Science.gov

Sample records for a-t mutated atm

  1. Identification of ATM mutations using extended RT-PCR and restriction endonuclease fingerprinting, and elucidation of the repertoire of A-T mutations in Israel.

    PubMed

    Gilad, S; Khosravi, R; Harnik, R; Ziv, Y; Shkedy, D; Galanty, Y; Frydman, M; Levi, J; Sanal, O; Chessa, L; Smeets, D; Shiloh, Y; Bar-Shira, A

    1998-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, and radiation sensitivity. The responsible gene, ATM, has an extensive genomic structure and encodes a large transcript with a 9.2 kb open reading frame (ORF). A-T mutations are extremely variable and most of them are private. We streamlined a high throughput protocol for the search for ATM mutations. The entire ATM ORF is amplified in a single RT-PCR step requiring a minimal amount of RNA. The product can serve for numerous nested PCRs in which overlapping portions of the ORF are further amplified and subjected to restriction endonuclease fingerprinting (REF) analysis. Splicing errors are readily detectable during the initial amplification of each portion. Using this protocol, we identified 5 novel A-T mutations and completed the elucidation of the molecular basis of A-T in the Israeli population.

  2. Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype.

    PubMed

    Spring, K; Cross, S; Li, C; Watters, D; Ben-Senior, L; Waring, P; Ahangari, F; Lu, S L; Chen, P; Misko, I; Paterson, C; Kay, G; Smorodinsky, N I; Shiloh, Y; Lavin, M F

    2001-06-01

    ATM, the gene mutated in the human immunodeficiency disorder ataxia-telangiectasia (A-T), plays a central role in recognizing ionizing radiation damage in DNA and in controlling several cell cycle checkpoints. We describe here a murine model in which a nine-nucleotide in-frame deletion has been introduced into the Atm gene by homologous recombination followed by removal of the selectable marker cassette by Cre-loxP site-specific, recombination-mediated excision. This mouse, Atm-DeltaSRI, was designed as a model of one of the most common deletion mutations (7636del9) found in A-T patients. The murine Atm deletion results in the loss of three amino acid residues (SRI; 2556-2558) but produces near full-length detectable Atm protein that lacks protein kinase activity. Radiosensitivity was observed in Atm-DeltaSRI mice, whereas the immunological profile of these mice showed greater heterogeneity of T-cell subsets than observed in Atm(-/-) mice. The life span of Atm-DeltaSRI mice was significantly longer than that of Atm(-/-) mice when maintained under nonspecific pathogen-free conditions. This can be accounted for by a lower incidence of thymic lymphomas in Atm-DeltaSRI mice up to 40 weeks, after which time the animals died of other causes. The thymic lymphomas in Atm-DeltaSRI mice were characterized by extensive apoptosis, which appears to be attributable to an increased number of cells expressing Fas ligand. A variety of other tumors including B-cell lymphomas, sarcomas, and carcinomas not seen in Atm(-/-) mice were observed in older Atm-DeltaSRI animals. Thus, expression of mutant protein in Atm-DeltaSRI knock-in mice gives rise to a discernibly different phenotype to Atm(-/-) mice, which may account for the heterogeneity seen in A-T patients with different mutations.

  3. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    PubMed

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment.

  4. Characterisation of ATM mutations in Slavic Ataxia telangiectasia patients.

    PubMed

    Soukupova, Jana; Pohlreich, Petr; Seemanova, Eva

    2011-09-01

    Ataxia telangiectasia (AT) is a genomic instability syndrome characterised, among others, by progressive cerebellar degeneration, oculocutaneous telangiectases, immunodeficiency, elevated serum alpha-phetoprotein level, chromosomal breakage, hypersensitivity to ionising radiation and increased cancer risk. This autosomal recessive disorder is caused by mutations in the ataxia telangiectasia mutated (ATM) gene coding for serine/threonine protein kinase with a crucial role in response to DNA double-strand breaks. We characterised genotype and phenotype of 12 Slavic AT patients from 11 families. Mutation analysis included sequencing of the entire coding sequence, adjacent intron regions, 3'UTR and 5'UTR of the ATM gene and multiplex ligation-dependent probe amplification (MLPA) for the detection of large deletions/duplications at the ATM locus. The high incidence of new and individual mutations demonstrates a marked mutational heterogeneity of AT in the Czech Republic. Our data indicate that sequence analysis of the entire coding region of ATM is sufficient for a high detection rate of mutations in ATM and that MLPA analysis for the detection of deletions/duplications seems to be redundant in the Slavic population.

  5. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families.

    PubMed

    Renault, Anne-Laure; Mebirouk, Noura; Cavaciuti, Eve; Le Gal, Dorothée; Lecarpentier, Julie; d'Enghien, Catherine Dubois; Laugé, Anthony; Dondon, Marie-Gabrielle; Labbé, Martine; Lesca, Gaetan; Leroux, Dominique; Gladieff, Laurence; Adenis, Claude; Faivre, Laurence; Gilbert-Dussardier, Brigitte; Lortholary, Alain; Fricker, Jean-Pierre; Dahan, Karin; Bay, Jacques-Olivier; Longy, Michel; Buecher, Bruno; Janin, Nicolas; Zattara, Hélène; Berthet, Pascaline; Combès, Audrey; Coupier, Isabelle; Hall, Janet; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne

    2017-10-01

    Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families. © The Author 2017. Published by Oxford University Press.

  6. Screening for ATM Mutations in an African-American Population to Identify a Predictor of Breast Cancer Susceptibility

    DTIC Science & Technology

    2006-07-01

    ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT

  7. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    PubMed

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  8. A Novel Method to Screen for Dominant Negative ATM Mutations in Familial Breast Cancer

    DTIC Science & Technology

    2005-04-01

    carry dominant negative mutation in ATM due to natural variation amongst LCLs. Microarrays have been performed to determine differences in gene expression... genes that are altered in their expression in ATMmutation carriers. The validation of this data in carriers of different ATM mutation indicated that the...heterozygous carriers of T727 1 G mutation display a gene expression phenotype that appears identical to carriers of protein truncating mutations in

  9. ATM splicing variants as biomarkers for low dose dexamethasone treatment of A-T.

    PubMed

    Menotta, Michele; Biagiotti, Sara; Spapperi, Chiara; Orazi, Sara; Rossi, Luigia; Chessa, Luciana; Leuzzi, Vincenzo; D'Agnano, Daniela; Soresina, Annarosa; Micheli, Roberto; Magnani, Mauro

    2017-07-05

    Ataxia Telangiectasia (AT) is a rare incurable genetic disease, caused by biallelic mutations in the Ataxia Telangiectasia-Mutated (ATM) gene. Treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this syndrome. Nevertheless, the molecular mechanism underlying the glucocorticoid action in AT patients is not yet understood. Recently, we have demonstrated that Dexamethasone treatment may partly restore ATM activity in AT lymphoblastoid cells by a new ATM transcript, namely ATMdexa1. In the present study, the new ATMdexa1 transcript was also identified in vivo, specifically in the PMBCs of AT patients treated with intra-erythrocyte Dexamethasone (EryDex). In these patients it was also possible to isolate new "ATMdexa1 variants" originating from canonical and non-canonical splicing, each containing the coding sequence for the ATM kinase domain. The expression of the ATMdexa1 transcript family was directly related to treatment and higher expression levels of the transcript in patients' blood correlated with a positive response to Dexamethasone therapy. Neither untreated AT patients nor untreated healthy volunteers possessed detectable levels of the transcripts. ATMdexa1 transcript expression was found to be elevated 8 days after the drug infusion, while it decreased 21 days after treatment. For the first time, the expression of ATM splicing variants, similar to those previously observed in vitro, has been found in the PBMCs of patients treated with EryDex. These findings show a correlation between the expression of ATMdexa1 transcripts and the clinical response to low dose dexamethasone administration.

  10. ATM/RB1 mutations predict shorter overall survival in urothelial cancer.

    PubMed

    Yin, Ming; Grivas, Petros; Emamekhoo, Hamid; Mendiratta, Prateek; Ali, Siraj; Hsu, JoAnn; Vasekar, Monali; Drabick, Joseph J; Pal, Sumanta; Joshi, Monika

    2018-03-30

    Mutations of DNA repair genes, e.g. ATM/RB1 , are frequently found in urothelial cancer (UC) and have been associated with better response to cisplatin-based chemotherapy. Further external validation of the prognostic value of ATM/RB1 mutations in UC can inform clinical decision making and trial designs. In the discovery dataset, ATM/RB1 mutations were present in 24% of patients and were associated with shorter OS (adjusted HR 2.67, 95% CI, 1.45-4.92, p = 0.002). There was a higher mutation load in patients carrying ATM/RB1 mutations (median mutation load: 6.7 versus 5.5 per Mb, p = 0.072). In the validation dataset, ATM/RB1 mutations were present in 22.2% of patients and were non-significantly associated with shorter OS (adjusted HR 1.87, 95% CI, 0.97-3.59, p = 0.06) and higher mutation load (median mutation load: 8.1 versus 7.2 per Mb, p = 0.126). Exome sequencing data of 130 bladder UC patients from The Cancer Genome Atlas (TCGA) dataset were analyzed as a discovery cohort to determine the prognostic value of ATM/RB1 mutations. Results were validated in an independent cohort of 81 advanced UC patients. Cox proportional hazard regression analysis was performed to calculate the hazard ratio (HR) and 95% confidence interval (CI) to compare overall survival (OS). ATM/RB1 mutations may be a biomarker of poor prognosis in unselected UC patients and may correlate with higher mutational load. Further studies are required to determine factors that can further stratify prognosis and evaluate predictive role of ATM/RB1 mutation status to immunotherapy and platinum-based chemotherapy.

  11. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    repair of radiation-induced damage. Furthermore, cells possessing a mutated copy of this gene are more radiosensitive than cells from individuals with...AD Award Number: DAMD17-02-1-0503 TITLE: ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast...2005 Annual 1 Jul 2004 - 30 Jun 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER ATM Mutations and the Development of Severe Radiation-Induced Morbidity

  12. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia.

    PubMed Central

    Wright, J.; Teraoka, S.; Onengut, S.; Tolun, A.; Gatti, R. A.; Ochs, H. D.; Concannon, P.

    1996-01-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. PMID:8808599

  13. ATM function and its relationship with ATM gene mutations in chronic lymphocytic leukemia with the recurrent deletion (11q22.3-23.2).

    PubMed

    Jiang, Y; Chen, H-C; Su, X; Thompson, P A; Liu, X; Do, K-A; Wierda, W; Keating, M J; Plunkett, W

    2016-09-02

    Approximately 10-20% of chronic lymphocytic leukemia (CLL) patients exhibit del(11q22-23) before treatment, this cohort increases to over 40% upon progression following chemoimmunotherapy. The coding sequence of the DNA damage response gene, ataxia-telangiectasia-mutated (ATM), is contained in this deletion. The residual ATM allele is frequently mutated, suggesting a relationship between gene function and clinical response. To investigate this possibility, we sought to develop and validate an assay for the function of ATM protein in these patients. SMC1 (structural maintenance of chromosomes 1) and KAP1 (KRAB-associated protein 1) were found to be unique substrates of ATM kinase by immunoblot detection following ionizing radiation. Using a pool of eight fluorescence in situ hybridization-negative CLL samples as a standard, the phosphorylation of SMC1 and KAP1 from 46 del (11q22-23) samples was analyzed using normal mixture model-based clustering. This identified 13 samples (28%) that were deficient in ATM function. Targeted sequencing of the ATM gene of these samples, with reference to genomic DNA, revealed 12 somatic mutations and 15 germline mutations in these samples. No strong correlation was observed between ATM mutation and function. Therefore, mutation status may not be taken as an indicator of ATM function. Rather, a direct assay of the kinase activity should be used in the development of therapies.

  14. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    PubMed

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated ( ATM ) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm -mutant rats ( Atm L2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm +/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm L2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  15. The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers.

    PubMed

    Laitman, Yael; Boker-Keinan, Lital; Berkenstadt, Michal; Liphsitz, Irena; Weissglas-Volkov, Daphna; Ries-Levavi, Liat; Sarouk, Ifat; Pras, Elon; Friedman, Eitan

    2016-03-01

    Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2006-07-01

    patients who are carriers of an alteration in this gene . This project is innovative as it represents the first study to use the powerful DHPLC mutation ...development of adverse responses to radiotherapy (5-6). The first gene to have received significant attention was the mutated in ataxia telangiectasia (AT...Group and Concannon PJ. 2003. Designing and implementing quality control for multi-center screening of mutations in the ATM gene among women with

  17. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    PubMed

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  18. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response.

    PubMed

    Smith, Rebecca J; Savoian, Matthew S; Weber, Lauren E; Park, Jeong Hyeon

    2016-11-04

    Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Taken together, our findings suggest that a protein-protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair.

  19. Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene.

    PubMed

    Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A

    2017-02-01

    There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.

  20. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    SciTech Connect

    Kinoshita, Taisuke; Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellularmore » response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.« less

  1. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice.

    PubMed

    Yamamoto, Kenta; Wang, Yunyue; Jiang, Wenxia; Liu, Xiangyu; Dubois, Richard L; Lin, Chyuan-Sheng; Ludwig, Thomas; Bakkenist, Christopher J; Zha, Shan

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) kinase orchestrates deoxyribonucleic acid (DNA) damage responses by phosphorylating numerous substrates implicated in DNA repair and cell cycle checkpoint activation. A-T patients and mouse models that express no ATM protein undergo normal embryonic development but exhibit pleiotropic DNA repair defects. In this paper, we report that mice carrying homozygous kinase-dead mutations in Atm (Atm(KD/KD)) died during early embryonic development. Atm(KD/-) cells exhibited proliferation defects and genomic instability, especially chromatid breaks, at levels higher than Atm(-/-) cells. Despite this increased genomic instability, Atm(KD/-) lymphocytes progressed through variable, diversity, and joining recombination and immunoglobulin class switch recombination, two events requiring nonhomologous end joining, at levels comparable to Atm(-/-) lymphocytes. Together, these results reveal an essential function of ATM during embryogenesis and an important function of catalytically inactive ATM protein in DNA repair.

  2. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    PubMed

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The impact of an early truncating founder ATM mutation on immunoglobulins, specific antibodies and lymphocyte populations in ataxia-telangiectasia patients and their parents

    PubMed Central

    STRAY-PEDERSEN, A; JÓNSSON, T; HEIBERG, A; LINDMAN, C R; WIDING, E; AABERGE, I S; BORRESEN-DALE, A L; ABRAHAMSEN, T G

    2004-01-01

    Eleven Norwegian patients (aged 2–33 years, seven males and four females) with Ataxia-telangiectasia (A-T) and their parents were investigated. Five of the patients were homozygous for the same ATM mutation, 3245delATCinsTGAT, a Norwegian founder mutation. They had the lowest IgG2 levels; mean (95% confidence interval) 0·23 (0·05–0·41) g/l versus 0·91 (0·58–1·26) g/l in the other patients (P = 0·002). Among the 11 A-T patients, six had IgG2 deficiency, six had IgA deficiency (three in combination with IgG2 deficiency) and seven had low/undetectable IgE values. All patients had very low levels of antibodies to Streptococcus pneumoniae 0·9 (0·4–1·4) U/ml, while normal levels were found in their parents 11·1 (8·7–13·4) U/ml (P < 0·001). A positive linear relationship between pneumococcal antibodies and IgG2 (r = 0·85, P = 0·001) was found in the patients. Six of 11 had diphtheria antibodies and 7 of 11 tetanus antibodies after childhood vaccinations, while 4 of 7 Hemophilus influenzae type b (Hib) vaccinated patients had protective antibodies. Ten patients had low B cell (CD19+) counts, while six had low T cell (CD3+) counts. Of the T cell subpopulations, 11 had low CD4+ cell counts, six had reduced CD8+ cell counts, and four had an increased portion of double negative (CD3+/CD4-/CD8-) gamma delta T cells. Of the 22 parents (aged 23–64 years) 12 were heterozygous for the ATM founder mutation. Abnormalities in immunoglobulin levels and/or lymphocyte subpopulations were also observed in these carriers, with no correlation to a special ATM genotype. PMID:15196260

  4. Studies of ATM Kinase Activity Using Engineered ATM Sensitive to ATP Analogues (ATM-AS).

    PubMed

    Enari, Masato; Matsushima-Hibiya, Yuko; Miyazaki, Makoto; Otomo, Ryo

    2017-01-01

    Ataxia-telangiectasia mutated (ATM) protein is a member of the phosphatidylinositol 3-phosphate kinase (PI3-K)-related protein kinase (PIKK) family and is implicated in the initiation of signaling pathways following DNA double strand breaks (DSBs) elicited by exposure to ionizing irradiation (IR) or radiomimetic compounds. Loss of function of the ATM gene product results in the human genetic disorder ataxia-telangiectasia (A-T) characterized by neurodegeneration, immunodeficiency, genomic instability, and cancer predisposition. In response to DSBs, ATM is activated and phosphorylates Ser/Thr-Gln (S/T-Q) sequences on numerous proteins participating in DNA-damage responses. Among these proteins, phosphorylation of the tumor suppressor p53 at Ser15 is known as a target for ATM, which leads to the dissociation of MDM2, an E3 ubiquitin ligase, from p53 to prevent MDM2-dependent p53 degradation. Ser46 on p53 is phosphorylated in response to DSBs and contributes to the preferential transactivation of pro-apoptotic genes, such as p53AIP1, Noxa, and PUMA, to prevent tumor formation. Our group have shown that not only ATM preferentially phosphorylates S/T-Q sequences, but also Ser46, which is a noncanonical site with an S-P sequence for ATM. Ser46 on p53 is directly phosphorylated by ATM in a p53 conformation-dependent manner using the ATP analogue-accepting ATM mutant (ATM-AS) system. This protocol summarizes an approach to identify direct numerous targets for ATM kinase and is used to elucidate ATM signaling pathways in the DNA damage responses.

  5. Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.

    PubMed

    Knappskog, Stian; Chrisanthar, Ranjan; Løkkevik, Erik; Anker, Gun; Østenstad, Bjørn; Lundgren, Steinar; Risberg, Terje; Mjaaland, Ingvil; Leirvaag, Beryl; Miletic, Hrvoje; Lønning, Per E

    2012-03-15

    Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNA-damaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATM's potential role in resistance to chemotherapy. We sequenced ATM and assessed gene expression levels in pre-treatment biopsies from 71 locally advanced breast cancers treated in the neoadjuvant setting with doxorubicin monotherapy or mitomycin combined with 5-fluorouracil. Findings were confirmed in a separate patient cohort treated with epirubicin monotherapy. Each tumor was previously analyzed for CHEK2 and TP53 mutation status. While ATM mutations were not associated with chemo-resistance, low ATM expression levels predicted chemo-resistance among patients with tumors wild-type for TP53 and CHEK2 (P = 0.028). Analyzing the ATM-chk2-p53 cascade, low ATM levels (defined as the lower 5 to 50% percentiles) or mutations inactivating TP53 or CHEK2 robustly predicted anthracycline resistance (P-values varying between 0.001 and 0.027 depending on the percentile used to define "low" ATM levels). These results were confirmed in an independent cohort of 109 patients treated with epirubicin monotherapy. In contrast, ATM-levels were not suppressed in resistant tumors harboring TP53 or CHEK2 mutations (P > 0.5). Our data indicate loss of function of the ATM-Chk2-p53 cascade to be strongly associated with resistance to anthracycline/mitomycin-containing chemotherapy in breast cancer.

  6. Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer

    PubMed Central

    2012-01-01

    Introduction Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNA-damaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATM's potential role in resistance to chemotherapy. Methods We sequenced ATM and assessed gene expression levels in pre-treatment biopsies from 71 locally advanced breast cancers treated in the neoadjuvant setting with doxorubicin monotherapy or mitomycin combined with 5-fluorouracil. Findings were confirmed in a separate patient cohort treated with epirubicin monotherapy. Each tumor was previously analyzed for CHEK2 and TP53 mutation status. Results While ATM mutations were not associated with chemo-resistance, low ATM expression levels predicted chemo-resistance among patients with tumors wild-type for TP53 and CHEK2 (P = 0.028). Analyzing the ATM-chk2-p53 cascade, low ATM levels (defined as the lower 5 to 50% percentiles) or mutations inactivating TP53 or CHEK2 robustly predicted anthracycline resistance (P-values varying between 0.001 and 0.027 depending on the percentile used to define "low" ATM levels). These results were confirmed in an independent cohort of 109 patients treated with epirubicin monotherapy. In contrast, ATM-levels were not suppressed in resistant tumors harboring TP53 or CHEK2 mutations (P > 0.5). Conclusions Our data indicate loss of function of the ATM-Chk2-p53 cascade to be strongly associated with resistance to anthracycline/mitomycin-containing chemotherapy in breast cancer. PMID:22420423

  7. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    PubMed Central

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  8. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review.

    PubMed

    Jerzak, K J; Mancuso, T; Eisen, A

    2018-04-01

    Despite the fact that heterozygosity for a pathogenic ATM variant is present in 1%-2% of the adult population, clinical guidelines to inform physicians and genetic counsellors about optimal management in that population are lacking. In this narrative review, we describe the challenges and controversies in the management of women who are heterozygous for a pathogenic ATM variant with respect to screening for breast and other malignancies, to choices for systemic therapy, and to decisions about radiation therapy. Given that the lifetime risk for breast cancer in women who are heterozygous for a pathogenic ATM variant is likely greater than 25%, those women should undergo annual mammographic screening starting at least by 40 years of age. For women in this group who have a strong family history of breast cancer, earlier screening with both magnetic resonance imaging and mammography should be considered. High-quality data to inform the management of established breast cancer in carriers of pathogenic ATM variants are lacking. Although deficiency in the ATM gene product might confer sensitivity to dna-damaging pharmaceuticals such as inhibitors of poly (adp-ribose) polymerase or platinum agents, prospective clinical trials have not been conducted in the relevant patient population. Furthermore, the evidence with respect to radiation therapy is mixed; some data suggest increased toxicity, and other data suggest improved clinical benefit from radiation in women who are carriers of a pathogenic ATM variant. As in the 2017 U.S. National Comprehensive Cancer Network guidelines, we recommend high-risk imaging for women in Ontario who are heterozygous for a pathogenic ATM variant. Currently, ATM carrier status should not influence decisions about systemic or radiation therapy in the setting of an established breast cancer diagnosis.

  9. ATM, radiation, and the risk of second primary breast cancer.

    PubMed

    Bernstein, Jonine L; Concannon, Patrick

    2017-10-01

    It was first suggested more than 40 years ago that heterozygous carriers for the human autosomal recessive disorder Ataxia-Telangiectasia (A-T) might also be at increased risk for cancer. Subsequent studies have identified the responsible gene, Ataxia-Telangiectasia Mutated (ATM), characterized genetic variation at this locus in A-T and a variety of different cancers, and described the functions of the ATM protein with regard to cellular DNA damage responses. However, an overall model of how ATM contributes to cancer risk, and in particular, the role of DNA damage in this process, remains lacking. This review considers these questions in the context of contralateral breast cancer (CBC). Heterozygous carriers of loss of function mutations in ATM that are A-T causing, are at increased risk of breast cancer. However, examination of a range of genetic variants, both rare and common, across multiple cancers, suggests that ATM may have additional effects on cancer risk that are allele-dependent. In the case of CBC, selected common alleles at ATM are associated with a reduced incidence of CBC, while other rare and predicted deleterious variants may act jointly with radiation exposure to increase risk. Further studies that characterize germline and somatic ATM mutations in breast cancer and relate the detected genetic changes to functional outcomes, particularly with regard to radiation responses, are needed to gain a complete picture of the complex relationship between ATM, radiation and breast cancer.

  10. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant.

    PubMed

    Rimkus, Stacey A; Wassarman, David A

    2018-01-01

    Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide

  11. Loss of ATM kinase activity leads to embryonic lethality in mice.

    PubMed

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  12. ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis*

    PubMed Central

    Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.

    2012-01-01

    Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778

  13. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis.

    PubMed

    Choy, Kay Rui; Watters, Dianne J

    2018-01-01

    Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Regulation of oxidative stress responses by ataxia-telangiectasia mutated is required for T cell proliferation.

    PubMed

    Bagley, Jessamyn; Singh, Gyanesh; Iacomini, John

    2007-04-15

    Mutations in the gene encoding ataxia-telangiectasia (A-T) mutated (Atm) cause the disease A-T, characterized by immunodeficiency, the molecular basis of which is not known. Following stimulation through the TCR, Atm-deficient T cells and normal T cells in which Atm is inhibited undergo apoptosis rather than proliferation. Apoptosis is prevented by scavenging reactive oxygen species (ROS) during activation. Atm therefore plays a critical role in T cell proliferation by regulating responses to ROS generated following T cell activation. The inability of Atm-deficient T cells to control responses to ROS is therefore the molecular basis of immunodeficiency associated with A-T.

  15. Double heterozygotes among breast cancer patients analyzed for BRCA1, CHEK2, ATM, NBN/NBS1, and BLM germ-line mutations.

    PubMed

    Sokolenko, Anna P; Bogdanova, Natalia; Kluzniak, Wojciech; Preobrazhenskaya, Elena V; Kuligina, Ekatherina S; Iyevleva, Aglaya G; Aleksakhina, Svetlana N; Mitiushkina, Natalia V; Gorodnova, Tatiana V; Bessonov, Alexandr A; Togo, Alexandr V; Lubiński, Jan; Cybulski, Cezary; Jakubowska, Anna; Dörk, Thilo; Imyanitov, Evgeny N

    2014-06-01

    17 double heterozygous (DH) breast cancer (BC) patients were identified upon the analysis of 5,391 affected women for recurrent Slavic mutations in BRCA1, CHEK2, NBN/NBS1, ATM, and BLM genes. Double heterozygosity was found for BRCA1 and BLM (4 patients), BRCA1 and CHEK2 (4 patients), CHEK2 and NBS1 (3 patients), BRCA1 and ATM (2 patients), CHEK2 and BLM (2 patients), CHEK2 and ATM (1 patient), and NBS1 and BLM (1 patient). DH BC patients were on average not younger than single mutation carriers and did not have an excess of bilateral BC; an additional non-breast tumor was documented in two BRCA1/BLM DH patients (ovarian cancer and lymphoplasmacytic lymphoma). Loss-of-heterozygosity (LOH) analysis of involved genes was performed in 5 tumors, and revealed a single instance of somatic loss of the wild-type allele (LOH at CHEK2 locus in BRCA1/CHEK2 double heterozygote). Distribution of mutations in patients and controls favors the hypothesis on multiplicative interaction between at least some of the analyzed genes. Other studies on double heterozygosity for BC-predisposing germ-line mutations are reviewed.

  16. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    PubMed Central

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  17. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death

    PubMed Central

    Na, Rong; Zheng, S. Lilly; Han, Misop; Yu, Hongjie; Jiang, Deke; Shah, Sameep; Ewing, Charles M.; Zhang, Liti; Novakovic, Kristian; Petkewicz, Jacqueline; Gulukota, Kamalakar; Helseth, Donald L.; Quinn, Margo; Humphries, Elizabeth; Wiley, Kathleen E.; Isaacs, Sarah D.; Wu, Yishuo; Liu, Xu; Zhang, Ning; Wang, Chi-Hsiung; Khandekar, Janardan; Hulick, Peter J.; Shevrin, Daniel H.; Cooney, Kathleen A.; Shen, Zhoujun; Partin, Alan W.; Carter, H. Ballentine; Carducci, Michael A.; Eisenberger, Mario A.; Denmeade, Sam R.; McGuire, Michael; Walsh, Patrick C.; Helfand, Brian T.; Brendler, Charles B.; Ding, Qiang; Xu, Jianfeng; Isaacs, William B.

    2017-01-01

    Background Germline mutations in BRCA1/2 and ATM have been associated with prostate cancer (PCa) risk. Objective To directly assess whether germline mutations in these three genes distinguish lethal from indolent PCa and whether they confer any effect on age at death. Design, setting, and participants A retrospective case-case study of 313 patients who died of PCa and 486 patients with low-risk localized PCa of European, African, and Chinese descent. Germline DNA of each of the 799 patients was sequenced for these three genes. Outcome measurements and statistical analysis Mutation carrier rates and their effect on lethal PCa were analyzed using the Fisher’s exact test and Cox regression analysis, respectively. Results and limitations The combined BRCA1/2 and ATM mutation carrier rate was significantly higher in lethal PCa patients (6.07%) than localized PCa patients (1.44%), p = 0.0007. The rate also differed significantly among lethal PCa patients as a function of age at death (10.00%, 9.08%, 8.33%, 4.94%, and 2.97% in patients who died ≤60 yr, 61–65 yr, 66–70 yr, 71–75 yr, and over 75 yr, respectively, p = 0.046) and time to death after diagnosis (12.26%, 4.76%, and 0.98% in patients who died ≤5 yr, 6–10 yr, and > 10 yr after a PCa diagnosis, respectively, p = 0.0006). Survival analysis in the entire cohort revealed mutation carriers remained an independent predictor of lethal PCa after adjusting for race and age, prostate-specific antigen, and Gleason score at the time of diagnosis (hazard ratio = 2.13, 95% confidence interval: 1.24–3.66, p = 0.004). A limitation of this study is that other DNA repair genes were not analyzed. Conclusions Mutation status of BRCA1/2 and ATM distinguishes risk for lethal and indolent PCa and is associated with earlier age at death and shorter survival time. Patient summary Prostate cancer patients with inherited mutations in BRCA1/2 and ATM are more likely to die of prostate cancer and do so at an earlier age. PMID

  18. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    PubMed

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  19. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila.

    PubMed

    Petersen, Andrew J; Rimkus, Stacey A; Wassarman, David A

    2012-03-13

    To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.

  20. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis.

    PubMed

    Armata, Heather L; Golebiowski, Diane; Jung, Dae Young; Ko, Hwi Jin; Kim, Jason K; Sluss, Hayla K

    2010-12-01

    Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.

  1. Activation of ATM by DNA Damaging Agents

    DTIC Science & Technology

    2004-09-01

    risk for breast cancer . Since many anti-tumor chemotherapeutics used in breast cancer treatment have the capacity to induce DNA DSBs, I have...of a subset of downstream effectors of ATM in two human breast cancer cell lines. Studies are now underway to identify proteins that interact with ATM...implications for the treatment of breast cancer patients harboring mutations in ATM. 14. SUBJECT TERMS 15. NUMBER OF PAGES signal transduction, DNA damage and

  2. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment

    PubMed Central

    Fang, Ling; Choudhary, Sanjeev; Zhao, Yingxin; Edeh, Chukwudi B; Yang, Chunying; Boldogh, Istvan; Brasier, Allan R.

    2014-01-01

    Ataxia-telangiectasia mutated (ATM), a member of the phosphatidylinositol 3 kinase-like kinase family, is a master regulator of the double strand DNA break-repair pathway after genotoxic stress. Here, we found ATM serves as an essential regulator of TNF-induced NF-kB pathway. We observed that TNF exposure of cells rapidly induced DNA double strand breaks and activates ATM. TNF-induced ROS promote nuclear IKKγ association with ubiquitin and its complex formation with ATM for nuclear export. Activated cytoplasmic ATM is involved in the selective recruitment of the E3-ubiquitin ligase β-TrCP to phospho-IκBα proteosomal degradation. Importantly, ATM binds and activates the catalytic subunit of protein kinase A (PKAc), ribosmal S6 kinase that controls RelA Ser 276 phosphorylation. In ATM knockdown cells, TNF-induced RelA Ser 276 phosphorylation is significantly decreased. We further observed decreased binding and recruitment of the transcriptional elongation complex containing cyclin dependent kinase-9 (CDK9; a kinase necessary for triggering transcriptional elongation) to promoters of NF-κB-dependent immediate-early cytokine genes, in ATM knockdown cells. We conclude that ATM is a nuclear damage-response signal modulator of TNF-induced NF-κB activation that plays a key scaffolding role in IκBα degradation and RelA Ser 276 phosphorylation. Our study provides a mechanistic explanation of decreased innate immune response associated with A-T mutation. PMID:24957606

  3. Germline Mutations of the Ataxia-Telangiectasia Gene, ATM, as a Risk Factor for Radiation-Associated Breast Cancer

    DTIC Science & Technology

    1999-07-01

    Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R...Human Molecular Genetics 1996;5(4): 433-439. 33. Gilad S, Bar-Shira A, Harnik R, et. al. Ataxia-Telangiectasia: Founder Effect Among North African Jews...1998:62:86-97. 39. Gilad S, Khosravi R, Harnik R, Ziv Y, Shkedy D,Galanty Y, Frydman M, Levi J, et al. Identification of mutations using extended RT

  4. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    PubMed

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  5. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    PubMed Central

    Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.

    2015-01-01

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707

  6. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells

    PubMed Central

    Coufal, Nicole G.; Garcia-Perez, Josè Luis; Peng, Grace E.; Marchetto, Maria C. N.; Muotri, Alysson R.; Mu, Yangling; Carson, Christian T.; Macia, Angela; Moran, John V.; Gage, Fred H.

    2011-01-01

    Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition. PMID:22159035

  7. A TAD closer to ATM.

    PubMed

    Aymard, Francois; Legube, Gaëlle

    2016-05-01

    Ataxia telangiectasia mutated (ATM) has been known for decades as the main kinase mediating the DNA double-strand break response. Our recent findings suggest that its major role at the sites of breaks likely resides in its ability to modify both the local chromatin landscape and the global chromosome organization in order to promote repair accuracy.

  8. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    PubMed

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  9. Predominance of null mutations in ataxia-telangiectasia.

    PubMed

    Gilad, S; Khosravi, R; Shkedy, D; Uziel, T; Ziv, Y; Savitsky, K; Rotman, G; Smith, S; Chessa, L; Jorgensen, T J; Harnik, R; Frydman, M; Sanal, O; Portnoi, S; Goldwicz, Z; Jaspers, N G; Gatti, R A; Lenoir, G; Lavin, M F; Tatsumi, K; Wegner, R D; Shiloh, Y; Bar-Shira, A

    1996-04-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity and cancer predisposition. The responsible gene, ATM, was recently identified by positional cloning and found to encode a putative 350 kDa protein with a Pl 3-kinase-like domain, presumably involved in mediating cell cycle arrest in response to radiation-induced DNA damage. The nature and location of A-T mutations should provide insight into the function of the ATM protein and the molecular basis of this pleiotropic disease. Of 44 A-T mutations identified by us to date, 39 (89%) are expected to inactivate the ATM protein by truncating it, by abolishing correct initiation or termination of translation, or by deleting large segments. Additional mutations are four smaller in-frame deletions and insertions, and one substitution of a highly conserved amino acid at the Pl 3-kinase domain. The emerging profile of mutations causing A-T is thus dominated by those expected to completely inactivate the ATM protein. ATM mutations with milder effects may result in phenotypes related, but not identical, to A-T.

  10. Nonaminoglycoside compounds induce readthrough of nonsense mutations

    PubMed Central

    Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen

    2009-01-01

    Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270

  11. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    PubMed

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  12. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen*

    PubMed Central

    Kozlov, Sergei V.; Waardenberg, Ashley J.; Engholm-Keller, Kasper; Arthur, Jonathan W.; Graham, Mark E.; Lavin, Martin

    2016-01-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM

  13. ATM technology and beyond

    NASA Technical Reports Server (NTRS)

    Cheung, Nim K.

    1993-01-01

    Networks based on Asynchronous Transfer Mode (ATM) are expected to provide cost-effective and ubiquitous infrastructure to support broadband and multimedia services. In this paper, we give an overview of the ATM standards and its associated physical layer transport technologies. We use the experimental HIPPI-ATM-SONET (HAS) interface in the Nectar Gigabit Testbed to illustrate how one can use the SONET/ATM public network to provide transport for bursty gigabit applications.

  14. ATM CMG/EPEA

    NASA Technical Reports Server (NTRS)

    Abramowitz, R.; Kovek, J.; Teimer, W.; Haddad, S. P.

    1975-01-01

    The Apollo Telescope mount double gimballed control moment gyro ATM CMG is described. Photographs of the CMG and its subassemblies are presented along with a functional block diagram of the CMG subsystem. Analog processing electronics for ATM vehicle pointing control and ATM experiment package pointing control are also described.

  15. ATM encryption testing

    NASA Astrophysics Data System (ADS)

    Capell, Joyce; Deeth, David

    1996-01-01

    This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.

  16. p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    PubMed Central

    Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.

    2011-01-01

    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053

  17. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    PubMed

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  18. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs

    PubMed Central

    De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude

    2017-01-01

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. PMID:28283534

  19. Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity☆

    PubMed Central

    Marzano, Valeria; Santini, Simonetta; Rossi, Claudia; Zucchelli, Mirco; D'Alessandro, Annamaria; Marchetti, Carlo; Mingardi, Michele; Stagni, Venturina; Barilà, Daniela; Urbani, Andrea

    2012-01-01

    Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics. PMID:22641158

  20. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  1. Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene.

    PubMed

    Pecker, I; Avraham, K B; Gilbert, D J; Savitsky, K; Rotman, G; Harnik, R; Fukao, T; Schröck, E; Hirotsune, S; Tagle, D A; Collins, F S; Wynshaw-Boris, A; Ried, T; Copeland, N G; Jenkins, N A; Shiloh, Y; Ziv, Y

    1996-07-01

    Atm, the mouse homolog of the human ATM gene defective in ataxia-telangiectasia (A-T), has been identified. The entire coding sequence of the Atm transcript was cloned and found to contain an open reading frame encoding a protein of 3066 amino acids with 84% overall identity and 91% similarity to the human ATM protein. Variable levels of expression of Atm were observed in different tissues. Fluorescence in situ hybridization and linkage analysis located the Atm gene on mouse chromosome 9, band 9C, in a region homologous to the ATM region on human chromosome 11q22-q23.

  2. ATM supports gammaherpesvirus replication by attenuating type I interferon pathway.

    PubMed

    Darrah, Eric J; Stoltz, Kyle P; Ledwith, Mitchell; Tarakanova, Vera L

    2017-10-01

    Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    PubMed

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  4. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    PubMed

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  5. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  6. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    PubMed

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  7. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    PubMed

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  8. Immunodeficiency in ataxia telangiectasia is correlated strongly with the presence of two null mutations in the ataxia telangiectasia mutated gene

    PubMed Central

    Staples, E R; McDermott, E M; Reiman, A; Byrd, P J; Ritchie, S; Taylor, A M R; Davies, E G

    2008-01-01

    Immunodeficiency affects over half of all patients with ataxia telangiectasia (A-T) and when present can contribute significantly to morbidity and mortality. A retrospective review of clinical history, immunological findings, ataxia telangiectasia mutated (ATM) enzyme activity and ATM mutation type was conducted on 80 consecutive patients attending the National Clinic for Ataxia Telangiectasia, Nottingham, UK between 1994 and 2006. The aim was to characterize the immunodeficiency in A-T and determine its relationship to the ATM mutations present. Sixty-one patients had mutations resulting in complete loss of ATM kinase activity (group A) and 19 patients had leaky splice or missense mutations resulting in residual kinase activity (group B). There was a significantly higher proportion of patients with recurrent sinopulmonary infections in group A compared with group B (31 of 61 versus four of 19 P = 0·03) and a greater need for prophylactic antibiotics (30 of 61 versus one of 19 P = 0·001). Comparing group A with group B patients, 25 of 46 had undetectable/low immunoglobulin A (IgA) levels compared with none of 19; T cell lymphopenia was found in 28 of 56 compared with one of 18 and B cell lymphopenia in 35 of 55 compared with four of 18 patients (P = 0·00004, 0·001 and 0·003 respectively). Low IgG2 subclass levels and low levels of antibodies to pneumococcal polysaccharide were more common in group A than group B (16 of 27 versus one of 11 P = 0·01; 34/43 versus six of 17 P = 0·002) patients. Ig replacement therapy was required in 10 (12·5%) of the whole cohort, all in group A. In conclusion, A-T patients with no ATM kinase activity had a markedly more severe immunological phenotype than those expressing low levels of ATM activity. PMID:18505428

  9. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    PubMed

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers

    PubMed Central

    Shankar, Suma P.; Hughbanks-Wheaton, Dianna K.; Birch, David G.; Sullivan, Lori S.; Conneely, Karen N.; Bowne, Sara J.; Stone, Edwin M.; Daiger, Stephen P.

    2016-01-01

    Purpose We determined the phenotypic variation, disease progression, and potential modifiers of autosomal dominant retinal dystrophies caused by a splice site founder mutation, c.828+3A>T, in the PRPH2 gene. Methods A total of 62 individuals (19 families) harboring the PRPH2 c.828+3A>T mutation, had phenotype analysis by fundus appearance, electrophysiology, and visual fields. The PRPH2 haplotypes in trans were sequenced for potential modifying variants and generalized estimating equations (GEE) used for statistical analysis. Results Several distinct phenotypes caused by the PRPH2 c.828+3A>T mutation were observed and fell into two clinical categories: Group I (N = 44) with mild pattern dystrophies (PD) and Group II (N = 18) with more severe cone-rod dystrophy (CRD), retinitis pigmentosa (RP), and central areolar chorioretinal dystrophy (CACD). The PRPH2 Gln304-Lys310-Asp338 protein haplotype in trans was found in Group I only (29.6% vs. 0%), whereas the Glu304-Lys310-Gly338 haplotype was predominant in Group II (94.4% vs. 70.4%). Generalized estimating equations analysis for PD versus the CRD/CACD/RP phenotypes in individuals over 43 years alone with the PRPH2 haplotypes in trans and age as predictors, adjusted for correlation within families, confirmed a significant effect of haplotype on severity (P = 0.03) with an estimated odds ratio of 7.16 (95% confidence interval [CI] = [2.8, 18.4]). Conclusions The PRPH2 c.828+3A>T mutation results in multiple distinct phenotypes likely modified by protein haplotypes in trans; the odds of having the CACD/RP-like phenotype (versus the PD phenotype) are 7.16 times greater with a Glu304-Lys310-Gly338 haplotype in trans. Further functional studies of the modifying haplotypes in trans and PRPH2 splice variants may offer therapeutic targets. PMID:26842753

  11. ATM Regulates Adipocyte Differentiation and Contributes to Glucose Homeostasis.

    PubMed

    Takagi, Masatoshi; Uno, Hatsume; Nishi, Rina; Sugimoto, Masataka; Hasegawa, Setsuko; Piao, Jinhua; Ihara, Norimasa; Kanai, Sayaka; Kakei, Saori; Tamura, Yoshifumi; Suganami, Takayoshi; Kamei, Yasutomi; Shimizu, Toshiaki; Yasuda, Akio; Ogawa, Yoshihiro; Mizutani, Shuki

    2015-02-11

    Ataxia-telangiectasia (A-T) patients occasionally develop diabetes mellitus. However, only limited attempts have been made to gain insight into the molecular mechanism of diabetes mellitus development in A-T patients. We found that Atm -/- mice were insulin resistant and possessed less subcutaneous adipose tissue as well as a lower level of serum adiponectin than Atm +/+ mice. Furthermore, in vitro studies revealed impaired adipocyte differentiation in Atm -/- cells caused by the lack of induction of C/EBPα and PPARγ, crucial transcription factors involved in adipocyte differentiation. Interestingly, ATM was activated by stimuli that induced differentiation, and the binding of ATM to C/EBPβ and p300 was involved in the transcriptional regulation of C/EBPα and adipocyte differentiation. Thus, our study sheds light on the poorly understood role of ATM in the pathogenesis of glucose intolerance in A-T patients and provides insight into the role of ATM in glucose metabolism. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection

    PubMed Central

    Kulinski, Joseph M.; Darrah, Eric J.; Broniowska, Katarzyna A.; Mboko, Wadzanai P.; Mounce, Bryan C.; Malherbe, Laurent P.; Corbett, John A; Gauld, Stephen B.; Tarakanova, Vera L.

    2015-01-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo. PMID:26001649

  13. ATMS Step By Step.

    ERIC Educational Resources Information Center

    National Library of Australia, Canberra.

    This manual is designed to provide an introduction and basic guide to the use of IBM's Advanced Text Management System (ATMS), the text processing system to be used for the creation of Australian data bases within AUSINET. Instructions are provided for using the system to enter, store, retrieve, and modify data, which may then be displayed at the…

  14. Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice.

    PubMed

    Chen, Yulin; Yang, Runan; Guo, Peng; Ju, Zhenyu

    2014-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM(-/-)) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM(-/-) HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM(-/-) mice. Instead, ATM and Gadd45a double knockout (ATM(-/-) Gadd45a(-/-)) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM(-/-) HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM(-/-) Gadd45a(-/-) HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM(-/-) Gadd45a(-/-) mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM(-/-) mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM(-/-) HSCs.

  15. ATM regulates Cdt1 stability during the unperturbed S phase to prevent re-replication

    PubMed Central

    Iwahori, Satoko; Kohmon, Daisuke; Kobayashi, Junya; Tani, Yuhei; Yugawa, Takashi; Komatsu, Kenshi; Kiyono, Tohru; Sugimoto, Nozomi; Fujita, Masatoshi

    2014-01-01

    Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability. PMID:24280901

  16. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    PubMed

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-04-01

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM

    PubMed Central

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T.

    2017-01-01

    SUMMARY Ataxia-Telangiectasia Mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice. PMID:27939942

  18. ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer.

    PubMed

    Drosos, Yiannis; Escobar, David; Chiang, Ming-Yi; Roys, Kathryn; Valentine, Virginia; Valentine, Marc B; Rehg, Jerold E; Sahai, Vaibhav; Begley, Lesa A; Ye, Jianming; Paul, Leena; McKinnon, Peter J; Sosa-Pineda, Beatriz

    2017-09-11

    Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (Kras G12D ). We show that partial or total ATM deficiency cooperates with Kras G12D to promote highly metastatic pancreatic cancer. We also reveal that ATM is activated in pancreatic precancerous lesions in the context of DNA damage and cell proliferation, and demonstrate that ATM deficiency leads to persistent DNA damage in both precancerous lesions and primary tumors. Using low passage cultures from primary tumors and liver metastases we show that ATM loss accelerates Kras-induced carcinogenesis without conferring a specific phenotype to pancreatic tumors or changing the status of the tumor suppressors p53, p16 Ink4a and p19 Arf . However, ATM deficiency markedly increases the proportion of chromosomal alterations in pancreatic primary tumors and liver metastases. More importantly, ATM deficiency also renders murine pancreatic tumors highly sensitive to radiation. These and other findings in our study conclusively establish that ATM activity poses a major barrier to oncogenic transformation in the pancreas via maintaining genomic stability.

  19. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    PubMed

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Structure of the intact ATM/Tel1 kinase

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  1. An HTRF® Assay for the Protein Kinase ATM.

    PubMed

    Adams, Phillip; Clark, Jonathan; Hawdon, Simon; Hill, Jennifer; Plater, Andrew

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase that plays a key role in the regulation of DNA damage pathways and checkpoint arrest. In recent years, there has been growing interest in ATM as a therapeutic target due to its association with cancer cell survival following genotoxic stress such as radio- and chemotherapy. Large-scale targeted drug screening campaigns have been hampered, however, by technical issues associated with the production of sufficient quantities of purified ATM and the availability of a suitable high-throughput assay. Using a purified, functionally active recombinant ATM and one of its physiological substrates, p53, we have developed an in vitro FRET-based activity assay that is suitable for high-throughput drug screening.

  2. Antisense Oligonucleotides Modulating Activation of a Nonsense-Mediated RNA Decay Switch Exon in the ATM Gene.

    PubMed

    Kralovicova, Jana; Moreno, Pedro M D; Cross, Nicholas C P; Pêgo, Ana Paula; Vorechovsky, Igor

    2016-12-01

    ATM (ataxia-telangiectasia, mutated) is an important cancer susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. ATM mutations in the germ line result in ataxia-telangiectasia (A-T), a rare genetic syndrome associated with hypersensitivity to double-strand DNA breaks and predisposition to lymphoid malignancies. ATM expression is limited by a tightly regulated nonsense-mediated RNA decay (NMD) switch exon (termed NSE) located in intron 28. In this study, we identify antisense oligonucleotides that modulate NSE inclusion in mature transcripts by systematically targeting the entire 3.1-kb-long intron. Their identification was assisted by a segmental deletion analysis of transposed elements, revealing NSE repression upon removal of a distant antisense Alu and NSE activation upon elimination of a long terminal repeat transposon MER51A. Efficient NSE repression was achieved by delivering optimized splice-switching oligonucleotides to embryonic and lymphoblastoid cells using chitosan-based nanoparticles. Together, these results provide a basis for possible sequence-specific radiosensitization of cancer cells, highlight the power of intronic antisense oligonucleotides to modify gene expression, and demonstrate transposon-mediated regulation of NSEs.

  3. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    PubMed

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  4. Satellite Communications for ATM

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  5. ATM CMG bearing failure analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The cause or causes for the failure of ATM CMG S/N 5 (Skylab 1) and the anomalies associated with ATM CMG S/N 6 (Skylab 2) were investigated. Skylab telemetry data were reviewed and presented in the form of parameter distributions. The theory that the problems were caused by marginal bearing lubrication was studied along with the effects of orbital conditions on lubricants. Bearing tests were performed to investigate the effect of lubricant or lack of lubricant in the ATM CMG bearings and the dispersion and migration of the lubricant. The vacuum and weightless conditions of space were simulated in the bearing tests. Analysis of the results of the tests conducted points to inadequate lubrication as the predominant factor causing the failure of ATM CMG S/N 5 (Skylab 1) and the anomalies associated with ATM CMG S/N 6 (Skylab 2).

  6. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  7. Loss of tumour-specific ATM protein expression is an independent prognostic factor in early resected NSCLC

    PubMed Central

    Petersen, Lars F.; Klimowicz, Alexander C.; Otsuka, Shannon; Elegbede, Anifat A.; Petrillo, Stephanie K.; Williamson, Tyler; Williamson, Chris T.; Konno, Mie; Lees-Miller, Susan P.; Hao, Desiree; Morris, Don; Magliocco, Anthony M.; Bebb, D. Gwyn

    2017-01-01

    Ataxia-telangiectasia mutated (ATM) is critical in maintaining genomic integrity. In response to DNA double-strand breaks, ATM phosphorylates downstream proteins involved in cell-cycle checkpoint arrest, DNA repair, and apoptosis. Here we investigate the frequency, and influence of ATM deficiency on outcome, in early-resected non-small cell lung cancer (NSCLC). Tissue microarrays, containing 165 formalin-fixed, paraffin-embedded resected NSCLC tumours from patients diagnosed at the Tom Baker Cancer Centre, Calgary, Canada, between 2003 and 2006, were analyzed for ATM expression using quantitative fluorescence immunohistochemistry. Both malignant cell-specific ATM expression and the ratio of ATM expression within malignant tumour cells compared to that in the surrounding tumour stroma, defined as the ATM expression index (ATM-EI), were measured and correlated with clinical outcome. ATM loss was identified in 21.8% of patients, and was unaffected by clinical pathological variables. Patients with low ATM-EI tumours had worse survival outcomes compared to those with high ATM-EI (p < 0.01). This effect was pronounced in stage II/III patients, even after adjusting for other clinical co-variates (p < 0.001). Additionally, we provide evidence that ATM-deficient patients may derive greater benefit from guideline-recommended adjuvant chemotherapy following surgical resection. Taken together, these results indicate that ATM loss seems to be an early event in NSCLC carcinogenesis and is an independent prognostic factor associated with worse survival in stage II/III patients. PMID:28418844

  8. Loss of tumour-specific ATM protein expression is an independent prognostic factor in early resected NSCLC.

    PubMed

    Petersen, Lars F; Klimowicz, Alexander C; Otsuka, Shannon; Elegbede, Anifat A; Petrillo, Stephanie K; Williamson, Tyler; Williamson, Chris T; Konno, Mie; Lees-Miller, Susan P; Hao, Desiree; Morris, Don; Magliocco, Anthony M; Bebb, D Gwyn

    2017-06-13

    Ataxia-telangiectasia mutated (ATM) is critical in maintaining genomic integrity. In response to DNA double-strand breaks, ATM phosphorylates downstream proteins involved in cell-cycle checkpoint arrest, DNA repair, and apoptosis. Here we investigate the frequency, and influence of ATM deficiency on outcome, in early-resected non-small cell lung cancer (NSCLC). Tissue microarrays, containing 165 formalin-fixed, paraffin-embedded resected NSCLC tumours from patients diagnosed at the Tom Baker Cancer Centre, Calgary, Canada, between 2003 and 2006, were analyzed for ATM expression using quantitative fluorescence immunohistochemistry. Both malignant cell-specific ATM expression and the ratio of ATM expression within malignant tumour cells compared to that in the surrounding tumour stroma, defined as the ATM expression index (ATM-EI), were measured and correlated with clinical outcome. ATM loss was identified in 21.8% of patients, and was unaffected by clinical pathological variables. Patients with low ATM-EI tumours had worse survival outcomes compared to those with high ATM-EI (p < 0.01). This effect was pronounced in stage II/III patients, even after adjusting for other clinical co-variates (p < 0.001). Additionally, we provide evidence that ATM-deficient patients may derive greater benefit from guideline-recommended adjuvant chemotherapy following surgical resection. Taken together, these results indicate that ATM loss seems to be an early event in NSCLC carcinogenesis and is an independent prognostic factor associated with worse survival in stage II/III patients.

  9. Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm-/- mouse embryonic fibroblasts.

    PubMed

    Sun, Chuan; Wei, Xiaoxia; Fei, Yue; Su, Liling; Zhao, Xinyuan; Chen, Guangdi; Xu, Zhengping

    2016-11-18

    Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm +/+ ) or deficient (Atm -/- ) ATM. In Atm +/+ MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm -/- MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF.

  10. Tug of War between Survival and Death: Exploring ATM Function in Cancer

    PubMed Central

    Stagni, Venturina; Oropallo, Veronica; Fianco, Giulia; Antonelli, Martina; Cinà, Irene; Barilà, Daniela

    2014-01-01

    Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer. PMID:24681585

  11. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    PubMed

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P < .0001), and the primary sites of metastatic carcinomas (P < .0001) compared with normal mammary glands. No significant differences in ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  12. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion

    PubMed Central

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-01-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression. DOI: http://dx.doi.org/10.7554/eLife.07270.001 PMID:26030852

  13. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    SciTech Connect

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509; Tanimoto, Keiji

    2014-01-24

    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue ofmore » where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in

  14. Immunoglobulin class switch recombination is impaired in Atm-deficient mice.

    PubMed

    Lumsden, Joanne M; McCarty, Thomas; Petiniot, Lisa K; Shen, Rhuna; Barlow, Carrolee; Wynn, Thomas A; Morse, Herbert C; Gearhart, Patricia J; Wynshaw-Boris, Anthony; Max, Edward E; Hodes, Richard J

    2004-11-01

    Immunoglobulin class switch recombination (Ig CSR) involves DNA double strand breaks (DSBs) at recombining switch regions and repair of these breaks by nonhomologous end-joining. Because the protein kinase ataxia telengiectasia (AT) mutated (ATM) plays a critical role in DSB repair and AT patients show abnormalities of Ig isotype expression, we assessed the role of ATM in CSR by examining ATM-deficient mice. In response to T cell-dependent antigen (Ag), Atm-/- mice secreted substantially less Ag-specific IgA, IgG1, IgG2b, and IgG3, and less total IgE than Atm+/+ controls. To determine whether Atm-/- B cells have an intrinsic defect in their ability to undergo CSR, we analyzed in vitro responses of purified B cells. Atm-/- cells secreted substantially less IgA, IgG1, IgG2a, IgG3, and IgE than wild-type (WT) controls in response to stimulation with lipopolysaccharide, CD40 ligand, or anti-IgD plus appropriate cytokines. Molecular analysis of in vitro responses indicated that WT and Atm-/- B cells produced equivalent amounts of germline IgG1 and IgE transcripts, whereas Atm-/- B cells produced markedly reduced productive IgG1 and IgE transcripts. The reduction in isotype switching by Atm-/- B cells occurs at the level of genomic DNA recombination as measured by digestion-circularization PCR. Analysis of sequences at CSR sites indicated that there is greater microhomology at the mu-gamma1 switch junctions in ATM B cells than in wild-type B cells, suggesting that ATM function affects the need or preference for sequence homology in the CSR process. These findings suggest a role of ATM in DNA DSB recognition and/or repair during CSR.

  15. Using ATM over SATCOM links

    NASA Technical Reports Server (NTRS)

    Comparetto, Gary M.

    1995-01-01

    The Asynchronous Transfer Mode (ATM) protocol is studied from the standpoint of determining what limitations, if any, exist in using it over satellite links. It is concluded that, while there is nothing intrinsic about ATM that would generally preclude its use over satellite links, there are, however, several intrinsic characteristics of satellite links, as well as some satellite system configuration-specific issues, that must be taken into account.

  16. Security Services Discovery by ATM Endsystems

    SciTech Connect

    Sholander, Peter; Tarman, Thomas

    This contribution proposes strawman techniques for Security Service Discovery by ATM endsystems in ATM networks. Candidate techniques include ILMI extensions, ANS extensions and new ATM anycast addresses. Another option is a new protocol based on an IETF service discovery protocol, such as Service Location Protocol (SLP). Finally, this contribution provides strawman requirements for Security-Based Routing in ATM networks.

  17. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    SciTech Connect

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction ofmore » numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.« less

  18. Evidence for the Deregulation of Protein Turnover Pathways in Atm-Deficient Mouse Cerebellum: An Organotypic Study.

    PubMed

    Kim, Catherine D; Reed, Ryan E; Juncker, Meredith A; Fang, Zhide; Desai, Shyamal D

    2017-07-01

    Interferon-stimulated gene 15 (ISG15), an antagonist of the ubiquitin pathway, is elevated in cells and brain tissues obtained from ataxia telangiectasia (A-T) patients. Previous studies reveal that an elevated ISG15 pathway inhibits ubiquitin-dependent protein degradation, leading to activation of basal autophagy as a compensatory mechanism for protein turnover in A-T cells. Also, genotoxic stress (ultraviolet [UV] radiation) deregulates autophagy and induces aberrant degradation of ubiquitylated proteins in A-T cells. In the current study, we show that, as in A-T cells, ISG15 protein expression is elevated in cerebellums and various other tissues obtained from Atm-compromised mice in an Atm-allele-dependent manner (Atm+/+ < Atm+/- < Atm-/-). Notably, in cerebellums, the brain part primarily affected in A-T, levels of ISG15 were significantly greater (3-fold higher) than cerebrums obtained from the same set of mice. Moreover, as in A-T cell culture, UV induces aberrant degradation of ubiquitylated proteins and autophagy in Atm-deficient, but not in Atm-proficient, cerebellar brain slices grown in culture. Thus, the ex vivo organotypic A-T mouse brain culture model mimics that of an A-T human cell culture model and could be useful for studying the role of ISG15-dependent proteinopathy in cerebellar neurodegeneration, a hallmark of A-T in humans. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  19. Absence of ERK5/MAPK7 delays tumorigenesis in Atm-/- mice.

    PubMed

    Granados-Jaén, Alba; Angulo-Ibáñez, Maria; Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X; Reina, Manuel; Espel, Enric

    2016-11-15

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm-/- mice. Compared with Atm-/- thymocytes, Mapk7-/-Atm-/- thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm-/- mice by partially restoring the DNA damage response in thymocytes.

  20. Traffic Management for Satellite-ATM Networks

    NASA Technical Reports Server (NTRS)

    Goyal, Rohit; Jain, Raj; Fahmy, Sonia; Vandalore, Bobby; Goyal, Mukul

    1998-01-01

    Various issues associated with "Traffic Management for Satellite-ATM Networks" are presented in viewgraph form. Specific topics include: 1) Traffic management issues for TCP/IP based data services over satellite-ATM networks; 2) Design issues for TCP/IP over ATM; 3) Optimization of the performance of TCP/IP over ATM for long delay networks; and 4) Evaluation of ATM service categories for TCP/IP traffic.

  1. Structures of closed and open conformations of dimeric human ATM

    PubMed Central

    Baretić, Domagoj; Pollard, Hannah K.; Fisher, David I.; Johnson, Christopher M.; Santhanam, Balaji; Truman, Caroline M.; Kouba, Tomas; Fersht, Alan R.; Phillips, Christopher; Williams, Roger L.

    2017-01-01

    ATM (ataxia-telangiectasia mutated) is a phosphatidylinositol 3-kinase–related protein kinase (PIKK) best known for its role in DNA damage response. ATM also functions in oxidative stress response, insulin signaling, and neurogenesis. Our electron cryomicroscopy (cryo-EM) suggests that human ATM is in a dynamic equilibrium between closed and open dimers. In the closed state, the PIKK regulatory domain blocks the peptide substrate–binding site, suggesting that this conformation may represent an inactive or basally active enzyme. The active site is held in this closed conformation by interaction with a long helical hairpin in the TRD3 (tetratricopeptide repeats domain 3) domain of the symmetry-related molecule. The open dimer has two protomers with only a limited contact interface, and it lacks the intermolecular interactions that block the peptide-binding site in the closed dimer. This suggests that the open conformation may be more active. The ATM structure shows the detailed topology of the regulator-interacting N-terminal helical solenoid. The ATM conformational dynamics shown by the structures represent an important step in understanding the enzyme regulation. PMID:28508083

  2. ATM directs DNA damage responses and proteostasis via genetically separable pathways

    PubMed Central

    Lee, Ji-Hoon; Mand, Michael R.; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W.; Richards, Alicia L.; Coon, Joshua J.; Paull, Tanya T.

    2018-01-01

    The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes Ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. Here, we genetically separated DNA damage activation of ATM from oxidative activation using separation-of-function mutations. We found that deficiency in ATM activation by Mre11-Rad50-Nbs1 and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of ATM lacking oxidative activation generates widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicates ATM in the control of protein homeostasis. PMID:29317520

  3. ATM directs DNA damage responses and proteostasis via genetically separable pathways.

    PubMed

    Lee, Ji-Hoon; Mand, Michael R; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W; Richards, Alicia L; Coon, Joshua J; Paull, Tanya T

    2018-01-09

    The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Gigabit ATM: another technical mistake?

    NASA Astrophysics Data System (ADS)

    Christ, Paul

    1998-09-01

    Once upon a time, or more precisely during February 1988 at the CCITT Seoul plenary, and definitely arriving as a revolution, ATM hit the hard-core B-ISDN circuit-switching gang. Initiated by the Telecoms' camp, but, surprisingly, soon to be pushed by computer minded people, ATM's generic technological history is somewhat richer than single-sided stories. Here are two classical elements of that history: Firstly, together with X.25, ATM suffers from the connection versus datagram dichotomy, well known for more than twenty years. Secondly, and lesser known, ATM's use of cells in support of the 'I' of B-ISDN was questioned from the very beginning by the packet switching camp. Furthermore, in this context, there are two other essential elements to be considered: Firstly, the exponential growth of the Internet and later intranets, using Internet technology, sparked by the success of the Web and the WINTEL alliance, resulted in a corresponding demand for both aggregate and end-system network bandwidth. Secondly, servers, historically restricted to the exclusive club of HIPPI-equipped supercomputers, suddenly become ordinary high-end PCs with 64-bit wide PCI busses -- definitely aiming at the Gigabit. Here, if your aim is for Gigabit ATM with 5000-transactions per second classical supercomputers, a 65K ATM MTU -- as implemented by Cray -- might be okay. Following Clark and others, another part of the story is the adoption and redefinition, by the IETF, of the Telecoms' notion of 'Integrated Services' and QoS mechanisms. The quest for low-delay IP packet forwarding, perhaps possible over ATM cut-throughs, has resulted in the switching versus/or integrated-with-routing movement. However, a blow for ATM may be the recent results concerning fast routing table lookup algorithms. This, by making Gigabit routing possible using ordinary Pentium processors may eventually render the much prophesized ATM switching performance unnecessary. Recently, with the rise of Gigabit Ethernet

  5. Regulation of ATM-Dependent DNA Damage Responses in Breast Cancer by the RhoGEF Net1

    DTIC Science & Technology

    2015-05-01

    mediators of gastric cancer. Br. J. Cancer 94(8):1204-1212. 11. Shen SQ, et al. 2008 Expression and clinical significance of NET-1 and PCNA in...ATM mutations and phenotypes in Ataxia-telangiectasia families in the british isles: Expression of mutant ATM and the risk of Leukemia, Lymphoma

  6. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response

    PubMed Central

    Ditch, Scott; Paull, Tanya T.

    2011-01-01

    The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review the evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point toward the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 (HIF-1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. PMID:22079189

  7. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.

    PubMed

    Ditch, Scott; Paull, Tanya T

    2012-01-01

    The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point to the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.

    PubMed

    Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A

    2017-10-05

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  9. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    PubMed

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  10. Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells.

    PubMed

    Fernandes, Norvin D; Sun, Yingli; Price, Brendan D

    2007-06-01

    The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.

  11. ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations.

    PubMed

    Cheng, Aifang; Zhao, Teng; Tse, Kai-Hei; Chow, Hei-Man; Cui, Yong; Jiang, Liwen; Du, Shengwang; Loy, Michael M T; Herrup, Karl

    2018-01-09

    ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1 + ) vesicles, while ATR associates only with inhibitory (VGAT + ) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.

  12. Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers.

    PubMed

    Renault, Anne-Laure; Mebirouk, Noura; Fuhrmann, Laetitia; Bataillon, Guillaume; Cavaciuti, Eve; Le Gal, Dorothée; Girard, Elodie; Popova, Tatiana; La Rosa, Philippe; Beauvallet, Juana; Eon-Marchais, Séverine; Dondon, Marie-Gabrielle; d'Enghien, Catherine Dubois; Laugé, Anthony; Chemlali, Walid; Raynal, Virginie; Labbé, Martine; Bièche, Ivan; Baulande, Sylvain; Bay, Jacques-Olivier; Berthet, Pascaline; Caron, Olivier; Buecher, Bruno; Faivre, Laurence; Fresnay, Marc; Gauthier-Villars, Marion; Gesta, Paul; Janin, Nicolas; Lejeune, Sophie; Maugard, Christine; Moutton, Sébastien; Venat-Bouvet, Laurence; Zattara, Hélène; Fricker, Jean-Pierre; Gladieff, Laurence; Coupier, Isabelle; Chenevix-Trench, Georgia; Hall, Janet; Vincent-Salomon, Anne; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne

    2018-04-17

    The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management. To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours. Morphology of ATM-associated tumours was compared with that of 599 patients with no BRCA1 and BRCA2 mutations from a hospital-based series, as well as with data from The Cancer Genome Atlas. Absolute copy number and loss of heterozygosity (LOH) profiles were obtained from the OncoScan SNP array. In addition, we performed whole-genome sequencing on four tumours from ATM loss-of-function variant carriers with available frozen material. We found that ATM-associated tumours belong mostly to the luminal B subtype, are tetraploid and show LOH at the ATM locus at 11q22-23. Unlike tumours in which BRCA1 or BRCA2 is inactivated, tumours arising in ATM deleterious variant carriers are not associated with increased large-scale genomic instability as measured by the large-scale state transitions signature. Losses at 13q14.11-q14.3, 17p13.2-p12, 21p11.2-p11.1 and 22q11.23 were observed. Somatic alterations at these loci may therefore represent biomarkers for ATM testing and harbour driver mutations in potentially 'druggable' genes that would allow patients to be directed towards tailored therapeutic strategies. Although ATM is involved in the DNA damage response, ATM-associated tumours are distinct from BRCA1-associated tumours in terms of morphological

  13. [Progress of the ATM Crew

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Activities for each of the following programs are discussed in separate sections for the bimonthly reporting period: Airborne Oceanographic Lidar (AOL); Airborne Topographic Mapper (ATM); Other Mission Support Activities, including modeling activities, EAARL activities, and the Scanning Radar Altimeter (SAR); Tropical Rain Measuring Mission (TRMM). The tasks undertaken for each program are discussed in the pertinent section of the report.

  14. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity.

    PubMed

    Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Herrup, Karl; Plummer, Mark R

    2016-07-01

    Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. Copyright © 2016 the American Physiological Society.

  15. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    PubMed

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  16. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection.

    PubMed

    Kulinski, Joseph M; Darrah, Eric J; Broniowska, Katarzyna A; Mboko, Wadzanai P; Mounce, Bryan C; Malherbe, Laurent P; Corbett, John A; Gauld, Stephen B; Tarakanova, Vera L

    2015-09-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  18. Running TCP/IP over ATM Networks.

    ERIC Educational Resources Information Center

    Witt, Michael

    1995-01-01

    Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)

  19. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    SciTech Connect

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the processmore » by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.« less

  20. The ATM signaling network in development and disease.

    PubMed

    Stracker, Travis H; Roig, Ignasi; Knobel, Philip A; Marjanović, Marko

    2013-01-01

    The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease.

  1. The ATM signaling network in development and disease

    PubMed Central

    Stracker, Travis H.; Roig, Ignasi; Knobel, Philip A.; Marjanović, Marko

    2013-01-01

    The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease. PMID:23532176

  2. Simplified management of ATM traffic

    NASA Astrophysics Data System (ADS)

    Luoma, Marko; Ilvesmaeki, Mika

    1997-10-01

    ATM has been under a thorough standardization process for more than ten years. Looking at it now, what have we achieved during this time period? Originally ATM was meant to be an easy and efficient protocol enabling varying services over a single network. What it is turning to be it `yet another ISDN'--network full of hopes and promises but too difficult to implement and expensive to market. The fact is that more and more `nice features' are implemented on the cost of overloading network with hard management procedures. Therefore we need to adopt a new approach. This approach keeps a strong reminder on `what is necessary.' This paper presents starting points for an alternative approach to the traffic management. We refer to this approach as `the minimum management principle.' Choosing of the suitable service classes for the ATM network is made difficult by the fact that the more services one implements the more management he needs. This is especially true for the variable bit rate connections that are usually treated based on the stochastic models. Stochastic model, at its best, can only reveal momentary characteristics in the traffic stream not the long range behavior of it. Our assumption is that ATM will move towards Internet in the sense that strict values for quality make little or no sense in the future. Therefore stochastic modeling of variable bit rate connections seems to be useless. Nevertheless we see that some traffic needs to have strict guarantees and that the only economic way of doing so is to use PCR allocation.

  3. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds

    PubMed Central

    Waterworth, Wanda M.; Footitt, Steven; Bray, Clifford M.; Finch-Savage, William E.; West, Christopher E.

    2016-01-01

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884

  4. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    PubMed

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  5. Opposing Forces of A/T-Biased Mutations and G/C-Biased Gene Conversions Shape the Genome of the Nematode Pristionchus pacificus

    PubMed Central

    Weller, Andreas M.; Rödelsperger, Christian; Eberhardt, Gabi; Molnar, Ruxandra I.; Sommer, Ralf J.

    2014-01-01

    Base substitution mutations are a major source of genetic novelty and mutation accumulation line (MAL) studies revealed a nearly universal AT bias in de novo mutation spectra. While a comparison of de novo mutation spectra with the actual nucleotide composition in the genome suggests the existence of general counterbalancing mechanisms, little is known about the evolutionary and historical details of these opposing forces. Here, we correlate MAL-derived mutation spectra with patterns observed from population resequencing. Variation observed in natural populations has already been subject to evolutionary forces. Distinction between rare and common alleles, the latter of which are close to fixation and of presumably older age, can provide insight into mutational processes and their influence on genome evolution. We provide a genome-wide analysis of de novo mutations in 22 MALs of the nematode Pristionchus pacificus and compare the spectra with natural variants observed in resequencing of 104 natural isolates. MALs show an AT bias of 5.3, one of the highest values observed to date. In contrast, the AT bias in natural variants is much lower. Specifically, rare derived alleles show an AT bias of 2.4, whereas common derived alleles close to fixation show no AT bias at all. These results indicate the existence of a strong opposing force and they suggest that the GC content of the P. pacificus genome is in equilibrium. We discuss GC-biased gene conversion as a potential mechanism acting against AT-biased mutations. This study provides insight into genome evolution by combining MAL studies with natural variation. PMID:24414549

  6. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    PubMed Central

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  7. Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway.

    PubMed

    Gu, Xueyan; Qi, Yongmei; Feng, Zengxiu; Ma, Lin; Gao, Ke; Zhang, Yingmei

    2018-07-01

    Lead (Pb), a widely distributed environmental pollutant, is known to induce mitochondrial damage as well as autophagy in vitro and in vivo. In this study, we found that Pb could trigger mitophagy in both HEK293 cells and the kidney cortex of male Kunming mice. However, whether ataxia telangiectasis mutated (ATM) which is reported to be linked with PTEN-induced putative kinase 1 (PINK1)/Parkin pathway (a well-characterized mitophagic pathway) participates in the regulation of Pb-induced mitophagy and its exact role remains enigmatic. Our results indicated that Pb activated ATM in vitro and in vivo, and further in vitro studies showed that ATM could co-localize with PINK1 and Parkin in cytosol and interact with PINK1. Knockdown of ATM by siRNA blocked Pb-induced mitophagy even under the circumstance of enhanced accumulation of PINK1 and mitochondrial Parkin. Intriguingly, elevation instead of reduction in phosphorylation level of PINK1 and Parkin was observed in response to ATM knockdown and Pb did not contribute to the further increase of their phosphorylation level, implying that ATM indirectly regulated PINK1/Parkin pathway. These findings reveal a novel mechanism for Pb toxicity and suggest the regulatory importance of ATM in PINK1/Parkin-mediated mitophagy. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  9. ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.

    PubMed

    Antonelli, Martina; Strappazzon, Flavie; Arisi, Ivan; Brandi, Rossella; D'Onofrio, Mara; Sambucci, Manolo; Manic, Gwenola; Vitale, Ilio; Barilà, Daniela; Stagni, Venturina

    2017-03-28

    The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.

  10. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  11. 53BP1 depletion causes PARP inhibitor resistance in ATM-deficient breast cancer cells.

    PubMed

    Hong, Ruoxi; Ma, Fei; Zhang, Weimin; Yu, Xiying; Li, Qing; Luo, Yang; Zhu, Changjun; Jiang, Wei; Xu, Binghe

    2016-09-09

    Mutations in DNA damage response factors BRCA1 and BRCA2 confer sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors in breast and ovarian cancers. BRCA1/BRCA2-defective tumors can exhibit resistance to PARP inhibitors via multiple mechanisms, one of which involves loss of 53BP1. Deficiency in the DNA damage response factor ataxia-telangiectasia mutated (ATM) can also sensitize tumors to PARP inhibitors, raising the question of whether the presence or absence of 53BP1 can predict sensitivity of ATM-deficient breast cancer to these inhibitors. Cytotoxicity of PARP inhibitor and ATM inhibitor in breast cancer cell lines was assessed by MTS, colony formation and apoptosis assays. ShRNA lentiviral vectors were used to knockdown 53BP1 expression in breast cancer cell lines. Phospho-ATM and 53BP1 protein expressions were determined in human breast cancer tissues by immunohistochemistry (IHC). We show that inhibiting ATM increased cytotoxicity of PARP inhibitor in triple-negative and non-triple-negative breast cancer cell lines, and depleting the cells of 53BP1 reduced this cytotoxicity. Inhibiting ATM abrogated homologous recombination induced by PARP inhibitor, and down-regulating 53BP1 partially reversed this effect. Further, overall survival was significantly better in triple-negative breast cancer patients with lower levels of phospho-ATM and tended to be better in patients with negative 53BP1. These results suggest that 53BP1 may be a predictor of PARP inhibitor resistance in patients with ATM-deficient tumors.

  12. Functional and nonfunctional testing of ATM networks

    NASA Astrophysics Data System (ADS)

    Ricardo, Manuel; Ferreira, M. E. P.; Guimaraes, Francisco E.; Mamede, J.; Henriques, M.; da Silva, Jorge A.; Carrapatoso, E.

    1995-02-01

    ATM network will support new multimedia services that will require new protocols, those services and protocols will need different test strategies and tools. In this paper, the concepts of functional and non-functional testers of ATM networks are discussed, a multimedia service and its requirements are presented and finally, a summary description of an ATM network and of the test tool that will be used to validate it are presented.

  13. Implementation of virtual LANs over ATM WANs

    NASA Astrophysics Data System (ADS)

    Braun, Torsten; Maehler, Martin

    1998-09-01

    Virtual LANs (VLANs) allow to interconnect users over campus or wide area networks and gives the users the impression as they would be connected to the same local area network (LAN). The implementation of VLANs is based on ATM Forum's LAN Emulation and LAN/ATM switches providing interconnection of emulated LANs over ATM and the LAN ports to which the user's end systems are attached to. The paper discusses possible implementation architectures and describes advanced features such as ATM short-cuts, QoS, and redundancy concepts.

  14. Promoter Hypermethylation of the ATM Gene as a Novel Biomarker for Breast Cancer

    PubMed

    Begam, Nasrin; Jamil, Kaiser; Raju, Suryanarayana G

    2017-11-26

    Background: Breast cancer may be induced by activation of protooncogenes to oncogenes and in many cases inactivation of tumor suppressor genes. Ataxia telangiectasia mutated (ATM) is an important tumor suppressor gene which plays central roles in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of double-strand breaks of DNA. In breast cancer, decrease ATM expression correlates with a poor outcome; however, the molecular mechanisms underlying downregulation are still unclear. Promoter hypermethylation may contribute in downregulation. Hence the present investigation was designed to evaluate promoter methylation and expression of the ATM gene in breast cancer cases, and to determine links with clinical and demographic manifestations, in a South Indian population. Methods: Tumor biopsy samples were collected from 50 pathologically confirmed sporadic breast cancer cases. DNA was isolated from tumor and adjacent non-tumorous regions, and sodium bisulfite conversion and methylation-specific PCR were performed using MS-PCR primers for the ATM promoter region. In addition, ATM mRNA expression was also analyzed for all samples using real-time PCR. Results: Fifty eight percent (58%) of cancer tissue samples showed promoter hypermethylation for the ATM gene, in contrast to only 4.44% of normal tissues (p= 0.0001). Furthermore, ATM promoter methylation was positively associated with age (p = 0.01), tumor size (p=0.045) and advanced stage of disease i.e. stages III and IV (p =0.019). An association between promoter hypermethylation and lower expression of ATM mRNA was also found (p=0.035). Conclusion: We report for the first time that promoter hypermethylation of ATM gene may be useful as a potential new biomarker for breast cancer, especially in the relatively young patients. Creative Commons Attribution License

  15. Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer.

    PubMed

    Xiong, Hui; Zhang, Jiangnan

    2017-12-01

    The expression of ataxia-telangiectasia mutated (ATM) and p53 upregulated modulator of apoptosis (PUMA) genes in patients with colorectal cancer were investigated, to explore the correlation between the expression of ATM and PUMA and tumor development, to evaluate the clinical significance of ATM and PUMA in the treatment of colorectal cancer. Quantitative real-time PCR was used to detect the expression of ATM and PUMA in tumor tissue and adjacent healthy tissue of 67 patients with colorectal cancer and in normal colorectal tissue of 33 patients with colorectal polyps at mRNA level. The expression level of ATM mRNA in colorectal cancer tissues was significantly higher than that in normal mucosa tissues and adjacent non-cancerous tissue (P≤0.05), while no significant differences in expression level of ATM mRNA were found between normal mucosa tissues and adjacent noncancerous tissue (P=0.07). There was a negative correlation between the expression of ATM mRNA and the degree of differentiation of colorectal cancer (r= -0.312, P=0.013), while expression level of ATM mRNA was not significantly correlated with the age, sex, tumor invasion, lymph node metastasis or clinical stage (P>0.05). Expression levels of PUMA mRNA in colorectal cancer tissues, adjacent noncancerous tissue and normal tissues were 0.68±0.07, 0.88±0.04 and 1.76±0.06, respectively. Expression level of PUMA mRNA in colorectal cancer tissues and adjacent noncancerous tissue was significantly lower than that in normal colorectal tissues (P<0.05). The results showed that ATM mRNA is expressed abnormally in colorectal cancer tissues. Expression of PUMA gene in colorectal carcinoma is downregulated, and is negatively correlated with the occurrence of cancer.

  16. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades.

    PubMed

    Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng

    2017-04-01

    Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Functional Characterization of ATM Kinase Using Acetylation-Specific Antibodies.

    PubMed

    Sun, Yingli; Du, Fengxia

    2017-01-01

    The activation of ATM is critical in the DNA double strand breaks repair pathway. Acetylation of ATM by Tip60 histone acetyltransferase (HAT) plays a key role in the activation of ATM kinase activity in response to DNA damage. ATM forms a stable complex with Tip60 through the FATC domain of ATM. Tip60 acetylates lysine3016 of ATM, and this acetylation induces the activation of ATM. Several techniques are included in the study of ATM acetylation by Tip60, such as in vitro kinase assay, systematic mutagenesis, western blots. Here, we describe how to study the acetylation of ATM using acetylation-specific antibodies.

  18. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations

    PubMed Central

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland

    2018-01-01

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. PMID:29759113

  19. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    PubMed Central

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  20. Autophosphorylation of CaMKK2 generates autonomous activity that is disrupted by a T85S mutation linked to anxiety and bipolar disorder.

    PubMed

    Scott, John W; Park, Elizabeth; Rodriguiz, Ramona M; Oakhill, Jonathan S; Issa, Samah M A; O'Brien, Matthew T; Dite, Toby A; Langendorf, Christopher G; Wetsel, William C; Means, Anthony R; Kemp, Bruce E

    2015-09-23

    Mutations that reduce expression or give rise to a Thr85Ser (T85S) mutation of Ca(2+)-CaM-dependent protein kinase kinase-2 (CaMKK2) have been implicated in behavioural disorders such as anxiety, bipolar and schizophrenia in humans. Here we report that Thr85 is an autophosphorylation site that endows CaMKK2 with a molecular memory that enables sustained autonomous activation following an initial, transient Ca(2+) signal. Conversely, autophosphorylation of Ser85 in the T85S mutant fails to generate autonomous activity but instead causes a partial loss of CaMKK2 activity. The loss of autonomous activity in the mutant can be rescued by blocking glycogen synthase kinase-3 (GSK3) phosphorylation of CaMKK2 with the anti-mania drug lithium. Furthermore, CaMKK2 null mice representing a loss of function model the human behavioural phenotypes, displaying anxiety and manic-like behavioural disturbances. Our data provide a novel insight into CaMKK2 regulation and its perturbation by a mutation associated with behavioural disorders.

  1. A mutation in MT-TW causes a tRNA processing defect and reduced mitochondrial function in a family with Leigh syndrome.

    PubMed

    Duff, Rachael M; Shearwood, Anne-Marie J; Ermer, Judith; Rossetti, Giulia; Gooding, Rebecca; Richman, Tara R; Balasubramaniam, Shanti; Thorburn, David R; Rackham, Oliver; Lamont, Phillipa J; Filipovska, Aleksandra

    2015-11-01

    Leigh syndrome (LS) is a progressive mitochondrial neurodegenerative disorder, whose symptoms most commonly include psychomotor delay with regression, lactic acidosis and a failure to thrive. Here we describe three siblings with LS, but with additional manifestations including hypertrophic cardiomyopathy, hepatosplenomegaly, cholestatic hepatitis, and seizures. All three affected siblings were found to be homoplasmic for an m. 5559A>G mutation in the T stem of the mitochondrial DNA-encoded MT-TW by next generation sequencing. The m.5559A>G mutation causes a reduction in the steady state levels of tRNA(Trp) and this decrease likely affects the stability of other mitochondrial RNAs in the patient fibroblasts. We observe accumulation of an unprocessed transcript containing tRNA(Trp), decreased de novo protein synthesis and consequently lowered steady state levels of mitochondrial DNA-encoded proteins that compromise mitochondrial respiration. Our results show that the m.5559A>G mutation at homoplasmic levels causes LS in association with severe multi-organ disease (LS-plus) as a consequence of dysfunctional mitochondrial RNA metabolism. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  2. Buffer Management Simulation in ATM Networks

    NASA Technical Reports Server (NTRS)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  3. ATM: Restructing Learning for Deaf Students.

    ERIC Educational Resources Information Center

    Keefe, Barbara; Stockford, David

    Governor Baxter School for the Deaf is one of six Maine pilot sites chosen by NYNEX to showcase asynchronous transfer mode (ATM) technology. ATM is a network connection that allows high bandwidth transmission of data, voice, and video. Its high speed capability allows for high quality two-way full-motion video, which is especially beneficial to a…

  4. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  5. Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA damage response, including DNA double strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter-expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  6. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity

    PubMed Central

    Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M. T.; Herrup, Karl

    2016-01-01

    Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm−/− animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm−/− mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. PMID:27075534

  7. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  8. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  9. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    PubMed

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  10. Incorporating Truncating Variants in PALB2, CHEK2 and ATM into the BOADICEA Breast Cancer Risk Model

    PubMed Central

    Lee, Andrew J.; Cunningham, Alex P.; Tischkowitz, Marc; Simard, Jacques; Pharoah, Paul D.; Easton, Douglas F.; Antoniou, Antonis C.

    2016-01-01

    Purpose The proliferation of gene-panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2 and ATM. Methods The BC incidence was modelled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2 and ATM and other unobserved genetic effects using segregation analysis methods. Results The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH-burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive-testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. Conclusions The model may be a valuable tool for counselling women who have undergone gene-panel testing for providing consistent risks and harmonizing their clinical management. A web-application can be used to obtain BC- risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/). PMID:27464310

  11. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model.

    PubMed

    Lee, Andrew J; Cunningham, Alex P; Tischkowitz, Marc; Simard, Jacques; Pharoah, Paul D; Easton, Douglas F; Antoniou, Antonis C

    2016-12-01

    The proliferation of gene panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2, and ATM. The BC incidence was modeled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2, and ATM and other unobserved genetic effects using segregation analysis methods. The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, and 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. The model may be a valuable tool for counseling women who have undergone gene panel testing for providing consistent risks and harmonizing their clinical management. A Web application can be used to obtain BC risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/).Genet Med 18 12, 1190-1198.

  12. Detection of ATM germline variants by the p53 mitotic centrosomal localization test in BRCA1/2-negative patients with early-onset breast cancer.

    PubMed

    Prodosmo, Andrea; Buffone, Amelia; Mattioni, Manlio; Barnabei, Agnese; Persichetti, Agnese; De Leo, Aurora; Appetecchia, Marialuisa; Nicolussi, Arianna; Coppa, Anna; Sciacchitano, Salvatore; Giordano, Carolina; Pinnarò, Paola; Sanguineti, Giuseppe; Strigari, Lidia; Alessandrini, Gabriele; Facciolo, Francesco; Cosimelli, Maurizio; Grazi, Gian Luca; Corrado, Giacomo; Vizza, Enrico; Giannini, Giuseppe; Soddu, Silvia

    2016-09-06

    Variant ATM heterozygotes have an increased risk of developing cancer, cardiovascular diseases, and diabetes. Costs and time of sequencing and ATM variant complexity make large-scale, general population screenings not cost-effective yet. Recently, we developed a straightforward, rapid, and inexpensive test based on p53 mitotic centrosomal localization (p53-MCL) in peripheral blood mononuclear cells (PBMCs) that diagnoses mutant ATM zygosity and recognizes tumor-associated ATM polymorphisms. Fresh PBMCs from 496 cancer patients were analyzed by p53-MCL: 90 cases with familial BRCA1/2-positive and -negative breast and/or ovarian cancer, 337 with sporadic cancers (ovarian, lung, colon, and post-menopausal breast cancers), and 69 with breast/thyroid cancer. Variants were confirmed by ATM sequencing. A total of seven individuals with ATM variants were identified, 5/65 (7.7 %) in breast cancer cases of familial breast and/or ovarian cancer and 2/69 (2.9 %) in breast/thyroid cancer. No variant ATM carriers were found among the other cancer cases. Excluding a single case in which both BRCA1 and ATM were mutated, no p53-MCL alterations were observed in BRCA1/2-positive cases. These data validate p53-MCL as reliable and specific test for germline ATM variants, confirm ATM as breast cancer susceptibility gene, and highlight a possible association with breast/thyroid cancers.

  13. MSFC institutional area network and ATM technology

    NASA Technical Reports Server (NTRS)

    Amin, Ashok T.

    1994-01-01

    The New Institutional Area Network (NEWIAN) at Marshall supports over 5000 end users with access to 26 file servers providing work presentation services. It is comprised of some 150 Ethernet LAN's interconnected by bridges/routers which are in turn connected to servers over two dual FDDI rings. The network supports various higher level protocols such as IP, IPX, AppleTalk (AT), and DECNet. At present IPX and AT protocols packets are routed, and IP protocol packets are bridged; however, work is in progress to route all IP packets. The impact of routing IP packets on network operation is examined. Broadband Integrated Services Data Network (BISDN), presently at various stages of development, is intended to provide voice, video, and data transfer services over a single network. BISDN will use asynchronous transfer mode (ATM) as a data transfer technique which provides for transmission, multiplexing, switching, and relaying of small size data units called cells. Limited ATM Wide Area Network (WAN) services are offered by Wiltel, AT&T, Sprint, and others. NASA is testing a pilot ATM WAN with a view to provide Program Support Communication Network services using ATM. ATM supports wide range of data rates and quality of service requirements. It is expected that ATM switches will penetrate campus networks as well. However, presently products in these areas are at various stages of development and standards are not yet complete. We examine development of ATM to help assess its role in the evolution of NEWIAN.

  14. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells

    PubMed Central

    Yang, Di; Fletcher, Sally C.; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J.

    2017-01-01

    Abstract Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. PMID:28973444

  15. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    PubMed

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. ATM Card Cloning and Ethical Considerations.

    PubMed

    Kaur, Paramjit; Krishan, Kewal; Sharma, Suresh K; Kanchan, Tanuj

    2018-05-01

    With the advent of modern technology, the way society handles and performs monetary transactions has changed tremendously. The world is moving swiftly towards the digital arena. The use of Automated Teller Machine (ATM) cards (credit and debit) has led to a "cash-less society" and has fostered digital payments and purchases. In addition to this, the trust and reliance of the society upon these small pieces of plastic, having numbers engraved upon them, has increased immensely over the last two decades. In the past few years, the number of ATM fraud cases has increased exponentially. With the money of the people shifting towards the digital platform, ATM skimming has become a problem that has eventually led to a global outcry. The present review discusses the serious repercussions of ATM card cloning and the associated privacy, ethical and legal concerns. The preventive measures which need to be taken and adopted by the government authorities to mitigate the problem have also been discussed.

  17. Borman Expressway Atms Equipment Evaluation; Final Report

    DOT National Transportation Integrated Search

    1996-08-01

    AN ADVANCED TRAFFIC MANAGEMENT SYSTEM (ATMS) IS UNDER DEVELOPMENT IN NORTHERN INDIANA BY THE INDIANA DEPARTMENT OF TRANSPORTATION (INDOT) IN CONJUNCTION WITH HUGHES TRANSPORTATION MANAGEMENT SYSTEMS. THE STUDY AREA COMPRISES A SIXTEEN MILE SEGMENT OF...

  18. Eradication of Large Solid Tumors by Gene Therapy with a T-Cell Receptor Targeting a Single Cancer-Specific Point Mutation.

    PubMed

    Leisegang, Matthias; Engels, Boris; Schreiber, Karin; Yew, Poh Yin; Kiyotani, Kazuma; Idel, Christian; Arina, Ainhoa; Duraiswamy, Jaikumar; Weichselbaum, Ralph R; Uckert, Wolfgang; Nakamura, Yusuke; Schreiber, Hans

    2016-06-01

    Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602. ©2015 American Association for Cancer Research.

  19. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    NASA Technical Reports Server (NTRS)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  20. Methods for detection of ataxia telangiectasia mutations

    DOEpatents

    Gatti, Richard A.

    2005-10-04

    The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.

  1. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway

    PubMed Central

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Lawrence M.

    2017-01-01

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway. PMID:29348882

  2. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    PubMed

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  3. ATM-Mediated Transcriptional and Developmental Responses to γ-rays in Arabidopsis

    PubMed Central

    Renou, Jean-Pierre; Pichon, Olivier; Fochesato, Sylvain; Ortet, Philippe; Montané, Marie-Hélène

    2007-01-01

    ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that

  4. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis.

    PubMed

    Ricaud, Lilian; Proux, Caroline; Renou, Jean-Pierre; Pichon, Olivier; Fochesato, Sylvain; Ortet, Philippe; Montané, Marie-Hélène

    2007-05-09

    ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases

  5. Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey

    NASA Technical Reports Server (NTRS)

    Berry, Noemi

    1995-01-01

    Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.

  6. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  7. ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage.

    PubMed

    Perkhofer, Lukas; Schmitt, Anna; Romero Carrasco, Maria Carolina; Ihle, Michaela; Hampp, Stephanie; Ruess, Dietrich Alexander; Hessmann, Elisabeth; Russell, Ronan; Lechel, André; Azoitei, Ninel; Lin, Qiong; Liebau, Stefan; Hohwieler, Meike; Bohnenberger, Hanibal; Lesina, Marina; Algül, Hana; Gieldon, Laura; Schröck, Evelin; Gaedcke, Jochen; Wagner, Martin; Wiesmüller, Lisa; Sipos, Bence; Seufferlein, Thomas; Reinhardt, Hans Christian; Frappart, Pierre-Olivier; Kleger, Alexander

    2017-10-15

    Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair

    PubMed Central

    Chen, Chun-Chin; Kass, Elizabeth M.; Yen, Wei-Feng; Ludwig, Thomas; Moynahan, Mary Ellen; Chaudhuri, Jayanta; Jasin, Maria

    2017-01-01

    BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1–53BP1 antagonism and that its HDR function can become critical in certain contexts. PMID:28659469

  9. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair.

    PubMed

    Chen, Chun-Chin; Kass, Elizabeth M; Yen, Wei-Feng; Ludwig, Thomas; Moynahan, Mary Ellen; Chaudhuri, Jayanta; Jasin, Maria

    2017-07-18

    BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1 S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1 S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1 S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.

  10. The effect of ATM kinase inhibition on the initial response of human dental pulp and periodontal ligament mesenchymal stem cells to ionizing radiation.

    PubMed

    Cmielova, Jana; Havelek, Radim; Kohlerova, Renata; Soukup, Tomas; Bruckova, Lenka; Suchanek, Jakub; Vavrova, Jirina; Mokry, Jaroslav; Rezacova, Martina

    2013-07-01

    This study evaluates early changes in human mesenchymal stem cells (MSC) isolated from dental pulp and periodontal ligament after γ-irradiation and the effect of ataxia-telangiectasia mutated (ATM) inhibition. MSC were irradiated with 2 and 20 Gy by (60)Co. For ATM inhibition, specific inhibitor KU55933 was used. DNA damage was measured by Comet assay and γH2AX detection. Cell cycle distribution and proteins responding to DNA damage were analyzed 2-72 h after the irradiation. The irradiation of MSC causes an increase in γH2AX; the phosphorylation was ATM-dependent. Irradiation activates ATM kinase, and the level of p53 protein is increased due to its phosphorylation on serine15. While this phosphorylation of p53 is ATM-dependent in MSC, the increase in p53 was not prevented by ATM inhibition. A similar trend was observed for Chk1 and Chk2. The increase in p21 is greater without ATM inhibition. ATM inhibition also does not fully abrogate the accumulation of irradiated MSC in the G2-phase of the cell-cycle. In irradiated MSC, double-strand breaks are tagged quickly by γH2AX in an ATM-dependent manner. Although phosphorylations of p53(ser15), Chk1(ser345) and Chk2(thr68) are ATM-dependent, the overall amount of these proteins increases when ATM is inhibited. In both types of MSC, ATM-independent mechanisms for cell-cycle arrest in the G2-phase are triggered.

  11. Health ATMs in Saudi Arabia: A Perspective.

    PubMed

    Aldosari, Bakheet

    2017-06-01

    Health ATMs are terminals which are connected to a centrally located database storing patients' electronic healthcare records (EHR). These machines are capable of collecting information in a far superior fashion than humans and are also able to rectify obsolete data in a manner that humans are generally not inclined to. The main goal of this study is to assess the importance of adopting health ATMs in the Kingdom of Saudi Arabia (KSA), which can improve the confidence of patients, reward health self-management, and achieve positive health outcomes through their easy-to-use applications that are secure and accessible through various devices. Strength, Weakness, Opportunity, and Threat (SWOT) analysis was used to assess the efficiency of adopting health ATMs in KSA and reveal the said characteristics. Three focus groups assembled in the cities of Riyadh, Jeddah and Dammam during the period 2013-2014. The groups consisted of individuals experienced in the function of health ATMs. It was found that the sector possessed a number of strengths that would help it in reaching the goals outlined therein, thereby achieving successful outcomes. Health ATMs could be a promising new advancement in the field of health if the project were to be planned and implemented correctly. Their benefits would consequently reach organizational and national levels. It is, therefore, crucial to educate the project managers about the benefits of learning from others as well as educating them about the needs and the requirements of the concerned organization.

  12. Health ATMs in Saudi Arabia: A Perspective

    PubMed Central

    Aldosari, Bakheet

    2017-01-01

    Background: Health ATMs are terminals which are connected to a centrally located database storing patients’ electronic healthcare records (EHR). These machines are capable of collecting information in a far superior fashion than humans and are also able to rectify obsolete data in a manner that humans are generally not inclined to. Objectives: The main goal of this study is to assess the importance of adopting health ATMs in the Kingdom of Saudi Arabia (KSA), which can improve the confidence of patients, reward health self-management, and achieve positive health outcomes through their easy-to-use applications that are secure and accessible through various devices. Methods: Strength, Weakness, Opportunity, and Threat (SWOT) analysis was used to assess the efficiency of adopting health ATMs in KSA and reveal the said characteristics. Three focus groups assembled in the cities of Riyadh, Jeddah and Dammam during the period 2013-2014. The groups consisted of individuals experienced in the function of health ATMs. Results: It was found that the sector possessed a number of strengths that would help it in reaching the goals outlined therein, thereby achieving successful outcomes. Conclusions: Health ATMs could be a promising new advancement in the field of health if the project were to be planned and implemented correctly. Their benefits would consequently reach organizational and national levels. It is, therefore, crucial to educate the project managers about the benefits of learning from others as well as educating them about the needs and the requirements of the concerned organization. PMID:28883680

  13. Introduction to multiprotocol over ATM (MPOA)

    NASA Astrophysics Data System (ADS)

    Fredette, Andre N.

    1997-10-01

    Multiprotocol over ATM (MPOA) is a new protocol specified by the ATM Forum. MPOA provides a framework for effectively synthesizing bridging and routing with ATM in an environment of diverse protocols and network technologies. The primary goal of MPOA is the efficient transfer of inter-subnet unicast data in a LAN Emulation (LANE) environment. MPOA integrates LANE and the next hop resolution protocol (NHRP) to preserve the benefits of LAN Emulation, while allowing inter-subnet, internetwork layer protocol communication over ATM VCCs without requiring routers in the data path. It reduces latency and the internetwork layer forwarding load on backbone routers by enabling direct connectivity between ATM-attached edge devices (i.e., shortcuts). To establish these shortcuts, MPOA uses both routing and bridging information to locate the edge device closest to the addressed end station. By integrating LANE and NHRP, MPOA allows the physical separation of internetwork layer route calculation and forwarding, a technique known as virtual routing. This separation provides a number of key benefits including enhanced manageability and reduced complexity of internetwork layer capable edge devices. This paper provides an overview of MPOA that summarizes the goals, architecture, and key attributes of the protocol. In presenting this overview, the salient attributes of LANE and NHRP are described as well.

  14. Noncanonical ATM Activation and Signaling in Response to Transcription-Blocking DNA Damage.

    PubMed

    Marteijn, Jurgen A; Vermeulen, Wim; Tresini, Maria

    2017-01-01

    Environmental genotoxins and metabolic byproducts generate DNA lesions that can cause genomic instability and disrupt tissue homeostasis. To ensure genomic integrity, cells employ mechanisms that convert signals generated by stochastic DNA damage into organized responses, including activation of repair systems, cell cycle checkpoints, and apoptotic mechanisms. DNA damage response (DDR) signaling pathways coordinate these responses and determine cellular fates in part, by transducing signals that modulate RNA metabolism. One of the master DDR coordinators, the Ataxia Telangiectasia Mutated (ATM) kinase, has a fundamental role in mediating DNA damage-induced changes in mRNA synthesis. ATM acts by modulating a variety of RNA metabolic pathways including nascent RNA splicing, a process catalyzed by the spliceosome. Interestingly, ATM and the spliceosome influence each other's activity in a reciprocal manner by a pathway that initiates when transcribing RNA polymerase II (RNAPII) encounters DNA lesions that prohibit forward translocation. In response to stalling of RNAPII assembly of late-stage spliceosomes is disrupted resulting in increased splicing factor mobility. Displacement of spliceosomes from lesion-arrested RNA polymerases facilitates formation of R-loops between the nascent RNA and DNA adjacent to the transcription bubble. R-loops signal for noncanonical ATM activation which in quiescent cells occurs in absence of detectable dsDNA breaks. In turn, activated ATM signals to regulate spliceosome dynamics and AS genome wide.This chapter describes the use of fluorescence microscopy methods that can be used to evaluate noncanonical ATM activation by transcription-blocking DNA damage. First, we present an immunofluorescence-detection method that can be used to evaluate ATM activation by autophosphorylation, in fixed cells. Second, we present a protocol for Fluorescence Recovery After Photobleaching (FRAP) of GFP-tagged splicing factors, a highly sensitive and

  15. NPP After Launch: Characterizing ATMS Performance

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn

    2011-01-01

    The NPOESS Preparatory Project (NPP) mission is scheduled to launch in the fall of 2011. Although several teams from the government and the instrument contractor will be assessing and characterizing the performance of the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) sounding suite, the NASA NPP Science Team will be paying particular attention to the aspects of these sensors that affect their utility for atmospheric and climate research. In this talk we discuss relevant aspects of ATMS and our post launch analysis approach.

  16. ATM over hybrid fiber-coaxial cable networks: practical issues in deploying residential ATM services

    NASA Astrophysics Data System (ADS)

    Laubach, Mark

    1996-11-01

    Residential broadband access network technology based on asynchronous transfer modem (ATM) will soon reach commercial availability. The capabilities provided by ATM access network promise integrated services bandwidth available in excess of those provided by traditional twisted pair copper wire public telephone networks. ATM to the side of the home placed need quality of service capability closest to the subscriber allowing immediate support for Internet services and traditional voice telephony. Other services such as desktop video teleconferencing and enhanced server-based application support can be added as part of future evolution of the network. Additionally, advanced subscriber home networks can be supported easily. This paper presents an updated summary of the standardization efforts for the ATM over HFC definition work currently taking place in the ATM forum's residential broadband working group and the standards progress in the IEEE 802.14 cable TV media access control and physical protocol working group. This update is fundamental for establishing the foundation for delivering ATM-based integrated services via a cable TV network. An economic model for deploying multi-tiered services is presenting showing that a single-tier service is insufficient for a viable cable operator business. Finally, the use of an ATM based system lends itself well to various deployment scenarios of synchronous optical networks (SONET).

  17. Terminal Area ATM Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    1997-01-01

    The presentation will highlight the following: (1) A brief review of ATC research underway 15 years ago; (2) A summary of Terminal Area ATM Tool Development ongoing at NASA Ames; and (3) A projection of research activities 10-15 years from now.

  18. MiR-2964a-5p binding site SNP regulates ATM expression contributing to age-related cataract risk.

    PubMed

    Rong, Han; Gu, Shanshan; Zhang, Guowei; Kang, Lihua; Yang, Mei; Zhang, Junfang; Shen, Xinyue; Guan, Huaijin

    2017-10-17

    This study was to explore the involvement of DNA repair genes in the pathogenesis of age-related cataract (ARC). We genotyped nine single nucleotide polymorphisms (SNPs) of genes responsible to DNA double strand breaks (DSBs) in 804 ARC cases and 804 controls in a cohort of eye diseases in Chinese population and found that the ataxia telangiectasia mutated ( ATM ) gene-rs4585:G>T was significantly associated with ARC risk. An in vitro functional test found that miR-2964a-5p specifically down-regulated luciferase reporter expression and ATM expression in the cell lines transfected with rs4585 T allele compared to rs4585 G allele. The molecular assay on human tissue samples discovered that ATM expression was down-regulated in majority of ARC tissues and correlated with ATM genotypes. In addition, the Comet assay of cellular DNA damage of peripheral lymphocytes indicated that individuals carrying the G allele (GG/GT) of ATM -rs4585 had lower DNA breaks compared to individuals with TT genotype. These findings suggested that the SNP rs4585 in ATM might affect ARC risk through modulating the regulatory affinity of miR-2964a-5p. The reduced DSBs repair might be involved in ARC pathogenesis.

  19. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways.

    PubMed

    Li, Ming-Yi; Liu, Jin-Quan; Chen, Dong-Ping; Li, Zhou-Yu; Qi, Bin; He, Lu; Yu, Yi; Yin, Wen-Jin; Wang, Meng-Yao; Lin, Ling

    2017-09-02

    Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.

  20. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in Knock-in Mouse Strains?

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that

  1. Early deployment of ATMS/ATIS for metropolitan Detroit

    DOT National Transportation Integrated Search

    1994-09-26

    The Michigan Department of Transportation (MDOT) is currently planning for the expansion of their current Advanced Traffic Management and Advanced Traveler Information Systems (ATMS and ATIS, respectively). Current ATMS and ATIS coverage include 3...

  2. GNSS real time performance monitoring and CNS/ATM implementation

    DOT National Transportation Integrated Search

    2006-07-01

    The global transition to communications, navigation, surveillance / air traffic management (CNS/ATM) technology is moving forward at an increasing pace. A critical part of the CNS/ATM concept is the ability to monitor, analyze, and distribute aeronau...

  3. FACET: Future ATM Concepts Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Bilmoria, Karl D.; Banavar, Sridhar; Chatterji, Gano B.; Sheth, Kapil S.; Grabbe, Shon

    2000-01-01

    FACET (Future ATM Concepts Evaluation Tool) is an Air Traffic Management research tool being developed at the NASA Ames Research Center. This paper describes the design, architecture and functionalities of FACET. The purpose of FACET is to provide E simulation environment for exploration, development and evaluation of advanced ATM concepts. Examples of these concepts include new ATM paradigms such as Distributed Air-Ground Traffic Management, airspace redesign and new Decision Support Tools (DSTs) for controllers working within the operational procedures of the existing air traffic control system. FACET is currently capable of modeling system-wide en route airspace operations over the contiguous United States. Airspace models (e.g., Center/sector boundaries, airways, locations of navigation aids and airports) are available from databases. A core capability of FACET is the modeling of aircraft trajectories. Using round-earth kinematic equations, aircraft can be flown along flight plan routes or great circle routes as they climb, cruise and descend according to their individual aircraft-type performance models. Performance parameters (e.g., climb/descent rates and speeds, cruise speeds) are obtained from data table lookups. Heading, airspeed and altitude-rate dynamics are also modeled. Additional functionalities will be added as necessary for specific applications. FACET software is written in Java and C programming languages. It is platform-independent, and can be run on a variety of computers. FACET has been designed with a modular software architecture to enable rapid integration of research prototype implementations of new ATM concepts. There are several advanced ATM concepts that are currently being implemented in FACET airborne separation assurance, dynamic density predictions, airspace redesign (re-sectorization), benefits of a controller DST for direct-routing, and the integration of commercial space transportation system operations into the U.S. National

  4. ATM/cable arch and beam structural test program

    NASA Technical Reports Server (NTRS)

    Housley, J. A.

    1972-01-01

    The structural testing is described of an Apollo Telescope Mount (ATM) cable arch and beam assembly, using static loads to simulate the critical conditions expected during transportation and launch of the ATM. All test objectives were met. Stress and deflection data show that the assembly is structurally adequate for use in the ATM.

  5. A Managerial Analysis of ATM in Facilitating Distance Education.

    ERIC Educational Resources Information Center

    Littman, Marlyn Kemper

    In this paper, the fundamental characteristics and capabilities of ATM (Asynchronous Transfer Mode) networks in a distance learning environment are examined. Current and projected ATM applications are described, and issues and challenges associated with developing ATM networking solutions for instructional delivery are explored. Other topics…

  6. ATM protein is deficient in over 40% of lung adenocarcinomas.

    PubMed

    Villaruz, Liza C; Jones, Helen; Dacic, Sanja; Abberbock, Shira; Kurland, Brenda F; Stabile, Laura P; Siegfried, Jill M; Conrads, Thomas P; Smith, Neil R; O'Connor, Mark J; Pierce, Andrew J; Bakkenist, Christopher J

    2016-09-06

    Lung cancer is the leading cause of cancer-related mortality in the USA and worldwide, and of the estimated 1.2 million new cases of lung cancer diagnosed every year, over 30% are lung adenocarcinomas. The backbone of 1st-line systemic therapy in the metastatic setting, in the absence of an actionable oncogenic driver, is platinum-based chemotherapy. ATM and ATR are DNA damage signaling kinases activated at DNA double-strand breaks (DSBs) and stalled and collapsed replication forks, respectively. ATM protein is lost in a number of cancer cell lines and ATR kinase inhibitors synergize with cisplatin to resolve xenograft models of ATM-deficient lung cancer. We therefore sought to determine the frequency of ATM loss in a tissue microarray (TMA) of lung adenocarcinoma. Here we report the validation of a commercial antibody (ab32420) for the identification of ATM by immunohistochemistry and estimate that 61 of 147 (41%, 95% CI 34%-50%) cases of lung adenocarcinoma are negative for ATM protein expression. As a positive control for ATM staining, nuclear ATM protein was identified in stroma and immune infiltrate in all evaluable cases. ATM loss in lung adenocarcinoma was not associated with overall survival. However, our preclinical findings in ATM-deficient cell lines suggest that ATM could be a predictive biomarker for synergy of an ATR kinase inhibitor with standard-of-care cisplatin. This could improve clinical outcome in 100,000's of patients with ATM-deficient lung adenocarcinoma every year.

  7. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  8. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.

    PubMed

    Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J

    2017-01-25

    The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in

  9. ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS

    PubMed Central

    Alexander, Angela; Kim, Jinhee; Powell, Reid T.; Dere, Ruhee; Tait-Mulder, Jacqueline; Lee, Ji-Hoon; Paull, Tanya T.; Pandita, Raj K.; Charaka, Vijaya K.; Pandita, Tej K.; Kastan, Michael B.; Walker, Cheryl Lyn

    2015-01-01

    Peroxisomes are highly metabolic, autonomously replicating organelles that generate ROS as a by product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to reactive oxygen species (ROS), ATM signaling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser141, which promotes PEX5 mono-ubiquitination at K209, and recognition of ubiquitinated PEX5 by the autophagy adapter protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy. PMID:26344566

  10. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    PubMed Central

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM+/−) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM+/− cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage. PMID:12119422

  11. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  12. Atm reactivation reverses ataxia telangiectasia phenotypes in vivo.

    PubMed

    Di Siena, Sara; Campolo, Federica; Gimmelli, Roberto; Di Pietro, Chiara; Marazziti, Daniela; Dolci, Susanna; Lenzi, Andrea; Nussenzweig, Andre; Pellegrini, Manuela

    2018-02-22

    Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease.

  13. ATM photoheliograph. [at a solar observatory

    NASA Technical Reports Server (NTRS)

    Prout, R. A.

    1975-01-01

    The design and fabrication are presented of a 65 cm photoheliograph functional verification unit (FVU) installed in a major solar observatory. The telescope is used in a daily program of solar observation while serving as a test bed for the development of instrumentation to be included in early space shuttle launched solar telescopes. The 65 cm FVU was designed to be mechanically compatible with the ATM spar/canister and would be adaptable to a second ATM flight utilizing the existing spar/canister configuration. An image motion compensation breadboard and a space-hardened, remotely tuned H alpha filter, as well as solar telescopes of different optical configurations or increased aperture are discussed.

  14. Experiences with the AEROnet/PSCN ATM Prototype

    NASA Technical Reports Server (NTRS)

    Kurak, Richard S.; Lisotta, Anthony J.; McCabe, James D.; Nothaft, Alfred E.; Russell, Kelly R.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    This paper discusses the experience gained by the AEROnet/PSCN networking team in deploying a prototype Asynchronous Transfer Mode (ATM) based network as part of the wide-area network for the Numerical Aerodynamic Simulation (NAS) Program at NASA Ames Research Center. The objectives of this prototype were to test concepts in using ATM over wide-area Internet Protocol (IP) networks and measure end-to-end system performance. This testbed showed that end-to-end ATM over a DS3 reaches approximately 80% of the throughput achieved from a FDDI to DS3 network. The 20% reduction in through-put can be attributed to the overhead associated with running ATM. As a result, we conclude that if the loss in capacity due to ATM overhead is balanced by the reduction in cost of ATM services, as compared to dedicated circuits, then ATM can be a viable alternative.

  15. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that

  16. ATM Coastal Topography-Mississippi, 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS

  17. Preservation of methane hydrate at 1 atm

    USGS Publications Warehouse

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  18. Phenotypic analysis of separation-of-function alleles of MEI-41, Drosophila ATM/ATR.

    PubMed Central

    Laurençon, Anne; Purdy, Amanda; Sekelsky, Jeff; Hawley, R Scott; Su, Tin Tin

    2003-01-01

    ATM/ATR kinases act as signal transducers in eukaryotic DNA damage and replication checkpoints. Mutations in ATM/ATR homologs have pleiotropic effects that range from sterility to increased killing by genotoxins in humans, mice, and Drosophila. Here we report the generation of a null allele of mei-41, Drosophila ATM/ATR homolog, and the use of it to document a semidominant effect on a larval mitotic checkpoint and methyl methanesulfonate (MMS) sensitivity. We also tested the role of mei-41 in a recently characterized checkpoint that delays metaphase/anaphase transition after DNA damage in cellular embryos. We then compare five existing mei-41 alleles to the null with respect to known phenotypes (female sterility, cell cycle checkpoints, and MMS resistance). We find that not all phenotypes are affected equally by each allele, i.e., the functions of MEI-41 in ensuring fertility, cell cycle regulation, and resistance to genotoxins are genetically separable. We propose that MEI-41 acts not in a single rigid signal transduction pathway, but in multiple molecular contexts to carry out its many functions. Sequence analysis identified mutations, which, for most alleles, fall in the poorly characterized region outside the kinase domain; this allowed us to tentatively identify additional functional domains of MEI-41 that could be subjected to future structure-function studies of this key molecule. PMID:12807779

  19. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-04

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.

  20. Dual inhibition of ATR and ATM potentiates the activity of trabectedin and lurbinectedin by perturbing the DNA damage response and homologous recombination repair.

    PubMed

    Lima, Michelle; Bouzid, Hana; Soares, Daniele G; Selle, Frédéric; Morel, Claire; Galmarini, Carlos M; Henriques, João A P; Larsen, Annette K; Escargueil, Alexandre E

    2016-05-03

    Trabectedin (Yondelis®, ecteinascidin-743, ET-743) is a marine-derived natural product approved for treatment of advanced soft tissue sarcoma and relapsed platinum-sensitive ovarian cancer. Lurbinectedin is a novel anticancer agent structurally related to trabectedin. Both ecteinascidins generate DNA double-strand breaks that are processed through homologous recombination repair (HRR), thereby rendering HRR-deficient cells particularly sensitive. We here characterize the DNA damage response (DDR) to trabectedin and lurbinectedin in HeLa cells. Our results show that both compounds activate the ATM/Chk2 (ataxia-telangiectasia mutated/checkpoint kinase 2) and ATR/Chk1 (ATM and RAD3-related/checkpoint kinase 1) pathways. Interestingly, pharmacological inhibition of Chk1/2, ATR or ATM is not accompanied by any significant improvement of the cytotoxic activity of the ecteinascidins while dual inhibition of ATM and ATR strongly potentiates it. Accordingly, concomitant inhibition of both ATR and ATM is an absolute requirement to efficiently block the formation of γ-H2AX, MDC1, BRCA1 and Rad51 foci following exposure to the ecteinascidins. These results are not restricted to HeLa cells, but are shared by cisplatin-sensitive and -resistant ovarian carcinoma cells. Together, our data identify ATR and ATM as central coordinators of the DDR to ecteinascidins and provide a mechanistic rationale for combining these compounds with ATR and ATM inhibitors.

  1. LRRK2 interacts with ATM and regulates Mdm2-p53 cell proliferation axis in response to genotoxic stress.

    PubMed

    Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li

    2017-11-15

    Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. ATM activation in normal human tissues and testicular cancer.

    PubMed

    Bartkova, Jirina; Bakkenist, Christopher J; Rajpert-De Meyts, Ewa; Skakkebaek, Niels E; Sehested, Maxwell; Lukas, Jiri; Kastan, Michael B; Bartek, Jiri

    2005-06-01

    The ATM kinase is a tumor suppressor and key regulator of biological responses to DNA damage. Cultured cells respond to genotoxic insults that induce DNA double-strand breaks by prompt activation of ATM through its autophosphorylation on serine 1981. However, whether ATM-S1981 becomes phosphorylated in vivo, for example during physiological processes that generate DSBs, is unknown. Here we produced phospho-specific monoclonal antibodies against S1981-phosphorylated ATM (pS-ATM), and applied them to immunohistochemical analyses of a wide range of normal human tissues and testicular tumors. Our data show that regardless of proliferation and differentiation, most human tissues contain only the S1981-nonphosphorylated, inactive form of ATM. In contrast, nuclear staining for pS-ATM was detected in subsets of bone-marrow lymphocytes and primary spermatocytes in the adult testes, cell types in which DSBs are generated during physiological V(D)J recombination and meiotic recombination, respectively. Among testicular germ-cell tumors, an aberrant constitutive pS-ATM was observed especially in embryonal carcinomas, less in seminomas, and only modestly in teratomas and the pre-invasive carcinoma-in-situ stage. Compared with pS-ATM, phosphorylated histone H2AX (gammaH2AX), another DNA damage marker and ATM substrate, was detected in a higher proportion of cancer cells, and also in normal fetal gonocytes, and a wider range of adult spermatocyte differentiation stages. Collectively, our results strongly support the physiological relevance of the recently proposed model of ATM autoactivation, and provide further evidence for constitutive activation of the DNA damage machinery during cancer development. The new tools characterized here should facilitate monitoring of ATM activation in clinical specimens, and help develop future treatment strategies.

  3. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit

    PubMed Central

    Palii, Stela S.; Cui, Yuxia; Innes, Cynthia L.; Paules, Richard S.

    2013-01-01

    Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G₂/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G₂/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G₂/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G₂/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments. PMID:23462183

  4. Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM

    PubMed Central

    Bower, Jacquelyn J.; Zhou, Yingchun; Zhou, Tong; Simpson, Dennis A.; Arlander, Sonnet J.; Paules, Richard S.; Cordeiro-Stone, Marila; Kaufmann, William K.

    2010-01-01

    The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF

  5. ATM Quality of Service Tests for Digitized Video Using ATM Over Satellite: Laboratory Tests

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Brooks, David E.; Frantz, Brian D.

    1997-01-01

    A digitized video application was used to help determine minimum quality of service parameters for asynchronous transfer mode (ATM) over satellite. For these tests, binomially distributed and other errors were digitally inserted in an intermediate frequency link via a satellite modem and a commercial gaussian noise generator. In this paper, the relation- ship between the ATM cell error and cell loss parameter specifications is discussed with regard to this application. In addition, the video-encoding algorithms, test configurations, and results are presented in detail.

  6. The E3 ubiquitin ligase Mule acts through the ATM-p53 axis to maintain B lymphocyte homeostasis.

    PubMed

    Hao, Zhenyue; Duncan, Gordon S; Su, Yu-Wen; Li, Wanda Y; Silvester, Jennifer; Hong, Claire; You, Han; Brenner, Dirk; Gorrini, Chiara; Haight, Jillian; Wakeham, Andrew; You-Ten, Annick; McCracken, Susan; Elia, Andrew; Li, Qinxi; Detmar, Jacqui; Jurisicova, Andrea; Hobeika, Elias; Reth, Michael; Sheng, Yi; Lang, Philipp A; Ohashi, Pamela S; Zhong, Qing; Wang, Xiaodong; Mak, Tak W

    2012-01-16

    Cellular homeostasis is controlled by pathways that balance cell death with survival. Mcl-1 ubiquitin ligase E3 (Mule) is an E3 ubiquitin ligase that targets the proapoptotic molecule p53 for polyubiquitination and degradation. To elucidate the role of Mule in B lymphocyte homeostasis, B cell-specific Mule knockout (BMKO) mice were generated using the Cre-LoxP recombination system. Analysis of BMKO mice showed that Mule was essential for B cell development, proliferation, homeostasis, and humoral immune responses. p53 transactivation was increased by two- to fourfold in Mule-deficient B cells at steady state. Genetic ablation of p53 in BMKO mice restored B cell development, proliferation, and homeostasis. p53 protein was increased in resting Mule-deficient mouse embryonic fibroblasts (MEFs) and embryonic stem (ES) cells. Loss of Mule in both MEFs and B cells at steady state resulted in increased levels of phospho-ataxia telangiectasia mutated (ATM) and the ATM substrate p53. Under genotoxic stress, BMKO B cells were resistant to apoptosis, and control MEFs exhibited evidence of a physical interaction between Mule and phospho-ATM. Phospho-ATM, phospho-p53, and Brca1 levels were reduced in Mule-deficient B cells and MEFs subjected to genotoxic stress. Thus, Mule regulates the ATM-p53 axis to maintain B cell homeostasis under both steady-state and stress conditions.

  7. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

    PubMed

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland; Tashiro, Satoshi

    2018-05-08

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. © 2018, Sun et al.

  8. Traffic Management in ATM Networks Over Satellite Links

    NASA Technical Reports Server (NTRS)

    Goyal, Rohit; Jain, Raj; Goyal, Mukul; Fahmy, Sonia; Vandalore, Bobby; vonDeak, Thomas

    1999-01-01

    This report presents a survey of the traffic management Issues in the design and implementation of satellite Asynchronous Transfer Mode (ATM) networks. The report focuses on the efficient transport of Transmission Control Protocol (TCP) traffic over satellite ATM. First, a reference satellite ATM network architecture is presented along with an overview of the service categories available in ATM networks. A delay model for satellite networks and the major components of delay and delay variation are described. A survey of design options for TCP over Unspecified Bit Rate (UBR), Guaranteed Frame Rate (GFR) and Available Bit Rate (ABR) services in ATM is presented. The main focus is on traffic management issues. Several recommendations on the design options for efficiently carrying data services over satellite ATM networks are presented. Most of the results are based on experiments performed on Geosynchronous (GEO) latencies. Some results for Low Earth Orbits (LEO) and Medium Earth Orbit (MEO) latencies are also provided.

  9. Radiobiological Characterization of Tuberous Sclerosis: a Delay in the Nucleo-Shuttling of ATM May Be Responsible for Radiosensitivity.

    PubMed

    Ferlazzo, Mélanie L; Bach-Tobdji, Mohamed Kheir Eddine; Djerad, Amar; Sonzogni, Laurène; Devic, Clément; Granzotto, Adeline; Bodgi, Larry; Bachelet, Jean-Thomas; Djefal-Kerrar, Assia; Hennequin, Christophe; Foray, Nicolas

    2018-06-01

    The tuberous sclerosis complex (TSC) syndrome is associated with numerous cutaneous pathologies (notably on the face), epilepsy, intellectual disability and developmental retardation and, overall, high occurrence of benign tumors in several organs, like angiofibromas, giant cell astrocytomas, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis. TSC is caused by mutations of either of the hamartin or tuberin proteins that are mainly cytoplasmic. Some studies published in the 1980s reported that TSC is associated with radiosensitivity. However, its molecular basis in TSC cells is not documented enough. Here, we examined the functionality of the repair and signaling of radiation-induced DNA double-strand breaks (DSB) in fibroblasts derived from TSC patients. Quiescent TSC fibroblast cells elicited abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated TSC cells also presented a delay in the nucleo-shuttling of the ATM kinase, potentially due to a specific binding of ATM to mutated TSC protein in cytoplasm. Lastly, TSC fibroblasts showed abnormally high MRE11 nuclease activity suggesting genomic instability. A combination of biphosphonates and statins complemented these impairments by facilitating the nucleoshuttling of ATM and increasing the yield of recognized DSB. Our results showed that TSC belongs to the group of syndromes associated with low but significant defect of DSB signaling and delay in the ATM nucleo-shuttling associated with radiosensitivity.

  10. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  11. ATM protein is deficient in over 40% of lung adenocarcinomas

    PubMed Central

    Villaruz, Liza C.; Jones, Helen; Dacic, Sanja; Abberbock, Shira; Kurland, Brenda F.; Stabile, Laura P.; Siegfried, Jill M.; Conrads, Thomas P.; Smith, Neil R.; O'Connor, Mark J.; Pierce, Andrew J.; Bakkenist, Christopher J.

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality in the USA and worldwide, and of the estimated 1.2 million new cases of lung cancer diagnosed every year, over 30% are lung adenocarcinomas. The backbone of 1st-line systemic therapy in the metastatic setting, in the absence of an actionable oncogenic driver, is platinum-based chemotherapy. ATM and ATR are DNA damage signaling kinases activated at DNA double-strand breaks (DSBs) and stalled and collapsed replication forks, respectively. ATM protein is lost in a number of cancer cell lines and ATR kinase inhibitors synergize with cisplatin to resolve xenograft models of ATM-deficient lung cancer. We therefore sought to determine the frequency of ATM loss in a tissue microarray (TMA) of lung adenocarcinoma. Here we report the validation of a commercial antibody (ab32420) for the identification of ATM by immunohistochemistry and estimate that 61 of 147 (41%, 95% CI 34%-50%) cases of lung adenocarcinoma are negative for ATM protein expression. As a positive control for ATM staining, nuclear ATM protein was identified in stroma and immune infiltrate in all evaluable cases. ATM loss in lung adenocarcinoma was not associated with overall survival. However, our preclinical findings in ATM-deficient cell lines suggest that ATM could be a predictive biomarker for synergy of an ATR kinase inhibitor with standard-of-care cisplatin. This could improve clinical outcome in 100,000's of patients with ATM-deficient lung adenocarcinoma every year. PMID:27259260

  12. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage

    PubMed Central

    Ortega-Atienza, Sara; Wong, Victor C.; DeLoughery, Zachary; Luczak, Michal W.; Zhitkovich, Anatoly

    2016-01-01

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA. PMID:26420831

  13. Alterations of ATM and CADM1 in chromosomal 11q22.3-23.2 region are associated with the development of invasive cervical carcinoma.

    PubMed

    Mazumder Indra, Dipanjana; Mitra, Sraboni; Roy, Anup; Mondal, Ranajit Kumar; Basu, Partha Sarathi; Roychoudhury, Susanta; Chakravarty, Runu; Panda, Chinmay Kumar

    2011-12-01

    To understand the importance of chr11q22.3-23.2 region in the development of cervical cancer, we have studied the genetic and epigenetic alterations of the candidate genes ATM, PPP2R1B, SDHD and CADM1 in cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CACX) samples. Our study revealed low expression and high alterations (methylation/deletion) (55-59%) of ATM and CADM1 genes along with poor patient outcome. The alterations of ATM and CADM1 are associated with the progression of tumor from CIN to Stage I/II, thus implying their role in early invasiveness. The two genes, PPP2R1B and SDHD, lying in between ATM and CADM1, have low frequency of alterations, and majority of the alterations are in CACX samples, indicating that their alterations might be associated with disease progression. Expressions (mRNA/protein) of the genes showed concordance with their molecular alterations. Significant co-alteration of ATM and CADM1 points to their synergic action for the development of CACX. Mutation is, however, a rare phenomenon for inactivation of ATM. Association between the alteration of ATM and CHEK1 and poor survival of the patients having co-alterations of ATM and CHEK1 points to the DNA damage response pathway disruption in development of CACX. Thus, our data suggest that inactivation of ATM-CHEK1-associated DNA damage response pathway and CADM1-associated signaling network might have an important role in the development of CACX.

  14. ATM Expression Predicts Veliparib and Irinotecan Sensitivity in Gastric Cancer by Mediating P53-Independent Regulation of Cell Cycle and Apoptosis.

    PubMed

    Subhash, Vinod Vijay; Tan, Shi Hui; Yeo, Mei Shi; Yan, Fui Leng; Peethala, Praveen C; Liem, Natalia; Krishnan, Vaidehi; Yong, Wei Peng

    2016-12-01

    Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC 50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    PubMed Central

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  16. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes

    PubMed Central

    Zhou, Kaixin; Bellenguez, Celine; Spencer, Chris CA; Bennett, Amanda J; Coleman, Ruth L; Tavendale, Roger; Hawley, Simon A.; Donnelly, Louise A; Schofield, Chris; Groves, Christopher J; Burch, Lindsay; Carr, Fiona; Strange, Amy; Freeman, Colin; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Craddock, Nicholas; Deloukas, Panos; Dronov, Serge; Duncanson, Audrey; Edkins, Sarah; Gray, Emma; Hunt, Sarah; Jankowski, Janusz; Langford, Cordelia; Markus, Hugh S; Mathew, Christopher G; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Samani, Nilesh J; Trembath, Richard; Viswanathan, Ananth C; Wood, Nicholas W; Harries, Lorna W; Hattersley, Andrew T; Doney, Alex SF; Colhoun, Helen; Morris, Andrew D; Sutherland, Calum; Hardie, D. Grahame; Peltonen, Leena; McCarthy, Mark I; Holman, Rury R.; Palmer, Colin N.A.; Donnelly, Peter; Pearson, Ewan R

    2010-01-01

    Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We carried out a GWA study on glycaemic response to metformin in 1024 Scottish patients with type 2 diabetes. Replication was in two cohorts consisting of 1783 Scottish patients and 1113 patients from the UK Prospective Diabetes Study. In a meta-analysis (n=3920) we observed an association (P=2.9 *10−9) for a SNP rs11212617 at a locus containing the ataxia telangiectasia mutated (ATM) gene with an odds ratio of 1.35 (95% CI 1.22 to 1.49) for treatment success. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMPK in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMPK, and variation in this gene alters glycaemic response to metformin. PMID:21186350

  17. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    PubMed

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells.

    PubMed

    Nadkarni, Aditi; Shrivastav, Meena; Mladek, Ann C; Schwingler, Paul M; Grogan, Patrick T; Chen, Junjie; Sarkaria, Jann N

    2012-12-01

    Ataxia telangiectasia mutated (ATM) kinase is critical in sensing and repairing DNA double-stranded breaks (DSBs) such as those induced by temozolomide (TMZ). ATM deficiency increases TMZ sensitivity, which suggests that ATM inhibitors may be effective TMZ sensitizing agents. In this study, the TMZ sensitizing effects of 2 ATM specific inhibitors were studied in established and xenograft-derived glioblastoma (GBM) lines that are inherently sensitive to TMZ and derivative TMZ-resistant lines. In parental U251 and U87 glioma lines, the addition of KU-55933 to TMZ significantly increased cell killing compared to TMZ alone [U251 survival: 0.004 ± 0.0015 vs. 0.08 ± 0.01 (p < 0.001), respectively, and U87 survival: 0.02 ± 0.005 vs. 0.04 ± 0.002 (p < 0.001), respectively] and also elevated the fraction of cells arrested in G2/M [U251 G2/M fraction: 61.8 ± 1.1 % vs. 35 ± 0.8 % (p < 0.001), respectively, and U87 G2/M fraction 25 ± 0.2 % vs.18.6 ± 0.4 % (p < 0.001), respectively]. In contrast, KU-55933 did not sensitize the resistant lines to TMZ, and neither TMZ alone or combined with KU-55933 induced a G2/M arrest. While KU-55933 did not enhance TMZ induced Chk1/Chk2 activation, it increased TMZ-induced residual γ-H2AX foci in the parental cells but not in the TMZ resistant cells. Similar sensitization was observed with either KU-55933 or CP-466722 combined with TMZ in GBM12 xenograft line but not in GBM12TMZ, which is resistant to TMZ due to MGMT overexpression. These findings are consistent with a model where ATM inhibition suppresses the repair of TMZ-induced DSBs in inherently TMZ-sensitive tumor lines, which suggests an ATM inhibitor potentially could be deployed with an improvement in the therapeutic window when combined with TMZ.

  19. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma.

    PubMed

    Lung, Raymond W-M; Hau, Pok-Man; Yu, Ken H-O; Yip, Kevin Y; Tong, Joanna H-M; Chak, Wing-Po; Chan, Anthony W-H; Lam, Ka-Hei; Lo, Angela Kwok-Fung; Tin, Edith K-Y; Chau, Shuk-Ling; Pang, Jesse C-S; Kwan, Johnny S-H; Busson, Pierre; Young, Lawrence S; Yap, Lee-Fah; Tsao, Sai-Wah; To, Ka-Fai; Lo, Kwok-Wai

    2018-04-01

    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors

  20. ATM LAN Emulation: Getting from Here to There.

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses current LAN (local area network) configuration and explains ATM (asynchronous transfer mode) as the future telecommunications transport. Highlights include LAN emulation, which enables the interconnection of legacy LANs and the new ATM environment; virtual LANs; broadcast servers; and standards. (LRW)

  1. ATM: The Key To Harnessing the Power of Networked Multimedia.

    ERIC Educational Resources Information Center

    Gross, Rod

    1996-01-01

    ATM (Asynchronous Transfer Mode) network technology handles the real-time continuous traffic flow necessary to support desktop multimedia applications. Describes network applications already used: desktop video collaboration, distance learning, and broadcasting video delivery. Examines the architecture of ATM technology, video delivery and sound…

  2. ATM Technology Adoption in U.S. Campus Networking.

    ERIC Educational Resources Information Center

    Yao, Engui; Perry, John F.; Anderson, Larry S.; Brook, R. Dan; Hare, R. Dwight; Moore, Arnold J.; Xu, Xiaohe

    This study examined the relationships between ATM (asynchronous transfer mode) adoption in universities and four organizational variables: university size, type, finances, and information processing maturity. Another purpose of the study was to identify the current status of ATM adoption in campus networking. Subjects were university domain LAN…

  3. Multimedia Applications in Heterogeneous Internet/ATM Environments.

    ERIC Educational Resources Information Center

    Wolf, Lars C.

    1999-01-01

    Discussion of multimedia systems focuses on interaction approaches for the quality of service (QoS) architectures developed for the Internet and for asynchronous transfer mode (ATM). Highlights include interactions, videoconferencing, video on demand, a comparison of the ATM and IntServ QoS architectures, interaction models, and subordination…

  4. Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity in vitro and in vivo.

    PubMed

    Li, Yan; Li, Luchun; Wu, Zhijuan; Wang, Lulu; Wu, Yongzhong; Li, Dairong; Ma, Uiwen; Shao, Jianghe; Yu, Huiqing; Wang, Donglin

    2017-07-01

    Evidence has shown that both high expression of the ataxia-telangiectasia mutated (ATM) gene and glioma stem cells (GSCs) are responsible for radioresistance in glioma. Thus, we hypothesized that brain tumor radiosensitivity may be enhanced via silencing of the ATM gene in GSCs. In the present study we successfully induced GSCs from two cell lines and used CD133 and nestin to identify GSCs. A lentivirus was used to deliver siRNA-ATMPuro (A group) to GSCs prior to radiation, while siRNA-HKPuro (N group) and GSCs (C group) were used as negative and blank controls, respectively. RT-qPCR and western blotting were performed to verify the efficiency of the siRNA-ATM technique. The expression of the ATM gene and ATM protein were significantly downregulated post-transfection. Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that the A group demonstrated weak cell proliferation and lower survival fractions post-irradiation compared to the C/N groups. Flow cytometry was used to examine the percentage of cell apoptosis and G2 phase arrest, which were both higher in the A group than in the C/N groups. We found that the comet tail percentage evaluated by comet assay was higher in the A group than in the C/N groups. After radiation treatment, three radiosensitive genes [p53, proliferating cell nuclear antigen (PCNA), survivin] exhibited a decreasing tendency as determined by RT-qPCR. Mice underwent subcutaneous implantation, followed by radiation, and the resulting necrosis and hemorrhage were more obvious in the A group than in the N groups. In conclusion, silencing of ATM via the siRNA technique improved radiosensitivity of GSCs both in vitro and in vivo.

  5. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  6. FPGA Based Reconfigurable ATM Switch Test Bed

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Jones, Robert E.

    1998-01-01

    Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.

  7. ATM test and integration. [Skylab Apollo Telescope Mount

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mitchell, J. R.

    1974-01-01

    The test and checkout philosophy of the test program for the Skylab ATM module and the overall test flow including in-process, post-manufacturing, vibration, thermal vacuum, and prelaunch checkout activities are described. Capabilities and limitations of the test complex and its use of automation are discussed. Experiences with the organizational principle of using a dedicated test team for all checkout activities are reported. Material on the development of the ATM subsystems, the experimental program and the requirements of the scientific community, and the integration and verification of the complex systems/subsystems of the ATM are presented. The performance of the ATM test program in such areas as alignment, systems and subsystems, contamination control, and experiment operation is evaluated. The conclusions and recommendations resulting from the ATM test program are enumerated.

  8. Genetic variants in ATM, H2AFX and MRE11 genes and susceptibility to breast cancer in the polish population.

    PubMed

    Podralska, Marta; Ziółkowska-Suchanek, Iwona; Żurawek, Magdalena; Dzikiewicz-Krawczyk, Agnieszka; Słomski, Ryszard; Nowak, Jerzy; Stembalska, Agnieszka; Pesz, Karolina; Mosor, Maria

    2018-04-20

    DNA damage repair is a complex process, which can trigger the development of cancer if disturbed. In this study, we hypothesize a role of variants in the ATM, H2AFX and MRE11 genes in determining breast cancer (BC) susceptibility. We examined the whole sequence of the ATM kinase domain and estimated the frequency of founder mutations in the ATM gene (c.5932G > T, c.6095G > A, and c.7630-2A > C) and single nucleotide polymorphisms (SNPs) in H2AFX (rs643788, rs8551, rs7759, and rs2509049) and MRE11 (rs1061956 and rs2155209) among 315 breast cancer patients and 515 controls. The analysis was performed using high-resolution melting for new variants and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for recurrent ATM mutations. H2AFX and MRE11 polymorphisms were analyzed using TaqMan assays. The cumulative genetic risk scores (CGRS) were calculated using unweighted and weighted approaches. We identified four mutations (c.6067G > A, c.8314G > A, c.8187A > T, and c.6095G > A) in the ATM gene in three BC cases and two control subjects. We observed a statistically significant association of H2AFX variants with BC. Risk alleles (the G of rs7759 and the T of rs8551 and rs2509049) were observed more frequently in BC cases compared to the control group, with P values, odds ratios (OR) and 95% confidence intervals (CIs) of 0.0018, 1.47 (1.19 to 1.82); 0.018, 1.33 (1.09 to 1.64); and 0.024, 1.3 (1.06 to 1.59), respectively. Haplotype-based tests identified a significant association of the H2AFX CACT haplotype with BC (P <  0.0001, OR = 27.29, 95% CI 3.56 to 209.5). The risk of BC increased with the growing number of risk alleles. The OR (95% CI) for carriers of ≥ four risk alleles was 1.71 (1.11 to 2.62) for the CGRS. This study confirms that H2AFX variants are associated with an increased risk of BC. The above-reported sequence variants of MRE11 genes may not constitute a risk factor of breast

  9. Biallelic ATM alterations detected at diagnosis identify a subset of treatment-naïve chronic lymphocytic leukemia patients with reduced overall survival similar to patients with p53 deletion.

    PubMed

    Lozano-Santos, Carol; García-Vela, José A; Pérez-Sanz, Nuria; Nova-Gurumeta, Sara; Fernandez-Cuevas, Belen; Gomez-Lozano, Natalia; Sánchez-Beato, Margarita; Sanchez-Godoy, Pedro; Bueno, José Luis; Garcia-Marco, José A

    2017-04-01

    The prognostic impact of biallelic ATM abnormalities (ATM mutation and concurrent 11q deletion) remains unknown. We studied ATM, BIRC3, SF3B1, and NOTCH1 genes in 118 treatment-naïve CLL patients at diagnosis. Patients with biallelic ATM alteration had a similar time to first treatment (TTFT) and shorter overall survival (OS) compared with patients with isolated 11q deletion and shorter TTFT and OS when compared to patients with wild-type ATM. Furthermore, biallelic ATM alteration (HR: 6.4; p ≤ 0.007) was significantly associated with an increased risk of death similar to p53 deletion (HR: 6.1; p ≤ 0.004), superior to 11q deletion alone (HR: 2.8; p ≤ 0.022) and independent of other significant parameters such as age, advanced clinical stage, and complex karyotype. Our results suggest the identification of ATM mutations in CLL patients with 11q deletion at diagnosis is clinically relevant and predicts disease progression, poor response to the treatment, and reduced OS independent of other molecular prognostic factors.

  10. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye.

    PubMed

    Rodrigues, Paulo M G; Grigaravicius, Paulius; Remus, Martina; Cavalheiro, Gabriel R; Gomes, Anielle L; Rocha-Martins, Maurício; Martins, Mauricio R; Frappart, Lucien; Reuss, David; McKinnon, Peter J; von Deimling, Andreas; Martins, Rodrigo A P; Frappart, Pierre-Olivier

    2013-01-01

    Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.

  11. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage.

    PubMed

    Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2018-02-01

    Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.

  12. Scenarios for control and data flows in multiprotocol over ATM

    NASA Astrophysics Data System (ADS)

    Kujoory, Ali

    1997-10-01

    The multiprotocol over ATM (MPOA), specified by the ATM Forum, provides an architecture for transfer of Internetwork layer packets (Layer 3 datagram such as IP, IPX) over ATM subnets or across the emulated LANs. MPOA provides shortcuts that bypass routers to avoid router bottlenecks. It is a grand union of some of the existing standards such as LANE by the ATM Forum, NHRP by the IETF, and the Q.2931 by ITU. The intent of this paper is to clarify the data flows between pairs of source and destination hosts in an MPOA system. It includes scenarios for both the intra- and inter-subnet flows between different pairs of MPOA end-systems. The intrasubnet flows simply use LANE for address resolution or data transfer. The inter-subnet flows may use a default path for short-lived flows or a shortcut for long-lived flows. The default path uses the LANE and router capabilities. The shortcut path uses LANE plus NHRP for ATM address resoluton. An ATM virtual circuit is established before the data transfer. This allows efficient transfer of internetwork layer packets over ATM for real-time applications.

  13. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks.

    PubMed

    Pennisi, Rosa; Antoccia, Antonio; Leone, Stefano; Ascenzi, Paolo; di Masi, Alessandra

    2017-08-01

    The molecular chaperone heat shock protein 90 (Hsp90α) regulates cell proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ataxia-telangiectasia-mutated kinase (ATM) and nibrin (NBN), but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cell lines. Hsp90α-ATM and Hsp90α-NBN complexes are present in unstressed and irradiated cells, allowing the maintenance of ATM and NBN stability that is required for the MRE11/RAD50/NBN complex-dependent ATM activation and the ATM-dependent phosphorylation of both NBN and Hsp90α in response to IR-induced DNA double-strand breaks (DSBs). Hsp90α forms a complex also with ph-Ser1981-ATM following IR. Upon phosphorylation, NBN dissociates from Hsp90α and translocates at the DSBs, while phThr5/7-Hsp90α is not recruited at the damaged sites. The inhibition of Hsp90α affects nuclear localization of MRE11 and RAD50, impairs DDR signaling (e.g., BRCA1 and CHK2 phosphorylation), and slows down DSBs repair. Hsp90α inhibition does not affect DNA-dependent protein kinase (DNA-PK) activity, which possibly phosphorylates Hsp90α and H2AX after IR. Notably, Hsp90α inhibition causes H2AX phosphorylation in proliferating cells, this possibly indicating replication stress events. Overall, present data shed light on the regulatory role of Hsp90α on the DDR, controlling ATM and NBN stability and influencing the DSBs signaling and repair. © 2017 Federation of European Biochemical Societies.

  14. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  15. Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling

    PubMed Central

    Li, Wei; Zhao, Yuguang; Wen, Xue; Liang, Xinyue; Zhang, Xiaoying; Zhou, Lei; Hu, Jifan; Niu, Chao; Tian, Huimin; Han, Fujun; Chen, Xiao; Dong, Lihua; Cai, Lu; Cui, Jiuwei

    2016-01-01

    Low-dose radiation (LDR) induces hormesis and adaptive response in normal cells but not in cancer cells, suggesting its potential protection of normal tissue against damage induced by conventional radiotherapy. However, the underlying mechanisms are not well established. We addressed this in the present study by examining the role of the ataxia telangiectasia mutated (ATM) signaling pathway in response to LDR using A549 human lung adenocarcinoma cells and HBE135-E6E7 (HBE) normal lung epithelial cells. We found that LDR-activated ATM was the initiating event in hormesis and adaptive response to LDR in HBE cells. ATM activation increased the expression of CDK4/CDK6/cyclin D1 by activating the AKT/glycogen synthase kinase (GSK)-3β signaling pathway, which stimulated HBE cell proliferation. Activation of ATM/AKT/GSK-3β signaling also increased nuclear accumulation of nuclear factor erythroid 2-related factor 2, leading to increased expression of antioxidants, which mitigated cellular damage from excessive reactive oxygen species production induced by high-dose radiation. However, these effects were not observed in A549 cells. Thus, the failure to activate these pathways in A549 cells likely explains the difference between normal and cancer cells in terms of hormesis and adaptive response to LDR. PMID:27708248

  16. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair

    PubMed Central

    Serrano, Moises A.; Li, Zhengke; Dangeti, Mohan; Musich, Phillip R.; Patrick, Steve; Roginskaya, Marina; Cartwright, Brian; Zou, Yue

    2012-01-01

    Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two distinct DNA double-strand break (DSB) repair pathways. Here we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR. PMID:22797063

  17. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair.

    PubMed

    Serrano, M A; Li, Z; Dangeti, M; Musich, P R; Patrick, S; Roginskaya, M; Cartwright, B; Zou, Y

    2013-05-09

    Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.

  18. Coinheritance of a novel mutation on the HBA1 gene: c.187delG (p.W62fsX66) [codon 62 (-G) (α1)] with the α212 patchwork allele and Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T].

    PubMed

    Scheps, Karen G; De Paula, Silvia M; Bitsman, Alicia R; Freigeiro, Daniel H; Basack, F Nora; Pennesi, Sandra P; Varela, Viviana

    2013-01-01

    We describe a novel frameshift mutation on the HBA1 gene (c.187delG), causative of α-thalassemia (α-thal) in a Black Cuban family with multiple sequence variants in the HBA genes and the Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T] mutation. The deletion of the first base of codon 62 resulted in a frameshift at amino acid 62 with a putative premature termination codon (PTC) at amino acid 66 on the same exon (p.W62fsX66), which most likely triggers nonsense mediated decay of the resulting mRNA. This study also presents the first report of the α212 patchwork allele in Latin America and the description of two new sequence variants in the HBA2 region (c.-614G>A in the promoter region and c.95+39 C>T on the first intron).

  19. Advanced Traffic Management Systems (ATMS) research analysis database system

    DOT National Transportation Integrated Search

    2001-06-01

    The ATMS Research Analysis Database Systems (ARADS) consists of a Traffic Software Data Dictionary (TSDD) and a Traffic Software Object Model (TSOM) for application to microscopic traffic simulation and signal optimization domains. The purpose of thi...

  20. Virtual C Machine and Integrated Development Environment for ATMS Controllers.

    DOT National Transportation Integrated Search

    2000-04-01

    The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...

  1. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage

    PubMed Central

    Maya, Ruth; Balass, Moshe; Kim, Seong-Tae; Shkedy, Dganit; Leal, Juan-Fernando Martinez; Shifman, Ohad; Moas, Miri; Buschmann, Thomas; Ronai, Ze'ev; Shiloh, Yosef; Kastan, Michael B.; Katzir, Ephraim; Oren, Moshe

    2001-01-01

    The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2. PMID:11331603

  2. ATM Polymorphisms Predict Severe Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    SciTech Connect

    Xiong, Huihua; Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Liao, Zhongxing, E-mail: zliao@mdanderson.org

    2013-03-15

    Purpose: The ataxia telangiectasia mutated (ATM) gene mediates detection and repair of DNA damage. We investigated associations between ATM polymorphisms and severe radiation-induced pneumonitis (RP). Methods and Materials: We genotyped 3 potentially functional single nucleotide polymorphisms (SNPs) of ATM (rs1801516 [D1853N/5557G>A], rs189037 [-111G>A] and rs228590) in 362 patients with non-small cell lung cancer (NSCLC), who received definitive (chemo)radiation therapy. The cumulative severe RP probabilities by genotypes were evaluated using the Kaplan-Meier analysis. The associations between severe RP risk and genotypes were assessed by both logistic regression analysis and Cox proportional hazard model with time to event considered. Results: Of 362more » patients (72.4% of non-Hispanic whites), 56 (15.5%) experienced grade ≥3 RP. Patients carrying ATM rs189037 AG/GG or rs228590 TT/CT genotypes or rs189037G/rs228590T/rs1801516G (G-T-G) haplotype had a lower risk of severe RP (rs189037: GG/AG vs AA, adjusted hazard ratio [HR] = 0.49, 95% confidence interval [CI], 0.29-0.83, P=.009; rs228590: TT/CT vs CC, HR=0.57, 95% CI, 0.33-0.97, P=.036; haplotype: G-T-G vs A-C-G, HR=0.52, 95% CI, 0.35-0.79, P=.002). Such positive findings remained in non-Hispanic whites. Conclusions: ATM polymorphisms may serve as biomarkers for susceptibility to severe RP in non-Hispanic whites. Large prospective studies are required to confirm our findings.« less

  3. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models

    PubMed Central

    Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G.; Pike, Kurt G.; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Barrett, Ian; Jones, Gemma; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Cronin, Anna; Chapman, Melissa; Illingworth, Ruth; Pass, Martin

    2018-01-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase–related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies. PMID:29938225

  4. Protein Phosphatase 2A Antagonizes ATM and ATR in a Cdk2- and Cdc7-Independent DNA Damage Checkpoint

    PubMed Central

    Petersen, Paris; Chou, Danny M.; You, Zhongsheng; Hunter, Tony; Walter, Johannes C.; Walter, Gernot

    2006-01-01

    We previously used a soluble cell-free system derived from Xenopus eggs to investigate the role of protein phosphatase 2A (PP2A) in chromosomal DNA replication. We found that immunodepletion of PP2A or inhibition of PP2A by okadaic acid (OA) inhibits initiation of DNA replication by preventing loading of the initiation factor Cdc45 onto prereplication complexes. Evidence was provided that PP2A counteracts an inhibitory protein kinase that phosphorylates and inactivates a crucial Cdc45 loading factor. Here, we report that the inhibitory effect of OA is abolished by caffeine, an inhibitor of the checkpoint kinases ataxia-telangiectasia mutated protein (ATM) and ataxia-telangiectasia related protein (ATR) but not by depletion of ATM or ATR from the extract. Furthermore, we demonstrate that double-strand DNA breaks (DSBs) cause inhibition of Cdc45 loading and initiation of DNA replication and that caffeine, as well as immunodepletion of either ATM or ATR, abolishes this inhibition. Importantly, the DSB-induced inhibition of Cdc45 loading is prevented by addition of the catalytic subunit of PP2A to the extract. These data suggest that DSBs and OA prevent Cdc45 loading through different pathways, both of which involve PP2A, but only the DSB-induced checkpoint implicates ATM and ATR. The inhibitory effect of DSBs on Cdc45 loading does not result from downregulation of cyclin-dependent kinase 2 (Cdk2) or Cdc7 activity and is independent of Chk2. However, it is partially dependent on Chk1, which becomes phosphorylated in response to DSBs. These data suggest that PP2A counteracts ATM and ATR in a DNA damage checkpoint in Xenopus egg extracts. PMID:16479016

  5. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models.

    PubMed

    Durant, Stephen T; Zheng, Li; Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G; Fok, Jacqueline H L; Hunt, Tom; Pike, Kurt G; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Reddy, Venkatesh Pilla; Sykes, Andrew; Janefeldt, Annika; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Roberts, Caroline; Barrett, Ian; Jones, Gemma; Roudier, Martine; Pierce, Andrew; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Karlin, Jeremy; Cronin, Anna; Chapman, Melissa; Valerie, Kristoffer; Illingworth, Ruth; Pass, Martin

    2018-06-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC 50 , 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11 C-labeled AZD1390 ( K p,uu , 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G 2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.

  6. WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response

    PubMed Central

    Abu-Odeh, Mohammad; Salah, Zaidoun; Herbel, Christoph; Hofmann, Thomas G.; Aqeilan, Rami I.

    2014-01-01

    Genomic instability is a hallmark of cancer. The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor spanning the common chromosomal fragile site FRA16D. Here, we report a direct role of WWOX in DNA damage response (DDR) and DNA repair. We show that Wwox deficiency results in reduced activation of the ataxia telangiectasia-mutated (ATM) checkpoint kinase, inefficient induction and maintenance of γ-H2AX foci, and impaired DNA repair. Mechanistically, we show that, upon DNA damage, WWOX accumulates in the cell nucleus, where it interacts with ATM and enhances its activation. Nuclear accumulation of WWOX is regulated by its K63-linked ubiquitination at lysine residue 274, which is mediated by the E3 ubiquitin ligase ITCH. These findings identify a novel role for the tumor suppressor WWOX and show that loss of WWOX expression may drive genomic instability and provide an advantage for clonal expansion of neoplastic cells. PMID:25331887

  7. A Novel DDB2-ATM Feedback Loop Regulates Human Cytomegalovirus Replication

    PubMed Central

    E, Xiaofei; Savidis, George; Chin, Christopher R.; Wang, Shixia; Lu, Shan; Brass, Abraham L.

    2014-01-01

    Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication. PMID:24335308

  8. Transition in Survival From Low-Dose Hyper-Radiosensitivity to Increased Radioresistance Is Independent of Activation of ATM SER1981 Activity

    SciTech Connect

    Krueger, Sarah A.; Collis, Spencer J.; Joiner, Michael C.

    2007-11-15

    Purpose: The molecular basis of low-dose hyper-radiosensitivity (HRS) is only partially understood. The aim of this study was to define the roles of ataxia telangiectasia mutated (ATM) activity and the downstream ATM-dependent G{sub 2}-phase cell cycle checkpoint in overcoming HRS and triggering radiation resistance. Methods and Materials: Survival was measured using a high-resolution clonogenic assay. ATM Ser1981 activation was measured by Western blotting. The role of ATM was determined in survival experiments after molecular (siRNA) and chemical (0.4 mM caffeine) inhibition and chemical (20 {mu}g/mL chloroquine, 15 {mu}M genistein) activation 4-6 h before irradiation. Checkpoint responsiveness was assessed in eightmore » cell lines of differing HRS status using flow cytometry to quantify the progression of irradiated (0-2 Gy) G{sub 2}-phase cells entering mitosis, using histone H3 phosphorylation analysis. Results: The dose-response pattern of ATM activation was concordant with the transition from HRS to radioresistance. However, ATM activation did not play a primary role in initiating increased radioresistance. Rather, a relationship was discovered between the function of the downstream ATM-dependent early G{sub 2}-phase checkpoint and the prevalence and overcoming of HRS. Four cell lines that exhibited HRS failed to show low-dose (<0.3-Gy) checkpoint function. In contrast, four HRS-negative cell lines exhibited immediate cell cycle arrest for the entire 0-2-Gy dose range. Conclusion: Overcoming HRS is reliant on the function of the early G{sub 2}-phase checkpoint. These data suggest that clinical exploitation of HRS could be achieved by combining radiotherapy with chemotherapeutic agents that modulate this cell cycle checkpoint.« less

  9. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    PubMed

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  10. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM.

    PubMed

    Liu, Xiaodan; Liao, Wang; Peng, Hongxia; Luo, Xuequn; Luo, Ziyan; Jiang, Hua; Xu, Ling

    2016-01-01

    Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML). Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined. We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro. The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.

  11. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    PubMed

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy.

    PubMed

    Du, Zhongli; Zhang, Wencheng; Zhou, Yuling; Yu, Dianke; Chen, Xiabin; Chang, Jiang; Qiao, Yan; Zhang, Meng; Huang, Ying; Wu, Chen; Xiao, Zefen; Tan, Wen; Lin, Dongxin

    2015-09-01

    To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    NASA Astrophysics Data System (ADS)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  14. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  15. Differential Processing of Low and High LET Radiation Induced DNA Damage: Investigation of Switch from ATM to ATR Signaling

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.

    2011-01-01

    The members of the phosphatidylinositol kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are directly responsible for the maintenance of genomic integrity by mounting DDR through signaling and facilitating the recruitment of repair factors at the sites of DNA damage along with coordinating the deployment of cell cycle checkpoints to permit repair by phosphorylating Checkpoint kinase Chk1, Chk2 and p53. High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of protons and high energy and charged (HZE) particles from SPE (Solar Particle Event) pose a major health risk for astronauts on their space flight missions. The determination of these risks and the design of potential safeguards require sound knowledge of the biological consequences of lesion induction and the capability of the cells to counter them. We here strive to determine the coordination of ATM and ATR kinases at the break sites directly affecting checkpoint signaling and DNA repair and whether differential processing of breaks induced by low and high LET radiation leads to possible augmentation of swap of these damage sensors at the sites of DNA damage. Exposure of cells to IR triggers rapid autophosphorylation of serine-1981 that causes dimer dissociation and initiates monomer formation of ATM. ATM kinase activity depends on the disruption of the dimer, which allows access and phosphorylation of downstream ATM substrates like Chk2. Evidence suggests that ATM is activated by the alterations in higher-order chromatin structure although direct binding of ATM to DSB ends may be a crucial step in its activation. On the other hand, in case of ATR, RPA (replication protein A)-coated ssDNA (single-stranded DNA) generated as a result of stalled DNA replication or during processing of chromosomal lesions is crucial for the localization of ATR to sites of DNA damage in association with ATR-interacting protein (ATRIP). Although the

  16. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis.

    PubMed

    Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M

    2008-01-01

    Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.

  17. IP over fiber technologies: ATM/POS/SDL

    NASA Astrophysics Data System (ADS)

    Jin, Depeng; Zeng, Lieguang

    2001-10-01

    The explosive growth of Internet traffic has created the need to transport IP over high-speed links such as fiber. Three main IP over fiber technologies have been developed: ATM, POS and SDL. As ATM has been widely researched and developed, this paper mainly discusses the POS and SDL. POS is a traditional mapping method of packets, and this paper presents the realization state machine of POS and analyzes the Probability of Packet Loss. SDL is a new framing protocol for variable/fixed length of packet, which extends the HEC-liking framing mechanism used in ATM. This paper analyzes this new protocol and gives the performance results such as MTTF and PFP. Finally, the comparison of POS and SDL is provided.

  18. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS.

    PubMed

    Southey, Melissa C; Goldgar, David E; Winqvist, Robert; Pylkäs, Katri; Couch, Fergus; Tischkowitz, Marc; Foulkes, William D; Dennis, Joe; Michailidou, Kyriaki; van Rensburg, Elizabeth J; Heikkinen, Tuomas; Nevanlinna, Heli; Hopper, John L; Dörk, Thilo; Claes, Kathleen Bm; Reis-Filho, Jorge; Teo, Zhi Ling; Radice, Paolo; Catucci, Irene; Peterlongo, Paolo; Tsimiklis, Helen; Odefrey, Fabrice A; Dowty, James G; Schmidt, Marjanka K; Broeks, Annegien; Hogervorst, Frans B; Verhoef, Senno; Carpenter, Jane; Clarke, Christine; Scott, Rodney J; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; Dos-Santos-Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Bolla, Manjeet K; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Yang, Rongxi; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Bojesen, Stig; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan; Ziogas, Argyrios; Clarke, Christina A; Brenner, Hermann; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia V; Antonenkova, Natalia N; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Spurdle, Amanda B; Investigators, kConFab; Wauters, Els; Smeets, Dominiek; Beuselinck, Benoit; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Olson, Janet E; Vachon, Celine; Pankratz, Vernon S; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Kristensen, Vessela; Alnæs, Grethe Grenaker; Zheng, Wei; Hunter, David J; Lindstrom, Sara; Hankinson, Susan E; Kraft, Peter; Andrulis, Irene; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Jukkola-Vuorinen, Arja; Grip, Mervi; Kauppila, Saila; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Hollestelle, Antoinette; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Eccles, Diana M; Rafiq, Sajjad; Tapper, William J; Gerty, Sue M; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Brand, Judith S; Humphreys, Keith; Cox, Angela; Reed, Malcolm W R; Luccarini, Craig; Baynes, Caroline; Dunning, Alison M; Hamann, Ute; Torres, Diana; Ulmer, Hans Ulrich; Rüdiger, Thomas; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Simard, Jacques; Dumont, Martine; Soucy, Penny; Eeles, Rosalind; Muir, Kenneth; Wiklund, Fredrik; Gronberg, Henrik; Schleutker, Johanna; Nordestgaard, Børge G; Weischer, Maren; Travis, Ruth C; Neal, David; Donovan, Jenny L; Hamdy, Freddie C; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Schaid, Daniel J; Kelley, Joseph L; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Butterbach, Katja; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Benlloch, Sara; Renner, Stefan P; Hartmann, Arndt; Hein, Alexander; Ruebner, Matthias; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambretchs, Sandrina; Doherty, Jennifer A; Rossing, Mary Anne; Nickels, Stefan; Eilber, Ursula; Wang-Gohrke, Shan; Odunsi, Kunle; Sucheston-Campbell, Lara E; Friel, Grace; Lurie, Galina; Killeen, Jeffrey L; Wilkens, Lynne R; Goodman, Marc T; Runnebaum, Ingo; Hillemanns, Peter A; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Edwards, Robert P; Ness, Roberta B; Moysich, Kirsten B; du Bois, Andreas; Heitz, Florian; Harter, Philipp; Kommoss, Stefan; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjaer, Susanne Krüger; Høgdall, Estrid; Peissel, Bernard; Bonanni, Bernardo; Bernard, Loris; Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A; Cunningham, Julie M; Larson, Melissa C; Fogarty, Zachary C; Kalli, Kimberly R; Liang, Dong; Lu, Karen H; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Dao, Fanny; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Marks, Jeffrey R; Akushevich, Lucy; Cramer, Daniel W; Schildkraut, Joellen; Terry, Kathryn L; Poole, Elizabeth M; Stampfer, Meir; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Bjorge, Line; Salvesen, Helga B; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Pejovic, Tanja; Bean, Yukie; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Górski, Bohdan; Gronwald, Jacek; Menkiszak, Janusz; Høgdall, Claus K; Lundvall, Lene; Nedergaard, Lotte; Engelholm, Svend Aage; Dicks, Ed; Tyrer, Jonathan; Campbell, Ian; McNeish, Iain; Paul, James; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Cai, Hui; Shu, Xiao-Ou; Teten, Rachel T; Sutphen, Rebecca; McLaughlin, John R; Narod, Steven A; Phelan, Catherine M; Monteiro, Alvaro N; Fenstermacher, David; Lin, Hui-Yi; Permuth, Jennifer B; Sellers, Thomas A; Chen, Y Ann; Tsai, Ya-Yu; Chen, Zhihua; Gentry-Maharaj, Aleksandra; Gayther, Simon A; Ramus, Susan J; Menon, Usha; Wu, Anna H; Pearce, Celeste L; Van Den Berg, David; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul Dp; Song, Honglin; Winship, Ingrid; Chenevix-Trench, Georgia; Giles, Graham G; Tavtigian, Sean V; Easton, Doug F; Milne, Roger L

    2016-12-01

    The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10 -5 ), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10 -8 ) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

    PubMed Central

    Southey, Melissa C; Goldgar, David E; Winqvist, Robert; Pylkäs, Katri; Couch, Fergus; Tischkowitz, Marc; Foulkes, William D; Dennis, Joe; Michailidou, Kyriaki; van Rensburg, Elizabeth J; Heikkinen, Tuomas; Nevanlinna, Heli; Hopper, John L; Dörk, Thilo; Claes, Kathleen BM; Reis-Filho, Jorge; Teo, Zhi Ling; Radice, Paolo; Catucci, Irene; Peterlongo, Paolo; Tsimiklis, Helen; Odefrey, Fabrice A; Dowty, James G; Schmidt, Marjanka K; Broeks, Annegien; Hogervorst, Frans B; Verhoef, Senno; Carpenter, Jane; Clarke, Christine; Scott, Rodney J; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; dos-Santos-Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Bolla, Manjeet K; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Yang, Rongxi; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Bojesen, Stig; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan; Ziogas, Argyrios; Clarke, Christina A; Brenner, Hermann; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia V; Antonenkova, Natalia N; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Spurdle, Amanda B; Investigators, kConFab; Wauters, Els; Smeets, Dominiek; Beuselinck, Benoit; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Olson, Janet E; Vachon, Celine; Pankratz, Vernon S; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Kristensen, Vessela; Alnæs, Grethe Grenaker; Zheng, Wei; Hunter, David J; Lindstrom, Sara; Hankinson, Susan E; Kraft, Peter; Andrulis, Irene; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Jukkola-Vuorinen, Arja; Grip, Mervi; Kauppila, Saila; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Hollestelle, Antoinette; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Eccles, Diana M; Rafiq, Sajjad; Tapper, William J; Gerty, Sue M; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Brand, Judith S; Humphreys, Keith; Cox, Angela; Reed, Malcolm W R; Luccarini, Craig; Baynes, Caroline; Dunning, Alison M; Hamann, Ute; Torres, Diana; Ulmer, Hans Ulrich; Rüdiger, Thomas; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Simard, Jacques; Dumont, Martine; Soucy, Penny; Eeles, Rosalind; Muir, Kenneth; Wiklund, Fredrik; Gronberg, Henrik; Schleutker, Johanna; Nordestgaard, Børge G; Weischer, Maren; Travis, Ruth C; Neal, David; Donovan, Jenny L; Hamdy, Freddie C; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Schaid, Daniel J; Kelley, Joseph L; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Butterbach, Katja; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Benlloch, Sara; Renner, Stefan P; Hartmann, Arndt; Hein, Alexander; Ruebner, Matthias; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambretchs, Sandrina; Doherty, Jennifer A; Rossing, Mary Anne; Nickels, Stefan; Eilber, Ursula; Wang-Gohrke, Shan; Odunsi, Kunle; Sucheston-Campbell, Lara E; Friel, Grace; Lurie, Galina; Killeen, Jeffrey L; Wilkens, Lynne R; Goodman, Marc T; Runnebaum, Ingo; Hillemanns, Peter A; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Edwards, Robert P; Ness, Roberta B; Moysich, Kirsten B; du Bois, Andreas; Heitz, Florian; Harter, Philipp; Kommoss, Stefan; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjaer, Susanne Krüger; Høgdall, Estrid; Peissel, Bernard; Bonanni, Bernardo; Bernard, Loris; Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A; Cunningham, Julie M; Larson, Melissa C; Fogarty, Zachary C; Kalli, Kimberly R; Liang, Dong; Lu, Karen H; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Dao, Fanny; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Marks, Jeffrey R; Akushevich, Lucy; Cramer, Daniel W; Schildkraut, Joellen; Terry, Kathryn L; Poole, Elizabeth M; Stampfer, Meir; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Bjorge, Line; Salvesen, Helga B; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Pejovic, Tanja; Bean, Yukie; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Górski, Bohdan; Gronwald, Jacek; Menkiszak, Janusz; Høgdall, Claus K; Lundvall, Lene; Nedergaard, Lotte; Engelholm, Svend Aage; Dicks, Ed; Tyrer, Jonathan; Campbell, Ian; McNeish, Iain; Paul, James; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Cai, Hui; Shu, Xiao-Ou; Teten, Rachel T; Sutphen, Rebecca; McLaughlin, John R; Narod, Steven A; Phelan, Catherine M; Monteiro, Alvaro N; Fenstermacher, David; Lin, Hui-Yi; Permuth, Jennifer B; Sellers, Thomas A; Chen, Y Ann; Tsai, Ya-Yu; Chen, Zhihua; Gentry-Maharaj, Aleksandra; Gayther, Simon A; Ramus, Susan J; Menon, Usha; Wu, Anna H; Pearce, Celeste L; Van Den Berg, David; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul DP; Song, Honglin; Winship, Ingrid; Chenevix-Trench, Georgia; Giles, Graham G; Tavtigian, Sean V; Easton, Doug F; Milne, Roger L

    2016-01-01

    Background The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. Methods We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. Results For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10−5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10−8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. Conclusions This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important. PMID:27595995

  20. Single Nucleotide Polymorphism in ATM Gene, Cooking Oil Fumes and Lung Adenocarcinoma Susceptibility in Chinese Female Non-Smokers: A Case-Control Study

    PubMed Central

    Shen, Li; Yin, Zhihua; Wu, Wei; Ren, Yangwu; Li, Xuelian; Zhou, Baosen

    2014-01-01

    Background The ataxia-telangiectasia mutated (ATM) gene plays an important role in the DNA double-strand breaks repair pathway. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence the risk of lung cancer. This study aimed to investigate the association between the ATM -111G>A (rs189037) polymorphism, environmental risk factors and the risk of lung adenocarcinoma in Chinese female non-smokers. Methods A hospital-based case-control study of 487 lung cancer patients and 516 matched cancer-free controls was conducted. Information concerning demographic and environmental risk factors was obtained for each case and control by a trained interviewer. After informed consent was obtained, 10 ml venous blood was collected from each subject for biomarker testing. Single nucleotide polymorphism was determined by using TaqMan method. Results This study showed that the individuals with ATM rs189037 AA genotype were at an increased risk for lung adenocarcinoma compared with those carrying the GA or GG genotype (adjusted odds ratios (OR) 1.44, 95% confidence interval (CI) 1.02–2.02, P = 0.039). The stratified analysis suggested that increased risk associated with ATM rs189037 AA genotype in individuals who never or seldom were exposed to cooking oil fumes (adjusted OR 1.89, 95%CI 1.03–3.49, P = 0.040). Conclusions ATM rs189037 might be associated with the risk of lung adenocarcinoma in Chinese non-smoking females. Furthermore, ATM rs189037 AA genotype might be a risk factor of lung adenocarcinoma among female non-smokers without cooking oil fume exposure. PMID:24819391

  1. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  2. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  3. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice.

    PubMed

    Mercer, John R; Yu, Emma; Figg, Nichola; Cheng, Kian-Kai; Prime, Tracy A; Griffin, Julian L; Masoodi, Mojgan; Vidal-Puig, Antonio; Murphy, Michael P; Bennett, Martin R

    2012-03-01

    A number of recent studies suggest that mitochondrial oxidative damage may be associated with atherosclerosis and the metabolic syndrome. However, much of the evidence linking mitochondrial oxidative damage and excess reactive oxygen species (ROS) with these pathologies is circumstantial. Consequently the importance of mitochondrial ROS in the etiology of these disorders is unclear. Furthermore, the potential of decreasing mitochondrial ROS as a therapy for these indications is not known. We assessed the impact of decreasing mitochondrial oxidative damage and ROS with the mitochondria-targeted antioxidant MitoQ in models of atherosclerosis and the metabolic syndrome (fat-fed ApoE(-/-) mice and ATM(+/-)/ApoE(-/-) mice, which are also haploinsufficient for the protein kinase, ataxia telangiectasia mutated (ATM). MitoQ administered orally for 14weeks prevented the increased adiposity, hypercholesterolemia, and hypertriglyceridemia associated with the metabolic syndrome. MitoQ also corrected hyperglycemia and hepatic steatosis, induced changes in multiple metabolically relevant lipid species, and decreased DNA oxidative damage (8-oxo-G) in multiple organs. Although MitoQ did not affect overall atherosclerotic plaque area in fat-fed ATM(+/+)/ApoE(-/-) and ATM(+/-)/ApoE(-/-) mice, MitoQ reduced the macrophage content and cell proliferation within plaques and 8-oxo-G. MitoQ also significantly reduced mtDNA oxidative damage in the liver. Our data suggest that MitoQ inhibits the development of multiple features of the metabolic syndrome in these mice by affecting redox signaling pathways that depend on mitochondrial ROS such as hydrogen peroxide. These findings strengthen the growing view that elevated mitochondrial ROS contributes to the etiology of the metabolic syndrome and suggest a potential therapeutic role for mitochondria-targeted antioxidants. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition and clinical presentation of papillary thyroid carcinoma.

    PubMed

    Wójcicka, Anna; Czetwertyńska, Małgorzata; Świerniak, Michał; Długosińska, Joanna; Maciąg, Monika; Czajka, Agnieszka; Dymecka, Kinga; Kubiak, Anna; Kot, Adam; Płoski, Rafał; de la Chapelle, Albert; Jażdżewski, Krystian

    2014-06-01

    The risk of developing papillary thyroid carcinoma (PTC), the most frequent form of thyroid malignancy, is elevated up to 8.6-fold in first-degree relatives of PTC patients. The familial risk could be explained by high-penetrance mutations in yet unidentified genes, or polygenic action of low-penetrance alleles. Since the DNA-damaging exposure to ionizing radiation is a known risk factor for thyroid cancer, polymorphisms in DNA repair genes are likely to affect this risk. In a search for low-penetrance susceptibility alleles we employed Sequenom technology to genotype deleterious polymorphisms in ATM, CHEK2, and BRCA1 in 1,781 PTC patients and 2,081 healthy controls. As a result of the study, we identified CHEK2 rs17879961 (OR = 2.2, P = 2.37e-10) and BRCA1 rs16941 (odds ratio [OR] = 1.16, P = 0.005) as risk alleles for PTC. The ATM rs1801516 variant modifies the risk associated with the BRCA1 variant by 0.78 (P = 0.02). Both the ATM and BRCA1 variants modify the impact of male gender on clinical variables: T status (P = 0.007), N status (P = 0.05), and stage (P = 0.035). Our findings implicate an important role of variants in the ATM- CHEK2- BRCA1 axis in modification of the genetic predisposition to PTC and its clinical manifestations. Copyright © 2014 Wiley Periodicals, Inc.

  5. Environmental considerations of the NGATS ATM-airportal concept

    DOT National Transportation Integrated Search

    2008-01-31

    This report discusses some of the environmental considerations of the Airportal Concept. This information in this report is based on the NGATS ATM-Airportal Concept by J. Lee, et al., version 1.0 dated September 28, 2007. This report is intended to p...

  6. U-View: Student Access to Information Using ATMs.

    ERIC Educational Resources Information Center

    Springfield, John J.

    1990-01-01

    A discussion of Boston College's system allowing students to display and print their campus records at automated teller machines (ATMs) around the institution looks at the system's evolution, current operations, human factors affecting system design and operation, shared responsibility, campus acceptance, future enhancements, and cost…

  7. View of coronal hole processed from television transmission of ATM

    NASA Image and Video Library

    1973-08-20

    S73-32883 (20 Aug. 1973) --- This false color isophote, processed from an Aug. 20, 1973 television transmission of Apollo Telescope Mount (ATM) experiments from Skylab 3, dramatically reveals a significant change in the coronal hole as compared to the previous day. Solar rotation accounts for the new location of the coronal hole. Photo credit: NASA

  8. The Relationships between Selected Organizational Variables and ATM Technology Adoption in Campus Networking.

    ERIC Educational Resources Information Center

    Yao, Engui

    1998-01-01

    Determines the relationships between ATM (Asynchronous Transfer Mode) adoption and four organizational variables: university size, type, finances, and information-processing maturity. Identifies the current status of ATM adoption in campus networking in the United States. Contains 33 references. (DDR)

  9. The role of the ataxia telangiectasia mutated gene in lung cancer: recent advances in research.

    PubMed

    Xu, Yanling; Gao, Peng; Lv, Xuejiao; Zhang, Lin; Zhang, Jie

    2017-09-01

    Lung cancer is the leading cause of death due to cancer worldwide. It is estimated that approximately 1.2 million new cases of lung cancer are diagnosed each year. Early detection and treatment are crucial for improvements in both prognosis and quality of life of lung cancer patients. The ataxia telangiectasia mutated (ATM) gene is a cancer-susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. It has recently been shown to play an important role in the development of lung cancer. The main functions of the ATM gene and protein includes participation in cell cycle regulation, and identification and repair of DNA damage. ATM gene mutation can lead to multiple system dysfunctions as well as a concomitant increase in tumor tendency. In recent years, many studies have indicated that single nucleotide polymorphism of the ATM gene is associated with increased incidence of lung cancer. At the same time, the ATM gene and its encoding product ATM protein predicts the response to radiotherapy, chemotherapy, and prognosis of lung cancer, thus suggesting that the ATM gene may be a new potential target for the diagnosis and treatment of lung cancer.

  10. Application of Computer Simulation to Teach ATM Access to Individuals with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Davies, Daniel K.; Stock, Steven E.; Wehmeyer, Michael L.

    2003-01-01

    This study investigates use of computer simulation for teaching ATM use to adults with intellectual disabilities. ATM-SIM is a computer-based trainer used for teaching individuals with intellectual disabilities how to use an automated teller machine (ATM) to access their personal bank accounts. In the pilot evaluation, a prototype system was…

  11. Radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector.

    PubMed

    Zhang, Chao; Wang, Bing; Li, Lei; Li, Yawei; Li, Pengzhi; Lv, Guohua

    2017-09-01

    Surgery followed by radiotherapy is the standard treatment for chordomas, which are a rare but low-grade type of bone cancer arising from remnants of the embryonic notochord. However, disease recurrence following radiotherapy is common, most likely due to endogenous DNA repair mechanisms that promote cell survival upon radiation strikes. The ataxia telangiectasia mutated/ataxia telangiectasia mutated and Rad3 related (ATM/ATR)-mediated pathway has a critical role in DNA repair mechanisms; however, it has rarely been investigated in chordomas. In the present study, the expression of signal molecules related to the ATM/ATR pathway in chordoma tissues and adjacent normal tissues were initially examined using immunohistochemistry and western blot analysis. Chordoma U-CH1 and U-CH2 cells were subsequently used to investigate cell responses to ionizing radiation and the potential protective actions mediated by the ATM/ATR pathway. Phosphorylated (p)-ATM, p-ATR, γ-H2A histone family, member X (H2AX) and RAD51 were significantly upregulated in chordoma tissues relative to adjacent normal tissues (P<0.05). No significant reductions were observed in the viability of U-CH1 and U-CH2 cells following exposure to low-dose (1 and 2 Gy) radiation. Radiation (1 and 2 Gy) triggered a significant upregulation in p-ATM, γ-H2AX and RAD51 expression in U-CH1 cells (P<0.05), as well as a significant upregulation in p-ATM, p-ATR and RAD51 levels in U-CH2 cells (P<0.05). RAD51 knockdown increased the responses of both U-CH1 and U-CH2 cells to 1 Gy radiation, as evidenced by the significantly decreased cell viability and increased apoptosis rate (P<0.05). Collectively, the results of the present study indicated that radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector. Thus, RAD51 presents a promising therapeutic target for improving the outcome of radiotherapy treatment in chordomas.

  12. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    PubMed

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and

  13. Digital Coin Business Model Using the Coin ATM

    NASA Astrophysics Data System (ADS)

    Jung, Won-Gyo; Park, Sang-Sung; Shin, Young-Geun; Jang, Dong-Sik

    2009-08-01

    Because about 83.6 billion won worth coins are not collected annually, 35 billion won of government money is being wasted for producing new coins in Korea. In order to improve unnecessary government money leakage, we now have to develop a proper way of managing small valued money such as coins. We have already developed the coin ATM to solve such problem in the previous study. In this study, we proposed business model, which enables users to deposit or consume such small amount of money with the coin ATM. The proposed business model has advantages that enable to connect various payment system and is efficient to consume such small amount of money. This business model improves not only the way of managing small valued money but also the way of consuming small valued money. Furthermore, our business model can contribute to activating circulation of coins as well as preventing leakage of government money.

  14. Toward multidomain integrated network management for ATM and SDH networks

    NASA Astrophysics Data System (ADS)

    Galis, Alex; Gantenbein, Dieter; Covaci, Stefan; Bianza, Carlo; Karayannis, Fotis; Mykoniatis, George

    1996-12-01

    ACTS Project AC080 MISA has embarked upon the task of realizing and validating via European field trials integrated end-to-end management of hybrid SDH and ATM networks in the framework of open network provision. This paper reflects the initial work of the project and gives an overview of the proposed MISA system architecture and initial design. We describe our understanding of the underlying enterprise model in the network management context, including the concept of the MISA Global Broadband Connectivity Management service. It supports Integrated Broadband Communication by defining an end-to-end broadband connection service in a multi-domain business environment. Its implementation by the MISA consortium within trials across Europe aims for an efficient management of network resources of the SDH and ATM infrastructure, considering optimum end-to-end quality of service and the needs of a number of telecommunication actors: customers, value-added service providers, and network providers.

  15. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used

  16. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant

  17. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used

  18. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create

  19. NPP ATMS Prelaunch Performance Assessment and Sensor Data Record Validation

    DTIC Science & Technology

    2011-04-29

    TMS to sense scattering of cold cosmic background radiance from the tops of preci pitating clouds allows the retrieval of preCipitation intensities...operational and research missions over the last 40 years. The Cross-track Infrared and Microwave Sounding Suite (CrIMSS), consisting of the Cross-track...Infrared Sounder (CrrS) and the flIst space-based, Nyquist-sampled cross-track microwave sounder, the Advanced Technology Microwave Sounder (ATMS), will

  20. Neural-tree call admission controller for ATM networks

    NASA Astrophysics Data System (ADS)

    Rughooputh, Harry C. S.

    1999-03-01

    Asynchronous Transfer Mode (ATM) has been recommended by ITU-T as the transport method for broadband integrated services digital networks. In high-speed ATM networks different types of multimedia traffic streams with widely varying traffic characteristics and Quality of Service (QoS) are asynchronously multiplexed on transmission links and switched without window flow control as found in X.25. In such an environment, a traffic control scheme is required to manage the required QoS of each class individually. To meet the QoS requirements, Bandwidth Allocation and Call Admission Control (CAC) in ATM networks must be able to adapt gracefully to the dynamic behavior of traffic and the time-varying nature of the network condition. In this paper, a Neural Network approach for CAC is proposed. The call admission problem is addressed by designing controllers based on Neural Tree Networks. Simulations reveal that the proposed scheme is not only simple but it also offers faster response than conventional neural/neuro-fuzzy controllers.

  1. EVI1 carboxy-terminal phosphorylation is ATM-mediated and sustains transcriptional modulation and self-renewal via enhanced CtBP1 association.

    PubMed

    Paredes, Roberto; Schneider, Marion; Stevens, Adam; White, Daniel J; Williamson, Andrew Jk; Muter, Joanne; Pearson, Stella; Kelly, James R; Connors, Kathleen; Wiseman, Daniel H; Chadwick, John A; Löffler, Harald; Teng, Hsiang Ying; Lovell, Simon; Unwin, Richard; van de Vrugt, Henri J; Smith, Helen; Kustikova, Olga; Schambach, Axel; Somervaille, Tim C P; Pierce, Andrew; Whetton, Anthony D; Meyer, Stefan

    2018-06-25

    The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.

  2. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    PubMed

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  3. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    PubMed

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  5. Management of ATM-based networks supporting multimedia medical information systems

    NASA Astrophysics Data System (ADS)

    Whitman, Robert A.; Blaine, G. James; Fritz, Kevin; Goodgold, Ken; Heisinger, Patrick

    1997-05-01

    Medical information systems are acquiring the ability to collect and deliver many different types of medical information. In support of the increased network demands necessitated by these expanded capabilities, asynchronous transfer mode (ATM) based networks are being deployed in medical care systems. While ATM supplies a much greater line rate than currently deployed networks, the management and standards surrounding ATM are yet to mature. This paper explores the management and control issues surrounding an ATM network supporting medical information systems, and examines how management impacts network performance and robustness. A multivendor ATM network at the BJC Health System/Washington University and the applications using the network are discussed. Performance information for specific applications is presented and analyzed. Network management's influence on application reliability is outlined. The information collected is used to show how ATM network standards and management tools influence network reliability and performance. Performance of current applications using the ATM network is discussed. Special attention is given to issues encountered in implementation of hypertext transfer protocol over ATM internet protocol (IP) communications. A classical IP ATM implementation yields greater than twenty percent higher network performance over LANE. Maximum performance for a host's suite of applications can be obtained by establishing multiple individually engineered IP links through its ATM network connection.

  6. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.

    PubMed

    Yang, Lina; Liu, Yuanyuan; Sun, Chao; Yang, Xinrui; Yang, Zhen; Ran, Juntao; Zhang, Qiuning; Zhang, Hong; Wang, Xinyu; Wang, Xiaohu

    2015-11-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G 2 /M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5-50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of

  7. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  8. HealthATM: personal health cyberinfrastructure for underserved populations.

    PubMed

    Botts, Nathan E; Horan, Thomas A; Thoms, Brian P

    2011-05-01

    There is an opportunity for personal health record (PHR) systems to play a vital role in fostering health self-management within underserved populations. If properly designed and promoted, it is possible that patients will use PHRs to become more empowered in taking an active role toward managing their health needs. This research examines the potential of a cyberinfrastructure-based PHR to encourage patient activation in health care, while also having population health implications. A multi-phased, iterative research approach was used to design and evaluate a PHR system called HealthATM, which utilizes services from a cloud computing environment. These services were integrated into an ATM-style interface aimed at providing a broad range of health consumers with the ability to manage health conditions and encourage accomplishment of health goals. Evaluation of the PHR included 115 patients who were clients of several free clinics in Los Angeles County. The majority of patients perceived ease of use (74%) and confidence (73%) in using the HealthATM system, and thought they would like to use it frequently (73%). Patients also indicated a belief in being responsible for their own health. However, fewer felt as though they were able to maintain necessary life changes to improve their health. Findings from the field tests suggest that PHRs can be a beneficial health management tool for underserved populations. In order for these types of tools to be effective within safety-net communities, they must be technically accessible and provide meaningful opportunities to increase patient engagement in their health care. Copyright © 2011. Published by Elsevier Inc.

  9. Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair

    PubMed Central

    Arango, Daniel; Parihar, Arti; Villamena, Frederick A.; Wang, Liwen; Freitas, Michael A.; Grotewold, Erich; Doseff, Andrea I.

    2014-01-01

    Apigenin, an abundant plant flavonoid, exhibits anti-proliferative and anti-carcinogenic activities through mechanisms yet not fully defined. In the present study, we show that the treatment of leukemia cells with apigenin resulted in the induction of DNA damage preceding the activation of the apoptotic program. Apigenin-induced DNA damage was mediated by p38 and protein kinase C-delta (PKCδ), yet was independent of reactive oxygen species or caspase activity. Treatment of monocytic leukemia cells with apigenin induced the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and histone H2AX, two key regulators of the DNA damage response, without affecting the ataxia-telangiectasia mutated and Rad-3-related (ATR) kinase. Silencing and pharmacological inhibition of PKCδ abrogated ATM and H2AX phosphorylation, whereas inhibition of p38 reduced H2AX phosphorylation independently of ATM. We established that apigenin delayed cell cycle progression at G1/S and increased the number of apoptotic cells. In addition, genome-wide mRNA analyses showed that apigenin-induced DNA damage led to down-regulation of genes involved in cell-cycle control and DNA repair. Taken together, the present results show that the PKCδ-dependent activation of ATM and H2AX define the signaling networks responsible for the regulation of DNA damage promoting genome-wide mRNA alterations that result in cell cycle arrest, hence contributing to the anti-carcinogenic activities of this flavonoid. PMID:22985621

  10. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  11. Pilot Performance on New ATM Operations: Maintaining In-Trail Separation and Arrival Sequencing

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Yankosky, L. J.; Johnson, Walter (Technical Monitor)

    1999-01-01

    Cockpit Display of Traffic Information (CDTI) may enable new Air Traffic Management (ATM) operations. However, CDTI is not the only source of traffic information in the cockpit; ATM procedures may provide information, implicitly and explicitly, about other aircraft. An experiment investigated pilot ability to perform two new ATM operations - maintaining in-trail separation from another aircraft and sequencing into an arrival stream. In the experiment, pilots were provided different amounts of information from displays and procedures. The results are described.

  12. Design Issues for Traffic Management for the ATM UBR + Service for TCP Over Satellite Networks

    NASA Technical Reports Server (NTRS)

    Jain, Raj

    1999-01-01

    This project was a comprehensive research program for developing techniques for improving the performance of Internet protocols over Asynchronous Transfer Mode (ATM) based satellite networks. Among the service categories provided by ATM networks, the most commonly used category for data traffic is the unspecified bit rate (UBR) service. UBR allows sources to send data into the network without any feedback control. The project resulted in the numerous ATM Forum contributions and papers.

  13. A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    PubMed Central

    Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio

    2014-01-01

    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836

  14. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  15. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.

  16. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  17. Future ATM Concepts Evaluation Tool (FACET) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2017-01-01

    This Interface Control Document (ICD) documents the airspace adaptation and air traffic inputs of NASA's Future ATM Concepts and Evaluation Tool (FACET). Its intended audience is the project manager, project team, development team, and stakeholders interested in interfacing with the system. FACET equips Air Traffic Management (ATM) researchers and service providers with a way to explore, develop and evaluate advanced air transportation concepts before they are field-tested and eventually deployed. FACET is a flexible software tool that is capable of quickly generating and analyzing thousands of aircraft trajectories. It provides researchers with a simulation environment for preliminary testing of advanced ATM concepts. Using aircraft performance profiles, airspace models, weather data, and flight schedules, the tool models trajectories for the climb, cruise, and descent phases of flight for each type of aircraft. An advanced graphical interface displays traffic patterns in two and three dimensions, under various current and projected conditions for specific airspace regions or over the entire continental United States. The system is able to simulate a full day's dynamic national airspace system (NAS) operations, model system uncertainty, measure the impact of different decision-makers in the NAS, and provide analysis of the results in graphical form, including sector, airport, fix, and airway usage statistics. NASA researchers test and analyze the system-wide impact of new traffic flow management algorithms under anticipated air traffic growth projections on the nation's air traffic system. In addition to modeling the airspace system for NASA research, FACET has also successfully transitioned into a valuable tool for operational use. Federal Aviation Administration (FAA) traffic flow managers and commercial airline dispatchers have used FACET technology for real-time operations planning. FACET integrates live air traffic data from FAA radar systems and weather data

  18. The C allele of ATM rs11212617 does not associate with metformin response in the Diabetes Prevention Program.

    PubMed

    Florez, Jose C; Jablonski, Kathleen A; Taylor, Andrew; Mather, Kieren; Horton, Edward; White, Neil H; Barrett-Connor, Elizabeth; Knowler, William C; Shuldiner, Alan R; Pollin, Toni I

    2012-09-01

    The C allele at the rs11212617 polymorphism in the ataxia-telangiectasia-mutated (ATM) gene has been associated with greater clinical response to metformin in people with type 2 diabetes. We tested whether this variant modified the effect of metformin in the Diabetes Prevention Program (DPP), in which metformin reduced diabetes incidence by 31% in volunteers with impaired glucose tolerance. We genotyped rs11212617 in 2,994 DPP participants and analyzed its effects on diabetes incidence and related traits. Contrary to expectations, C carriers enjoyed no preventive advantage on metformin; their hazard ratio, compared with A carriers, was 1.17 ([95% CI 0.96-1.42], P = 0.13) under metformin. There were no significant differences by genotype in metformin's effects on insulin sensitivity, fasting glucose, glycated hemoglobin, or disposition index. The reported association of rs11212617 with metformin response was not confirmed for diabetes prevention or for effects on relevant physiologic parameters in the DPP.

  19. A Framework for Applying Asynchronous Transfer Mode (ATM) Technology to Command, Control and Communications Systems

    DTIC Science & Technology

    1994-06-01

    available they can be implemented in ATM LANs by using different reserved signaling channels ( Biagioni , Cooper, and Sansom, 1993, p. 35). An argument...conference, San Francisco, California, 12-14 April 1994. Biagioni , E., Cooper, E. and Sansom, R., "Designing a Practical ATM LAN", IEEE Network, v. 7, March

  20. ATM kinase is required for telomere elongation in mouse and human cells

    PubMed Central

    Lee, Stella Suyong; Bohrson, Craig; Pike, Alexandra Mims; Wheelan, Sarah Jo; Greider, Carol Widney

    2015-01-01

    Summary Short telomeres induce a DNA damage response, senescence and apoptosis; thus, maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease. PMID:26586427

  1. Experiences with ATM in a multivendor pilot system at Forschungszentrum Julich

    NASA Astrophysics Data System (ADS)

    Kleines, H.; Ziemons, K.; Zwoll, K.

    1998-08-01

    The ATM technology for high speed serial transmission provides a new quality of communication by introducing novel features in a LAN environment, especially support of real time communication, of both LAN and WAN communication and of multimedia streams. In order to evaluate ATM for future DAQ systems and remote control systems as well as for a high speed picture archiving and communications system for medical images, Forschungszentrum Julich has build up a pilot system for the evaluation of ATM and standard low cost multimedia systems. It is a heterogeneous multivendor system containing a variety of switches and desktop solutions, employing different protocol options of ATM. The tests conducted in the pilot system revealed major difficulties regarding stability, interoperability and performance. The paper presents motivations, layout and results of the pilot system. Discussion of results concentrates on performance issues relevant for realistic applications, e.g., connection to a RAID system via NFS over ATM.

  2. ASCIZ/ATMIN is dispensable for ATM signaling in response to replication stress.

    PubMed

    Liu, Rui; King, Ashleigh; Hoch, Nicolas C; Chang, Catherine; Kelly, Gemma L; Deans, Andrew J; Heierhorst, Jörg

    2017-09-01

    The ATM kinase plays critical roles in the response to DNA double-strand breaks, and can also be activated by prolonged DNA replication blocks. It has recently been proposed that replication stress-dependent ATM activation is mediated by ASCIZ (also known as ATMIN, ZNF822), an essential developmental transcription factor. In contrast, we show here that ATM activation, and phosphorylation of its substrates KAP1, p53 and H2AX in response to the replication blocking agent aphidicolin was unaffected in both immortalized and primary ASCIZ/ATMIN-deficient murine embryonic fibroblasts compared to control cells. Similar results were also obtained in human ASCIZ/ATMIN-deleted lymphoma cells. The results demonstrate that ASCIZ/ATMIN is dispensable for ATM activation, and contradict the previously reported dependence of ATM on ASCIZ/ATMIN. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Clinic and Functional Analysis of p73R1 Mutations in Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    sequence variants in Marfan syndrome and related connective tissue disorders. Genet Test 1:237-42. Matsuoka S, Huang M, Elledge SJ. 1998. Linkage of ATM... Syndrome (LFS; MIM# 151623), a highly penetrant familial cancer phenotype, usually associated with inherited mutations in TP53 (Bell, et al., 1999...TP53 (Table 1). Mutually exclusive mutations of CHEK2 and TP53 have been reported in patients with Li-Fraumeni syndrome (LFS) and also in patients

  4. The Kinase Activity of Ataxia-Telangiectasia Mutated Interferes with Adenovirus E4 Mutant DNA Replication

    PubMed Central

    Gautam, Dipendra

    2013-01-01

    Adenovirus (Ad) mutants that lack early region 4 (E4) are unable to produce the early regulatory proteins that normally inactivate the Mre11/Rad50/Nbs1 (MRN) sensor complex, which is a critical component for the ability of cells to respond to DNA damage. E4 mutant infection therefore activates a DNA damage response, which in turn interferes with a productive viral infection. MRN complex proteins localize to viral DNA replication centers in E4 mutant-infected cells, and this complex is critical for activating the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), which phosphorylate numerous substrates important for DNA repair, cell cycle checkpoint activation, and apoptosis. E4 mutant growth defects are substantially rescued in cells lacking an intact MRN complex. We have assessed the role of the downstream ATM and ATR kinases in several MRN-dependent E4 mutant phenotypes. We did not identify a role for either ATM or ATR in “repair” of E4 mutant genomes to form concatemers. ATR was also not observed to contribute to E4 mutant defects in late protein production. In contrast, the kinase activity of ATM was important for preventing efficient E4 mutant DNA replication and late gene expression. Our results suggest that the MRN complex interferes with E4 mutant DNA replication at least in part through its ability to activate ATM. PMID:23740981

  5. Irradiated HMEC from A-T Heterozygous Breast Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Bors, Karen; Cruz, Angela; Pettengil, Olive; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Women who are heterozygous for ataxia-telangiectasia (A-T) carry a single defective ATM gene in chromosome 11 q22-23, and have been statistically determined with high significance within a defined database to be approximately 5-fold more susceptible for developing breast cancer than their noma1 counterpart. Breast cancer susceptibility of these A-T heterozygotes has been hypothesized to include consequence of response to damage caused by low levels of ionizing radiation. Prophylactic mastectomy specimens were donated by a 41 year-old obligate A-T heterozygote who was located prior to her elective surgery through an existing pedigree. Harvest of that breast tissue provided an isolate of long-term growth human mammary epithelial cells (HMEC), designated WH612/3. An isolate of presumed normal long-term growth HMEC, designated 48R, was obtained from Dr. Martha Stampfer (Lawrence Berkeley Laboratory, University of California), and the A-T heterozygous HMEC were transformed with E6 and E7 oncogenes of human papilloma virus Type-16 in the laboratory of Dr. Ray White (Hunt- Cancer Institute, University of Utah) for use in this study. The objective of this study is to study the expression of end points that may bear on cancer outcome following irradiation of HMEC. Specific end points are cell survival, cell cycle, p53 expression, and apoptosis. Survival curves, immunostaining, and flow cytometery are used to examine these end points. Radiation-induced cell killing shows less shoulder development in the survival curve for WH61U3 compared to 48R HMEC, suggesting less repair of damage in the former HMEC. Additional information is included in the original extended abstract.

  6. Polymorphism rs189037C > T in the promoter region of the ATM gene may associate with reduced risk of T2DM in older adults in China: a case control study.

    PubMed

    Ding, Xiang; Hao, Qiukui; Yang, Ming; Chen, Tie; Chen, Shanping; Yue, Jirong; Leng, Sean X; Dong, Birong

    2017-08-14

    Recent evidence indicates that ataxia telangiectasia mutated (ATM) is a cytoplasmic protein that involves in insulin signaling pathways. When ATM gene is mutated, this event appears to contribute to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Up to date, little information about the relationship between ATM gene polymorphism and T2DM is available. This study aimed to explore potential association between a genetic variant [single nucleotide polymorphism (SNP), i.e. rs189037C > T] in the ATM promoter region and T2DM in older adults in China. We conducted a 1:1 age- and sex-matched case-control study. It enrolled 160 patients including 80 type 2 diabetic and 80 nondiabetic patients who were aged 60 years and above. Genotyping of the polymorphism rs189037 in the promoter of the ATM gene was performed using polymerase chain reaction-restriction fragment length polymorphism. Chi-square test or Fisher's exact test (when an expected cell count was <5) and unpaired Student's t test were used for categorical and continuous variables, respectively. Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) with adjustment for factors associated with T2DM. Significant association was found between the genotypes of the ATM rs189037 polymorphism and T2DM (P = 0.037). The frequency of CT genotype is much higher in patients without T2DM than in diabetics (60.0% versus 40.0%, P = 0.012). After adjustment of the major confounding factors, such difference remained significant (OR for non-T2DM is 2.62, 95%CI = 1.05-6.53, P = 0.038). Similar effect of CT genotype on T2DM was observed in male population (adjusted: OR = 0.27, 95%CI = 0.09-0.84, P = 0.024). In addition, the percentage of TT genotype in diabetics with coronary artery disease (CAD) was considerably lower than in those without CAD (17.9% versus 61.5%, P = 0.004). Our study suggests that the ATM rs189037 polymorphism is associated with reduced

  7. Integrated Service Provisioning in an Ipv6 over ATM Research Network

    SciTech Connect

    Eli Dart; Helen Chen; Jerry Friesen

    1999-02-01

    During the past few years, the worldwide Internet has grown at a phenomenal rate, which has spurred the proposal of innovative network technologies to support the fast, efficient and low-latency transport of a wide spectrum of multimedia traffic types. Existing network infrastructures have been plagued by their inability to provide for real-time application traffic as well as their general lack of resources and resilience to congestion. This work proposes to address these issues by implementing a prototype high-speed network infrastructure consisting of Internet Protocol Version 6 (IPv6) on top of an Asynchronous Transfer Mode (ATM) transport medium. Since ATM ismore » connection-oriented whereas IP uses a connection-less paradigm, the efficient integration of IPv6 over ATM is especially challenging and has generated much interest in the research community. We propose, in collaboration with an industry partner, to implement IPv6 over ATM using a unique approach that integrates IP over fast A TM hardware while still preserving IP's connection-less paradigm. This is achieved by replacing ATM's control software with IP's routing code and by caching IP's forwarding decisions in ATM's VPI/VCI translation tables. Prototype ''VR'' and distributed-parallel-computing applications will also be developed to exercise the realtime capability of our IPv6 over ATM network.« less

  8. Nedd4 Family Interacting Protein 1 (Ndfip1) Is Required for Ubiquitination and Nuclear Trafficking of BRCA1-associated ATM Activator 1 (BRAT1) during the DNA Damage Response*

    PubMed Central

    Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng

    2015-01-01

    During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. PMID:25631046

  9. ATM and p53 combined analysis predicts survival in glioblastoma multiforme patients: A clinicopathologic study.

    PubMed

    Romano, Francesco Jacopo; Guadagno, Elia; Solari, Domenico; Borrelli, Giorgio; Pignatiello, Sara; Cappabianca, Paolo; Del Basso De Caro, Marialaura

    2018-06-01

    Glioblastoma is one of the most malignant cancers, with a distinguishing dismal prognosis: surgery followed by chemo- and radiotherapy represents the current standard of care, and chemo- and radioresistance underlie disease recurrence and short overall survival of patients suffering from this malignancy. ATM is a kinase activated by autophosphorylation upon DNA doublestrand breaks arising from errors during replication, byproducts of metabolism, chemotherapy or ionizing radiations; TP53 is one of the most popular tumor suppressor, with a preeminent role in DNA damage response and repair. To study the effects of the immunohistochemical expression of p-ATM and p53 in glioblastoma patients, 21 cases were retrospectively examined. In normal brain tissue, p-ATM was expressed only in neurons; conversely, in tumors cells, the protein showed a variable cytoplasmic expression (score: +,++,+++), with being completely undetectable in three cases. Statistical analysis revealed that high p-ATM score (++/+++) strongly correlated to shorter survival (P = 0.022). No difference in overall survival was registered between p53 normally expressed (NE) and overexpressed (OE) glioblastoma patients (P = 0.669). Survival analysis performed on the results from combined assessment of the two proteins showed that patients with NE p53 /low pATM score had longer overall survival than the NE p53/ high pATM score counterpart. Cox-regression analysis confirmed this finding (HR = 0.025; CI 95% = 0.002-0.284; P = 0.003). Our study outlined the immunohistochemical expression of p-ATM/p53 in glioblastomas and provided data on their possible prognostic/predictive of response role. A "non-oncogene addiction" to ATM for NEp53 glioblastoma could be postulated, strengthening the rationale for development of ATM inhibiting drugs. © 2018 Wiley Periodicals, Inc.

  10. Anomalous preservation of pure methane hydrate at 1 atm

    USGS Publications Warehouse

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    Direct measurement of decomposition rates of pure, polycrystalline methane hydrate reveals a thermal regime where methane hydrate metastably `preserves' in bulk by as much as 75 K above its nominal equilibrium temperature (193 K at 1 atm). Rapid release of the sample pore pressure at isothermal conditions between 242 and 271 K preserves up to 93% of the hydrate for at least 24 h, reflecting the greatly suppressed rates of dissociation that characterize this regime. Subsequent warming through the H2O ice point then induces rapid and complete dissociation, allowing controlled recovery of the total expected gas yield. This behavior is in marked contrast to that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) test conditions, where dissociation rates increase monotonically with increasing temperature. Anomalous preservation has potential application for successful retrieval of natural gas hydrate or hydrate-bearing sediments from remote settings, as well as for temporary low-pressure transport and storage of natural gas.

  11. Telemedicine with integrated data security in ATM-based networks

    NASA Astrophysics Data System (ADS)

    Thiel, Andreas; Bernarding, Johannes; Kurth, Ralf; Wenzel, Rudiger; Villringer, Arno; Tolxdorff, Thomas

    1997-05-01

    Telemedical services rely on the digital transfer of large amounts of data in a short time. The acceptance of these services requires therefore new hard- and software concepts. The fast exchange of data is well performed within a high- speed ATM-based network. The fast access to the data from different platforms imposes more difficult problems, which may be divided into those relating to standardized data formats and those relating to different levels of data security across nations. For a standardized access to the formats and those relating to different levels of data security across nations. For a standardized access to the image data, a DICOM 3.0 server was implemented.IMages were converted into the DICOM 3.0 standard if necessary. The access to the server is provided by an implementation of DICOM in JAVA allowing access to the data from different platforms. Data protection measures to ensure the secure transfer of sensitive patient data are not yet solved within the DICOM concept. We investigated different schemes to protect data using the DICOM/JAVA modality with as little impact on data transfer speed as possible.

  12. Video transmission on ATM networks. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung

    1993-01-01

    The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.

  13. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  14. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; hide

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  15. Gender, academic achievement, and ownership of ATM as predictors of accounting students’ financial literacy

    NASA Astrophysics Data System (ADS)

    Susanti; Hardini, H. T.

    2018-01-01

    This study examined the relationships between GPA, gender, and ownership of ATM on accounting students’ financial literacy (n = 184). Financial literacy was assessed using a paper-and-pencil objective (multiple choice) test measuring general knowledge of finance, income, money management savings, loans, and investment. Gender and GPA data were obtained from the university records. Regression analysis found that GPA and ownership of ATM were associated with financial literacy, but gender was not. Female students with an ownership of ATM and those with a high GPA were found to be superior to males. The implication of this research is that students are expected to increase their GPA and utilize financial facilities in the form of ownership ATM and other financial instruments so as to increase financial literacy. In addition, the need for financial literacy training from related parties to improve financial literacy for students who have low financial literacy.

  16. Early Deployment Of Atms/Atis For Metropolitan Detroit, Final Report

    DOT National Transportation Integrated Search

    1994-09-26

    TECHNOLOGY, ARCHITECTURE, CONTRACTING, AND DEPLOYMENT RECOMMENDATIONS RESULTING FROM THE STUDY ENABLE MDOT TO BEGIN SYSTEM DESIGN AND CONSTRUCTION. HOWEVER, IN ORDER TO DEMONSTRATE THE IMPLEMENTATION METHODS OF NEW ATMS/ATIS COMPONENTS AND SYSTEM ARC...

  17. Michigan Department of Transportation statewide advanced traffic management system (ATMS) procurement evaluation - phase I : software procurement.

    DOT National Transportation Integrated Search

    2009-04-01

    This project evaluates the process that was followed by MDOT and other stakeholders for the acquisition : of new Advanced Traffic Management System (ATMS) software aiming to integrate and facilitate the : management of various Intelligent Transportat...

  18. ATM QoS Experiments Using TCP Applications: Performance of TCP/IP Over ATM in a Variety of Errored Links

    NASA Technical Reports Server (NTRS)

    Frantz, Brian D.; Ivancic, William D.

    2001-01-01

    Asynchronous Transfer Mode (ATM) Quality of Service (QoS) experiments using the Transmission Control Protocol/Internet Protocol (TCP/IP) were performed for various link delays. The link delay was set to emulate a Wide Area Network (WAN) and a Satellite Link. The purpose of these experiments was to evaluate the ATM QoS requirements for applications that utilize advance TCP/IP protocols implemented with large windows and Selective ACKnowledgements (SACK). The effects of cell error, cell loss, and random bit errors on throughput were reported. The detailed test plan and test results are presented herein.

  19. Advisor-Teller Money Manager (ATM) Therapy for Substance Use Disorders

    PubMed Central

    Rosen, Marc I.; Rounsaville, Bruce J.; Ablondi, Karen; Black, Anne C.; Rosenheck, Robert A.

    2011-01-01

    Objective Patients with concomitant psychiatric and substance use disorders are commonly assigned representative payees or case managers to help manage their funds, but money management has not been conceptualized as a theory-based treatment. This randomized clinical trial was conducted to determine the effect of a money management–based therapy, advisor-teller money manager (ATM), on substance abuse or dependence. Methods Ninety patients at a community mental health center who had a history of cocaine or alcohol abuse or dependence were assessed after random assignment to 36 weeks of ATM (N=47) or a control condition in which use of a financial workbook was reviewed (N=43). Patients assigned to ATM were encouraged to deposit their funds into a third-party account, plan weekly expenditures, and negotiate monthly budgets. Substance use calendars and urine toxicology tests were collected every other week for 36 weeks and again 52 weeks after randomization. Results Patients assigned to ATM had significantly more negative toxicologies for cocaine metabolite over time than patients in the control group, and treating clinicians rated ATM patients as significantly more likely to be abstinent from illicit drugs. Self-reported abstinence from alcohol did not significantly differ between groups. Unexpectedly, patients assigned to ATM were more likely to be assigned a representative payee or a conservator than control participants during the follow-up period (ten of 47 versus two of 43). One patient in ATM assaulted the therapist when his check had not arrived. Conclusions ATM is an efficacious therapy for the treatment of cocaine abuse or dependence among people with concomitant psychiatric illness but requires protection of patient autonomy and staff safety. PMID:20592006

  20. Advisor-Teller Money Manager (ATM) therapy for substance use disorders.

    PubMed

    Rosen, Marc I; Rounsaville, Bruce J; Ablondi, Karen; Black, Anne C; Rosenheck, Robert A

    2010-07-01

    Patients with concomitant psychiatric and substance use disorders are commonly assigned representative payees or case managers to help manage their funds, but money management has not been conceptualized as a theory-based treatment. This randomized clinical trial was conducted to determine the effect of a money management-based therapy, advisor-teller money manager (ATM), on substance abuse or dependence. Ninety patients at a community mental health center who had a history of cocaine or alcohol abuse or dependence were assessed after random assignment to 36 weeks of ATM (N=47) or a control condition in which use of a financial workbook was reviewed (N=43). Patients assigned to ATM were encouraged to deposit their funds into a third-party account, plan weekly expenditures, and negotiate monthly budgets. Substance use calendars and urine toxicology tests were collected every other week for 36 weeks and again 52 weeks after randomization. Patients assigned to ATM had significantly more negative toxicologies for cocaine metabolite over time than patients in the control group, and treating clinicians rated ATM patients as significantly more likely to be abstinent from illicit drugs. Self-reported abstinence from alcohol did not significantly differ between groups. Unexpectedly, patients assigned to ATM were more likely to be assigned a representative payee or a conservator than control participants during the follow-up period (ten of 47 versus two of 43). One patient in ATM assaulted the therapist when his check had not arrived. ATM is an efficacious therapy for the treatment of cocaine abuse or dependence among people with concomitant psychiatric illness but requires protection of patient autonomy and staff safety.

  1. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria

    PubMed Central

    Peng, Linyuan; Tang, Xiaolong; Meng, Fanbiao; Ao, Ying; Zhou, Mingyan; Wang, Ming; Cao, Xinyue; Qin, Baoming; Wang, Zimei; Zhou, Zhongjun; Wang, Guangming; Gao, Zhengliang; Xu, Jun

    2018-01-01

    DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases. PMID:29717979

  2. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  3. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria.

    PubMed

    Qian, Minxian; Liu, Zuojun; Peng, Linyuan; Tang, Xiaolong; Meng, Fanbiao; Ao, Ying; Zhou, Mingyan; Wang, Ming; Cao, Xinyue; Qin, Baoming; Wang, Zimei; Zhou, Zhongjun; Wang, Guangming; Gao, Zhengliang; Xu, Jun; Liu, Baohua

    2018-05-02

    DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans , but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases. © 2018, Qian et al.

  4. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study.

    PubMed

    Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong

    2017-09-01

    This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  6. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1.

    PubMed

    You, Zhongsheng; Chahwan, Charly; Bailis, Julie; Hunter, Tony; Russell, Paul

    2005-07-01

    ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-beta. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.

  7. Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication

    PubMed Central

    Sifford, Jeffrey M.; Stahl, James A.; Salinas, Eduardo

    2015-01-01

    ABSTRACT Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine

  8. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    SciTech Connect

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen

    2007-04-01

    When A549 cells were exposed to sodium metavanadate (NaVO{sub 3}), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 {mu}M)-dependent manner. After the incubation with 50 or 100 {mu}M NaVO{sub 3} for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 {mu}M NaVO{sub 3} for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na{sub 3}VO{sub 4}) and ammonium metavanadate (NH{sub 4}VO{sub 3}), also induced Ser15 phosphorylation andmore » accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO{sub 3}, treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO{sub 3}-induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO{sub 3}. However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO{sub 3}-induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO{sub 3} were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line.« less

  9. Somatic hypermutation at A/T-rich oligonucleotide substrates shows different strand polarities in Ung-deficient or -proficient backgrounds.

    PubMed

    Zivojnovic, Marija; Delbos, Frédéric; Girelli Zubani, Giulia; Julé, Amélie; Alcais, Alexandre; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2014-06-01

    A/T mutations at immunoglobulin loci are introduced by DNA polymerase η (Polη) during an Msh2/6-dependent repair process which results in A's being mutated 2-fold more often than T's. This patch synthesis is initiated by a DNA incision event whose origin is still obscure. We report here the analysis of A/T oligonucleotide mutation substrates inserted at the heavy chain locus, including or not including internal C's or G's. Surprisingly, the template composed of only A's and T's was highly mutated over its entire 90-bp length, with a 2-fold decrease in mutation from the 5' to the 3' end and a constant A/T ratio of 4. These results imply that Polη synthesis was initiated from a break in the 5'-flanking region of the substrate and proceeded over its entire length. The A/T bias was strikingly altered in an Ung(-/-) background, which provides the first experimental evidence supporting a concerted action of Ung and Msh2/6 pathways to generate mutations at A/T bases. New analysis of Pms2(-/-) animals provided a complementary picture, revealing an A/T mutation ratio of 4. We therefore propose that Ung and Pms2 may exert a mutual backup function for the DNA incision that promotes synthesis by Polη, each with a distinct strand bias. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Somatic Hypermutation at A/T-Rich Oligonucleotide Substrates Shows Different Strand Polarities in Ung-Deficient or -Proficient Backgrounds

    PubMed Central

    Zivojnovic, Marija; Delbos, Frédéric; Girelli Zubani, Giulia; Julé, Amélie; Alcais, Alexandre; Storck, Sébastien

    2014-01-01

    A/T mutations at immunoglobulin loci are introduced by DNA polymerase η (Polη) during an Msh2/6-dependent repair process which results in A's being mutated 2-fold more often than T's. This patch synthesis is initiated by a DNA incision event whose origin is still obscure. We report here the analysis of A/T oligonucleotide mutation substrates inserted at the heavy chain locus, including or not including internal C's or G's. Surprisingly, the template composed of only A's and T's was highly mutated over its entire 90-bp length, with a 2-fold decrease in mutation from the 5′ to the 3′ end and a constant A/T ratio of 4. These results imply that Polη synthesis was initiated from a break in the 5′-flanking region of the substrate and proceeded over its entire length. The A/T bias was strikingly altered in an Ung−/− background, which provides the first experimental evidence supporting a concerted action of Ung and Msh2/6 pathways to generate mutations at A/T bases. New analysis of Pms2−/− animals provided a complementary picture, revealing an A/T mutation ratio of 4. We therefore propose that Ung and Pms2 may exert a mutual backup function for the DNA incision that promotes synthesis by Polη, each with a distinct strand bias. PMID:24710273

  11. Interleukin 6 trigged ataxia-telangiectasia mutated activation facilitates lung cancer metastasis via MMP-3/MMP-13 up-regulation.

    PubMed

    Jiang, Yi Na; Yan, Hong Qiong; Huang, Xiao Bo; Wang, Yi Nan; Li, Qing; Gao, Feng Guang

    2015-12-01

    Our previous studies show that the phosphorylation of ataxia-telangiectasia mutated (ATM) induced by interleukin 6 (IL-6) treatment contributes to multidrug resistance formation in lung cancer cells, but the exact role of ATM activation in IL-6 increased metastasis is still elusive. In the present study, matrix metalloproteinase-3 (MMP-3) and MMP-13 were firstly demonstrated to be involved in IL-6 correlated cell migration. Secondly, IL-6 treatment not only increased MMP-3/MMP-13 expression but also augmented its activities. Thirdly, the inhibition of ATM phosphorylation efficiently abolished IL-6 up-regulating MMP-3/MMP-13 expression and increasing abilities of cell migration. Most importantly, the in vivo test showed that the inhibition of ATM abrogate the effect of IL-6 on lung cancer metastasis via MMP-3/MMP-13 down-regulation. Taken together, these findings demonstrate that IL-6 inducing ATM phosphorylation increases the expression of MMP-3/MMP-13, augments the abilities of cell migration, and promotes lung cancer metastasis, indicating that ATM is a potential target molecule to overcome IL-6 correlated lung cancer metastasis.

  12. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma.

    PubMed

    Sinha, Niharika; Panda, Prashanta K; Naik, Prajna P; Das, Durgesh N; Mukhopadhyay, Subhadip; Maiti, Tapas K; Shanmugam, Muthu K; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman A; Sethi, Gautam; Agarwal, Rajesh; Bhutia, Sujit K

    2017-11-01

    Oral cancer, a type of head and neck cancer, is ranked as one of the top most malignancies in India. Herein, we evaluated the anticancer efficacy of Abrus agglutinin (AGG), a plant lectin, in oral squamous cell carcinoma. AGG selectively inhibited cell growth, and caused cell cycle arrest and mitochondrial apoptosis through a reactive oxygen species (ROS)-mediated ATM-p73 dependent pathway in FaDu cells. AGG-induced ROS accumulation was identified as the major mechanism regulating apoptosis, DNA damage and DNA-damage response, which were significantly reversed by ROS scavenger N-acetylcysteine (NAC). Moreover, AGG was found to interact with mitochondrial manganese-dependent superoxide dismutase that might inhibit its activity and increase ROS in FaDu cells. In oral cancer p53 is mutated, thus we focused on p73; AGG resulted in p73 upregulation and knock down of p73 caused a decrease in AGG-induced apoptosis. Interestingly, AGG-dependent p73 expression was found to be regulated by ROS, which was reversed by NAC treatment. A reduction in the level of p73 in AGG-treated shATM cells was found to be associated with a decreased apoptosis. Moreover, administration of AGG (50 μg/kg body weight) significantly inhibited the growth of FaDu xenografts in athymic nude mice. In immunohistochemical analysis, the xenografts from AGG-treated mice displayed a decrease in PCNA expression and an increase in caspase-3 activation as compared to the controls. In conclusion, we established a connection among ROS, ATM and p73 in AGG-induced apoptosis, which might be useful in enhancing the therapeutic targeting of p53 deficient oral squamous cell carcinoma. © 2017 Wiley Periodicals, Inc.

  13. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer.

    PubMed

    Zhang, Fuquan; Shen, Mingjing; Yang, Li; Yang, Xiaodong; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2017-08-03

    Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the

  14. Experience with PACS in an ATM/Ethernet switched network environment.

    PubMed

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  15. Analysis of CrIS-ATMS Data Using an AIRS Science Team Version 6 - Like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.

    2013-01-01

    CrIS/ATMS is flying on NPP and is scheduled to fly on JPSS-1. CrIS/ATMS has roughly equivalent capabilities to AIRS/AMSU. The AIRS Science Team Version 6 retrieval algorithm is currently producing very high quality level-3 Climate Data Records (CDR's) that will be critical for understanding climate processes AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS AMSU. I have been asked by Ramesh Kakar if CrIS/ATMS can be counted on to adequately continue the AIRS/AMSU CDRs beyond 2020, or is something better needed? This research is being done to answer that question. A minimum requirement to obtain a yes answer is that CrIS/ATMS be analyzed using an AIRS Version 6 - like algorithm. NOAA is currently generating CrIS/ATMS products using 2 algorithms: IDPS and NUCAPS

  16. Existing and Required Modeling Capabilities for Evaluating ATM Systems and Concepts

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bowman, Jeremy; Delahaye, Daniel; Deyst, John J.; Feron, Eric; Hansman, R. John; Khan, Kashif; Kuchar, James K.; Pujet, Nicolas; Simpson, Robert W.

    1997-01-01

    ATM systems throughout the world are entering a period of major transition and change. The combination of important technological developments and of the globalization of the air transportation industry has necessitated a reexamination of some of the fundamental premises of existing Air Traffic Management (ATM) concepts. New ATM concepts have to be examined, concepts that may place more emphasis on: strategic traffic management; planning and control; partial decentralization of decision-making; and added reliance on the aircraft to carry out strategic ATM plans, with ground controllers confined primarily to a monitoring and supervisory role. 'Free Flight' is a case in point. In order to study, evaluate and validate such new concepts, the ATM community will have to rely heavily on models and computer-based tools/utilities, covering a wide range of issues and metrics related to safety, capacity and efficiency. The state of the art in such modeling support is adequate in some respects, but clearly deficient in others. It is the objective of this study to assist in: (1) assessing the strengths and weaknesses of existing fast-time models and tools for the study of ATM systems and concepts and (2) identifying and prioritizing the requirements for the development of additional modeling capabilities in the near future. A three-stage process has been followed to this purpose: 1. Through the analysis of two case studies involving future ATM system scenarios, as well as through expert assessment, modeling capabilities and supporting tools needed for testing and validating future ATM systems and concepts were identified and described. 2. Existing fast-time ATM models and support tools were reviewed and assessed with regard to the degree to which they offer the capabilities identified under Step 1. 3 . The findings of 1 and 2 were combined to draw conclusions about (1) the best capabilities currently existing, (2) the types of concept testing and validation that can be carried

  17. European project RETAIN: new approach for IBC in teleradiology and PACS based on full ATM network

    NASA Astrophysics Data System (ADS)

    Cordonnier, Emmanuel; Jensch, Peter F.; Piqueras, Joachim; Gandon, Yves

    1995-05-01

    This paper describes the RETAIN project (radiological examination transfer on ATM Integrated Network), which is supported by the European Community, in the frame of the TEN-IBC program (trans-European networks integrated broad band communication). It links together three European sites in France (Rennes), Spain (Barcelona), and Germany (Oldenburg) and involves a partnership between the public national operators France Telecom, Telefonica, and Telekom. One important reason to explicitly consider asynchronous transfer mode (ATM) for medical imaging is that multimedia applications on such networks allow integration of digital data and person-to-person communication. The RETAIN project includes trials of teleworking sessions between radiologists of Rennes and Barcelona within a clinical and/or scientific context based on ATM equipments performing DICOM transfer on examination, digital remote manipulation within a comprehensive dialogue, and high quality visiophony on ATM adaptation layer (AAL) type 1. The project includes also visiophony trials with Oldenburg and preparation of harmonized regional experimentation within an emergency context. The network used is a full 10 Mbits/s ATM network directly connected to local PACSs.

  18. Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation

    PubMed Central

    Blake, Sophia M; Stricker, Stefan H; Halavach, Hanna; Poetsch, Anna R; Cresswell, George; Kelly, Gavin; Kanu, Nnennaya; Marino, Silvia; Luscombe, Nicholas M; Pollard, Steven M; Behrens, Axel

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors. DOI: http://dx.doi.org/10.7554/eLife.08711.001 PMID:26984279

  19. Tumor protein D52 represents a negative regulator of ATM protein levels

    PubMed Central

    Chen, Yuyan; Kamili, Alvin; Hardy, Jayne R; Groblewski, Guy E; Khanna, Kum Kum; Byrne, Jennifer A

    2013-01-01

    Tumor protein D52 (TPD52) is a coiled-coil motif bearing hydrophilic polypeptide known to be overexpressed in cancers of diverse cellular origins. Increased TPD52 expression is associated with increased proliferation and invasive capacity in different cell types. Recent studies have reported a correlation between TPD52 transcript levels and G2 chromosomal radiosensitivity in lymphocytes of women at risk of hereditary breast cancer, and that TPD52 knockdown significantly reduced the radiation sensitivity of multiple cancer cell lines. In this study, we investigated possible roles for TPD52 in DNA damage response, and found that increased TPD52 expression in breast cancer and TPD52-expressing BALB/c 3T3 cells compromised ATM-mediated cellular responses to DNA double-strand breaks induced by γ-ray irradiation, which was associated with downregulation of steady-state ATM protein, but not transcript levels, regardless of irradiation status. TPD52-expressing 3T3 cells also showed significantly increased radiation sensitivity compared with vector cells evaluated by clonogenic assays. Furthermore, direct interactions between exogenous and endogenous ATM and TPD52 were detected by GST pull-down and co-immunoprecipitation assays. We also identified the interaction domains involved in this binding as TPD52 residues 111–131, and ATM residues 1–245 and 772–1102. Taken together, our results suggest that TPD52 may represent a novel negative regulator of ATM protein levels. PMID:23974097

  20. A new role for ATM in selective autophagy of peroxisomes (pexophagy).

    PubMed

    Tripathi, Durga Nand; Zhang, Jiangwei; Jing, Ji; Dere, Ruhee; Walker, Cheryl Lyn

    2016-01-01

    Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a "first responder" to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitination of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy.

  1. A new role for ATM in selective autophagy of peroxisomes (pexophagy)

    PubMed Central

    Tripathi, Durga Nand; Zhang, Jiangwei; Jing, Ji; Dere, Ruhee; Walker, Cheryl Lyn

    2016-01-01

    abstract Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a “first responder” to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitnation of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy. PMID:27050462

  2. Decreased expression of the ATM gene linked to poor prognosis for gastric cancer of different nationalities in Xinjiang.

    PubMed

    Han, Mei; Ma, Lanying; Qu, Yanli; Tang, Yong

    2017-08-01

    To explore the clinicopathological significance of ATM gene in the occurrence and prognosis of gastric cancer (GC) from different nationalities in Xinjiang. The expression of ATM in 385 patients with GC (including 98 Uygurs, 231 Hans and 56 Kazaks) and its corresponding adjacent tissues were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry assay to, analyze its correlations with clinicopathological features and prognosis of GC. The ATM expression in GC tissues was significantly decreased when compared to that in adjacent normal tissues of Uygur, Han and Kazak patients in Xinjiang, while Uygurs and Kazaks were much lower than Hans in the ATM expression of GC tissues (all P<0.05). Kaplan-Meier analysis showed that Uygur and Kazak patients with ATM-negative tumors had a markedly lower survival rate than patients in Hans (P=0.028), and GC patients with ATM negative expression presented more unfavorable overall survival rate than those with positive expression among the three different nationalities (all P<0.05). Multivariate Cox regression analysis revealed that nationality, ATM expression, TNM staging, depth of invasion, and lymph node metastasis were independent factors affecting the prognosis of GC patients in Xinjiang (all P<0.05). ATM was downregulated in GC patients in Xinjiang, especially for Uygurs and Kazaks, which suggested ATM to be an independent indicator of prognosis for GC therapy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Exploring the common molecular basis for the universal DNA mutation bias: Revival of Loewdin mutation model

    SciTech Connect

    Fu, Liang-Yu; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070; Wang, Guang-Zhong

    2011-06-10

    Highlights: {yields} There exists a universal G:C {yields} A:T mutation bias in three domains of life. {yields} This universal mutation bias has not been sufficiently explained. {yields} A DNA mutation model proposed by Loewdin 40 years ago offers a common explanation. -- Abstract: Recently, numerous genome analyses revealed the existence of a universal G:C {yields} A:T mutation bias in bacteria, fungi, plants and animals. To explore the molecular basis for this mutation bias, we examined the three well-known DNA mutation models, i.e., oxidative damage model, UV-radiation damage model and CpG hypermutation model. It was revealed that these models cannot providemore » a sufficient explanation to the universal mutation bias. Therefore, we resorted to a DNA mutation model proposed by Loewdin 40 years ago, which was based on inter-base double proton transfers (DPT). Since DPT is a fundamental and spontaneous chemical process and occurs much more frequently within GC pairs than AT pairs, Loewdin model offers a common explanation for the observed universal mutation bias and thus has broad biological implications.« less

  4. Analysis of CrIs/ATMS Using AIRS Version-7 Retrieval and QC Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Blaisdell, John M.; Iredell, Lena

    2017-01-01

    The objective of this research is to develop and implement an algorithm to analyze a long term data record of CrIS/ATMS observations so as to produce monthly mean gridded Level-3 products which are consistent with, and will serve as a seamless follow on to, those of AIRS Version-7. We feel the best way to achieve this result is to analyze CrIS/ATMS data using retrieval and Quality Control (QC) methodologies which are scientifically equivalent to those used in AIRS Version-7. We developed and implemented a single retrieval program that uses as input either AIRS/AMSU or CrIS/ATMS radiance observations, and has appropriate switches that take into account the spectral and radiometric differences between CrIS and AIRS. Our methodology is call CHART (Climate Heritage AIRS Retrieval Technique).

  5. Inter-calibration and validation of observations from SAPHIR and ATMS instruments

    NASA Astrophysics Data System (ADS)

    Moradi, I.; Ferraro, R. R.

    2015-12-01

    We present the results of evaluating observations from microwave instruments aboard the Suomi National Polar-orbiting Partnership (NPP, ATMS instrument) and Megha-Tropiques (SAPHIR instrument) satellites. The study includes inter-comparison and inter-calibration of observations of similar channels from the two instruments, evaluation of the satellite data using high-quality radiosonde data from Atmospheric Radiation Measurement Program and GPS Radio Occultaion Observations from COSMIC mission, as well as geolocation error correction. The results of this study are valuable for generating climate data records from these instruments as well as for extending current climate data records from similar instruments such as AMSU-B and MHS to the ATMS and SAPHIR instruments. Reference: Moradi et al., Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders. IEEE Transactions on Geoscience and Remote Sensing. 01/2015; DOI: 10.1109/TGRS.2015.2427165

  6. BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging1

    PubMed Central

    Oktay, Kutluk; Turan, Volkan; Titus, Shiny; Stobezki, Robert; Liu, Lin

    2015-01-01

    Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging. PMID:26224004

  7. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  9. Experiments at SRT Using the NOAA CrIS/ATMS Proxy Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2011-01-01

    The objectives of the talk are: (1) Assess the performance of NGAS Version-1.5.03.00 CrIS/ATMS retrieval algorithm as delivered by LaRC, modified to include the MW and IR tuning coefficients and new CrIS noise model (a) Percent acceptance (b) RMS and mean differences of T(p) vs. ECMWF truth as a function of % yield (2) Compare performance of NGAS retrieval algorithm with an AIRS Science Team Version-6 like retrieval algorithm modified at Sounder Research Team (SRT) for CrIS/ATMS

  10. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  11. An evaluation of the ATM man/machine interface. Phase 3: Analysis of SL-3 and SL-4 data

    NASA Technical Reports Server (NTRS)

    Bathurst, J. R., Jr.; Pain, R. F.; Ludewig, D. B.

    1974-01-01

    The functional adequacy of human factored crew operated systems under operational zero-gravity conditions is considered. Skylab ATM experiment operations generated sufficient telemetry and voice transcript data to support such an assessment effort. Discussions are presented pertaining to the methodology and procedures used to evaluate the hardware, training and directive aspects of Skylab 3 and Skylab 4 manned ATM experiment operations.

  12. Development of a queue warning system utilizing ATM infrastructure system development and field-testing : final report.

    DOT National Transportation Integrated Search

    2017-06-13

    MnDOT has already deployed an extensive infrastructure for Active Traffic Management (ATM) on I-35W and I-94 with plans to expand on other segments of the Twin Cities freeway network. The ATM system includes intelligent lane control signals (ILCS) sp...

  13. AZD6738, A Novel Oral Inhibitor of ATR, Induces Synthetic Lethality with ATM Deficiency in Gastric Cancer Cells.

    PubMed

    Min, Ahrum; Im, Seock-Ah; Jang, Hyemin; Kim, Seongyeong; Lee, Miso; Kim, Debora Keunyoung; Yang, Yaewon; Kim, Hee-Jun; Lee, Kyung-Hun; Kim, Jin Won; Kim, Tae-Yong; Oh, Do-Youn; Brown, Jeff; Lau, Alan; O'Connor, Mark J; Bang, Yung-Jue

    2017-04-01

    Ataxia telangiectasia and Rad3-related (ATR) can be considered an attractive target for cancer treatment due to its deleterious effect on cancer cells harboring a homologous recombination defect. The aim of this study was to investigate the potential use of the ATR inhibitor, AZD6738, to treat gastric cancer.In SNU-601 cells with dysfunctional ATM, AZD6738 treatment led to an accumulation of DNA damage due to dysfunctional RAD51 foci formation, S phase arrest, and caspase 3-dependent apoptosis. In contrast, SNU-484 cells with functional ATM were not sensitive to AZD6738. Inhibition of ATM in SNU-484 cells enhanced AZD6738 sensitivity to a level comparable with that observed in SNU-601 cells, showing that activation of the ATM-Chk2 signaling pathway attenuates AZD6738 sensitivity. In addition, decreased HDAC1 expression was found to be associated with ATM inactivation in SNU-601 cells, demonstrating the interaction between HDAC1 and ATM can affect sensitivity to AZD6738. Furthermore, in an in vivo tumor xenograft mouse model, AZD6738 significantly suppressed tumor growth and increased apoptosis.These findings suggest synthetic lethality between ATR inhibition and ATM deficiency in gastric cancer cells. Further clinical studies on the interaction between AZD 6738 and ATM deficiency are warranted to develop novel treatment strategies for gastric cancer. Mol Cancer Ther; 16(4); 566-77. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. The "S.W.A.T." Concept.

    ERIC Educational Resources Information Center

    Williamson, Bob; And Others

    1985-01-01

    Describes Statistical Work Analysis Teams (S.W.A.T.), which marry the two factors necessary for successful statistical analysis with the personal nature of attribute data into a single effort. Discusses S.W.A.T. project guidelines, implementation of the first S.W.A.T. projects, team training, and project completion. (CT)

  15. Designing a Strategic Plan through an Emerging Knowledge Generation Process: The ATM Experience

    ERIC Educational Resources Information Center

    Zanotti, Francesco

    2012-01-01

    Purpose: The aim of this contribution is to describe a new methodology for designing strategic plans and how it was implemented by ATM, a public transportation agency based in Milan, Italy. Design/methodology/approach: This methodology is founded on a new system theory, called "quantum systemics". It is based on models and metaphors both…

  16. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; hide

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  17. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons

    PubMed Central

    Dobbin, Matthew M; Madabhushi, Ram; Pan, Ling; Chen, Yue; Kim, Dohoon; Gao, Jun; Ahononu, Biafra; Pao, Ping-Chieh; Qiu, Yi; Zhao, Yingming; Tsai, Li-Huei

    2016-01-01

    Summary Defects in DNA repair have been linked to cognitive decline with age and neurodegenerative disease. Yet the mechanisms that protect neurons from genotoxic stress remain largely obscure. In this report, we characterize the roles of the NAD+-dependent deacetylase, SIRT1, in the neuronal response to DNA double-strand breaks (DSBs). We show that SIRT1 is rapidly recruited to DSBs in postmitotic neurons, where it exhibits a synergistic relationship with ATM. SIRT1 recruitment to breaks is ATM-dependent; however, SIRT1 also stimulates ATM auto-phosphorylation and activity and stabilizes ATM at DSB sites. Upon DSB induction, SIRT1 also binds the neuroprotective class I histone deacetylase, HDAC1. We show that SIRT1 deacetylates HDAC1 and stimulates its enzymatic activity, which is necessary for DSB repair through the nonhomologous end-joining (NHEJ) pathway. HDAC1 mutants that mimic a constitutively acetylated state render neurons more susceptible to DNA damage, whereas pharmacological SIRT1 activators that promote HDAC1 deacetylation also reduce DNA damage in two mouse models of neurodegeneration. We propose that SIRT1 is an apical transducer of the DSB response and that SIRT1 activation offers an important therapeutic avenue in neurodegeneration. PMID:23852118

  18. HPV 5 and 8 E6 Expression Reduces ATM Protein Levels and Attenuates LINE-1 Retrotransposition

    PubMed Central

    Wallace, Nicholas A.; Gasior, Stephen L.; Faber, Zachary J.; Howie, Heather L.; Deininger, Prescott L.; Galloway, Denise A.

    2013-01-01

    The expression of the E6 protein from certain members of the HPV genus β (β HPV 5 and 8 E6) can disrupt p53 signaling by diminishing the steady state levels of two p53 modifying enzymes, ATR and p300. Here, we show that β-HPV 5 and 8 E6 are also capable of reducing the steady state levels of another p53 modifying enzyme, ATM, and as a result restrict LINE-1 retrotransposition. Furthermore, we show that the reduction of both ATM and LINE-1 retrotransposition is dependent upon the ability of β-HPV 8 E6 to bind and degrade p300. We use inhibitors and dominant negative mutants to confirm that ATM is needed for efficient LINE-1 retrotransposition. Furthermore, neither sensitivity to LINE-1 expression nor LINE-1 induced DSB formation is altered in an ATM deficient background. Together, these data illustrate the broad impact some β-HPVs have on DNA damage signaling by promoting p300 degradation. PMID:23706308

  19. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    PubMed Central

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  20. Evaluating ATM Technology for Distance Education in Library and Information Science.

    ERIC Educational Resources Information Center

    Stanford, Serena W.

    1997-01-01

    Investigates the impact of asynchronous transfer mode (ATM) technology in an interactive environment providing distance education in library and information science at two San Jose State University (California) sites. The main purpose of the study was to develop a reliable and valid evaluation instrument. Contains 6 tables. (Author/AEF)

  1. Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    DTIC Science & Technology

    2016-05-01

    PALB2 (FANCO),MSH2, MLH1, MSH6, PMS2 , 9 other known breast cancer genes: ATM, CHEK2, FAM175A (abraxas), FAMCM, NBN, PTEN, RECQL, TP53 and XRCC2) and...patients were enrolled with a known mutation in a gene of interest including 1 each with a mutation in RAD51D, RAD51C, PALB2, BARD1, one with PMS2 ...BRCA2, PMS2 , BLM, RAD51C and 1 with mutations in MSH6 and RAD51D. Of the 48 patients with a second cancer, most had an invasive breast cancer, but

  2. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as <1.0K for channels 1, 2, and 16-22 and <0.75 K for channels 3-15). A thorough evaluation of the performance of ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  3. Association of ATM and BMI-1 genetic variation with breast cancer risk in Han Chinese.

    PubMed

    Yue, Li-Ling; Wang, Fu-Chao; Zhang, Ming-Long; Liu, Dan; Chen, Ping; Mei, Qing-Bu; Li, Peng-Hui; Pan, Hong-Ming; Zheng, Li-Hong

    2018-04-24

    We tested the hypothesis that genetic variation in ATM and BMI-1 genes can alter the risk of breast cancer through genotyping 6 variants among 524 breast cancer cases and 518 cancer-free controls of Han nationality. This was an observational, hospital-based, case-control association study. Analyses of single variant, linkage, haplotype, interaction and nomogram were performed. Risk was expressed as odds ratio (OR) and 95% confidence interval (CI). All studied variants were in the Hardy-Weinberg equilibrium and were not linked. The mutant allele frequencies of rs1890637, rs3092856 and rs1801516 in ATM gene were significantly higher in cases than in controls (P = .005, <.001 and .001, respectively). Two variants, rs1042059 and rs201024480, in BMI-1 gene were low penetrant, with no detectable significance. After adjustment, rs189037 and rs1801516 were significantly associated with breast cancer under the additive model (OR: 1.37 and 1.52, 95% CI: 1.10-1.71 and 1.14-2.04, P: .005 and .005, respectively). In haplotype analysis, haplotypes A-C-G-G (in order of rs189037, rs3092856, rs1801516 and rs373759) and A-C-A-A in ATM gene were significantly associated with 1.98-fold and 6.04-fold increased risk of breast cancer (95% CI: 1.36-2.90 and 1.65-22.08, respectively). Nomogram analysis estimated that the cumulative proportion of 3 significant variants in ATM gene was about 12.5%. Our findings collectively indicated that ATM gene was a candidate gene in susceptibility to breast cancer in Han Chinese. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. MPEG-2 Over Asynchronous Transfer Mode (ATM) Over Satellite Quality of Service (QoS) Experiments: Laboratory Tests

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Frantz, Brian D.; Spells, Marcus J.

    1998-01-01

    Asynchronous transfer mode (ATM) quality of service (QoS) experiments were performed using MPEG-2 (ATM application layer 5, AAL5) over ATM over an emulated satellite link. The purpose of these experiments was to determine the free-space link quality necessary to transmit high-quality multimedia information by using the ATM protocol. The detailed test plan and test configuration are described herein as are the test results. MPEG-2 transport streams were baselined in an errored environment, followed by a series of tests using, MPEG-2 over ATM. Errors were created both digitally as well as in an IF link by using a satellite modem and commercial gaussian noise test set for two different MPEG-2 decoder implementations. The results show that ITU-T Recommendation 1.356 Class 1, stringent ATM applications will require better link quality than currently specified; in particular, cell loss ratios of better than 1.0 x 10(exp -8) and cell error ratios of better than 1.0 x 10(exp -7) are needed. These tests were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research.

  5. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers.

    PubMed

    Alves, Mônica Ghislaine Oliveira; Carta, Celina Faig Lima; de Barros, Patrícia Pimentel; Issa, Jaqueline Scholz; Nunes, Fábio Daumas; Almeida, Janete Dias

    2017-01-01

    The aim of this study was to evaluate the effect of chronic smoking on the expression profile of the repair genes MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers and never smokers. The sample consisted of thirty exfoliative cytology smears per group obtained from Smokers and Never Smokers. Total RNA was extracted and expression of the MLH1, MSH2 and ATM genes were evaluated by quantitative real-time and immunocytochemistry. The gene and protein expression data were correlated to the clinical data. Gene expression was analyzed statistically using the Student t-test and Pearson's correlation coefficient, with p<0.05. MLH1, MSH2 and ATM genes were downregulated in the smoking group compared to the control with significant values for MLH1 (p=0.006), MSH2 (p=0.0001) and ATM (p=0.0001). Immunocytochemical staining for anti-MLH1, anti-MSH2 and anti-ATM was negative in Never Smokers; in Smokers it was rarely positive. No significant correlation was observed among the expression of MLH1, MSH2, ATM and age, number of cigarettes consumed per day, time of smoking during life, smoking history or levels of CO in expired air. The expression of genes and proteins related to DNA repair mechanism MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers was reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Tetraploidization or autophagy: The ultimate fate of senescent human endometrial stem cells under ATM or p53 inhibition.

    PubMed

    Borodkina, Aleksandra V; Shatrova, Alla N; Deryabin, Pavel I; Grukova, Anastasiya A; Nikolsky, Nikolay N; Burova, Elena B

    2016-01-01

    Previously we demonstrated that endometrium-derived human mesenchymal stem cells (hMESCs) via activation of the ATM/p53/p21/Rb pathway enter the premature senescence in response to oxidative stress. Down regulation effects of the key components of this signaling pathway, particularly ATM and p53, on a fate of stressed hMESCs have not yet been investigated. In the present study by using the specific inhibitors Ku55933 and Pifithrin-α, we confirmed implication of both ATM and p53 in H(2)O(2)-induced senescence of hMESCs. ATM or p53 down regulation was shown to modulate differently the cellular fate of H(2)O(2)-treated hMESCs. ATM inhibition allowed H(2)O(2)-stimulated hMESCs to escape the permanent cell cycle arrest due to loss of the functional ATM/p53/p21/Rb pathway, and induced bypass of mitosis and re-entry into S phase, resulting in tetraploid cells. On the contrary, suppression of the p53 transcriptional activity caused a pronounced cell death of H(2)O(2)-treated hMESCs via autophagy induction. The obtained data clearly demonstrate that down regulation of ATM or p53 shifts senescence of human endometrial stem cells toward tetraploidization or autophagy.

  7. EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway.

    PubMed

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2017-03-28

    Ginkgo bilob a extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, γ-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

  8. Optical implementation of a parallel out-of-band controller for large broadband ATM switch applications

    NASA Astrophysics Data System (ADS)

    Cloonan, Thomas J.; Richards, Gaylord W.; Lentine, Anthony L.

    1996-03-01

    Asynchronous transfer mode (ATM) is rapidly becoming the transport mechanism of choice for the information superhighway, because it promises the bandwidth and flexibility needed for many voice, video and data service offerings. Some industry experts project that the required sizes for ATM switching equipment in the public-switched environment will reach the Tbps range by the beginning of the next decade. This paper analyzes the problems associated with controlling the flow of packets within a broadband ATM switch of this size. The analysis is based on the requirements of the growable packet switch architecture. The paper proposes a novel solution to the problem of hunting paths within an ATM packet switch network. The resulting control scheme is unconventional in two ways. First, it uses an out-of-band control algorithm instead of the more common self-routing approach. In particular, we explore the benefits of using a parallel processor as an out-of-band controller for a growable packet switch distribution network. The processor permits additional levels of parallelism to be added to the out-of-band control function so that path hunts can be performed for all N of the input ports within a single cell interval. The proposed approach is also unconventional because it uses free-space digital optics to guide signals between successive stages of the controller. The paper describes the underlying motivations for implementing an optical out-of-band controller for an ATM switch, and it also describes the logic within a controller node that has been fabricated using a hybrid Si CMOS/GaAs SEED technology. The node uses optical detectors (in GaAs), amplifiers and digital control logic (in Si), and optical modulators (in GaAs). Free-space optical connections between successive device arrays can be provided using either bulk optical elements or micro-optics, but the optical interconnects must provide massive fanout capability. An architectural analysis studying the feasibility

  9. Skylab ATM/S-056 X-ray event analyzer: Instrument description, parameter determination, and analysis example (15 June 1973 1B/M3 flare)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1976-01-01

    The Skylab ATM/S-056 X-Ray Event Analyzer, part of an X-ray telescope experiment, is described. The techniques employed in the analysis of its data to determine electron temperatures and emission measures are reviewed. The analysis of a sample event - the 15 June 1973 1B/M3 flare - is performed. Comparison of the X-Ray Event Analyzer data with that of the SolRad 9 observations indicates that the X-Ray Event Analyzer accurately monitored the sun's 2.5 to 7.25 A X-ray emission and to a lesser extent the 6.1 to 20 A emission. A mean average peak temperature of 15 million K at 1,412 UT and a mean average peak electron density (assuming a flare volume of 10 to the 13 power cu km) of 27 million/cu mm at 1,416 to 1,417 UT are deduced for the event. The X-Ray Event Analyzer data, having a 2.5 s time resolution, should be invaluable in comparisons with other high-time resolution data (e.g., radio bursts).

  10. Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α.

    PubMed

    Chen, Xu; Wu, Lei; Li, Dezhi; Xu, Yanmei; Zhang, Luping; Niu, Kai; Kong, Rui; Gu, Jiaoyang; Xu, Zihan; Chen, Zhengtang; Sun, Jianguo

    2018-06-02

    Lung cancer is one of the main causes of cancer mortality globally. Most patients received radiotherapy during the course of disease. However, radioresistance generally occurs in the majority of these patients, leading to poor curative effect, and the underlying mechanism remains unclear. In the present study, miR-18a-5p expression was downregulated in irradiated lung cancer cells. Overexpression of miR-18a-5p increased the radiosensitivity of lung cancer cells and inhibited the growth of A549 xenografts after radiation exposure. Dual luciferase report system and miR-18a-5p overexpression identified ataxia telangiectasia mutated (ATM) and hypoxia inducible factor 1 alpha (HIF-1α) as the targets of miR-18a-5p. The mRNA and protein expressions of ATM and HIF-1α were dramatically downregulated by miR-18a-5p in vitro and in vivo. Clinically, plasma miR-18a-5p expression was significantly higher in radiosensitive than in radioresistant group (P < .001). The cutoff value of miR-18a-5p >2.28 was obtained from receiver operating characteristic (ROC) curve. The objective response rate (ORR) was significantly higher in miR-18a-5p-high group than in miR-18a-5p-low group (P < .001). A tendency demonstrated that the median local progression-free survival (PFS) from radiotherapy was longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .082). The median overall survival (OS) from radiotherapy was numerically longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .281). The sensitivity and specificity of plasma miR-18a-5p to predict radiosensitivity was 87% and 95%, respectively. Collectively, these results indicate that miR-18a-5p increases the radiosensitivity in lung cancer cells and CD133 + stem-like cells via downregulating ATM and HIF-1α expressions. Plasma miR-18a-5p would be an available indicator of radiosensitivity in lung cancer patients. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Project W.A.T.E.R.

    ERIC Educational Resources Information Center

    EnviroTeach, 1992

    1992-01-01

    Introduces networking projects for studying rivers and water quality. Describes two projects in South Africa (Project W.A.T.E.R and SWAP) associated with the international network, Global Rivers Environmental Education Network. Discusses water test kits and educational material developed through Project W.A.T.E.R. (Water Awareness through…

  12. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    SciTech Connect

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  13. D-ATM, a working example of health care interoperability: From dirt path to gravel road.

    PubMed

    DeClaris, John-William

    2009-01-01

    For many years, there have been calls for interoperability within health care systems. The technology currently exists and is being used in business areas like banking and commerce, to name a few. Yet the question remains, why has interoperability not been achieved in health care? This paper examines issues encountered and success achieved with interoperability during the development of the Digital Access To Medication (D-ATM) project, sponsored by the Substance Abuse and Mental Health Services Administration (SAMHSA). D-ATM is the first government funded interoperable patient management system. The goal of this paper is to provide lessons learned and propose one possible road map for health care interoperability within private industry and how government can help.

  14. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .

  15. Analysis of CrIS ATMS and AIRS AMSU Data Using Scientifically Equivalent Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2016-01-01

    Monthly mean August 2014 Version-6.28 AIRS and CrIS products agree well with OMPS and CERES, and reasonably well with each other. Version-6.28 CrIS total precipitable water is biased dry compared to AIRS. AIRS and CrIS Version-6.36 water vapor products are both improved compared to Version-6.28. Version-6.36 AIRS and CrIS total precipitable water also shows improved agreement with each other. AIRS Version-6.36 total ozone agrees even better with OMPS than does AIRS Version-6.28, and gives reasonable results during polar winter where OMPS does not generate products. CrIS and ATMS are high spectral resolution IR and Microwave atmospheric sounders currently flying on the SNPP satellite, and are also scheduled for flight on future NPOESS satellites. CrIS/ATMS have similar sounding capabilities to those of the AIRS/AMSU sounder suite flying on EOS Aqua. The objective of this research is to develop and implement scientifically equivalent AIRS/AMSU and CrIS/ATMS retrieval algorithms with the goal of generating a continuous data record of AIRS/AMSU and CrIS/ATMS level-3 data products with a seamless transition between them in time. To achieve this, monthly mean AIRS/AMSU and CrIS/ATMS retrieved products, and more importantly their interannual differences, should show excellent agreement with each other. The currently operational AIRS Science Team Version-6 retrieval algorithm has generated 14 years of level-3 data products. A scientifically improved AIRS Version-7 retrieval algorithm is expected to become operational in 2017. We see significant improvements in water vapor and ozone in Version-7 retrieval methodology compared to Version-6.We are working toward finalization and implementation of scientifically equivalent AIRS/AMSU and CrIS/ATMS Version-7 retrieval algorithms to be used for the eventual processing of all AIRS/AMSU and CrIS/ATMS data. The latest version of our retrieval algorithm is Verison-6.36, which includes almost all the improvements we want in Version-7

  16. Issues in ATM Support of High-Performance, Geographically Distributed Computing

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G

    1995-01-01

    This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.

  17. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system

  18. ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and

  19. ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last

  20. King 2 2519 ATM residual gyros: Reestablishing 5 year life requirements

    NASA Technical Reports Server (NTRS)

    Kayal, B.; Carbocci, L. J.

    1978-01-01

    The technical expertise required to assess the condition of the residual ATM 2519 Singer gyros is discussed. Past build history records, past performance characteristics, and recommendations for particular tests (which were performed by NASA personnel) are summarized. Test results are analyzed. A study of motor performance data and recommendations concerning gyro spin bearing life was performed. A method of reestablishing potential reliability of the bearing for the 5-year life requirement of the power module is also included.

  1. Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness

    DTIC Science & Technology

    2011-05-10

    Track Distance (Km) E le v a ti o n ( m ) ATM Elevation Profile Elevation 18 Figure 13: Geoid shape of earth’s equipotential surface , which is...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface elevation...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface

  2. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients

    PubMed Central

    Flanagan, James M.; Munoz-Alegre, Marta; Henderson, Stephen; Tang, Thomas; Sun, Ping; Johnson, Nichola; Fletcher, Olivia; dos Santos Silva, Isabel; Peto, Julian; Boshoff, Chris; Narod, Steven; Petronis, Arturas

    2009-01-01

    Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. We have performed methylation microarray analysis of peripheral blood DNA from 14 women with bilateral breast cancer compared with 14 unaffected matched controls throughout 17 candidate breast cancer susceptibility genes including BRCA1, BRCA2, CHEK2, ATM, ESR1, SFN, CDKN2A, TP53, GSTP1, CDH1, CDH13, HIC1, PGR, SFRP1, MLH1, RARB and HSD17B4. We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78–5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age–phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. Accession numbers: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603. PMID:19153073

  3. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma.

    PubMed

    Walker, Brian A; Mavrommatis, Konstantinos; Wardell, Christopher P; Ashby, T Cody; Bauer, Michael; Davies, Faith E; Rosenthal, Adam; Wang, Hongwei; Qu, Pingping; Hoering, Antje; Samur, Mehmet; Towfic, Fadi; Ortiz, Maria; Flynt, Erin; Yu, Zhinuan; Yang, Zhihong; Rozelle, Dan; Obenauer, John; Trotter, Matthew; Auclair, Daniel; Keats, Jonathan; Bolli, Niccolo; Fulciniti, Mariateresa; Szalat, Raphael; Moreau, Philippe; Durie, Brian; Stewart, A Keith; Goldschmidt, Hartmut; Raab, Marc S; Einsele, Hermann; Sonneveld, Pieter; San Miguel, Jesus; Lonial, Sagar; Jackson, Graham H; Anderson, Kenneth C; Avet-Loiseau, Herve; Munshi, Nikhil; Thakurta, Anjan; Morgan, Gareth J

    2018-06-08

    Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1,273 newly diagnosed patients with multiple myeloma we identify 63 driver genes, some of which are novel including IDH1 , IDH2 , HUWE1 , KLHL6 , and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more mutations in driver genes are associated with a worse outcome, as are those with identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3 , DIS3 and PRKD2 ; t(11;14) with mutations in CCND1 and IRF4 ; t(14;16) with mutations in MAF , BRAF , DIS3 and ATM ; and hyperdiploidy with gain 11q, mutations in FAM46C and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is pre-determined by the primary events upon which further dependencies are built, giving rise to a non-random accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens. Copyright © 2018 American Society of Hematology.

  4. Latency of TCP applications over the ATM-WAN using the GFR service category

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Hsien; Siliquini, John F.; Budrikis, Zigmantas

    1998-10-01

    The GFR service category has been proposed for data services in ATM networks. Since users are ultimately interested in data service that provide high efficiency and low latency, it is important to study the latency performance for data traffic of the GFR service category in an ATM network. Today much of the data traffic utilizes the TCP/IP protocol suite and in this paper we study through simulation the latency of TCP applications running over a wide-area ATM network utilizing the GFR service category using a realistic TCP traffic model. From this study, we find that during congestion periods the reserved bandwidth in GFR can improve the latency performance for TCP applications. However, due to TCP 'Slow Start' data segment generation dynamics, we show that a large proportion of TCP segments are discarded under network congestion even when the reserved bandwidth is equal to the average generated rate of user data. Therefore, a user experiences worse than expected latency performance when the network is congested. In this study we also examine the effects of segment size on the latency performance of TCP applications using the GFR service category.

  5. ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

    PubMed Central

    Sullivan, Kelly D.; Padilla-Just, Nuria; Henry, Ryan E.; Porter, Christopher C.; Kim, Jihye; Tentler, John J.; Eckhardt, S. Gail; Tan, Aik Choon; DeGregori, James; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies. PMID:22660439

  6. Clinical interpretation of pathogenic ATM and CHEK2 variants on multigene panel tests: navigating moderate risk.

    PubMed

    West, Allison H; Blazer, Kathleen R; Stoll, Jessica; Jones, Matthew; Weipert, Caroline M; Nielsen, Sarah M; Kupfer, Sonia S; Weitzel, Jeffrey N; Olopade, Olufunmilayo I

    2018-02-14

    Comprehensive genomic cancer risk assessment (GCRA) helps patients, family members, and providers make informed choices about cancer screening, surgical and chemotherapeutic risk reduction, and genetically targeted cancer therapies. The increasing availability of multigene panel tests for clinical applications allows testing of well-defined high-risk genes, as well as moderate-risk genes, for which the penetrance and spectrum of cancer risk are less well characterized. Moderate-risk genes are defined as genes that, when altered by a pathogenic variant, confer a 2 to fivefold relative risk of cancer. Two such genes included on many comprehensive cancer panels are the DNA repair genes ATM and CHEK2, best known for moderately increased risk of breast cancer development. However, the impact of screening and preventative interventions and spectrum of cancer risk beyond breast cancer associated with ATM and/or CHEK2 variants remain less well characterized. We convened a large, multidisciplinary, cross-sectional panel of GCRA clinicians to review challenging, peer-submitted cases of patients identified with ATM or CHEK2 variants. This paper summarizes the inter-professional case discussion and recommendations generated during the session, the level of concordance with respect to recommendations between the academic and community clinician participants for each case, and potential barriers to implementing recommended care in various practice settings.

  7. ATM Mediates pRB Function To Control DNMT1 Protein Stability and DNA Methylation

    PubMed Central

    Suzuki, Misa; Hayashi, Naoyuki; Kobayashi, Masahiko; Sasaki, Nobunari; Nishiuchi, Takumi; Doki, Yuichiro; Okamoto, Takahiro; Kohno, Susumu; Muranaka, Hayato; Kitajima, Shunsuke; Yamamoto, Ken-ichi

    2013-01-01

    The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression. PMID:23754744

  8. Recent Greenland Thinning from Operation IceBridge ATM and LVIS Data

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.

    2015-12-01

    We investigate regional thinning rates in Greenland using two Operation IceBridge lidar instruments, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). IceBridge and Pre-IceBridge ATM data are available from 1993 to present and IceBridge and Pre-Icebridge LVIS data are available from 2007 to present. We compare different techniques for combining the two datasets: overlapping footprints, triangulated irregular network meshing and radial basis functions. We validate the combination for periods with near term overlap of the two instruments. By combining the two lidar datasets, we are able to investigate intra-annual, annual, interannual surface elevation change. We investigate both the high melt season of 2012 and the low melt season of 2013. In addition, the major 2015 IceBridge Arctic campaign provides new crucial data for determining seasonal ice sheet thinning rates. We compare our LVIS/ATM results with surface mass balance outputs from two regional climate models: the Regional Atmospheric Climate Model (RACMO) and the Modèle Atmosphérique Régional (MAR). We also investigate the thinning rates of major outlet glaciers.

  9. A case study : benefits associated with the sharing of ATMS-related video data in San Antonio, TX

    DOT National Transportation Integrated Search

    1998-08-11

    This paper summarizes various findings relating to the integration of Advanced Traffic Management System (ATMS) components of video data in San Antonio, TX. Specifically, the paper examines the perceived benefits derived from the sharing of video dat...

  10. California ATMS Testbed : PHASE III: Operational Research Implementation : Final Report [Volume 1: Executive Summary ; and, Volume II: Technical Report

    DOT National Transportation Integrated Search

    2006-10-01

    This report summarizes research and development that has been conducted to position the Testbed to support prototype deployment and evaluation of Advanced Transportation Management Systems (ATMS) products and services. The various elements contained ...

  11. A Benefits Assessment of the FAA's Enhanced Traffic Management System (ETMS): The Impact of Initial Products of the ATMS Program

    DOT National Transportation Integrated Search

    1992-12-01

    This study examined the benefits associated with the application of initial ATMS products, the Aircraft Situation Display and the Monitor Alert function, within the FAA's ETMS system. The benefits presented in this report represent those benefits acc...

  12. iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.

    PubMed

    Morgan, Claire; Lewis, Paul D

    2006-01-31

    The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems

  13. Mice heterozygous for the ATM gene are more sensitive to heavy ions exposure than are wildtypes

    NASA Astrophysics Data System (ADS)

    Worgul, B.; Smilenov, L.; Brenner, D.; Vazquez, M.; Hall, E.

    Previous studies have shown that the eyes of atm heterozygous mice exposed to Low LET radiation (X-rays) are more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to High LET radiation damage. Again the lens and, its primary radiopathy, cataract, were used to assay for the effects of ATM deficiency in a late-responding tissue. Together with those of wildtypes, the eyes of AT heterozygous knockout mice were exposed to 325 mGy of 1 GEV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per nuclear area. As was the case in the earlier X-ray studies all irradiations were done on the 28th day after birth. Controls consisted of wildtype irradiated as well as unirradiated wildtype and heterozygotes. Ten mice from each group were examined weekly by conventional slitlamp biomicroscopy for a total of 35 weeks. The time required for prevalence to reach 50% (T50) as an endpoint for each stage indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the atm gene. For example the T50 for definitive cataract onset (stage 1) in the atm heterozygotes was 10 weeks whereas 17 weeks were required for the wildtypes. Similarly at the conclusion of the experiment (35 weeks), 40% of the lenses of allele-deficient mice had progressed to stage 3 (near fully opaque and obviously visually debilitating), while only one lens (5%) from the wildtype irradiated eyes achieved that stage. The data show that heterozygosity for the atm gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that AT heterozygotes in the

  14. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    PubMed

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    PubMed

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    PubMed Central

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  17. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  18. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  19. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer

    PubMed Central

    Pearlman, Rachel; Frankel, Wendy L.; Swanson, Benjamin; Zhao, Weiqiang; Yilmaz, Ahmet; Miller, Kristin; Bacher, Jason; Bigley, Christopher; Nelsen, Lori; Goodfellow, Paul J.; Goldberg, Richard M.; Paskett, Electra; Shields, Peter G.; Freudenheim, Jo L.; Stanich, Peter P; Lattimer, Ilene; Arnold, Mark; Liyanarachchi, Sandya; Kalady, Matthew; Heald, Brandie; Greenwood, Carla; Paquette, Ian; Prues, Marla; Draper, David J.; Lindeman, Carolyn; Kuebler, J. Philip; Reynolds, Kelly; Brell, Joanna M.; Shaper, Amy A.; Mahesh, Sameer; Buie, Nicole; Weeman, Kisa; Shine, Kristin; Haut, Mitchell; Edwards, Joan; Bastola, Shyamal; Wickham, Karen; Khanduja, Karamjit S.; Zacks, Rosemary; Pritchard, Colin C.; Shirts, Brian H.; Jacobson, Angela; Allen, Brian; de la Chapelle, Albert; Hampel, Heather

    2017-01-01

    IMPORTANCE Hereditary cancer syndromes infer high cancer risks and require intensive cancer surveillance, yet the prevalence and spectrum of these conditions among unselected patients with early-onset colorectal cancer (CRC) is largely undetermined. OBJECTIVE To determine the frequency and spectrum of cancer susceptibility gene mutations among patients with early-onset CRC. DESIGN, SETTING, AND PARTICIPANTS Overall, 450 patients diagnosed with colorectal cancer younger than 50 years were prospectively accrued from 51 hospitals into the Ohio Colorectal Cancer Prevention Initiative from January 1, 2013, to June 20, 2016. Mismatch repair (MMR) deficiency was determined by microsatellite instability and/or immunohistochemistry. Germline DNA was tested for mutations in 25 cancer susceptibility genes using next-generation sequencing. MAIN OUTCOMES AND MEASURES Mutation prevalence and spectrum in patients with early-onset CRC was determined. Clinical characteristics were assessed by mutation status. RESULTS In total 450 patients younger than 50 years were included in the study, and 75 gene mutations were found in 72 patients (16%). Forty-eight patients (10.7%) had MMR-deficient tumors, and 40 patients (83.3%) had at least 1 gene mutation: 37 had Lynch syndrome (13, MLH1 [including one with constitutional MLH1 methylation]; 16, MSH2; 1, MSH2/monoallelic MUTYH; 2, MSH6; 5, PMS2); 1 patient had the APC c.3920T>A, p.I1307K mutation and a PMS2 variant; 9 patients (18.8%) had double somatic MMR mutations (including 2 with germline biallelic MUTYH mutations); and 1 patient had somatic MLH1 methylation. Four hundred two patients (89.3%) had MMR-proficient tumors, and 32 patients (8%) had at least 1 gene mutation: 9 had mutations in high-penetrance CRC genes (5, APC; 1, APC/PMS2; 2, biallelic MUTYH; 1, SMAD4); 13 patients had mutations in high- or moderate-penetrance genes not traditionally associated with CRC (3, ATM; 1, ATM/CHEK2; 2, BRCA1; 4, BRCA2; 1, CDKN2A; 2, PALB2); 10

  20. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    PubMed Central

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  1. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  2. Analysis of CrIS/ATMS using AIRS Version-7 Retrieval and QC Methodology

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Kouvaris, L. C.; Blaisdell, J. M.; Iredell, L. F.

    2017-12-01

    The objective of the proposed research is to develop, implement, test, and refine a CrIS/ATMS retrieval algorithm which will produce monthly mean data products that are compatible with those of the soon to be operational AIRS V7 retrieval algorithm. This is a necessary condition for CrIS/ATMS on NPP and future missions to serve as adequate follow-ons to AIRS for the monitoring of climate variability and trends. Of particular importance toward this end is achieving agreement of monthly mean fields of CrIS and AIRS geophysical parameters on a 1 deg by 1 deg spatial scale, and, more significantly, agreement of their interannual differences. Indications are that the best way to achieve this is to use scientific retrieval and Quality Control (QC) methodology for CrIS/ATMS which is analogous to that which will be used in AIRS V7. We refer to the current scientific candidate for AIRS V7 as AIRS Sounder Research Team (SRT) V6.42, which currently runs at JPL on the AIRS Team Leader Scientific Facility (TLSCF). We ported CrIS SRT V6.42 Level 2 (L2) retrieval code and QC methodology to run at the Sounder SIPS at JPL. The months of January and July 2015 were both processed at JPL using AIRS and CrIS at the TLSCF and SIPS respectively. This paper shows excellent agreement of AIRS and CrIS single day and monthly mean products on a 1 deg lat by 1 deg long spatial grid with each other and with the other satellites measures of the same products.

  3. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  4. Assimilation of all-weather GMI and ATMS observations into HWRF

    NASA Astrophysics Data System (ADS)

    Moradi, I.; Evans, F.; McCarty, W.; Marks, F.; Eriksson, P.

    2017-12-01

    We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of TCs. These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated to provide accurate initial conditions for the NWP models. The technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI).

  5. ATM C and D panel/EREP cooling system contamination problem. [on Skylab

    NASA Technical Reports Server (NTRS)

    Williamson, J. G.

    1973-01-01

    This report presents the history of a preflight contamination problem that occurred in the ATM C and D panel/EREP cooling system on the Skylab, the studies that were made to determine the cause of the problem, and corrective actions that were made prior to lift-off. The results of all the observations, analyses and laboratory testing indicated that the contamination came from one or more of the EREP tape recorder coldplates and was caused by some abnormal electrolytic action, either during bench testing or in the spacecraft. Studies indicate that no such electrolytic action is likely to occur under normal operating conditions.

  6. ATM Technology Demonstration 1 (ATD-1) Project: Terminal Airspace Technologies for NextGen (Public)

    NASA Technical Reports Server (NTRS)

    Robinson, John E.; Wang, Easter

    2015-01-01

    This video highlights the human-in-the-loop (HITL) simulations conducted by the ATD-1 project and features visual elements developed for Traffic Management Advisor - Terminal Metering, Controller Managed Spacing, and Flight Deck Interval Management. The video content is fairly technical and intended for audiences that have some knowledge of air traffic management issues. This includes researchers and management from NASA, FAA, industry partners, and others interested in terminal metering, controller managed spacing, and interval management technologies. Please note that the media release only clears the video for peer audiences such as ATM conferences or as part of presentations to researchers.

  7. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    PubMed

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  8. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  9. Involvement of Atm and Trp53 in neural cell loss due to Terf2 inactivation during mouse brain development.

    PubMed

    Kim, Jusik; Choi, Inseo; Lee, Youngsoo

    2017-11-01

    Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.

  10. Sea Ice Freeboard and Thickness from the 2013 IceBridge ATM and DMS Data in Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Xie, H.; Tian, L.; Tang, J.; Ackley, S. F.

    2016-12-01

    In November (20, 21, 27, and 28) 2013, NASA's IceBridge mission flew over the Ross Sea, Antarctica and collected important sea ice data with the ATM and DMS for the first time. We will present our methods to derive the local sea level and total freeboard for ice thickness retrieval from these two datasets. The methods include (1) leads classification from DMS data using an automated lead detection method, (2) potential leads from the reflectance of less than 0.25 from the ATM laser shots of L1B data, (3) local sea level retrieval based on these qualified ATM laser shots (L1B) within the DMS-derived leads (after outliers removal from the mean ± 2 standard deviation of these ATM elevations), (4) establishment of an empirical equation of local sea level as a function of distance from the starting point of each IceBridge flight, (5) total freeboard retrieval from the ATM L2 elevations by subtracting the local sea level derived from the empirical equation, and (6) ice thickness retrieval. The ice thickness derived from this method will be analyzed and compared with ICESat data (2003-2009) and other available data for the same region at the similar time period. Possible change and potential reasons will be identified and discussed.

  11. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  12. BiCMOS circuit technology for a 704 MHz ATM switch LSI

    NASA Astrophysics Data System (ADS)

    Ohtomo, Yusuke; Yasuda, Sadayuki; Togashi, Minoru; Ino, Masayuki; Tanabe, Yasuyuki; Inoue, Jun-Ichi; Nogawa, Masafumi; Hino, Shigeki

    1994-05-01

    This paper describes BiCMOS level-converter circuits and clock circuits that increase VLSI interface speed to 1 GHz, and their application to a 704 MHz ATM switch LSI. An LSI with high speed interface requires a BiCMOS multiplexer/demultiplexer (MUX/DEMUX) on the chip to reduce internal operation speed. A MUX/DEMUX with minimum power dissipation and a minimum pattern area can be designed using the proposed converter circuits. The converter circuits, using weakly cross-coupled CMOS inverters and a voltage regulator circuit, can convert signal levels between LCML and positive CMOS at a speed of 500 MHz. Data synchronization in the high speed region is ensured by a new BiCMOS clock circuit consisting of a pure ECL path and retiming circuits. The clock circuit reduces the chip latency fluctuation of the clock signal and absorbs the delay difference between the ECL clock and data through the CMOS circuits. A rerouting-Banyan (RRB) ATM switch, employing both the proposed converter circuits and the clock circuits, has been fabricated with 0.5 micron BiCMOS technology. The LSI, composed of CMOS 15 K gate LOGIC, 8 Kb RAM, 1 Kb FIFO and ECL 1.6 K gate LOGIC, achieved an operation speed of 704-MHz with power dissipation of 7.2 W.

  13. Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53

    PubMed Central

    Venkata Narayanan, Ishwarya; Paulsen, Michelle T.; Bedi, Karan; Berg, Nathan; Ljungman, Emily A.; Francia, Sofia; Veloso, Artur; Magnuson, Brian; di Fagagna, Fabrizio d’Adda; Wilson, Thomas E.; Ljungman, Mats

    2017-01-01

    In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells. PMID:28256581

  14. AES Cardless Automatic Teller Machine (ATM) Biometric Security System Design Using FPGA Implementation

    NASA Astrophysics Data System (ADS)

    Ahmad, Nabihah; Rifen, A. Aminurdin M.; Helmy Abd Wahab, Mohd

    2016-11-01

    Automated Teller Machine (ATM) is an electronic banking outlet that allows bank customers to complete a banking transactions without the aid of any bank official or teller. Several problems are associated with the use of ATM card such card cloning, card damaging, card expiring, cast skimming, cost of issuance and maintenance and accessing customer account by third parties. The aim of this project is to give a freedom to the user by changing the card to biometric security system to access the bank account using Advanced Encryption Standard (AES) algorithm. The project is implemented using Field Programmable Gate Array (FPGA) DE2-115 board with Cyclone IV device, fingerprint scanner, and Multi-Touch Liquid Crystal Display (LCD) Second Edition (MTL2) using Very High Speed Integrated Circuit Hardware (VHSIC) Description Language (VHDL). This project used 128-bits AES for recommend the device with the throughput around 19.016Gbps and utilized around 520 slices. This design offers a secure banking transaction with a low rea and high performance and very suited for restricted space environments for small amounts of RAM or ROM where either encryption or decryption is performed.

  15. Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints

    NASA Astrophysics Data System (ADS)

    Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan

    In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.

  16. Derivation of Thymic Lymphoma T-cell Lines from Atm-/- and p53-/- Mice

    PubMed Central

    Jinadasa, Rasika; Balmus, Gabriel; Gerwitz, Lee; Roden, Jamie; Weiss, Robert; Duhamel, Gerald

    2011-01-01

    Established cell lines are a critical research tool that can reduce the use of laboratory animals in research. Certain strains of genetically modified mice, such as Atm-/- and p53-/- consistently develop thymic lymphoma early in life 1,2, and thus, can serve as a reliable source for derivation of murine T-cell lines. Here we present a detailed protocol for the development of established murine thymic lymphoma T-cell lines without the need to add interleukins as described in previous protocols 1,3. Tumors were harvested from mice aged three to six months, at the earliest indication of visible tumors based on the observation of hunched posture, labored breathing, poor grooming and wasting in a susceptible strain 1,4. We have successfully established several T-cell lines using this protocol and inbred strains ofAtm-/- [FVB/N-Atmtm1Led/J] 2 and p53-/- [129/S6-Trp53tm1Tyj/J] 5 mice. We further demonstrate that more than 90% of the established T-cell population expresses CD3, CD4 and CD8. Consistent with stably established cell lines, the T-cells generated by using the present protocol have been passaged for over a year. PMID:21490582

  17. ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells

    PubMed Central

    Adams, Bret R.; Hawkins, Amy J.; Povirk, Lawrence F.; Valerie, Kristoffer

    2010-01-01

    We recently demonstrated that human embryonic stem cells (hESCs) utilize homologous recombination repair (HRR) as primary means of double-strand break (DSB) repair. We now show that hESCs also use nonhomologous end joining (NHEJ). NHEJ kinetics were several-fold slower in hESCs and neural progenitors (NPs) than in astrocytes derived from hESCs. ATM and DNA-PKcs inhibitors were ineffective or partially effective, respectively, at inhibiting NHEJ in hESCs, whereas progressively more inhibition was seen in NPs and astrocytes. The lack of any major involvement of DNA-PKcs in NHEJ in hESCs was supported by siRNA-mediated DNA-PKcs knockdown. Expression of a truncated XRCC4 decoy or XRCC4 knock-down reduced NHEJ by more than half suggesting that repair is primarily canonical NHEJ. Poly(ADP-ribose) polymerase (PARP) was dispensable for NHEJ suggesting that repair is largely independent of backup NHEJ. Furthermore, as hESCs differentiated a progressive decrease in the accuracy of NHEJ was observed. Altogether, we conclude that NHEJ in hESCs is largely independent of ATM, DNA-PKcs, and PARP but dependent on XRCC4 with repair fidelity several-fold greater than in astrocytes. PMID:20844317

  18. Technologies for developing an advanced intelligent ATM with self-defence capabilities

    NASA Astrophysics Data System (ADS)

    Sako, Hiroshi

    2010-01-01

    We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.

  19. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice

    PubMed Central

    Gannon, Hugh S.; Woda, Bruce A.; Jones, Stephen N.

    2012-01-01

    Summary DNA damage induced by ionizing radiation (IR) activates the ATM kinase, which subsequently stabilizes and activates the p53 tumor suppressor protein. Although phosphorylation of p53 by ATM was found previously to modulate p53 levels and transcriptional activities in vivo, it does not appear to be a major regulator of p53 stability. We have utilized mice bearing altered Mdm2 alleles to demonstrate that ATM phosphorylation of Mdm2 serine 394 is required for robust p53 stabilization and activation after DNA damage. In addition, we demonstrate that dephosphorylation of Mdm2 Ser394 regulates attenuation of the p53-mediated response to DNA damage. Therefore, the phosphorylation status of Mdm2 Ser394 governs p53 protein levels and functions in cells undergoing DNA damage. PMID:22624716

  20. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX

    PubMed Central

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-01-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907

  1. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX.

    PubMed

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-11-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.

  2. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  3. Relatively high rates of G:C → A:T transitions at CpG sites were observed in certain epithelial tissues including pancreas and submaxillary gland of adult big blue® mice.

    PubMed

    Prtenjaca, Anita; Tarnowski, Heather E; Marr, Alison M; Heney, Melanie A; Creamer, Laura; Sathiamoorthy, Sarmitha; Hill, Kathleen A

    2014-01-01

    With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known. Copyright © 2013 Wiley Periodicals, Inc.

  4. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  5. Chronic Granulomatous Disease Due to Neutrophil Cytosolic Factor (NCF2) Gene Mutations in Three Unrelated Families.

    PubMed

    Vignesh, Pandiarajan; Rawat, Amit; Kumar, Ankur; Suri, Deepti; Gupta, Anju; Lau, Yu L; Chan, Koon W; Singh, Surjit

    2017-02-01

    Chronic granulomatous disease (CGD) is an inheritable and genetically heterogeneous disease resulting from mutations in different subcomponents of the NADPH oxidase system. Mutations in the NCF2 gene account for <5% of all cases of CGD. We analyzed the clinical and laboratory findings of CGD with mutations in the NCF2 gene from amongst our cohort of CGD patients. A homozygous mutation (c.835_836delAC, p.T279fsX294), a deletion in NCF2 gene was found in two cases. In the third case, two heterozygous mutations were detected, IVS13-2A>T on one allele and c.1099C>T (p.) on the other allele. The mother of this child was a carrier for the IVS13-2A>T mutation. All three cases had colitis, and it was the initial symptom in two patients. One of the patients also developed a lung abscess due to Nocardia cyriacigeorgica.

  6. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    PubMed

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  7. Reduced Synchronization Persistence in Neural Networks Derived from Atm-Deficient Mice

    PubMed Central

    Levine-Small, Noah; Yekutieli, Ziv; Aljadeff, Jonathan; Boccaletti, Stefano; Ben-Jacob, Eshel; Barzilai, Ari

    2011-01-01

    Many neurodegenerative diseases are characterized by malfunction of the DNA damage response. Therefore, it is important to understand the connection between system level neural network behavior and DNA. Neural networks drawn from genetically engineered animals, interfaced with micro-electrode arrays allowed us to unveil connections between networks’ system level activity properties and such genome instability. We discovered that Atm protein deficiency, which in humans leads to progressive motor impairment, leads to a reduced synchronization persistence compared to wild type synchronization, after chemically imposed DNA damage. Not only do these results suggest a role for DNA stability in neural network activity, they also establish an experimental paradigm for empirically determining the role a gene plays on the behavior of a neural network. PMID:21519382

  8. End-to-End QoS for Differentiated Services and ATM Internetworking

    NASA Technical Reports Server (NTRS)

    Su, Hongjun; Atiquzzaman, Mohammed

    2001-01-01

    The Internet was initially design for non real-time data communications and hence does not provide any Quality of Service (QoS). The next generation Internet will be characterized by high speed and QoS guarantee. The aim of this paper is to develop a prioritized early packet discard (PEPD) scheme for ATM switches to provide service differentiation and QoS guarantee to end applications running over next generation Internet. The proposed PEPD scheme differs from previous schemes by taking into account the priority of packets generated from different application. We develop a Markov chain model for the proposed scheme and verify the model with simulation. Numerical results show that the results from the model and computer simulation are in close agreement. Our PEPD scheme provides service differentiation to the end-to-end applications.

  9. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  10. Walking ATMs and the immigration spillover effect: The link between Latino immigration and robbery victimization.

    PubMed

    Barranco, Raymond E; Shihadeh, Edward S

    2015-07-01

    Media reports and prior research suggest that undocumented Latino migrants are disproportionately robbed because they rely on a cash-only economy and they are reluctant to report crimes to law-enforcement (the Walking ATM phenomenon). From this we generate two specific research questions. First, we probe for an immigration spillover effect - defined as increased native and documented Latino robbery victimization due to offenders' inability to distinguish between the statuses of potential victims. Second, we examine the oft-repeated claim that Blacks robbers disproportionately target Latino victims. Using National Incident-Based Reporting System (NIBRS) data from 282 counties, results show (1) support for an immigration spillover effect but, (2) no support for the claim that Latinos are disproportionately singled out by Black robbers. We discuss the implications of our findings. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Design of a QoS-controlled ATM-based communications system in chorus

    NASA Astrophysics Data System (ADS)

    Coulson, Geoff; Campbell, Andrew; Robin, Philippe; Blair, Gordon; Papathomas, Michael; Shepherd, Doug

    1995-05-01

    We describe the design of an application platform able to run distributed real-time and multimedia applications alongside conventional UNIX programs. The platform is embedded in a microkernel/PC environment and supported by an ATM-based, QoS-driven communications stack. In particular, we focus on resource-management aspects of the design and deal with CPU scheduling, network resource-management and memory-management issues. An architecture is presented that guarantees QoS levels of both communications and processing with varying degrees of commitment as specified by user-level QoS parameters. The architecture uses admission tests to determine whether or not new activities can be accepted and includes modules to translate user-level QoS parameters into representations usable by the scheduling, network, and memory-management subsystems.

  12. ATM-like kinases and regulation of telomerase: lessons from yeast and mammals

    PubMed Central

    Sabourin, Michelle; Zakian, Virginia A.

    2008-01-01

    Telomeres, the essential structures at the ends of eukaryotic chromosomes, are composed of G-rich DNA and asociated proteins. These structures are crucial for the integrity of the genome, because they protect chromosome ends from degradation and distinguish natural ends from chromosomal breaks. The complete replication of telomeres requires a telomere-dedicated reverse transcriptase called telomerase. Paradoxically, proteins that promote the very activities against which telomeres protect, namely DNA repair, recombination and checkpoint activation, are integral to both telomeric chromatin and telomere elongation. This review focuses on recent findings that shed light on the roles of ATM-like kinases and other checkpoint and repair proteins in telomere maintenance, replication and checkpoint signaling. PMID:18502129

  13. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  14. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  15. Mutations in Lettuce Improvement.

    USDA-ARS?s Scientific Manuscript database

    Mutations can make profound impact on the evolution and improvement of a self-pollinated crop such as lettuce. Since it is nontransgenic, mutation breeding is more acceptable to consumers. Combined with genomic advances in new technologies like TILLING, mutagenesis is becoming an even more powerfu...

  16. Fast packet switching algorithms for dynamic resource control over ATM networks

    SciTech Connect

    Tsang, R.P.; Keattihananant, P.; Chang, T.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less

  17. ATM traffic experiments: A laboratory study of service interaction, loss fairness and loss characteristics

    NASA Astrophysics Data System (ADS)

    Helvik, B. E.; Stol, N.

    1995-04-01

    A reference measurement scenario is defined, where an ATM switch (OCTOPUS) is offered traffic from three source types representing the traffic resulting from typical services to be carried by an ATM network. These are high quality video (HQTV), high speed data (HSD) and constant bitrate transfer (CBR). In addition to be typical, these have widely different characteristics. Detailed definitions for these, and other actual source types, are made and entered into the Synthetic Traffic Generator (STG) database. Recommended traffic mixes of these sources are also made. Based on the above, laboratory measurements are carried out to study how the various kinds of traffic influence each other, how fairly the loss is distributed over services and connections, and what are the loss characteristics experienced. (Due to a software error detected in the measurement equipment after the work was concluded, the measurements are carried out with a HSD source with a load less 'aggressive' than intended.) The main findings are: Cell loss is very unfairly distributed among the various connections. During a loss burst, which occurs less frequently than the duration of a typical connection, affects mainly one or a few connections; Cell loss is unfairly distributed among the services. The ratios in the range from HSD: HQTV: CBR = 5 : 1 : 0.85 are observed, and unfairness increases with decreasing load burstiness; The loss characteristics vary during a loss burst, from one burst to the next and between services. Hence, it does not seem feasible to use 'typical-loss-statistics' to study the impairments on various services. In addition some supplementing work is reported.

  18. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages.

    PubMed

    Yang, Meng; Topaloglu, Umit; Petty, W Jeffrey; Pagni, Matthew; Foley, Kristie L; Grant, Stefan C; Robinson, Mac; Bitting, Rhonda L; Thomas, Alexandra; Alistar, Angela T; Desnoyers, Rodwige J; Goodman, Michael; Albright, Carol; Porosnicu, Mercedes; Vatca, Mihaela; Qasem, Shadi A; DeYoung, Barry; Kytola, Ville; Nykter, Matti; Chen, Kexin; Levine, Edward A; Staren, Edgar D; D'Agostino, Ralph B; Petro, Robin M; Blackstock, William; Powell, Bayard L; Abraham, Edward; Pasche, Boris; Zhang, Wei

    2017-05-04

    Solid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs) and circulating tumor DNAs (ctDNA). Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches. We isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments. Mutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II) and late stage (III and IV) cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177) of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that are consistent with cancer progression or response

  19. Genomic mutation consequence calculator.

    PubMed

    Major, John E

    2007-11-15

    The genomic mutation consequence calculator (GMCC) is a tool that will reliably and quickly calculate the consequence of arbitrary genomic mutations. GMCC also reports supporting annotations for the specified genomic region. The particular strength of the GMCC is it works in genomic space, not simply in spliced transcript space as some similar tools do. Within gene features, GMCC can report on the effects on splice site, UTR and coding regions in all isoforms affected by the mutation. A considerable number of genomic annotations are also reported, including: genomic conservation score, known SNPs, COSMIC mutations, disease associations and others. The manual interface also offers link outs to various external databases and resources. In batch mode, GMCC returns a csv file which can easily be parsed by the end user. GMCC is intended to support the many tumor resequencing efforts, but can be useful to any study investigating genomic mutations.

  20. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  1. Regulation of ATM-Dependent DNA Damage Responses in Breast Cancer by the RhoGEF Net1

    DTIC Science & Technology

    2014-04-01

    1998) Science 279: 509-514. 12. Harper JW, et al., (2007) The DNA Damage Response: Ten years after. Mol. Cell 28; 739-745. 13. Hill R, et al., (2010...RhoGTPases: Biochemistry and Biology. Annu. Rev. Cell Dev. Biol. 21:247-269. 17. Khanna KK, et al., (2001) ATM, a central controller of cellular

  2. Hazards of high altitude decompression sickness during falls in barometric pressure from 1 atm to a fraction thereof

    NASA Technical Reports Server (NTRS)

    Genin, A. M.

    1980-01-01

    Various tests related to studies concerning the effects of decompression sicknesses at varying pressure levels and physical activity are described. The tests indicate that there are no guarantees of freedom from decompression sicknesses when man transitions from a normally oxygenated normobaric nitrogen-oxygen atmosphere into an environment having a 0.4 atm or lower pressure and he is performing physical work.

  3. Development of Attitudes towards Mathematics Scale (ATMS) Using Nigerian Data - Factor Analysis as a Determinant of Attitude Subcategories

    ERIC Educational Resources Information Center

    Zakariya, Yusuf F.

    2017-01-01

    This study was aimed at the development of an instrument for measuring students' attitudes towards mathematics. A survey research design was adopted involving 510 students randomly selected. Exploratory factor analysis (EFA) was carried out to determine the number of factors to be retained in the ATMS. The adequacy of the sample was confirmed by…

  4. Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.

    DOT National Transportation Integrated Search

    2002-07-01

    Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...

  5. Fy00 Treasure Valley ITS Deployment Project : advanced traffic management system (ATMS) software procurement and implementation process

    DOT National Transportation Integrated Search

    2006-08-02

    In 2000, the Treasure Valley area of the State of Idaho received a federal earmark of $390,000 to develop an Advanced Transportation Management System (ATMS) for the Treasure Valley region of Idaho. The Ada County Highway District (ACHD), located in ...

  6. Training of Evaluators in the Third World: Implementation of the Action Training Model (ATM) in Kenya and Botswana.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    The Action Training Model (ATM) was developed for the delivery of evaluation training to development workers in Kenya and Botswana and implemented under the aegis of the German Foundation for International Development. Training of evaluators is a challenge in any context, but in the Third World environment, evaluation training offers special…

  7. Variation of p53 mutational spectra between carcinoma of the upper and lower respiratory tract.

    PubMed

    Law, J C; Whiteside, T L; Gollin, S M; Weissfeld, J; El-Ashmawy, L; Srivastava, S; Landreneau, R J; Johnson, J T; Ferrell, R E

    1995-07-01

    Mutations of the p53 tumor suppressor gene are the most common genetic alterations associated with human cancer. Tumor-associated p53 mutations often show characteristic tissue-specific profiles which may infer environmentally induced mutational mechanisms. The p53 mutational frequency and spectrum were determined for 95 carcinomas of the upper and lower respiratory tract (32 lung and 63 upper respiratory tract). Mutations were identified at a frequency of 30% in upper respiratory tract (URT) tumors and 31% in lung tumors. All 29 identified mutations were single-base substitutions. Comparison of the frequency of specific base substitutions between lung and URT showed a striking difference. Transitions occurred at a frequency of 68% in URT, but only 30% in lung. Mutations involving G:C-->A:T transitions, which are commonly reported in gastric and esophageal tumors, were the most frequently identified alteration in URT (11/19). Mutations involving G:C-->T:A transversions, which were relatively common in lung tumors (3/10) and are representative of tobacco smoke-induced mutations were rare in URT tumors (1/19). Interestingly, G:C-->A:T mutations at CpG sites, which are characteristic of endogenous processes, were observed frequently in URT tumors (9/19) but only rarely in lung tumors (1/10), suggesting that both endogenous and exogenous factors are responsible for the observed differences in mutational spectra between the upper and lower respiratory systems.

  8. Measurement of Atmospheric Black Carbon Concentrations, [BC]atm, in the Arctic Region from ~1700 to 2013

    NASA Astrophysics Data System (ADS)

    Husain, L.; Sarkar, S.; Jyethi, D. S.; Ruppel, M.; Dutkiewicz, V. A.

    2015-12-01

    Atmospheric black carbon (BC) aerosols play a key role in Earth's climate through direct and indirect effects. Due to a lack of long-term BC data, climate models are used to estimate BC based on fuel inventories, which have large uncertainties. Hence, long term BC data is needed to verify global models. We report here the first measurements of atmospheric BC concentrations, [BC]atm, from ~1700 to 2013 using sediments from Finnish lakes, Saanajarvi (SJ)(690 44' N, 200 52' E), and Vuoskojarvi (VJ)(69044'N, 26057'E). The cores were collected from the deepest parts of the lakes using a HTH gravity corer, sliced in 0.25 cm sections; freeze dried, and ages determined using 210Pb dating method. The BC was chemically separated, and [BC] determined by the thermal optical method. The [BC] varied from 50 to 1140µg/gdry weight in SJ; and 20 to 130µg/gdry weight in VJ. Husain et al.,(JGR, vol 113, D13102,doi:10.1029/2007JD009398, 2008) showed that the atmospheric deposition of BC into lake sediments depends on the characteristic of individual lakes, BC washout ratios, precipitation intensity, and sedimentation rates. The deposition rate, K, for a lake is defined by, [BC]sed = K[BC]atm where [BC]sed, is the concentration of BC in the sediment. We have measured [BC]atm from 1970 to 2010 in Kevo, Finland, where VJ and SJ are located. The [BC]atm from Kevo, and [BC]sed from VJ, and SJ were used to determine K for each of the lake. Owing to the availability of the long term atmospheric BC data from 1970 to 2010 multiple measurements of K were made, and provided a high measure of precision. The mean values of K for VJ, and SJ were 226 ± 60, and 830 ± 290 (m3air/ gdry weight). The K values were used to determine [BC]atm for the years before 1970. The [BC]atm from 2013 to 2006 was 82ng/m3. It increased slowly reaching a peak value of about 947 ± 322 ng/m3.The concentrations decreased subsequently to 244 ± 83ng/m3 in 1920, and changed little ~ 1774.The lowest concentration, 77

  9. Rare Complex Mutational Profile in an ALK Inhibitor-resistant Non-small Cell Lung Cancer.

    PubMed

    Azzato, Elizabeth M; Deshpande, Charuhas; Aikawa, Vania; Aggarwal, Charu; Alley, Evan; Jacobs, Benjamin; Morrissette, Jennifer; Daber, Robert

    2015-05-01

    Testing for somatic alterations, including anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements and epidermal growth factor receptor gene (EGFR) mutations, is standard practice in the diagnostic evaluation and therapeutic management of non-small cell lung cancer (NSCLC), where the results of such tests can predict response to targeted-therapy. ALK rearrangements, EGFR mutations and mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) are considered mutually exclusive in NSCLC. Herein we identified a KRAS Q22K mutation and frameshift mutations in the genes encoding serine/threonine kinase 11 (STK11) and ataxia telangiectasia mutated serine/threonine kinase (ATM) by next-generation sequencing in a patient with ALK rearrangement-positive oligo-metastatic NSCLC, whose disease progressed while on two ALK-targeted therapies. Such a complex diagnostic genetic profile has not been reported in ALK fusion-positive NSCLC. This case highlights the utility of comprehensive molecular testing in the diagnosis of NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity.

    PubMed

    Kabacik, Sylwia; Ortega-Molina, Ana; Efeyan, Alejo; Finnon, Paul; Bouffler, Simon; Serrano, Manuel; Badie, Christophe

    2011-04-01

    Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.

  11. Characterization of glioma stem cells through multiple stem cell markers and their specific sensitization to double-strand break-inducing agents by pharmacological inhibition of ataxia telangiectasia mutated protein.

    PubMed

    Raso, Alessandro; Vecchio, Donatella; Cappelli, Enrico; Ropolo, Monica; Poggi, Alessandro; Nozza, Paolo; Biassoni, Roberto; Mascelli, Samantha; Capra, Valeria; Kalfas, Fotios; Severi, Paolo; Frosina, Guido

    2012-09-01

    Previous studies have shown that tumor-driving glioma stem cells (GSC) may promote radio-resistance by constitutive activation of the DNA damage response started by the ataxia telangiectasia mutated (ATM) protein. We have investigated whether GSC may be specifically sensitized to ionizing radiation by inhibiting the DNA damage response. Two grade IV glioma cell lines (BORRU and DR177) were characterized for a number of immunocytochemical, karyotypic, proliferative and differentiative parameters. In particular, the expression of a panel of nine stem cell markers was quantified by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. Overall, BORRU and DR177 displayed pronounced and poor stem phenotypes, respectively. In order to improve the therapeutic efficacy of radiation on GSC, the cells were preincubated with a nontoxic concentration of the ATM inhibitors KU-55933 and KU-60019 and then irradiated. BORRU cells were sensitized to radiation and radio-mimetic chemicals by ATM inhibitors whereas DR177 were protected under the same conditions. No sensitization was observed after cell differentiation or to drugs unable to induce double-strand breaks (DSB), indicating that ATM inhibitors specifically sensitize glioma cells possessing stem phenotype to DSB-inducing agents. In conclusion, pharmacological inhibition of ATM may specifically sensitize GSC to DSB-inducing agents while sparing nonstem cells. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  12. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    PubMed

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  13. Genetic Mutations in Cancer

    Cancer.gov

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  14. AIP mutations and gigantism.

    PubMed

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei.

    PubMed

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, Didier; Lukeš, Julius

    2015-11-01

    ABC transporter mitochondrial 1 (Atm1) and multidrug resistance-like 1 (Mdl) are mitochondrial ABC transporters. Although Atm1 was recently suggested to transport different forms of glutathione from the mitochondrion, which are used for iron-sulfur (Fe-S) cluster maturation in the cytosol, the function of Mdl remains elusive. In Trypanosoma brucei, we identified one homolog of each of these genes, TbAtm and TbMdl, which were downregulated either separately or simultaneously using RNA interference. Individual depletion of TbAtm and TbMdl led to limited growth defects. In cells downregulated for TbAtm, the enzymatic activities of the Fe-S cluster proteins aconitase and fumarase significantly decreased in the cytosol but not in the mitochondrion. Downregulation of TbMdl did not cause any change in activities of the Fe-S proteins. Unexpectedly, the simultaneous downregulation of TbAtm and TbMdl did not result in any growth defect, nor were the Fe-S cluster protein activities altered in either the cytosolic or mitochondrial compartments. Additionally, TbAtm and TbMdl were able to partially restore the growth of the Saccharomyces cerevisiae Δatm1 and Δmdl2 null mutants, respectively. Because T. brucei completely lost the heme b biosynthesis pathway, this cofactor has to be obtained from the host. Based on our results, TbMdl is a candidate for mitochondrial import of heme b, which was markedly decreased in both TbMdl and TbAtm + TbMdl knockdowns. Moreover, the levels of heme a were strongly decreased in the same knockdowns, suggesting that TbMdl plays a key role in heme a biosynthesis, thus affecting the overall heme homeostasis in T. brucei. © 2015 FEBS.

  16. Low Ki67/high ATM protein expression in malignant tumors predicts favorable prognosis in a retrospective study of early stage hormone receptor positive breast cancer.

    PubMed

    Feng, Xiaolan; Li, Haocheng; Kornaga, Elizabeth N; Dean, Michelle; Lees-Miller, Susan P; Riabowol, Karl; Magliocco, Anthony M; Morris, Don; Watson, Peter H; Enwere, Emeka K; Bebb, Gwyn; Paterson, Alexander

    2016-12-27

    This study was designed to investigate the combined influence of ATM and Ki67 on clinical outcome in early stage hormone receptor positive breast cancer (ES-HPBC), particularly in patients with smaller tumors (< 4 cm) and fewer than four positive lymph nodes. 532 formalin-fixed paraffin-embedded specimens of resected primary breast tumors were used to construct a tissue microarray. Samples from 297 patients were suitable for final statistical analysis. We detected ATM and Ki67 proteins using fluorescence and brightfield immunohistochemistry respectively, and quantified their expression with digital image analysis. Data on expression levels were subsequently correlated with clinical outcome. Remarkably, ATM expression was useful to stratify the low Ki67 group into subgroups with better or poorer prognosis. Specifically, in the low Ki67 subgroup defined as having smaller tumors and no positive nodes, patients with high ATM expression showed better outcome than those with low ATM, with estimated survival rates of 96% and 89% respectively at 15 years follow up (p = 0.04). Similarly, low-Ki67 patients with smaller tumors, 1-3 positive nodes and high ATM also had significantly better outcomes than their low ATM counterparts, with estimated survival rates of 88% and 46% respectively (p = 0.03) at 15 years follow up. Multivariable analysis indicated that the combination of high ATM and low Ki67 is prognostic of improved survival, independent of tumor size, grade, and lymph node status (p = 0.02). These data suggest that the prognostic value of Ki67 can be improved by analyzing ATM expression in ES-HPBC.

  17. Low Ki67/high ATM protein expression in malignant tumors predicts favorable prognosis in a retrospective study of early stage hormone receptor positive breast cancer

    PubMed Central

    Feng, Xiaolan; Li, Haocheng; Kornaga, Elizabeth N.; Dean, Michelle; Lees-Miller, Susan P.; Riabowol, Karl; Magliocco, Anthony M.; Morris, Don; Watson, Peter H.; Enwere, Emeka K.; Bebb, Gwyn; Paterson, Alexander

    2016-01-01

    Introduction This study was designed to investigate the combined influence of ATM and Ki67 on clinical outcome in early stage hormone receptor positive breast cancer (ES-HPBC), particularly in patients with smaller tumors (< 4 cm) and fewer than four positive lymph nodes. Methods 532 formalin-fixed paraffin-embedded specimens of resected primary breast tumors were used to construct a tissue microarray. Samples from 297 patients were suitable for final statistical analysis. We detected ATM and Ki67 proteins using fluorescence and brightfield immunohistochemistry respectively, and quantified their expression with digital image analysis. Data on expression levels were subsequently correlated with clinical outcome. Results Remarkably, ATM expression was useful to stratify the low Ki67 group into subgroups with better or poorer prognosis. Specifically, in the low Ki67 subgroup defined as having smaller tumors and no positive nodes, patients with high ATM expression showed better outcome than those with low ATM, with estimated survival rates of 96% and 89% respectively at 15 years follow up (p = 0.04). Similarly, low-Ki67 patients with smaller tumors, 1-3 positive nodes and high ATM also had significantly better outcomes than their low ATM counterparts, with estimated survival rates of 88% and 46% respectively (p = 0.03) at 15 years follow up. Multivariable analysis indicated that the combination of high ATM and low Ki67 is prognostic of improved survival, independent of tumor size, grade, and lymph node status (p = 0.02). Conclusions These data suggest that the prognostic value of Ki67 can be improved by analyzing ATM expression in ES-HPBC. PMID:27741524

  18. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    PubMed

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  19. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  20. Creating a AIRS/AMSU and CrIS/ATMS continuity sounding product

    NASA Astrophysics Data System (ADS)

    Barnet, C. D.; Gambacorta, A.; Smith, N.; Wheeler, A. A.

    2017-12-01

    The AIRS/AMSU (Atmospheric Infrared Sounder; Advanced Microwave Sounding Unit) onboard the EOS/Aqua was launched in 2002. CrIS/ATMS (CrossTrack Infrared Sounder; Advanced Technology Microwave Sounder) onboard Suomi NPP was launched in 2011 and will also be launched on the Joint Polar Sounding System (JPSS) series of satellites beginning in 2017. Suomi NPP and EOS/Aqua now have more than five years of overlap. Demonstrating data continuity between these two platforms has become a priority especially since EOS/Aqua is well past its design lifetime. Additionally, with JPSS, this record of soundings will be extended into future decades and will enable critically important scientific research on large scale (long term) atmospheric processes. The AIRS/AMSU and CrIS/ATMS have many differences in instrument design, spatial sampling, spectral coverage and resolution. Instruments also degrade with time. It is only with careful, deliberate and transparent error characterization and propagation that systematic effects can be accounted for, and preferably minimized, in retrieved sounding products. We have developed the Community Long-term Infrared Microwave Coupled Product System (CLIMCAPS) to achieve a seamless record of satellite soundings. A CLIMCAPS sounding is comprised of a set of parameters that characterizes the full atmospheric state and includes profiles of temperature, moisture, cloud and surface products, and trace gas species (O3, CH4, CO, SO2, HNO3, N2O and CO2). The trace gases are by-products necessary to remove biases in temperature and moisture retrievals; however, they can also be readily ingested into science applications. The information content of an IR sounder such as AIRS and CrIS is a function of lapse rate, the quantity of absorbers such as clouds, moisture and trace gases, as well as the instrument's sensitivity. Information content can vary vertically, spatially, and temporally. CLIMCAPS uses the NASA Modern-Era Retrospective Analysis for Research

  1. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  2. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretica