Science.gov

Sample records for a-train satellite constellation

  1. CloudSat Anomaly and Return to the A-Train: Lessons Learned for Satellite Constellations

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    2015-01-01

    In April 2011, CloudSat suffered a severe battery anomaly, leaving the space-craft in emergency mode without the ability to command or maneuver the spacecraft. Before the team was able to recover spacecraft operability, CloudSat passed close to the Aqua satellite in the A-Train and then exited the A-Train. A new mode of operations, termed Daylight Only Operations (DO-Op) mode was developed to enable CloudSat to resume science operations in an orbit under the A-Train by November 2011, and in July 2012 CloudSat re-entered the A-Train. This paper describes challenges and lessons-learned during the anomaly, the exit from the A-Train and the return to the A-Train. These lessons-learned may ap-ply to other current and future satellite constellations in Earth orbit.

  2. CONSTELL: NASA's Satellite Constellation Model

    NASA Technical Reports Server (NTRS)

    Theall, Jeffrey R.; Krisko, Paula H.; Opiela, John N.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    The CONSTELL program represents an initial effort by the orbital debris modeling group at NASA/JSC to address the particular issues and problems raised by the presence of LEO satellite constellations. It was designed to help NASA better understand the potential orbital debris consequences of having satellite constellations operating in the future in LEO. However, it could also be used by constellation planners to evaluate architecture or design alternatives that might lessen debris consequences for their constellation or lessen the debris effects on other users of space. CONSTELL is designed to perform debris environment projections rapidly so it can support parametric assessments involving either the constellations themselves or the background environment which represents non-constellation users of the space. The projections need to be calculated quickly because a number of projections are often required to adequately span the parameter space of interest. To this end CONSTELL uses the outputs of other NASA debris environment models as inputs, thus doing away with the need for time consuming upfront calculations. Specifically, CONSTELL uses EVOLVE or ORDEM96 debris spatial density results as its background environment, debris cloud snapshot templates to simulate debris cloud propagation, and time dependent orbit profiles of the intact non- functional constellation spacecraft and upper stages. In this paper the environmental consequences of the deployment of particular LEO satellite constellations using the CONSTELL model will be evaluated. Constellations that will undergo a parametric assessment will reflect realistic parameter values. Among other results the increase in loss rate of non-constellation spacecraft, the number of collisions involving constellation elements, and the replacement rate of constellation satellites as a result of debris impact will be presented.

  3. Top-of-the-Atmosphere Shortwave Flux Estimation from Satellite Observations: An Empirical Neural Network Approach Applied with Data from the A-Train Constellation

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-01-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  4. Top-of-the-atmosphere shortwave flux estimation from satellite observations: an empirical neural network approach applied with data from the A-train constellation

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-07-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within ±1 % of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  5. Best Practices for Operations of Satellite Constellations

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Oza, Dipak; Smith, Danford S.

    2006-01-01

    This paper presents the best practices used by several commercial and government operators of satellite constellations. These best practices were identified through a series of seminars and discussions held at NASA Goddard Space Flight Center (GSFC). The best practices are arrived through many years of experience and improvements made in the operations procedures and the operational systems with the primary drivers as mission safety and cost effectiveness. This paper discusses the operational aspects associated with how different organizations manage complexities of constellation operations. For the purposes of this paper, satellite constellations are groups of similar spacecraft with more than one spacecraft needed to fully accomplish the constellation's mission

  6. Improved satellite constellations for CONUS ATC coverage

    DOT National Transportation Integrated Search

    1974-05-01

    The report examines the problem of designing a constellation of orbiting satellites capable of supporting an aircraft navigation/surveillance service over CONUS. It is assumed that the aircraft positions are determined by hyperbolic multilateration u...

  7. Optimizing space constellations for mobile satellite systems

    NASA Astrophysics Data System (ADS)

    Roussel, T.; Taisant, J.-P.

    Designing a mobile satellite system entails many complex trade-offs between a great number of parameters including: capacity, complexity of the payload, constellation geometry, number of satellites, quality of coverage, etc. This paper aims at defining a methodology which tries to split the variables to give rapidly some first results. The major input considered is the traffic assumption which would be offered by the system. A first key step is the choice of the best Rider or Walker constellation geometries - with different numbers of satellites - to insure a good quality of coverage over a selected service area. Another aspect to be addressed is the possible altitude location of the constellation, since it is limited by many constraints. The altitude ranges that seem appropriate considering the spatial environment, the launch and orbit keeping policy and the feasibility of the antenna allowing sufficient frequency reuse are briefly analyzed. To support these first considerations, some 'reference constellations' with similar coverage quality are chosen. The in-orbit capacity needed to support the assumed traffic is computed versus altitude. Finally, the exact number of satellite is determined. It comes as an optimum between a small number of satellites offering a high (and costly) power margin in bad propagation situation and a great number of less powerful satellites granting the same quality of service.

  8. Optimizing space constellations for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Roussel, T.; Taisant, J.-P.

    1993-01-01

    Designing a mobile satellite system entails many complex trade-offs between a great number of parameters including: capacity, complexity of the payload, constellation geometry, number of satellites, quality of coverage, etc. This paper aims at defining a methodology which tries to split the variables to give rapidly some first results. The major input considered is the traffic assumption which would be offered by the system. A first key step is the choice of the best Rider or Walker constellation geometries - with different numbers of satellites - to insure a good quality of coverage over a selected service area. Another aspect to be addressed is the possible altitude location of the constellation, since it is limited by many constraints. The altitude ranges that seem appropriate considering the spatial environment, the launch and orbit keeping policy and the feasibility of the antenna allowing sufficient frequency reuse are briefly analyzed. To support these first considerations, some 'reference constellations' with similar coverage quality are chosen. The in-orbit capacity needed to support the assumed traffic is computed versus altitude. Finally, the exact number of satellite is determined. It comes as an optimum between a small number of satellites offering a high (and costly) power margin in bad propagation situation and a great number of less powerful satellites granting the same quality of service.

  9. Small Satellite Constellations for Geospace Sciences

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  10. Satellite Constellation Optimization for Turkish Armed Forces

    DTIC Science & Technology

    2013-03-01

    capability. 29 III. OPTIMIZATION WITH STK A. ANALYSIS The goal was to minimize the number of satellites and then minimize the number of planes...www.oosa.unvienna.org/pdf/reports/ac105/AC105_1005E.pdf. Wertz, James R. and Larson, Wiley J. “Space Mission Analysis and Design (Third Edition).” Space...Systems Tool Kit software for simulation and analysis of several possible communications and remote sensing satellite constellations covering Turkish

  11. The power of inexpensive satellite constellations

    NASA Astrophysics Data System (ADS)

    Dyrud, Lars P.; La Tour, Rose; Swartz, William H.; Nag, Sreeja; Lorentz, Steven R.; Hilker, Thomas; Wiscombe, Warren J.; Papadakis, Stergios J.

    2014-06-01

    Two thematic drivers are motivating the science community towards constellations of small satellites, the revelation that many next generation system science questions are uniquely addressed with sufficient numbers of simultaneous space based measurements, and the realization that space is historically expensive, and in an environment of constrained costs, we must innovate to ―do more with less‖. We present analysis that answers many of the key questions surrounding constellations of scientific satellites, including research that resulted from the GEOScan community based effort originally intended as hosted payloads on Iridium NEXT. We present analysis that answers the question how many satellites does global system science require? Perhaps serendipitously, the analyses show that many of the key science questions independently converge towards similar results, i.e. that approximately 60+ satellites are needed for transformative, as opposed to incremental capability in system science. The current challenge is how to effectively transition products from design to mass production for space based instruments and vehicles. Ideally, the lesson learned from past designs and builds of various space products should pave the way toward a better manufacturing plan that utilizes just a fraction of the prototype`s cost. Using the commercial products industry implementations of mass customization as an example, we will discuss about the benefits of standardization in design requirements for space instruments and vehicles. For example, the instruments (payloads) are designed to have standardized elements, components, or modules that interchangeably work together within a linkage system. We conclude with a discussion on implementation plans and the new paradigms for community and international cooperation enabled by small satellite constellations.

  12. The NASA CYGNSS Small Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  13. How to Enter, Fly In, and Exit the A-Train Constellation

    NASA Technical Reports Server (NTRS)

    Vincent, Mark A.

    2015-01-01

    The collaborative science obtained from the satellites in the A-Train is an unparalleled success. The constellation framework that has evolved is well-formulated and documented by its international members. Communication between teams is enhanced by a web-based Constellation Coordination System. Safety and correlated observations are ensured by defining independent control boxes with buffers in between. Each mission stays within its control box by regular drag makeup maneuvers. Annual inclination adjustments are coordinated by all missions to maintain their absolute and relative Mean Local Time of Ascending Node (MLTAN). Since the satellites are in different orbit planes their separation involves a three-dimensional triad made up of the along track separations, reference groundtracks and MLTAN's. For further safety, a Constellation Envelope has been defined to determine safe entry and exit orbits.

  14. Space Technology 5 - A Successful Micro-Satellite Constellation Mission

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Webb, Evan H.

    2007-01-01

    The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.

  15. New Satellite Constellation Uses Radio Occultation to Monitor Space Weather

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-05-01

    A constellation of six satellites, expected to enhance space weather research, improve terrestrial meteorology forecasts, and monitor climate change, were launched 15 April from Vandenberg Air Force Base, Calif.

  16. GLADIS: GLobal AIS & Data-X International Satellite Constellation

    DTIC Science & Technology

    2008-01-01

    1Approved for public release; distribution is unlimited GLADIS : GLobal AIS & Data-X International Satellite Constellation Space-Based System for...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE GLADIS : GLobal AIS & Data-X International Satellite Constellation 5a. CONTRACT NUMBER 5b...Maritime & Technology Challenges • GLADIS Mission Objective • AIS & Data-X capabilities • GLADIS Architecture • International Strategy – MSSIS as Model

  17. An integrated hyperspectral and SAR satellite constellation for environment monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo

    2017-09-01

    A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.

  18. Optimal design of the satellite constellation arrangement reconfiguration process

    NASA Astrophysics Data System (ADS)

    Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid

    2016-08-01

    In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.

  19. The GeoEye Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Dial, Gene; Cole, Aaron; Lutes, James; McKune, John; Martinez, Mike; Rao, R. S.; Taylor, Martin

    2007-01-01

    The GeoEye Constellation consists of: a) IKONOS and OrbView-3 for high resolution; b) GeoEye with higher resolution 1Q2007; c) RESOUCESAT-1 for global crop assessment; d) OrbView-2 for ocean research and fish. IKONOS performance in 2005 included stable image quality, radiometry and geometric accuracy. reliability is 80% to 2008. Demonstrated capacity for high-volume, quick-response collection and production.

  20. Small Satellite Constellations: The Future for Operational Earth Observation

    NASA Technical Reports Server (NTRS)

    Stephens, J. Paul

    2007-01-01

    Nanosat, microsat and minisat are low-cost, rapid-response small-satellites built from advanced terrestrial technology. SSTL delivers the benefits of affordable access to space through low-cost, rapid response, small satellites designed and built with state-of-the-art COTS technologies by: a) reducing the cost of entry into space; b) Achieving more missions within fixed budgets; c) making constellations and formation flying financially viable; d) responding rapidly from initial concept to orbital operation; and e) bringing the latest industrial COTS component advances to space. Growth has been stimulated in constellations for high temporal revisit&persistent monitoring and military responsive space assets.

  1. Regional positioning using a low Earth orbit satellite constellation

    NASA Astrophysics Data System (ADS)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  2. Risk to space sustainability from large constellations of satellites

    NASA Astrophysics Data System (ADS)

    Bastida Virgili, B.; Dolado, J. C.; Lewis, H. G.; Radtke, J.; Krag, H.; Revelin, B.; Cazaux, C.; Colombo, C.; Crowther, R.; Metz, M.

    2016-09-01

    The number of artificial objects in orbit continues to increase and, with it, a key threat to space sustainability. In response, space agencies have identified a set of mitigation guidelines aimed at enabling space users to reduce the generation of space debris by, for example, limiting the orbital lifetime of their spacecraft and launcher stages after the end of their mission. Planned, large constellations of satellites in low Earth orbit (LEO), though addressing the lack of basic internet coverage in some world regions, may disrupt the sustainability of the space environment enabled by these mitigation practices. We analyse the response of the space object population to the introduction of a large constellation conforming to the post-mission disposal guideline with differing levels of success and with different disposal orbit options. The results show that a high success rate of post-mission disposal by constellation satellites is a key driver for space sustainability.

  3. Determination of Earth outgoing radiation using a constellation of satellites

    NASA Astrophysics Data System (ADS)

    Gristey, Jake; Chiu, Christine; Gurney, Robert; Han, Shin-Chan; Morcrette, Cyril

    2017-04-01

    The outgoing radiation fluxes at the top of the atmosphere, referred to as Earth outgoing radiation (EOR), constitute a vital component of the Earth's energy budget. This EOR exhibits strong diurnal signatures and is inherently connected to the rapidly evolving scene from which the radiation originates, so our ability to accurately monitor EOR with sufficient temporal resolution and spatial coverage is crucial for weather and climate studies. Despite vast improvements in satellite observations in recent decades, achieving these criteria remains challenging from current measurements. A technology revolution in small satellites and sensor miniaturisation has created a new and exciting opportunity for a novel, viable and sustainable observation strategy from a constellation of satellites, capable of providing both global coverage and high temporal resolution simultaneously. To explore the potential of a constellation approach for observing EOR we perform a series of theoretical simulation experiments. Using the results from these simulation experiments, we will demonstrate a baseline constellation configuration capable of accurately monitoring global EOR at unprecedented temporal resolution. We will also show whether it is possible to reveal synoptic scale, fast evolving phenomena by applying a deconvolution technique to the simulated measurements. The ability to observe and understand the relationship between these phenomena and changes in EOR is of fundamental importance in constraining future warming of our climate system.

  4. The NASA EV-2 CYGNSS Small Satellite Constellation Mission

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; Jelenak, Z.; Katzberg, S. J.; Ridley, A. J.; Rose, R.; Scherrer, J.; Zavorotny, V.

    2012-12-01

    The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites. The use of a dense constellation of nanosatellite results in spatial and temporal sampling properties that are markedly different from conventional imagers. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. Historical records of actual TC storm tracks are overlaid onto a simulated time series of the surface wind sampling enabled by the constellation. For comparison purposes, a similar analysis is conducted using the sampling properties of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core are examined. The spacecraft and constellation mission are described. The signal-to-noise ratio of the measured scattered signal and the resulting uncertainty in retrieved surface wind speed are also examined.

  5. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  6. Efficient mission control for the 48-satellite Globalstar Constellation

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    1994-01-01

    The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200! . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds! Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.

  7. Guidance and Control System for a Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Bryson, Jonathan Lamar; Cox, James; Mays, Paul Richard; Neidhoefer, James Christian; Ephrain, Richard

    2010-01-01

    A distributed guidance and control algorithm was developed for a constellation of satellites. The system repositions satellites as required, regulates satellites to desired orbits, and prevents collisions. 1. Optimal methods are used to compute nominal transfers from orbit to orbit. 2. Satellites are regulated to maintain the desired orbits once the transfers are complete. 3. A simulator is used to predict potential collisions or near-misses. 4. Each satellite computes perturbations to its controls so as to increase any unacceptable distances of nearest approach to other objects. a. The avoidance problem is recast in a distributed and locally-linear form to arrive at a tractable solution. b. Plant matrix values are approximated via simulation at each time step. c. The Linear Quadratic Gaussian (LQG) method is used to compute perturbations to the controls that will result in increased miss distances. 5. Once all danger is passed, the satellites return to their original orbits, all the while avoiding each other as above. 6. The delta-Vs are reasonable. The controller begins maneuvers as soon as practical to minimize delta-V. 7. Despite the inclusion of trajectory simulations within the control loop, the algorithm is sufficiently fast for available satellite computer hardware. 8. The required measurement accuracies are within the capabilities of modern inertial measurement devices and modern positioning devices.

  8. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    DTIC Science & Technology

    2014-09-30

    Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type

  9. Leonardo-BRDF: A New Generation Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  10. Precise science orbits for the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Encarnação, João; Doornbos, Eelco; Visser, Pieter

    2015-09-01

    The European Space Agency (ESA) Swarm mission was launched on 22 November 2013 to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. The mission consists of three identical satellites, flying in carefully selected near polar orbits. Two satellites fly almost side-by-side at an initial altitude of about 480 km, and will descend due to drag to around 300 km during the mission lifetime. The third satellite was placed in a higher orbit of about 530 km altitude, and therefore descends much more slowly. To geolocate the Swarm observations, each satellite is equipped with an 8-channel, dual-frequency GPS receiver for Precise Orbit Determination (POD). Onboard laser retroreflectors provide the opportunity to validate the orbits computed from the GPS observations using Satellite Laser Ranging (SLR) data. Precise Science Orbits (PSOs) for the Swarm satellites are computed by the Faculty of Aerospace Engineering at Delft University of Technology in the framework of the Swarm Satellite Constellation Application and Research Facility (SCARF). The PSO product consists of both a reduced-dynamic and a kinematic orbit solution. After a short description of the Swarm GPS data characteristics, the adopted POD strategy for both orbit types is explained and first PSO results from more than one year of Swarm GPS data are presented. Independent SLR validation shows that the reduced-dynamic Swarm PSOs have an accuracy of better than 2 cm, while the kinematic orbits have a slightly reduced accuracy of about 4-5 cm. Orbit comparisons indicate that the consistency between the reduced-dynamic and kinematic Swarm PSO for most parts of the Earth is at the 4-5 cm level. Close to the geomagnetic poles and along the geomagnetic equator, however, the kinematic orbits show larger errors, which are probably due to ionospheric scintillations that affect the Swarm GPS receivers over these areas.

  11. Study of mobile satellite network based on GEO/LEO satellite constellation

    NASA Astrophysics Data System (ADS)

    Hu, Xiulin; Zeng, Yujiang; Wang, Ying; Wang, Xianhui

    2005-11-01

    Mobile satellite network with Inter Satellite Links (ISLs), which consists of non-geostationary satellites, has the characteristic of network topology's variability. This is a great challenge to the design and management of mobile satellite network. This paper analyzes the characteristics of mobile satellite network, takes multimedia Quality of Service (QoS) as the chief object and presents a reference model based on Geostationary Earth Orbit (GEO)/ Low Earth Orbit (LEO) satellite constellation which adapts to the design and management of mobile satellite network. In the reference model, LEO satellites constitute service subnet with responsibility for the access, transmission and switch of the multimedia services for mobile users, while GEO satellites constitute management subnet taking on the centralized management to service subnet. Additionally ground control centre realizes the whole monitoring and control via management subnet. Comparing with terrestrial network, the above reference model physically separates management subnet from service subnet, which not only enhances the advantage of centralized management but also overcomes the shortcoming of low reliability in terrestrial network. Routing of mobile satellite network based on GEO/LEO satellite constellation is also discussed in this paper.

  12. The NASA CYGNSS Satellite Constellation for Tropical Cyclone Observations

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Provost, D.; Rose, R.; Scherrer, J.; Atlas, R. M.; Chang, P.; Clarizia, M. P.; Garrison, J. L.; Gleason, S.; Katzberg, S. J.; Jelenak, Z.; Johnson, J. T.; Majumdar, S.; O'Brien, A.; Posselt, D. J.; Ridley, A. J.; Said, F.; Soisuvarn, S.; Zavorotny, V. U.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is scheduled for launch in November 2016 to study the surface wind structure in and near the inner core of tropical cyclones. CYGNSS consists of a constellation of eight observatories carried into orbit on a single launch vehicle. Each observatory carries a 4-channel bistatic radar receiver tuned to receive GPS navigation signals scattered from the ocean surface. The eight satellites are spaced approximately twelve minutes apart in a common circular, low inclination orbit plane to provide frequent temporal sampling in the tropics. The 35deg orbit inclination results in coverage of the full globe between 38deg N and 38deg S latitude with a median(mean) revisit time of 3(7) hours The 32 CYGNSS radars operate in L-Band at a wavelength of 19 cm. This allows for adequate penetration to enable surface wind observations under all levels of precipitation, including those encountered in the inner core and eyewall of tropical cyclones. The combination of operation unaffected by heavy precipitation together with high temporal resolution throughout the life cycle of storms is expected to support significant improvements in the forecast skill of storm track and intensity, as well as better situational awareness of the extent and structure of storms in near real time. A summary of the properties of the CYGNSS science data products will be presented, together with an update on the results of ongoing Observation System Simulation Experiments performed by members of the CYGNSS science team over the past four years, in particular addressing the expected impact on storm track and intensity forecast skill. With launch scheduled for the month prior to AGU, the on orbit status of the constellation will also be presented.

  13. Improved candidate generation and coverage analysis methods for design optimization of symmetric multi-satellite constellations

    NASA Astrophysics Data System (ADS)

    Matossian, Mark G.

    1997-01-01

    Much attention in recent years has focused on commercial telecommunications ventures involving constellations of spacecraft in low and medium Earth orbit. These projects often require investments on the order of billions of dollars (US$) for development and operations, but surprisingly little work has been published on constellation design optimization for coverage analysis, traffic simulation and launch sequencing for constellation build-up strategies. This paper addresses the two most critical aspects of constellation orbital design — efficient constellation candidate generation and coverage analysis. Inefficiencies and flaws in the current standard algorithm for constellation modeling are identified, and a corrected and improved algorithm is presented. In the 1970's, John Walker and G. V. Mozhaev developed innovative strategies for continuous global coverage using symmetric non-geosynchronous constellations. (These are sometimes referred to as rosette, or Walker constellations. An example is pictured above.) In 1980, the late Arthur Ballard extended and generalized the work of Walker into a detailed algorithm for the NAVSTAR/GPS program, which deployed a 24 satellite symmetric constellation. Ballard's important contribution was published in his "Rosette Constellations of Earth Satellites."

  14. Relative tracking control of constellation satellites considering inter-satellite link

    NASA Astrophysics Data System (ADS)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  15. DSMS investment in support of satellite constellations and formation flying

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    2003-01-01

    Over the years, NASA has supported unmanned space missions, beyond earth orbit, through a Deep Space Mission System (DSMS) that is developed and operated by the Jet Propulsion Laboratory (JPL) and subcontractors. The DSMS capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered primarily through three Deep Space Communications Complexes (DSCC 's) near Goldstone, California, Madrid, Spain, and Canberra, Australia and from facilities at JPL. Traditionally, mission support (tracking, command, telemetry, etc) is assigned on an individual-mission basis, between each mission and a ground-based asset, independent of other missions. As NASA, and its international partners, move toward flying fullconstellations and precision formations, the DSMS is developing plans and technologies to provide the requisite support. The key activities under way are: (1) integrated communications architecture for Mars exploration, including relays on science orbiters and dedicated relay satellites to provide continuous coverage for orbiters, landers and rovers. JPL is developing an architecture, as well as protocols and equipment, required for the cost-effective operations of such an infrastructure. (2) Internet-type protocols that will allow for efficient operations across the deep-space distances, accounting for and accommodating the long round-trip-light-time. JPL is working with the CCSDS to convert these protocols to an international standard and will deploy such protocol, the CCSDS File Delivery Protocol (CFDP), on the Mars Reconnaissance Orbiter (MRO) and on the Deep Impact (01) missions. (3) Techniques to perform cross-navigation between spacecrafi that fly in a loose formation. Typical cases are cross-navigation between missions that approach Mars and missionsthat are at Mars, or the determination of a baseline for missions that fly in an earth-lead- lag configuration. (4) Techniques and devices that allow the precise metrology and

  16. Design and implementation of satellite formations and constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(TM) and FreeFlyer(TM) with various fidelity levels of modeling and algorithms are presented.

  17. Design and Implementation of Satellite Formations and Constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(Trademark) and FreeFlyer(Trademark) with various fidelity levels of modeling and algorithms are presented.

  18. Science Discoveries Enabled by Hosting Optical Imagers on Commercial Satellite Constellations

    NASA Astrophysics Data System (ADS)

    Erlandson, R. E.; Kelly, M. A.; Hibbitts, C.; Kumar, C.; Dyrud, L. P.

    2012-12-01

    The advent of commercial space activities that utilize large space-based constellations provide a new and cost effective opportunity to acquire multi-point observations. Previously, a custom designed space-based constellation, while technically feasible, would require a substantial monetary investment. However, commercial industry has now been entertaining the concept of hosting payloads on their space-based constellations resulting in low-cost access to space. Examples, include the low Earth orbit Iridium Next constellation as well as communication satellites in geostationary. In some of these constellations data distribution can be provided in real time, a feature relevant to applications in the areas of space weather and disaster monitoring. From the perspective of new scientific discoveries enabled by low cost access to space, the cost and thus value proposition is dramatically changed. For example, a constellation of sixty-six satellites (Iridium Next), hosting a single band or multi-spectral imager can now provide observations of the aurora with a spatial resolution of a few hundred meters at all local times and in both hemispheres simultaneously. Remote sensing of clouds is another example where it is now possible to acquire global imagery at resolutions between 100-1000m. Finally, land use imagery is another example where one can use either imaging or spectrographic imagers to solve a multitude of problems. In this work, we will discuss measurement architectures and the multi-disciplinary scientific discoveries that are enable by large space based constellations.

  19. Performance of Duplex Communication Between a LEO Satellite and Terrestrial Location Using a GEO Constellation

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.; Konangi, Vijay K.; Wallett, Thomas M.

    1998-01-01

    A network comprised of a terrestrial site, a constellation of three GEO satellites and a LEO satellite is modeled and simulated. Continuous communication between the terrestrial site and the LEO satellite is facilitated by the GEO satellites. The LEO satellite has the orbital characteristics of the International Space Station. Communication in the network is based on TCP/IP over ATM, with the ABR service category providing the QoS, at OC-3 data rate. The OSPF protocol is used for routing. We simulate FTP file transfers, with the terrestrial site serving as the client and the LEO satellite being the server. The performance characteristics are presented.

  20. Error Reduction Analysis and Optimization of Varying GRACE-Type Micro-Satellite Constellations

    NASA Astrophysics Data System (ADS)

    Widner, M. V., IV; Bettadpur, S. V.; Wang, F.; Yunck, T. P.

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) mission has been a principal contributor in the study and quantification of Earth's time-varying gravity field. Both GRACE and its successor, GRACE Follow-On, are limited by their paired satellite design which only provide a full map of Earth's gravity field approximately every thirty days and at large spatial resolutions of over 300 km. Micro-satellite technology has presented the feasibility of improving the architecture of future missions to address these issues with the implementation of a constellations of satellites having similar characteristics as GRACE. To optimize the constellation's architecture, several scenarios are evaluated to determine how implementing this configuration affects the resultant gravity field maps and characterize which instrument system errors improve, which do not, and how changes in constellation architecture affect these errors.

  1. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  2. An Investigation into Establishing a Formation of Small Satellites in a Lunar Flower Constellation

    NASA Astrophysics Data System (ADS)

    McManus, Lauren

    Lunar science missions such as LADEE and GRAIL achieved unprecedented measurements of the Lunar exosphere and gravity field. These missions were performed with one (LADEE) or two (GRAIL) traditional satellites. The global coverage achieved by these missions could have been greatly enhanced with the use of a constellation of satellites. A constellation of communication satellites at the Moon would also be necessary if a Lunar human base were to be established. Constellations with many satellites are expensive with traditional technology, but have become feasible through the technological advancements and affordability of cubesats. Cubesat constellations allow for full surface coverage in science or communication missions at a reasonable mission cost. Repeat ground track orbits offer interesting options for science or communication constellations, since they provide repeat coverage of the surface at a fixed time between sequential visits. Flower constellations are a family of constellations being studied primarily by Daniele Mortari at Texas A&M; University that make use of repeat ground tracks. Orbital parameters are selected such that the nodal period of the orbit matches the nodal period of the primary body by a factor dependent on the number of days and the number of revolutions to repeat the ground track. All orbits in a flower constellation have identical orbital elements, with the exception of the right ascension of the ascending node (RAAN) and the initial mean anomaly, which are determined based on the desired phasing scheme desired. Flower constellations have thus far primarily been studied at Earth. A flower constellation at the Moon could be quite useful for science or communication purposes. In this scenario, the flower constellation satellites would be small satellites, which introduces many unique challenges. The cubesats would have limited propulsion capability and would need to be deployed from a mothercraft. Orbital maintenance would then be

  3. A satellite constellation optimization for a regional GNSS remote sensing mission

    NASA Astrophysics Data System (ADS)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  4. Linking Satellites Via Earth "Hot Spots" and the Internet to Form Ad Hoc Constellations

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Frye, Stu; Grosvenor, Sandra; Ingram, Mary Ann; Langley, John; Miranda, Felix; Lee, Richard Q.; Romanofsky, Robert; Zaman, Afoz; Popovic, Zoya

    2004-01-01

    As more assets are placed in orbit, opportunities emerge to combine various sets of satellites in temporary constellations to perform collaborative image collections. Often, new operations concepts for a satellite or set of satellites emerge after launch. To the degree with which new space assets can be inexpensively and rapidly integrated into temporary or "ad hoc" constellations, will determine whether these new ideas will be implemented or not. On the Earth Observing 1 (EO-1) satellite, a New Millennium Program mission, a number of experiments were conducted and are being conducted to demonstrate various aspects of an architecture that, when taken as a whole, will enable progressive mission autonomy. In particular, the target architecture will use adaptive ground antenna arrays to form, as close as possible, the equivalent of wireless access points for low earth orbiting satellites. Coupled with various ground and flight software and the Internet. the architecture enables progressive mission autonomy. Thus, new collaborative sensing techniques can be implemented post-launch. This paper will outline the overall operations concept and highlight details of both the research effort being conducted in satellites. Keywords: collaborative remote sensing smart antennas, adaptive antenna arrays, sensor webs. ad hoc constellations, mission autonomy and

  5. Micro-satellite constellations for monitoring cryospheric processes and related natural hazards

    NASA Astrophysics Data System (ADS)

    Kaeaeb, A.; Altena, B.; Mascaro, J.

    2016-12-01

    Currently, several micro-satellite constellations for earth-observation are planned or under build-up. Here, we assess the potential of the well-advanced Planet satellite constellation for investigating cryospheric processes. In its final stage, the Planet constellation will consist of 150 free-flying micro-satellites in near-polar and ISS orbits. The instruments carry RGB+NIR frame cameras that image the Earth surface in nadir direction with resolutions of 3-5 m, covering 20 x 13 km per image. In its final set-up, the constellation will be able to image the (almost) entire land surface at least once per day, under the limitation of cloud cover. Here, we explore new possibilities for insight into cryospheric processes that this very high repeat cycle combined with high image resolution offer. Based on repeat Planet imagery we derive repeat glacier velocity fields for example glaciers in the northern and southern hemispheres. We find it especially useful to monitor the ice velocities near calving fronts and simultaneously detect changes of the front, pointing to calving events. We also explore deformation fields over creeping mountain permafrost, so-called rockglaciers. As a second, very promising cryospheric application we suggest monitoring of glacier and permafrost related natural hazards. In cases such as temporary lakes, lake outbursts, landslides, rock avalanches, visual information over remote areas and at high frequencies are crucial for hazard assessment, early warning or disaster management. Based on several examples, we demonstrate that massive micro-satellite constellations such Planet's are exactly able to provide this type of information. As a third promising example, we show how such high-repeat optical satellite data are useful to monitor river ice and related jams and flooding. At certain latitudes, the repeat frequency of the data is even high enough to track river ice floes and thus water velocities.

  6. Cost Effective Persistent Regional Surveillance with Reconfigurable Satellite Constellations

    DTIC Science & Technology

    2015-04-24

    region where both models show the most agreement and therefore the blended curves (in the bottom plot) are fairly smooth. Additionally, a learning ...payload cost Cpay. Cpay = 38000D1.6 + 60615D2.67 ($k FY2010) (11) Satellite cost is modeled by blending the output from the Small Satellite Cost Model...SSCM was used for Md ≤ 400kg and the USCM8 cost model was used for Md ≥ 200kg, and linear blending was used to smooth out the transition between models

  7. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations

    PubMed Central

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun

    2016-01-01

    Global navigation satellite systems (GNSS) are widely used in low Earth orbit (LEO) satellite navigation; however, their availability is poor for users in medium Earth orbits (MEO), and high Earth orbits (HEO). With the increasing demand for navigation from MEO and HEO users, the inadequate coverage of GNSS has emerged. Inter-satellite links (ISLs) are used for ranging and communication between navigation satellites and can also serve space users that are outside the navigation constellation. This paper aims to summarize their application method and analyze their service performance. The mathematical model of visibility is proposed and then the availability of time division ISLs is analyzed based on global grid points. The BeiDou navigation constellation is used as an example for numerical simulation. Simulation results show that the availability can be enhanced by scheduling more satellites and larger beams, while the presence of more users lowers the availability. The availability of navigation signals will be strengthened when combined with the signals from the ISLs. ISLs can improve the space service volume (SSV) of navigation constellations, and are therefore a promising method for navigation in MEO/HEO spacecraft. PMID:27548181

  8. Coverage Predictions and Selection Criteria for Satellite Constellations.

    DTIC Science & Technology

    1982-12-01

    of R.AI (51.50 at a Sop, of 47.9 ° , with DMi n - 00) than the pattern 10/5/2 listed here. Pattern 10/10/7 has been listed by Mozhaev I and Ballard...Mazaika 1-8,(1980) I G.V. Mozhaev The problem of continuous earth coverage and kinematically regular satellite networks. II. Kosmci . iss’ed., I, I, 59

  9. Radiation Products based on a constellation of Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Trigo, I. F.; Freitas, S. C.; Barroso, C.; Macedo, J.; Perdigão, R.; Silva, R.; Viterbo, P.

    2012-04-01

    The various components of the surface radiation budget present high variability in time and space, particularly over land surfaces where spatial heterogeneity of the upward fluxes is high. Geostationary satellites are well-suited to describe the daily cycle of downward and upward radiation fluxes and present spatial resolutions of the order of 3-to-5 km at sub-satellite point, acceptable for many applications. The work presented here is being carried out within the framework of Geoland-2 project, and aims the use of data from geostationary platforms to generate, archive and distribute in near real time four component of the surface radiation budget: land surface albedo, land surface temperature (LST) and downward short- and long-wave fluxes at the surface. All four components are retrieved from the following satellites - GOES-W covering North and South America, Meteosat Second Generation (MSG) covering essentially Europe and Africa, and MTSAT covering part of Asia and Australia. The variables are retrieved independently from each satellite and then merged into a single field, with a 5 km spatial resolution. Data are generated hourly in the case of the downward fluxes and LST, and 10-daily in the case of albedo. In regions covered by both GOES and MSG disks, the interpolated field makes use of both retrievals, giving more weight to those with lower uncertainty. The four components of the surface radiation budget described above are assessed through comparisons with similar parameters retrieved from other sensors (e.g., MODIS, CERES) or from models (e.g., ECMWF forecasts), as well as with in situ observations when available. The presentation will be focused on a brief description of algorithms and auxiliary data used in product estimation. The results of inter-comparisons with other data sources, along with the identification of the retrieval conditions that allow optimal / sub-optimal estimation of these surface radiation parameters will also be analysed. The

  10. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  11. End-of-Mission Planning Challenges for a Satellite in a Constellation

    NASA Technical Reports Server (NTRS)

    Boain, Ronald J.

    2013-01-01

    At the end of a mission, satellites embedded in a constellation must first perform propulsive maneuvers to safely exit the constellation before they can begin with the usual end-of-mission activities: deorbit, passivation, and decommissioning. The target orbit for these exit maneuvers must be sufficiently below the remaining constellation satellites such that, once achieved, there is no longer risk of close conjunctions. Yet, the exit maneuvers must be done based on the spacecraft's state of health and operational capability when the decision to end the mission is made. This paper focuses on the recently developed exit strategy for the CloudSat mission to highlight problems and issues, which forced the discarding of CloudSat's original EoM Plan and its replacement with a new plan consistent with changes to the spacecraft's original operational mode. The analyses behind and decisions made in formulating this new exit strategy will be of interest to other missions in a constellation currently preparing to update their End-of-Mission Plan.

  12. Global Earth Outgoing Radiation From A Constellation Of Satellites: Proof-Of-Concept Study

    NASA Astrophysics Data System (ADS)

    Gristey, J. J.; Chiu, J. Y. C.; Gurney, R. J.; Han, S. C.; Morcrette, C. J.

    2017-12-01

    The flux of radiation exiting at the top of the atmosphere, referred to as Earth Outgoing Radiation (EOR), constitutes a vital component of the Earth's energy budget. Since EOR is inherently connected to the rapidly evolving scene from which the radiation originates and exhibits large regional variations, it is of paramount importance that we can monitor EOR at a sufficient frequency and spatial scale for weather and climate studies. Achieving these criteria remains challenging using traditional measurement techniques. However, explosive development in small satellite technology and sensor miniaturisation has paved a viable route for measurements to be made from a constellation of satellites in different orbits. This offers an exciting new opportunity to make observations of EOR with both global coverage and high temporal resolution for the first time. To assess the potential of the constellation approach for observing EOR we perform a series of observing system simulation experiments. We will outline a baseline constellation configuration capable of sampling the Earth with unprecedented temporal resolution. Using this configuration and a sophisticated deconvolution technique, we demonstrate how to recover synoptic-scale global EOR to the accuracy required to understand Earth's global energy budget. Finally, we will reveal the impact of various modifications to the constellation configuration and provide recommendations for the community.

  13. Applications of Precipitation Feature Databases from GPM core and constellation Satellites

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2017-12-01

    Using the observations from Global Precipitation Mission (GPM) core and constellation satellites, global precipitation was quantitatively described from the perspective of precipitation systems and their properties. This presentation will introduce the development of precipitation feature databases, and several scientific questions that have been tackled using this database, including the topics of global snow precipitation, extreme intensive convection, hail storms, extreme precipitation, and microphysical properties derived with dual frequency radars at the top of convective cores. As more and more observations of constellation satellites become available, it is anticipated that the precipitation feature approach will help to address a large variety of scientific questions in the future. For anyone who is interested, all the current precipitation feature databases are freely open to public at: http://atmos.tamucc.edu/trmm/.

  14. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Ruf, C. S.; Chew, C.; Lang, T.; Morris, M. G.; Kyle, K.; Ridley, A.; Balasubramaniam, R.

    2018-01-01

    A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean and soil moisture and flooding over land. The satellites are distributed around the globe so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars’ transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

  15. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation.

    PubMed

    Ruf, Christopher S; Chew, Clara; Lang, Timothy; Morris, Mary G; Nave, Kyle; Ridley, Aaron; Balasubramaniam, Rajeswari

    2018-06-08

    A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

  16. Ice Velocity Mapping in Antarctica - Towards a Virtual Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.; Crevier, Y.

    2013-12-01

    Ice sheets are acknowledged by the World Meteorological Organization (WMO) and the United Nations Framework Convention on Climate Change (UNFCCC) as an Essential Climate Variable (ECV) needed to make significant progress in the generation of global climate products and derived information. Ice velocity is a crucial geophysical parameter that can be measured using spaceborne Synthetic Aperture Radar (SAR) data. Here, we report on an update to available Earth System Data Records (ESDR) of ice velocity in Antarctica based on data from a suite of spaceborne (SAR) sensors and provide an overview on international coordination in an effort to best utilize the available SAR satellites. Building on the first complete mapping of the flow of ice surface over the Antarctic continent using data predominantly acquired during IPY, we are working on a series of regional studies analyzing data from several different epochs. The analysis of velocity changes between discrete measurements requires even more careful data processing in order to be able to accurately measure subtle changes. Examples for Larsen-C and the Amundsen Sea Embayment will be presented. Data continuity is a crucial aspect to this work, particularly in light of the fact that 4 SAR missions have ceased operations since IPY and all available missions have a primary mandate that is not scientific data collection. Following the successful internationally coordinated SAR data acquisitions over ice sheets during the International Polar Year 2007/2008, efforts are undertaken to continue data acquisitions in the spirit of collaboration. The Polar Space Task Group (PSTG) is succeeding the IPY coordinating body of international space agencies, Space Task Group (STG). The PSTG SAR Coordination Working Group was created to address the issue of SAR data acquisitions in the cryosphere. A review of ice sheet requirements was undertaken by the science community, presented to PSTG, and followed up with a set of sensor specific

  17. Constellations: A New Paradigm for Earth Observations

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.

    2009-01-01

    The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have

  18. Radiometric and geometric assessment of data from the RapidEye constellation of satellites

    USGS Publications Warehouse

    Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ <2–3% from the average constellation response depending on the method used for evaluation. Geometric assessment was also performed to study the positional accuracy and relative band-to-band (B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.

  19. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging

  20. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  1. The design and networking of dynamic satellite constellations for global mobile communication systems

    NASA Technical Reports Server (NTRS)

    Cullen, Cionaith J.; Benedicto, Xavier; Tafazolli, Rahim; Evans, Barry

    1993-01-01

    Various design factors for mobile satellite systems, whose aim is to provide worldwide voice and data communications to users with hand-held terminals, are examined. Two network segments are identified - the ground segment (GS) and the space segment (SS) - and are seen to be highly dependent on each other. The overall architecture must therefore be adapted to both of these segments, rather than each being optimized according to its own criteria. Terrestrial networks are grouped and called the terrestrial segment (TS). In the SS, of fundamental importance is the constellation altitude. The effect of the altitude on decisions such as constellation design choice and on network aspects like call handover statistics are fundamental. Orbit resonance is introduced and referred to throughout. It is specifically examined for its useful properties relating to GS/SS connectivities.

  2. Satellite Constellations for Space Weather and Ionospheric Studies: Overview of the COSMIC and COSMIC-2 Missions

    NASA Astrophysics Data System (ADS)

    Schreiner, W. S.; Pedatella, N. M.; Weiss, J.

    2016-12-01

    Measurements from constellations of low Earth orbiting (LEO) satellites are proving highly useful for ionospheric science and space weather studies. The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), a joint US/Taiwan mission launched in April 2006, is a six micro-satellite constellation carrying Global Positioning System (GPS) radio occultation (RO) receivers. COSMIC has collected a large amount of useful data from these scientific payloads and is still currently collecting up to 1,000 RO measurement events per day on average. The GPS RO dual-frequency L-band phase and amplitude measurements can be used to observe absolute Total Electron Content (TEC) and scintillation on lines of sight between the LEO and GPS satellites, and electron density profiles via the RO method. The large number and complete global and local time coverage of COSMIC data are allowing scientists to observe ionospheric and plasmaspheric phenomena that are difficult to see with other instruments. The success of COSMIC has prompted U.S. agencies and Taiwan to execute a COSMIC follow-on mission (called COSMIC-2) that will put twelve satellites with GNSS (Global Navigation Satellite System) RO payloads into orbit on two launches in the 2017-20 time frame. The first launch in 2017 will place six satellites in a 520-km altitude 24 deg inclination orbit, which is ideal for low latitude ionospheric research and space weather forecasting. The planned second launch (not currently funded) places six additional satellites in a 750 km 72 deg inclination orbit to provide global coverage and increased sampling density. COSMIC-2 will make use of an advanced radio occultation receiver with an innovative beam-forming antenna design, and is expected to produce at least 10,000 high-quality atmospheric and ionospheric profiles per day from GPS and GLONASS signals to support operational weather prediction, climate monitoring, and space weather forecasting. Each COSMIC-2 spacecraft

  3. Towards an integrated strategy for monitoring wetland inundation with virtual constellations of optical and radar satellites

    NASA Astrophysics Data System (ADS)

    DeVries, B.; Huang, W.; Huang, C.; Jones, J. W.; Lang, M. W.; Creed, I. F.; Carroll, M.

    2017-12-01

    The function of wetlandscapes in hydrological and biogeochemical cycles is largely governed by surface inundation, with small wetlands that experience periodic inundation playing a disproportionately large role in these processes. However, the spatial distribution and temporal dynamics of inundation in these wetland systems are still poorly understood, resulting in large uncertainties in global water, carbon and greenhouse gas budgets. Satellite imagery provides synoptic and repeat views of the Earth's surface and presents opportunities to fill this knowledge gap. Despite the proliferation of Earth Observation satellite missions in the past decade, no single satellite sensor can simultaneously provide the spatial and temporal detail needed to adequately characterize inundation in small, dynamic wetland systems. Surface water data products must therefore integrate observations from multiple satellite sensors in order to address this objective, requiring the development of improved and coordinated algorithms to generate consistent estimates of surface inundation. We present a suite of algorithms designed to detect surface inundation in wetlands using data from a virtual constellation of optical and radar sensors comprising the Landsat and Sentinel missions (DeVries et al., 2017). Both optical and radar algorithms were able to detect inundation in wetlands without the need for external training data, allowing for high-efficiency monitoring of wetland inundation at large spatial and temporal scales. Applying these algorithms across a gradient of wetlands in North America, preliminary findings suggest that while these fully automated algorithms can detect wetland inundation at higher spatial and temporal resolutions than currently available surface water data products, limitations specific to the satellite sensors and their acquisition strategies are responsible for uncertainties in inundation estimates. Further research is needed to investigate strategies for

  4. Global design of satellite constellations: a multi-criteria performance comparison of classical walker patterns and new design patterns

    NASA Astrophysics Data System (ADS)

    Lansard, Erick; Frayssinhes, Eric; Palmade, Jean-Luc

    Basically, the problem of designing a multisatellite constellation exhibits a lot of parameters with many possible combinations: total number of satellites, orbital parameters of each individual satellite, number of orbital planes, number of satellites in each plane, spacings between satellites of each plane, spacings between orbital planes, relative phasings between consecutive orbital planes. Hopefully, some authors have theoretically solved this complex problem under simplified assumptions: the permanent (or continuous) coverage by a single and multiple satellites of the whole Earth and zonal areas has been entirely solved from a pure geometrical point of view. These solutions exhibit strong symmetry properties (e.g. Walker, Ballard, Rider, Draim constellations): altitude and inclination are identical, orbital planes and satellites are regularly spaced, etc. The problem with such constellations is their oversimplified and restricted geometrical assumption. In fact, the evaluation function which is used implicitly only takes into account the point-to-point visibility between users and satellites and does not deal with very important constraints and considerations that become mandatory when designing a real satellite system (e.g. robustness to satellite failures, total system cost, common view between satellites and ground stations, service availability and satellite reliability, launch and early operations phase, production constraints, etc.). An original and global methodology relying on a powerful optimization tool based on genetic algorithms has been developed at ALCATEL ESPACE. In this approach, symmetrical constellations can be used as initial conditions of the optimization process together with specific evaluation functions. A multi-criteria performance analysis is conducted and presented here in a parametric way in order to identify and evaluate the main sensitive parameters. Quantitative results are given for three examples in the fields of navigation

  5. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, Rune; Alken, Patrick; Beggan, Ciaran D.; Chulliat, Arnaud; Doornbos, Eelco; da Encarnação, João Teixeira; Hamilton, Brian; Hulot, Gauthier; van den IJssel, Jose; Kuvshinov, Alexey; Lesur, Vincent; Lühr, Hermann; Macmillan, Susan; Maus, Stefan; Noja, Max; Olsen, Poul Erik H.; Park, Jaeheung; Plank, Gernot; Püthe, Christoph; Rauberg, Jan; Ritter, Patricia; Rother, Martin; Sabaka, Terence J.; Schachtschneider, Reyko; Sirol, Olivier; Stolle, Claudia; Thébault, Erwan; Thomson, Alan W. P.; Tøffner-Clausen, Lars; Velímský, Jakub; Vigneron, Pierre; Visser, Pieter N.

    2013-11-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF ( S atellite C onstellation A pplication and R esearch F acility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.

  6. Temporal resolution requirements of satellite constellations for 30 m global burned area mapping

    NASA Astrophysics Data System (ADS)

    Melchiorre, A.; Boschetti, L.

    2017-12-01

    Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one

  7. One of 50: Challenger, the University of Colorado Boulder QB50 Constellation Satellite

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Rainville, N.; Dahir, A.; Rouleau, C.; Stark, J.; Nell, N.; Fukushima, J.; Antunes de Sa, A.

    2015-12-01

    QB50 is a bold project lead by the Von Karman Institute of Fluid Dynamics as part of the European Union FP7 program to launch fifty cubesats from a single launch vehicle. With a planned deployment altitude of 380km, the QB50 constellation will stay below the space station and deorbit within 9-12 months, depending upon solar conditions. Forty of the QB50 satellites are flying specified scientific sensors which include an ion-neutral mass spectrometer, a Langmuir probe or a FIPEX oxygen sensor. This constellation of cubesats will yield an unprecedented set of distributed measurements of the lower-thermosphere. The University of Colorado Boulder was selected as part of a four team consortium of US cubesat providers to participate in the QB50 mission and is supported by the National Science Foundation. The Challenger cubesat, designed and built by a multidisciplinary team of students at the University of Colorado Boulder will carry the ion-neutral mass spectrometer as a science instrument and has heritage from the Colorado Student Space Weather Experiment (CSSWE) and Miniature X-Ray Spectrometer (MinXSS) cubesats. Many of the cubesat subsystems were designed, built and tested by students in the Space Technology Integration (STIg) lab. This paper will provide an overview and a status update of the QB50 program in addition to details of the Challenger cubesat.

  8. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Xu, Xiaolong; Zhao, Qile; Liu, Jingnan

    2016-02-01

    This contribution summarizes the strategy used by Wuhan University (WHU) to determine precise orbit and clock products for Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). In particular, the satellite attitude, phase center corrections, solar radiation pressure model developed and used for BDS satellites are addressed. In addition, this contribution analyzes the orbit and clock quality of the quad-constellation products from MGEX Analysis Centers (ACs) for a common time period of 1 year (2014). With IGS final GPS and GLONASS products as the reference, Multi-GNSS products of WHU (indicated by WUM) show the best agreement among these products from all MGEX ACs in both accuracy and stability. 3D Day Boundary Discontinuities (DBDs) range from 8 to 27 cm for Galileo-IOV satellites among all ACs' products, whereas WUM ones are the largest (about 26.2 cm). Among three types of BDS satellites, MEOs show the smallest DBDs from 10 to 27 cm, whereas the DBDs for all ACs products are at decimeter to meter level for GEOs and one to three decimeter for IGSOs, respectively. As to the satellite laser ranging (SLR) validation for Galileo-IOV satellites, the accuracy evaluated by SLR residuals is at the one decimeter level with the well-known systematic bias of about -5 cm for all ACs. For BDS satellites, the accuracy could reach decimeter level, one decimeter level, and centimeter level for GEOs, IGSOs, and MEOs, respectively. However, there is a noticeable bias in GEO SLR residuals. In addition, systematic errors dependent on orbit angle related to mismodeled solar radiation pressure (SRP) are present for BDS GEOs and IGSOs. The results of Multi-GNSS combined kinematic PPP demonstrate that the best accuracy of position and fastest convergence speed have been achieved using WUM products, particularly in the Up direction. Furthermore, the accuracy of static BDS only PPP degrades when the BDS IGSO and MEO satellites switches to orbit-normal orientation

  9. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  10. Constellation Design of Geosynchronous Navigation Satellites Which Maximizes Availability and Accuracy Over a Specified Region of the Earth

    DTIC Science & Technology

    2008-03-01

    Society, Washington DC, 1999. 11. Ferringer, Matthew P. and David B. Spencer . “Satellite Constellation Design Optimization Via Multiple-Objective...5 GA Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . 5 HEO Highly Elliptical Orbit...and their phasing relationship. He analyzed different combinations of GEO, Highly Elliptical Orbit (HEO)1 and Tundra2 orbits to create a global

  11. Analysis of a Possible Future Degradation in the DORIS Geodetic Results Related to Changes in the Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Willis, Pascal

    2006-01-01

    This viewgraph presentation reviews the consequences of losing one or more of the 4 remaining Doppler & Ranging Information System (DORIS) satellites and any impact such a loss might have on geodesy. The goals of this program are to analyze the sensitivity of the current DORIS geodetic results (station position and polar motion) to the size of the DORIS constellation and to verify if some satellites are most important or less important than others. The conclusions of the study are summarized.

  12. Multi-CubeSat Deployment Strategies: How Different Satellite Deployment Schemes Affect Satellite Separation and Detection for Various Types of Constellations and Missions

    DTIC Science & Technology

    2016-03-24

    2009.1 107 of the 158 satellites launched are operated by commercial entities.1 In early 2015, SpaceX and OneWeb each announced their plans to deploy...very large constellations of small satellites ( SpaceX – 4025, OneWeb – 648).1 Each of the OneWeb satellites is planned to weigh around 150 kg,12...while SpaceX expects their satellites to weigh several hundred kilograms each.13 Clearly, the growth in the use of small satellites is causing, and will

  13. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Climate Science Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, CJ. Y.

    2012-01-01

    The "global warming hiatus" since the 1998 El Nino, highlighted by Meehl et al., and the resulting "missing energy" problem highlighted by Trenberth et al., has opened the door to a more fundamental view of climate change than mere surface air temperature. That new view is based on two variables which are strongly correlated: the rate of change of ocean heat content d(OHC)/dt; and Earth Radiation Imbalance (ERI) at the top of the atmosphere, whose guesstimated range is 0.4 to 0.9 Watts per square meters (this imbalance being mainly due to increasing CO2). The Argo float array is making better and better measurements of OHC. But existing satellite systems cannot measure ERI to even one significant digit. So, climate model predictions of ERI are used in place of real measurements of it, and the satellite data are tuned to the climate model predictions. Some oceanographers say "just depend on Argo for understanding the global warming hiatus and the missing energy", but we don't think this is a good idea because d(OHC)/dt and ERI have different time scales and are never perfectly correlated. We think the ERB community needs to step up to measuring ERI correctly, just as oceanographers have deployed Argo to measure OHC correctly. This talk will overview a proposed constellation of 66 Earth radiation budget instruments, hosted on Iridium satellites, that will actually be able to measure ERI to at least one significant digit, thus enabling a crucial test of climate models. This constellation will also be able to provide ERI at two-hourly time scales and 500-km spatial scales without extrapolations from uncalibrated narrowband geostationary instruments, using the highly successful methods of GRACE to obtain spatial resolution. This high time resolution would make ERI a synoptic variable like temperature, and allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes and even brief excursions of Total Solar Irradiance. Time permitting, we

  14. High Volume Pulsed EPC for T/R Modules in Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Notarianni, Michael; Maynadier, Paul; Marin, Marc

    2014-08-01

    In the frame of Iridium Next business, a mobile satellite service, Thales Alenia Space (TAS) has to produce more than 2400 x 65W and 162 x 250W pulsed Electronic Power Conditioners (EPC) to supply the RF transmit/receive modules that compose the active antenna of the satellites.The company has to deal with mass production constraints where cost, volume and performances are crucial factors. Compared to previous constellations realized by TAS, the overall challenge is to make further improvements in a short time:- Predictable electrical models- Deeper design-to-cost approach- Streamlining improvements and test coverageAs the active antenna drives the consumption of the payload, accurate performances have been evaluated early owing to the use of simulation (based on average model) and breadboard tests at the same time.The necessary cost reduction has been done owing to large use of COTS (Components Off The Shelf). In order to secure cost and schedule, each manufacturing step has been optimized to maximize test coverage in order to guarantee high reliability.At this time, more than 200 flight models have already been manufactured, validating this approach.This paper is focused on the 65W EPC but the same activities have been led on the 250W EPC.

  15. Antenna Scan Mechanism for an Inter Satellite Link of a Constellation Program

    NASA Astrophysics Data System (ADS)

    Köker, Ingo; Härtel, Frank

    2015-09-01

    For a constellation program, RF Inter Satellite Links between single satellites can support ranging and communication for uploading mission data or telecommands. These data shall be uploaded from one single ground station to the next reachable satellite and transmitted by the Inter Satellite Link to further dedicated satellites. For this function each satellite has to be equipped with 2 Antenna Scan Mechanisms (ASM) for data transfer in the K-Band.The main challenges for the mechanisms are the high speed position change requirement, low mass requirement and the design to cost approach. Furthermore a small envelope to accommodate the 2- axes antenna scan mechanism was provided. The maximum position change of +/- 180° needs to be reached within 3 seconds. All requirements shall be achieved by relying on the heritage design of our downlink antenna pointing mechanism product.The ASM design approach was based on our 2-axes steerable downlink antenna; however during the definition phase it turned out that some major changes have to be implemented due to mission requirements (high operation speed and long lifetime). Following the design to cost approach most components could be procured from industrial standard but had to be qualified in terms of functionality, performance and life. The following industrial components have been selected: - Bearings procured from an industrial supplier and modified (cage) by a supporting supplier - The selected actuator is a standard stepper motor equipped with redundant windings - The slip ring design was used from a previous project in order to keep the heritage - Suitable rotary joints for the RF link were provided by a small and flexible company However at the very beginning of the project some difficulties with the bearings selection and procurementhave been identified. Since the most suitable standard catalog bearings were not available in time, we were forced to use alternatives. In parallel due to envelope constrains the re

  16. Conjunction Assessment for Commercial Satellite Constellations Using Commercial Radar Data Sources

    NASA Astrophysics Data System (ADS)

    Nicolls, M.; Vittaldev, V.; Ceperley, D.; Creus-Costa, J.; Foster, C.; Griffith, N.; Lu, E.; Mason, J.; Park, I.; Rosner, C.; Stepan, L.

    For companies with multiple orbital assets, managing the risk of collision with other low-Earth orbit (LEO) Resident Space Objects (RSOs) can amount to a significant operational burden. LeoLabs and Planet investigate the impact of a workflow that integrates commercial Space Situational Awareness (SSA) data into conjunction assessments for large satellite constellations. Radar measurements from LeoLabs are validated against truth orbits provided by the International Laser Ranging Service (ILRS) and to measurements from Planet’s on-board GPS instrumentation. The radar data is then used as input for orbit fits in order to form the basis of a conjunction assessment. To confirm the reliability of the orbit determination (OD), the generated ephemerides are validated against ILRS and GPS-derived orbits. In addition, a covariance realism assessment is performed in order to check for self-consistency by comparing the propagated orbit and the associated covariance against later measurements. Several cases are investigated to assess the benefits of integrating radar-derived products with Conjunction Data Messages (CDMs) received on Planet spacecraft. Conjunction assessment is refined using onboard GPS measurements from Planet satellites along with tracking measurements of the secondary RSO by LeoLabs. This study demonstrates that commercial data provided by LeoLabs is reliable, accurate, and timely, and that ephemeris generated from LeoLabs data provides solutions and insights which are consistent with those provided in CDMs. For the cases analyzed, the addition of commercial SSA data from LeoLabs has a positive impact on operations due to the additional information on the state of the secondary RSO which can lead to increased confidence in any maneuver-related decisions. Measurements from LeoLabs can also be used to improve conjunction assessment for commercial satellites that do not have any operator OD.

  17. Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert

    1996-01-01

    The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.

  18. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  19. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  20. Methodology of Evaluating the Science Benefit of Various Satellite/Sensor Constellation Orbital Parameters to an Assimilative Data Forecast Model

    DTIC Science & Technology

    2015-03-02

    and Aurora Spectrograph) inst1uments, and radio 129 occultation data from CHAMP (Challenging Minisatellite Payload), SAC-C (Satellite de 130...Aplicaciones Cientificas-C) [Hajj et al, 2004], IOX (Ionospheric Occultation Experiment) 131 [Straus et al, 2003], and the COSMIC (Constellation Observing...T. K. Meehan, L. 385 J. Romans, M. de la Torre Juarez. and T. P. Yunck (2004), CHAMP and SAC-C atmospheric 386 occultation results and

  1. Synergistic Opportunities for the Geostationary Satellite Constellation: Status of the CEOS Activity

    NASA Astrophysics Data System (ADS)

    Al-Saadi, J. A.; Zehner, C.

    2012-12-01

    This talk will summarize activities of the Committee on Earth Observation Satellites (CEOS) Atmospheric Composition Constellation (ACC) to collaboratively advance the next generation of air quality monitoring from space. Over the past 2 years, CEOS ACC have developed a position paper describing the benefits to be derived from such collaboration. The resulting ACC recommendations were endorsed by CEOS in May 2011. We will discuss next steps toward implementing this vision, starting with a new 3-year CEOS Action in 2012. Several countries and space agencies are currently planning to launch geostationary Earth orbit (GEO) missions in 2017-2022 to obtain atmospheric composition measurements for characterizing anthropogenic and natural distributions of tropospheric ozone, aerosols, and their precursors. These missions include Europe's ESA Sentinel-4 with EUMETSAT IRS, the United States' NASA GEO-CAPE, Korea's ME/MEST/KARI GEMS, and Japan's JAXA GMAP-Asia. GEO observations offer a quantum advance in air quality monitoring from space by providing measurements many times per day. However, a single GEO satellite views only a portion of the globe. These satellites, positioned to view Europe, East Asia, and North America, will collectively provide hourly coverage of the industrialized Northern Hemisphere at similar spatial resolutions. Planned low Earth orbit (LEO) missions will provide complementary daily global observations. Observations from a single LEO satellite will overlap those from each GEO satellite once per day, providing a means for combining the GEO observations and a necessary perspective for interpreting global impacts of smaller scale processes. The EUMETSAT Metop series, NOAA/NASA JPSS series, and ESA Sentinel-5 Precursor and Sentinel-5 missions will each provide such daily overlap with the GEO missions. The Canadian PCW PHEMOS mission will make an additional unique suite of observations. PCW will provide quasi-geostationary coverage over the Arctic that

  2. Constellation Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W. (Compiler)

    1997-01-01

    The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.

  3. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  4. Ranging Consistency Based on Ranging-Compensated Temperature-Sensing Sensor for Inter-Satellite Link of Navigation Constellation

    PubMed Central

    Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin

    2017-01-01

    Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C. PMID:28608809

  5. A-Train Satellite Observations of Recent Explosive Eruptions in Iceland and Chile

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Yang, K.; Prata, A. J.

    2012-04-01

    The past few years have seen remarkable levels of explosive volcanic activity in Iceland and Chile, with four significant eruptions at Chaitén (May 2008), Eyjafjallajökull (April 2010), Grimsvötn (May 2011) and Cordón Caulle (June 2011 - ongoing). The tremendous disruption and economic impact of the Eyjafjallajökull eruption is well known, but each of these events had a significant impact on aviation, sometimes at great distances from the volcano. As of late 2011, volcanic ash from Cordón Caulle was still affecting airports in southern South America, highlighting the potential for extended disruption during long-lived eruptions. Serendipitously, this period of elevated volcanic activity has coincided with an era of unprecedented availability of satellite remote sensing data pertinent to volcanic cloud studies. In particular, NASA's A-Train satellite constellation (including the Aqua, CloudSat, CALIPSO, and Aura satellites) has been flying in formation since 2006, providing synergistic, multi- and hyper-spectral, passive and active observations. Measurements made by A-Train sensors include total column sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric

  6. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  7. Revisiting the collision risk with cataloged objects for the Iridium and COSMO-SkyMed satellite constellations

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2017-05-01

    After two decades of slightly declining growth rate, the population of cataloged objects around the Earth increased by more than 56% in just a couple of years, from January 2007 to February 2009, due to two collisions in space involving the catastrophic destruction of three intact satellites (Fengyun 1C, Cosmos 2251 and Iridium 33) in high inclination orbits. Both events had occurred in the altitude range already most affected by previous launch activity and breakups. In 2011 a detailed analysis had been carried out to analyze the consequences of these fragmentations, in particular concerning the evolution of the collision risk for the Iridium and COSMO-SkyMed satellite constellations. Five years after such first assessment, the cataloged objects environment affecting the two constellations was revisited to evaluate how the situation had evolved due to the varying contribution of the above mentioned breakup fragments and the space activities carried out in the meantime. Being distributed, at 778 km, over six nearly polar orbit planes separated by just 30° at the equator, the Iridium satellites represent a very good gauge for checking the evolution of the environment in the most critical low Earth region. In approximately five years, from May 2011 to June 2016, the average flux of cataloged objects on the Iridium satellites increased by about 14%, to 1.59×10-5 m-2 per year. The cataloged fragments of Fengyun 1C, Cosmos 2251 and Iridium 33 still accounted for, on average, 54% of the total flux. More than 39% of the latter was associated with the Fengyun 1C fragments, about 11% with the Cosmos 2251 fragments and less than 4% with the Iridium 33 fragments. Specifically concerning the mutual interaction among the Iridium 33 debris and the parent constellation, the progressive dispersion and rather fast decay of the fragments below the Iridium operational altitude, coupled with a slow differential plane precession and low average relative velocities with respect to

  8. Data Analysis of GPM Constellation Satellites-IMERG and ERA-Interim precipitation products over West of Iran

    NASA Astrophysics Data System (ADS)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2016-04-01

    Precipitation is a critical component of the Earth's hydrological cycle. The primary requirement in precipitation measurement is to know where and how much precipitation is falling at any given time. Especially in data sparse regions with insufficient radar coverage, satellite information can provide a spatial and temporal context. Nonetheless, evaluation of satellite precipitation is essential prior to operational use. This is why many previous studies are devoted to the validation of satellite estimation. Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards. In situ observations over mountainous areas are mostly limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. One of the newest and blended methods that use multi-satellites and multi-sensors has been developed for estimating global precipitation. The considered data set known as Integrated Multi-satellitE Retrievals (IMERG) for GPM (Global Precipitation Measurement) is routinely produced by the GPM constellation satellites. Moreover, recent efforts have been put into the improvement of the precipitation products derived from reanalysis systems, which has led to significant progress. One of the best and a worldwide used model is developed by the European Centre for Medium Range Weather Forecasts (ECMWF). They have produced global reanalysis daily precipitation, known as ERA-Interim. This study has evaluated one year of precipitation data from the GPM-IMERG and ERA-Interim reanalysis daily time series over West of Iran. IMERG and ERA-Interim yield underestimate the observed values while IMERG underestimated slightly and performed better when precipitation is greater than 10mm. Furthermore, with respect to evaluation of probability of detection (POD), threat score (TS), false alarm ratio (FAR) and probability

  9. A miniature, low-power scientific fluxgate magnetometer: A stepping-stone to cube-satellite constellation missions

    NASA Astrophysics Data System (ADS)

    Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.

    2016-12-01

    Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.

  10. A Phase-Based Approach to Satellite Constellation Analysis and Design

    DTIC Science & Technology

    1991-01-01

    and 4p is a phase angle representing true anomaly, as measured from the line of nodes. For a spherical earth, the orbital parameters are related...Var Outdat : Arrayll..2,1..90] of Real; J Output data for cost versus optimization parameter I F : text; { Output file Y, DY : Vec2; Y is a point on...InitGraph(Gd, Gm,’graph’); Assign(f,’c:\\matlab\\ OutDat ’); Rewrite (f); 129 7 o / With Common do with Target do With LoopParm do With Constellation do

  11. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter <2.5 μm) and 1.18 × 1011kg of CO globally (excluding most parts of boreal Asia, the Middle East, and India because of no coverage from geostationary satellites). The biomass burning emissions were mostly released from forest and savanna fires in Africa, South America, and North America. Evaluation of

  12. Horologium II: A Second Ultra-faint Milky Way Satellite in the Horologium Constellation

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut

    2015-08-01

    We report the discovery of a new ultra-faint Milky Way satellite candidate, Horologium II (Hor II), detected in the Dark Energy Survey Y1A1 public data. Hor II features a half-light radius of {r}{{h}}=47+/- 10 pc and a total luminosity of {M}V=-{2.6}-0.3+0.2 that place it in the realm of ultra-faint dwarf galaxies on the size-luminosity plane. The stellar population of the new satellite is consistent with an old (˜13.5 Gyr) and metal-poor ([Fe/H] ˜ -2.1) isochrone at a distance modulus of (m-M)=19.46+/- 0.20, or a heliocentric distance of 78 ± 8 kpc, in the color-magnitude diagram. Hor II has a distance similar to the Sculptor dwarf spheroidal galaxy (˜82 kpc) and the recently reported ultra-faint satellites Eridanus III (87 ± 8 kpc) and Horologium I (79 ± 8 kpc). All four satellites are well aligned on the sky, which suggests a possible common origin. As Sculptor is moving on a retrograde orbit within the Vast Polar Structure when compared to the other classical MW satellite galaxies including the Magellanic Clouds, this hypothesis can be tested once proper motion measurements become available.

  13. Simple, Accurate, Low-cost RO Science with the Iridium-NEXT Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Meehan, T.; Mannucci, A. J.

    2011-12-01

    Over the last decade, a disparate collection of GNSS-RO instruments have been measuring the refractivity of the Earth's ionosphere and atmosphere. These measurements have proven to be robust and precise data sets for operational weather, climate and geospace sciences. Future GNSS-RO weather and science will most benefit from a large number of profiles (10000+/day), with lower latency and greater accuracy in the lowest 5 km altitude. For weather, latencies below 90 minutes are required, 30 minutes desired. Space weather latency requirements are more stringent, with 15 minutes being a long sought goal. Climate studies benefit from averaging measurements uniformly distributed over the Earth, acquired over decades, with local time sampling errors minimized by dense coverage or well designed orbits. There's much more of course, because space GNSS science is still nascent but with gathering momentum among the international community. Although individual GNSS-RO instruments are relatively cheap as space hardware goes, growing the measurement density can be costly when a dozen or more are required for a single program. In this presentation, we propose a novel technique for greatly reducing the cost of a constellation of GNSS-RO instruments and discuss the science trade-offs of this approach versus the more traditional GNSS-RO designs.

  14. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS

    SciTech Connect

    Torrealba, G.; Belokurov, V.; Koposov, S. E.

    Here, we report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS). Situated 18more » $$^{\\circ}$$ ($$\\sim 20$$ kpc) from the LMC and separated from each other by only $$18^\\prime$$, Carina~II and III form an intriguing pair. By simultaneously modeling the spatial and the color-magnitude stellar distributions, we find that both Carina~II and Carina~III are likely dwarf galaxies, although this is less clear for Carina~III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina~II is located at $$\\sim 36$$ kpc from the Sun, with $$M_V\\sim-4.5$$ and $$r_h\\sim 90$$ pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina~III is much more elongated, measured to be fainter ($$M_V\\sim-2.4$$), significantly more compact ($$r_h\\sim30$$ pc), and closer to the Sun, at $$\\sim 28$$ kpc, placing it only 8 kpc away from Car~II. Together with several other systems detected by the Dark Energy Camera, Carina~II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.« less

  15. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS

    DOE PAGES

    Torrealba, G.; Belokurov, V.; Koposov, S. E.; ...

    2018-01-23

    Here, we report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS). Situated 18more » $$^{\\circ}$$ ($$\\sim 20$$ kpc) from the LMC and separated from each other by only $$18^\\prime$$, Carina~II and III form an intriguing pair. By simultaneously modeling the spatial and the color-magnitude stellar distributions, we find that both Carina~II and Carina~III are likely dwarf galaxies, although this is less clear for Carina~III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina~II is located at $$\\sim 36$$ kpc from the Sun, with $$M_V\\sim-4.5$$ and $$r_h\\sim 90$$ pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina~III is much more elongated, measured to be fainter ($$M_V\\sim-2.4$$), significantly more compact ($$r_h\\sim30$$ pc), and closer to the Sun, at $$\\sim 28$$ kpc, placing it only 8 kpc away from Car~II. Together with several other systems detected by the Dark Energy Camera, Carina~II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.« less

  16. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS

    NASA Astrophysics Data System (ADS)

    Torrealba, G.; Belokurov, V.; Koposov, S. E.; Bechtol, K.; Drlica-Wagner, A.; Olsen, K. A. G.; Vivas, A. K.; Yanny, B.; Jethwa, P.; Walker, A. R.; Li, T. S.; Allam, S.; Conn, B. C.; Gallart, C.; Gruendl, R. A.; James, D. J.; Johnson, M. D.; Kuehn, K.; Kuropatkin, N.; Martin, N. F.; Martinez-Delgado, D.; Nidever, D. L.; Noël, N. E. D.; Simon, J. D.; Stringfellow, G. S.; Tucker, D. L.

    2018-04-01

    We report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS ). Situated 18 deg (˜20 kpc) from the LMC and separated from each other by only 18 arcmin, Carina II and III form an intriguing pair. By simultaneously modelling the spatial and the colour-magnitude stellar distributions, we find that both Carina II and Carina III are likely dwarf galaxies, although this is less clear for Carina III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina II is located at ˜36 kpc from the Sun, with MV ˜ -4.5 and rh ˜ 90 pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina III is much more elongated, measured to be fainter (MV ˜ -2.4), significantly more compact (rh ˜ 30 pc), and closer to the Sun, at ˜28 kpc, placing it only 8 kpc away from Car II. Together with several other systems detected by the Dark Energy Camera, Carina II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.

  17. An architecture and protocol for communications satellite constellations regarded as multi-agent systems

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1995-01-01

    This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.

  18. Fluxgate Magnetometry on the Experimental Albertan Satellite #1 (Ex-Alta-1) CubeSat Mission: Steps Toward a Magnetospheric Constellation Mission

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.

    2017-12-01

    Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.

  19. Invited Talk: Photometry of Bright Variable Stars with the BRITE Constellation Nano-Satellites: Opportunities for Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2014-06-01

    (Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv < 4 mag.) variable stars. BRITE consists of a "Constellation" of 20 × 20 × 20-cm nano-satellite cubes equipped with wide field (20 × 24 deg.) CCD cameras, control systems, solar panels, onboard computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations

  20. A Terrestrial Reference Frame realised on the observation level using a GPS-LEO satellite constellation

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel

    2018-02-01

    Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level

  1. Research on navigation of satellite constellation based on an asynchronous observation model using X-ray pulsar

    NASA Astrophysics Data System (ADS)

    Guo, Pengbin; Sun, Jian; Hu, Shuling; Xue, Ju

    2018-02-01

    Pulsar navigation is a promising navigation method for high-altitude orbit space tasks or deep space exploration. At present, an important reason for restricting the development of pulsar navigation is that navigation accuracy is not high due to the slow update of the measurements. In order to improve the accuracy of pulsar navigation, an asynchronous observation model which can improve the update rate of the measurements is proposed on the basis of satellite constellation which has a broad space for development because of its visibility and reliability. The simulation results show that the asynchronous observation model improves the positioning accuracy by 31.48% and velocity accuracy by 24.75% than that of the synchronous observation model. With the new Doppler effects compensation method in the asynchronous observation model proposed in this paper, the positioning accuracy is improved by 32.27%, and the velocity accuracy is improved by 34.07% than that of the traditional method. The simulation results show that without considering the clock error will result in a filtering divergence.

  2. Avionics of the Cyclone Global Navigation Satellite System (CYGNSS) microsat constellation

    NASA Astrophysics Data System (ADS)

    Dickinson, John R.; Alvarez, Jennifer L.; Rose, Randall J.; Ruf, Christopher S.; Walls, Buddy J.

    The Cyclone Global Navigation Satellite System (CYGNSS), which was recently selected as the Earth Venture-2 investigation by NASA's Earth Science System Pathfinder (ESSP) Program, measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a tropical cyclone (TC). The CYGNSS flight segment consists of 8 microsatellite-class observatories, which represent SwRI's first spacecraft bus design, installed on a Deployment Module for launch. They are identical in design but provide their own individual contribution to the CYGNSS science data set. Subsystems include the Attitude Determination and Control System (ADCS), the Communication and Data Subsystem (CDS), the Electrical Power Supply (EPS), and the Structure, Mechanisms, and Thermal Subsystem (SMT). This paper will present an overview of the mission and the avionics, including the ADCS, CDS, and EPS, in detail. Specifically, we will detail how off-the-shelf components can be utilized to do ADCS and will highlight how SwRI's existing avionics solutions will be adapted to meet the requirements and cost constraints of microsat applications. Avionics electronics provided by SwRI include a command and data handling computer, a transceiver radio, a low voltage power supply (LVPS), and a peak power tracker (PPT).

  3. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of northern hemisphere geostationary satellites: Global scale assimilation experiments (Part II)

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey

    2016-09-01

    This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.

  4. On the Feasibility of Monitoring Carbon Monoxide in the Lower Troposphere from a Constellation of Northern Hemisphere Geostationary Satellites: Global Scale Assimilation Experiments (Part II)

    NASA Technical Reports Server (NTRS)

    Barre, Jerome; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey

    2016-01-01

    This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known 'true' state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.

  5. The Geostationary Lightning Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; hide

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via

  6. Sensor Webs to Constellations

    NASA Astrophysics Data System (ADS)

    Cole, M.

    2017-12-01

    Advanced technology plays a key role in enabling future Earth-observing missions needed for global monitoring and climate research. Rapid progress over the past decade and anticipated for the coming decades have diminished the size of some satellites while increasing the amount of data and required pace of integration and analysis. Sensor web developments provide correlations to constellations of smallsats. Reviewing current advances in sensor webs and requirements for constellations will improve planning, operations, and data management for future architectures of multiple satellites with a common mission goal.

  7. The NASA Cyclone Global Navigation Satellite System (CYGNSS): A Constellation of Bi-static Ocean Scatterometer Microsatellites to Probe the Inner Core of Hurricanes

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.

    2014-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.

  8. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of Northern Hemisphere geostationary satellites. (Part 1)

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William

    2015-07-01

    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the ;instrument simulator; step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements. We describe the OSSE results in a follow up

  9. On the Feasibility of Monitoring Carbon Monoxide in the Lower Troposphere from a Constellation of Northern Hemisphere Geostationary Satellites (PART 1)

    NASA Technical Reports Server (NTRS)

    Barre, Jerome; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William

    2015-01-01

    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the "instrument simulator" step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements.

  10. Tethered constellations

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1986-01-01

    The studies that have been carried out on Tethered Constellations are briefly addressed. A definition of a tethered constellation is any number of masses/platforms greater that two connected by tethers in a stable configuration. Configurations and stability constraints are reviewed. Conclusions reached are: (1) The 1-D, horizontal, passively stabilized constellations have been ruled out; (2) Fishbone constellations have been also ruled out; (3) Alternative stable 2-D configurations have been devised such as the quadrangular configuration stabilized by electrodynamic forces (ESC), the quadrangular configuration stabilized by differential air drag (DSC), and the pseudo elliptical configuration stabilized by electrodynamic forces (PEC). Typical dimensions for these constellations are 10 km (horizontal) by 20 km (vertical) with balloon diameters around 100 m in the case of a DSC and a power consumption around 7 KW for an ESC or PEC.

  11. Remote Sensing of Precipitation from 6U-Class Small Satellite Constellations: Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D)

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Gaier, T.; Kummerow, C. D.; Chandra, C. V.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Berg, W. K.; Olson, J. P.; Brown, S. T.; Carvo, J.; Pallas, M.

    2016-12-01

    The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class nanosatellites observing at 5 millimeter-wave frequencies with 5-minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. The TEMPEST concept is designed to improve the understanding of cloud processes, by providing critical information on the time evolution of cloud and precipitation microphysics and helping to constrain one of the largest sources of uncertainty in climate models. TEMPEST millimeter-wave radiometers are able to make observations in the cloud to observe changes as the cloud begins to precipitate or ice accumulates inside the storm. Such a constellation deployed near 400 km altitude and 50°-65° inclination is expected to capture more than 3 million observations of precipitation during a one-year mission, including over 100,000 deep convective events. The TEMPEST Technology Demonstration (TEMPEST-D) mission will be deployed to raise the TRL of the instrument and key satellite systems as well as to demonstrate measurement capabilities required for a constellation of 6U-Class nanosatellites to directly observe the temporal development of clouds and study the conditions that control their transition from non-precipitating to precipitating clouds. A partnership among Colorado State University (Lead Institution), NASA/Caltech Jet Propulsion Laboratory and Blue Canyon Technologies, TEMPEST-D will provide observations at five millimeter-wave frequencies from 89 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture. The top-level requirements for the 90-day TEMPEST-D mission are to: (1) demonstrate precision inter-satellite calibration between TEMPEST-D and one other orbiting radiometer (e.g. GPM or MHS) measuring at similar frequencies; and (2) demonstrate orbital drag maneuvers to control altitude, as verified by GPS, sufficient to

  12. Top-of-the-atmosphere shortwave flux estimation from UV observations: An empirical approach using A-Train Satellite data

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.

    2012-12-01

    Measurements of top of the atmosphere (TOA) radiation are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in the orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long-wave and short-wave region of electromagnetic spectrum, and the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths. Top of the atmosphere SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). OMI measurements have been successfully utilized to derive the information on trace gases (e.g., O3, NO2, and SO2), clouds, and absorbing aerosols. In this paper, OMI retrievals of cloud/aerosol parameters and O3 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. These input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column O3, and sun-satellite viewing geometry from OMI as well as wind speed and total column water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content from SeaWiFs satellite. We

  13. CarbonSat Constellation

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Tobehn, Carsten; Ernst, Robert; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Notholt, John

    1 Carbon dioxide (CO2) and methane (CH4) are the most important manmade greenhouse gases (GHGs) which are driving global climate change. Currently, the CO2 measurements from the ground observing network are still the main sources of information but due to the limited number of measurement stations the coverage is limited. In addition, CO2 monitoring and trading is often based mainly on bottom-up calculations and an independent top down verification is limited due to the lack of global measurement data with local resolution. The first CO2 and CH4 mapping from SCIAMACHY on ENVISAT shows that satellites add important missing global information. Current GHG measurement satellites (GOSAT)are limited either in spatial or temporal resolution and coverage. These systems have to collect data over a year or even longer to produce global regional fluxes products. Conse-quently global, timely, higher spatial resolution and high accuracy measurement are required for: 1. A good understanding of the CO2 and CH4 sources and sinks for reliable climate predic-tion; and 2. Independent and transparent verification of accountable sources and sinks in supporting Kyoto and upcoming protocols The CarbonSat constellation idea comes out the trade off of resolution and swath width during CarbonSat mission definition studies. In response to the urgent need to support the Kyoto and upcoming protocols, a feasibility study has been carried out. The proposed solution is a constellation of five CarbonSat satellites in 614km LTAN 13:00, which is able to provide global, daily CO2 and CH4 measurement everywhere on the Earth with high spatial resolution 2 × 2 km and low uncertainty lt;2ppm (CO2) and lt;8ppb (CH4). The unique global daily measurement capability significantly increases the number of cloud free measurements, which enables more reliable services associated with reduced uncertainty, e.g. to 0.15ppm (CO2) per month in 10km and even more timely products. The CarbonSat Constellation in

  14. Crater Constellation

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Cup; abbrev. Crt, gen. Crateris; area 282 sq. deg.) A southern constellation which lies to the south-west of Virgo, and culminates at midnight in mid-March. It represents the cup of the god Apollo in Greek mythology (see Corvus). Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  15. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    NASA Technical Reports Server (NTRS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  16. Rapid Transpacific Transport in Autumn Observed by the A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Li. Can; Hsu, N. Christina; Krotkov, Nickolay A.; Liang, Qing; Yang, Kai; Tsay, Si-Chee

    2011-01-01

    Transpacific transport of dust and pollutants is well documented for spring, but less so for other seasons. Here we investigate rapid transpacific transport in autumn utilizing the A-train satellites. In three episodes studied as examples, SO2 plumes over East Asia were detected by the Ozone Monitoring Instrument aboard the Aura satellite, and found to reach North America in 5-6 days. They were likely derived from anthropogenic sources, given that identical transport patterns of CO, a tracer for incomplete combustion, were simultaneously observed by the Aqua satellite. Trajectory analysis and meteorological data were employed to explore the meteorological circumstances surrounding these events: like many of their counterparts in spring, all three plumes were lifted to the free troposphere in warm conveyor belt associated with mid-latitude wave cyclones, and their migration to downwind region was regulated by the meteorology over the East Pacific. These cases provide further evidence that a fraction of S02 could escape wet scavenging, and be transported at much greater efficiency than NOx (NO + N02). An analysis of the S02 and CO data from September to November during 2005-2008 found 16 S02 long-range transport episodes, out of 62 Asian outflow events. While the counts are sensitive to the choice of criteria, they suggest that the long-range transport of Asian sulfur species occurs quite frequently, and could exert strong impacts on large downstream areas. This study also highlights the importance of transpacific transport in autumn, which has thus far been rarely studied and deserves more attention from the community.

  17. WorldView-2 and the evolution of the DigitalGlobe remote sensing satellite constellation: introductory paper for the special session on WorldView-2

    NASA Astrophysics Data System (ADS)

    Anderson, Neal T.; Marchisio, Giovanni B.

    2012-06-01

    Over the last decade DigitalGlobe (DG) has built and launched a series of remote sensing satellites with steadily increasing capabilities: QuickBird, WorldView-1 (WV-1), and WorldView-2 (WV-2). Today, this constellation acquires over 2.5 million km2 of imagery on a daily basis. This paper presents the configuration and performance capabilities of each of these satellites, with emphasis on the unique spatial and spectral capabilities of WV-2. WV-2 employs high-precision star tracker and inertial measurement units to achieve a geolocation accuracy of 5 m Circular Error, 90% confidence (CE90). The native resolution of WV-2 is 0.5 m GSD in the panchromatic band and 2 m GSD in 8 multispectral bands. Four of the multispectral bands match those of the Landsat series of satellites; four new bands enable novel and expanded applications. We are rapidly establishing and refreshing a global database of very high resolution (VHR) 8-band multispectral imagery. Control moment gyroscopes (CMGs) on both WV-1 and WV-2 improve collection capacity and provide the agility to capture multi-angle sequences in rapid succession. These capabilities result in a rich combination of image features that can be exploited to develop enhanced monitoring solutions. Algorithms for interpretation and analysis can leverage: 1) broader and more continuous spectral coverage at 2 m resolution; 2) textural and morphological information from the 0.5 m panchromatic band; 3) ancillary information from stereo and multi-angle collects, including high precision digital elevation models; 4) frequent revisits and time-series collects; and 5) the global reference image archives. We introduce the topic of creative fusion of image attributes, as this provides a unifying theme for many of the papers in this WV-2 Special Session.

  18. A Small Revolution in Space: An Analysis of the Challenges to US Military Adoption of Small Satellite Constellations

    DTIC Science & Technology

    2017-06-01

    IDd Descriptione Technical Analysisf Bridges 6 4.5 1.5 1 0.3 Communications Radar 3 1 0.3 0.15 0.015 Radio 3 1.5 0.3 0.15 0.015 Troop Units (in... communications . 11 This percentage was achieved despite demand exceeding supply in both bandwidth and 9 David N...Military Satellite Communications .” 11 Air Force Space Command, Desert Storm Hot Wash “AFSPACECOM Desert Shield/Desert Storm Lessons Learned,” (12

  19. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    participating space agencies. These include 1) Time of day changes in NO2 using Aura/OMI and Metop/GOME-2. 2) Near-real-time fire detection and smoke forecasts using multiple satellites (A-Train, GOES, GOME-2, MSG, etc) and trajectory model, and 3) Improved volcanic ash alerts for aviation hazard avoidance from satellite SO2 and ash data from SCIAMACHY, OMI, GOME-2, AIRS and SEVIRI. Each of the three projects will address the GEO SBAs with consideration to discovery and interoperability of their data products. The status of the ACC studies will be reviewed with a progress report on the above three projects.

  20. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  1. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    SciTech Connect

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  2. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE PAGES

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...

    2017-04-26

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  3. Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-faint Satellites in the Constellation Carina

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Simon, J. D.; Pace, A. B.; Torrealba, G.; Kuehn, K.; Drlica-Wagner, A.; Bechtol, K.; Vivas, A. K.; van der Marel, R. P.; Wood, M.; Yanny, B.; Belokurov, V.; Jethwa, P.; Zucker, D. B.; Lewis, G.; Kron, R.; Nidever, D. L.; Sánchez-Conde, M. A.; Ji, A. P.; Conn, B. C.; James, D. J.; Martin, N. F.; Martinez-Delgado, D.; Noël, N. E. D.; MagLiteS Collaboration

    2018-04-01

    We present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocity {v}hel}=477.2+/- 1.2 {km} {{{s}}}-1 and a velocity dispersion of {σ }v={3.4}-0.8+1.2 {km} {{{s}}}-1. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of {1.0}-0.4+0.8× {10}6 {M}ȯ , indicating a mass-to-light ratio of {369}-161+309 {M}ȯ /{L}ȯ . From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of {{[Fe/H]}}=-2.44+/- 0.09 with dispersion {σ }{{[Fe/H]}}={0.22}-0.07+0.10. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of {v}hel}={284.6}-3.1+3.4 {km} {{{s}}}-1. The brightest RGB member of Car III has a metallicity of {{[Fe/H]}} =-1.97+/- 0.12. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ({{Δ }}d∼ 10 {kpc}) among Local Group satellites, the large difference in their systemic velocities, ∼ 200 {km} {{{s}}}-1, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of γ-ray emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.

  4. Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-faint Satellites in the Constellation Carina

    DOE PAGES

    Li, T. S.; Simon, J. D.; Pace, A. B.; ...

    2018-04-25

    Here, we present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocitymore » $${v}_{\\mathrm{hel}}=477.2\\pm 1.2$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $${\\sigma }_{v}={3.4}_{-0.8}^{+1.2}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $${1.0}_{-0.4}^{+0.8}\\times {10}^{6}$$ $${M}_{\\odot }$$, indicating a mass-to-light ratio of $${369}_{-161}^{+309}$$ $${M}_{\\odot }$$/$${L}_{\\odot }$$. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of $${\\rm{[Fe/H]}}=-2.44\\pm 0.09$$ with dispersion $${\\sigma }_{{\\rm{[Fe/H]}}}={0.22}_{-0.07}^{+0.10}$$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of $${v}_{\\mathrm{hel}}={284.6}_{-3.1}^{+3.4}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The brightest RGB member of Car III has a metallicity of $${\\rm{[Fe/H]}}\\,=-1.97\\pm 0.12$$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($${\\rm{\\Delta }}d\\sim 10\\,\\mathrm{kpc}$$) among Local Group satellites, the large difference in their systemic velocities, $$\\sim 200\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud

  5. Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-faint Satellites in the Constellation Carina

    SciTech Connect

    Li, T. S.; Simon, J. D.; Pace, A. B.

    Here, we present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocitymore » $${v}_{\\mathrm{hel}}=477.2\\pm 1.2$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $${\\sigma }_{v}={3.4}_{-0.8}^{+1.2}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $${1.0}_{-0.4}^{+0.8}\\times {10}^{6}$$ $${M}_{\\odot }$$, indicating a mass-to-light ratio of $${369}_{-161}^{+309}$$ $${M}_{\\odot }$$/$${L}_{\\odot }$$. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of $${\\rm{[Fe/H]}}=-2.44\\pm 0.09$$ with dispersion $${\\sigma }_{{\\rm{[Fe/H]}}}={0.22}_{-0.07}^{+0.10}$$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of $${v}_{\\mathrm{hel}}={284.6}_{-3.1}^{+3.4}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The brightest RGB member of Car III has a metallicity of $${\\rm{[Fe/H]}}\\,=-1.97\\pm 0.12$$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($${\\rm{\\Delta }}d\\sim 10\\,\\mathrm{kpc}$$) among Local Group satellites, the large difference in their systemic velocities, $$\\sim 200\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud

  6. [Application of small remote sensing satellite constellations for environmental hazards in wetland landscape mapping: taking Liaohe Delta, Liaoning Province of Northeast China as a case].

    PubMed

    Yang, Yuan-Zheng; Chang, Yu; Hu, Yuan-Man; Liu, Miao; Li, Yue-Hui

    2011-06-01

    To timely and accurately acquire the spatial distribution pattern of wetlands is of significance for the dynamic monitoring, conservation, and sustainable utilization of wetlands. The small remote sensing satellite constellations A/B stars (HJ-1A/1B stars) for environmental hazards were launched by China for monitoring terrestrial resources, which could provide a new data source of remote sensing image acquisition for retrieving wetland types. Taking Liaohe Delta as a case, this paper compared the accuracy of wetland classification map and the area of each wetland type retrieved from CCD data (HJ CCD data) and TM5 data, and validated and explored the applicability and the applied potential of HJ CCD data in wetland resources dynamic monitoring. The results showed that HJ CCD data could completely replace Landsat TM5 data in feature extraction and remote sensing classification. In real-time monitoring, due to its 2 days of data acquisition cycle, HJ CCD data had the priority to Landsat TM5 data (16 days of data acquisition cycle).

  7. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    NASA Technical Reports Server (NTRS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  8. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  9. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  10. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    NASA Technical Reports Server (NTRS)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  11. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  12. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design

  13. Invitation to a forum: architecting operational `next generation' earth monitoring satellites based on best modeling, existing sensor capabilities, with constellation efficiencies to secure trusted datasets for the next 20 years

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Bell, Raymond M.; Grant, David A.; Lentz, Christopher A.

    2012-09-01

    Architecting the operational Next Generation of earth monitoring satellites based on matured climate modeling, reuse of existing sensor & satellite capabilities, attention to affordability and evolutionary improvements integrated with constellation efficiencies - becomes our collective goal for an open architectural design forum. Understanding the earth's climate and collecting requisite signatures over the next 30 years is a shared mandate by many of the world's governments. But there remains a daunting challenge to bridge scientific missions to 'operational' systems that truly support the demands of decision makers, scientific investigators and global users' requirements for trusted data. In this paper we will suggest an architectural structure that takes advantage of current earth modeling examples including cross-model verification and a first order set of critical climate parameters and metrics; that in turn, are matched up with existing space borne collection capabilities and sensors. The tools used and the frameworks offered are designed to allow collaborative overlays by other stakeholders nominating different critical parameters and their own treaded connections to existing international collection experience. These aggregate design suggestions will be held up to group review and prioritized as potential constellation solutions including incremental and spiral developments - including cost benefits and organizational opportunities. This Part IV effort is focused on being an inclusive 'Next Gen Constellation' design discussion and is the natural extension to earlier papers.

  14. Constellation Operations: Lessons Learned For Future Exploration

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Case, Warren F.

    2006-01-01

    The Earth science community has long advocated placing numerous instruments in space to study the Earth and its environment. Space agencies from many countries have responded to this call with a wide range of orbiting satellites. Scientists also envisioned placing some satellites in constellations, to enable diverse remote sensing instruments to observe the same part of the Earth (or its atmosphere) at about the same time, thereby increasing the opportunities for coincident science observations. The Earth Science Afternoon Constellation is answering this call, but there have been unique challenges on the way to its deployment. Currently, the Afternoon Constellation is to comprise six satellites. Three are currently on orbit: NASA's Earth Observing System (EOS)-Aqua (2002) and EOS-Aura (2004), and CNES's Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) (2004). Two more satellites, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Cloudsat, are to be jointly launched in late 2005, followed by the Orbiting Carbon Observatory (OCO) in 2008. The Afternoon Constellation is unlike most satellite constellations in that: 1) It is not a homogenous mix of identical satellites; rather it comprises several satellites with complementary observational capabilities; 2) The satellites are not spaced around the Earth to provide instantaneous, global coverage (as for a communications satellite constellation); rather they orbit in close proximity so observations occur at about the same time over approximately the same region; and 3) Lastly, the satellites are not managed and controlled by one organization; rather the list of organizations is diverse: CNES in France, NASA Centers at Goddard, Langley, and the Jet Propulsion Laboratory, and the US Air Force facility in New Mexico. The PARASOL launch and early orbit (L&EO) phase proved to be a learning experience for constellation members

  15. Global Coverage from Ad-Hoc Constellations in Rideshare Orbits

    NASA Technical Reports Server (NTRS)

    Ellis, Armin; Mercury, Michael; Brown, Shannon

    2012-01-01

    A promising area of small satellite development is in providing higher temporal resolution than larger satellites. Traditional constellations have required specific orbits and dedicated launch vehicles. In this paper we discuss an alternative architecture in which the individual elements of the constellation are launched as rideshare opportunities. We compare the coverage of such an ad-hoc constellation with more traditional constellations. Coverage analysis is based on actual historical data from rideshare opportunities. Our analysis includes ground coverage and temporal revisits for Polar, Tropics, Temperate, and Global regions, comparing ad-hoc and Walker constellation.

  16. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation

    NASA Astrophysics Data System (ADS)

    Radtke, Jonas; Kebschull, Christopher; Stoll, Enrico

    2017-02-01

    Recently, several announcements have been published to deploy satellite constellations into Low Earth Orbit (LEO) containing several hundred to thousands of rather small sized objects. The purpose of these constellations is to provide a worldwide internet coverage, even to the remotest areas. Examples of these mega-constellations are one from SpaceX, which is announced to comprise of about 4000 satellites, the Norwegian STEAM network, which is told to contain 4257 satellites, and the OneWeb constellation, which forms one of the smaller constellations with 720 satellites. As example constellation, OneWeb has been chosen. From all announced constellation, OneWeb by far delivered most information, both in regards to constellation design and their plans to encounter space debris issues, which is the reason why it has been chosen for these analyses. In this paper, at first an overview of the planned OneWeb constellation setup is given. From this description, a mission life-cycle is deduced, splitting the complete orbital lifetime of the satellites into four phases. Following, using ESA-MASTER, for each of the mission phases the flux on both single constellations satellites and the complete constellation are performed and the collision probabilities are derived. The focus in this analysis is set on catastrophic collisions. This analysis is then varied parametrically for different operational altitudes of the constellation as well as different lifetimes with different assumptions for the success of post mission disposal (PMD). Following the to-be-expected mean number of collision avoidance manoeuvres during all active mission phases is performed using ARES from ESA's DRAMA tool suite. The same variations as during the flux analysis are considered. Lastly the characteristics of hypothetical OneWeb satellite fragmentation clouds, calculated using the NASA Breakup model, are described and the impact of collision clouds from OneWeb satellites on the constellation itself is

  17. A-Train Data Depot - Bringing Atmospheric Measurements Together

    NASA Technical Reports Server (NTRS)

    Savtchenko, Andrey; Kummerer, Robert; Smith, Peter; Gopalan, Arun; Kempler, Steven; Leptoukh, Gregory

    2007-01-01

    This paper describes the satellite data processing and services that constitute current functionalities of the A-Train Data Depot. We first provide a brief introduction to the original geometrical intricacies of the platforms and instruments of the A-Train constellation, and then proceed with description of our ATrain collocation processing algorithm that provides subsets that facilitate synergistic use of the various instruments. Finally, we present some sample image products from our web-based Giovanni tool which allows users to display, compare and download coregistered A-Train related data.

  18. The 2-D lattice theory of Flower Constellations

    NASA Astrophysics Data System (ADS)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  19. The CEOS constellation for land surface imaging

    USGS Publications Warehouse

    Bailey, G.B.; Berger, Marsha; Jeanjean, H.; Gallo, K.P.

    2007-01-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  20. The Earth Science Afternoon Constellation: Preparing for Autonomous but Coordinated Operations

    NASA Technical Reports Server (NTRS)

    Case, Warren; Kelly, Angelita C.; Work, Kevin; Guit, William

    2005-01-01

    This paper describes how the challenges of coordinating the autonomous operations of geographically dispersed mission control centers for several small and large satellites are being overcome. The Earth Science Afternoon Constellation, also referred to as the "A-Train", is an international grouping of five NASA satellites (two major NASA EOS missions and three NASA/Earth System Science Pathfinder missions) and one French satellite orbiting in close proximity. This grouping of satellites provides scientists with the opportunity to perform coincident observations using data from two or more instruments on various satellites with measurements taken at approximately the same time. Three of the six missions are currently on-orbit, with the two missions expected to join the constellation later this year and one mission in 2007. The operational challenges are daunting for several reasons. There are several Mission Control Centers (widely separated on two continents), operating autonomously under tight budget constraints. All of the Mission Control Centers have reasons to be concerned about safety while flying in close proximity to other satellites, but most Centers did not have the resources or the desire to address this concern alone - the interfaces are too numerous and anticipated operations too costly. Clearly, an efficient approach was needed. This paper describes the steps taken to make this Earth science constellation a reality. Agreements were forged to allow the Mission Control Centers to maintain their autonomy, while ensuring their satellite's safety. Each member mission in the constellation operates independently in accordance with its own mission requirements, but the member missions have agreed to coordinate their operations, i.e., orbital positions and control to ensure the safety of the entire constellation. A centralized system was developed at NASA Goddard Space Flight Center to collect, analyze, and distribute ephemeris data used by each of the mission

  1. Marine boundary layer structure as observed by A-train satellites

    DOE PAGES

    Luo, Tao; Wang, Zhien; Zhang, Damao; ...

    2016-05-13

    The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  2. Verification of NWP Cloud Properties using A-Train Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Weeks, C.; Wolff, C.; Bullock, R.; Brown, B.

    2011-12-01

    Recently, the NCAR Model Evaluation Tools (MET) has been enhanced to incorporate satellite observations for the verification of Numerical Weather Prediction (NWP) cloud products. We have developed tools that match fields spatially (both in the vertical and horizontal dimensions) to compare NWP products with satellite observations. These matched fields provide diagnostic evaluation of cloud macro attributes such as vertical distribution of clouds, cloud top height, and the spatial and seasonal distribution of cloud fields. For this research study, we have focused on using CloudSat, CALIPSO, and MODIS observations to evaluate cloud fields for a variety of NWP fields and derived products. We have selected cases ranging from large, mid-latitude synoptic systems to well-organized tropical cyclones. For each case, we matched the observed cloud field with gridded model and/or derived product fields. CloudSat and CALIPSO observations and model fields were matched and compared in the vertical along the orbit track. MODIS data and model fields were matched and compared in the horizontal. We then use MET to compute the verification statistics to quantify the performance of the models in representing the cloud fields. In this presentation we will give a summary of our comparison and show verification results for both synoptic and tropical cyclone cases.

  3. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  4. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint

  5. Optimizing Spacecraft Placement for Liaison Constellations

    NASA Technical Reports Server (NTRS)

    Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.

    2011-01-01

    A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.

  6. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  7. Multiple Autonomous Discrete Event Controllers for Constellations

    NASA Technical Reports Server (NTRS)

    Esposito, Timothy C.

    2003-01-01

    The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.

  8. International Earth Science Constellation (ESC) Introduction

    NASA Technical Reports Server (NTRS)

    Guit, William J.; Machado, Michael J.

    2016-01-01

    This is the Welcome and Introduction presentation for the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) meeting held in Albuquerque NM from September 27-29. It contains an org chart, charter, history, significant topics to be discussed, AquaAura 2017 inclination adjust maneuver calendar, a-train long range plans, upcoming events, and action items.

  9. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, moderates a press conference with NASA Administrator Michael Griffin Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  10. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, looks on as Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  11. Constellation Program Update

    NASA Image and Video Library

    2006-06-05

    Jeff Hanley, Constellation Program Manager, right, and Scott J. Horowitz, NASA Associate Administrator for Exploration Systems announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  13. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Members of the media listen during a press conference with NASA Administrator Michael Griffin, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  14. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  16. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, listens to a question during a NASA Update outlining responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  17. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, center, speaks as Jeff Hanley, Constellation Program Manager, right, looks on during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  19. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  20. NanoSat Constellation Mission Design

    NASA Technical Reports Server (NTRS)

    Concha, Marco; DeFazio, Robert

    1998-01-01

    The NanoSat constellation concept mission proposes simultaneous operation of multiple swarms of as many as 22 identical 10 kg spacecraft per swarm. The various orbits in a NanoSat swarm vary from 3x12 to 3x42 R(sub e) in geometry. In this report the unique flight dynamics issues of this constellation satellite mission design are addressed. Studies include orbit design, orbit determination, and error analysis. A preliminary survey determined the orbital parameters that would limit the maximum shadow condition while providing adequate ground station access for three ground stations.

  1. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, seated left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit (NASA/Bill Ingalls)

  2. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Hanley is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and NASA Administrator Michael Griffin, left. Photo Credit: (NASA/Bill Ingalls)

  3. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  4. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. He is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Photo Credit: (NASA/Bill Ingalls)

  5. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, center, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Horowitz was joined by NASA Administrator Michael Griffin, left, and Jeff Hanley, Constellation Program Manager. Photo Credit: (NASA/Bill Ingalls)

  6. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  7. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  8. On the Spatio-Temporal Variability of Field-Aligned Currents Observed with the Swarm Satellite Constellation: Implications for the Energetics of Magnetosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Pakhotin, I.; Mann, I. R.; Forsyth, C.; Rae, J.; Burchill, J. K.; Knudsen, D. J.; Murphy, K. R.; Gjerloev, J. W.; Ozeke, L.; Balasis, G.; Daglis, I. A.

    2016-12-01

    With the advent of the Swarm mission with its multi-satellite capacity, it became possible for the first time to make systematic close separation multi-satellite measurements of the magnetic fields associated with field-aligned currents (FACs) at a 50 Hz cadence using fluxgate magnetometers. Initial studies have revealed an even greater level of detail and complexity and spatio-temporal non-stationarity than previously understood. On inter-satellite separation scales of 10 seconds along-track and <120 km cross-track, the peak-to-peak magnitudes of the small scale and poorly correlated inter-spacecraft magnetic field fluctuations can reach tens to hundreds of nanoteslas. These magnitudes are directly comparable to those associated with larger scale magnetic perturbations such as the global scale Region 1 and 2 FAC systems characterised by Iijima and Potemra 40 years ago. We evaluate the impact of these smaller scale magnetic perturbations relative to the larger scale FAC systems statistically as a function of the total number of FAC crossings observed, and as a function of geomagnetic indices, spatial location, and season. Further case studies incorporating Swarm electric field measurements enable estimates of the Poynting flux associated with the small scale and non-stationary magnetic fields. We interpret the small scale structures as Alfvenic, suggesting that Alfven waves play a much larger and more energetically significant role in magnetosphere-ionosphere coupling than previously thought. We further examine what causes such high variability among low-Earth orbit FAC systems to be observed under some conditions but not in others.

  9. Multisatellite constellation configuration selection for multiregional highly elliptical orbit constellations

    NASA Technical Reports Server (NTRS)

    Matossian, Mark G.

    1994-01-01

    The Archimedes Project is a joint effort of the European Space Agency (ESA) and the National Space Development Agency of Japan (NASDA). The primary goal of the Archimedes project is to perform a technical feasibility analysis and preliminary design of a highly inclined multisatellite constellation for direct broadcast and mobile communications services for Europe, Japan and much of North America. This report addresses one aspect of this project, specifically an analysis of continuous satellite coverage using multiregional highly elliptical orbits (M-HEO's). The analysis methodology and ensuing software tool, named SPIFF, were developed specifically for this project by the author during the summer of 1992 under the STA/NSF Summer Institute in Japan Program at Tsukuba Space Center.

  10. BRITE-Constellation Science Operations

    NASA Astrophysics Data System (ADS)

    Kuschnig, R.

    2017-09-01

    BRITE-Constellation is a nanosatellite mission designed for stellar astrophysical research in collaboration between Austria, Canada and Poland. A fleet of six spacecrafts was funded, built and launched, two from each country, all designed to perform precise time-series photometry of the brightest stars in the sky. While the spacecrafts have the same basic design, three satellites host an instrument sensitive in a red bandpass, the others, for a blue wavelength range. From the six satellites launched, five are operational. The sixth one did not separate from the upper stage of the rocket and remains idle. The first pair, the Austrian satellites, started to collect science measurements with their wide field (˜24°) cameras in early December 2013. Since then, more than 340 stars were observed during 16 campaigns, the majority for more than 100 days (up to 168 days) continuously. In total, more than 2.1 million measurements have been collected so far. Originally, the limiting magnitude for target stars was set to \\mag(V)=4. However, even stars as faint as \\mag(V)=6.5 have been observed with sufficient precision. This is a review of science operations conducted during the past 3.5 years.

  11. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin is seen through a television camera at a NASA Update announcing to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Griffin was joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit: (NASA/Bill Ingalls)

  12. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  13. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, second from left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. The Family Constellation Scale.

    ERIC Educational Resources Information Center

    Lemire, David

    The Family Constellation Scale (FC Scale) is an instrument that assesses perceived birth order in families. It can be used in counseling to help initiate conversations about various traits and assumptions that tend to characterize first-born, middle-born children, youngest-born, and only children. It provides both counselors and clients insights…

  15. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  16. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  17. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin addresses NASA employees and members of the media about the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration during a NASA Update on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. Commanding Constellations (Pipeline Architecture)

    NASA Technical Reports Server (NTRS)

    Ray, Tim; Condron, Jeff

    2003-01-01

    Providing ground command software for constellations of spacecraft is a challenging problem. Reliable command delivery requires a feedback loop; for a constellation there will likely be an independent feedback loop for each constellation member. Each command must be sent via the proper Ground Station, which may change from one contact to the next (and may be different for different members). Dynamic configuration of the ground command software is usually required (e.g. directives to configure each member's feedback loop and assign the appropriate Ground Station). For testing purposes, there must be a way to insert command data at any level in the protocol stack. The Pipeline architecture described in this paper can support all these capabilities with a sequence of software modules (the pipeline), and a single self-identifying message format (for all types of command data and configuration directives). The Pipeline architecture is quite simple, yet it can solve some complex problems. The resulting solutions are conceptually simple, and therefore, reliable. They are also modular, and therefore, easy to distribute and extend. We first used the Pipeline architecture to design a CCSDS (Consultative Committee for Space Data Systems) Ground Telecommand system (to command one spacecraft at a time with a fixed Ground Station interface). This pipeline was later extended to include gateways to any of several Ground Stations. The resulting pipeline was then extended to handle a small constellation of spacecraft. The use of the Pipeline architecture allowed us to easily handle the increasing complexity. This paper will describe the Pipeline architecture, show how it was used to solve each of the above commanding situations, and how it can easily be extended to handle larger constellations.

  19. The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    1999-01-01

    NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.

  20. Armenian Names of Sky Constellations

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.; Mikayelyan, A. A.

    2016-12-01

    The work is devoted to the correction and recovery of the Armenian names of the sky constellations, as they were forgotten or distorted during the Soviet years, mainly due to the translation from Russian. A total of 34 constellation names have been corrected. A brief overview of the history of the division of the sky into constellations and their naming is also given. At the end, the list of all 88 constellations is given with the names in Latin, English, Russian and Armenian.

  1. VISTA - A Constellation for Real Time Regional Imaging

    NASA Astrophysics Data System (ADS)

    Meerman, Max; Boland, Lee; da Silva Curiel, Alex; Sweeting, Martin, , Sir

    2002-01-01

    The role of satellites in medium and high-resolution reconnaissance of the Earth's surface has been well demonstrated in recent years through missions such as Landsat, SPOT, IKONOS, ImageSat and Quickbird. The market for such data products is well served and likely to become more competitive with further very-high-resolution missions. Whereas commercial markets have concentrated on enhancing resolution, the small satellite sector has concentrated on reducing the cost of data products, and the development of systems providing niche services. One such EO requirement that can be well met by smaller satellites is the need for higher temporal resolution, as this typically requires a large number of satellites to operate as a constellation - thus far financially impractical using conventional EO satellites. Surrey is currently engaged in building its first constellation that will provide daily global coverage at moderate resolution (32-metre GSD and 600km swath) in three spectral bands. Targeted at providing timely quick-look data products for disaster mitigation and monitoring, the constellation comprises 7 satellites in a single orbital plane. Each satellite has a wide swath so that successive satellites progressively cover the entire globe in a single day. The Vista constellation takes this concept a step further, and is proposed for applications requiring near-continuous surveillance of regional activity. By introducing a multiple plane constellation of small Earth observation satellites, it is possible to monitor continuously selected regions anywhere on the globe. The paper describes the system trades and outlines the scope of the performance that could be obtained from such a system. A cost model illustrates that the balance between launch and space segment costs must be reached by considering suitable replacement strategies, and that the system is highly sensitive to requirement creep. Finally, it is shown that the use of cost effective, small satellites leads to

  2. The elusive constellations of poverty.

    PubMed

    Breugelmans, Seger M; Plantinga, Arnoud; Zeelenberg, Marcel; Poluektova, Olga; Efremova, Maria

    2017-01-01

    Pepper & Nettle describe possible processes underlying what they call a behavioral constellation of deprivation (BCD). Although we are certain about the application of evolutionary models to our understanding of poverty, we are less certain about the utility of behavioral constellations. The empirical record on poverty-related behaviors is much more divergent and broad than such constellations suggest.

  3. Global communication using a constellation of low earth meridian orbits

    NASA Astrophysics Data System (ADS)

    Oli, P. V. S.; Nagarajan, N.; Rayan, H. R.

    1993-07-01

    The concept of 'meridian orbits' is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200 km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation, wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage.

  4. Autonomy for Constellation

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    The newer types of space systems, which are planned for the future, are placing challenging demands for newer autonomy concepts and techniques. Motivating these challenges are resource constraints. Even though onboard computing power will surely increase in the coming years, the resource constraints associated with space-based processes will continue to be a major factor that needs to be considered when dealing with, for example, agent-based spacecraft autonomy. To realize "economical intelligence", i.e., constrained computational intelligence that can reside within a process under severe resource constraints (time, power, space, etc.), is a major goal for such space systems as the Nanosat constellations. To begin to address the new challenges, we are developing approaches to constellation autonomy with constraints in mind. Within the Agent Concepts Testbed (ACT) at the Goddard Space Flight Center we are currently developing a Nanosat-related prototype for the first of the two-step program.

  5. Constellation Commodities Studies Summary

    NASA Technical Reports Server (NTRS)

    Dirschka, Eric

    2011-01-01

    Constellation program was NASA's long-term program for space exploration. The goal of the commodities studies was to solicit industry expertise in production, storage, and transportation required for future use and to improve efficiency and life cycle cost over legacy methods. Objectives were to consolidate KSC, CCAFS and other requirements; extract available industry expertise; identify commercial opportunities; and establish synergy with State of Florida partnerships. Study results are reviewed.

  6. Anthropometric Requirements for Constellation

    NASA Technical Reports Server (NTRS)

    Raulu, Sudhakar; Margerum, Sarah; Dory, Jonathan; Rochlis, Jennifer

    2009-01-01

    This slide presentation reviews the requirement from an Anthropometric standpoint for the development of the Constellation's programs hardware, specifically the Orion crew exploration vehicle. The NASA JSC Anthropometry and Biomechanics Facility (ABF) provides anthropometry, strength, mobility, and mass properties requirements; gathers, interprets, manages and maintains the flight crew anthropometry database; and participates and provides input during crew selection. This is used to assist in requirements for vehicle and space suit design and for crew selection.

  7. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  8. Design and Analysis of on-Orbit Servicing Architectures for the Global Positioning System Constellation

    DTIC Science & Technology

    1999-03-01

    expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S...a satellite constellation through a policy of launching a new satellite at the first on-orbit failure. Increasing satellite design life is a common...alternatives consisted of the current constellation with the addition of various servicing architectures. We assumed no radical shift in GPS management policy

  9. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The Cx

  10. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  11. Origins of the "Western" Constellations

    NASA Astrophysics Data System (ADS)

    Frank, Roslyn M.

    The development of the 48 Greek constellations is analyzed as a complex mixture of cognitive layers deriving from different cultural traditions and dating back to different epochs. The analysis begins with a discussion of the zodiacal constellations, goes on to discuss the stellar lore in Homer and Hesiod, and then examines several theories concerning the origins of the southern non-zodiacal constellations. It concludes with a commentary concerning the age and possible cultural significance of stars of the Great Bear constellation in light of ethnohistorical documentation, folklore, and beliefs related to European bear ceremonialism.

  12. Simulating the Liaison Navigation Concept in a Geo + Earth-Moon Halo Constellation

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Leonard, J. M.; McGranaghan, R. M.; Parker, J. S.; Anderson, R. L.; Born, G. H.

    2012-01-01

    Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite navigation technique where relative radiometric measurements between two or more spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON concept in an Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.

  13. Streamlining the Design Tradespace for Earth Imaging Constellations

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Hughes, Steven P.; Le Moigne, Jacqueline J.

    2016-01-01

    Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth

  14. Nanosatellite constellation deployment using on-board magnetic torquer interaction with space plasma

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Matsuzawa, Shinji; Inamori, Takaya; Jeung, In-Seuck

    2018-04-01

    One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3 U (1-3 kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.

  15. Mega-constellations Issues

    NASA Astrophysics Data System (ADS)

    Bastida Virgili, Benjamin; Krag, Holger

    2016-07-01

    Space traffic has always been subject to considerable fluctuations. In the past, these fluctuations have been mainly driven by geopolitical and economic factors. During the last years there has been a considerable increase due to the use of cubesats by non-traditional space operators, and due to a significant change of mission scopes and mission orbits in Low Earth Orbit (LEO). In the near future, however, many indications point to a further increase in the space traffic in LEO. This increase is mainly driven by a cheaper access to space, also triggered by the miniaturisation of spacecraft systems. An acceleration of this trend is expressed by the announcement of large constellations in LEO with the purpose to provide broadband internet communication, allowing to minimise the required infrastructure on Earth. The number of artificial objects in orbit continues to increase and, with it, a key threat to space sustainability. In response, space agencies have identified a set of mitigation guidelines aimed at enabling space users to reduce the generation of space debris by, for example, limiting the orbital lifetime of their spacecraft and of launcher stages after the end of their mission to 25 years in LEO. However, several recent studies have shown that, today, current guidelines for the LEO protected zone are insufficiently applied by space systems of all sizes. Under these conditions, a step increase in the launch rate is a potential concern for the environment, in particular if the current End of Life (EOL) behaviour prevails in the future. Even in a perfect behaviour w.r.t. the 25 year lifetime rule, the new traffic might lead to unrecoverable environment trends. Furthermore, the requirement for reliability of the disposal function is of 90%, however, weighted with the reliability of the entire system. A failure rate of 10%, in general, was found to be acceptable under current space traffic conditions. This might not be sustainable when the LEO launch rates

  16. Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites

    NASA Astrophysics Data System (ADS)

    Bai, Heming; Gong, Cheng; Wang, Minghuai; Zhang, Zhibo; L'Ecuyer, Tristan

    2018-02-01

    Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) from June 2006 to April 2011 are analyzed to estimate precipitation frequency susceptibility SPOP, precipitation intensity susceptibility SI, and precipitation rate susceptibility SR in warm marine clouds. We find that SPOP strongly depends on atmospheric stability, with larger values under more stable environments. Our results show that precipitation susceptibility for drizzle (with a -15 dBZ rainfall threshold) is significantly different than that for rain (with a 0 dBZ rainfall threshold). Onset of drizzle is not as readily suppressed in warm clouds as rainfall while precipitation intensity susceptibility is generally smaller for rain than for drizzle. We find that SPOP derived with respect to aerosol index (AI) is about one-third of SPOP derived with respect to cloud droplet number concentration (CDNC). Overall, SPOP demonstrates relatively robust features throughout independent liquid water path (LWP) products and diverse rain products. In contrast, the behaviors of SI and SR are subject to LWP or rain products used to derive them. Recommendations are further made for how to better use these metrics to quantify aerosol-cloud-precipitation interactions in observations and models.

  17. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  18. Constellation Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve

    2009-01-01

    This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.

  19. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  20. The Magnetospheric Multiscale Constellation

    NASA Technical Reports Server (NTRS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  1. CubeSat constellation design for air traffic monitoring

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu

    2016-11-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.

  2. The Origin of Our Constellations.

    ERIC Educational Resources Information Center

    Ridpath, Ian

    1990-01-01

    Reviewed is the history of the naming of the constellations which appear in the sky. The roles of many ancient peoples through the astronomers of the eighteenth century up to the adoption of the official list of 88 constellations produced in 1922 by the International Astronomical Union are discussed. (CW)

  3. Estimating Precipitation Susceptibility in Warm Marine Clouds Using Multi-sensor Aerosol and Cloud Products from A-Train Satellites

    NASA Astrophysics Data System (ADS)

    Bai, H.; Gong, C.; Wang, M.; Zhang, Z.

    2017-12-01

    Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from CALIPSO, CloudSat, MODIS, and AMSR-E from June 2006 to April 2011 are analyzed to estimate precipitation susceptibility (including precipitation frequency susceptibility SPOP, precipitation intensity susceptibility SI, and precipitation rate susceptibility SR) in warm marine clouds. Our results show that SPOP demonstrates relatively robust features throughout independent LWP products and diverse rain products. In contrast, the behaviors of SI are more subject to LWP or rain products. Our results further show that SPOP strongly depends on atmospherics stability, with larger value under more stable environment. Precipitation susceptibility calculated with respect to cloud droplet number concentration (CDNC) is generally much larger than that estimated with respect to aerosol index (AI), which results from the weak dependency of CDNC on AI.

  4. Assessing GPS Constellation Resiliency in an Urban Canyon Environment

    DTIC Science & Technology

    2015-03-26

    Taipei, Taiwan as his area of interest. His GPS constellation is modeled in the Satellite Toolkit ( STK ) where augmentation satellites can be added and...interaction. SEAS also provides a visual display of the simulation which is useful for verification and debugging portions of the analysis. Furthermore...entire system. Interpreting the model is aided by the visual display of the agents moving in the region of inter- est. Furthermore, SEAS collects

  5. Dynamics of tethered constellations in Earth orbit

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1986-01-01

    Topics covered include station keeping of single-axis and two-axis constellations; single-axis vertical constellations with low-g platform; single-axis vertical constellations with three masses; deployment strategy; and damping of vibrational modes.

  6. Global aerosol typing from a combination of A-Train satellite observations in clear-sky and above clouds

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.

    2014-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.

  7. Hyperspectral Cubesat Constellation for Natural Hazard Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Crum, Gary; Ly, Vuong; Handy, Matthew; Huemmrich, Karl F.; Ong, Lawrence; Holt, Ben; Maharaja, Rishabh

    2016-01-01

    The authors on this paper are team members of the Earth Observing 1 (E0-1) mission which has flown an imaging spectrometer (hyperspectral) instrument called Hyperion for the past 15+ years. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days and with slewing, of the satellite for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that has been sought is the ability to image natural hazards in a daily time series for space-based imaging spectrometers. The Hyperion cannot provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically can be used to provide daily coverage or even diurnal coverage, cost-effectively. This paper sought to design a cubesat constellation mission that would accomplish this goal and then to articulate the key tradeoffs.

  8. Cubesat Constellation Design for Air Traffic Monitoring

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  9. Automating Trend Analysis for Spacecraft Constellations

    NASA Technical Reports Server (NTRS)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  10. Our Pittsburgh Constellation

    NASA Astrophysics Data System (ADS)

    Turnshek, Diane

    2015-08-01

    Riding on the Pittsburgh mayor’s keen interest in astronomy and the ongoing change of 40,000 city lights from mercury and sodium vapor to shielded LEDs, we organized a series of city-wide celestial art projects to bring attention to the skies over Pittsburgh. Light pollution public talks were held at the University of Pittsburgh’s Allegheny Observatory and other colleges. Earth Hour celebrations kicked off an intensive year of astronomy outreach in the city. Lights went out on March 28, 2015 from 8:30 to 9:30 pm in over fifty buildings downtown and in Oakland (the “Eds and Meds” center, where many Pittsburgh universities and hospitals are located). Our art contest was announced at the De-Light Pittsburgh celebration at the Carnegie Science Center during Astronomy Weekend. “Our Pittsburgh Constellation” is an interactive Google map of all things astronomical in the city. Different colored stars mark locations of planetariums, star parties, classes, observatories, lecture series, museums, telescope manufacturers and participating art galleries. Contest entrants submitted artwork depicting their vision of the constellation figure that incorporates and connects all the “stars” in our custom city map. Throughout the year, over a dozen artists ran workshops on painting star clusters, galaxies, nebulae, comets, planets and aurorae with discussions of light pollution solutions and scientific explanations of what the patrons were painting, including demonstrations with emission tubes and diffraction grating glasses. We will display the celestial art created in this International Year of Light at an art gallery as part of the City’s Department of Innovation & Performance March 2016 Earth Hour gala. We are thankful for the Astronomical Footprint grant from the Heinz Endowments, which allowed us to bring the worlds of science and art together to enact social change.

  11. Effects of 3-D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from A-train satellite data

    NASA Astrophysics Data System (ADS)

    Ham, Seung-Hee; Kato, Seiji; Barker, Howard W.; Rose, Fred G.; Sun-Mack, Sunny

    2014-01-01

    Three-dimensional (3-D) effects on broadband shortwave top of atmosphere (TOA) nadir radiance, atmospheric absorption, and surface irradiance are examined using 3-D cloud fields obtained from one hour's worth of A-train satellite observations and one-dimensional (1-D) independent column approximation (ICA) and full 3-D radiative transfer simulations. The 3-D minus ICA differences in TOA nadir radiance multiplied by π, atmospheric absorption, and surface downwelling irradiance, denoted as πΔI, ΔA, and ΔT, respectively, are analyzed by cloud type. At the 1 km pixel scale, πΔI, ΔA, and ΔT exhibit poor spatial correlation. Once averaged with a moving window, however, better linear relationships among πΔI, ΔA, and ΔT emerge, especially for moving windows larger than 5 km and large θ0. While cloud properties and solar geometry are shown to influence the relationships amongst πΔI, ΔA, and ΔT, once they are separated by cloud type, their linear relationships become much stronger. This suggests that ICA biases in surface irradiance and atmospheric absorption can be approximated based on ICA biases in nadir radiance as a function of cloud type.

  12. Dependency of geodynamic parameters on the GNSS constellation

    NASA Astrophysics Data System (ADS)

    Scaramuzza, Stefano; Dach, Rolf; Beutler, Gerhard; Arnold, Daniel; Sušnik, Andreja; Jäggi, Adrian

    2018-01-01

    Significant differences in time series of geodynamic parameters determined with different Global Navigation Satellite Systems (GNSS) exist and are only partially explained. We study whether the different number of orbital planes within a particular GNSS contributes to the observed differences by analyzing time series of geocenter coordinates (GCCs) and pole coordinates estimated from several real and virtual GNSS constellations: GPS, GLONASS, a combined GPS/GLONASS constellation, and two virtual GPS sub-systems, which are obtained by splitting up the original GPS constellation into two groups of three orbital planes each. The computed constellation-specific GCCs and pole coordinates are analyzed for systematic differences, and their spectral behavior and formal errors are inspected. We show that the number of orbital planes barely influences the geocenter estimates. GLONASS' larger inclination and formal errors of the orbits seem to be the main reason for the initially observed differences. A smaller number of orbital planes may lead, however, to degradations in the estimates of the pole coordinates. A clear signal at three cycles per year is visible in the spectra of the differences between our estimates of the pole coordinates and the corresponding IERS 08 C04 values. Combinations of two 3-plane systems, even with similar ascending nodes, reduce this signal. The understanding of the relation between the satellite constellations and the resulting geodynamic parameters is important, because the GNSS currently under development, such as the European Galileo and the medium Earth orbit constellation of the Chinese BeiDou system, also consist of only three orbital planes.

  13. The Global Positioning System constellation as a space weather monitor

    NASA Astrophysics Data System (ADS)

    Morley, S.; Henderson, M. G.; Woodroffe, J. R.; Brito, T. V.

    2016-12-01

    The Global Positioning System (GPS) satellites are distributed across six orbital planes and follow near-circular orbits, with a 12 hour period, at an altitude of approximately 20200 km. The six orbital planes are distributed around the Earth and are nominally inclined at 55 degrees. Energetic particle detectors have been flown on the GPS constellation for more than two decades; by February 2016 there were 23 GPS satellites equipped with energetic particle instrumentation. The Combined X-ray Dosimeter (CXD), which is flown on 21 GPS satellites, has recently been cross-calibrated against electron data from the Van Allen Probes mission, demonstrating its utility for scientific research and radiation environment specification. Recently electron and proton flux data from these instruments, for the month of January 2014, have been publicly released. We will describe the GPS constellation from the perspective of its use as a monitor for space weather, review some of the key scientific results enabled by these instruments and show some recent observations from the constellation, including the 2015 St. Patrick's Day storm. Using data from multiple satellite missions we describe the dynamics of this storm in detail.

  14. Constellation labeling optimization for bit-interleaved coded APSK

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  15. Trade-space Analysis for Constellations

    NASA Astrophysics Data System (ADS)

    Le Moigne, J.; Dabney, P.; de Weck, O. L.; Foreman, V.; Grogan, P.; Holland, M. P.; Hughes, S. P.; Nag, S.

    2016-12-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: "How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time. This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance. TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model

  16. Constellation Lessons Learned Executive Summary

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Neubek, Deb

    2011-01-01

    This slide presentation reviews the lessons learned from the Constellation Program (CxP) and identified several factors that contributed to the inability of the CxP to meet the cost and schedule commitments. The review includes a significant section on the context in which the CxP operated since new programs are likely to experience the same constraints.

  17. Optimal Constellation Design for Maximum Continuous Coverage of Targets Against a Space Background

    DTIC Science & Technology

    2012-05-31

    constellation is considered with the properties shown in Table 13. The parameter hres refers to the number of equally spaced offset planes in which cross...mean anomaly 180 ◦ M0i mean anomaly of lead satellite at epoch 0 ◦ R omni-directional sensor range 5000 km m initial polygon resolution 50 PPC hres ...a Walker Star. Idealized parameters for the Iridium constellation are shown in Table 14. The parameter hres refers to the number of equally spaced

  18. Flying the ST-5 Constellation with "Plug and Play" Autonomy Components and the GMSEC Bus

    NASA Technical Reports Server (NTRS)

    Shendock, Bob; Witt, Ken; Stanley, Jason; Mandl, Dan; Coyle, Steve

    2006-01-01

    The Space Technology 5 (ST5) Project, part of NASA's New Millennium Program, will consist of a constellation of three micro-satellites. This viewgraph document presents the components that will allow it to operate in an autonomous mode. The ST-5 constellation will use the GSFC Mission Services Evolution Center (GMSEC) architecture to enable cost effective model based operations. The ST-5 mission will demonstrate several principles of self managing software components.

  19. Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann (Editor); Garcia, Michael (Editor)

    2005-01-01

    NASA's upcoming Constellation-X mission, one of two flagship missions in the Beyond Einstein program, will have more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass and will enable high-throughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This booklet, which was assembled during early 2005 using the contributions of a large team of Astrophysicists, outlines the important scientific questions for the decade following this one and describes the areas where Constellation-X is going to have a major impact. These areas include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants.

  20. Scheduling algorithms for rapid imaging using agile Cubesat constellations

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Li, Alan S.; Merrick, James H.

    2018-02-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that

  1. Constellation

    NASA Image and Video Library

    2008-02-15

    SHOWN IS A CONCEPT IMAGE OF THE ARES V EARTH DEPARTURE STAGE AND LUNAR SURFACE ACCESS MODULE DOCKED WITH THE ORION CREW EXPLORATION VEHICLE IN EARTH ORBIT. THE DEPARTURE STAGE, POWERED BY A J-2X ENGINE, IS NEEDED TO ESCAPE EARTH'S GRAVITY AND SEND THE CREW VEHICLE AND LUNAR MODULE ON THEIR JOURNEY TO THE MOON.

  2. NASAs EDSN Aims to Overcome the Operational Challenges of CubeSat Constellations and Demonstrate an Economical Swarm of 8 CubeSats Useful for Space Science Investigations

    NASA Technical Reports Server (NTRS)

    Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.

    2013-01-01

    Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.

  3. Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package

    NASA Technical Reports Server (NTRS)

    Masunaga, Hirohiko; Matsui, Toshihisa; Tao, Wei-Kuo; Hou, Arthur Y.; Kummerow, Christian D.; Nakajima, Teruyuki; Bauer, Peter; Olson, William S.; Sekiguchi, Miho; Nakajima, Teruyuki

    2010-01-01

    Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be

  4. Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Huemmrich, Karl; Crum, Gary; Ly, Vuong; Handy, Matthew; Ong, Lawrence

    2015-01-01

    Earth Observing 1 (E0-1) satellite has an imaging spectrometer (hyperspectral) instrument called Hyperion. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days. With slewing of the satellite and allowing for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that is sought is the ability to image natural hazards in a daily time series for space based imaging spectrometers. The Hyperion can not provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically in the same orbit, can be used to provide daily coverage, cost-effectively.

  5. Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A. S. X.; Kumar, S.

    2017-12-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller

  6. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    NASA Astrophysics Data System (ADS)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  7. Dynamic Constellation Tasking and Management

    DTIC Science & Technology

    2013-03-01

    14 2.4. DARPA SeeMe Concept................................................................................20...11 Figure 3. DARPA SeeMe Satellite (Artist’s Concept) .................................................... 20 Figure 4...concept has not been adopted, it may one day find use with the DMC or other satellite systems. 2.4. DARPA SeeMe Concept The Defense Advance Research

  8. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  9. BRITE Constellation: data processing and photometry

    NASA Astrophysics Data System (ADS)

    Popowicz, A.; Pigulski, A.; Bernacki, K.; Kuschnig, R.; Pablo, H.; Ramiaramanantsoa, T.; Zocłońska, E.; Baade, D.; Handler, G.; Moffat, A. F. J.; Wade, G. A.; Neiner, C.; Rucinski, S. M.; Weiss, W. W.; Koudelka, O.; Orleański, P.; Schwarzenberg-Czerny, A.; Zwintz, K.

    2017-09-01

    Context. The BRIght Target Explorer (BRITE) mission is a pioneering space project aimed at the long-term photometric monitoring of the brightest stars in the sky by means of a constellation of nanosatellites. Its main advantage is high photometric accuracy and time coverage which are inaccessible from the ground. Its main drawback is the lack of cooling of the CCD detectors and the absence of good shielding that would protect them from energetic particles. Aims: The main aim of this paper is the presentation of procedures used to obtain high-precision photometry from a series of images acquired by the BRITE satellites in two modes of observing, stare and chopping. The other aim is a comparison of the photometry obtained with two different pipelines and a comparison of the real scatter with expectations. Methods: We developed two pipelines corresponding to the two modes of observing. They are based on aperture photometry with a constant aperture, circular for stare mode of observing and thresholded for chopping mode. Impulsive noise is a serious problem for observations made in the stare mode of observing and therefore in the pipeline developed for observations made in this mode, hot pixels are replaced using the information from shifted images in a series obtained during a single orbit of a satellite. In the other pipeline, the hot pixel replacement is not required because the photometry is made in difference images. Results: The assessment of the performance of both pipelines is presented. It is based on two comparisons, which use data from six runs of the UniBRITE satellite: (I) comparison of photometry obtained by both pipelines on the same data, which were partly affected by charge transfer inefficiency (CTI), (II) comparison of real scatter with theoretical expectations. It is shown that for CTI-affected observations, the chopping pipeline provides much better photometry than the other pipeline. For other observations, the results are comparable only for data

  10. Modified empirical Solar Radiation Pressure model for IRNSS constellation

    NASA Astrophysics Data System (ADS)

    Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.

    2017-11-01

    Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.

  11. CubeSat constellations for disaster management in remote areas

    NASA Astrophysics Data System (ADS)

    Santilli, Giancarlo; Vendittozzi, Cristian; Cappelletti, Chantal; Battistini, Simone; Gessini, Paolo

    2018-04-01

    In recent years, CubeSats have considerably extended their range of possible applications, from a low cost means to train students and young researchers in space related activities up to possible complementary solutions to larger missions. Increasingly popular, whereas CubeSats are still not a solution for all types of missions, they offer the possibility of performing ambitious scientific experiments. Especially worth considering is the possibility of performing Distributed Space Missions, in which CubeSat systems can be used to increase observation sampling rates and resolutions, as well as to perform tasks that a single satellite is unable to handle. The cost of access to space for traditional Earth Observation (EO) missions is still quite high. Efficient architecture design would allow reducing mission costs by employing CubeSat systems, while maintaining a level of performance that, for some applications, could be close to that provided by larger platforms, and decreasing the time needed to design and deploy a fully functional constellation. For these reasons many countries, including developing nations, agencies and organizations are looking to CubeSat platforms to access space cheaply with, potentially, tens of remote sensing satellites. During disaster management, real-time, fast and continuous information broadcast is a fundamental requirement. In this sense, a constellation of small satellites can considerably decrease the revisit time (defined as the time elapsed between two consecutive observations of the same point on Earth by a satellite) over remote areas, by increasing the number of spacecraft properly distributed in orbit. This allows collecting as much data as possible for the use by Disaster Management Centers. This paper describes the characteristics of a constellation of CubeSats built to enable access over the most remote regions of Brazil, supporting an integrated system for mitigating environmental disasters in an attempt to prevent the

  12. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  13. ISHM Implementation for Constellation Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzel, John; Duncavage, Dan; Crocker, Alan; Alena, Rick

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK) "not just data" to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of systems (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). This viewgraph presentation reviews the use of ISHM for the Constellation system.

  14. The Solar system.Stars and constellations

    NASA Astrophysics Data System (ADS)

    Horia Minda, Octavian

    2017-04-01

    It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.

  15. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    NASA Technical Reports Server (NTRS)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  16. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  17. Beta Pic observations requested for BRITE-Constellation

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-01-01

    The AAVSO is part of the BRITE-Constellation Ground Based Observations Team (GBOT), supporting cutting-edge science from the BRITE-Constellation satellites and coordinating with BRITE-Constellation scientist Dr. Konstanze Zwintz (Universitaet Innsbruck) and her team. The delta Scuti star beta Pic (NSV 16683) (3.80-3.86V) is one of the BRITE stars being focused on during this season. Bet Pic is particularly interesting now because a transit of the star's planet's Hill sphere (the region around a planet in which it dominates the attraction of satellites) is predicted to occur during 2017-2018. Ongoing observations beginning now are valuable to establish a baseline prior to the transit. The AAVSO's webpage on the BRITE target stars was updated in November with information on bet Pic from Dr. Zwintz. AAVSO observers with appropriate equipment and located at a southern enough latitude are encouraged to observe bet Pic. Its brightness makes bet Pic well suited to PEP and DSLR photometry; CCD photometry is also possible. However, great care must be taken by all observers, especially those using CCD, to avoid saturation. As the amplitude of this star is very small, visual observations are very difficult, but they are welcome. Multicolor (BVR) photometry better than 0.01 magnitude and time-series observations with a cadence of a few minutes (less than 10 minutes) are requested beginning now and continuing at least through 2017 and likely through 2018. The precision and cadence required are essential in order for the data to be most useful for studying the transit. Spectroscopists wishing to participate should submit their spectra directly to Dr. Konstanze Zwintz (konstanze.zwintz@uibk.ac.at). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  18. Optimization of constellation jettisoning regards to short term collision risks

    NASA Astrophysics Data System (ADS)

    Handschuh, D.-DA.-A.; Bourgeois, E.

    2018-04-01

    The space debris problematic is directly linked to the in-orbit collision risk between artificial satellites. With the increase of the space constellation projects, a multiplication of multi-payload launches should occur. In the specific cases where many satellites are injected into orbit with the same launcher upper stage, all these objects will be placed on similar orbits, very close one from each other, at a specific moment where their control capabilities will be very limited. Under this hypothesis, it is up to the launcher operator to ensure that the simultaneous in-orbit injection is safe enough to guarantee the non-collision risk between all the objects under a ballistic hypothesis eventually considering appropriate uncertainties. The purpose of the present study is to find optimized safe separation conditions to limit the in-orbit collision risk following the injection of many objects on very close orbits in a short-delay mission.

  19. The CEOS/GEO Constellation Concept

    NASA Technical Reports Server (NTRS)

    Cramer, Bryant; Ungar, Stephen

    2007-01-01

    The Constellation concept was first proposed during a discussion at the 19th CEOS Plenary, in London, in November 2005. The first Paper of the Constellation Concept was presented at the CEOS Strategic Implementation Team meeting (SIT-18), in Frascati, in March 2006, and strongly endorsed by the CEOS Principals. The concept attempts to provide agencies with tools for implementation of the elements that have been previously discussed in international forums (GEO Work Plan, GCOS Implementation Plan). This provides a solid foundation from the community providing requirements. Though agency spending is governed by national requirements, CEOS seeks synergies among member agency programs to fulfil GEOSS requirements, defining guidelines and standards to help agencies to determine from the outset what can be achieved. The constellations concept will allow the development of a commonalties approach among different agencies. At the heart of the application of the Constellations concept is the definition of a series of standards (specific to each Constellation) - required to be satisfied for any mission to be included in the constellation - and a process of recognition/acceptance, whereby an agency applies to SIT to have one or more of its missions (ideally from the outset of planning) recognised as meeting the constellation standards and thereby satisfying the relevant user community needs.

  20. The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations

    NASA Astrophysics Data System (ADS)

    Pablo, H.; Whittaker, G. N.; Popowicz, A.; Mochnacki, S. M.; Kuschnig, R.; Grant, C. C.; Moffat, A. F. J.; Rucinski, S. M.; Matthews, J. M.; Schwarzenberg-Czerny, A.; Handler, G.; Weiss, W. W.; Baade, D.; Wade, G. A.; Zocłońska, E.; Ramiaramanantsoa, T.; Unterberger, M.; Zwintz, K.; Pigulski, A.; Rowe, J.; Koudelka, O.; Orleański, P.; Pamyatnykh, A.; Neiner, C.; Wawrzaszek, R.; Marciniszyn, G.; Romano, P.; Woźniak, G.; Zawistowski, T.; Zee, R. E.

    2016-12-01

    BRIght Target Explorer (BRITE) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched; 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE—with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit—poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than-expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).

  1. The 50 Constellation Priority Sites

    NASA Technical Reports Server (NTRS)

    Noble, S.; Joosten, K.; Eppler, D.; Gruener, J.; Mendell, W.; French, R.; Plescia, J.; Spudis, P.; Wargo, M.; Robinson, M.; hide

    2009-01-01

    The Constellation program (CxP) has developed a list of 50 sites of interest on the Moon which will be targeted by the LRO narrow angle camera. The list has also been provided to the M team to supplement their targeting list. This list does not represent a "site selection" process; rather the goal was to find "representative" sites and terrains to understand the range of possible surface conditions for human lunar exploration to aid engineering design and operational planning. The list compilers leveraged heavily on past site selection work (e.g. Geoscience and a Lunar Base Workshop - 1988, Site Selection Strategy for a Lunar Outpost - 1990, Exploration Systems Architecture Study (ESAS) - 2005). Considerations included scientific, resource utilization, and operational merits, and a desire to span lunar terrain types. The targets have been organized into two "tiers" of 25 sites each to provide a relative priority ranking in the event of mutual interference. A LEAG SAT (special action team) was established to validate and recommend modifications to the list. This SAT was chaired by Dr. Paul Lucey. They provided their final results to CxP in May. Dr. Wendell Mendell will organize an on-going analysis of the data as they come down to ensure data quality and determine if and when a site has sufficient data to be retired from the list. The list was compiled using the best available data, however, it is understood that with the flood of new lunar data, minor modifications or adjustments may be required.

  2. A mars communication constellation for human exploration and network science

    NASA Astrophysics Data System (ADS)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  3. SAC-C Mission and the Morning Constellation

    NASA Astrophysics Data System (ADS)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    components (ICARE), provided by CNES will permit improvement of risk estimation models for radiation effect on last generation integrated circuit technology. . On June 14th, 2000 CONAE and NASA signed an amendment to the Memorandum of Understanding for the SAC-C mission in order that the SAC-C satellite, were included in a constellation - named "Morning Constellation". It is integrated by USA satellites Landsat 7, EO 1, Terra, and Argentine SAC-C that feature on-board instruments from the United States, Argentina, Denmark, Italy, France, and Japan. The four satellite tracks on the Earth's surface are the same, their orbital height being 705 km and their inclination, 98.21 degrees. They cross the Equator at 10:00, 10:01, 10:15, and 10:30 hours, respectively (local time). Satellites comply with the World Wide Reference System. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken and will be presented in this paper. Several jointly sponsored technical workshops have been held, and also collaborative spacecraft navigation experiments have been made. One of the objectives of the AM Constellation is the collaboration in the case of emergencies, NASA and CONAE agreed to give preference in those situation in the planification of their satellite acquisitions. From all the possible hazardous events, the most important for the country are fire and floods. In relation to fires, CONAE is presently adapting and developing the algorithms for using MODIS data to generate a fire map product. Additionally research on fire detection is carried out using the data from the HSTC camera. In relation to flooding, CONAE works in cooperation to national institutions providing the data and, in some cases, producing flood extent maps. In particular MMRS data is demonstrating to be very effective due to its spectral and radiometric resolutions, and its large swath which is well suited for extended countries like Argentina.

  4. Ultra high frequency follow-on communications satellite system

    NASA Astrophysics Data System (ADS)

    Hassien, Michael J.

    1992-03-01

    The existing constellation of UHF communications satellites (LEASAT and FLTSAT) provide key command and control links for mobile forces of the DoD and other government agencies. The UHF Follow-On satellite program will provide for a new generation of communications satellites to replace the existing ones as they reach the end of their life cycle beginning in 1992. Continued coverage is required for both peacetime and crisis environments, and must be maintained indefinitely. An eight-satellite UFO constellation (two per coverage area) will replenish the existing FLTSATCOM constellation.

  5. LARES Laser Relativity Satellite

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; et al.

    2011-05-01

    After almost three decades since the first idea of launching a passive satellite to measure gravitomagnetism, launch of LARES satellite is approaching. The new developed VEGA launcher will carry LARES in a nominally circular orbit at 1450 km altitude. This satellite, along with the two LAGEOS satellites, will allow to improve a previous measurement of the Lense-Thirring effect by a factor of 10. This important achievement will be a result of the idea of combining orbital parameters of a constellation of laser ranging satellites along with a specific design of LARES satellite. Other key points of the experiment are: the ever improving knowledge of the gravitational field of Earth, in particular the lower degree even zonal harmonics with GRACE satellites, and an accurate estimate of all the classical perturbations such as atmospheric drag and solar radiation pressure. In the paper both the scientific aspects as well as the design consideration will be described

  6. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  7. EOS Terra: Mission Status Constellation MOWG

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Mission Status Constellation MOWG will discuss mission summary; spacecraft subsystems summary, recent and planned activities; inclination adjust maneuvers, conjunction history, propellant usage and lifetime estimate; and end of mission plan.

  8. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2016-05-28

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence

  9. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2016-01-01

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence

  10. Spire's 3U CubeSat GNSS-RO Constellation for Meteorological and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, V.; Duly, T.; Ector, D.; Irisov, V.; Nogues-Correig, O.; Tan, L.; Yuasa, T.

    2017-12-01

    Spire Global, Inc., is a leading player in the nanosatellite sector and the first commercial company to provide GNSS radio occultation measurements to support meteorological and space weather forecasting. Each Spire satellite is equipped with a state-of-the-art, in-house designed software receiver, which is capable of open-loop tracking of occulted GNSS signals. By utilizing this receiver on a low-earth orbiting, 3U satellite constellation platform, Spire is able to provide high-quality profile measurements of the lower atmosphere as well as ionospheric total electron content and scintillation data at unprecedented low cost, coverage, and latency. In this talk, we provide an overview of the current capabilities of Spire's satellite constellation and radio occultation processing system. Recent results describing the state of the lower atmosphere and ionosphere will be presented and briefly discussed. Finally, we focus on Spire's future capabilities, and the potential impacts on both the meteorological and space weather scientific communities.

  11. One Web Satellites Ground Breaking

    NASA Image and Video Library

    2017-03-16

    A model of a OneWeb satellite like those the company will build to will connect all areas of the world to the Internet wirelessly. The company plans to launch 2,000 of the satellites as part of its constellation. The satellites will be built at a new factory at Exploration Park at NASA's Kennedy Space Center. The company held a groundbreaking ceremony for the factory. Photo credit: NASA/Kim Shiflett

  12. Electric Propulsion System for Constellation Deployment and Orbit Control of Minisats

    NASA Astrophysics Data System (ADS)

    Bianco, P.; de Rocco, L.; Lovera, M.

    1999-09-01

    The late technology developments and the demand for low-cost space missions have raised the interest in small satellites and in their potential use as parts of satellite formations as well as building units of satellite constellations. Formation flying of small satellites can be used to bring in-orbit spares for failed payloads on larger satellites as well as to replace large satellites at all by flying the mission on more small satellites, each carrying a single payload. Small satellites can be used in constellations for scientific missions (e.g. remote sensing) as well as for commercial purposes (e.g. data relay). Yet, "small satellite" doesn't necessarily mean "cheap satellite": cost reduction must be enforced into the space mission design since the very beginning of it, at system level. This usually implies seeking for trade-offs on most expensive system items for a small sat. Among these, we surely have the launch and the onboard propulsion system for orbital manoeuvres and station keeping: the stricter the requirements, the higher the costs. And, when dealing with satellite constellations or formations, orbital requirements can be quite challenging. The system designer is faced with the dilemma on whether to buy a relatively expensive dedicated launch or to have a highly cost-impactive autonomous onboard propulsion system that should perform orbit transfers as well. The present paper, which is an up-to-date version of the one presented at IAF-99, introduces a system based on FEEP (Field Emission Electric Propulsion) technology, featuring low thrust plug-on propulsion units. Thanks to the self-contained concept of FEEP thrusters and to the plug-on feature of the whole system, a very low cost-impactive onboard propulsion system can be implemented in order to serve for both orbital manoeuvres (constellation / formation deployment, orbit rising) and orbit maintenance (drag compensation, station keeping relative to other satellites). Most convenient strategies to

  13. The DUBAISAT-2/DEIMOS-2 constellation: public-private cooperation between Emirates and Spain

    NASA Astrophysics Data System (ADS)

    Pirondini, Fabrizio; Al Marri, Salem

    2014-10-01

    The Emirates Institution for Advanced Science and Technology (EIAST) was established by the Dubai Government in 2006 with the goal of promoting a culture of advanced scientific research and technology innovation in Dubai and the UAE, and enhancing technology innovation and scientific skills among UAE nationals. EIAST launched in November 2013 the DubaiSat-2, its second Earth Observation satellite, and the first to provide VHR multispectral imagery. The satellite has successfully completed its in-orbit commissioning and it is now fully operational. ELECNOR DEIMOS is a private Spanish company, part of the Elecnor industrial group, which owns and operates DEIMOS-1, the first Spanish Earth Observation satellite, launched in 2009. ELECNOR DEIMOS launched in June 2014 its second satellite, DEIMOS-2, a VHR, agile satellite capable of providing 4-bands multispectral imagery. The whole end-to-end DEIMOS- 2 system has been designed to provide a cost-effective and highly responsive service to cope with the increasing need of fast access to VHR imagery. The two satellites, with a mass of 300 kg each, were developed in cooperation with Satrec-I (South Korea), and are based on the SpaceEye-1 platform. The two satellites have an identical payload, and produce 75- cm resolution pan-sharpened imagery across a 12-km swath. Together, they have a combined collection capacity of more than 300,000 sqkm per day. EIAST and ELECNOR DEIMOS have set up a unique, trans-national public-private partnership to operate the two satellites as a constellation, jointly commercialize the imagery of both satellites, and interchange technical and operational information to increase the efficiency of both systems. The operations of the constellation are based on four ground stations: Al Khawaneej (Dubai), Puertollano (Spain), Kiruna (Sweden) and Inuvik (Canada), which assure at least a contact per orbit with each satellite. The constellation functionalities of the ground segment were developed by EIAST

  14. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    PubMed Central

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  15. Precise orbit determination of BeiDou constellation based on BETS and MGEX network.

    PubMed

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-04-15

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.

  16. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  17. RapidEye constellation relative radiometric accuracy measurement using lunar images

    NASA Astrophysics Data System (ADS)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  18. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  19. Second BRITE-Constellation Science Conference: Small satellites—big science, Proceedings of the Polish Astronomical Society volume 5

    NASA Astrophysics Data System (ADS)

    Zwintz, Konstanze; Poretti, Ennio

    2017-09-01

    In 2016 the BRITE-Constellation mission had been operational for more than two years. At that time, several hundreds of bright stars of various types had been observed successfully in the two BRITE lters and astonishing new discoveries had been made. Therefore, the time was ripe to host the Second BRITE-Constellation Science Conference: Small satellites | big science" from August 22 to 26, 2016, in the beautiful Madonnensaal of the University of Innsbruck, Austria. With this conference, we brought together the scientic community interested in BRITE-Constellation, pro- vided an update on the status of the mission, presented and discussed latest scientic results, shared our experiences with the data, illustrated successful cooperations between professional and amateur ground-based observers and BRITE scientists, and explored new ideas for future BRITE-Constellation observations.

  20. Analysis and design of Cubesat constellation for the Mediterranean south costal monitoring against illegal immigration

    NASA Astrophysics Data System (ADS)

    Lazreg, Nissen; Ben Bahri, Omar; Besbes, Kamel

    2018-02-01

    Costal monitoring is focused on fast response to illegal immigration and illegal ship traffic. Especially, the illegal ship traffic has been present in media since April 2015, as the number of reported deaths of immigrants crossing the Mediterranean significantly increased. Satellite images provide a possibility to at least partially control both types of events. This paper defines the principal criteria to select the best satellite constellation architecture for maritime and coastal monitoring, filling the gaps of imagery techniques in term of real-time control. The primary purpose of a constellation is to obtain global measurement improving the temporal resolution. The small size and low-cost are the main factors, which make CubeSats ideal for use in constellations. We propose a constellation of 9 Cubesats distributed evenly in 3 different planes. This reduces the revisit time enhancing the coverage duration. In addition, it also allows observing fire, damage on building and similar disasters. In this analysis, the performance criteria were reported such as the revisit time, the vision duration and the area coverage.

  1. The NASA Constellation Program Procedure System

    NASA Technical Reports Server (NTRS)

    Phillips, Robert G.; Wang, Lui

    2010-01-01

    NASA has used procedures to describe activities to be performed onboard vehicles by astronaut crew and on the ground by flight controllers since Apollo. Starting with later Space Shuttle missions and the International Space Station, NASA moved forward to electronic presentation of procedures. For the Constellation Program, another large step forward is being taken - to make procedures more interactive with the vehicle and to assist the crew in controlling the vehicle more efficiently and with less error. The overall name for the project is the Constellation Procedure Applications Software System (CxPASS). This paper describes some of the history behind this effort, the key concepts and operational paradigms that the work is based upon, and the actual products being developed to implement procedures for Constellation

  2. The Earth Science Afternoon Constellation Contingency Procedures

    NASA Technical Reports Server (NTRS)

    Case, Warren F.; Richon, Karen

    2005-01-01

    The Earth Science Afternoon Constellation comprises NASA missions Aqua, Aura, CloudSat and the Orbiting Carbon Observatory (OCO), the joint NASA/CNES mission CALIPSO and the CNES mission PARASOL. Both NASA and CNES offices are responsible for ensuring that contingency plans or other arrangements exist to cope with contingencies within their respective jurisdictions until the conclusion of all Afternoon Constellation operations. The Mission Operations Working Group, comprised of members from each of the missions, has developed the high-level procedures for maintaining the safety of this constellation. Each contingency situation requires detailed analyses before any decisions are made. This paper describes these procedures, and includes defining what constitutes a contingency situation, the pertinent parameters involved in the contingency analysis and guidelines for the actions required, based on the results of the contingency analyses.

  3. Trade-Space Analysis Tool for Constellations (TAT-C)

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of

  4. Methods and Apparatuses for Signaling with Geometric Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2018-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  5. Methods and apparatuses for signaling with geometric constellations

    NASA Technical Reports Server (NTRS)

    Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)

    2012-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. geometrically shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  6. A-Train Observations of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.

    2011-12-01

    NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al

  7. A SmallSat constellation mission architecture for a GRACE-type mission design

    NASA Astrophysics Data System (ADS)

    Deccia, C. M. A.; Nerem, R. S.; Yunck, T.

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) launched in 2002 and has been providing invaluable information of Earth's time-varying gravity field and GRACE-FO will continue this time series. For this work, we focus on architectures of future post-GRACE-FO like missions. Single pairs of satellites like GRACE and GRACE-FO are inherently limited in their spatio-temporal coverage. Full global coverage for a single pair can take up to 30 days for spatial resolutions of a few hundred kilometers, thus a single satellite pair is unable to observe sub-monthly signals in the Earth's time varying gravity field (e.g. hydrologic signals, etc.). Small satellite systems are becoming increasingly affordable and will soon allow a constellation of GRACE-type satellites to be deployed, with the capability to range between multiple satellites. Here, using simulation studies, we investigate the performance of such a constellation for different numbers of satellites (N) and different orbital configurations, in order to understand the improved performance that might be gained from such future mission architectures.

  8. The Role of Cloud and Precipitation Radars in Convoys and Constellations

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Durden, Stephen L.; Im, Eastwood; Sadowy, Gregory A.

    2013-01-01

    We provide an overview of which benefits a radar, and only a radar, can provide to any constellation of satellites monitoring Earth's atmosphere; which aspects instead are most useful to complement a radar instrument to provide accurate and complete description of the state of the troposphere; and finally which goals can be given a lower priority assuming that other types of sensors will be flying in formation with a radar.

  9. Constellations of elliptical inclined lunar orbits providing polar and global coverage

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Lieb, Erica

    2005-01-01

    Prior results have developed a methodology for selecting a long-lived constellation of 3 satellites that provide persistent, stable coverage to either the North or South Pole with no requirement for stationkeeping under the influence of only gravitational perturbations. In the present study, the sensitivity of this coverage in the presence of non-gravitational forces is determined, and a design strategy is formulated that minimizes any potential sensitivity to these accelerations.

  10. Relationships between Social Cognition and Sibling Constellations.

    ERIC Educational Resources Information Center

    Goebel, Barbara L.

    1985-01-01

    First and second born college students (N=178) responded to measures of four social cognition factors. Multivariate analysis of variance identified relationships of social cognition factors with five sibling constellation components: subject's sex, subject's birth order (first or second), adjacent first or second born sibling's sex, spacing…

  11. Connect the Dots and Pinhole Constellations.

    ERIC Educational Resources Information Center

    Kominski, John

    1991-01-01

    Identifies a variety of methods to introduce constellations and asterisms to students in the classroom and planetarium prior to their study of the night sky. Materials used include transparencies, oatmeal boxes, photographic slides, and tracing paper. Exercises incorporate storytelling and prediction of location, movement, and seasonal patterns of…

  12. Space Technology 5: Pathfinder for Future Micro-Sat Constellations

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Finnegan, Eric

    2004-01-01

    The Space Technology 5 (ST-5) Project, currently in the implementation phase, is part of the National Aeronautics and Space Administration (NASA) s New Millennium Program (NMP). ST-5 will consist of a constellation of three miniature satellites, each with mass less than 25 kg and size approximately 60 cm by 30 cm. ST-5 addresses technology challenges, as well as fabrication, assembly, test and operations strategies for future micro-satellite missions. ST-5 will be deployed into a highly eccentric, geo-transfer orbit (GTO). This will expose the spacecraft to a high radiation environment as well as provide a low level magnetic background. A three-month flight demonstration phase is planned to validate the technologies and demonstrate concepts for future missions. Each ST-5 spacecraft incorporates NMP competitively-selected breakthrough technologies. These include Cold Gas Micro-Thrusters for propulsion and attitude control, miniature X-band transponder for space-ground communications, Variable Emittance Coatings for dynamic thermal control, and CULPRiT ultra low power logic chip used for Reed-Solomon encoding. The ST-5 spacecraft itself is a technology that can be infused into future missions. It is a fully functional micro-spacecraft built within tight volume and mass constraints. It is built to withstand a high radiation environment, large thermal variations, and high launch loads. The spacecraft power system is low-power and low-voltage, and is designed to turn on after separation &om the launch vehicle. Some of the innovations that are included in the ST-5 design are a custom spacecraft deployment structure, magnetometer deployment boom, nutation damper, X-band antenna, miniature spinning sun sensor, solar array with triple junction solar cells, integral card cage assembly containing single card Command and Data Handling and Power System Electronics, miniature magnetometer, and lithium ion battery. ST-5 will demonstrate the ability of a micro satellite to perform

  13. Aquarius-Pisces Constellation Boundary Update

    NASA Astrophysics Data System (ADS)

    Durst, Steve

    2017-06-01

    Observation, mapping and study of Galaxy Stars has provided humanity direction, foundation, clarity and understanding through the ages.Human civilization advances itself using increasing intelligence and knowledge to develop tools and know how, the science of constellation star maps included: All that has been created by humanity, is to serve humanity.When people continue to use constellation star maps that no longer serve people effectively, the maps are updated, as is now the Aquarius-Pisces Constellation Boundary Update (APCBU), which marks 2000 as the year the Sun is in Aquarius at the vernal equinox.The 21st Century APCBU accounts for and incorporates science factors of precession, relativity and galacticity for professional astronomers, and social imperatives of increasing freedom, liberation and egalitarian culture for the 7.5 billion people of Earth.Twenty years into this first century of a new millennium and a new age is an effective time for an APCBU of such elegant simplicity that it changes less than 0.1% of the area of the IAU 1930 official constellation map, which marks 2597 about the year the Sun is in Aquarius at the time of the vernal equinox.The 21st Century APCBU results provide clarity and direction for humanity's next 2,000 years, if not 10,000 or 12,000 years, and advance the official astronomy / science start of the Aquarius Age -- long anticipated, desired, and imperative, especially in America -- by some 600 years.How much attention is increasingly focused on this region of the sky -- such as the recent discovery of 7 Earth-like worlds orbiting the Trappist-1 star in the Aquarius constellation -- will be an epochal 21st Century phenomenon of human science, society, and starlife.

  14. Life Support Technology Challenges for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn; Bagdigian, Robert; Ewert, Michael

    2007-01-01

    The presentation is for the ECLSS session of the Constellation Technology Exchange Conference and is to describe what new technology challenges the Constellation mission presents for the ECLSS, in order to communicate these needs with industry.

  15. Constellation analysis of an integrated AIS/remote sensing spaceborne system for ship detection

    NASA Astrophysics Data System (ADS)

    Graziano, Maria Daniela; D'Errico, Marco; Razzano, Elena

    2012-08-01

    A future system integrating data from remote sensing and upcoming AIS satellites is analyzed through the development of a novel design method for global, discontinuous coverage constellations. It is shown that 8 AIS satellites suffice to guarantee global coverage and a ship location update of 50 min if the spaceborne AIS receiver has a swath of 2800 nm. Furthermore, synergic utilization of COSMO/SkyMed and Radarsat-C data would provide a mean revisit time of 7 h, with AIS information available within 25 min from SAR data acquisition.

  16. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    NASA Astrophysics Data System (ADS)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi-constellation

  17. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  18. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    This paper describes three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals of command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment-making feasible the operation of tens of even a hundred spacecraft (such as for interferometer or magnetospheric constellation missions).

  19. Fouled Anchors: The CONSTELLATION Question Answered

    DTIC Science & Technology

    1991-09-01

    brought to Baltimore in 1955 and tuned over to the Constellation Commuttee of the Flag House Associat on for public display. In response to Howard...Josephus Daniels spoke before the House of Representatives Committee on Naval Affairs in 1914, supporting a bill to fund restoration, he presented a...where she was publicly exhibited as having been built in Baltimore in 1797. In 1928, the Star-Spangled Banner Flag House Association, incorporated in 1927

  20. Constellation design with geometric and probabilistic shaping

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoliang; Yaman, Fatih

    2018-02-01

    A systematic study, including theory, simulation and experiments, is carried out to review the generalized pairwise optimization algorithm for designing optimized constellation. In order to verify its effectiveness, the algorithm is applied in three testing cases: 2-dimensional 8 quadrature amplitude modulation (QAM), 4-dimensional set-partitioning QAM, and probabilistic-shaped (PS) 32QAM. The results suggest that geometric shaping can work together with PS to further bridge the gap toward the Shannon limit.

  1. Constellation X-Ray Mission and Support

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Grady, Jean (Technical Monitor)

    2002-01-01

    This report is a supplement to the Third Annual Report summarizing work performed by the Smithsonian Astrophysical Observatory (SAO) for NASA Goddard Space Flight Center (GSFC) under Cooperative Agreement NCC5-3681. The Agreement is entitled 'Constellation X-ray Mission Study and Support.' This supplementary report covers the period from October 1, 2001 through January 10, 2002. The report has been prepared and submitted to ensure that the Constellation-X Project Office at GSFC has current performance information needed to evaluate a proposed modified budget for FY02. That proposed budget is being submitted separately. SAO continues to perform work under the overall direction of Dr. Harvey Tananbaum, the SAO Principal Investigator for the program. Mr. Robert Rasche is the SAO Program Manager and is responsible for day-to-day program management at SAO and coordination with GSFC. The report summarizes the main areas of SAO activity. Most of the work has been done jointly with personnel from GSFC and Marshall Space Flight Center (MSFC). We describe SAO participation in these efforts. Under the Agreement, SAO performed work in seven major areas of activity. These areas related to: (1) Constellation X-ray Mission Facility Definition Team and Study Management; (2) Science Support; (3) Spectroscopy X-ray Telescope (SXT); (4) Systems Engineering; (5) Travel in Support of the Work Effort; and (6) In-house Management and Coordination.

  2. A Survey of Geosynchronous Satellite Glints

    DTIC Science & Technology

    2009-09-01

    particular, 8 consecutive nights of photometry were obtained of DirecTV-9S which show the evolution of glints from that satellite . This is of particular...off the spacecraft, which dominates most of the phase angle signatures. However, at times of favorable alignment between the satellite , observer and... timing , shapes, and durations of the glints along with notional glint models. We also briefly discuss glints from other satellites in the constellation

  3. The Cloudsat Mission and the EOS Constellation: A New Dimension of Space-Based Observation of Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.; hide

    2001-01-01

    CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.

  4. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  5. Coverage and control of constellations of elliptical inclined frozen lunar orbits

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2005-01-01

    A great deal of scientific interest exists regarding the permanently shadowed craters near the poles of the Moon where there may be frozen volatiles. These regions, particularly the Moon's South Pole, have been proposed for extensive robotic and human exploration. Unfortunately, they are typically not in view of Earth, and would require some form of communication relay to facilitate exploration via robotic and/or human missions. One solution for such a relay is a long-lived constellation of lunar telecommunication orbiters providing focused coverage at the pole of interest. Robust support requires this coverage to be continuous, redundant, and, in order to minimize costs, this constellation should consist of 3 satellites or fewer.

  6. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay

    2015-01-01

    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  7. A discussion on mobile satellite system and the myths of CDMA and diversity revealed

    NASA Technical Reports Server (NTRS)

    Hart, Nicholas; Goerke, Thomas; Jahn, Axel

    1995-01-01

    The paper explores the myths and facts surrounding: link margins and constellation designs; the use of satellite diversity in a mobile satellite channel; trade-offs in multiple access technique. Different satellite constellations are presented, which are comparable with those used by the big LEO proponents, with the associated trade-offs in the system design. Propagation data and results from various narrowband and wideband measurement campaigns are used to illustrate the expected differences in service performance.

  8. NASA Constellation Distributed Simulation Middleware Trade Study

    NASA Technical Reports Server (NTRS)

    Hasan, David; Bowman, James D.; Fisher, Nancy; Cutts, Dannie; Cures, Edwin Z.

    2008-01-01

    This paper presents the results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL.

  9. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  10. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  11. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    NASA Astrophysics Data System (ADS)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous

  12. Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    NASA Astrophysics Data System (ADS)

    Mandl, D.; Huemmrich, K. F.; Ly, V. T.; Handy, M.; Ong, L.; Crum, G.

    2015-12-01

    With the advent of high performance space networks that provide total coverage for Cubesats, the paradigm for low cost, high temporal coverage with hyperspectral instruments becomes more feasible. The combination of ground cloud computing resources, high performance with low power consumption onboard processing, total coverage for the cubesats and social media provide an opprotunity for an architecture that provides cost-effective hyperspectral data products for natural hazard response and decision support. This paper provides a series of pathfinder efforts to create a scalable Intelligent Payload Module(IPM) that has flown on a variety of airborne vehicles including Cessna airplanes, Citation jets and a helicopter and will fly on an Unmanned Aerial System (UAS) hexacopter to monitor natural phenomena. The IPM's developed thus far were developed on platforms that emulate a satellite environment which use real satellite flight software, real ground software. In addition, science processing software has been developed that perform hyperspectral processing onboard using various parallel processing techniques to enable creation of onboard hyperspectral data products while consuming low power. A cubesat design was developed that is low cost and that is scalable to larger consteallations and thus can provide daily hyperspectral observations for any spot on earth. The design was based on the existing IPM prototypes and metrics that were developed over the past few years and a shrunken IPM that can perform up to 800 Mbps throughput. Thus this constellation of hyperspectral cubesats could be constantly monitoring spectra with spectral angle mappers after Level 0, Level 1 Radiometric Correction, Atmospheric Correction processing. This provides the opportunity daily monitoring of any spot on earth on a daily basis at 30 meter resolution which is not available today.

  13. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when

  14. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  15. Close Approach Prediction Analysis of the Earth Science Constellation with the Fengyun-1C Debris

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Rand, David K.

    2008-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. Each day, close approach predictions are generated by a U.S. Department of Defense Joint Space Operations Center Orbital Safety Analyst using the high accuracy Space Object Catalog maintained by the Air Force's 1" Space Control Squadron. Prediction results and other ancillary data such as state vector information are sent to NASAJGoddard Space Flight Center's (GSFC's) Collision Risk Assessment analysis team for review. Collision analysis is performed and the GSFC team works with the ESC member missions to develop risk reduction strategies as necessary. This paper presents various close approach statistics for the ESC. The ESC missions have been affected by debris from the recent anti-satellite test which destroyed the Chinese Fengyun- 1 C satellite. The paper also presents the percentage of close approach events induced by the Fengyun-1C debris, and presents analysis results which predict the future effects on the ESC caused by this event. Specifically, the Fengyun-1C debris is propagated for twenty years using high-performance computing technology and close approach predictions are generated for the ESC. The percent increase in the total number of conjunction events is considered to be an estimate of the collision risk due to the Fengyun-1C break- UP.

  16. Small satellite space operations

    NASA Technical Reports Server (NTRS)

    Reiss, Keith

    1994-01-01

    recorder validation; global store-and-forward data communications for both scientific and military purposes such as Desert Storm; UHF transponder services for both digital data and voice using a constellation; remote sensor monitoring of weather and oceanographic conditions; classified payloads; and UHF spectrum surveillance. Ground processing has been accomplished by automatic unattended or manual operation. Management of multiple assets highlights the relative ease with which two constellations totaling nine satellites were controlled from one system including constellation station keeping. Our experience in small end-to-end systems including concurrent design, development, and testing of the flight and operational ground systems offers low cost approaches to NASA scientific satellite operations of the 1990's.

  17. Constellation X-Ray Mission and Support

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Grady, Jean (Technical Monitor)

    2005-01-01

    This Final Report summarizes work performed by the Smithsonian Astrophysical Observatory (SAO) for NASA Goddard Space Flight Center (GSFC) under Cooperative Agreement NCC5-368. The Agreement is entitled "Constellation X-ray Mission Study and Support." The report covers the full duration of the Agreement which ran from October 1,1998 to October 14,2004. Included in the report is a description of previously unreported work that was performed between October 2003 and the end of the Agreement. For convenience, the previously unreported work is covered first in Section 2.0. Then, an overall summary of all work performed under the Agreement is presented in Section 3. Section 4.0 contains a list of all formal reports that SAO has submitted to GSFC along with publications and presentations at various conferences.

  18. Development of Constellation's Launch Control System

    NASA Technical Reports Server (NTRS)

    Lougheed, Kirk D.; Peaden, Cary J.

    2010-01-01

    The paper focuses on the National Aeronautics and Space Administration (NASA) Constellation Program's Launch Control System (LCS) development effort at Kennedy Space Center (KSC). It provides a brief history of some preceding efforts to provide launch control and ground processing systems for other NASA programs, and some lessons learned from those experiences. It then provides high level descriptions of the LCS mission, objectives, organization, architecture, and progress. It discusses some of our development tenets, including our use of standards based design and use of off-the-shelf products whenever possible, incremental development cycles, and highly reliable, available, and supportable enterprise class system servers. It concludes with some new lessons learned and our plans for the future.

  19. 2014_11_05_uss_constellation

    NASA Image and Video Library

    2014-11-10

    NASA’s Operation IceBridge collected some rare images on a flight out of Punta Arenas, Chile on Nov. 5, 2014, on a science flight over western Antarctica dubbed Ferrigno-Alison-Abbott 01. Following a routine calibration pass over Punta Arenas airport, the NASA DC-8 overflew the USS Constellation which is being towed for demolition after 53 yeas of service. The crew then snapped a few shots of a calving front of the Antarctic ice sheet. This particular flight plan was designed to collect data on changes in ice elevation along the coast near the Ferrigno and Alison ice streams, on the Abbot Ice Shelf, and grounded ice along the Eights Coast.

  20. Launching the Future... Constellation Program at KSC

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2010-01-01

    With the Constellation Program, NASA is entering a new age of space exploration that will take us back to the Moon, to Mars, and beyond, and NASA is developing the new technology and vehicles to take us there. At the forefront are the Orion spacecraft and the Ares I launch vehicle. As NASA's gateway to space, Kennedy Space Center (KSC) will process and launch the new vehicles. This will require new systems and extensive changes to existing infrastructure. KSC is designing a new mobile launcher, a new launch control system, and new ground support equipment; modifying the Vehicle Assembly Building, one of the launch pads, and other facilities; and launching the Ares I-X flight test. It is an exciting and challenging time to be an engineer at KSC.

  1. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  2. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For

  3. FAST TRACK COMMUNICATION: Affine constellations without mutually unbiased counterparts

    NASA Astrophysics Data System (ADS)

    Weigert, Stefan; Durt, Thomas

    2010-10-01

    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely.

  4. Civil Applications of National Satellites

    NASA Astrophysics Data System (ADS)

    Killam, Dudley B.

    2002-01-01

    For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.

  5. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  6. Science and the Constellation Systems Program Office

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell

    2007-01-01

    An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known

  7. A Constellation of Microsatellites Promises to Help in a Range of Geoscience Research

    NASA Technical Reports Server (NTRS)

    Kuo, Y. H.; Chao, B. F.; Lee, L. C.

    1999-01-01

    An octet of microsatellites to be launched in 2003 promises to deliver a large amount of useful data for meteorological, climatic, ionospheric, and geodetic research as well as for operational weather forecasting and space weather monitoring. Known as the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), the joint Taiwan-U.S. scientific satellite project makes use of Global Positioning System (GPS) occultation and tracking signals. COSMIC's final operational configuration is depicted in Figure 1. Each of the eight microsatellites in low-Earth-orbit (LEO, shown relative to the high-altitude GPS satellite orbits) will carry in particular an advanced limb-sounding GPS receiver, a Tiny Ionospheric Photometer, and a triband beacon transmitter.

  8. Westward tilt of low-latitude plasma blobs as observed by the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Lühr, Hermann; Michaelis, Ingo; Stolle, Claudia; Rauberg, Jan; Buchert, Stephan; Gill, Reine; Merayo, Jose M. G.; Brauer, Peter

    2015-04-01

    In this study we investigate the three-dimensional structure of low-latitude plasma blobs using multi-instrument and multisatellite observations of the Swarm constellation. During the early commissioning phase the Swarm satellites were flying at the same altitude with zonal separation of about 0.5∘ in geographic longitude. Electron density data from the three satellites constrain the blob morphology projected onto the horizontal plane. Magnetic field deflections around blobs, which originate from field-aligned currents near the irregularity boundaries, constrain the blob structure projected onto the plane perpendicular to the ambient magnetic field. As the two constraints are given for two noncoplanar surfaces, we can get information on the three-dimensional structure of blobs. Combined observation results suggest that blobs are contained within tilted shells of geomagnetic flux tubes, which are similar to the shell structure of equatorial plasma bubbles suggested by previous studies.

  9. Cross Calibration of the GPS Constellation CXD Proton Data With GOES EPS

    NASA Astrophysics Data System (ADS)

    Carver, Matthew R.; Sullivan, John P.; Morley, Steven K.; Rodriguez, Juan V.

    2018-03-01

    Accurate proton flux measurements of the near-Earth environment are essential to the understanding of many phenomena which have a direct impact on our lives. Currently, there is only a small set of satellites capable of performing these measurements which makes certain studies and analyses difficult. This paper details the capabilities of the Combined X-ray Dosimeter (CXD), flown on 21 satellites of the Global Positioning System constellation, as it relates to proton measurements. We present a cross calibration of the CXD with the Energetic Particle Sensor (EPS) onboard the Geostationary Operational Environmental Satellite operated by the National Oceanic and Atmospheric Administration. By utilizing Solar Energetic Particle Events when both sets of satellites were operational we have orders of magnitude in flux and energy to compare against. Robust statistical analyses show that the CXD and Geostationary Operational Environmental Satellite flux calculations are similar and that for proton energies >30 MeV the CXD fluxes are on average within 20% of EPS. Although the CXD has a response to protons as low as 6 MeV, the sensitivity at energies below 20 MeV is reduced and so flux comparisons of these are generally worse. Integral flux values >10 MeV are typically within 40% of EPS. These calibrated CXD data sets will give researchers capabilities to study solar proton access to the inner magnetosphere down to L 4 near the equatorial plane at high temporal cadence.

  10. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  11. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  12. Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Sośnica, K.; Bury, G.; Zajdel, R.

    2018-03-01

    All satellites of new Global Navigation Satellite Systems (GNSS) are equipped with laser retroreflectors dedicated to Satellite Laser Ranging (SLR). This paper demonstrates the contribution of SLR tracking of multi-GNSS constellations to the improved SLR-derived reference frame and scientific products. We show a solution strategy with estimating satellite orbits, SLR station coordinates, geocenter coordinates, and Earth rotation parameters using SLR observations to 2 Laser Geodynamics Satellites (LAGEOS) and 55 GNSS satellites: 1 GPS, 31 Globalnaya Navigatsionnaya Sputnikovaya Sistema, 18 Galileo, 3 BeiDou Inclined Geosynchronous Orbit, 1 BeiDou Medium Earth Orbit, and 1 Quasi-Zenith Satellite System satellite for the period 2014.0-2017.4. Due to a substantial number of GNSS observations, the number of weekly solutions for some SLR stations, for example, Arkhyz, Komsomolsk, Altay, and Brasilia, is larger up to 41% in the combined LAGEOS + GNSS solution when compared to the LAGEOS-only solution. The SLR observations to GNSS can transfer the orientation of the reference frame from GNSS to SLR solutions. As a result, the SLR-derived pole coordinates and length-of-day estimates become more consistent with GNSS microwave-based results. The root-mean-square errors of length-of-day are reduced from 122.5 μs/d to 43.0 μs/d, whereas mean offsets are reduced from -81.6 μs/d to 0.5 μs/d in LAGEOS only and in the combined LAGEOS + GNSS solutions, respectively.

  13. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  14. Preliminary Design of Nano Satellite for Regional Navigation System

    NASA Astrophysics Data System (ADS)

    Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.

    2018-04-01

    A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.

  15. Trends in mobile satellite communication

    NASA Technical Reports Server (NTRS)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  16. Analysis For Monitoring the Earth Science Afternoon Constellation

    NASA Technical Reports Server (NTRS)

    Demarest, Peter; Richon, Karen V.; Wright, Frank

    2005-01-01

    The Earth Science Afternoon Constellation consists of Aqua, Aura, PARASOL, CALIPSO, Cloudsat, and the Orbiting Carbon Observatory (OCO). The coordination of flight dynamics activities between these missions is critical to the safety and success of the Afternoon Constellation. This coordination is based on two main concepts, the control box and the zone-of-exclusion. This paper describes how these two concepts are implemented in the Constellation Coordination System (CCS). The CCS is a collection of tools that enables the collection and distribution of flight dynamics products among the missions, allows cross-mission analyses to be performed through a web-based interface, performs automated analyses to monitor the overall constellation, and notifies the missions of changes in the status of the other missions.

  17. Origins of the ancient constellations: I. The Mesopotamian traditions

    NASA Astrophysics Data System (ADS)

    Rogers, J. H.

    1998-02-01

    In the sky-map of ancient Babylon, constellations had two different roles, and thus developed into two overlapping traditions. One set of constellations represented the gods and their symbols; the other set represented rustic activities and provided a farming calendar. Many constellations were shared by the two traditions, but in some regions of sky there were alternative divine and rustic figures. These figures developed in stages from ~3200 BC to ~500 BC. Of the divine set, the most important (although the last to be finalised) were the twelve zodiacal signs, plus several associated animals (the serpent, crow, eagle, and fish), which were all transmitted to the classical Greek sky-map that we still use today. Conversely, the rustic constellations of workers and tools and animals were not transmitted to the West. However, a few of them may have survived in Bedouin Arab sky-maps of the first millennium AD.

  18. Human Rating Requirements for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Berdich, Debbie

    2008-01-01

    NASA s Constellation Program (CxP) will conduct a series of human space expeditions of increasing scope, starting with missions supporting the International Space Station and expanding to encompass the Moon and Mars. Although human-rating is an integral part of all CxP activities throughout their life cycle, NASA Procedural Requirements document NPR 8705.2B, Human-Rating Requirements (HRR) for Space Flight Systems, defines the additional processes, procedures, and requirements necessary to produce human-rated space systems that protect the safety of crew members and passengers on these NASA missions. In order to be in compliance with 8705.2B the CxP must show appropriate implementation or progression toward the HRR, or justification for an exception. Compliance includes an explanation of how the CxP intends to meet the HRR, analyses to be performed to determine implementation; and a matrix to trace the HRR to CxP requirements. The HRR requires the CxP to establish a human system integration team (HSIT), consisting of astronauts, mission operations personnel, training personnel, ground processing personnel, human factors personnel, and human engineering experts, with clearly defined authority, responsibility, and accountability to lead the human-system integration. For example, per the HRR the HSIT is involved in the evaluation of crew workload, human-in-the-loop usability evaluations, determining associated criteria, and in assessment of how these activities influenced system design. In essence, the HSIT is invaluable in CxP s ability to meet the three fundamental tenets of human rating: the process of designing, evaluating, and assuring that the total system can safely conduct the required human missions; the incorporation of design features and capabilities that accommodate human interaction with the system to enhance overall safety and mission success; and the incorporation of design features and capabilities to enable safe recovery of the crew from hazardous

  19. University Nanosatellite Program ION-F Constellation

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Fullmer, Rees; Redd, Frank

    2002-01-01

    The Space Engineering program at Utah State University has developed a small satellite, known as USUSat, under funding from AFOSR, AFRL, NASA and Utah State University's Space Dynamics Laboratory. This satellite was designed and significantly manufactured by students in the Mechanical and Aerospace Engineering and the Electrical and Computer Engineering Departments within the College of Engineering. USUSat is one of three spacecraft being designed for the Ionospheric Observation Nanosatellite Formation (ION- F). This formation comprises three 15 kg. spacecraft designed and built in cooperation by Utah State University, University of Washington, and Virginia Polytechnic Institute. The ION-F satellites are being designed and built by students at the three universities, with close coordination to insure compatibility for launch, deployment, and the formation flying mission. The JON-F mission is part of the U.S. Air Force Research Laboratory (AFRL) University Nanosatellite Program, which provides technology development and demonstrations for the TechSat2l Program. The University Nanosatellite Program involves 10 universities building nanosatellites for a launch in 2004 on two separate space shuttle missions. Additional support for the formation flying demonstration has been provided by NASA's Goddard Space Flight Center.

  20. Internet-Protocol-Based Satellite Bus Architecture Designed

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2004-01-01

    NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.

  1. Test and Verification Approach for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Strong, Edward

    2008-01-01

    This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.

  2. The HUMSAT System: a CubeSat-based Constellation for In-situ and Inexpensive Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Tubío-Pardavila, R.; Vigil, S. A.; Puig-Suari, J.; Aguado Agelet, F.

    2014-12-01

    There is a requirement for low cost in-situ measurements of environmental parameters such as air quality, meteorological data, and water quality in remote areas. Currently available solutions for such measurements include remote sensing from satellite and aircraft platforms, and in-situ measurements from mobile and aircraft platforms. Fixed systems such as eddy covariance networks, tall towers, and the Total Carbon Column Observing Network (TCCON) are providing precision greenhouse gas measurements. Within this context, the HUMSAT system designed by the University of Vigo (Spain) will complement existing high-precision measurement systems with low cost in-situ ground based sensors in remote locations using a constellation of CubeSats as a communications relay. The HUMSAT system standardizes radio communications in between deployed sensors and the CubeSats of the constellation, which act as store and forward satellites to ground stations for uploading to the internet. Current ground stations have been established at the University of Vigo (Spain) and California Polytechnic State University (Cal Poly). Users of the system may deploy their own environmental sensors to meet local requirements. The sensors will be linked to a low-cost satellite data transceiver using a standard HUMSAT protocol. The transceiver is capable of receiving data from the HUMSAT constellation to remotely reconfigure sensors without the need of physically going to the sensor location. This transceiver uses a UHF channel around 437 MHz to exchange short data messages with the sensors. These data messages can contain up to 32 bytes of useful information and are transmitted at a speed around 300 bps. The protocol designed for this system handles the access to the channel by all these elements and guarantees a correct transmission of the information in such an scenario. The University of Vigo has launched the first satellite of the constellation, the HUMSAT-D CubeSat in November 2013 and has

  3. Cross-Calibration of the GPS Constellation CXD Proton Data with GOES EPS

    DOE PAGES

    Carver, Matthew Robert; Sullivan, John P.; Morley, Steven Karl; ...

    2018-02-20

    Accurate proton flux measurements of the near Earth environment are essential to the understanding of many phenomena which have a direct impact on our lives. Currently there is only a small set of satellites capable of performing these measurements which makes certain studies and analyses difficult. This paper details the capabilities of the Combined X-ray Dosimeter (CXD), flown on 21 satellites of the Global Positioning System (GPS) constellation, as it relates to proton measurements. We present a cross-calibration of the CXD with the Energetic Particle Sensor (EPS) onboard the Geostationary Operational Environmental Satellite (GOES) operated by the National Oceanic andmore » Atmospheric Administration (NOAA). By utilizing Solar Energetic Particle Events (SEPEs) when both sets of satellites were operational we have orders of magnitude in flux and energy to compare against. Robust statistical analyses show that the CXD and GOES flux calculations are similar and that for proton energies > 30 MeV the CXD fluxes are on average within 20% of EPS. Although the CXD has a response to protons as low as 6 MeV the sensitivity at energies below 20 MeV is reduced and so flux comparisons of these are generally worse. Integral flux values > 10 MeV are typically within 40% of EPS. These calibrated CXD data sets will give researchers capabilities to study solar proton access to the inner magnetosphere down to L ~ 4 near the equatorial plane at high temporal cadence.« less

  4. Cross-Calibration of the GPS Constellation CXD Proton Data with GOES EPS

    SciTech Connect

    Carver, Matthew Robert; Sullivan, John P.; Morley, Steven Karl

    Accurate proton flux measurements of the near Earth environment are essential to the understanding of many phenomena which have a direct impact on our lives. Currently there is only a small set of satellites capable of performing these measurements which makes certain studies and analyses difficult. This paper details the capabilities of the Combined X-ray Dosimeter (CXD), flown on 21 satellites of the Global Positioning System (GPS) constellation, as it relates to proton measurements. We present a cross-calibration of the CXD with the Energetic Particle Sensor (EPS) onboard the Geostationary Operational Environmental Satellite (GOES) operated by the National Oceanic andmore » Atmospheric Administration (NOAA). By utilizing Solar Energetic Particle Events (SEPEs) when both sets of satellites were operational we have orders of magnitude in flux and energy to compare against. Robust statistical analyses show that the CXD and GOES flux calculations are similar and that for proton energies > 30 MeV the CXD fluxes are on average within 20% of EPS. Although the CXD has a response to protons as low as 6 MeV the sensitivity at energies below 20 MeV is reduced and so flux comparisons of these are generally worse. Integral flux values > 10 MeV are typically within 40% of EPS. These calibrated CXD data sets will give researchers capabilities to study solar proton access to the inner magnetosphere down to L ~ 4 near the equatorial plane at high temporal cadence.« less

  5. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-08

    JSC2010-E-019461 (8 Feb. 2010) --- STS-131 crew members participate in a training session in an International Space Station mock-up/trainer in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left (foreground) are NASA astronaut Stephanie Wilson, Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki and NASA astronaut Clayton Anderson, all mission specialists. Pictured from the left (background) are NASA astronauts Alan Poindexter, commander; along with Dorothy Metcalf-Lindenburger and Rick Mastracchio, both mission specialists. Instructor Jeremy Owen (right foreground) assisted the crew members. Not pictured is NASA astronaut James P. Dutton Jr., pilot.

  6. Global tracking and inventory of military hardware via LEO satellite: A system approach and likely scenario

    NASA Technical Reports Server (NTRS)

    Bell, David; Estabrook, Polly; Romer, Richard

    1995-01-01

    A system for global inventory control of electronically tagged military hardware is achievable using a LEO satellite constellation. An equipment Tag can communicate directly to the satellite with a power of 5 watts or less at a data rate of 2400 to 50,000 bps. As examples, two proposed commercial LEO systems, IRIDIUM and ORBCOMM, are both capable of providing global coverage but with dramatically different telecom capacities. Investigation of these two LEO systems as applied to the Tag scenario provides insight into satellite design trade-offs, constellation trade-offs and signal dynamics that effect the performance of a satellite-based global inventory control system.

  7. NASA A-Train and Terra Observations of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Douglass, A. R.; DaSilva, A.; Torres, O.; Levy, R.; Duncan, B. N.

    2011-01-01

    Wildfires raged throughout western Russia and parts of Eastern Europe during a persistent heat wave in the summer of 2010. Anomalously high surface temperatures (35 - 41 C) and low relative humidity (9 - 25 %) from mid- June to mid-August 2010 shown by analysis of radiosonde data from multiple sites in western Russia were ideal conditions for the wildfires to thrive. Measurements of outgoing longwave radiation (OLR) from the Atmospheric Infrared Sounder (AIRS) over western Russian indicate persistent subsidence during the heat wave. Daily three-day back-trajectories initiated over Moscow reveal a persistent anticyclonic circulation for 18 days in August, coincident with the most intense period of fire activity observed by Moderate Resolution Imaging Spectroradiometer (MODIS). This unfortunate meteorological coincidence allowed transport of polluted air from the region of intense fires to Moscow and the surrounding area. We demonstrate that the 2010 Russian wildfires are unique in the record of observations obtained by remote-sensing instruments on-board NASA satellites: Aura and Aqua (part of the A-Train Constellation) and Terra. Analysis of the distribution of MODIS fire products and aerosol optical thickness (AOT), UV aerosol index (AI) and single-scattering albedo (SSA) from Aura's Ozone Monitoring Instrument (OMI), and total column carbon monoxide (CO) from Aqua s Atmospheric Infrared Sounder (AIRS) show that the region in the center of western Russia surrounding Moscow (52-58 deg N, 33 -43 deg E) is most severely impacted by wildfire emissions. Over this area, AIRS CO, OMI AI, and MODIS AOT are significantly enhanced relative to the historical satellite record during the first 18 days in August when the anti-cyclonic circulation persisted. By mid-August, the anti-cyclonic circulation was replaced with westerly transport over Moscow and vicinity. The heat wave

  8. Towards Simpler Custom and OpenSearch Services for Voluminous NEWS Merged A-Train Data (Invited)

    NASA Astrophysics Data System (ADS)

    Hua, H.; Fetzer, E.; Braverman, A. J.; Lewis, S.; Henderson, M. L.; Guillaume, A.; Lee, S.; de La Torre Juarez, M.; Dang, H. T.

    2010-12-01

    To simplify access to large and complex satellite data sets for climate analysis and model verification, we developed web services that is used to study long-term and global-scale trends in climate, water and energy cycle, and weather variability. A related NASA Energy and Water Cycle Study (NEWS) task has created a merged NEWS Level 2 data from multiple instruments in NASA’s A-Train constellation of satellites. We used this data to enable creation of climatologies that include correlation between observed temperature, water vapor and cloud properties from the A-Train sensors. Instead of imposing on the user an often rigid and limiting web-based analysis environment, we recognize the need for simple and well-designed services so that users can perform analysis in their own familiar computing environments. Custom on-demand services were developed to improve data accessibility of voluminous multi-sensor data. Services enabling geospatial, geographical, and multi-sensor parameter subsets of the data, as well a custom time-averaged Level 3 service will be presented. We will also show how a Level 3Q data reduction approach can be used to help “browse” the voluminous multi-sensor Level 2 data. An OpenSearch capability with full text + space + time search of data products will also be presented as an approach to facilitated interoperability with other data systems. We will present our experiences for improving user usability as well as strategies for facilitating interoperability with other data systems.

  9. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    SciTech Connect

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  10. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE PAGES

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; ...

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  11. A-Train Data Depot: Integrating and Visualizing Atmospheric Measurements Along the A-Train Tracks

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Stephens, Graeme; Winker, Dave; Leptoukh, Greg; Reinke, Don; Smith, Peter

    2006-01-01

    The succession of US and international satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the ATrain. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000) The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot, to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The A-Train Data Depot (ATDD) will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth s Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archwing for fast data access, and Cooperative Institute for Research in the Atmosphere (CRA) data co-registration tools. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be followed by associated measurements from MLS, OMI, HIRDLS, and TES. Given the independent nature of instrument/platform development, the ATDD project has been met with many interesting challenges that, once

  12. Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat Constellation

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Kummerow, C. D.; Chandra, C. V.; van den Heever, S. C.; L'Ecuyer, T. S.; Luo, Z. J.; Haddad, Z. S.; Munchak, S. J.; Ruf, C. S.; Berg, G.; Koch, T.; Boukabara, S. A.

    2014-12-01

    TEMPEST addresses key science needs related to cloud and precipitation processes using a constellation of five CubeSats with identical five-frequency millimeter-wave radiometers spaced 5-10 minutes apart in orbit. The deployment of CubeSat constellations on satellite launches of opportunity allows Earth system observations to be accomplished with greater robustness, shorter repeat times and at a small fraction of the cost of typical Earth Science missions. The current suite of Earth-observing satellites is capable of measuring precipitation parameters using radar or radiometric observations. However, these low Earth-orbiting satellites provide only a snapshot of each storm, due to their repeat-pass times of many hours to days. With typical convective events lasting 1-2 hours, it is highly unlikely that the time evolution of clouds through the onset of precipitation will be observed with current assets. The TEMPEST CubeSat constellation directly observes the time evolution of clouds and identifies changes in time to detect the moment of the onset of precipitation. The TEMPEST millimeter-wave radiometers penetrate into the cloud to directly observe changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction because it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for a 6U CubeSat architecture and fits well within the NASA CubeSat Launch Initiative (CSLI) capabilities. Five identical CubeSats deployed in the same orbital plane with 5-10 minute spacing at 390-450 km altitude and 50-65 degree inclination capture 3 million observations of precipitation, including 100,000 deep convective events in a one

  13. Small optical inter-satellite communication system for small and micro satellites

    NASA Astrophysics Data System (ADS)

    Iwamoto, Kyohei; Nakao, Takashi; Ito, Taiji; Sano, Takeshi; Ishii, Tamotsu; Shibata, Keiichi; Ueno, Mitsuhiro; Ohta, Shinji; Komatsu, Hiromitsu; Araki, Tomohiro; Kobayashi, Yuta; Sawada, Hirotaka

    2017-02-01

    Small optical inter-satellite communication system to be installed into small and micro satellites flying on LEO are designed and experimentally verified of its fundamental functions. Small, light weighted, power efficient as well as usable data transmission rate optical inter-satellite communication system is one of promising approach to provide realtime data handling and operation capabilities for micro and small satellite constellations which have limited conditions of payload. Proposed system is designed to connect satellites with 4500 (km) long maximum to be able to talk with ground station continuously by relaying LEO satellites even when they are in their own maneuvers. Connecting satellites with 4500 (km) long with keeping steady data rate, accurate pointing and tracking method will be one of a crucial issue. In this paper, we propose a precious pointing and tracking method and system with a miniature optics and experimentally verified almost 10 (μrad) of pointing accuracy with more than 500 (mrad) of angular coverage.

  14. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  15. A New Synthesis for the Origin of the Greek Constellations

    NASA Astrophysics Data System (ADS)

    Schaefer, B. E.

    2005-08-01

    The Greek constellations constitute one of the longest enduring intellectual properties of humanity. While various papers attribute the origin of the constellations to many diverse possibilities, main stream historians view the origin as largely being in Mesopotamia after around 1350 BC with transmission to the Greeks around 500 BC or so. The evidence for this synthesis is cuneiform and iconographic records that first mention constellations from roughly 1350-500 BC. My recent research on precessional dating has added much detail to this old synthesis. The earliest surviving written description of the Greek constellations is Aratus' Phaenomenon, which is a copy of Eudoxus' lost book of the same name. Hipparchus' Commentary also extensively quotes from Eudoxus. With 172 observations from Eudoxus, I derive a precessional date of 1130 ± 80 BC and a latitude of 36.0 ± 0.9 degrees north. Further, the positioning of the southern void amongst the Greek constellations yields a date of 690 BC (with an uncertainty of 2-4 centuries) and a latitude of 33 degrees (with an uncertainty of 1-3 degrees) for the six southernmost constellations. The earliest surviving description of the Mesopotamian constellations is the MUL.APIN tablet series, with the oldest dated example from the 8th century BC. My precessional calculation gives a date of 1100 BC and a latitude of 33 north. I also see that Eudoxus and MUL.APIN share a substantial number of observations. In all, some Assyrian observer(s) between 33-36 degrees north latitude around the time of 1300-1000 BC apparently invented many of the constellations adopted by the Greeks and made a database of observations later repeated by MUL.APIN, Eudoxus, Aratus, and Hipparchus. But this is not the whole story, as this only accounts for 19 Greek constellations which are identical in stars and representation with the Mesopotamian sky. An additional 12 Greek constellations have the same star groups as the Babylonians yet have completely

  16. Characterising volcanic cycles at Soufriere Hills Volcano, Montserrat: Time series analysis of multi-parameter satellite data

    NASA Astrophysics Data System (ADS)

    Flower, Verity J. B.; Carn, Simon A.

    2015-10-01

    The identification of cyclic volcanic activity can elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation to cross-correlate cyclical signals identified using complementary measurement techniques at Soufriere Hills Volcano (SHV), Montserrat. In this paper we present a Multi-taper (MTM) Fast Fourier Transform (FFT) analysis of coincident SO2 and thermal infrared (TIR) satellite measurements at SHV facilitating the identification of cyclical volcanic behaviour. These measurements were collected by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) (respectively) in the A-Train. We identify a correlating cycle in both the OMI and MODIS data (54-58 days), with this multi-week feature attributable to episodes of dome growth. The 50 day cycles were also identified in ground-based SO2 data at SHV, confirming the validity of our analysis and further corroborating the presence of this cycle at the volcano. In addition a 12 day cycle was identified in the OMI data, previously attributed to variable lava effusion rates on shorter timescales. OMI data also display a one week (7-8 days) cycle attributable to cyclical variations in viewing angle resulting from the orbital characteristics of the Aura satellite. Longer period cycles possibly relating to magma intrusion were identified in the OMI record (102-, 121-, and 159 days); in addition to a 238-day cycle identified in the MODIS data corresponding to periodic destabilisation of the lava dome. Through the analysis of reconstructions generated from cycles identified in the OMI and MODIS data, periods of unrest were identified, including the major dome collapse of 20th May 2006 and significant explosive event of 3rd January 2009. Our analysis confirms the potential for identification of cyclical volcanic activity through combined

  17. Dark Energy, Dark Matter and Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  18. Prehistory of Zodiac Dating: Three Strata of Upper Paleolithic Constellations

    NASA Astrophysics Data System (ADS)

    Gurshtein, Alex A.

    A pattern of archaic proto-constellations is extracted from Aratus' "The Phaenomena" didactic poem list according to a size criterion elaborated earlier, and their symbolism is analyzed. As a result of this approach three celestial symbolical strata are discovered to be probably a reflection of the symbols for the Lower, the Middle and the Upper Worlds; the Under-World creatures have a water character, the Middle World ones are mostly anthropomorphic and flying beings are for the Upper World. The strata excerpted from Aratus' sky seems to be in agreement with the well-known Babylonian division into three god pathways for Ea (Enki), Anu and Enlil. There is a possibility of dating the pattern discovered because of precession's strong influence as far back as 16 thousand years, the result being supported by the comparison of different star group mean sizes. The archaic constellation pattern under consideration is a reasonable background of symbolical meanings for the first Zodiacal generation quartet (7.5 thousand years old) examined by the author previously. The enormous size of the Argo constellation (Ship of Argo and his Argonauts) as well as the large sizes of other southern constellations are explained as due to the existence of an accumulation zone near the South celestial pole. Some extra correlations between the reconstruction proposed and cultural data available are discussed. The paper is the second part of the investigation "On the Origin of the Zodiacal constellations" published in Vistas in Astronomy, vol.36, pp.171-190, 1993.

  19. Constellation Pharmacology: A new paradigm for drug discovery

    PubMed Central

    Schmidt, Eric W.; Olivera, Baldomero M.

    2015-01-01

    Constellation Pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (“constellations”) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation Pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically-active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the on-going development of Constellation Pharmacology, there is a positive-feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As Constellation Pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform. PMID:25562646

  20. Comparison between multi-constellation ambiguity-fixed PPP and RTK for maritime precise navigation

    NASA Astrophysics Data System (ADS)

    Tegedor, Javier; Liu, Xianglin; Ørpen, Ole; Treffers, Niels; Goode, Matthew; Øvstedal, Ola

    2015-06-01

    In order to achieve high-accuracy positioning, either Real-Time Kinematic (RTK) or Precise Point Positioning (PPP) techniques can be used. While RTK normally delivers higher accuracy with shorter convergence times, PPP has been an attractive technology for maritime applications, as it delivers uniform positioning performance without the direct need of a nearby reference station. Traditional PPP has been based on ambiguity-­float solutions using GPS and Glonass constellations. However, the addition of new satellite systems, such as Galileo and BeiDou, and the possibility of fixing integer carrier-phase ambiguities (PPP-AR) allow to increase PPP accuracy. In this article, a performance assessment has been done between RTK, PPP and PPP-AR, using GNSS data collected from two antennas installed on a ferry navigating in Oslo (Norway). RTK solutions have been generated using short, medium and long baselines (up to 290 km). For the generation of PPP-AR solutions, Uncalibrated Hardware Delays (UHDs) for GPS, Galileo and BeiDou have been estimated using reference stations in Oslo and Onsala. The performance of RTK and multi-­constellation PPP and PPP-AR are presented.

  1. Nanosatellites constellation as an IoT communication platform for near equatorial countries

    NASA Astrophysics Data System (ADS)

    Narayanasamy, A.; Ahmad, Y. A.; Othman, M.

    2017-11-01

    Anytime, anywhere access for real-time intelligence by Internet of Things (IoT) is changing the way that the whole world will operate as it moves toward data driven technologies. Over the next five years, IoT related devices going to have a dramatic breakthrough in current and new applications, not just on increased efficiency and cost reduction on current system, but it also will make trillion-dollar revenue generation and improve customer satisfaction. IoT communications is the networking of intelligent devices which enables data collection from remote assets. It covers a broad range of technologies and applications which connect to the physical world while allowing key information to be transferred automatically. The current terrestrial wireless communications technologies used to enable this connectivity include GSM, GPRS, 3G, LTE, WIFI, WiMAX and LoRa. These connections occur short to medium range distance however, none of them can cover a whole country or continent and the networks are getting congested with the multiplication of IoT devices. In this study, we discuss a conceptual design of a nanosatellite constellation those can provide a space-based communication platform for IoT devices for near Equatorial countries. The constellation design i.e. the orbital plane and number of satellites and launch deployment concepts are presented.

  2. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  3. New Insight into Polar Stratospheric Cloud Processes from A-Train Observations

    NASA Astrophysics Data System (ADS)

    Pitts, M. C.; Poole, L. R.

    2016-12-01

    Polar stratospheric clouds (PSCs) play essential roles in the chemical depletion of stratospheric ozone at high latitudes. Heterogeneous reactions occurring on PSC particles, primarily supercooled ternary (H2SO4-H2O-HNO3) solution (STS) droplets, convert stable chlorine reservoir species to highly reactive ozone-destructive forms. Also, sedimentation and evaporation of large nitric acid trihydrate (NAT) particles irreversibly redistributes odd nitrogen and prolongs ozone depletion by slowing the reformation of stable chlorine reservoirs. Even after three decades of research, significant gaps in our understanding of PSC processes still exist, particularly concerning NAT nucleation and the extent to which chlorine is activated on cold background aerosol prior to PSC formation. These uncertainties limit our ability to represent PSCs accurately in global models and call into question predictions of ozone recovery in a changing climate. PSC observations from the A-Train satellite constellation have stimulated a number of new research activities that have both extended and challenged our knowledge of PSC processes and modeling capabilities. Specifically, the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite is providing information on PSC morphology and composition in unprecedented detail, while the Microwave Limb Sounder (MLS) on the Aura satellite is providing nearly coincident measurements of gas-phase HNO3 and H2O, the major constituents of all PSC particles. The combined analyses of these datasets enable better PSC composition discrimination and provide valuable new insight into processes such as PSC-catalyzed chlorine activation and PSC particle growth kinetics. The more than ten years of CALIOP and MLS measurements have uniquely captured the primary aspects of the seasonal and multi-year variability of PSCs in the Arctic and Antarctic and are enabling the

  4. Measurements of Ionospheric Density, Temperature, and Spacecraft Charging in a Space Weather Constellation

    NASA Astrophysics Data System (ADS)

    Balthazor, R. L.; McHarg, M. G.; Wilson, G.

    2016-12-01

    The Integrated Miniaturized Electrostatic Analyzer (IMESA) is a space weather sensor developed by the United States Air Force Academy and integrated and flown by the DoD's Space Test Program. IMESA records plasma spectrograms from which can be derived plasma density, temperature, and spacecraft frame charging. Results from IMESA currently orbiting on STPSat-3 are presented, showing frame charging effects dependent on a complex function of the number of solar panel cell strings switched in, solar panel current, and plasma density. IMESA will fly on four more satellites launching in the next two calendar years, enabling an undergraduate DoD space weather constellation in Low Earth Orbit that has the ability to significantly improve space weather forecasting capabilities using assimilative forecast models.

  5. The interhemispheric and F region dynamo currents revisited with the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Kervalishvili, Guram; Michaelis, Ingo; Rauberg, Jan; Ritter, Patricia; Park, Jaeheung; Merayo, Jose M. G.; Brauer, Peter

    2015-05-01

    Based on magnetic field data sampled by the Swarm satellite constellation it is possible for the first time to determine uniquely F region currents at low latitudes. Initial results are presented from the first 200 days of formation flight (17 April to 5 November 2014). Detailed results have been obtained for interhemispheric field-aligned currents connecting the solar quiet day magnetic variation (Sq) current systems in the two hemispheres. We obtain prominent currents from the Southern (winter) Hemisphere to the Northern around noon. Weaker currents in opposite direction are observed during morning and evening hours. Furthermore, we could confirm the existence of vertical currents above the dip equator, downward around noon and upward around sunset. For both current systems we present and discuss longitudinal variations.

  6. Infusing Stretch Goal Requirements into the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Galpin, Roger A.; Ingoldsby, Kevin

    2008-01-01

    In 2004, the Vision for Space Exploration (VSE) was announced by the United States President's Administration in an effort to explore space and to extend a human presence across our solar system. Subsequently, the National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop a constellation of new capabilities, supporting technologies, and foundational research that allows for the sustained and affordable exploration of space. Then, ESMD specified the primary mission for the Constellation Program to carry out a series of human expeditions, ranging from Low Earth Orbit (LEO) to the surface of Moon, Mars, and beyond for the purposes of conducting human exploration of space. Thus, the Constellation Program was established at the Lyndon B. Johnson Space Center (JSC) to manage the development of the flight and ground infrastructure and systems that can enable continued and extended human access to space. Constellation Program's "Design Objectives" call for an early attention to the program's life cycle costs management through the Program's Need, Goals, and Objectives (NGO) document, which provides the vision, scope, and key areas of focus for the Program. One general policy of the Constellation Program, found in the Constellation Architecture Requirements Document (CARD), states: "A sustainable program hinges on how effectively total life cycle costs are managed. Developmental costs are a key consideration, but total life cycle costs related to the production, processing, and operation of the entire architecture must be accounted for in design decisions sufficiently to ensure future resources are available for ever more ambitious missions into the solar system....It is the intent of the Constellation Program to aggressively manage this aspect of the program using the design policies and simplicity." To respond to the Program's strong desire to manage the program life cycle costs, special efforts were

  7. Air Quality Study Using Satellites - Current Capability and Future Plans

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of

  8. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR, over the Raleigh fading channel. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  9. EOS Terra Terra Constellation Exit/Future Maneuver Plans Update

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Constellation Exit/Future Maneuver Plans Update presentation will discuss brief history of Terra EOM work; lifetime fuel estimates; baseline vs. proposed plan origin; resultant exit orbit; baseline vs. proposed exit plan; long term orbit altitude; revised lifetime proposal and fallback options.

  10. The Constellation-X Mission: Science Prospects and Technology Challenges

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2007-01-01

    This talk will describe the Constellation-X mission. It will present the key scientific goals, relating to strong gravity, dark energy, ultra-dense matter and cosmic structure. The mission configuration will be described. Emphasis will be placed on the design and anticipated implementation of the X-ray mirror system.

  11. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  12. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  13. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  14. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  15. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  16. Video Games, Identity, and the Constellation of Information

    ERIC Educational Resources Information Center

    Martin, Crystle

    2012-01-01

    This article explores the identity of youth in relation to the information sources they choose in the constellation of information of video games, using the massively multiplayer online game "World of Warcraft" as an example. From this study, several identities are recognized that are combinations of the participants skill and level in the game,…

  17. Launching Science: Science Opportunities Provided by NASA's Constellation System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA began implementation of the first phases of a new space exploration policy. This implementation effort included the development of a new human-carrying spacecraft, known as Orion; the Altair lunar lander; and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System (described in Chapter 5 of this report). The Altair lunar lander, which is in the very preliminary concept stage, is not discussed in detail in the report. In 2007 NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System. To do so, the NRC established the Committee on Science Opportunities Enabled by NASA's Constellation System. In general, the committee interpreted "Constellation-enabled" broadly, to include not only mission concepts that required Constellation, but also those that could be significantly enhanced by Constellation. The committee intends this report to be a general overview of the topic of science missions that might be enabled by Constellation, a sort of textbook introduction to the subject. The mission concepts that are reviewed in this report should serve as general examples of kinds of missions, and the committee s evaluation should not be construed as an endorsement of the specific teams that developed the mission concepts or of their proposals. Additionally, NASA has a well-developed process for establishing scientific priorities by asking the NRC to conduct a "decadal survey" for a particular discipline. Any scientific mission that eventually uses the Constellation System will have to be properly evaluated by means of this decadal survey process. The committee was impressed with the scientific potential of many of the proposals that it evaluated. However, the committee notes that the Constellation System has been justified by NASA and selected in order to enable human exploration beyond low Earth orbit.not to enable science missions. Virtually all of the science

  18. A new higher performance NGO satellite for direct audio/video broadcast

    NASA Astrophysics Data System (ADS)

    Briskman, Robert D.; Foust, Joseph V.

    2010-03-01

    A three satellite constellation using non-geostationary orbits (NGO) was launched in the latter half of 2000. It is providing direct satellite broadcasting audio and video services to over 9 million mobile and fixed subscribers throughout North America. The constellation will be augmented with a geostationary satellite called FM-5 in 2009, providing increased availability to the user with this "Hybrid" constellation. Effort has recently started on replacement satellites for the original NGO satellites, the first one called FM-6. This new satellite will be placed in a different orbital plane from the original ones providing a constellation which brings further operational improvements. The paper describes the new satellite which has twice the prime and radio frequency (RF) power than the original and a 9 m diameter aperture transmit antenna whose shaped antenna beam delivers much higher effective isotropic radiated power (EIRP). Other technology advances used in the satellite such as electric propulsion, precision star sensors, and enhanced performing lithium-ion batteries are also described in the paper.

  19. Odyssey personal communications satellite system

    NASA Technical Reports Server (NTRS)

    Spitzer, Christopher J.

    1993-01-01

    The spectacular growth of cellular telephone networks has proved the demand for personal communications. Large regions of the world are too sparsely populated to be economically served by terrestrial cellular communications. Since satellites are well suited to this application, TRW filed with the FCC on May 31, 1993 for the Odyssey construction permit. Odyssey will provide high quality wireless communication services worldwide from satellites. These services will include: voice, data, paging, and messaging. Odyssey will be an economical approach to providing communications. A constellation of 12 satellites will be orbited in three, 55 deg. inclined planes at an altitude of 10,354 km to provide continuous coverage of designated regions. Two satellites will be visible anywhere in the world at all times. This dual visibility leads to high line-of-sight elevation angles, minimizing obstructions by terrain, trees and buildings. Each satellite generates a multibeam antenna pattern that divides its coverage area into a set of contiguous cells. The communications system employs spread spectrum CDMA on both the uplinks and downlinks. This signaling method permits band sharing with other systems and applications. Signal processing is accomplished on the ground at the satellite's 'Gateway' stations. The 'bent pipe' transponders accommodates different regional standards, as well as signaling changes over time. The low power Odyssey handset will be cellular compatible. Multipath fade protection is provided in the handset.

  20. The application of decommissioned GEO satellites to CAPS

    NASA Astrophysics Data System (ADS)

    Fu, S. Y.; Wang, Z. R.; Shi, H. L.; Ma, L. H.

    2018-06-01

    To ensure the reliable service of geostationary earth orbiting (GEO) communication satellites during the period of in-orbit, the hardware design life of each system usually has some redundancies in contrast to the limited fuel used to keep the satellite position and attitude. After the brief analysis of the life of the satellite subsystems, the feasibility of turning the decommissioned GEO communication satellites into slightly inclined geosynchronous orbiting (SIGSO) satellites is proved. In addition, the role and the actual usage of SIGSO satellites in Chinese Area Positioning System (CAPS) are analysed and discussed, including the effect on the improvement of Position Dilution of Precision (PDOP) of the navigation constellation and the application to satellite communication system, thus the potential value of satellite material and devices is exploited.

  1. Constellation Program Life-cycle Cost Analysis Model (LCAM)

    NASA Technical Reports Server (NTRS)

    Prince, Andy; Rose, Heidi; Wood, James

    2008-01-01

    The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.

  2. Human Systems Integration in Practice: Constellation Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zumbado, Jennifer Rochlis

    2012-01-01

    NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.

  3. Non-explosive actuation for the ORBCOMM (TM) satellite

    NASA Technical Reports Server (NTRS)

    Robinson, Anthony; Courtney, Craig; Moran, Tom

    1995-01-01

    Spool-based non-explosive actuator (NEA) devices are used for three important holddown and release functions during the establishment of the ORBCOMM (TM) constellation. Non-explosive separation nuts are used to restrain and release the 26 individual satellites into low earth orbit. Cable release mechanisms based on the same technology are used to release the solar arrays and antenna boom.

  4. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2016-01-01

    Design Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellation Abstract Communication systems are described that use geometrically PSK shaped constellations that have increased capacity compared to conventional PSK constellations operating within a similar SNR band. The geometrically shaped PSK constellation is optimized based upon parallel decoding capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  5. Satellite Conferences

    Science.gov Websites

    NOAA- NESDIS Banner Satellite Conferences Collage images of earth, POES and GOES satellites in space HOME Call for Poster Abstracts DOC Logo NOAA Logo Satellite Conferences Welcome to the website for National Oceanic and Atmospheric Administration (NOAA) Satellite Conferences; past, present and future

  6. Sentinel-2B image quality commissioning phase results and Sentinel2 constellation performances

    NASA Astrophysics Data System (ADS)

    Languille, F.; Gaudel, A.; Vidal, B.; Binet, R.; Poulain, V.; Trémas, T.

    2017-09-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites on a polar sun-synchronous orbit with a revisit time of 5 days (with both satellites), a high field of view - 290km, 13 spectral bands in visible and shortwave infrared, and high spatial resolution - 10m, 20m and 60m. The Sentinel-2 mission offers a global coverage over terrestrial surfaces. The satellites acquire systematically terrestrial surfaces under the same viewing conditions in order to have temporal images stacks. The first satellite was launched in June 2015 and the second in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensured the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 Global Reference Image (GRI) geolocation performance assessment. This paper points on geometric image quality on Sentinel-2B commissioning phase. It relates to the methods and the performances obtained, as well as the comparison between S2A and S2B. This deals with geolocation and multispectral registration. A small focus is also done on the Sentinel-2 GRI which is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference leads to ensure an accurate multi-temporal registration -on refined Sentinel-2 products over GRI- which is also presented in this paper.

  7. Small- and Large-scale Morphology of the Near-Earth Energetic Charged Particle Environment from a Ten-element CubeSat Constellation

    NASA Astrophysics Data System (ADS)

    Klumpar, D. M.; Gunderson, A.

    2014-12-01

    A 10-satellite constellation placed in Low Earth Orbit (LEO) will carry high geometric factor omnidirectional integrating energetic particle detectors responsive to electrons greater than ~500 keV to characterize the near-Earth distribution of Van Allen Belt electrons precipitating or mirroring at altitudes between ~350 and ~500 km. The full constellation will be constructed by two deployments of identical 1.5U CubeSats into LEO. The first launch will deploy eight satellites into a polar sun-synchronous orbit from the Island of Kauai in the Hawaiian Islands to form the NASA/Ames Research Center "Edison Demonstration of Smallsat Networks" (EDSN) swarm of satellites. The on-board Energetic Particle Integrating Space Environment Monitor (EPISEM) instrument built by the Space Science and Engineering Laboratory at Montana State University consists of a cylindrical 12 cm*2-ster omnidirectional Geiger counter sensitive to electrons above about 500 keV. The eight EDSN satellites are expected to deploy in late November 2014 into an 410 x 485 km orbit at ~92 degrees inclination forming two slowly-separating groups of four measurement platforms each to set up the initial 8-satellite swarm. Separately, two additional copies of the EDSN satellites will deploy from the International Space Station as elements of the NODES mission into a 52 degree inclination orbit at about 375 km altitude. Together the 10 satellites will characterize the distribution of low altitude penetrating electrons over spatial scales from 10's to thousands of km. The paper will describe the mission concept, the implementation of the spacecraft, and the unusual operations concept that allows stored science data to be collected from all eight satellites of the EDSN swarm through an intersatellite communications link and transferred to the ground by a single member of the swarm. The EDSN satellites operate completely autonomously without ground uplink. The paper will also include early scientific results if

  8. Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations

    NASA Astrophysics Data System (ADS)

    Hitomi, N.; Selva, D.; Blackwell, W. J.

    2014-12-01

    MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can

  9. Massive pulsating stars observed by BRITE-Constellation. I. The triple system β Centauri (Agena)

    NASA Astrophysics Data System (ADS)

    Pigulski, A.; Cugier, H.; Popowicz, A.; Kuschnig, R.; Moffat, A. F. J.; Rucinski, S. M.; Schwarzenberg-Czerny, A.; Weiss, W. W.; Handler, G.; Wade, G. A.; Koudelka, O.; Matthews, J. M.; Mochnacki, St.; Orleański, P.; Pablo, H.; Ramiaramanantsoa, T.; Whittaker, G.; Zocłońska, E.; Zwintz, K.

    2016-04-01

    modes originate in which component did not succeed, but there is potential for using this method when more BRITE data become available. Conclusions: Agena seems to be one of very few rapidly rotating massive objects with rich p- and g-mode spectra, and precisely known masses. It can therefore be used to gain a better understanding of the excitation of pulsations in relatively rapidly rotating stars and their seismic modeling. Lacking proper mode identification, the pulsation frequencies found in β Cen cannot yet be used to constrain the internal structure of the components, but it may be possible to achieve this in the future with the use of spectroscopy and spectropolarimetry. In particular, these kinds of data can be used for mode identification since they provide new radial velocities. In consequence, they may help to improve the orbital solution, derive more precise masses, magnetic field strength and geometry, inclination angles, and reveal rotation periods. They may also help to assign pulsation frequencies to components. Finally, the case studied here illustrates the potential of BRITE-Constellation data for the detection of rich-frequency spectra of small-amplitude modes in massive pulsating stars. Based on data collected by the BRITE-Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA) and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Centre for Science (NCN).

  10. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies

  11. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  12. Enhancements to TetrUSS for NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Frink, Neal T.; Abdol-Hamid, Khaled S.; Samareh, Jamshid A,; Parlete, Edward B.; Taft, James R.

    2011-01-01

    The NASA Constellation program is utilizing Computational Fluid Dynamics (CFD) predictions for generating aerodynamic databases and design loads for the Ares I, Ares I-X, and Ares V launch vehicles and for aerodynamic databases for the Orion crew exploration vehicle and its launch abort system configuration. This effort presents several challenges to applied aerodynamicists due to complex geometries and flow physics, as well as from the juxtaposition of short schedule program requirements with high fidelity CFD simulations. NASA TetrUSS codes (GridTool/VGRID/USM3D) have been making extensive contributions in this effort. This paper will provide an overview of several enhancements made to the various elements of TetrUSS suite of codes. Representative TetrUSS solutions for selected Constellation program elements will be shown. Best practices guidelines and scripting developed for generating TetrUSS solutions in a production environment will also be described.

  13. Constellation crew exploration vehicle, or CEV, is being prepare

    NASA Image and Video Library

    2007-11-27

    In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars.

  14. Science with Constellation-X, Choice of Instrumentation

    NASA Technical Reports Server (NTRS)

    Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean

    2007-01-01

    The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.

  15. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  16. Life Support Requirements and Challenges for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Carasquillo, Robyn

    2007-01-01

    NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for 210 days duration at the lunar outpost with limited resource resupply capability wilt require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration EVA's will be particularly challenging. This presentation will summarize the key program and mission life support requirements for the Constellation Program and the unique challenges they present for technology and architecture development.

  17. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  18. Constellation Program: Lessons Learned. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L. (Editor)

    2011-01-01

    This document (Volume I) provides an executive summary of the lessons learned from the Constellation Program. A companion Volume II provides more detailed analyses for those seeking further insight and information. In this volume, Section 1.0 introduces the approach in preparing and organizing the content to enable rapid assimilation of the lessons. Section 2.0 describes the contextual framework in which the Constellation Program was formulated and functioned that is necessary to understand most of the lessons. Context of a former program may seem irrelevant in the heady days of new program formulation. However, readers should take some time to understand the context. Many of the lessons would be different in a different context, so the reader should reflect on the similarities and differences in his or her current circumstances. Section 3.0 summarizes key findings developed from the significant lessons learned at the program level that appear in Section 4.0. Readers can use the key findings in Section 3.0 to peruse for particular topics, and will find more supporting detail and analyses in Section 4.0 in a topical format. Appendix A contains a white paper describing the Constellation Program formulation that may be of use to readers wanting more context or background information. The reader will no doubt recognize some very similar themes from previous lessons learned, blue-ribbon committee reviews, National Academy reviews, and advisory panel reviews for this and other large-scale human spaceflight programs; including Apollo, Space Shuttle, Shuttle/Mir, and the ISS. This could represent an inability to learn lessons from previous generations; however, it is more likely that similar challenges persist in the Agency structure and approach to program formulation, budget advocacy, and management. Perhaps the greatest value of these Constellation lessons learned can be found in viewing them in context with these previous efforts to guide and advise the Agency and its

  19. Comet Hale-Bopp in the constellation Andromeda

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Comet Hale-Bopp was photographed in the constellation Andromeda by George Shelton, photographer for The Bionetics Corp., at 8:14 p.m. on March 31, 1997, from Merritt Island, Florida, close to the Kennedy Space Center. During this 24-hour period, Comet Hale- Bopp is making its closest approach to the Sun.

  20. Methodology and method and appartus for signaling with capacity optimized constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.

  1. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.

  2. What the Heliophysics System Observatory is teaching us about future constellations

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.

    2017-12-01

    gained over the years. Classical single-satellite, multi-sensor or imaging missions can benefit from the context that constellations provide. CubeSats, a disruptive technology, are catalysts for the emergence of constellations, a new research and operations asset for Heliophysics.

  3. New Science Enabled by the NASA TROPICS CubeSat Constellation Mission

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Braun, S. A.; Bennartz, R.; Velden, C.; Demaria, M.; Atlas, R. M.; Dunion, J. P.; Marks, F.; Rogers, R. F.; Annane, B.

    2017-12-01

    Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones, including: (1) relationships of rapidly evolving precipitation and upper cloud structures to upper-level warm-core intensity and associated storm intensity changes; (2) the evolution of precipitation structure and storm intensification in relationship to environmental humidity fields; and (3) the impact of rapid-update observations on numerical and statistical intensity forecasts of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using 3 channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single

  4. Long Term Measurement of the Earth's Radiation Budget using a constellation of Broadband Radiometers hosted on Iridium NEXT

    NASA Astrophysics Data System (ADS)

    Gupta, Om Prakash; Thoma, Donald; Chaloner, Chris; Russell, Jacqueline; Simpson, Bill; Spilling, David; Morris, Nigel; Caldwell, Martin; Oneill, Alan

    The WMO called for "bringing new missions to operational status" and that "ERB should be measured through a constellation of sensors". A unique opportu-nity exists to host a set of Earth Radiation Budget (ERB) sensors on the Iridium NEXT (NEXT) LEO constellation in a cost effective manner that can deliver these requirements. The NEXT constellation, with 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of Earth observation missions including ERB. Launches are planned to begin in 2014 through 2016. The ERB both drives and responds to global climate and monitoring it can provide much insight into the climate system and how it might be changing. A climate quality measurement of the ERB requires high absolute accuracy and excellent stability and a long-term (decades) data record in order to inform the debate about global warming. Measurement of the ERB in terms of the broadband reflected solar (0.3 to 4 µm) and emitted thermal (4 to 200 µm) components have been identified as high priority by the WMO for climate observations. High temporal resolution is the key advantage offered by the NEXT platform and can provide a great step forward in accurately monitoring the energy balance of the planet. The sensor we propose will consist of a broad band instrument and associated imager for scene identification and cloud classification. There is the chance to place two such sensors in each of six different orbital planes this will improve the product refresh time from currently 12 hours to 3 hours. The increased temporal resolution will allow direct measure-ment of the changes to the broadband radiances that result from rapidly varying components of the climate such as cloud and aerosol, and avoid the need of relying on narrow band sensors to infer such changes. Considering that the prediction of cloud response to climate change is still a major source of uncertainty; improved measurement of the cloud effect and

  5. Analysis of a Constellation Lab Cooperative Learning Activity

    NASA Astrophysics Data System (ADS)

    Gauthier, A. J.

    2001-12-01

    A cooperative learning activity was designed for use in the undergraduate laboratory course Introduction to Astronomical Observation. This group exercise enhances the student's learning of constellations and will hopefully increase retention of the material throughout the semester. It also serves as an "ice-breaker" during the first week of lab, promoting student involvement and vested interest in the course. To gain some insight into the student mind, a survey was conducted to evaluate the usefulness and overall opinion of this method. The students who completed the survey had previously been enrolled in a pre-requisite astronomy course that also required a constellation lab. In this previous course they "learned" the constellations from an instructor and a flashlight beam, studied them on their own, and then promptly took a quiz. Both methods are analyzed from an instructional designer's point of view and suggestions for future activities are presented. The preliminary results and accompanying activity will be discussed in poster and hand-out medium.

  6. Learning Curve for Teaching Constellations in a Planetarium

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Smith, N.; Moody, J. W.; Stephens, D. C.; Joner, M. D.; Hintz, M.; Lawler, J.; Jones, M.; Bench, N.

    2014-01-01

    As part of a larger project we have examined how students learn constellations in a planetarium environment. Students in our introductory descriptive astronomy class were given a 50 object quiz before any instruction. This quiz includes 30 constellations, 17 bright stars, two star clusters, and the Orion Nebula. In addition we gathered a small set of demographic information. After the initial quiz we tracked student scores through the semester to see how long it took for them to learn all 50 objects. We also plan to give a follow-up constellation quiz to students who have previously taken the quiz to test for retention. This will cover a time line for 6 months up to 4 years. We will present our early results from this study. This data will also be used as a baseline for a study of Head Mounted Displays to teach a deaf audience in a planetarium. This work is partially supported by funding from the National Science Foundation grant IIS-1124548 and the Sorenson Foundation.

  7. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Astrophysics Data System (ADS)

    Committee On Science Opportunities Enabled By Nasa'S Constellation System, National Research Council

    To begin implementation of the Vision for Space Exploration (recently renamed "United States Space Exploration Policy"), NASA has begun development of new launch vehicles and a human-carrying spacecraft that are collectively called the Constellation System. In November 2007, NASA asked the NRC to evaluate the potential for the Constellation System to enable new space science opportunities. For this interim report, 11 existing "Vision Mission" studies of advanced space science mission concepts inspired by earlier NASA forward-looking studies were evaluated. The focus was to assess the concepts and group them into two categories: more-deserving or less deserving of future study. This report presents a description of the Constellation System and its opportunities for enabling new space science opportunities, and a systematic analysis of the 11 Vision Mission studies. For the final report, the NRC issued a request for information to the relevant communities to obtain ideas for other mission concepts that will be assessed by the study committee, and several issues addressed only briefly in the interim report will be explored more fully.

  8. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.

  9. The Science Goals of the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Tananbaum, Harvey; Weaver, Kimberly; Petre, Robert; Bookbinder, Jay

    2004-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution spectroscopy. The mission will also perform routine high- resolution X-ray spectroscopy of faint and extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity, and ionization state for a wide range of astrophysical problems. This has enormous potential for the discovery of new unexpected phenomena. The Constellation-X mission is a high priority in the National Academy of Sciences McKee-Taylor Astronomy and Astrophysics Survey of new Astrophysics Facilities for the first decade of the 21st century.

  10. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)

    2015-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e., `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR (signal to noise ratio). In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d (sub min) (i.e. minimum distance between constellations) are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  11. The Synergistic Use of NASA's A-Train Observations to Characterize the Planetary Boundary Layer and Enable Improved Understanding and Prediction of Land-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Santanello, J. A.; Friedl, M. A.; Susskind, J.; Palm, S. P.

    2010-12-01

    The planetary boundary layer (PBL) serves as a short-term memory of land-atmosphere (L-A) interactions through the diurnal integration of surface fluxes and subsequent evolution of PBL fluxes and states. Recent advances in satellite remote sensing offer the ability to monitor PBL and land surface properties at increasingly high spatial and temporal resolutions and, consequently, have the potential to provide valuable information on the terrestrial energy and water cycle across a range of scales. In this study, we evaluate the retrieval of PBL structure and temperature and moisture properties from measurements made by NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) , and Atmospheric Infrared Sounder (AIRS) instruments aboard the 'A-Train' constellation. The global coverage of these sensors greatly improves upon the coarse network of synoptic radiosonde and intermittent satellite and ground remote sensing currently available, and combining the high vertical and spectral resolution of these sensors allows for PBL retrievals to be evaluated in the context of their relationship with the land surface. Results include an evaluation of CALIPSO, MODIS, and AIRS temperature and humidity retrievals using radiosonde data, focusing on how well PBL properties (e.g. PBL height, temperature, humidity, and stability) can be discerned from each sensor under a range of conditions. Overall, this research is timely in assessing the potential for merging complimentary information from independent sensors, and provides a unique opportunity to evaluate and apply NASA data to answer fundamental questions regarding observation, understanding, and prediction of L-A interactions and coupling.

  12. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... training in an approved course of training at a base other than its main operations base if: (a) An...

  13. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... training in an approved course of training at a base other than its main operations base if: (a) An...

  14. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... training in an approved course of training at a base other than its main operations base if: (a) An...

  15. 14 CFR 141.91 - Satellite bases.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... training in an approved course of training at a base other than its main operations base if: (a) An...

  16. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  17. Satellite remote sensing as a tool in Lahar disaster management.

    PubMed

    Kerle, Norman; Oppenheimer, Clive

    2002-06-01

    At least 40,000 deaths have been attributed to historic lahars (volcanic mudflows). The most recent lahar disaster occurred in 1998 at Casita volcano, Nicaragua, claiming over 2,500 lives. Lahars can cover large areas and be highly destructive, and constitute a challenge for disaster management. With infrastructure affected and access frequently impeded, disaster management can benefit from the synoptic coverage provided by satellite imagery. This potential has been recognisedfor other types of natural disasters, but limitations are also known. Dedicated satellite constellations for disaster response and management have been proposed as one solution. Here we investigate the utility of currently available and forthcoming optical and radar sensors as tools in lahar disaster management. Applied to the Casita case, we find that imagery available at the time could not have significantly improved disaster response. However, forthcoming satellites, especially radar, will improve the situation, reducing the benefit of dedicated constellations.

  18. Tracking strategies for laser ranging to multiple satellite targets

    NASA Technical Reports Server (NTRS)

    Robbins, J. W.; Smith, D. E.; Kolenkiewicz, R.

    1994-01-01

    By the middle of the decade, several new Laser Geodynamic Satellites will be launched to join the current constellation comprised of the laser geodynamic satellite (LAGEOS) (US), Starlette (France), Ajisai (Japan), and Etalon I and II (USSR). The satellites to be launched, LAGEOS II and III (US & Italy), and Stella (France), will be injected into orbits that differ from the existing constellation so that geodetic and gravimetric quantities are sampled to enhance their resolution and accuracy. An examination of various possible tracking strategies adopted by the network of laser tracking stations has revealed that the recovery of precise geodetic parameters can be obtained over shorter intervals than is currently obtainable with the present constellation of satellites. This is particularly important in the planning of mobile laser tracking operations, given a network of permanently operating tracking sites. Through simulations, it is shown that laser tracking of certain satellite passes, pre-selected to provide optimal sky-coverage, provides the means to acquire a sufficient amount of data to allow the recovery of 1 cm station positions.

  19. Filamentary field-aligned currents at the polar cap region during northward interplanetary magnetic field derived with the Swarm constellation

    PubMed Central

    Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje

    2017-01-01

    ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833

  20. Using Cell Phones From Satellites

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    2000-01-01

    During the past several years, an interest has grown in using commercial telecommunications techniques to supply Telemetry and Command (T&C) services. Recently, the National Aeronautics and Space Administration (NASA) Space Operations Management Office (SOMO) has outlined plans to utilize satellite-based telecommunications services to support space operations in space missions over the next several decades. NASA currently obtains the bulk of its telecommunications services for earth-orbiting satellites via the existing government-owned and controlled Space Network (SN) system. This system consists of the constellation of Tracking and Data Relay Satellites (TDRS) in Geostationary Earth Orbit (GEO) and the associated ground terminals and communications intrastructure. This system is valuable and effective for scientific satellites costing over one million dollars. However, for smaller satellites, this system becomes problematic due to the cost of transponders and support infrastructure. The nominal transponders for using the TDRS cannot be obtained for a cost in dollars, and size, weight, or power that the 3 Corner Satellite project can afford. For these types of nanosatellite missions, alternatives that fit the mission cost and satellite profiles are needed. In particular, low-cost access using existing commercial infrastructure would be useful to mission planners. In particular, the ability to obtain low data rate T&C services would be especially valuable. The nanosatellites generally have low T&C requirements and therefore would benefit from using commercial services that could operate in the 2400 bps - 9600 bps range, especially if contact times longer than the 5 - 10 minute ground station passes could be found.

  1. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  2. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland

    Treesearch

    Jan U.H. Eitel; Lee A. Vierling; Marcy E. Litvak; Dan S. Long; Urs Schulthess; Alan A. Ager; Dan J. Krofcheck; Leo Stoscheck

    2011-01-01

    Multiple plant stresses can affect the health, esthetic condition, and timber harvest value of conifer forests. To monitor spatial and temporal dynamic forest stress conditions, timely, accurate, and cost-effective information is needed that could be provided by remote sensing. Recently, satellite imagery has become available via the RapidEye satellite constellation to...

  3. The roAp star α Circinus as seen by BRITE-Constellation

    NASA Astrophysics Data System (ADS)

    Weiss, W. W.; Fröhlich, H.-E.; Pigulski, A.; Popowicz, A.; Huber, D.; Kuschnig, R.; Moffat, A. F. J.; Matthews, J. M.; Saio, H.; Schwarzenberg-Czerny, A.; Grant, C. C.; Koudelka, O.; Lüftinger, T.; Rucinski, S. M.; Wade, G. A.; Alves, J.; Guedel, M.; Handler, G.; Mochnacki, St.; Orleanski, P.; Pablo, B.; Pamyatnykh, A.; Ramiaramanantsoa, T.; Rowe, J.; Whittaker, G.; Zawistowski, T.; Zocłońska, E.; Zwintz, K.

    2016-04-01

    We report on an analysis of high-precision, multi-colour photometric observations of the rapidly-oscillating Ap (roAp) star α Cir. These observations were obtained with the BRITE-Constellation, which is a coordinated mission of five nanosatellites that collects continuous millimagnitude-precision photometry of dozens of bright stars for up to 180 days at a time in two colours (≈Johnson B and R). BRITE stands for BRight Target Explorer. The object α Cir is the brightest roAp star and an ideal target for such investigations, facilitating the determination of oscillation frequencies with high resolution. This star is bright enough for complementary interferometry and time-resolved spectroscopy. Four BRITE satellites observed α Cir for146 d or 33 rotational cycles. Phasing the photometry according to the 4.4790 d rotational period reveals qualitatively different light variations in the two photometric bands. The phased red-band photometry is in good agreement with previously-published WIRE data, showing a light curve symmetric about phase 0.5 with a strong contribution from the first harmonic. The phased blue-lband data, in contrast, show an essentially sinusoidal variation. We model both light curves with Bayesian Photometric Imaging, which suggests the presence of two large-scale, photometrically bright (relative to the surrounding photosphere) spots. We also examine the high-frequency pulsation spectrum as encoded in the BRITE photometry. Our analysis establishes the stability of the main pulsation frequency over the last ≈20 yr, confirms the presence of frequency f7, which was not detected (or the mode not excited) prior to 2006, and excludes quadrupolar modes for the main pulsation frequency. Based on data collected by the BRITE-Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency, the University of Vienna, the Canadian Space Agency (CSA), the Foundation for Polish Science

  4. Heterogeneous quantum computing for satellite constellation optimization: solving the weighted k-clique problem

    NASA Astrophysics Data System (ADS)

    Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III

    2018-04-01

    NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.

  5. Application of the Terrestar Satellite Constellation to the Global Initiative for Tracking Special and Nonproliferation Material

    DTIC Science & Technology

    2011-09-01

    A.  EXPERIMENT BACKGROUND ................................................................35  1.  BlackBerry Messenger...in Orbit (From [Terrestar, 2011])..................................................24  Figure 11.  BlackBerry Tag...36  Figure 12.  OV-1 Diagram of BlackBerry Tag

  6. Investigating GAIM-GM’s Capability to Sense Ionospheric Irregularities via Walker Satellite Constellations

    DTIC Science & Technology

    2015-03-26

    aligned along the Earth’s geomagnetic equator [9]. Nava’s method was analyzed under the research of Fenton , who investigated GAIM-GM’s capability to handle...the plasma bubbles without additional inputs. Fenton determined that GAIM-GM handled the evolution of the plasma bubbles poorly [2]. With the results...0 0 2 2 .3 0 Z . 66 Bibliography 1. Space Environment Corporation. Ionospheric Forecast Model Version 4.4a, 2002. 2. Kenneth Fenton . Assessment of

  7. The Ocean Surface Topography Constellation: The Next 15 Years in Satellite Altimetry

    DTIC Science & Technology

    2012-02-22

    global coverage in 2007 - to estimate changes in volume due to the warming of the oceans. 5.2 Ocean State Estimation Regarding ocean climate analyses...Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer , D., Eds...Venice, Italy, 21-25 September 2009, Hall, J„ Harrison D.E. and Stammer , D., Eds., ESA Publication WPP-306, 2010. 8. Balmaseda, M., Alves, O

  8. Coordinated Resource Allocation Among Multiple Agents With Application to Autonomous Refueling and Servicing of Satellite Constellations

    DTIC Science & Technology

    2008-03-01

    invited). • American Control Conference, Minneapolis, MN, June 14–16, 2006 (invited). • AAS Spaceflight Mechanics Meeting, Sedona, AZ, Jan. 28-Feb. 1...Rensselaer Polytechnic Institute, Troy, NY, October 22, 2007. 4.2 Transitions Parts of this work have been used by the group of Dr. Alan Lovell of AFRL... Lovell , Space Vehicles Directorate, AFRL/VSES, 3550 Aberdeen Ave SE, Kirtland AFB, New Mexico 87117-5776, Tel: (505) 853-4132, Fax: (505) 846-6053, Email

  9. Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.

    2010-01-01

    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with

  10. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  11. Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.; Amiri, N.; Lazio, J.; Belov, K.; Kasper, J. C.

    2016-12-01

    Constellations of small spacecraft could be used to realize a low-frequency phased array for either heliophysics or astrophysics observations. However, there are issues that arise with an orbiting array that do not occur on the ground, thus rendering much of the existing radio astronomy software inadequate for data analysis and simulation. In this work we address these issues and consider the performance of two constellation concepts. The first is a 32-spacecraft constellation for astrophysical observations, and the second is a 5-element concept for pointing to the location of radio emission from coronal mass ejections (CMEs). For the first, we fill the software gap by extending the APSYNSIM software to simulate the aperture synthesis for a radio interferometer in orbit. This involves using the dynamic baselines from the relative motion of the individual spacecraft as well as the capability to add galactic noise. The ability to simulate phase errors corresponding to positional uncertainty of the antennas was also added. The upgraded software was then used to model the imaging of a 32 spacecraft constellation that would orbit the moon to image radio galaxies like Cygnus A at .3-30 MHz. Animated images showing the improvement of the dirty image as the orbits progressed were made. RMSE plots that show how well the dirty image matches the input image as a function of integration time were made. For the second concept we performed radio interferometric simulations of the Sun Radio Interferometer Space Experiment (SunRISE) using the Common Astronomy Software Applications (CASA) package. SunRISE is a five spacecraft phased array that would orbit Earth to localize the low frequency radio emission from CMEs. This involved simulating the array in CASA, creating truth images for the CMEs over the entire frequency band of SunRISE, and observing them with the simulated array to see how well it could localize the true position of the CME. The results of our analysis show that we

  12. Multi-Objective Scheduling for the Cluster II Constellation

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2011-01-01

    This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.

  13. Multiple continuous coverage of the earth based on multi-satellite systems with linear structure

    NASA Astrophysics Data System (ADS)

    Saulskiy, V. K.

    2009-04-01

    A new and wider definition is given to multi-satellite systems with linear structure (SLS), and efficiency of their application to multiple continuous coverage of the Earth is substantiated. Owing to this widening, SLS have incorporated already well-recognized “polar systems” by L. Rider and W.S. Adams, “kinematically regular systems” by G.V. Mozhaev, and “delta-systems” by J.G. Walker, as well as “near-polar systems” by Yu.P. Ulybyshev, and some other satellite constellations unknown before. A universal method of SLS optimization is presented, valid for any values of coverage multiplicity and the number of satellites in a system. The method uses the criterion of minimum radius of a circle seen from a satellite on the surface of the globe. Among the best SLS found in this way there are both systems representing the well-known classes mentioned above and new orbit constellations of satellites.

  14. Methodology and Method and Apparatus for Signaling With Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2014-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  15. Determination of motion extrema in multi-satellite systems

    NASA Astrophysics Data System (ADS)

    Allgeier, Shawn E.

    Spacecraft, or satellite formation flight has been a topic of interest dating back to the Gemini program of the 1960s. Traditionally space missions have been designed around large monolithic assets. Recent interest in low cost, rapid call up mission architectures structured around fractionated systems, small satellites, and constellations has spurred renewed efforts in spacecraft relative motion problems. While such fractionated, or multi-body systems may provide benefits in terms of risk mitigation and cost savings, they introduce new technical challenges in terms of satellite coordination. Characterization of satellite formations is a vital requirement for them to have utility to industry and government entities. Satellite formations introduce challenges in the form of constellation maintenance, inter-satellite communications, and the demand for more sophisticated guidance, navigation, and control systems. At the core of these challenges is the orbital mechanics which govern the resulting motion. New applications of algebraic techniques are applied to the formation flight problem, specifically Gröbner basis tools, as a means of determining extrema of certain quantities pertaining to formation flight. Specifically, bounds are calculated for the relative position components, relative speed, relative velocity components, and range rate. The position based metrics are relevant for planning formation geometry, particularly in constellation or Earth observation applications. The velocity metrics are relevant in the design of end game interactions for rendezvous and proximity operations. The range rate of one satellite to another is essential in the design of radio frequency hardware for inter-satellite communications so that the doppler shift can be calculated a priori. Range rate may also have utility in space based surveillance and space situational awareness concerns, such as cross tagging. The results presented constitute a geometric perspective and have utility

  16. The Development and Delivery of On-Demand RADARSAT Constellation Mission Ground Deformation Products Based on Advanced Insar Technology

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; Feng, W.

    2017-12-01

    InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.

  17. An Approach to Speed up Single-Frequency PPP Convergence with Quad-Constellation GNSS and GIM

    PubMed Central

    Cai, Changsheng; Gong, Yangzhao; Gao, Yang; Kuang, Cuilin

    2017-01-01

    The single-frequency precise point positioning (PPP) technique has attracted increasing attention due to its high accuracy and low cost. However, a very long convergence time, normally a few hours, is required in order to achieve a positioning accuracy level of a few centimeters. In this study, an approach is proposed to accelerate the single-frequency PPP convergence by combining quad-constellation global navigation satellite system (GNSS) and global ionospheric map (GIM) data. In this proposed approach, the GPS, GLONASS, BeiDou, and Galileo observations are directly used in an uncombined observation model and as a result the ionospheric and hardware delay (IHD) can be estimated together as a single unknown parameter. The IHD values acquired from the GIM product and the multi-GNSS differential code bias (DCB) product are then utilized as pseudo-observables of the IHD parameter in the observation model. A time varying weight scheme has also been proposed for the pseudo-observables to gradually decrease its contribution to the position solutions during the convergence period. To evaluate the proposed approach, datasets from twelve Multi-GNSS Experiment (MGEX) stations on seven consecutive days are processed and analyzed. The numerical results indicate that the single-frequency PPP with quad-constellation GNSS and GIM data are able to reduce the convergence time by 56%, 47%, 41% in the east, north, and up directions compared to the GPS-only single-frequency PPP. PMID:28587305

  18. An Approach to Speed up Single-Frequency PPP Convergence with Quad-Constellation GNSS and GIM.

    PubMed

    Cai, Changsheng; Gong, Yangzhao; Gao, Yang; Kuang, Cuilin

    2017-06-06

    The single-frequency precise point positioning (PPP) technique has attracted increasing attention due to its high accuracy and low cost. However, a very long convergence time, normally a few hours, is required in order to achieve a positioning accuracy level of a few centimeters. In this study, an approach is proposed to accelerate the single-frequency PPP convergence by combining quad-constellation global navigation satellite system (GNSS) and global ionospheric map (GIM) data. In this proposed approach, the GPS, GLONASS, BeiDou, and Galileo observations are directly used in an uncombined observation model and as a result the ionospheric and hardware delay (IHD) can be estimated together as a single unknown parameter. The IHD values acquired from the GIM product and the multi-GNSS differential code bias (DCB) product are then utilized as pseudo-observables of the IHD parameter in the observation model. A time varying weight scheme has also been proposed for the pseudo-observables to gradually decrease its contribution to the position solutions during the convergence period. To evaluate the proposed approach, datasets from twelve Multi-GNSS Experiment (MGEX) stations on seven consecutive days are processed and analyzed. The numerical results indicate that the single-frequency PPP with quad-constellation GNSS and GIM data are able to reduce the convergence time by 56%, 47%, 41% in the east, north, and up directions compared to the GPS-only single-frequency PPP.

  19. Image quality validation of Sentinel 2 Level-1 products: performance status at the beginning of the constellation routine phase

    NASA Astrophysics Data System (ADS)

    Francesconi, Benjamin; Neveu-VanMalle, Marion; Espesset, Aude; Alhammoud, Bahjat; Bouzinac, Catherine; Clerc, Sébastien; Gascon, Ferran

    2017-09-01

    Sentinel-2 is an Earth Observation mission developed by the European Space Agency (ESA) in the frame of the Copernicus program of the European Commission. The mission is based on a constellation of 2-satellites: Sentinel-2A launched in June 2015 and Sentinel-2B launched in March 2017. It offers an unprecedented combination of systematic global coverage of land and coastal areas, a high revisit of five days at the equator and 2 days at mid-latitudes under the same viewing conditions, high spatial resolution, and a wide field of view for multispectral observations from 13 bands in the visible, near infrared and short wave infrared range of the electromagnetic spectrum. The mission performances are routinely and closely monitored by the S2 Mission Performance Centre (MPC), including a consortium of Expert Support Laboratories (ESL). This publication focuses on the Sentinel-2 Level-1 product quality validation activities performed by the MPC. It presents an up-to-date status of the Level-1 mission performances at the beginning of the constellation routine phase. Level-1 performance validations routinely performed cover Level-1 Radiometric Validation (Equalisation Validation, Absolute Radiometry Vicarious Validation, Absolute Radiometry Cross-Mission Validation, Multi-temporal Relative Radiometry Vicarious Validation and SNR Validation), and Level-1 Geometric Validation (Geolocation Uncertainty Validation, Multi-spectral Registration Uncertainty Validation and Multi-temporal Registration Uncertainty Validation). Overall, the Sentinel-2 mission is proving very successful in terms of product quality thereby fulfilling the promises of the Copernicus program.

  20. Satellite Vulnerabilities

    DTIC Science & Technology

    2008-02-18

    allies. 8  Satellites and Intelligence , Surveillance, and Reconnaissance We have become dependent also on our satellite surveillance assets...uninterrupted ISR”, with “space intelligence , surveillance, and reconnaissance (ISR) systems…fundamental to air power—especially to the execution...tremendous informational and intelligence advantage. But if we lose those satellites, or the links to them, we also lose the advantages of them, and

  1. Dynamic replanning on demand of UAS constellations performing ISR missions

    NASA Astrophysics Data System (ADS)

    Stouch, Daniel W.; Zeidman, Ernest; Callahan, William; McGraw, Kirk

    2011-05-01

    Unmanned aerial systems (UAS) have proven themselves to be indispensable in providing intelligence, surveillance, and reconnaissance (ISR) over the battlefield. Constellations of heterogeneous, multi-purpose UAS are being tasked to provide ISR in an unpredictable environment. This necessitates the dynamic replanning of critical missions as weather conditions change, new observation targets are identified, aircraft are lost or equipment malfunctions, and new airspace restrictions are introduced. We present a method to generate coordinated mission plans for constellations of UAS with multiple flight goals and potentially competing objectives, and update them on demand as the operational situation changes. We use a fast evolutionary algorithm-based, multi-objective optimization technique. The updated flight routes maintain continuity by considering where the ISR assets have already flown and where they still need to go. Both the initial planning and replanning take into account factors such as area of analysis coverage, restricted operating zones, maximum control station range, adverse weather effects, military terrain value, and sensor performance. Our results demonstrate that by constraining the space of potential solutions using an intelligently-formed air maneuver network with a subset of potential airspace corridors and navigational waypoints, we can ensure global optimization for multiple objectives considering the situation both before and after the replanning is initiated. We employ sophisticated visualization techniques using a geographic information system to help the user 'look under the hood" of the algorithms to understand the effectiveness and viability of the generated ISR mission plans and identify potential gaps in coverage.

  2. Going Beyond Einstein with the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas

    2007-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.

  3. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  4. BRITE-PL: the first Polish scientific satellite

    NASA Astrophysics Data System (ADS)

    Orleanski, Piotr; Graczyk, Rafal; Rataj, Miroslaw; Schwarzenberg-Czerny, Aleksander; Zawistowski, Tomasz; Zee, Robert E.

    2010-09-01

    The participation in BRITE Consortium gives Poland the possibility to launch into space the first Polish scientific satellite. This paper presents the Polish technical contribution to the BRITE Program to be realized in two institutes of the Polish Academy of Sciences: Nicolaus Copernicus Astronomical Center and Space Research Center.. BRITE Constellation, short for "BRIght Target Explorer Constellation," is a group of up to six nano-satellites whose purpose is to photometrically measure low-level oscillations and temperature variations in the sky's 286 stars brighter than visual magnitude 3.5, with unprecedented precision and time sampling not achievable through terrestrial-based methods. The three-axis pointing performance (1 arc minute rms stability) of each BRITE satellite is a significant advancement over anything that has ever flown before on a nano-satellite and is an important factor that enables the high precision photometry mission. The paper summarizes the technical details of the BRITE satellite based on Generic Nanosatellite Bus from SFL/UTIAS. The first Polish satellite, BRITE -PL 1, will be a modified version of the original SFL design. The second Polish satellite, BRITE-PL 2, will include the significant changes to be implemented by SRC PAS.

  5. Scientific Satellites

    DTIC Science & Technology

    1967-01-01

    414 S E S PC 210 SCIENTIFIC SATELLITES W.~YI to W.l WI* W FIGuRE 7-5.- Effects of vacuum on space components and types of vacuum pumps used in...origin, 16-17 Vacuum, effects on satellites, 207- relation to satellite dynamics, 90 210 , 284, 365 satellite research, 4, 18, 411, 584 simulation, 209...18 decades (_3 km to _..3 10-s A). (See fig. 1-1.) The charged- particle shielding effectiveness of the Earth’s magnetic field is also reduced at

  6. Using GPS Reflections for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Mickler, David

    2000-01-01

    GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.

  7. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  8. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  9. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    NASA Astrophysics Data System (ADS)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  10. Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation

    NASA Astrophysics Data System (ADS)

    Kääb, Andreas; Altena, Bas; Mascaro, Joseph

    2017-05-01

    Satellite measurements of coseismic displacements are typically based on synthetic aperture radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very high-resolution satellites, or air photos. Here, we evaluate a new class of optical satellite images for this purpose - data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2-4 m-resolution visible and near-infrared frame images of approximately 20-30 km × 9-15 km in size, acquired in continuous sequence along an orbit of approximately 375-475 km height. From single scenes or mosaics from before and after the earthquake, we observe surface displacements of up to almost 10 m and estimate matching accuracies from PlanetScope data between ±0.25 and ±0.7 pixels (˜ ±0.75 to ±2.0 m), depending on time interval and image product type. Thereby, the most optimistic accuracy estimate of ±0.25 pixels might actually be typical for the final, sun-synchronous, and near-polar-orbit PlanetScope constellation when unrectified data are used for matching. This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat 8 and Sentinel-2 data.

  11. A unique constellation of spacecraft constellations to study Kelvin-Helmholtz Instability in 2017-2020: MMS, Cluster and Themis

    NASA Astrophysics Data System (ADS)

    Masson, A.; Nykyri, K.

    2017-12-01

    The Cluster and the Themis missions have shed a total new light on the Kelvin-Helmholtz Instability (KHI) mechanism at the magnetopause. To name a few, these missions have enabled the observation of KHI rolled-up vortices, for the first time with four spacecraft (Hasegawa et al., 2004). They revealed its presence under any Interplanetary Magnetic Field (IMF) conditions (Hwang et al., 2011, 2012). They also revealed that their occurence may have been largely underestimated (Kavosi and Raeder, 2015). Very recently, the presence of ion magnetosonic waves with sufficient energy to account for the observed level of ion heating within a KHI vortex may be the first evidence of cross-scale energy transport (Moore et al., 2016). After presenting some the main highlights of Cluster and Themis on this phenomenon, we will present upcoming new observations with MMS, Cluster and Themis in 2017-2020 timeframe. Together, they will form a unique constellation of spacecraft constellations to study this phenomenon for the first time. We will present some of the key scientific questions these new data will enable to tackle.

  12. Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Lühr, Hermann; Kervalishvili, Guram; Rauberg, Jan; Stolle, Claudia; Kwak, Young-Sil; Lee, Woo Kyoung

    2017-01-01

    In this study, we investigate the climatology of high-latitude total electron content (TEC) variations as observed by the dual-frequency Global Navigation Satellite Systems (GNSS) receivers onboard the Swarm satellite constellation. The distribution of TEC perturbations as a function of geographic/magnetic coordinates and seasons reasonably agrees with that of the Challenging Minisatellite Payload observations published earlier. Categorizing the high-latitude TEC perturbations according to line-of-sight directions between Swarm and GNSS satellites, we can deduce their morphology with respect to the geomagnetic field lines. In the Northern Hemisphere, the perturbation shapes are mostly aligned with the L shell surface, and this anisotropy is strongest in the nightside auroral (substorm) and subauroral regions and weakest in the central polar cap. The results are consistent with the well-known two-cell plasma convection pattern of the high-latitude ionosphere, which is approximately aligned with L shells at auroral regions and crossing different L shells for a significant part of the polar cap. In the Southern Hemisphere, the perturbation structures exhibit noticeable misalignment to the local L shells. Here the direction toward the Sun has an additional influence on the plasma structure, which we attribute to photoionization effects. The larger offset between geographic and geomagnetic poles in the south than in the north is responsible for the hemispheric difference.

  13. Multi-agent robotic systems and applications for satellite missions

    NASA Astrophysics Data System (ADS)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  14. NASA CYGNSS Satellite Measurements and Applications

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Ruf, C. S.; Baker, N. L.; Green, D. S.; Stough, T.

    2017-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  15. The BRITE-Constellation Nanosatellite Space Mission And Its First Scientific Results

    NASA Astrophysics Data System (ADS)

    Handler, G.; Pigulski, A.; Weiss, W. W.; Moffat, A. F. J.; Kuschnig, R.; Wade, G. A.; Orleański, G.; Ruciński, S. M.; Koudelka, O.; Smolec, R.; Zwintz, K.; Matthews, J. M.; Popowicz, A.; Baade, D.; Neiner, C.; Pamyatnykh, A. A.; Rowe, J.; Schwarzenberg-Czerny, A.

    2017-10-01

    The BRIght Target Explorer (BRITE) Constellation is the first nanosatellite mission applied to astrophysical research. Five satellites in low-Earth orbits perform precise optical two-colour photometry of the brightest stars in the night sky. BRITE is naturally well suited for variability studies of hot stars. This contribution describes the basic outline of the mission and some initial problems that needed to be overcome. Some information on BRITE data products, how to access them, and how to join their scientific exploration is provided. Finally, a brief summary of the first scientific results obtained by BRITE is given.

  16. CATIA V5 Virtual Environment Support for Constellation Ground Operations

    NASA Technical Reports Server (NTRS)

    Kelley, Andrew

    2009-01-01

    This summer internship primarily involved using CATIA V5 modeling software to design and model parts to support ground operations for the Constellation program. I learned several new CATIA features, including the Imagine and Shape workbench and the Tubing Design workbench, and presented brief workbench lessons to my co-workers. Most modeling tasks involved visualizing design options for Launch Pad 39B operations, including Mobile Launcher Platform (MLP) access and internal access to the Ares I rocket. Other ground support equipment, including a hydrazine servicing cart, a mobile fuel vapor scrubber, a hypergolic propellant tank cart, and a SCAPE (Self Contained Atmospheric Protective Ensemble) suit, was created to aid in the visualization of pad operations.

  17. ECLSS and Thermal Systems Integration Challenges Across the Constellation Architecture

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn

    2010-01-01

    As the Constellation Program completes its initial capability Preliminary Design Review milestone for the Initial Capability phase, systems engineering of the Environmental Control and Life Support (ECLS) and Thermal Systems for the various architecture elements has progressed from the requirements to design phase. As designs have matured for the Ares, Orion, Ground Systems, and Extravehicular (EVA) System, a number of integration challenges have arisen requiring analyses and trades, resulting in changes to the design and/or requirements. This paper will address some of the key integration issues and results, including the Orion-to-Ares shared compartment venting and purging, Orion-to-EVA suit loop integration issues with the suit system, Orion-to-ISS and Orion-to-Altair intermodule ventilation, and Orion and Ground Systems impacts from post-landing environments.

  18. The Apollo Expericence Lessons Learned for Constellation Lunar Dust Management

    NASA Astrophysics Data System (ADS)

    Wagner, Sandra

    2006-09-01

    Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions

  19. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  20. Autonomous Spacecraft Navigation Using Above-the-Constellation GPS Signals

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    GPS-based spacecraft navigation offers many performance and cost benefits, and GPS receivers are now standard GNC components for LEO missions. Recently, more and more high-altitude missions are taking advantage of the benefits of GPS navigation as well. High-altitude applications pose challenges, however, because receivers operating above the GPS constellations are subject to reduced signal strength and availability, and uncertain signal quality. This presentation will present the history and state-of-the-art in high-altitude GPS spacecraft navigation, including early experiments, current missions and receivers, and efforts to characterize and protect signals available to high-altitude users. Recent results from the very-high altitude MMS mission are also provided.

  1. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  2. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions

  3. Constellation Stick Figures Convey Information about Gravity and Neutrinos

    NASA Astrophysics Data System (ADS)

    Mc Leod, David Matthew; Mc Leod, Roger David

    2008-10-01

    12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.

  4. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  5. Waste Collector System Technology Comparisons for Constellation Applications

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2006-01-01

    The Waste Collection Systems (WCS) for space vehicles have utilized a variety of hardware for collecting human metabolic wastes. It has typically required multiple missions to resolve crew usability and hardware performance issues that are difficult to duplicate on the ground. New space vehicles should leverage off past WCS systems. Past WCS hardware designs are substantially different and unique for each vehicle. However, each WCS can be analyzed and compared as a subset of technologies which encompass fecal collection, urine collection, air systems, pretreatment systems. Technology components from the WCS of various vehicles can then be combined to reduce hardware mass and volume while maximizing use of previous technology and proven human-equipment interfaces. Analysis of past US and Russian WCS are compared and extrapolated to Constellation missions.

  6. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  7. Genesis and genetic constellations of swine influenza viruses in Thailand.

    PubMed

    Poonsuk, Sukontip; Sangthong, Pradit; Petcharat, Nantawan; Lekcharoensuk, Porntippa

    2013-12-27

    Swine influenza virus (SIV) is one of the most important zoonotic agents and the origin of the most recent pandemic virus. Asia is considered to be the epicenter for genetic exchanging of influenza A viruses and Southeast Asia including Thailand serves as a reservoir to maintain the persistence of the viruses for seeding other regions. Therefore, searching for new reassortants in this area has been routinely required. Although SIVs in Thailand have been characterized, collective information regarding their genetic evolution and gene constellations is limited. In this study, whole genomes of 30 SIVs isolated during clinical target surveillance plus all available sequences of past and currently circulating Thai SIVs were genetically characterized based on their evolutionary relationships. All genetic pools of Thai SIVs are comprised of four lineages including classical swine (CS), Eurasian swine (EAs), Triple reassortants (TRIG) and Seasonal human (Shs). Out of 84 isolates, nine H1N1, six H3N2 and one H1N2 strains were identified. Gene constellations of SIVs in Thailand are highly complex resulting from multiple reassortments among concurrently circulating SIVs and temporally introduced foreign genes. Most strains contain gene segments from both EAs and CS lineages and appeared transiently. TRIG lineage has been recently introduced into Thai SIV gene pools. The existence of EAs and TRIG lineages in this region may increase rates of genetic exchange and diversity while Southeast Asia is a persistent reservoir for influenza A viruses. Continual monitoring of SIV evolution in this region is crucial in searching for the next potential pandemic viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  9. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  10. Navigation Constellation Design Using a Multi-Objective Genetic Algorithm

    DTIC Science & Technology

    2015-03-26

    programs. This specific tool not only offers high fidelity simulations, but it also offers the visual aid provided by STK . The ability to...MATLAB and STK . STK is a program that allows users to model, analyze, and visualize space systems. Users can create objects such as satellites and...position dilution of precision (PDOP) and system cost. This thesis utilized Satellite Tool Kit ( STK ) to calculate PDOP values of navigation

  11. 75 FR 53688 - Constellation Mystic Power, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2281-000] Constellation... proceeding of Constellation Mystic Power, LLC's application for market-based rate authority, with an... CFR part 34, of future issuances of securities and assumptions of liability. Any person desiring to...

  12. Tabitha's One Teacher Rural School: Insights into the Arts through the Use of a Story Constellation

    ERIC Educational Resources Information Center

    Garvis, Susanne

    2011-01-01

    This paper presents a story constellation about a beginning teacher (who is also the principal) located in a one-teacher school in an isolated community in Queensland, Australia. The constellation documents the teacher's self-efficacy for teaching the arts (music, dance, drama, visual arts and media). Tabitha, the participant, shares insights…

  13. System Constellations as a Tool Supporting Organisational Learning and Change Processes

    ERIC Educational Resources Information Center

    Birkenkrahe, Marcus

    2008-01-01

    Originally developed in the context of family therapy, system constellations are introduced using an organisational learning and system theoretical framework. Constellations are systemic group interventions using a spatial representation of the system elements. They correspond to deutero-learning processes and use higher-order systemic thinking.…

  14. 76 FR 66054 - Exelon Corporation Constellation Energy Group, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EC11-83-001] Exelon Corporation Constellation Energy Group, Inc.; Notice of Filing Take notice that, on October 11, 2011, Exelon Corporation and Constellation Energy Group, Inc. (Merger Applicants) submitted a filing styled as an answer in...

  15. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy...) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company, LLC, CER Generation II, LLC...

  16. Analytical investigation of the dynamics of tethered constellations in Earth orbit (phase 2)

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.

    1985-01-01

    The deployment maneuver of three axis vertical constellations with elastic tethers is analyzed. The deployment strategy devised previously was improved. Dampers were added to the system. Effective algorithms for damping out the fundamental vibrational modes of the system were implemented. Simulations of a complete deployment and a subsequent station keeping phase of a three mass constellation is shown.

  17. Learning the Constellations: From Junior High to Undergraduate Descriptive Astronomy Class

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Hintz, Eric G.; Hintz, Maureen; Lawler, Jeannette; Jones, Michael; Bench, Nathan

    2015-01-01

    As part of two separate studies we have examined the ability of students to learn and remember a group of constellations, bright stars, and deep sky objects. For a group of junior high students we tested their knowledge of only the constellations by giving them a 'constellation quiz' without any instruction. We then provided the students with a lab session, and retested. We also tested a large number of undergraduate students in our descriptive astronomy classes, but in this case there were the same 30 constellations, 17 bright stars, and 3 deep sky objects. The undergraduate students were tested in a number of ways: 1) pre-testing without instruction, 2) self-reporting of knowledge, 3) normal constellation quizzes as part of the class, and 4) retesting students from previous semesters. This provided us with a set of baseline measurements, allowed us to track the learning curve, and test retention of the material. We will present our early analysis of the data.

  18. Satellite myths

    NASA Astrophysics Data System (ADS)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  19. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  20. Three Generations of Tracking and Data Relay Satellite (TDRS) Spacecraft

    NASA Technical Reports Server (NTRS)

    Zaleski, Ron

    2016-01-01

    The current Tracking and Data Relay Satellite configuration consists of nine in-orbit satellites (four first generation, three second generation and two third generation satellites) globally distributed in geosynchronous orbit to provide near continuous data relay service to missions like Hubble Space Telescope and the International Space Station. The 1st generation spacecraft were designed by TRW/Northrop Grumman with their launches of the five spacecraft ranging from 1983 through 1995. The 2nd and 3rd generation spacecraft were designed by Boeing with their launches ranging 2000 - 2002 and 2013 - 2017 respectively. TDRS-3 is now 27 years on orbit, continues to be a capable asset for the TDRS constellation. Lack of need for inclination control combined with large fuel reserves and redundancy on critical elements provides spacecraft that operate well past design life, all of which contributes to expanded TDRS constellation support capabilities. All spacecraft generations have issues. Significant issues will be summarized with the focus on the Boeing related problems. Degradations and failures are continually assessed and provide the foundation for yearly updates to spacecraft reliability models, constellation service projections and deorbit plans (in order to meet NASAs mandate of limiting orbital debris). Even when accounting for degradations and failures, the life expectancy for the Boeing delivered 2nd generation TDRS-8, 9 10 TDRS are anticipated to be 25+ years.

  1. Boomerang Satellites

    NASA Astrophysics Data System (ADS)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  2. ISS Expedition 18 Synchronized Position Hold,Engage,Reorient,Experimental Satellites (SPHERES)

    NASA Image and Video Library

    2008-10-26

    ISS018-E-005214 (26 Oct. 2008) --- This close-up view shows three bowling-ball-sized free-flying satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) in the Destiny laboratory of the International Space Station. SPHERES were designed to test control algorithms for spacecraft by performing autonomous rendezvous and docking maneuvers inside the station. The results are important for multi-body control and in designing constellation and array spacecraft configurations.

  3. Satellite Data Visualization, Processing and Mapping using VIIRS Imager Data

    NASA Astrophysics Data System (ADS)

    Phyu, A. N.

    2016-12-01

    A satellite is a manmade machine that is launched into space and orbits the Earth. These satellites are used for various purposes for examples: Environmental satellites help us monitor and protect our environment; Navigation (GPS) satellites provides accurate time and position information: and Communication satellites allows us the interact with each other over long distances. Suomi NPP is part of the constellation of Joint Polar Satellite System (JPSS) fleet of satellites which is an Environmental satellite that carries the Visual Infrared Imaging Radiometer Suite (VIIRS) instrument. VIIRS is a scanning radiometer that takes high resolution images of the Earth. VIIRS takes visible, infrared and radiometric measurements of the land, oceans, atmosphere and cryosphere. These high resolution images provide information that helps weather prediction and environmental forecasting of extreme events such as forest fires, ice jams, thunder storms and hurricane. This project will describe how VIIRS instrument data is processed, mapped, and visualized using variety of software and application. It will focus on extreme events like Hurricane Sandy and demonstrate how to use the satellite to map the extent of a storm. Data from environmental satellites such as Suomi NPP-VIIRS is important for monitoring climate change, sea level rise, land surface temperature changes as well as extreme weather events.

  4. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  5. Rare ADH Variant Constellations are Specific for Alcohol Dependence

    PubMed Central

    Zuo, Lingjun; Zhang, Heping; Malison, Robert T.; Li, Chiang-Shan R.; Zhang, Xiang-Yang; Wang, Fei; Lu, Lingeng; Lu, Lin; Wang, Xiaoping; Krystal, John H.; Zhang, Fengyu; Deng, Hong-Wen; Luo, Xingguang

    2013-01-01

    Aims: Some of the well-known functional alcohol dehydrogenase (ADH) gene variants (e.g. ADH1B*2, ADH1B*3 and ADH1C*2) that significantly affect the risk of alcohol dependence are rare variants in most populations. In the present study, we comprehensively examined the associations between rare ADH variants [minor allele frequency (MAF) <0.05] and alcohol dependence, with several other neuropsychiatric and neurological disorders as reference. Methods: A total of 49,358 subjects in 22 independent cohorts with 11 different neuropsychiatric and neurological disorders were analyzed, including 3 cohorts with alcohol dependence. The entire ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5 at Chr4) was imputed in all samples using the same reference panels that included whole-genome sequencing data. We stringently cleaned the phenotype and genotype data to obtain a total of 870 single nucleotide polymorphisms with 0< MAF <0.05 for association analysis. Results: We found that a rare variant constellation across the entire ADH gene cluster was significantly associated with alcohol dependence in European-Americans (Fp1: simulated global P = 0.045), European-Australians (Fp5: global P = 0.027; collapsing: P = 0.038) and African-Americans (Fp5: global P = 0.050; collapsing: P = 0.038), but not with any other neuropsychiatric disease. Association signals in this region came principally from ADH6, ADH7, ADH1B and ADH1C. In particular, a rare ADH6 variant constellation showed a replicable association with alcohol dependence across these three independent cohorts. No individual rare variants were statistically significantly associated with any disease examined after group- and region-wide correction for multiple comparisons. Conclusion: We conclude that rare ADH variants are specific for alcohol dependence. The ADH gene cluster may harbor a causal variant(s) for alcohol dependence. PMID:23019235

  6. Impact of multiconstellation satellite signal reception on performance of satellite-based navigation under adverse ionospheric conditions

    NASA Astrophysics Data System (ADS)

    Paul, Ashik; Paul, Krishnendu Sekhar; Das, Aditi

    2017-03-01

    Application of multiconstellation satellites to address the issue of satellite signal outages during periods of equatorial ionospheric scintillations could prove to be an effective tool for maintaining the performance of satellite-based communication and navigation without compromise in accuracy and integrity. A receiver capable of tracking GPS, Global Navigation Satellite System (GLONASS), and Galileo satellites is operational at the Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India, located near the northern crest of the equatorial ionization anomaly in the Indian longitude sector. The present paper shows increased availability of satellites combining GPS, GLONASS, and Galileo constellations from Calcutta compared to GPS-only scenario and estimates intense scintillation-free (S4 < 0.6) satellite vehicle look angles at different hours of the postsunset period 19:00-01:00 LT during March 2014. A representative case of 1 March 2014 is highlighted in the paper and overall statistics for March 2014 presented to indicate quantitative advantages in terms of scintillation-free satellite vehicle look angles that may be utilized for planning communication and navigation channel spatial distribution under adverse ionospheric conditions. The number of satellites tracked and receiver position deviations has been found to show a good correspondence with the occurrence of intense scintillations and poor user receiver-satellite link geometry. The ground projection of the 350 km subionospheric points corresponding to multiconstellation shows extended spatial coverage during periods of scintillations (0.2 < S4 < 0.6) compared to GPS.

  7. Impact of pollution on the optical properties of trans-Pacific East Asian dust from satellite and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.

    2014-05-01

    We investigate changes in the optical properties of a large dust plume originating from East Asian deserts during its transport over the northwestern Pacific Ocean in March 2013. The study makes use of observational products from two sensors in the NASA A-Train satellite constellation, the Moderate Resolution Imaging Spectroradiometer and the Cloud-Aerosol Lidar with Orthogonal Polarization. Forward trajectory clustering analysis and satellite observations show that dust initiating from the Taklimakan and Gobi deserts experienced thorough mixing with industrial pollution aerosols shortly after leaving the source region and were lofted by a strong midlatitude weather system to more than 4 km in height. The dust plume accompanied the weather system and reached the east coast of the North American continent within 7-10 days. The dust aerosols became spectrally absorptive during transport due to mixing with other aerosol types such as soot. Furthermore, a decrease in the depolarization ratio suggests that the complexities in aerosol particle morphologies were reduced during transport over the ocean. More than half of the dust aerosol layers surviving the trans-Pacific transport were polluted and exhibited different optical properties and radiative effects from those of pure dust.

  8. Small satellites

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Dermott, S.

    1986-01-01

    Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.

  9. Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, R.

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  10. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is

  11. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  12. Constraining the near-core rotation of the γ Doradus star 43 Cygni using BRITE-Constellation data

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Van Reeth, T.; Tkachenko, A.; Gössl, S.; Pigulski, A.; Kuschnig, R.; Handler, G.; Moffat, A. F. J.; Popowicz, A.; Wade, G.; Weiss, W. W.

    2017-12-01

    Context. Photometric time series of the γ Doradus star 43 Cyg obtained with the BRITE-Constellation nano-satellites allow us to study its pulsational properties in detail and to constrain its interior structure. Aims: We aim to find a g-mode period-spacing pattern that allows us to determine the near-core rotation rate of 43 Cyg and redetermine the star's fundamental atmospheric parameters and chemical composition. Methods: We conducted a frequency analysis using the 156-day long data set obtained with the BRITE-Toronto satellite and employed a suite of MESA/GYRE models to derive the mode identification, asymptotic period-spacing, and near-core rotation rate. We also used high-resolution spectroscopic data with high signal-to-noise ratio obtained at the 1.2 m Mercator telescope with the HERMES spectrograph to redetermine the fundamental atmospheric parameters and chemical composition of 43 Cyg using the software Spectroscopy Made Easy (SME). Results: We detected 43 intrinsic pulsation frequencies and identified 18 of them to be part of a period-spacing pattern consisting of prograde dipole modes with an asymptotic period-spacing ΔΠl = 1 of 2970-570+700 s. The near-core rotation rate was determined to be frot = 0.56-0.14+0.12 d-1. The atmosphere of 43 Cyg shows solar chemical composition at an effective temperature, Teff, of 7150 ± 150 K, a log g of 4.2 ± 0.6 dex, and a projected rotational velocity, υsini, of 44 ± 4 km s-1. Conclusions: The morphology of the observed period-spacing patterns shows indications of a significant chemical gradient in the stellar interior. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and

  13. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    NASA Astrophysics Data System (ADS)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  14. Optimal Earth's reentry disposal of the Galileo constellation

    NASA Astrophysics Data System (ADS)

    Armellin, Roberto; San-Juan, Juan F.

    2018-02-01

    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  15. From value chain to value constellation: designing interactive strategy.

    PubMed

    Normann, R; Ramírez, R

    1993-01-01

    In today's fast-changing competitive environment, strategy is no longer a matter of positioning a fixed set of activities along that old industrial model, the value chain. Successful companies increasingly do not just add value, they reinvent it. The key strategic task is to reconfigure roles and relationships among a constellation of actors--suppliers, partners, customers--in order to mobilize the creation of value by new combinations of players. What is so different about this new logic of value? It breaks down the distinction between products and services and combines them into activity-based "offerings" from which customers can create value for themselves. But as potential offerings grow more complex, so do the relationships necessary to create them. As a result, a company's strategic task becomes the ongoing reconfiguration and integration of its competencies and customers. The authors provide three illustrations of these new rules of strategy. IKEA has blossomed into the world's largest retailer of home furnishings by redefining the relationships and organizational practices of the furniture business. Danish pharmacies and their national association have used the opportunity of health care reform to reconfigure their relationships with customers, doctors, hospitals, drug manufacturers, and with Danish and international health organizations to enlarge their role, competencies, and profits. French public-service concessionaires have mastered the art of conducting a creative dialogue between their customers--local governments in France and around the world--and a perpetually expanding set of infrastructure competencies.

  16. George Marinesco in the Constellation of Modern Neuroscience

    PubMed Central

    Opris, Ioan; Nestianu, Valeriu S.; Nestianu, Adrian; Bilteanu, Liviu; Ciurea, Jean

    2017-01-01

    George Marinesco is the founder of Romanian School of Neurology and one of the most remarkable neuroscientists of the last century. He was the pupil of Jean-Martin Charcot in Salpêtrière Hospital in Paris, France, but visited many other neurological centers where he met the entire constellation of neurologists of his time, including Camillo Golgi and Santiago Ramón y Cajal. The last made the preface of Nervous Cell, written in French by Marinesco. The original title was “La Cellule Nerveuse” and is considered even now a basic reference book for specialists in the field. He was a refined clinical observer with an integrative approach, as could be seen from the multitude of his discoveries. The descriptions of the succulent hand in syringomyelia, senile plaque in old subjects, palmar jaw reflex known as Marinesco-Radovici sign, or the application of cinematography in medicine are some of his important contributions. He was the first who described changes of locus niger in a patient affected by tuberculosis, as a possible cause in Parkinson disease. Before modern genetics, Marinesco and Sjögren described a rare and complex syndrome bearing their names. He was a hardworking man, focused on his scientific research, did not accepted flattering of others and was a great fighter against the injustice of the time. PMID:29317856

  17. George Marinesco in the Constellation of Modern Neuroscience.

    PubMed

    Opris, Ioan; Nestianu, Valeriu S; Nestianu, Adrian; Bilteanu, Liviu; Ciurea, Jean

    2017-01-01

    George Marinesco is the founder of Romanian School of Neurology and one of the most remarkable neuroscientists of the last century. He was the pupil of Jean-Martin Charcot in Salpêtrière Hospital in Paris, France, but visited many other neurological centers where he met the entire constellation of neurologists of his time, including Camillo Golgi and Santiago Ramón y Cajal. The last made the preface of Nervous Cell, written in French by Marinesco. The original title was "La Cellule Nerveuse" and is considered even now a basic reference book for specialists in the field. He was a refined clinical observer with an integrative approach, as could be seen from the multitude of his discoveries. The descriptions of the succulent hand in syringomyelia, senile plaque in old subjects, palmar jaw reflex known as Marinesco-Radovici sign, or the application of cinematography in medicine are some of his important contributions. He was the first who described changes of locus niger in a patient affected by tuberculosis, as a possible cause in Parkinson disease. Before modern genetics, Marinesco and Sjögren described a rare and complex syndrome bearing their names. He was a hardworking man, focused on his scientific research, did not accepted flattering of others and was a great fighter against the injustice of the time.

  18. Vega-Constellation Tools to Analize Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Savorskiy, V.; Loupian, E.; Balashov, I.; Kashnitskii, A.; Konstantinova, A.; Tolpin, V.; Uvarov, I.; Kuznetsov, O.; Maklakov, S.; Panova, O.; Savchenko, E.

    2016-06-01

    Creating high-performance means to manage massive hyperspectral data (HSD) arrays is an actual challenge when it is implemented to deal with disparate information resources. Aiming to solve this problem the present work develops tools to work with HSD in a distributed information infrastructure, i.e. primarily to use those tools in remote access mode. The main feature of presented approach is in the development of remotely accessed services, which allow users both to conduct search and retrieval procedures on HSD sets and to provide target users with tools to analyze and to process HSD in remote mode. These services were implemented within VEGA-Constellation family information systems that were extended by adding tools oriented to support the studies of certain classes of natural objects by exploring their HSD. Particular developed tools provide capabilities to conduct analysis of such objects as vegetation canopies (forest and agriculture), open soils, forest fires, and areas of thermal anomalies. Developed software tools were successfully tested on Hyperion data sets.

  19. "Analysis of the multi-layered cloud radiative effects at the surface using A-train data"

    NASA Astrophysics Data System (ADS)

    Viudez-Mora, A.; Smith, W. L., Jr.; Kato, S.

    2017-12-01

    Clouds cover about 74% of the planet and they are an important part of the climate system and strongly influence the surface energy budget. The cloud vertical distribution has important implications in the atmospheric heating and cooling rates. Based on observations by active sensors in the A-train satellite constellation, CALIPSO [Winker et. al, 2010] and CloudSat [Stephens et. al, 2002], more than 1/3 of all clouds are multi-layered. Detection and retrieval of multi-layer cloud physical properties are needed in understanding their effects on the surface radiation budget. This study examines the sensitivity of surface irradiances to cloud properties derived from satellite sensors. Surface irradiances were computed in two different ways, one using cloud properties solely from MODerate resolution Imaging Spectroradiometer (MODIS), and the other using MODIS data supplemented with CALIPSO and CloudSat (hereafter CLCS) cloud vertical structure information [Kato et. al, 2010]. Results reveal that incorporating more precise and realistic cloud properties from CLCS into radiative transfer calculations yields improved estimates of cloud radiative effects (CRE) at the surface (CREsfc). The calculations using only MODIS cloud properties, comparisons of the computed CREsfc for 2-layer (2L) overcast CERES footprints, CLCS reduces the SW CRE by 1.5±26.7 Wm-2, increases the LW CRE by 4.1±12.7 Wm-2, and increases the net CREsfc by 0.9±46.7 Wm-2. In a subsequent analysis, we classified up to 6 different combinations of multi-layered clouds depending on the cloud top height as: High-high (HH), high-middle (HM), high-low (HL), middle-middle (MM), middle-low (ML) and low-low (LL). The 3 most frequent 2L cloud systems were: HL (56.1%), HM (22.3%) and HH (12.1%). For these cases, the computed CREsfc estimated using CLCS data presented the most significant differences when compared using only MODIS data. For example, the differences for the SW and Net CRE in the case HH was 12.3±47

  20. Teamwork Reasoning and Multi-Satellite Missions

    NASA Technical Reports Server (NTRS)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)

    2002-01-01

    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  1. Development of a Cryogen-Free Continuous ADR for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Ed; DiPirro, Michael; Francis, John; Jackson, Michael; Tuttle, James; King, Todd; Grabowski, Matt

    2003-01-01

    Constellation-X is a multi-satellite x-ray astronomy mission presently being planned for launch in the 2010 time frame. Each of 4 identical satellites will contain a telescope and instruments for imaging and spectroscopic analysis of both hard and soft x-rays. The X- ray Microcalorimeter Spectrometer (XMS) instrument will use arrays of microcalorimeters to detect X-rays with energies from 0.2 to 6 keV. The technologies under development for this instrument include Transition-Edge Sensors (TES) with multiplexed SQUID readouts and NTD-Ge detectors with JFET readouts. Both will be operated at temperatures in the 50-60 mK range and both have a projected cooling power requirement of approximately 5 microwatts. In addition, in order to meet the lifetime requirement of 6 years (with a goal of 10 years), a mechanical cryocooler will be used to provide a heat sink for the low temperature cooler. The required performance is 20 mW at 6 K, with a goal of 4 K operation. In this paper we present the development status of an adiabatic demagnetization refigerator (ADR) that meets the cooling requirements of the X M S instrument. At present we have demonstrated a 4-stage ADR that operates continuously at 50 mK using a 4.2 K helium bath as a heat sink. The cooling power is 21 microwatts at 100 mK and 6 microwatts at 50 mK. Its efficiency when operating at 50 mK is 1 1 % of Carnot (accounting for all dissipation at 4.2 K and below, but not including power dissipation in the room temperature electronics), but this is expected to rise to 25% in the next generation system in which active gas-gap heat switches are replaced with passive devices. This will reduce the peak heat rejection rate of the ADR to less than 7 mW at 6 K. Details of the ADR s design and operation, as well as the development program leading up to a flight-qualified instrument, will be discussed.

  2. The German joint research project "concepts for future gravity satellite missions"

    NASA Astrophysics Data System (ADS)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  3. Uranus Satellites

    NASA Image and Video Library

    1996-11-26

    On Jan. 18, 1986, NASA Voyager 2 discoverd three Uranus satellites. All three lie outside the orbits of Uranus nine known rings, the outermost of which, the epsilon ring, is seen at upper right. http://photojournal.jpl.nasa.gov/catalog/PIA00368

  4. A walk through the heavens : a guide to stars and constellations and their legends

    NASA Astrophysics Data System (ADS)

    Heifetz, Milton D.; Tirion, Wil

    What star is that? Where's the Great Bear? Who was Andromeda? A Walk through the Heavens is your guide to the pathways of the night sky, answering the commonest questions about what you can see up there. There are simplified maps of the constellations, together with instructions on how to gauge their sizes and the distances between them. With this information you can find the constellations easily, and make a journey by eye from one constellation to the next. Ancient myths surrounding the constellations are retold, enriching our understanding of how historical peoples saw the awe-inspiring spectacle of a sky sprinkled with stars. This book, magically illustrated by Wil Tirion, does not require any instrument or telescope. It is an ideal introduction to launch a young astronomer on a journey across starlit skies.

  5. Methodology and method and apparatus for signaling with capacity optimized constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2011-01-01

    Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.

  6. Constellation Program Lessons Learned in the Quantification and Use of Aerodynamic Uncertainty

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Hemsch, Michael J.; Pinier, Jeremy T.; Bibb, Karen L.; Chan, David T.; Hanke, Jeremy L.

    2011-01-01

    The NASA Constellation Program has worked for the past five years to develop a re- placement for the current Space Transportation System. Of the elements that form the Constellation Program, only two require databases that define aerodynamic environments and their respective uncertainty: the Ares launch vehicles and the Orion crew and launch abort vehicles. Teams were established within the Ares and Orion projects to provide repre- sentative aerodynamic models including both baseline values and quantified uncertainties. A technical team was also formed within the Constellation Program to facilitate integra- tion among the project elements. This paper is a summary of the collective experience of the three teams working with the quantification and use of uncertainty in aerodynamic environments: the Ares and Orion project teams as well as the Constellation integration team. Not all of the lessons learned discussed in this paper could be applied during the course of the program, but they are included in the hope of benefiting future projects.

  7. Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010

    NASA Technical Reports Server (NTRS)

    Dory, Jonathan

    2010-01-01

    The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.

  8. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  9. COMPASS Final Report: Lunar Network Satellite-High Rate (LNS-HR)

    NASA Technical Reports Server (NTRS)

    oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    Two design options were explored to address the requirement to provide lunar piloted missions with continuous communications for outpost and sortie missions. Two unique orbits were assessed, along with the appropriate spacecraft (S/C) to address these requirements. Both constellations (with only two S/C each) provide full time coverage (24 hr/7 d) for a south polar base and also provide continuous 7 day coverage for sorties for specified sites and periodic windows. Thus a two-satellite system can provide full coverage for sorties for selected windows of opportunity without reconfiguring the constellation.

  10. Constellations Solar Array Design, Industrialization And In-Flight Results

    NASA Astrophysics Data System (ADS)

    Combet, Yannick; Clapper, Paul

    2011-10-01

    Constellations has become a recurring opportunities in Thales Alenia Space since 3 majors programs had been awarded: Globalstar was the pathfinder with 48 flight sets followed by O3b with 8 an the latest is Iridium Next with 81 models. For these 3 programs, the Solar Array is fully developed, validated and produced by Thales Alenia Space with major subcontractors. This new segment of the activity leads to new development, design and industrialization approaches. This paper describes the Solar Array design and the alternative to current approach build and applied with the following drivers: - the low recurring cost and mass of the flight hardware, with particular attention on the Solar Array, - high robustness for system integration and in-orbit operations, - a long mission duration (typically 15 years in LEO) leading to take into account high number of thermal cycles (60 to 72.000 cycles), - new production concept with strict schedule management, - design segmented in subassemblies to reduce the integration time as well as a improved trouble shooting management, - delivery rate up to 1 wing per week and after learning curve effect, a integration duration divided by 3 compared to current production, - a delivery of a qualified PFM solar array in 22 months including the design to producibility constrains, This demanding requirement for delivery scheme and cost target did not jeopardize the requirements and standards for space application. After a brief description of the way the main drivers have been considered, the paper presents the main features and performances of the subsystem and shows the main validation test results. The first launch was successful in October 2010 and the first in-orbit results are presented.

  11. Hubble Catches a Transformation in the Virgo Constellation

    NASA Image and Video Library

    2017-12-08

    The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of more than 1300 galaxies called the Virgo Cluster. One particular member of this cosmic community, NGC 4388, is captured in this image, as seen by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3. Located some 60 million light-years away, NGC 4388 is experiencing some of the less desirable effects that come with belonging to such a massive galaxy cluster. It is undergoing a transformation and has taken on a somewhat confused identity. While the galaxy’s outskirts appear smooth and featureless, a classic feature of an elliptical galaxy, its center displays remarkable dust lanes constrained within two symmetric spiral arms, which emerge from the galaxy’s glowing core — one of the obvious features of a spiral galaxy. Within the arms, speckles of bright blue mark the locations of young stars, indicating that NGC 4388 has hosted recent bursts of star formation. Despite the mixed messages, NGC 4388 is classified as a spiral galaxy. Its unusual combination of features are thought to have been caused by interactions between NGC 4388 and other galaxies in the Virgo Cluster. Gravitational interactions — from glancing blows to head-on collisions, tidal influencing, mergers, and galactic cannibalism — can be devastating to galaxies. While some may be lucky enough to simply suffer a distorted spiral arm or newly-triggered wave of star formation, others see their structure and contents completely and irrevocably altered. Image credits: ESA/NASA

  12. Star from the Lizard Constellation Photobombs Hubble Observation

    NASA Image and Video Library

    2017-12-08

    In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right — it has bright bursts of star formation and recorded supernova explosions— it blends into the background somewhat thanks to the gloriously bright star hogging the limelight next to it. The bright object seen in this Hubble image is a single and little-studied star named TYC 3203-450-1, located in the constellation of Lacerta (The Lizard). The star is much closer than the much more distant galaxy. Only this way can a normal star outshine an entire galaxy, consisting of billions of stars. Astronomers studying distant objects call these stars “foreground stars” and they are often not very happy about them, as their bright light is contaminating the faint light from the more distant and interesting objects they actually want to study. In this case, TYC 3203-450-1 is million times closer than NGC 7250, which lies more than 45 million light-years away from us. If the star were the same distance from us as NGC 7250, it would hardly be visible in this image. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Constellation Program Lessons Learned. Volume 2; Detailed Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer; Neubek, Deborah J.; Thomas, L. Dale

    2011-01-01

    These lessons learned are part of a suite of hardware, software, test results, designs, knowledge base, and documentation that comprises the legacy of the Constellation Program. The context, summary information, and lessons learned are presented in a factual format, as known and described at the time. While our opinions might be discernable in the context, we have avoided all but factually sustainable statements. Statements should not be viewed as being either positive or negative; their value lies in what we did and what we learned that is worthy of passing on. The lessons include both "dos" and "don ts." In many cases, one person s "do" can be viewed as another person s "don t"; therefore, we have attempted to capture both perspectives when applicable and useful. While Volume I summarizes the views of those who managed the program, this Volume II encompasses the views at the working level, describing how the program challenges manifested in day-to-day activities. Here we see themes that were perhaps hinted at, but not completely addressed, in Volume I: unintended consequences of policies that worked well at higher levels but lacked proper implementation at the working level; long-term effects of the "generation gap" in human space flight development, the need to demonstrate early successes at the expense of thorough planning, and the consequences of problems and challenges not yet addressed because other problems and challenges were more immediate or manifest. Not all lessons learned have the benefit of being operationally vetted, since the program was cancelled shortly after Preliminary Design Review. We avoid making statements about operational consequences (with the exception of testing and test flights that did occur), but we do attempt to provide insight into how operational thinking influenced design and testing. The lessons have been formatted with a description, along with supporting information, a succinct statement of the lesson learned, and

  14. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  15. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  16. Management of the Reflection Grating Spectrometer on the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As RGS Integrated Product Team Lead, normal coordination and management efforts in the past year have involved setting and overseeing budgets and schedules, regular status reporting to the Program Manager at Goddard Space Flight Center (GSFC), interacting with Constellation-X groups at GSFC, Smithsonian Astrophysical Observatory (SAO), and RGS team institutions, and supporting the program needs of Constellation-X. In addition to the management aspects described above, there are four significant areas of direct contribution that were accomplished.

  17. Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation

    DTIC Science & Technology

    2014-11-01

    Approved for public release. OPERATIONALIZING THE JOINT INFORMATION ENVIRONMENT: ACHIEVING INFORMATION DOMINANCE WITH THE UNDERSEA CONSTELLATION* Captain...SUBTITLE Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation (U) 5a. CONTRACT NUMBER...predict what is over the horizon, faster than the adversary. As noted in the U.S. Navy’s Vision for Information Dominance , “The Navy will create a

  18. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    This Quarterly Report deals with the deployment maneuver of a single-axis, vertical constellation with three masses. A new, easy to handle, computer code that simulates the two-dimensional dynamics of the constellation has been implemented. This computer code is used for designing control laws for the deployment maneuver that minimizes the acceleration level of the low-g platform during the maneuver.

  19. Structural Bus and Release Mechanisms on the ST5 Satellites: Summary and Status

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter

    2007-01-01

    The Space Technology 5 Mechanical System met the challenge of packaging a fully functional science and technology satellite system with its Deployer mechanism into a compact 0.07cu m volume. Three 25 kg satellites were orbited in constellation in March, 2006. The ST5 mechanical system is composed of 1) The Structural Bus; 2) Magnetometer Instrument Boom 3) Spacecraft Deployer Release Mechanism This system includes a highly integrated electronics enclosure as a multifunctional structure; a lig