currently, limited information can be drawn from these studies due to the limitations of existing motion sensors that are used to detect hand movements. One major challenge in designing these motion sensors is to limit the signal interference between the motion sensors and the MEG/fMRI. In this work, a novel finger motion sensor, which contains low-ferromagnetic and non-conductive materials, is introduced. The finger sensor consists of four air-filled chambers. When compressed by finger(s), the pressure change in the chambers can be detected by the electronics of the finger sensor. Our study has validated that the interference between the finger sensor and an MEG is negligible. Also, by applying a support vector machine algorithm to the data obtained from the finger sensor, at least 11 finger patterns can be discriminated. Comparing to the use of traditional electromyography (EMG) in detecting finger motion, our proposed finger motion sensor is not only MEG/fMRI compatible, it is also easy to use. As the signals acquired from the sensor have a higher SNR than that of the EMG, no complex algorithms are required to detect different finger movement patterns. Future studies can utilize this motion sensor to investigate brain activations during different finger motions and correlate the activations with the sensory and motor functions respectively.

  1. Reduction of adult fingers visualized on pediatric intensive care unit (PICU) chest radiographs after radiation technologist and PICU staff radiation safety education.

    PubMed

    Tynan, Jennifer R; Duncan, Meghan D; Burbridge, Brent E

    2009-10-01

    A recent publication from our centre revealed a disturbing finding of a significant incidence of adult fingers seen on the pediatric intensive care unit (PICU) chest radiographs. This is inappropriate occupational exposure to diagnostic radiation. We hypothesized that the incidence of adult fingers on PICU chest radiographs would decline after radiation safety educational seminars were given to the medical radiation technologists and PICU staff. The present study's objectives were addressed by using a pretest-posttest design. Two cross-sectional PICU chest radiograph samples, taken before and after the administration of radiation safety education for our medical radiation technologists and PICU staff, were compared by using a chi2 test. There was a 61.2% and 76.9% reduction in extraneous adult fingers, directly exposed to the x-ray beam and those seen in the coned regions of the film, respectively, on PICU chest radiographs (66.7% reduction overall). This reduction was statistically significant (chi2 = 20.613, P < .001). Limiting unnecessary occupational radiation exposure is a critical issue in radiology. There was a statistically and clinically significant association between radiation safety education and the decreased number of adult fingers seen on PICU chest radiographs. This study provides preliminary evidence in favour of the benefit of radiation safety seminars.

  2. Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop

    PubMed Central

    Hubert, Olivier; Mbéguié-A-Mbéguié, Didier

    2012-01-01

    Background and aims Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes. Methods Postharvest ripening of green banana fruit was induced by acetylene treatment and fruit taken at 1–4 days after ripening induction, and total RNA extracted from the median area [control zone (CZ)] and the pedicel rupture area [drop zone (DZ)] of peel tissue. Then the expression patterns of EB genes (MaACO1, MaACO2, MaACS1, MaACS2, MaACS3 and MaACS4) were comparatively examined in CZ and DZ via real-time quantitative polymerase chain reaction. Principal results Differential expression of EB gene was observed in CZ and DZ during the postharvest period examined in this study. MaACO1, MaACS2 and MaACS1 were more highly induced in DZ than in the control, while a slight induction of the MaACS4 gene was observed. No marked differences between the two zones were observed for the MaACO2 gene. Conclusions The finger drop process enhanced EB gene expression including developmental- and ripening-induced genes (MaACO1), specific ripening-induced genes (MaACS1) and wound

  3. Vibration energy absorption (VEA) in human fingers-hand-arm system.

    PubMed

    Dong, R G; Schopper, A W; McDowell, T W; Welcome, D E; Wu, J Z; Smutz, W P; Warren, C; Rakheja, S

    2004-07-01

    A methodology for measuring the vibration energy absorbed into the fingers and the palm exposed to vibration is proposed to study the distribution of the vibration energy absorption (VEA) in the fingers-hand-arm system and to explore its potential association with vibration-induced white finger (VWF). The study involved 12 adult male subjects, constant-velocity sinusoidal excitations at 10 different discrete frequencies in the range of 16-1000 Hz, and four different hand-handle coupling conditions (finger pull-only, hand grip-only, palm push-only, and combined grip and push). The results of the study suggest that the VEA into the fingers is considerably less than that into the palm at low frequencies (< or = 25 Hz). They are, however, comparable under the excitations in the 250-1000 Hz frequency range. The finger VEA at high frequencies (> or = 100 Hz) is practically independent of the hand-handle coupling condition. The coupling conditions affect the VEA into the fingers and the palm very differently. The finger VEA results suggest that the ISO standardized frequency weighting (ISO 5349-1, 2001) may underestimate the effect of high frequency vibration on vibration-induced finger disorders. The proposed method may provide new opportunities to examine VEA and its association with VWF and other types of vibration-induced disorders in the hand-arm system.

  4. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.

    PubMed

    Kawaguchi, Junki; Yoshimoto, Shunsuke; Kuroda, Yoshihiro; Oshiro, Osamu

    2017-09-01

    An approach to finger motion capture that places fewer restrictions on the usage environment and actions of the user is an important research topic in biomechanics and human-computer interaction. We proposed a system that electrically detects finger motion from the associated deformation of the wrist and estimates the finger joint angles using multiple regression models. A wrist-mounted sensing device with 16 electrodes detects deformation of the wrist from changes in electrical contact resistance at the skin. In this study, we experimentally investigated the accuracy of finger joint angle estimation, the adequacy of two multiple regression models, and the resolution of the estimation of total finger joint angles. In experiments, both the finger joint angles and the system output voltage were recorded as subjects performed flexion/extension of the fingers. These data were used for calibration using the least-squares method. The system was found to be capable of estimating the total finger joint angle with a root-mean-square error of 29-34 degrees. A multiple regression model with a second-order polynomial basis function was shown to be suitable for the estimation of all total finger joint angles, but not those of the thumb.

  5. Refining the cross-finger flap: Considerations of flap insetting, aesthetics and donor site morbidity.

    PubMed

    Chong, Chew-Wei; Lin, Cheng-Hung; Lin, Yu-Te; Hsu, Chung-Chen; Chen, Shih-Heng

    2018-04-01

    We described a laterally based cross-finger flap for reconstruction of soft tissue defects in the fingers. This modification enables coverage of volar or dorsal soft tissue defects at the distal, middle or proximal phalanx. From March 2015 to January 2017, a total of 12 patients (13 fingers) underwent soft tissue reconstruction of the fingers with a laterally based cross-finger flap. The flap dimensions ranged from 13 ×7 mm to 43 ×13 mm. Eleven of the 13 flaps survived completely. The two flap failures were attributed to injuries in the donor fingers, rendering the blood supply of the flaps unreliable. All donor sites were closed primarily without the need for skin grafting, negating the problem of donor site morbidity that is associated with skin graft harvesting. The laterally based cross-finger flap is a versatile flap with less donor site morbidity and better aesthetics than a conventional cross-finger flap. We described the design of the flap, as well as the advantages and disadvantages, in doing a laterally based cross-finger flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index.

    PubMed

    Shukla, Kamini; Srivastava, Sarita

    2014-03-01

    The present study was undertaken to develop finger millet incorporated noodles for diabetic patients. Finger millet variety VL-149 was taken. The finger millet flour and refined wheat flour (RWF) were evaluated for nutrient composition. The finger millet flour (FMF) was blended in various proportions (30 to 50%) in refined wheat flour and used for the preparation of noodles. Control consisted of RWF noodles. Sensory quality and nutrient composition of finger millet noodles was evaluated. The 30% finger millet incorporated noodles were selected best on the basis of sensory evaluation. Noodles in that proportion along with control were evaluated for glycemic response. Nutrient composition of noodles showed that 50% finger millet incorporated noodles contained highest amount of crude fat (1.15%), total ash (1.40%), crude fiber (1.28%), carbohydrate (78.54%), physiological energy (351.36 kcal), insoluble dietary fiber (5.45%), soluble dietary fiber (3.71%), iron (5.58%) and calcium (88.39%), respectively. However, control RWF noodles contained highest amount of starch (63.02%), amylose (8.72%) and amylopectin (54.29%). The glycemic index (GI) of 30% finger millet incorporated noodles (best selected by sensory evaluation) was observed significantly lower (45.13) than control noodles (62.59). It was found that finger millet flour incorporated noodles were found nutritious and showed hypoglycemic effect.

  7. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region.

    PubMed

    Panwar, Priyankar; Dubey, Ashutosh; Verma, A K

    2016-06-01

    Five elite varieties of barnyard (Echinochloa frumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, α-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of biological functions were analyzed and found that barnyard millet contained the higher amount of polyphenols, tannins and ortho-dihydroxy phenol content compared to finger millet. Among antinutitional compounds barnyard millet contained lower phytic acid content compare to finger millet whereas no significant difference in trypsin inhibition activity of barnyard millet and finger millet varieties were found. Barnyard millet contained higher acid phosphatase, α-galactosidase and α-amylase inhibitor activity compared to finger millet. Finger millet seeds contained about 10-13 folds higher calcium content and double amount of manganese content in comparison to barnyard millet seeds. Present study suggests that barnyard millet varieties studied under present investigation were found nutritionally superior compared to finger millet varieties.

  8. Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy

    PubMed Central

    Alves-Pinto, Ana; Aschmann, Simon; Lützow, Ines; Lampe, Renée

    2015-01-01

    Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings. PMID:26124965

  9. Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy.

    PubMed

    Blumenstein, Tobias; Alves-Pinto, Ana; Turova, Varvara; Aschmann, Simon; Lützow, Ines; Lampe, Renée

    2015-01-01

    Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings.

  10. Stabilization of the total force in multi-finger pressing tasks studied with the ‘inverse piano’ technique

    PubMed Central

    Martin, J.R.; Budgeon, M.K.; Zatsiorsky, V.M.; Latash, M.L.

    2010-01-01

    When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n =10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results show that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360

  11. Significance of finger forces and kinematics during handwriting in writer's cramp.

    PubMed

    Hermsdörfer, Joachim; Marquardt, Christian; Schneider, Alexandra S; Fürholzer, Waltraud; Baur, Barbara

    2011-08-01

    Muscular hyperactivity during handwriting, irregular and jerky scripts, as well as awkward and slowed pen movements are the cardinal symptoms of writer's cramp. Accordingly, impaired kinematics and increased force have been reported in writer's cramp. However, the relationship between these symptoms has rarely been investigated. In addition, measurements of finger forces have been restricted to the vertical pen pressure. In the present study, the pen of a graphic tablet was equipped with a force sensor matrix to measure also the grip force produced against the pen barrel despite highly variable pen grips of the patients. Kinematics of writing movements, vertical pen pressure, and grip force were compared in 27 patients with writer's cramp and normal control writers during writing of a test sentence. As expected, all measures revealed a significantly worse writing performance in the patients compared to the control subjects. Exaggerated forces were more frequent than abnormal kinematics, and evidenced by prolonged movement times and reduced writing frequencies. Correlations were found neither between kinematics and force measures nor between the two forces. Interestingly, patients relaxed the grip force during short periods of non-writing by the same relative amount as control subjects. The finding of a large heterogeneity of performances patterns in writer's cramp may reflect the variability of dystonic symptoms as well as the highly variable compensatory strategies of individual patients. Measurements of finger force and in particular of the grip force are valuable and important descriptors of individual impairment characteristics that are independent of writing kinematics. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Chubby hands or little fingers: sex differences in hand representation.

    PubMed

    Coelho, Lara A; Gonzalez, Claudia L R

    2018-04-03

    Disturbed body representation is a condition defined by the perception that one's body size is different from their anatomical size. While equal amounts of males and females suffer from disturbed body representation, there appear to be differences in the direction of this distortion. Females will typically overestimate, whereas males will typically underestimate body size. One part of the body that has been consistently misperceived is the hands. This misrepresentation consists of two distinct characteristics: an overestimation of hand width, and an underestimation of finger length. Many of these studies, however, have used predominately female participants, allowing for the possibility that women are driving this distortion. The aim of the present study was to examine possible sex differences in hand perception. To this end, participants estimated the location of ten landmarks on their hands when their hands were hidden from view. Our results indicate that females follow the characteristic distortion, whereas males only underestimate finger length (albeit more than females). These findings are surprising, because the hands are not an area of concern for weight gain/loss. We discuss these findings in relation to body dysmorphia literature.

  13. Research and implementation of finger-vein recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin

    2017-06-01

    In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.

  14. Crustal fingering: solidification on a viscously unstable interface

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Jimenez-Martinez, Joaquin; Cueto-Felgueroso, Luis; Porter, Mark; Juanes, Ruben

    2017-11-01

    Motivated by the formation of gas hydrates in seafloor sediments, here we study the volumetric expansion of a less viscous gas pocket into a more viscous liquid when the gas-liquid interfaces readily solidify due to hydrate formation. We first present a high-pressure microfluidic experiment to study the depressurization-controlled expansion of a Xenon gas pocket in a water-filled Hele-Shaw cell. The evolution of the pocket is controlled by three processes: (1) volumetric expansion of the gas; (2) rupturing of existing hydrate films on the gas-liquid interface; and (3) formation of new hydrate films. These result in gas fingering leading to a complex labyrinth pattern. To reproduce these observations, we propose a phase-field model that describes the formation of hydrate shell on viscously unstable interfaces. We design the free energy of the three-phase system to rigorously account for interfacial effects, gas compressibility and phase transitions. We model the hydrate shell as a highly viscous fluid with shear-thinning rheology to reproduce shell-rupturing behavior. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex crustal fingering patterns as a result of gas expansion dynamics modulated by hydrate growth at the interface.

  15. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.

    PubMed

    Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James

    2010-09-01

    This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P < 0.01), when expressed in mean-scaled units. The augmentation of LF powers in PPGV during haemodialysis may indicate the recovery and possibly further enhancement of peripheral sympathetic vascular modulation subsequent to volume unloading, whilst the increase in respiratory HF power in PPGV is most likely a sign of preload reduction. Spectral analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.

  16. Krüppel-like factors: three fingers in control.

    PubMed

    Swamynathan, Shivalingappa K

    2010-04-01

    Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  17. Decoding flexion of individual fingers using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Kubánek, J.; Miller, K. J.; Ojemann, J. G.; Wolpaw, J. R.; Schalk, G.

    2009-12-01

    Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.

  18. Hydrodynamic fingering instability induced by a precipitation reaction

    NASA Astrophysics Data System (ADS)

    De Wit, Anne; Nagatsu, Yuichiro

    2014-05-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the build-up of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A+B → C type of reaction when a solution containing one of the reactant is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Finger-like precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice-versa. A mathematical modeling of the underlying mobility profile in the cell reconstructed on the basis of one-dimensional reaction-diffusion concentration profiles confirms that the instability originates from a local decrease in mobility driven by the precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  19. Treatment of chronic extensor tendons lesions of the fingers.

    PubMed

    Bellemère, P

    2015-09-01

    Chronic finger extensor apparatus injuries are the result of the initial acute treatment having failed or being flawed. Because of their chronic nature, these injuries present various amounts of tendon retraction, tendon callus lengthening, peritendinous scar adhesions, static and dynamic imbalances with the flexor apparatus and intrinsic muscles, and joint contractures. This article will review the anatomy of the extensor mechanism and then will outline by location, the various clinical pictures that are secondary to chronic tendon injury. The clinical presentation of these injuries can be highly variable but their symptomatology and treatment are very specific. Of the possible therapeutic strategies for chronic mallet finger with or without associated swan-neck deformity, chronic boutonniere deformity, chronic sagittal band injuries, old ruptures on the dorsum of the wrist and traumatic defects in multiple tissues, conservative treatment is often the main element. Secondary surgical repair is not free of complications, and the results are often lacking. Rehabilitation and orthotic bracing are an integral part of the management of these injuries, no matter which treatment method is being considered. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Miscible viscous fingering with chemical reaction involving precipitation.

    NASA Astrophysics Data System (ADS)

    Bae, Si-Kyun; Nagatsu, Yuichiro; Kato, Yoshihito; Tada, Yutaka

    2007-11-01

    When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. The present study has experimentally examined how precipitation produced by chemical reaction affects miscible viscous fingering pattern. A 97 wt % glycerin solution containing iron(III) nitrate (yellow) and a solution containing potassium hexacyano ferrate(II) (colorless) were used as the more- and less-viscous liquids, respectively. In this case, the chemical reaction instantaneously takes place and produces the precipitation being dark blue in color. The experiments were done by varying reactant concentrations, the cell's gap width, and the displacement speed. We compared the patterns involving the precipitation reaction with those in the non-reactive cases. We have found fylfot-like pattern is observed, depending on the experimental condition, which has never been formed in the non-reactive experiments. As the reactant concentrations are increased or the displacement speed is decreased, the effects of the precipitation on the patterns are more pronounced.

  1. Outcomes of Silicone Arthroplasty Stratified by Fingers for the Rheumatoid Metacarpophalangeal Joints

    PubMed Central

    Chung, Kevin C.; Kotsis, Sandra V.; Shaw Wilgis, E. F.; Fox, David A.; Regan, Marian; Kim, H. Myra; Burke, Frank D.

    2015-01-01

    Purpose Previous studies have demonstrated that outcomes for the ulnar digits appear to be worse than the radial digits after silicone metacarpophalangeal joint arthroplasty (SMPA) for the rheumatoid hand. This study examines various components of hand deformities in an effort to understand SMPA outcomes in terms of metacarpophalangeal joint range of motion and alignment. We hypothesize that the ulnar fingers will have less improvement marked by greater ulnar drift, extension lag, and less metacarpophalangeal joint (MCPJ) arc of motion than the radial fingers. Methods 68 surgical patients were recruited from 3 sites in this multi-center international prospective cohort study. All patients had a diagnosis of rheumatoid arthritis, were between the ages of 18–80, and were eligible to undergo SMPA based on measured hand deformities (extensor lag and ulnar drift). Ulnar drift, extension lag, and arc of motion for the MCPJ of each finger were measured at baseline (pre-surgical) and 1-year after SMPA. Results All fingers showed an improvement in ulnar drift from baseline to 1-year after surgery. The smallest improvement was in the index finger (12°) and the largest improvement was in the little finger (30°). Similarly, the largest improvement in extension lag was seen in the little finger (47°) and the smallest improvement was seen in the index finger (21°). In terms of MCPJ arc of motion, all fingers moved to a more extended posture and gained an improved arc of motion, but the biggest improvement was observed in the 2 ulnar fingers and less so in the 2 radial fingers. Conclusions Our hypothesis that the ulnar fingers will have worse outcomes than the radial fingers is not proven by this study. Although past experiences have indicated that it is more difficult to maintain posture for the ring and little fingers after SMPA due to the deforming forces, sufficient correction of the deformities in the ulnar fingers is possible, if attention to adequate bone resection

  2. Determining the bias and variance of a deterministic finger-tracking algorithm.

    PubMed

    Morash, Valerie S; van der Velden, Bas H M

    2016-06-01

    Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant's hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σ x =0.16 cm, σ y =0.21 cm) were small compared to the size of a fingertip (1.5-2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates.

  3. On the relationship between finger width, velocity, and fluxes in thermohaline convection

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.

    2009-02-01

    Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

  4. Three-dimensional viscous fingering of miscible fluids in porous media

    NASA Astrophysics Data System (ADS)

    Suekane, Tetsuya; Ono, Jei; Hyodo, Akimitsu; Nagatsu, Yuichiro

    2017-10-01

    Viscous fingering is a flow instability that is induced at the displacement front when a less-viscous fluid (LVF) displaces a more-viscous fluid (MVF). Because of the opaque nature of porous media, most experimental investigations of the structure of viscous fingering and its development in time have been limited to two-dimensional porous media or Hele-Shaw cells. In this study, we investigate the three-dimensional characteristics of viscous fingering in porous media using a microfocused x-ray computer tomography (CT) scanner. Similar to two-dimensional experiments, characteristic events such as tip-splitting, shielding, and coalescence were observed in three-dimensional viscous fingering as well. With an increase in the Péclet number at a fixed viscosity ratio, M , the fingers appearing on the interface tend to be fine; however, the locations of the tips of the fingers remain the same for the same injected volume of the LVF. The finger extensions increase in proportion to ln M , and the number of fingers emerging at the initial interface increases with M . This fact agrees qualitatively with linear stability analyses. Within the fingers, the local concentration of NaI, which is needed for the x-ray CT scanner, linearly decreases, whereas it sharply decreases at the tips of the fingers. A locally high Péclet number as well as unsteady motions in lateral directions may enhance the dispersion at the tips of the fingers. As the viscosity ratio increases, the efficiency of each sweep monotonically decreases and reaches an asymptotic state; in addition, the degree of mixing increases with the viscosity ratio. For high flow rates, the asymptotic value of the sweep efficiency is low for high viscosity ratios, while there is no clear dependence of the asymptotic value on the Péclet number.

  5. Immunization-elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability

    PubMed Central

    Zhao, Xuelian; Howell, Katie A.; He, Shihua; Brannan, Jennifer M.; Wec, Anna Z.; Davidson, Edgar; Turner, Hannah L.; Chiang, Chi-I; Lei, Lin; Fels, J. Maximilian; Vu, Hong; Shulenin, Sergey; Turonis, Ashley N.; Kuehne, Ana I.; Liu, Guodong; Ta, Mi; Wang, Yimeng; Sundling, Christopher; Xiao, Yongli; Spence, Jennifer S.; Doranz, Benjamin J.; Holtsberg, Frederick W.; Ward, Andrew B.; Chandran, Kartik; Dye, John M.; Qiu, Xiangguo; Li, Yuxing; Aman, M. Javad

    2018-01-01

    Summary While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N-terminus of the ebolavirus glycoproteins (GP) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails. PMID:28525756

  6. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  7. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations

    NASA Astrophysics Data System (ADS)

    Hamed, Mazen Y.

    2018-05-01

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔGlinkers, otherstructuralfactors = ΔGzif268 - (ΔGF1+F2+F3) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the role of ZF1 in the recognition

  8. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations.

    PubMed

    Hamed, Mazen Y

    2018-05-03

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔG linkers, otherstructuralfactors  = ΔG zif268  - (ΔG F1+F2+F3 ) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the

  9. The Power of a Soccer Ball: A Traumatic Open Finger Dislocation-A Rare Case Presentation.

    PubMed

    Dülgeroğlu, Turan Cihan; Metineren, Hasan; Aydın, Ekrem; Dülgeroğlu, Ayşegül

    2015-01-01

    Proximal interphalangeal joint dislocations are injuries observed frequently and caused by axial loading on the finger in the extension. In this paper we present a traumatic open finger dislocation due to a ball hitting a wrestler. It was successfully treated with reduction and the volar plate and collateral bond fixation were applied with absorbable sutures.

  10. Ultrasonography of the non-traumatic lesions of the fingers. Pictorial essay.

    PubMed

    Fodor, Daniela; Lungu, Andreea

    2013-06-01

    The purpose of this pictorial essay is to illustrate the ultrasonographic aspects of the non-traumatic lesions of the fingers. Diffuse (especially dactylitis) and localized (tumors, tophi, calcinosis, etc) lesions of the digits are discussed and illustrated. For a better understanding, the US images are compared with the clinical aspect of the pathological fingers.

  11. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint metal/metal constrained cemented prosthesis. 888.3210 Section 888.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3210 Finger joint...

  12. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint metal/metal constrained cemented prosthesis. 888.3210 Section 888.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3210 Finger joint...

  13. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint metal/metal constrained uncemented prosthesis. 888.3200 Section 888.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3200 Finger joint...

  14. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint metal/metal constrained cemented prosthesis. 888.3210 Section 888.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3210 Finger joint...

  15. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint metal/metal constrained uncemented prosthesis. 888.3200 Section 888.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3200 Finger joint...

  16. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint metal/metal constrained uncemented prosthesis. 888.3200 Section 888.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3200 Finger joint...

  17. Impaired Finger Dexterity in Parkinson's Disease Is Associated with Praxis Function

    ERIC Educational Resources Information Center

    Vanbellingen, T.; Kersten, B.; Bellion, M.; Temperli, P.; Baronti, F.; Muri, R.; Bohlhalter, S.

    2011-01-01

    A controversial concept suggests that impaired finger dexterity in Parkinson's disease may be related to limb kinetic apraxia that is not explained by elemental motor deficits such as bradykinesia. To explore the nature of dexterous difficulties, the aim of the present study was to assess the relationship of finger dexterity with ideomotor praxis…

  18. Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing.

    PubMed

    Rusconi, Elena; Walsh, Vincent; Butterworth, Brian

    2005-01-01

    Since the original description of Gerstmann's syndrome with its four cardinal symptoms, among which are finger agnosia and acalculia, the neuro-cognitive relationship between fingers and calculation has been debated. We asked our participants to perform four different tasks, two of which involved fingers and the other two involving numbers, during repetitive transcranial magnetic stimulation (rTMS) over the posterior parietal lobe of either hemisphere. In the finger tasks, they were required to transform a tactile stimulus randomly delivered on one of their fingers into a speeded key-press response either with the same or with the homologous finger on the opposite hand. In the numerical tasks, they were asked to perform a magnitude or a parity matching on pairs of single digits, in the context of arithmetically related or unrelated numerical primes. In accordance with the original anatomical hypothesis put forward by Gerstmann [Gerstmann, J. (1924). Fingeragnosie: eine umschriebene Stoerung der Orienterung am eigenen Koerper. Wiener clinische Wochenschrift, 37, 1010-12], we found that rTMS over the left angular gyrus disrupted tasks requiring access to the finger schema and number magnitude processing in the same group of participants. In addition to the numerous studies which have employed special populations such as neurological patients and children, our data confirm the presence of a relationship between numbers and body knowledge in skilled adults who no longer use their fingers for solving simple arithmetical tasks.

  19. 16 CFR Figure 4 to Part 1610 - An Example of a Typical Indicator Finger

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false An Example of a Typical Indicator Finger 4 Figure 4 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Example of a Typical Indicator Finger ER25MR08.003 ...

  20. Finger-tapping motion analysis in cervical myelopathy by magnetic-sensor tapping device.

    PubMed

    Miwa, Toshitada; Hosono, Noboru; Mukai, Yoshihiro; Makino, Takahiro; Kandori, Akihiko; Fuji, Takeshi

    2013-08-01

    Case-control study. The purpose of this study is to determine finger motion of patients with cervical myelopathy during finger-tapping cycles. A major symptom of patients with compressive cervical myelopathy is finger clumsiness. Therefore, understanding finger motion is prerequisite in assessing the severity of myelopathy. The popular grip-and-release test evaluates only the number of motion cycles, which is insufficient to fully describe complex finger motion. Forty-three patients with cervical myelopathy and 41 healthy controls tapped their index fingers against their thumbs as rapidly as possible for 30 seconds and the motion was recorded by a magnetic-sensor coil attached to the nail surface. Output signals were stored in a computer, which automatically calculated tapping frequency, distance moved, ratio of opening/closing velocity and the SD of the tapping interval. The SD of the tapping interval was significantly greater and all other measures were significantly smaller in patients with cervical myelopathy, than in healthy controls. All indices significantly improved after surgical decompression of the cervical spine. Distance moved (Pearson correlation coefficient: r=0.590, P<0.001) and the SD of the tapping interval (r=-0.451; P=0.002) were significantly correlated with the Japanese Orthopedic Association score (neurological scale). The quantitative evaluation of finger paralysis was performed by this tapping device. Speed and regularity in repetitive motion of fingers were correlated with the severity of cervical myelopathy.

  1. Unique Use of Cross-Finger Flap for Reconstruction of an Index Fingertip Electrical Injury

    DTIC Science & Technology

    2014-01-01

    5-0 nylon suture (Figures 3, 4). A full thickness (FT) skin graft was harvested from the left groin and was used to cover the donor long finger...following day and returned for weekly wound examinations. The tie-over bolster was removed from the FT skin graft of the left dorsal middle finger on

  2. Nature and Culture of Finger Counting: Diversity and Representational Effects of an Embodied Cognitive Tool

    ERIC Educational Resources Information Center

    Bender, Andrea; Beller, Sieghard

    2012-01-01

    Studies like the one conducted by Domahs et al. (2010, in Cognition) corroborate that finger counting habits affect how numbers are processed, and legitimize the assumption that this effect is culturally modulated. The degree of cultural diversity in finger counting, however, has been grossly underestimated in the field at large, which, in turn,…

  3. Birth Outcomes across Three Rural-Urban Typologies in the Finger Lakes Region of New York

    ERIC Educational Resources Information Center

    Strutz, Kelly L.; Dozier, Ann M.; van Wijngaarden, Edwin; Glantz, J. Christopher

    2012-01-01

    Purpose: The study is a descriptive, population-based analysis of birth outcomes in the New York State Finger Lakes region designed to determine whether perinatal outcomes differed across 3 rural typologies. Methods: Hospital birth data for the Finger Lakes region from 2006 to 2007 were used to identify births classified as low birthweight (LBW),…

  4. Finger jointing green southern yellow pine with a soy-based adhesive

    Treesearch

    Philip H. Steele; Roland E. Kreibicha; Petrus J. Steynberg; Richard W. Hemingway

    1998-01-01

    The authors present results of laboratory tests for a soy-based adhesive to bond southern yellow pine using the finger-jointing method. There was some reason to suspect that finger jointing of southern yellow pine (SYP) with the honeymoon system using soy-based adhesive might prove more difficult than for western species. The Wood Handbook classes western species in...

  5. Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia

    PubMed Central

    Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart

    2015-01-01

    Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433

  6. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing

    ERIC Educational Resources Information Center

    Michailov, Michail Lubomirov; Baláš, Jirí; Tanev, Stoyan Kolev; Andonov, Hristo Stoyanov; Kodejška, Jan; Brown, Lee

    2018-01-01

    Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the…

  7. 16 CFR Figure 4 to Part 1610 - An Example of a Typical Indicator Finger

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false An Example of a Typical Indicator Finger 4 Figure 4 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Example of a Typical Indicator Finger ER25MR08.003 ...

  8. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material.

    PubMed

    Yang, Yang; Chen, Yonghua; Li, Yingtian; Chen, Michael Z Q; Wei, Ying

    2017-06-01

    In this article, we have proposed a novel robotic finger design principle aimed to address two challenges in soft pneumatic grippers-the controllability of the stiffness and the controllability of the bending position. The proposed finger design is composed of a 3D printed multimaterial substrate and a soft pneumatic actuator. The substrate has four polylactic acid (PLA) segments interlocked with three shape memory polymer (SMP) joints, inspired by bones and joints in human fingers. By controlling the thermal energy of an SMP joint, the stiffness of the joints is modulated due to the dramatic change in SMP elastic modulus around its glass transition temperature (T g ). When SMP joints are heated above T g , they exhibit very small stiffness, allowing the finger to easily bend around the SMP joints if the attached soft actuator is actuated. When there is no force from the soft actuator, shape recovery stress in SMP contributes to the finger's shape restoration. Since each joint's rotation can be individually controlled, the position control of the finger is made possible. Experimental analysis has been conducted to show the finger's variable stiffness and the result is compared with the analytical values. It is found that the stiffness ratio can be 24.9 times for a joint at room temperature (20°C) and at an elevated temperature of 60°C when air pressure p of the soft actuator is turned off. Finally, a gripper composed of two fingers is fabricated for demonstration.

  9. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements.

    PubMed

    Kim, Yong-Hee; Thakor, Nitish V; Schieber, Marc H; Kim, Hyoung-Nam

    2015-05-01

    Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance.

  10. Neuron Selection Based on Deflection Coefficient Maximization for the Neural Decoding of Dexterous Finger Movements

    PubMed Central

    Kim, Yong-Hee; Thakor, Nitish V.; Schieber, Marc H.; Kim, Hyoung-Nam

    2015-01-01

    Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance. PMID:25347884

  11. [Necrosis in fingers and toes following local anaesthesia with adrenaline--an urban legend?].

    PubMed

    Finsen, Vilhjalmur

    2013-09-17

    It is often maintained that a local anaesthetic (usually lidocaine) with adrenaline must not be used in fingers and toes because it may cause necrosis due to vascular spasm in end arteries. This review article is an attempt to find evidence to support this warning. Relevant literature was found by means of searches in PubMed limited downwards to 1946 and in EMBASE from 1980 to 2012, and in reference lists. Five review articles on finger necrosis following local anaesthesia concluded that lidocaine with adrenaline does not entail a risk of ischaemic injury. One article found 48 reported cases of finger necrosis in the period 1880 to 2000. Most were from the first half of the 1900s, and none involved lidocaine. Gangrene of part of the finger tip has subsequently been described in one patient with Raynaud's syndrome. No cases of necrosis have been described in a large number of reported accidents in which EpiPen injections contained the same quantity of adrenaline as is found in 60 ml lidocaine with adrenaline. Over a quarter of a million reports have been made of operations on feet, hands, fingers and toes anaesthetised with lidocaine with adrenaline without resulting necrosis. There are no grounds for the warning against using lidocaine with adrenaline in fingers and toes. This anaesthetic offers considerable practical advantages. Care should be taken with infected fingers or fingers with poor circulation.

  12. Modulated cortical control of individual fingers in experienced musicians: an EEG study. Electroencephalographic study.

    PubMed

    Slobounov, S; Chiang, H; Johnston, J; Ray, W

    2002-12-01

    The present research was designed to address the nature of interdependency between fingers during force production tasks in subjects with varying experience in performing independent finger manipulation. Specifically, behavioral and electroencephalographic (EEG) measures associated with controllability of the most enslaved (ring) and the least enslaved (index) fingers was examined in musicians and non-musicians. Six piano players and 6 age-matched control subjects performed a series of isometric force production tasks with the index and ring fingers. Subjects produced 3 different force levels with either their index or ring fingers. We measured the isometric force output produced by all 4 fingers (index, ring, middle and little), including both ramp and static phases of force production. We applied time-domain averaging of EEG single trials in order to extract 4 components of the movement-related cortical potentials (MRCP) preceding and accompanying force responses. Three behavioral findings were observed. First, musicians were more accurate than non-musicians at reaching the desired force level. Second, musicians showed less enslaving as compared to non-musicians. And third, the amount of enslaving increased with the increment of nominal force levels regardless of whether the index or ring finger was used as the master finger. In terms of EEG measures, we found differences between tasks performed with the index and ring fingers in non-musicians. For musicians, we found larger MRCP amplitudes at most electrode sites for the ring finger. Our data extends previous enslaving research and suggest an important role for previous experience in terms of the independent use of the fingers. Given that a variety of previous work has shown finger independence to be reflected in cortical representation in the brain and our findings of MRCP amplitude associated with greater independence of fingers in musicians, this suggests that what has been considered to be stable constraints

  13. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.

    PubMed

    Wang, W; Degenhart, A D; Collinger, J L; Vinjamuri, R; Sudre, G P; Adelson, P D; Holder, D L; Leuthardt, E C; Moran, D W; Boninger, M L; Schwartz, A B; Crammond, D J; Tyler-Kabara, E C; Weber, D J

    2009-01-01

    In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.

  14. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    SciTech Connect

    Bach, Christian; Sherman, William; Pallis, Jani

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  15. Single Degree-of-Freedom Exoskeleton Mechanism Design for Finger Rehabilitation

    PubMed Central

    Wolbrecht, Eric T.; Reinkensmeyer, David J.; Perez-Gracia, Alba

    2014-01-01

    This paper presents the kinematic design of a single degree-of-freedom exoskeleton mechanism: a planar eight-bar mechanism for finger curling. The mechanism is part of a finger-thumb robotic device for hand therapy that will allow users to practice key pinch grip and finger-thumb opposition, allowing discrete control inputs for playing notes on a musical gaming interface. This approach uses the mechanism to generate the desired grasping trajectory rather than actuating the joints of the fingers and thumb independently. In addition, the mechanism is confined to the back of the hand, so as to allow sensory input into the palm of the hand, minimal size and apparent inertia, and the possibility of placing multiple mechanisms side-by-side to allow control of individual fingers. PMID:22275628

  16. Nonlinear unstable viscous fingers in Hele--Shaw flows. I. Experiments

    SciTech Connect

    Kopf-Sill, A.R.; Homsy, G.M.

    1988-02-01

    Post-instability viscous fingering in rectilinear flow in a Hele--Shaw cell has been studied experimentally. Of particular interest was the characterization of the range of length scales associated with tip splitting, over a reasonably wide range of parameters. A digital imaging system was used to record the patterns as a function of time, which allowed properties such as the tip velocity, finger width, perimeter, and area to be studied as functions of time and capillary number. The tip velocity was observed to be approximately constant regardless of the occurrence of splitting events, and the average finger width decreased as the degreemore » of supercriticality increased. Quantitative measures of the fact that there is a limit to the complexity of viscous fingers are provided, and that over the range of parameters studied, no evidence for fractal fingering exists. A discussion of the dynamics of tip splitting explains why this is so.« less

  17. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  18. Dermatoglyphic analysis of La Liébana (Cantabria, Spain). 2. Finger ridge counts.

    PubMed

    Martín, J; Gómez, P

    1993-06-01

    The results of univariate and multivariate analyses of the quantitative finger dermatoglyphic traits (i.e. ridge counts) of a sample of 109 males and 88 females from La Liébana (Cantabria, Spain) are reported. Univariate results follow the trends usually found in previous studies, e.g., ranking of finger ridge counts, bilateral asymmetry or shape of the distributions of the frequencies. However, sexual dimorphism is nearly inexistent concerning finger ridge counts. This lack of dimorphism could be related to certain characteristics of the distribution of finger dermatoglyphic patterns previously reported by the same authors. The multivariate description has been carried out by means of principal component analysis (with varimax rotation to obtain the final solution) of the correlation matrices computed from the 10 maximal finger ridge counts. Although the results do not necessarily prove the concept of developmental fields ("field theory" and later modifications), some precepts of the theory are present: field polarization and field overlapping.

  19. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    PubMed

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  20. Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion

    NASA Technical Reports Server (NTRS)

    Chen, Chuan F.; Chan, Cho Lik

    1996-01-01

    Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.

  1. Transfer of piano practice in fast performance of skilled finger movements

    PubMed Central

    2013-01-01

    Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946

  2. Transfer of piano practice in fast performance of skilled finger movements.

    PubMed

    Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko

    2013-11-01

    Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.

  3. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGES

    Bach, Christian; Sherman, William; Pallis, Jani; ...

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  4. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    PubMed

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  5. Design and control of five fingered under-actuated robotic hand

    NASA Astrophysics Data System (ADS)

    Sahoo, Biswojit; Parida, Pramod Kumar

    2018-04-01

    Now a day's research regarding humanoid robots and its application in different fields (industry, household, rehabilitation and exploratory) is going on entire the globe. Among which a challenging topic is to design a dexterous robotic hand which not only can perform as a hand of a robot but also can be used in re habilitation. The basic key concern is a dexterous robot hand which can be able to mimic the function of biological hand to perform different operations. This thesis work is regarding design and control of a under-actuated robotic hand consisting of four under actuated fingers (index finger, middle finger, little finger and ring finger ) , a thumb and a dexterous palm which can copy the motions and grasp type of human hand which having 21degrees of freedom instead of 25Degree Of Freedom.

  6. Modular synthetic inverters from zinc finger proteins and small RNAs

    DOE PAGES

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; ...

    2016-02-17

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less

  7. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  8. Multifunctional Nature of the Arenavirus RING Finger Protein Z

    PubMed Central

    Fehling, Sarah Katharina; Lennartz, Frank; Strecker, Thomas

    2012-01-01

    Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi‑segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle. PMID:23202512

  9. Hydrodynamic Fingering Instability Induced by a Precipitation Reaction

    NASA Astrophysics Data System (ADS)

    Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A.

    2014-07-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the buildup of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A +B→C type of reaction when a solution containing one of the reactants is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Fingerlike precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice versa. A mathematical modeling of the underlying mobility profile confirms that the instability originates from a local decrease in mobility driven by the localized precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  10. Fractal patterns formed by growth of radial viscous fingers*

    NASA Astrophysics Data System (ADS)

    Praud, Olivier

    2004-03-01

    We examine fractal patterns formed by the injection of air into oil in a thin (0.13 mm) layer contained between two cylindrical glass plates of 288 mm diameter (a Hele-Shaw cell) [1]. The resultant radially grown patterns are similar to those formed in Diffusion Limited Aggregation (DLA), but the relation between the continuum limit of DLA and continuum (Laplacian) growth remains an open question. Our viscous fingering patterns in the limit of very high pressure difference reach an asymptotic state in which they exhibit a fractal dimension of 1.70± 0.02, in good agreement with a calculation of the fractal dimension of a DLA cluster, 1.713± 0.003 [2]. The generalized dimensions are also computed and show that the observed pattern is self-similar with Dq = 1.70 for all q. Further, the probability density function of shielding angles suggests the existence of a critical angle close to 75 degrees. This result is in accord with numerical and analytical evidence of a critical angle in DLA [3]. Thus fractal viscous fingering patterns and Diffusion Limited Aggregation clusters have a similar geometrical structure. *Work conducted in collaboration with H.L. Swinney, M.G. Moore and Eran Sharon [1] E. Sharon, M. G. Moore, W. D. McCormick, and H. L. Swinney, Phys. Rev. Lett. 91, 205504 (2003). [2] B.Davidovitch et A. Levermann and I. Procaccia, Phys. Rev. E 62, 5919 (2000). [3] D. A. Kessler et al., Phys. Rev. E 57, 6913 (1998).

  11. Endurance exercise training increases peripheral vascular response in human fingers.

    PubMed

    Katayama, K; Shimoda, M; Maeda, J; Takemiya, T

    1998-10-01

    The purpose of this study was to clarify whether peripheral vascular response to alteration of transmural pressure is changed by endurance exercise training. The healthy male subjects (training group; n = 6) performed endurance exercise training that consisted of cycle ergometer exercise 5 d.week-1 and 30 min.d-1 for a period of 8 weeks. Changes in the peripheral vascular response to alteration of transmural pressure in the human finger were measured by a differential digital photoplethysmogram (DeltaDPG) and blood pressure during passive movement of the arm to different vertical hand positions relative to heart level. Following 8 weeks of endurance training, percent changes in DeltaDPG from heart level in the training group increased significantly (mean +/- SD, -48.1 +/- 7. 3 to -58.7 +/- 9.3% at the lowered position, 46.1 +/- 13.4 to 84.6 +/- 8.8% at the elevated position, p<0.05). Similarly, the arterial compliance index, which was calculated from DeltaDPG-P wave amplitude and arterial pulse pressure, also significantly changed in the training group over the 8 weeks (5.6 +/- 1.3 to 2.7 +/- 1.6 mV. V-1.s-1.mmHg-1 at the lowered position, 30.0 +/- 12.4 to 54.4 +/- 18. 9 mV.V-1.s-1.mmHg-1 at the elevated position ). Maximal oxygen uptake (V.O2 max) was significantly increased in the training group. On the other hand, the control group (n = 6) showed no significant changes in all parameters for 8 weeks. Therefore these results suggest that endurance exercise training induces an increase in peripheral vascular response to alteration of transmural pressure in the human finger.

  12. Is the thumb a fifth finger? A study of digit interaction during force production tasks

    PubMed Central

    Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    We studied indices of digit interaction in single- and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers. PMID:15322785

  13. Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Cremer, C.; Graf, T.

    2012-04-01

    In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not

  14. Single trial discrimination of individual finger movements on one hand: A combined MEG and EEG study☆

    PubMed Central

    Quandt, F.; Reichert, C.; Hinrichs, H.; Heinze, H.J.; Knight, R.T.; Rieger, J.W.

    2012-01-01

    It is crucial to understand what brain signals can be decoded from single trials with different recording techniques for the development of Brain-Machine Interfaces. A specific challenge for non-invasive recording methods are activations confined to small spatial areas on the cortex such as the finger representation of one hand. Here we study the information content of single trial brain activity in non-invasive MEG and EEG recordings elicited by finger movements of one hand. We investigate the feasibility of decoding which of four fingers of one hand performed a slight button press. With MEG we demonstrate reliable discrimination of single button presses performed with the thumb, the index, the middle or the little finger (average over all subjects and fingers 57%, best subject 70%, empirical guessing level: 25.1%). EEG decoding performance was less robust (average over all subjects and fingers 43%, best subject 54%, empirical guessing level 25.1%). Spatiotemporal patterns of amplitude variations in the time series provided best information for discriminating finger movements. Non-phase-locked changes of mu and beta oscillations were less predictive. Movement related high gamma oscillations were observed in average induced oscillation amplitudes in the MEG but did not provide sufficient information about the finger's identity in single trials. Importantly, pre-movement neuronal activity provided information about the preparation of the movement of a specific finger. Our study demonstrates the potential of non-invasive MEG to provide informative features for individual finger control in a Brain-Machine Interface neuroprosthesis. PMID:22155040

  15. Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands

    PubMed Central

    Tsunoda, Toshiyuki; Takashima, Yasuo; Tanaka, Yoko; Fujimoto, Takahiro; Doi, Keiko; Hirose, Yumiko; Koyanagi, Midori; Yoshida, Yasuhiro; Okamura, Tadashi; Kuroki, Masahide; Sasazuki, Takehiko; Shirasawa, Senji

    2010-01-01

    TAL1 plays pivotal roles in vascular and hematopoietic developments through the complex with LMO2 and GATA1. Hemangioblasts, which have a differentiation potential for both endothelial and hematopoietic lineages, arise in the primitive streak and migrate into the yolk sac to form blood islands, where primitive hematopoiesis occurs. ZFAT (a zinc-finger gene in autoimmune thyroid disease susceptibility region / an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook) was originally identified as an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook, and is highly conserved among species. ZFAT is thought to be a critical transcription factor involved in immune-regulation and apoptosis; however, developmental roles for ZFAT remain unknown. Here we show that Zfat-deficient (Zfat−/−) mice are embryonic-lethal, with impaired differentiation of hematopoietic progenitor cells in blood islands, where ZFAT is exactly expressed. Expression levels of Tal1, Lmo2, and Gata1 in Zfat−/− yolk sacs are much reduced compared with those of wild-type mice, and ChIP-PCR analysis revealed that ZFAT binds promoter regions for these genes in vivo. Furthermore, profound reduction in TAL1, LMO2, and GATA1 protein expressions are observed in Zfat−/− blood islands. Taken together, these results suggest that ZFAT is indispensable for mouse embryonic development and functions as a critical transcription factor for primitive hematopoiesis through direct-regulation of Tal1, Lmo2, and Gata1. Elucidation of ZFAT functions in hematopoiesis might lead to a better understanding of transcriptional networks in differentiation and cellular programs of hematopoietic lineage and provide useful information for applied medicine in stem cell therapy. PMID:20660741

  16. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    PubMed Central

    Mbéguié-A-Mbéguié, D.; Hubert, O.; Baurens, F. C.; Matsumoto, T.; Chillet, M.; Fils-Lycaon, B.; Sidibé-Bocs, S.

    2009-01-01

    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates. PMID:19357434

  17. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers.

    PubMed

    Butler, T J; Kilbreath, S L; Gorman, R B; Gandevia, S C

    2005-08-15

    Flexor digitorum superficialis (FDS) is an extrinsic multi-tendoned muscle which flexes the proximal interphalangeal joints of the four fingers. It comprises four digital components, each with a tendon that inserts onto its corresponding finger. To determine the degree to which these digital components can be selectively recruited by volition, we recorded the activity of a single motor unit in one component via an intramuscular electrode while the subject isometrically flexed each of the remaining fingers, one at a time. The finger on which the unit principally acted was defined as the 'test finger' and that which flexed isometrically was the 'active' finger. Activity in 79 units was recorded. Isometric finger flexion forces of 50% maximum voluntary contraction (MVC) activated less than 50% of single units in components of FDS acting on fingers that were not voluntarily flexed. With two exceptions, the median recruitment threshold for all active-test finger combinations involving the index, middle, ring and little finger test units was between 49 and 60% MVC (60% MVC being the value assigned to those not recruited). The exceptions were flexion of the little finger while recording from ring finger units (median: 40% MVC), and vice versa (median: 2% MVC). For all active-test finger combinations, only 35/181 units were activated when the active finger flexed at less than 20% MVC, and the fingers were adjacent for 28 of these. Functionally, to recruit FDS units during grasping and lifting, relatively heavy objects were required, although systematic variation occurred with the width of the object. In conclusion, FDS components can be selectively activated by volition and this may be especially important for grasping at high forces with one or more fingers.

  18. Perseveration Found in a Human Drawing Task: Six-Fingered Hands Drawn by Patients with Right Anterior Insula and Operculum Damage

    PubMed Central

    Niki, Chiharu; Maruyama, Takashi; Muragaki, Yoshihiro; Kumada, Takatsune

    2014-01-01

    Background. Perseveration has been observed in a number of behavioural contexts, including speaking, writing, and drawing. However, no previous report describes patients who show perseveration only for drawing a human figure. Objective. The present report describes a group of patients who show body awareness-related cognitive impairment during a human figure drawing task, a different presentation from previously described neuropsychological cases. Methods. Participants were 15 patients who had a frontal lobe brain tumour around the insula cortex of the right hemisphere and had subsequently undergone a neurosurgical resective operation. Participants were asked to draw a human figure in both “hands-down” and “hands-up” configurations. Results. Eight of the 15 patients drew a human figure with six fingers during the “hands-up” and the “hands-down” human figure drawing tasks (one patient drew eight fingers). A statistical analysis of potential lesion areas revealed damage to the right anterior frontal insula and operculum in this group of patients relative to the five-finger drawing group. Conclusions. Our findings reveal a newly described neuropsychological phenomenon that could reflect impairment in attention directed towards body representations. PMID:24876665

  19. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    PubMed

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  20. The effects of human finger and Chinese character on Chinese handwriting performance on mobile touch devices.

    PubMed

    Chen, Zhe; Rau, Pei-Luen Patrick; Chen, Cuiling

    2014-05-01

    The aim of the present study is to investigate Chinese handwriting on mobile touch devices, considering the effects of three characteristics of the human finger (type, length, and width) and three characteristics of Chinese characters (direction of the first stroke, number of strokes, and structure). Due to the popularity of touch devices in recent years, finger input for Chinese characters has attracted more attention from both industry and academia. However, previous studies have no systematical consideration on the effects of human finger and Chinese characters on Chinese handwriting performance. An experiment was reported in this article to illustrate the effects of the human finger and Chinese characters on the Chinese handwriting performance (i.e., input time, accuracy, number of protruding strokes, mental workload, satisfaction, and physical fatigue). The experiment results indicated that all six factors have significant effects on Chinese handwriting performance, especially on the input time, accuracy, and number of protruding strokes. Finger type, finger length, finger width, direction of the first stroke, number of strokes, and character structures are significantly influencing Chinese handwriting performance. These factors should be taken into more consideration in future research and the practical design for Chinese handwriting systems.

  1. The speech focus position effect on jaw-finger coordination in a pointing task.

    PubMed

    Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc

    2008-12-01

    This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.

  2. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    PubMed

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  3. An open-source model and solution method to predict co-contraction in the finger.

    PubMed

    MacIntosh, Alexander R; Keir, Peter J

    2017-10-01

    A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.

  4. Recognition of finger flexion motion from ultrasound image: a feasibility study.

    PubMed

    Shi, Jun; Guo, Jing-Yi; Hu, Shu-Xian; Zheng, Yong-Ping

    2012-10-01

    Muscle contraction results in structural and morphologic changes of the related muscle. Therefore, finger flexion can be monitored from measurements of these morphologic changes. We used ultrasound imaging to record muscle activities during finger flexion and extracted features to discriminate different fingers' flexions using a support vector machine (SVM). Registration of ultrasound images before and after finger flexion was performed to generate a deformation field, from which angle features and wavelet-based features were extracted. The SVM was then used to classify the motions of different fingers. The experimental results showed that the overall mean recognition accuracy was 94.05% ± 4.10%, with the highest for the thumb (97%) and the lowest for the ring finger (92%) and the mean F value was 0.94 ± 0.02, indicating high accuracy and reliability of this method. The results suggest that the proposed method has the potential to be used as an alternative method of surface electromyography in differentiating the motions of different fingers. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Simulation of light transport in arthritic- and non-arthritic human fingers

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Paluchowski, Lukasz A.; Randeberg, Lise L.

    2014-03-01

    Rheumatoid arthritis is a disease that frequently leads to joint destruction. It has high incidence rates worldwide, and the disease significantly reduces patient's quality of life due to pain, swelling and stiffness of the affected joints. Early diagnosis is necessary to improve course of the disease, therefore sensitive and accurate diagnostic tools are required. Optical imaging techniques have capability for early diagnosis and monitoring of arthritis. As compared to conventional diagnostic techniques optical technique is a noninvasive, noncontact and fast way of collecting diagnostic information. However, a realistic model of light transport in human joints is needed for understanding and developing of such optical diagnostic tools. The aim of this study is to develop a 3D numerical model of light transport in a human finger. The model will guide development of a hyperspectral imaging (HSI) diagnostic modality for arthritis in human fingers. The implemented human finger geometry is based on anatomical data. Optical data of finger tissues are adjusted to represent either an arthritic or an unaffected finger. The geometry and optical data serve as input into a 3D Monte Carlo method, which calculate diffuse reflectance, transmittance and absorbed energy distributions. The parameters of the model are optimized based on HIS-measurements of human fingers. The presented model serves as an important tool for understanding and development of HSI as an arthritis diagnostic modality. Yet, it can be applied to other optical techniques and finger diseases.

  6. Modeling of the interaction between grip force and vibration transmissibility of a finger.

    PubMed

    Wu, John Z; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Dong, Ren G

    2017-07-01

    It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. Published by Elsevier Ltd.

  7. Outcomes of percutaneous trigger finger release with concurrent steroid injection.

    PubMed

    Liu, Wen-Chih; Lu, Chun-Kuan; Lin, Yu-Chuan; Huang, Peng-Ju; Lin, Gau-Tyan; Fu, Yin-Chih

    2016-12-01

    Percutaneous release (PR) of the A1 pulley is a quick, safe, and minimally invasive procedure for treating trigger fingers. The purpose of this study is to identify if PR with additional steroid injections can shorten the recovery to reach unlimited range of motion. Between January 2013 and December 2013, we included 432 trigger fingers with actively correctable triggering or severer symptoms without previous surgical release or steroid injections from two hand clinic offices (A and B). The same experienced surgeon performed PR at the office. Patients from Clinic A received PR with steroid injections and those from Clinic B received PR without steroid injections. Patients returned for follow-up 1 week, 6 weeks, and 12 weeks after the procedure. Between the steroid group and the nonsteroid group, there is no significant difference in the mean time for patients to return to normal work and the rate of residual extensor lag. Middle fingers showed a 5.09-fold chance of having a residual extensor lag over that of the other fingers. High grade trigger fingers recovered more slowly than low grade ones. The success rate of a 12-week follow-up was 98.4%. There was no significant difference between the steroid group (97.5%) and the nonsteroid group (99.1%). PR can treat trigger fingers effectively, but additional steroid injection does not provide more benefit. Some fingers showed temporary extensor lag, especially in middle fingers and high grade trigger fingers, but 85% of those will eventually reach full recovery after self-rehabilitation without another surgical release. Copyright © 2016. Published by Elsevier Taiwan.

  8. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  9. Factors affecting healing and survival after finger amputations in patients with digital artery occlusive disease.

    PubMed

    Landry, Gregory J; McClary, Ashley; Liem, Timothy K; Mitchell, Erica L; Azarbal, Amir F; Moneta, Gregory L

    2013-05-01

    Finger amputations are typically performed as distal as possible to preserve maximum finger length. Failure of primary amputation leads to additional procedures, which could potentially be avoided if a more proximal amputation was initially performed. The effect of single versus multiple procedures on morbidity and mortality is not known. We evaluated factors that predicted primary healing and the effects of secondary procedures on survival. Patients undergoing finger amputations from 1995 to 2011 were evaluated for survival with uni- and multivariate analysis of demographic data and preoperative vascular laboratory studies to assess factors influencing primary healing. Seventy-six patients underwent 175 finger amputations (range 1 to 6 fingers per patient). Forty-one percent had diabetes, 33% had nonatherosclerotic digital artery disease, and 29% were on dialysis. Sex distribution was equal. Primary healing occurred in 78.9%, with the remainder requiring revisions. By logistic regression analysis, nonatherosclerotic digital artery disease was associated with failure of primary healing (odds ratio = 7.5; 95% confidence interval, 1.03 to 54; P = .047). Digital photoplethysmography did not predict primary healing. The overall healing of primary and secondary finger amputations was 96.0%. The mean survival after the initial finger amputation was 34.3 months and did not differ between patients undergoing single (35.6 months) versus multiple procedures (33.6 months). Dialysis dependence was associated with decreased survival (hazard ratio = 2.9; 95% confidence interval, 1.13 to 7.25; P = .026). Failure of primary healing is associated with the presence of nonatherosclerotic digital artery disease and is not predicted by digital photoplethysmographic studies. Dialysis dependence is associated with decreased survival in patients with finger amputations, but failure of primary healing does not adversely affect survival. A strategy of aggressive preservation of finger

  10. Real time relationship between individual finger force and grip exertion on distal phalanges in linear force following tasks.

    PubMed

    Luo, Shi-Jian; Shu, Ge; Gong, Yan

    2018-05-01

    Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation.

    PubMed

    Liu, Shu-Yen; Sheu, J K; Lee, M L; Lin, Yu-Chuan; Tu, S J; Huang, F W; Lai, W C

    2012-03-12

    In this study, we demonstrated photoelectrochemical (PEC) hydrogen generation using p-GaN photoelectrodes associated with immersed finger-type indium tin oxide (IF-ITO) ohmic contacts. The IF-ITO/p-GaN photoelectrode scheme exhibits higher photocurrent and gas generation rate compared with p-GaN photoelectrodes without IF-ITO ohmic contacts. In addition, the critical external bias for detectable hydrogen generation can be effectively reduced by the use of IF-ITO ohmic contacts. This finding can be attributed to the greatly uniform distribution of the IF-ITO/p-GaN photoelectrode applied fields over the whole working area. As a result, the collection efficiency of photo-generated holes by electrode contacts is higher than that of p-GaN photoelectrodes without IF-ITO contacts. Microscopy revealed a tiny change on the p-GaN surfaces before and after hydrogen generation. In contrast, photoelectrodes composed of n-GaN have a short lifetime due to n-GaN corrosion during hydrogen generation. Findings of this study indicate that the ITO finger contacts on p-GaN layer is a potential candidate as photoelectrodes for PEC hydrogen generation.

  12. Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity.

    PubMed

    Sekar, Jegan; Prabavathy, Vaiyapuri Ramalingam

    2014-07-01

    Genetic diversity of phlD gene, an essential gene in the biosynthesis of 2,4-diacetylphloroglucinol, was studied by restriction fragment length polymorphism (RFLP) in 20 Phl-producing pseudomonads isolated from finger millet rhizosphere. RFLP analysis of phlD gene displayed three patterns with HaeIII and TaqI enzymes. phlD gene sequence closely correlated with RFLP results and revealed the existence of three new genotypes G, H and I. Further, the phylogenetic and concatenated sequence analysis of the 16S rRNA, rpoB, gyrB, rpoD genes supported the hypothesis that these genotypes G, H and I were different from reported genotypes A-F. In all phylogenetic studies, the genotype G formed a distant clade from the groups of Pseudomonas putida and P. aeruginosa (sensu strictu), but the groups H and I were closely related to P. aeruginosa/P. stutzeri group. The Phl-producing pseudomonads exhibited antagonistic activity against Pyricularia grisea (TN508), Gaeumannomyces graminis (DSM1463), Fusarium oxysporum (DSM62297), Xanthomonas campestris (DSM3586) and Erwinia persicina (HMGU155). In addition, these strains exhibited various plant growth-promoting traits. In conclusion, this study displays the existence of novel Phl-producing pseudomonads genotypes G, H and I from finger millet rhizosphere, which formed taxonomically outward phylogenetic lineage from the groups of P. putida and P. aeruginosa (sensu strictu). © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra).

    PubMed

    Roy, Amrita; Zhou, Xingding; Chong, Ming Zhi; D'hoedt, Dieter; Foo, Chun Shin; Rajagopalan, Nandhakishore; Nirthanan, Selvanayagam; Bertrand, Daniel; Sivaraman, J; Kini, R Manjunatha

    2010-03-12

    Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs. The high resolution (1.5 A) crystal structure revealed haditoxin to be a homodimer, like kappa-neurotoxins, which target neuronal alpha(3)beta(2)- and alpha(4)beta(2)-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain alpha-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain alpha-neurotoxins and kappa-neurotoxins notwithstanding, haditoxin exhibited unique blockade of alpha(7)-nAChRs (IC(50) 180 nm), which is recognized by neither short-chain alpha-neurotoxins nor kappa-neurotoxins. This is the first report of a dimeric short-chain alpha-neurotoxin interacting with neuronal alpha(7)-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.

  14. Fingering and Intermittent Flow in Unsaturated Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Or, D.; Ghezzehei, T. A.

    2003-12-01

    Because of the dominance of gravitational forces over capillary and viscous forces in relatively large fracture apertures, flow processes in unsaturated fractures are considerably different from flow in rock matrix or in unsaturated soils. Additionally, variations in fracture geometry and properties perturb the delicate balance between gravitational, capillary, and viscous forces, leading to liquid fragmentation, fingering and intermittent flows. We developed a quantitative framework for modeling fluid fragmentation and the subsequent flow behavior of discrete fluid elements (slugs). The transition from a slowly growing but stationary liquid cluster to a finger-forming mobile slug in a non horizontal fracture is estimated from the force balance between retarding capillary forces dominated by contact angle hysteresis, and the weight and shape of the cluster. For a steady flux we developed a model for liquid fragmentation within the fracture plane that gives rise to intermittent discharge, as has been observed experimentally. Intermittency is shown to be a result of interplay between capillary, viscous, and gravitational forces, much like internal dripping. Liquid slug size, detachment interval, and travel velocity are dependent primarily on the local fracture-aperture geometry shaping the seed cluster, rock-surface roughness and wetness, and liquid flux feeding the bridge (either by film flow or from the rock matrix). We show that the presence of even a few irregularities in a vertical fracture surface could affect liquid cluster formation and growth, resulting in complicated flux patterns at the fracture bottom. Such chaotic-like behavior has been observed in previous studies involving gravity-driven unsaturated flow. Inferences based on statistical description of fracture-aperture variations and simplified representation of the fragmentation processes yield insights regarding magnitude and frequency of liquid avalanches. The study illustrates that attempts at

  15. Modifications of 'Gold Finger' Grape Berry Quality as Affected by the Different Rootstocks.

    PubMed

    Jin, Zhongxin; Sun, Hong; Sun, Tianyu; Wang, Qingjie; Yao, Yuxin

    2016-06-01

    Berry qualities of the grafted 'Gold Finger' grapevines were determined to evaluate the impacts of the resistant rootstocks on fruit quality. Compared to the own-rooted vines, berry and cluster weights and skin color were altered by the rootstocks to varying extents. The rootstock of 101-14M maintained TSS/TA and the contents of fructose, glucose, and sucrose, and SO4 decreased these parameters. 101-14M and 3309C increased and reduced the resveratrol content, respectively. SO4, 5BB, and 3309C decreased the total free amino acid content, along with the changes in amino acid composition. The amounts of aroma components were widely altered by the rootstocks. Additionally, a digital gene expression tag profiling revealed that the biological processes were largely altered by 3309C and 101-14M, including sugar, amino acid, and aroma metabolisms. In summary, the rootstock of 101-14M generally maintained berry quality, and SO4, 5BB, and 3309C imparted varying influences on different quality parameters.

  16. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.

    PubMed

    Yamaji, Naoki; Huang, Chao Feng; Nagao, Sakiko; Yano, Masahiro; Sato, Yutaka; Nagamura, Yoshiaki; Ma, Jian Feng

    2009-10-01

    Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.

  17. An EEG Finger-Print of fMRI deep regional activation.

    PubMed

    Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan

    2014-11-15

    This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Extrinsic and intrinsic index finger muscle attachments in an OpenSim upper-extremity model.

    PubMed

    Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L

    2015-04-01

    Musculoskeletal models allow estimation of muscle function during complex tasks. We used objective methods to determine possible attachment locations for index finger muscles in an OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference between model-estimated and experimentally-measured moment arms. Sensitivity analysis revealed that multiple sets of muscle attachments with similar optimized moment arms are possible, requiring additional assumptions or data to select a single set of values. The most smooth muscle paths were assumed to be biologically reasonable. Estimated tendon attachments resulted in variance accounted for (VAF) between calculated moment arms and measured values of 78% for flex/extension and 81% for ab/adduction at the MCP joint. VAF averaged 67% at the PIP joint and 54% at the DIP joint. VAF values at PIP and DIP joints partially reflected the constant moment arms reported for muscles about these joints. However, all moment arm values found through optimization were non-linear and non-constant. Relationships between moment arms and joint angles were best described with quadratic equations for tendons at the PIP and DIP joints.

  19. Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa.

    PubMed

    Ramashia, S E; Gwata, E T; Meddows-Taylor, S; Anyasi, T A; Jideani, A I O

    2018-02-01

    The study determined the physical properties of finger millet (FM) (Eluesine coracana) grains and the functional properties of FM flour. Physical properties such as colour attributes, sample weight, bulk density, true density, porosity, surface area, sample volume, aspect ratio, sphericity, dimensional properties and moisture content of grain cultivars were determined. Water absorption capacity (WAC), bulk density (BD), dispersibility, viscosity and micro-structure of FM flours were also evaluated. Data collected were analyzed using SPSS statistical software version 23.0. Results showed that milky cream cultivar was significantly higher (p<0.05) than other samples in sample weight, bulk density, true density, aspect ratio and sphericity. However, pearl millet, used as a control, was significantly different from FM flour on all dimensional properties. Moisture content of milky cream showed higher significant difference for both grains and flours as compared to brown and black grain/flours. Milky cream cultivar was significantly different in L*, b*, C*, H* values, WAC, BD and dispersibility for both FM grains and flours. Data showed that brown flour was significantly higher in viscosity than in milky and black flours. Microstructure results revealed that starch granules of raw FM flours had oval/spherical and smooth surface. The study is important for agricultural and food engineers, designers, scientists and processors in the design of equipment for FM grain processing. Results are likely to be useful in assessing the quality of grains used to fortify FM flour. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    PubMed

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  1. A simplified technique for polymethyl methacrylate cranioplasty: combined cotton stacking and finger fracture method.

    PubMed

    Kung, Woon-Man; Lin, Muh-Shi

    2012-01-01

    Polymethyl methacrylate (PMMA) is one of the most frequently used cranioplasty materials. However, limitations exist with PMMA cranioplasty including longer operative time, greater blood loss and a higher infection rate. To reduce these disadvantages, it is proposed to introduce a new surgical method for PMMA cranioplasty. Retrospective review of nine patients who received nine PMMA implants using combined cotton stacking and finger fracture method from January 2008 to July 2011. The definitive height of skull defect was quantified by computer-based image analysis of computed tomography (CT) scans. Aesthetic outcomes as measured by post-reduction radiographs and cranial index of symmetry (CIS), cranial nerve V and VII function and complications (wound infection, hardware extrusions, meningitis, osteomyelitis and brain abscess) were evaluated. The mean operation time for implant moulding was 24.56 ± 4.6 minutes and 178.0 ± 53 minutes for skin-to-skin. Average blood loss was 169 mL. All post-operative radiographs revealed excellent reduction. The mean CIS score was 95.86 ± 1.36%, indicating excellent symmetry. These results indicate the safety, practicability, excellent cosmesis, craniofacial symmetry and stability of this new surgical technique.

  2. Increased expression of zinc finger protein 267 in non-alcoholic fatty liver disease.

    PubMed

    Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus

    2011-01-01

    Hepatocellular lipid accumulation is a hallmark of non-alcoholicfatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign.

  3. Increased expression of Zinc finger protein 267 in non-alcoholic fatty liver disease

    PubMed Central

    Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus

    2011-01-01

    Hepatocellular lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign. PMID:22076166

  4. Computer simulation of viscous fingering in Sierpinski carpet

    NASA Astrophysics Data System (ADS)

    Ju-ping, Tian; Kai-lun, Yao

    1998-09-01

    A new method-mapping dilation method is proposed in this paper to construct Sierpinski carpet. Viscous fingering (VF) in Sierpinski carpet, based on the assumption that bond radii are beta distribution, is investigated by means of successive over-relaxation techniques. The topology and the geometry of the porous media have a strong effect on displacement processes. In the Sierpinski network, the VF pattern of porous media in the limit M → ∞ is found to be similar to the diffusion-limited-aggregation pattern. The fractal dimension for VF in fractal space is calculated and the fractal dimension D can be reasonably regarded as a useful parameter to evaluate the sweep efficiencies and oil recoveries. We have also found that the geometry of the porous medium also has strong effects on the displacement processes and the structure of the VF. Moreover, we find that the sweep efficiency of the displacement processes mainly depends upon the length of the network system and also on the viscosity ratio M. This shows that the current method can be used to solve VF problems in complex structures if the structures are self-similar, or they can be reduced to a self-similar structure.

  5. Prediction of gravity-driven fingering in porous media

    NASA Astrophysics Data System (ADS)

    Beljadid, Abdelaziz; Cueto-Felgueroso, Luis; Juanes, Ruben

    2017-11-01

    Gravity-driven displacement of one fluid by another in porous media is often subject to a hydrodynamic instability, whereby fluid invasion takes the form of preferential flow paths-examples include secondary oil migration in reservoir rocks, and infiltration of rainfall water in dry soil. Here, we develop a continuum model of gravity-driven two-phase flow in porous media within the phase-field framework (Cueto-Felgueroso and Juanes, 2008). We employ pore-scale physics arguments to design the free energy of the system, which notably includes a nonlinear formulation of the high-order (square-gradient) term based on equilibrium considerations in the direction orthogonal to gravity. This nonlocal term plays the role of a macroscopic surface tension, which exhibits a strong link with capillary pressure. Our theoretical analysis shows that the proposed model enforces that fluid saturations are bounded between 0 and 1 by construction, therefore overcoming a serious limitation of previous models. Our numerical simulations show that the proposed model also resolves the pinning behavior at the base of the infiltration front, and the asymmetric behavior of the fingers at material interfaces observed experimentally.

  6. Contingent sounds change the mental representation of one's finger length.

    PubMed

    Tajadura-Jiménez, Ana; Vakali, Maria; Fairhurst, Merle T; Mandrigin, Alisa; Bianchi-Berthouze, Nadia; Deroy, Ophelia

    2017-07-18

    Mental body-representations are highly plastic and can be modified after brief exposure to unexpected sensory feedback. While the role of vision, touch and proprioception in shaping body-representations has been highlighted by many studies, the auditory influences on mental body-representations remain poorly understood. Changes in body-representations by the manipulation of natural sounds produced when one's body impacts on surfaces have recently been evidenced. But will these changes also occur with non-naturalistic sounds, which provide no information about the impact produced by or on the body? Drawing on the well-documented capacity of dynamic changes in pitch to elicit impressions of motion along the vertical plane and of changes in object size, we asked participants to pull on their right index fingertip with their left hand while they were presented with brief sounds of rising, falling or constant pitches, and in the absence of visual information of their hands. Results show an "auditory Pinocchio" effect, with participants feeling and estimating their finger to be longer after the rising pitch condition. These results provide the first evidence that sounds that are not indicative of veridical movement, such as non-naturalistic sounds, can induce a Pinocchio-like change in body-representation when arbitrarily paired with a bodily action.

  7. Percutaneous Trigger Finger Release: A Cost-effectiveness Analysis.

    PubMed

    Gancarczyk, Stephanie M; Jang, Eugene S; Swart, Eric P; Makhni, Eric C; Kadiyala, Rajendra Kumar

    2016-07-01

    Percutaneous trigger finger releases (TFRs) performed in the office setting are becoming more prevalent. This study compares the costs of in-hospital open TFRs, open TFRs performed in ambulatory surgical centers (ASCs), and in-office percutaneous releases. An expected-value decision-analysis model was constructed from the payer perspective to estimate total costs of the three competing treatment strategies for TFR. Model parameters were estimated based on the best available literature and were tested using multiway sensitivity analysis. Percutaneous TFR performed in the office and then, if needed, revised open TFR performed in the ASC, was the most cost-effective strategy, with an attributed cost of $603. The cost associated with an initial open TFR performed in the ASC was approximately 7% higher. Initial open TFR performed in the hospital was the least cost-effective, with an attributed cost nearly twice that of primary percutaneous TFR. An initial attempt at percutaneous TFR is more cost-effective than an open TFR. Currently, only about 5% of TFRs are performed in the office; therefore, a substantial opportunity exists for cost savings in the future. Decision model level II.

  8. Selectivity of arsenite interaction with zinc finger proteins.

    PubMed

    Zhao, Linhong; Chen, Siming; Jia, Liangyuan; Shu, Shi; Zhu, Pingping; Liu, Yangzhong

    2012-08-01

    Arsenic is a carcinogenic element also used for the treatment of acute promyelocytic leukemia. The reactivity of proteins to arsenic must be associated with the various biological functions of As. Here, we investigated the selectivity of arsenite to zinc finger proteins (ZFPs) with different zinc binding motifs (C2H2, C3H, and C4). Single ZFP domain proteins were used for the direct comparison of the reactivity of different ZFPs. The binding constants and the reaction rates have been studied quantitatively. Results show that both the binding affinity and reaction rates of single-domain ZFPs follow the trend of C4 > C3H ≫ C2H2. Compared with the C2H2 motif ZFPs, the binding affinities of C3H and C4 motif ZFPs are nearly two orders of magnitude higher and the reaction rates are approximately two-fold higher. The formation of multi-domain ZFPs significantly enhances the reactivity of C2H2 type ZFPs, but has negligible effects on C3H and C4 ZFPs. Consequently, the reactivities of the three types of multi-domain ZFPs are rather similar. The 2D NMR spectra indicate that the As(III)-bound ZFPs are also unfolded, suggesting that arsenic binding interferes with the function of ZFPs.

  9. Minimal model for a hydrodynamic fingering instability in microroller suspensions

    NASA Astrophysics Data System (ADS)

    Delmotte, Blaise; Donev, Aleksandar; Driscoll, Michelle; Chaikin, Paul

    2017-11-01

    We derive a minimal continuum model to investigate the hydrodynamic mechanism behind the fingering instability recently discovered in a suspension of microrollers near a floor [M. Driscoll et al., Nat. Phys. 13, 375 (2017), 10.1038/nphys3970]. Our model, consisting of two continuous lines of rotlets, exhibits a linear instability driven only by hydrodynamic interactions and reproduces the length-scale selection observed in large-scale particle simulations and in experiments. By adjusting only one parameter, the distance between the two lines, our dispersion relation exhibits quantitative agreement with the simulations and qualitative agreement with experimental measurements. Our linear stability analysis indicates that this instability is caused by the combination of the advective and transverse flows generated by the microrollers near a no-slip surface. Our simple model offers an interesting formalism to characterize other hydrodynamic instabilities that have not been well understood, such as size scale selection in suspensions of particles sedimenting adjacent to a wall, or the recently observed formations of traveling phonons in systems of confined driven particles.

  10. Conformational Analysis on structural perturbations of the zinc finger NEMO

    NASA Astrophysics Data System (ADS)

    Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team

    2014-03-01

    The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.

  11. Revealing Rembrandt

    PubMed Central

    Parker, Andrew J.

    2014-01-01

    The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI). Our results emphasized the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt's portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings. PMID:24795552

  12. Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion-extension task in patients with Parkinson's disease.

    PubMed

    Teo, W P; Rodrigues, J P; Mastaglia, F L; Thickbroom, G W

    2013-06-01

    Repetitive finger tapping is a well-established clinical test for the evaluation of parkinsonian bradykinesia, but few studies have investigated other finger movement modalities. We compared the kinematic changes (movement rate and amplitude) and response to levodopa during a conventional index finger-thumb-tapping task and an unconstrained index finger flexion-extension task performed at maximal voluntary rate (MVR) for 20 s in 11 individuals with levodopa-responsive Parkinson's disease (OFF and ON) and 10 healthy age-matched controls. Between-task comparisons showed that for all conditions, the initial movement rate was greater for the unconstrained flexion-extension task than the tapping task. Movement rate in the OFF state was slower than in controls for both tasks and normalized in the ON state. The movement amplitude was also reduced for both tasks in OFF and increased in the ON state but did not reach control levels. The rate and amplitude of movement declined significantly for both tasks under all conditions (OFF/ON and controls). The time course of rate decline was comparable for both tasks and was similar in OFF/ON and controls, whereas the tapping task was associated with a greater decline in MA, both in controls and ON, but not OFF. The findings indicate that both finger movement tasks show similar kinematic changes during a 20-s sustained MVR, but that movement amplitude is less well sustained during the tapping task than the unconstrained finger movement task. Both movement rate and amplitude improved with levodopa; however, movement rate was more levodopa responsive than amplitude.

  13. Balancing a force on the fingertip of a two-dimensional finger model without intrinsic muscles.

    PubMed

    Spoor, C W

    1983-01-01

    A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.

  14. Osmosis-driven viscous fingering of oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Rallabandi, Bhargav; Baskaran, Mrudhula; Stone, Howard

    2017-11-01

    Viscous fingering occurs when a low viscosity fluid invades a more viscous fluid. Fingering of two miscible fluids is more complicated than that of immiscible fluids in that there is no sharp fluid-fluid interface and diffusion occurs between the phases. We experimentally studied the fingering of two miscible fluids: an oil-in-water emulsion and a sodium chloride solution. When the concentration of sodium chloride in the water phase in the emulsion exceeds that in the sodium chloride solution, the consequent osmotic flow automatically facilitates the occurrence of the fingering. On the contrary, when the sodium chloride solution has higher concentration, the spreading of emulsion is more uniform than the case without the concentration difference. We provide a model to rationalize and quantify these observations.

  15. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 percent with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  16. A new approach to depict bone surfaces in finger imaging using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.; van Es, P.; Steenbergen, W.; Manohar, S.

    2015-03-01

    Imaging the vasculature close around the finger joints is of interest in the field of rheumatology. Locally increased vasculature in the synovial membrane of these joints can be a marker for rheumatoid arthritis. In previous work we showed that part of the photoacoustically induced ultrasound from the epidermis reflects on the bone surface within the finger. These reflected signals could be wrongly interpreted as new photoacoustic sources. In this work we show that a conventional ultrasound reconstruction algorithm, that considers the skin as a collection of ultrasound transmitters and the PA tomography probe as the detector array, can be used to delineate bone surfaces of a finger. This can in the future assist in the localization of the joint gaps. This can provide us with a landmark to localize the region of the inflamed synovial membrane. We test the approach on finger mimicking phantoms.

  17. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  18. Determining the number of fingers in the lifting Hele-Shaw problem

    NASA Astrophysics Data System (ADS)

    Miranda, Jose; Dias, Eduardo

    2013-11-01

    The lifting Hele-Shaw cell flow is a variation of the celebrated radial viscous fingering problem for which the upper cell plate is lifted uniformly at a specified rate. This procedure causes the formation of intricate interfacial patterns. Most theoretical studies determine the total number of emerging fingers by maximizing the linear growth rate, but this generates discrepancies between theory and experiments. In this work, we tackle the number of fingers selection problem in the lifting Hele-Shaw cell by employing the recently proposed maximum-amplitude criterion. Our linear stability analysis accounts for the action of capillary, viscous normal stresses, and wetting effects, as well as the cell confinement. The comparison of our results with very precise laboratory measurements for the total number of fingers shows a significantly improved agreement between theoretical predictions and experimental data. We thank CNPq (Brazilian Sponsor) for financial support.

  19. An Individual Finger Gesture Recognition System Based on Motion-Intent Analysis Using Mechanomyogram Signal

    PubMed Central

    Ding, Huijun; He, Qing; Zhou, Yongjin; Dan, Guo; Cui, Song

    2017-01-01

    Motion-intent-based finger gesture recognition systems are crucial for many applications such as prosthesis control, sign language recognition, wearable rehabilitation system, and human–computer interaction. In this article, a motion-intent-based finger gesture recognition system is designed to correctly identify the tapping of every finger for the first time. Two auto-event annotation algorithms are firstly applied and evaluated for detecting the finger tapping frame. Based on the truncated signals, the Wavelet packet transform (WPT) coefficients are calculated and compressed as the features, followed by a feature selection method that is able to improve the performance by optimizing the feature set. Finally, three popular classifiers including naive Bayes (NBC), K-nearest neighbor (KNN), and support vector machine (SVM) are applied and evaluated. The recognition accuracy can be achieved up to 94%. The design and the architecture of the system are presented with full system characterization results. PMID:29167655

  20. Brain activity during bilateral rapid alternate finger tapping measured with magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu; Kodabashi, Atsushi; Fujimoto, Toshiro

    2009-04-01

    Using magnetoencephalography (MEG), brain regions involved in an alternate bimanual tapping task by index fingers triggered with spontaneous timing were investigated. The tapping mode in which both index fingers moved simultaneously was interlaced during the task. The groups of the alternate tapping (AL mode) and the simultaneous tapping (SI mode) were extracted from the successive alternating taps with a histogram of intervals between the right and left index fingers. MEG signals in each mode were averaged separately before and after the tapping initiation of the dominant index finger. The activities of the contralateral sensorimotor cortex before and after the tapping initiation in the AL mode were larger than that in the SI mode. The result indicates that the activity of the contralateral sensorimotor cortex depends on the degree of achievement in the difficult motor task such as the voluntary alternate tapping movements.

  1. Toward rules relating zinc finger protein sequences and DNA binding site preferences.

    PubMed

    Desjarlais, J R; Berg, J M

    1992-08-15

    Zinc finger proteins of the Cys2-His2 type consist of tandem arrays of domains, where each domain appears to contact three adjacent base pairs of DNA through three key residues. We have designed and prepared a series of variants of the central zinc finger within the DNA binding domain of Sp1 by using information from an analysis of a large data base of zinc finger protein sequences. Through systematic variations at two of the three contact positions (underlined), relatively specific recognition of sequences of the form 5'-GGGGN(G or T)GGG-3' has been achieved. These results provide the basis for rules that may develop into a code that will allow the design of zinc finger proteins with preselected DNA site specificity.

  2. A comparison of multi-metal deposition processes utilising gold nanoparticles and an evaluation of their application to 'low yield' surfaces for finger mark development.

    PubMed

    Fairley, C; Bleay, S M; Sears, V G; NicDaeid, N

    2012-04-10

    This paper reports a comparison of the effectiveness and practicality of using different multi-metal deposition processes for finger mark development. The work investigates whether modifications can be made to improve the performance of the existing process published by Schnetz. Secondly, we compare the ability of different multi-metal deposition processes to develop finger marks on a range of surfaces with that of other currently used development processes. All published multi-metal deposition processes utilise an initial stage of colloidal gold deposition followed by enhancement of the marks with using a physical developer. All possible combinations of colloidal gold and physical developer stages were tested. The method proposed by Schnetz was shown to be the most effective process, however a modification which reduced the pH of the enhancement solution was revealed to provide the best combination of effectiveness and practicality. In trials comparing the modified formulation with vacuum metal deposition, superglue and powder suspensions on surfaces which typically give low finger mark yields (cling film, plasticised vinyl, leather and masking tape), the modified method produced significantly better results over existing processes for cling film and plasticised vinyl. The modified formulation was found to be ineffective on both masking tape and leather. It is recommended that further tests be carried out on the modified multi-metal deposition formulation to establish whether it could be introduced for operational work on cling film material in particular. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Amelioration of hyperglycaemia and its associated complications by finger millet ( Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats.

    PubMed

    Shobana, Shanmugam; Harsha, Mysore R; Platel, Kalpana; Srinivasan, Krishnapura; Malleshi, Nagappa G

    2010-12-01

    Finger millet (Eleusine coracana) is extensively cultivated and consumed in India and Africa. The millet seed coat is a rich source of dietary fibre and phenolic compounds. The effect of feeding a diet containing 20% finger millet seed coat matter (SCM) was examined in streptozotocin-induced diabetic rats. Diabetic rats maintained on the millet SCM diet (diabetic experimental (DE) group) for 6 weeks exhibited a lesser degree of fasting hyperglycaemia and partial reversal of abnormalities in serum albumin, urea and creatinine compared with the diabetic control (DC) group. The DE group of rats excreted comparatively lesser amounts of glucose, protein, urea and creatinine and was accompanied by improved body weights compared with their corresponding controls. Hypercholesterolaemia and hypertriacylglycerolaemia associated with diabetes were also notably reversed in the DE group. Slit lamp examination of the eye lens revealed an immature subcapsular cataract with mild lenticular opacity in the DE group of rats compared to the mature cataract with significant lenticular opacity and corneal vascularisation in the DC group. Lower activity of lens aldose reductase, serum advanced glycation end products and blood glycosylated Hb levels were observed in the DE group. The millet SCM feeding showed pronounced ameliorating effects on kidney pathology as reflected by near normal glomerular and tubular structures and lower glomerular filtration rate compared with the shrunken glomerulus, tubular vacuolations in the DC group. Thus, the present animal study evidenced the hypoglycaemic, hypocholesterolaemic, nephroprotective and anti-cataractogenic properties of finger millet SCM, suggesting its utility as a functional ingredient in diets for diabetics.

  4. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis1[W

    PubMed Central

    Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley

    2014-01-01

    The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191

  5. Investigation of index finger triggering force using a cadaver experiment: Effects of trigger grip span, contact location, and internal tendon force.

    PubMed

    Chang, Joonho; Freivalds, Andris; Sharkey, Neil A; Kong, Yong-Ku; Mike Kim, H; Sung, Kiseok; Kim, Dae-Min; Jung, Kihyo

    2017-11-01

    A cadaver study was conducted to investigate the effects of triggering conditions (trigger grip span, contact location, and internal tendon force) on index finger triggering force and the force efficiency of involved tendons. Eight right human cadaveric hands were employed, and a motion simulator was built to secure and control the specimens. Index finger triggering forces were investigated as a function of different internal tendon forces (flexor digitorum profundus + flexor digitorum superficialis = 40, 70, and 100 N), trigger grip spans (40, 50, and 60 mm), and contact locations between the index finger and a trigger. Triggering forces significantly increased when internal tendon forces increased from 40 to 100 N. Also, trigger grip spans and contact locations had significant effects on triggering forces; maximum triggering forces were found at a 50 mm span and the most proximal contact location. The results revealed that only 10-30% of internal tendon forces were converted to their external triggering forces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. In vitro selection of zinc fingers with altered DNA-binding specificity.

    PubMed

    Jamieson, A C; Kim, S H; Wells, J A

    1994-05-17

    We have used random mutagenesis and phage display to alter the DNA-binding specificity of Zif268, a transcription factor that contains three zinc finger domains. Four residues in the helix of finger 1 of Zif268 that potentially mediate DNA binding were identified from an X-ray structure of the Zif268-DNA complex. A library was constructed in which these residues were randomly mutated and the Zif268 variants were fused to a truncated version of the gene III coat protein on the surface of M13 filamentous phage particles. The phage displayed the mutant proteins in a monovalent fashion and were sorted by repeated binding and elution from affinity matrices containing different DNA sequences. When the matrix contained the natural nine base pair operator sequence 5'-GCG-TGG-GCG-3', native-like zinc fingers were isolated. New finger 1 variants were found by sorting with two different operators in which the singly modified triplets, GTG and TCG, replaced the native finger 1 triplet, GCG. Overall, the selected finger 1 variants contained a preponderance of polar residues at the four sites. Interestingly, the net charge of the four residues in any selected finger never derived more that one unit from neutrality despite the fact that about half the variants contained three or four charged residues over the four sites. Measurements of the dissociation constants for two of these purified finger 1 variants by gel-shift assay showed their specificities to vary over a 10-fold range, with the greatest affinity being for the DNA binding site for which they were sorted.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Radial Viscous Fingering and its Surface Expression due to Convective Upwelling Beneath North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    White, N. J.; Schoonman, C. M.

    2016-12-01

    The Icelandic mantle plume has had a significant influence on the geologic and oceanographic evolution of the North Atlantic Ocean during Cenozoic times. Full-waveform tomographic imaging of this region show that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plates between 100 and 200 km depth. The planform of these anomalies suggests that five or more horizontal fingers extend radially beneath the fringing continental margins. The best-imaged fingers lie beneath the British Isles and beneath western Norway where significant crustal isostatic departures have been measured. Here, we propose that these radial fingers are generated by a phenomenon known as the Saffman-Taylor instability. Experimental and theoretical analyses show that radial, miscible viscous fingering occurs when a less viscous fluid is injected into a more viscous fluid. The wavelength and number of fingers are controlled by the mobility (i.e. the ratio of viscosities), by the Peclet number (i.e. the ratio of advective and diffusive processes), and by the thickness of the horizontal layer into which fluid is injected. We have combined shear wave velocity estimates with residual depth measurements around the Atlantic margins to calculate the planform distribution of temperature and viscosity within an asthenospheric layer beneath the lithospheric plates. Our calculations suggest that the mobility is 20-50, that the Peclet number is O(104, and that the asthenospheric channel is 150 ± 50 km thick. The existence and form of viscous fingering is consistent with experimental observations and with linear stability analysis. A useful rule of thumb is that the wavelength of viscous fingering is 5 ± 1 times the thickness of the horizontal layer. Our proposal support the notion that dynamic topography of the Earth's surface can be influenced by rapid horizontal flow within spatially evolving asthenospheric fingers.

  8. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    PubMed

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  9. The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity.

    PubMed

    Dul, Barbara E; Walworth, Nancy C

    2007-06-22

    The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.

  10. Women's finger sensitivity correlates with partnered sexual behavior but not solitary masturbation frequencies.

    PubMed

    Brody, Stuart; Fischer, Agneta H; Hess, Ursula

    2008-01-01

    In a sample of 97 healthy Dutch female university students, women with greater finger tactile sensitivity (von Frey-type filaments) engaged more in partnered (but not solitary masturbation) sexual behavior. Orgasmic responses in the past 30 days were not correlated with finger sensitivity. Results are discussed in terms of differences between different sexual behaviors, as well as susceptibility to reinforcement, and psychoanalytic views of conversion hysteria.

  11. Ability of finger-jointed lumber to maintain load at elevated temperatures

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka; Laura E Hasburgh; Steven T. Craft

    2018-01-01

    This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an...

  12. Blood glucose concentrations of arm and finger during dynamic glucose conditions.

    PubMed

    Szuts, Ete Z; Lock, J Paul; Malomo, Kenneth J; Anagnostopoulos, Althea

    2002-01-01

    We set out to determine the physiological difference between the capillary blood of the arm and finger with the greatest possible accuracy using the HemoCue B-glucose analyzer on subjects undergoing a meal tolerance test (MTT) or oral glucose tolerance test (OGTT). MTT study was performed on 50 subjects who drank a liquid meal (Ensure, 40 g of carbohydrates) and who were tested on the arm and finger every 30 min for up to 4 h. OGTT study was performed on 12 subjects who drank a 100-g glucose solution (Glucola) and were tested on the arm and finger every 15 min during the first hour and thereafter every 30 min for up to 3 h. Average percent glucose difference between arm and finger reached a maximal value about 1 h following glucose load, with arm glucose being about 5% lower than that of finger. At other times, average differences were less than this. At the greatest rate of glucose change (>2 mg/dL-min), mean percent bias was found to be about 6%. Despite these measurable differences, when arm results were plotted on the Clarke error grid against finger values, >97% of the data were within zone A (rest in zone B). Thus, physiological differences between arm and finger were clinically insignificant. Our studies with HemoCue confirmed the existence of measurable physiological glucose differences between arm and finger following a glucose challenge, but these differences were found to be clinically insignificant even in those subjects in whom they were measurable.

  13. Models of brachial to finger pulse wave distortion and pressure decrement.

    PubMed

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  14. A method to locate the radial digital nerve of the index finger.

    PubMed

    Lourie, G M; Rudolph, H P; Lundy, D W

    1998-08-01

    The radial digital nerve of the index finger is susceptible to injury during penetrating trauma or elective release of the A1 pulley. The intersection of a line drawn down the midline of the index finger and the proximal palmar crease identifies the location of the radial digital nerve. This method of identifying the topography of the nerve should assist the surgeon in determining the likelihood of injury after penetrating trauma, and preventing injury during elective procedures.

  15. Multi-finger synergies and the muscular apparatus of the hand.

    PubMed

    Cuadra, Cristian; Bartsch, Angelo; Tiemann, Paula; Reschechtko, Sasha; Latash, Mark L

    2018-05-01

    We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.

  16. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.

    PubMed

    Baker, Justin J; Scheme, Erik; Englehart, Kevin; Hutchinson, Douglas T; Greger, Bradley

    2010-08-01

    A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. The EMG from the different IMES implants showed very little cross correlation. An offline parallel linear discriminant analysis (LDA) based algorithm was used to decode finger activity based on features extracted from continuously presented frames of recorded EMG. The offline parallel LDA was run on intraday sessions as well as on sessions where the algorithm was trained on one day and tested on following days. The performance of the algorithm was evaluated continuously by comparing classification output by the algorithm to the current state of the finger switches. The algorithm detected and classified seven different finger movements, including individual and combined finger flexions, and a no-movement state (chance performance = 12.5%) . When the algorithm was trained and tested on data collected the same day, the average performance was 43.8+/-3.6% n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5+/-3.4% n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.

  17. Reorganization of finger coordination patterns through motor exploration in individuals after stroke.

    PubMed

    Ranganathan, Rajiv

    2017-09-11

    Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.

  18. Thermal Face Protection Delays Finger Cooling and Improves Thermal Comfort during Cold Air Exposure

    DTIC Science & Technology

    2011-01-01

    code) 2011 Journal Article-Eur Journal of Applied Physiology Thermal face protection delays Fnger cooling and improves thermal comfort during cold air...remains exposed. Facial cooling can decrease finger blood flow, reducing finger temperature (Tf). This study examined whether thermal face protection...limits Wnger cooling and thereby improves thermal comfort and manual dexterity during prolonged cold exposure. Tf was measured in ten volunteers dressed

  19. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management-Growth Promotion and Compatibility With the Resident Rhizomicrobiome.

    PubMed

    Sekar, Jegan; Raju, Kathiravan; Duraisamy, Purushothaman; Ramalingam Vaiyapuri, Prabavathy

    2018-01-01

    Finger millet [ Eleusine coracona (L). Gaertner] "Ragi" is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea , resulting in 50-100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea , produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 10 8 CFU ml -1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet.

  20. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management—Growth Promotion and Compatibility With the Resident Rhizomicrobiome

    PubMed Central

    Sekar, Jegan; Raju, Kathiravan; Duraisamy, Purushothaman; Ramalingam Vaiyapuri, Prabavathy

    2018-01-01

    Finger millet [Eleusine coracona (L). Gaertner] “Ragi” is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea, resulting in 50–100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea, produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 108 CFU ml−1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet. PMID:29875748