Science.gov

Sample records for a-train satellite observations

  1. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific

  2. Rapid Transpacific Transport in Autumn Observed by the A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Li. Can; Hsu, N. Christina; Krotkov, Nickolay A.; Liang, Qing; Yang, Kai; Tsay, Si-Chee

    2011-01-01

    Transpacific transport of dust and pollutants is well documented for spring, but less so for other seasons. Here we investigate rapid transpacific transport in autumn utilizing the A-train satellites. In three episodes studied as examples, SO2 plumes over East Asia were detected by the Ozone Monitoring Instrument aboard the Aura satellite, and found to reach North America in 5-6 days. They were likely derived from anthropogenic sources, given that identical transport patterns of CO, a tracer for incomplete combustion, were simultaneously observed by the Aqua satellite. Trajectory analysis and meteorological data were employed to explore the meteorological circumstances surrounding these events: like many of their counterparts in spring, all three plumes were lifted to the free troposphere in warm conveyor belt associated with mid-latitude wave cyclones, and their migration to downwind region was regulated by the meteorology over the East Pacific. These cases provide further evidence that a fraction of S02 could escape wet scavenging, and be transported at much greater efficiency than NOx (NO + N02). An analysis of the S02 and CO data from September to November during 2005-2008 found 16 S02 long-range transport episodes, out of 62 Asian outflow events. While the counts are sensitive to the choice of criteria, they suggest that the long-range transport of Asian sulfur species occurs quite frequently, and could exert strong impacts on large downstream areas. This study also highlights the importance of transpacific transport in autumn, which has thus far been rarely studied and deserves more attention from the community.

  3. Constraining cloud lifetime effects of aerosols using A-Train satellite observations

    NASA Astrophysics Data System (ADS)

    Wang, Minghuai; Ghan, Steven; Liu, Xiaohong; L'Ecuyer, Tristan S.; Zhang, Kai; Morrison, Hugh; Ovchinnikov, Mikhail; Easter, Richard; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

    2012-08-01

    Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (Spop), is a good measure of the liquid water path response to aerosol perturbation (λ), as both Spop and λ strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. Spop in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of Spop and to examine Spop in high-resolution models.

  4. Marine boundary layer structure as observed by A-train satellites

    DOE PAGES

    Luo, Tao; Wang, Zhien; Zhang, Damao; ...

    2016-05-13

    The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  5. Constraining cloud lifetime effects of aerosols using A-Train satellite observations

    SciTech Connect

    Wang, Minghuai; Ghan, Steven J.; Liu, Xiaohong

    2012-08-15

    Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S{sub pop}), is a good measure of the liquid water path response to aerosol perturbation ({lambda}), as both Spop and {lambda} strongly depend on the magnitude of autoconversion, amore » model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. S{sub pop} in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing (SWCF) over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of S{sub pop} and to examine S{sub pop} in high-resolution models.« less

  6. Top-of-the-atmosphere shortwave flux estimation from UV observations: An empirical approach using A-Train Satellite data

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.

    2012-12-01

    Measurements of top of the atmosphere (TOA) radiation are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in the orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long-wave and short-wave region of electromagnetic spectrum, and the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths. Top of the atmosphere SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). OMI measurements have been successfully utilized to derive the information on trace gases (e.g., O3, NO2, and SO2), clouds, and absorbing aerosols. In this paper, OMI retrievals of cloud/aerosol parameters and O3 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. These input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column O3, and sun-satellite viewing geometry from OMI as well as wind speed and total column water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content from SeaWiFs satellite. We

  7. Stability of Shallow Cumulus Cloud Topped Boundary Layers Observed by A-Train Satellites and Comparison with Numerical Model Studies

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Kahn, B. H.; Suselj, K.; Schreier, M. M.; Fetzer, E.; Teixeira, J.

    2011-12-01

    Many theoretical and numerical model studies have shown that the persistence or break-up of the boundary layer low clouds is highly sensitive to the cloud top entrainment instability (CTEI) parameter. Although field campaign observations have been used to examine this hypothesis, they are quite limited in spatial and temporal coverage. Recently, it has been shown that the AIRS retrieval yield (percentage of high quality temperature and water vapor profiles to the surface) over the subtropical oceans within cloud-topped boundary layers is 61-71% globally, and 80-90% throughout the subtropical trade cumulus regions (Yue et al. 2011). Therefore unique, informative and representative observations can be obtained from satellites to study the vertical profiles of atmospheric boundary layer temperature and water vapor, and cloud top stability parameters. In this study, synergistic AIRS, and MODIS data have been used to explore the relationship between boundary layer thermodynamic parameters and shallow cumulus clouds. Results derived from satellite observations will be compared to radiosonde data collocated with satellite ground-tracks, and to numerical results from a simplified single column model.

  8. Characteristics of Tropical Deep Convective Clusters Observed from A-Train Satellites and Their Dependency on Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Liu, D.; Wang, Z.

    2017-12-01

    Deep convective clusters (DCCs) have complicated regime with types variation and environmental effect for cloud parameterization in multiple global climate models (GCMs). This study defines separated storms, connected storms and mesoscale convective systems (MCS) and focus on multi-effect of sea surface temperature (SST), convective available potential energy (CAPE), vertical wind shear (VWS) to these three types of DCCs on tropics by collocating data from MODIS, AMSR-E, CPR and CALIOP instruments onboard A-Train satellites. Results reveal that separated storms and MCSs occur frequently over East Asia while connected storms favor over the warm pool of West Pacific in June-August and South America in December-February. Connected storms and MCS have larger ice water content (IWC) at 10-15 km than separated storms. MCS in particular has a longer histogram tail to the large IWC than other two storms. Increasing VWS affect DCCs horizontal extension positively although severe VWS (> 24 m s-1) impede promotion of vertical structures. In contrast, with accumulating of CAPE, cloud top height growing sharply whereas horizontal extension is restricted to a smaller size. Great potential of precipitation (liquid water path > 0.18 g cm-3) always accompany with moderate or high vertical wind shear (> 14 m s-1), low CAPE (< 1400 J kg-1) and low SST (< 300 K). Upper IWC grows sufficiently with low SST and CAPE but strong vertical wind shear. When higher CAPE and warmer SST without intense vertical wind shear occur, large ice crystals can extend in stratiform-anvil cloud effectively. In general, surface instability interrelates to vertical scale positively yet wind field impact horizontal structure of DCCs especially for upper one.

  9. Study of tropical deep convective processes and water vapor variations using nasa a-train data and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hanii

    The theme of this dissertation is to use various satellite observations to seek new insights into our understating of tropical deep convective processes and water vapor variations. Three subjects are investigated: 1) observational determination of level of neutral buoyancy (LNB) for deep convection, 2) characters and life stage view of tropical overshooting convection (OSC), and 3) variations of water vapor and clouds during East Pacific (EP)- and Central Pacific (CP)-El Ninos. The first study conducts a near-global survey of LNB for tropical deep convection using CloudSat (LNB_observation) and makes comparison with the corresponding LNB based on the parcel theory using ambient sounding (LNB_sounding). The principal findings are as follows: First, although LNB_sounding provides a reasonable upper bound for convective development, ambient sounding contains limited information for predicting the actual LNB. Second, LNB_sounding significantly overestimates the "destination" height level of the detrained mass. Third, LNB_observation is consistently higher over land than over ocean, although LNB_sounding is similar between land and ocean, suggesting some fundamental differences between land and ocean convection. The second study uses CloudSat data together with ISCCP CT to study tropical OSC properties and the convective systems in which they are embedded. Our results find that, nearly 21 % of tropical deep convection is overshooting; the occurrence frequency is only slightly higher over land (~ 50.2 %) than over ocean (~ 49.8 %). Various proxies of convective strength are analyzed showing consistently that continental OSC is stronger than the oceanic counterpart. Moreover, majority (2/3) of the OSC occurs during the growing stage of the convective systems. About 1/3 occurs during the mature stage, which are more abundant over land during noontime. The third study shows that EP- and CP-El Nino events produce different patterns of water vapor and cloud anomalies over the

  10. Global aerosol typing from a combination of A-Train satellite observations in clear-sky and above clouds

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.

    2014-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.

  11. Overview of A-Train Satellite Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Maring, H.

    2007-12-01

    NASA satellites make a wide variety of cloud measurements for climate and meteorological research and prediction. The A-Train is a constellation of satellites in coordinated low earth orbits with an extensive array of sensors making a wide variety of complementary observations of the earth system. The satellite constellation provides synergistic measurements enabling data from several different satellites/sensors to be used together to obtain comprehensive information about various key components and processes of the earth system. The A-Train consists of the following satellites and sensors currently in operation: Aqua, launched 4 May 2002 carries: Atmospheric Infrared Sounder-high spectral resolution (2378 channels) grating spectrometer. Advanced Microwave Sounding Unit-15 channel microwave radiometer. Humidity Sounder for Brazil is a 4 channel microwave radiometer, which provided data until February 2003. Advanced Microwave Scanning Radiometer for EOS-12 channel, 6 frequency microwave radiometer. Moderate Resolution Imaging Spectroradiometer-36 band visible and infrared imaging spectroradiometer. Cloud's and the Earth's Radiant Energy System-3 channel scanning visible and infrared radiometers. Aura, launched 15 July 2004 carries: High Resolution Dynamics Limb Sounder-multi channel infrared radiometer. Microwave Limb Sounder-multi channel microwave radiometer. Ozone Monitoring Instrument-visible and ultra violet hyperspectral imaging spectrometers. Tropospheric Emission Spectrometer-high-resolution, infrared Fourier transform spectrometer. Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar-launched 18 December 2004 by the French space agency Centre National d'Etudes Spatiales (CNES) and carries a polarimeter. CloudSat and CALIPSO launched together 28 April 2005. CloudSat-US/Canadian cooperative project carries a 94 GHz nadir cloud profiling radar. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

  12. Top-of-the-Atmosphere Shortwave Flux Estimation from Satellite Observations: An Empirical Neural Network Approach Applied with Data from the A-Train Constellation

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-01-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  13. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  14. A-Train observations of deep convective storm tops

    NASA Astrophysics Data System (ADS)

    Setvák, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvát, Zdeněk; Šťástka, Jindřich; Wang, Pao K.

    2013-04-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the “A-Train” constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  15. Parachute satellites for earth observation

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier

    2008-07-01

    The "parachute" concept presented here is a generic definition for earth observation systems essentially made of a reflector under which a detector associated with a telemetry antenna is suspended [D. Massonnet, (Applicant), Satellite, method and a fleet of satellites for observing a celestial body, Patent 0509-1112, 2006. [1]; D. Massonnet, (Déposant), Satellite, procédé et flotte de satellites d'observation d'un corps céleste, Priorité 04-04327, 2004. [2

  16. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  17. Characterization of properties and spatiotemporal fields of mineral aerosol and its radiative impact using calipso data in conjunction with A-train satellite and ground-based observations and modeling

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Jin

    Atmospheric mineral aerosol (or dust) plays an important role in the Earth.s system. However, quantification of dust impacts has long been associated with large uncertainties because of the complex nature of mineral aerosol. A better understanding of the properties and spatiotemporal distribution of atmospheric dust on the regional and global scales is needed to improve predictions of the impact that dust radiative forcing and heating/cooling rates have on the weather and climate. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission provides unique measurements of vertical profiles of aerosols and clouds and their properties during day and nighttime over all types of surfaces. This information has the potential to significantly improve our understanding of the properties and effects of aerosol and clouds. This dissertation presents the results of a comprehensive analysis of CALIPSO lidar (version 2 and version 3.01) data in conjunction with A-Train satellite and ground-based observations aimed at characterizing mineral aerosol in East Asia and other major dust sources. The specific objectives were to characterize the spatial distribution and properties of atmospheric dust in the dust source regions using new CALIOP (version 3.01) data in conjunction with satellite MODIS, OMI, and CloudSat data and ground-based meteorological and lidar data; investigate changes in the vertical distribution and properties of dust during mid- and long-range transport; perform a modeling of the optical properties of nonspherical dust particles, and assess the radiative forcing and heating/cooling rates of atmospheric dust by performing radiative transfer modeling constrained by satellite data in major dust source regions. Our research revealed significant biases in CALIPSO version 2 data, especially in the presence of dense dust plumes and dust-cloud mixed scenes. Aerosol optical depth (AOD) retrieved from CALIOP backscatter profiles was

  18. CloudSat Anomaly and Return to the A-Train: Lessons Learned for Satellite Constellations

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    2015-01-01

    In April 2011, CloudSat suffered a severe battery anomaly, leaving the space-craft in emergency mode without the ability to command or maneuver the spacecraft. Before the team was able to recover spacecraft operability, CloudSat passed close to the Aqua satellite in the A-Train and then exited the A-Train. A new mode of operations, termed Daylight Only Operations (DO-Op) mode was developed to enable CloudSat to resume science operations in an orbit under the A-Train by November 2011, and in July 2012 CloudSat re-entered the A-Train. This paper describes challenges and lessons-learned during the anomaly, the exit from the A-Train and the return to the A-Train. These lessons-learned may ap-ply to other current and future satellite constellations in Earth orbit.

  19. Observing iodine monoxide from satellite

    NASA Astrophysics Data System (ADS)

    Schoenhardt, Anja; Richter, Andreas; Begoin, Mathias; Wittrock, Folkard; Burrows, John P.

    Iodine and iodine monoxide (IO) belong to the group of reactive halogen species, and they may impact on atmospheric chemical composition and the radiation budget. Vice versa, sur-rounding conditions may influence the emissions and pathways of iodine compounds. Although atmospheric amounts of iodine are typically fairly small, the impact may still be substantial. Iodine radicals are photolytically released from precursors and may then cause catalytic ozone depletion. In this reaction with ozone, IO is produced, a molecule which plays a central role in the iodine cycling. Via self reactions of IO, higher iodine oxides form and initiate the formation of new particles, which may change the atmospheric radiation balance. Apart from that, many living species, including human beings, vertebrates in general, but also micro-and macroalgae species, e.g., depend on the supply with iodine. Consequently, it is necessary to understand the cycling of iodine through the different components of the Earth system. Although increas-ing research effort in the form of field, laboratory and modeling studies has strongly improved our knowledge and understanding of iodine abundances and impact, still many open questions remain. The relevance of iodine on a global scale is not well known yet; sources are not well quantified and release processes are not fully understood. Since recently, IO may be observed from space by the SCIAMACHY instrument on the EN-VISAT satellite, which is in a near-polar, sun-synchronous orbit. Nadir observations from SCIAMACHY have been analysed for the IO absorption signature in the visible wavelength range for several mission years. IO amounts are typically close to the limit of detectability of SCIAMACHY. Detecting such small quantities, careful attention needs to be paid to system-atic errors, spectral correlations and resulting retrieval artefacts. Subsequently, appropriate temporal averaging is utilised to improve the signal-to-noise ratio. The resulting

  20. Landsat—Earth observation satellites

    USGS Publications Warehouse

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  1. Severe storms observing satellite (STORMSAT)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The primary payload for this satellite is the Advanced Atmospheric Sounding and Imaging Radiometer which will perform precise infrared temperature sounding and visible/infrared imaging from geostationary orbit. A secondary payload instrument which may be utilized on STORMSAT is the Microwave Atmospheric Sounding Radiometer which provides an independent set of temperature and humidity sounding in cloudy, meteorologically active regions. The study provides satellite designs and identifies mission-unique subsystems using the Multimission Modular Spacecraft using a Shuttle/Interim Upper Stage launch vehicle.

  2. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  3. Ozone variations from satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2016-12-01

    Global and regional distribution and variation of total column ozone have been studied based on the total column ozone (TCO) data during 1979 and 2014 from different spaceborne instruments including TOMS (total ozone mapping spectrometer) series, OMI (ozone monitoring instrument) and TOU (total ozone unit)series. The distribution and variation of total column ozone over globe and some key regions are studied. The TCO differences of distribution and variation (DAV) between the Northern and Southern Hemisphere are discussed and possible impact factors on TCO DAV are considered. Special attention has been focused on the ozone variation for China, Tibetan Plateau and Polar regions. The monitoring of Antarctic ozone hole and Arctic ozone is also conducted using FY3 satellite data. The results showed that TCO DAV are very nonuniform in the middle and high latitudes and polar regions. The ozone loss over polar regions continues to exist. For Tibetan Plateau, the TCO variation is larger than the other regions of the same latitude. The mechanism of ozone variation over Tibetan Plateau is complicated.

  4. Magnetopause structure from satellite observations

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. O.

    1979-01-01

    Observations on magnetopause structure are reported. Major topics covered include: classical reconnection, transport mechanisms, magnetospheric boundary layers, tearing modes, and Jupiter's magnetopause.

  5. Observing Jupiter and its Satellites

    NASA Astrophysics Data System (ADS)

    McAnally, J.; Murdin, P.

    2003-04-01

    JUPITER is often referred to as the amateurs' planet. Because of its enormous size and large apparent diameter, Jupiter presents us with a target that is relatively easy to observe with modest amateur equipment. Over the years, amateurs have contributed significantly to our knowledge of the giant planet....

  6. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor); Peterson, R. (Editor)

    1980-01-01

    The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.

  7. Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Rottman, G.; Woods, T.; Lawrence, G.; Harder, J.; McClintock, W.; Kopp, G.

    2003-01-01

    Required solar irradiance measurements for climate studies include those now being made by the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) onboard the SORCE satellite, part of the Earth Observing System fleet of NASA satellites. Equivalent or better measures of Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI, 200 to 2000 nm) are planned for the post-2010 satellites of the National Polar-orbiting Operational Environmental Satellite System ("OESS). The design life of SORCE is 5 years, so a "Solar Irradiance Gap Filler" EOS mission is being planned for launch in the 2007 time frame, to include the same TSI and SSI measurements. Besides avoiding any gap, overlap of the data sources is also necessary for determination of possible multi-decadal trends in solar irradiance. We discuss these requirements and the impacts of data gaps, and data overlaps, that may occur in the monitoring of the critical solar radiative forcing.

  8. First optical observations of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Rykhlova, L. V.

    2008-08-01

    A review of the first optical observations of the artificial satellites in the USSR as well as in former communist countries (DDR, Romania,Poland) is given. The role by Alla G. Masevich, I.D. Zhongolovich and Yu.V. Batrakov is underlined in the organization of observations.

  9. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  10. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statisticallymore » significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.« less

  11. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE PAGES

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...

    2017-04-26

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  12. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  13. Seasonal streamflow estimation employing satellite snowcover observations

    NASA Technical Reports Server (NTRS)

    Rango, A.; Salomonson, V. V.; Foster, J. L.

    1975-01-01

    Low resolution meteorological satellite and high resolution earth resources satellite data have been used to map snow covered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River early spring snow covered area was extracted and related to April through June stream flow from 1967-1971 using a regression equation. Prediction of the April-June 1972 stream flow from the satellite data was within three percent of the actual total. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snow cover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations.

  14. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  15. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  16. Globally Gridded Satellite observations for climate studies

    USGS Publications Warehouse

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, Chris; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  17. QSAT: The Satellite for Polar Plasma Observation

    NASA Astrophysics Data System (ADS)

    Tsuruda, Yoshihiro; Fujimoto, Akiko; Kurahara, Naomi; Hanada, Toshiya; Yumoto, Kiyohumi; Cho, Mengu

    2009-04-01

    This paper introduces QSAT, the satellite for polar plasma observation. The QSAT project began in 2006 as an initiative by graduate students of Kyushu University, and has the potential to contribute greatly to IHY (International Heliophysical Year) by showing to the world the beauty, importance, and relevance of space science. The primary objectives of the QSAT mission are (1) to investigate plasma physics in the Earth’s aurora zone in order to better understand spacecraft charging, and (2) to conduct a comparison of the field-aligned current observed in orbit with ground-based observations. The QSAT project can provide education and research opportunities for students in an activity combining space sciences and satellite engineering. The QSAT satellite is designed to be launched in a piggyback fashion with the Japanese launch vehicle H-IIA. The spacecraft bus is being developed at the Department of Aeronautics and Astronautics of Kyushu University with collaboration of Fukuoka Institute of Technology. Regarding the payload instruments, the Space Environment Research Center of Kyushu University is developing the magnetometers, whereas the Laboratory of Spacecraft Environment Interaction Engineering of Kyushu Institute of Technology is developing the plasma probes. We aim to be ready for launch in 2009 or later.

  18. Infrared observations of outer planet satellites

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.

    1988-01-01

    This task supports IR observations of the outer planet satellites. These data provide vital information about the thermophysical properties of satellite surfaces, including internal heat sources for Io. Observations include both broad and narrow band measurementsin the 2 to 20 micrometer spectral range. The program in the last year has aimed at obtaining lonitude coverage on Io to establish stability of hot spot patterns previously reported. Several runs produced the most complete data set for an apparition since the start of the program. Unfortunately, bad weather limited coverage of key longitude ranges containing the largest known hot spot Loki. Among the preliminary results is the observation of an outburst in Io's thermal flux that was measured at 4.8, 8.7 and 20 micrometer. Analysis of the data has given the best evidence to date of silicate volcanism on Io; this is one of the most significant pieces of the puzzle as to the relative roles of silicate and sulfur volcanism on Io. Researchers are collaborating with J. Goguen (NRC RRA to finish reduction of mutual event data, which have already improved ephermeris information for the satellites. The data appear to place significant limits on the characteristics of any leading side hot spots.

  19. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    NASA Technical Reports Server (NTRS)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  20. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  1. Geostationary satellite observations of dynamic phytoplankton photophysiology

    NASA Astrophysics Data System (ADS)

    O'Malley, Robert T.; Behrenfeld, Michael J.; Westberry, Toby K.; Milligan, Allen J.; Shang, Shaoling; Yan, Jing

    2014-07-01

    Since June 2010, the Geostationary Ocean Color Imager (GOCI) has been collecting the first diurnally resolved satellite ocean measurements. Here GOCI retrievals of phytoplankton chlorophyll concentration and fluorescence are used to evaluate daily to seasonal changes in photophysiological properties. We focus on nonphotochemical quenching (NPQ) processes that protect phytoplankton from high light damage and cause strong diurnal cycles in fluorescence emission. This NPQ signal varies seasonally, with maxima in winter and minima in summer. Contrary to expectations from laboratory studies under constant light conditions, this pattern is highly consistent with an earlier conceptual model and recent field observations. The same seasonal cycle is registered in fluorescence data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer Aqua satellite sensor. GOCI data reveal a strong correlation between mixed layer growth irradiance and fluorescence-derived phytoplankton photoacclimation state that can provide a path for mechanistically accounting for NPQ variability and, subsequently, retrieving information on iron stress in global phytoplankton populations.

  2. A Decade of Volcanic Observations from Aura and the A-Train

    NASA Technical Reports Server (NTRS)

    Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer

    2014-01-01

    Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.

  3. Middle atmosphere composition revealed by satellite observations

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Solomon, S.; Mccormick, M. P.; Miller, A. J.; Barnett, J. J.; Jones, R. L.; Rusch, D. W.

    1986-01-01

    A series of plots that describe the state of the stratosphere and to some degree, the mesosphere as revealed by satellite observations are shown. The pertinent instrument features, spatial and temporal coverage, and details of accuracy and precision for the experiments providing the data were described. The main features of zonal mean cross sections and polar stereographic projections were noted and intercomparisons were discussed where a parameter was measured by more than one experiment. The main purpose was to collect the available data in one place and provide enough inforamation on limitations or cautions about the data so that they could be used in model comparisons and science studies.

  4. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  5. VLBI observations to the APOD satellite

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Tang, Geshi; Shu, Fengchun; Li, Xie; Liu, Shushi; Cao, Jianfeng; Hellerschmied, Andreas; Böhm, Johannes; McCallum, Lucia; McCallum, Jamie; Lovell, Jim; Haas, Rüdiger; Neidhardt, Alexander; Lu, Weitao; Han, Songtao; Ren, Tianpeng; Chen, Lue; Wang, Mei; Ping, Jinsong

    2018-02-01

    The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10 cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1 s integration time of the correlator output is on the level of 0.1 ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.

  6. Decadal Record of Satellite Carbon Monoxide Observations

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Deeter, Merritt; Frankenberg, Christian; George, Maya; Nichitiu, Florian; Worden, John; Aben, Ilse; Bowman, Kevin; Clerbaux, Cathy; Coheur, Pierre-Francois; de Laat, Jos; Warner, Juying; Drummond, James; Edwards, David; Gille, John; Hurtmans, Daniel; Ming, Luo; Martinez-Alonso, Sara; Massie, Steven; Pfister, Gabriele

    2013-04-01

    Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, chemical production, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO using the available measurements from nadir-viewing thermal infrared instruments: MOPITT, AIRS, TES and IASI. We examine trends for CO in the Northern and Southern hemispheres along with regional trends for E. China, E. USA, Europe and India. Measurement and sampling methods for each of the instruments are discussed, and we show diagnostics for systematic errors in MOPITT trends. We find that all the satellite observations are consistent with a modest decreasing trend around -1%/year in total column CO over the Northern hemisphere for this time period. Decreasing trends in total CO column are observed for the United States, Europe and E. China with more than 2σ significance. For India, the trend is also decreasing, but smaller in magnitude and less significant. Decreasing trends in surface CO have also been observed from measurements in the U.S. and Europe. Although less information is available for surface CO in China, there is a decreasing trend reported for Beijing. Some of the interannual variability in the observations can be explained by global fire emissions, and there may be some evidence of the global financial crisis in late 2008 to early 2009. But the overall decrease needs further study to understand the implications for changes in anthropogenic emissions.

  7. Investigations of earth dynamics from satellite observations

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1973-01-01

    The consequences of the earth's elasticity are examined for close-earth satellites. The ideas of polar motion and earth tides are developed in a form applicable to satellite studies, since the polar motion, the body tide, and the ocean tide are all suitable for study by use of satellites. Analysis of available polar-motion data is performed.

  8. Results of Observations over Jupiter's Galilean Satellites

    NASA Astrophysics Data System (ADS)

    Chigladze, Revaz; Tateshvili, Maia

    The work describes the polarization properties of the light reflected from the surfaces of Galileo Jupiter's satellites, with their physical characteristics studied based on their analysis. Europe turned out to have the most homogeneous, and Callisto has the least homogeneous. Time variations are the most typical to satellite Io what must be the result of the volcanic actions on the satellite surface.

  9. ASTER satellite observations for international disaster management

    USGS Publications Warehouse

    Duda, K.A.; Abrams, M.

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  10. Industrial use of land observation satellite systems

    NASA Technical Reports Server (NTRS)

    Henderson, F. B., III

    1984-01-01

    The principal industrial users of land observation satellite systems are the geological industries; oil/gas, mining, and engineering/environmental companies. The primary system used is LANDSAT/MSS. Currently, use is also being made of the limited amounts of SKYLAB photography, SEASAT and SIR-A radar, and the new LANDSAT/TM data available. Although considered experimental, LANDSAT data is now used operationally by several hundred exploration and engineering companies worldwide as a vastly improved geological mapping tool to help direct more expensive geophysical and drilling phases, leading to more efficient decision-making and results. Future needs include global LANDSAT/TM; higher spatial resolution; stereo and radar; improved data handling, processing distribution and archiving systems, and integrated geographical information systems (GIS). For a promising future, governments must provide overall continuity (government and/or private sector) of such systems, insure continued government R and D, and commit to operating internationally under the civil Open Skies policy.

  11. IASI Satellite Observation and Forecast of Pollutants

    NASA Astrophysics Data System (ADS)

    Clerbaux, C.; Boynard, A.; George, M.; Hadji-Lazaro, J.; Safieddine, S.; Viatte, C.; Clarisse, L.; Pierre-Francois, C.; Hurtmans, D.; van Damme, M.; Wespes, C.; Whitburn, S.

    2017-12-01

    The IASI family of instruments has been sounding the atmosphere since 2006 onboard the Metop satellite series. Using the radiance data recorded in the thermal infrared spectral range, concentrations for atmospheric pollutants such as carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2) and ammonia (NH3) can be derived. IASI CO and O3 fields are assimilated in regional and global models in order to predict air quality over Europe. Enhanced levels of pollutants are detected in near-real time, and can be followed at city, country and continent levels. This talk will present the findings for an extended time period (2008-2017), and will review the IASI capability to observe exceptional events both at the local and regional scales, as well as seasonal variations due other dynamic patterns (monsoon, ENSO, …). Progresses and current limitations to derive long term trends will also be discussed.

  12. Satellite Observations of the Epic California Drought

    NASA Astrophysics Data System (ADS)

    Famiglietti, J. S.; Thomas, B. F.; Reager, J. T., II; Castle, S. L.; David, C. H.; Thomas, A. C.; Andreadis, K.; Argus, D. F.; Behrangi, A.; Farr, T.; Fisher, J. B.; Landerer, F. W.; Lo, M. H.; Molotch, N. P.; Painter, T. H.; Rodell, M.; Schimel, D.; Swenson, S. C.; Watkins, M. M.

    2014-12-01

    As California enters its third year of drought, questions of future water sustainability are inevitable. Snowpack, soil moisture, streamflow, reservoir and groundwater levels are at record lows. Mandatory water restrictions are being implemented, statewide fines for wasting water have been authorized, and billions of dollars and tens of thousands of jobs have been lost. Enhanced monitoring and modeling of the state's dwindling water supplies can help manage what remains while looking forward to a post-drought, sustainable water future. Here we demonstrate the role of satellite observations in comprehensive drought characterization and monitoring. In particular we highlight changing water supply, declining groundwater and reservoir levels, agricultural and urban stress. Potential contributions to water management will be discussed.

  13. Investigating cirrus cloud behavior using A-Train and geostationary satellite data

    NASA Astrophysics Data System (ADS)

    Berry, Elizabeth

    Knowledge of how the large-scale dynamics are coupled with microphysical properties is necessary for parameterizing cirrus in climate models. In this study, the synergy of the CloudSat and CALIPSO instruments is exploited for identifying cirrus. Mesoscale-size cirrus events are defined using a combined CloudSat-CALIPSO cloud mask and temperature data for one year in the Atlantic basin. In order to characterize the tendencies of cirrus, the instantaneous view of A-Train satellites is augmented with the temporal view from a geostationary satellite. Cirrus events are tracked using an algorithm, which follows patterns of 6.2μm brightness temperature in consecutive water vapor images. NCEP/NCAR reanalysis data is used to determine the environments in which the cirrus events exist. The cirrus events are sorted based on pressure- radar reflectivity patterns using a k-means cluster algorithm. The six clusters that are identified include Single-Layer Cirrus, Thick Cirrus and Low Cloud, High Cirrus, Deep Cirrus, Mixed Cloud and Thin Cirrus, and Low Cloud. A cluster algorithm is also applied to the large-scale dynamics to determine the basic synoptic states for cirrus. This analysis results in six dynamic clusters including Deep Wave Cirrus, Developing Tropical Cirrus, Subtropical Jet Cirrus, Zonal Jet/Stationary Front Cirrus, Dissipating Tropical Cirrus, and Ridge Crest Cirrus. We find that large-scale dynamic types do not necessarily predetermine the cirrus cloud properties.

  14. Ocean observing satellite study: instrument and satellite constellation architecture options

    NASA Technical Reports Server (NTRS)

    Gerber, A. J.; McGuire, J.; Cunningham, J. D.; Pichel, W. G.

    2002-01-01

    This paper provides: (1) an overview of the set of active and passive instruments identified by the IPO designed to make the ocean measurements including visible and infrared medium and high resolution imagers, radiometers, altimeters, and synthetic aperture radars and (2) the instrument and satellite constellation architecture options studied, and their ability to meet the set of measurement requirements.

  15. Arctic Warming Signals from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the

  16. Satellite observations of temporal terrestrial features

    NASA Technical Reports Server (NTRS)

    Rabchevsky, G. A.

    1972-01-01

    The application of satellite data to earth resources and environmental studies and the effects of resolution of the photographs and imagery are discussed. The nature of the data acquired by manned space flight and unmanned satellites is described. Specific applications of remotely sensed data for oceanography, hydrology, geography, and geology are examined.

  17. Satellite observations of ground water changes in New Mexico

    USDA-ARS?s Scientific Manuscript database

    In 2002 NASA launched the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE consists of two satellites with a separation of about 200 km.  By accurately measuring the separation between the twin satellites, the differences in the gravity field can be determined. Monthly observ...

  18. Satellite observations of a monsoon depression

    NASA Technical Reports Server (NTRS)

    Warner, C.

    1984-01-01

    The exploration of a monsoon depression over Burma and the Bay of Bengal is discussed. Aircraft and satellite data were examined, with an emphasis on the Microwave Sounding Unit (MSU) aboard TIROS-N and the Scanning Multichannel Microwave Radiometer (SMMR) aboard Nimbus-7. The structure of the monsoon depression was found to be dominated by cumulus convection. The only systematic large scale behavior discerned was a propagation of the depression westward, and diurnal migration of contours of brightness temperature. These contours in the middle troposphere showed a gradient toward the north with the patterns migrating northward at night. From SMMR and dropwindsonde data, water vapor contents were found to be near 65 mm, increasing to more than 70 mm in the northeast Bay of Bengal. Cloud water contents reached about three mm. Rainfall rates exceeding 5.7 mm/h occurred over a small part of the storm area, while mean rainfall rates in areas of order 20,000 sq km reached approximately 0.5 mm/h. Measured MSU brightness temperatures were reconciled very well with dropwindsonde data and with airborne in situ observations of clouds (by photography) and hydrometeors (by radar). Diffuse scattering was determined to be important in computing brightness temperature.

  19. New Insight into Polar Stratospheric Cloud Processes from A-Train Observations

    NASA Astrophysics Data System (ADS)

    Pitts, M. C.; Poole, L. R.

    2016-12-01

    Polar stratospheric clouds (PSCs) play essential roles in the chemical depletion of stratospheric ozone at high latitudes. Heterogeneous reactions occurring on PSC particles, primarily supercooled ternary (H2SO4-H2O-HNO3) solution (STS) droplets, convert stable chlorine reservoir species to highly reactive ozone-destructive forms. Also, sedimentation and evaporation of large nitric acid trihydrate (NAT) particles irreversibly redistributes odd nitrogen and prolongs ozone depletion by slowing the reformation of stable chlorine reservoirs. Even after three decades of research, significant gaps in our understanding of PSC processes still exist, particularly concerning NAT nucleation and the extent to which chlorine is activated on cold background aerosol prior to PSC formation. These uncertainties limit our ability to represent PSCs accurately in global models and call into question predictions of ozone recovery in a changing climate. PSC observations from the A-Train satellite constellation have stimulated a number of new research activities that have both extended and challenged our knowledge of PSC processes and modeling capabilities. Specifically, the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite is providing information on PSC morphology and composition in unprecedented detail, while the Microwave Limb Sounder (MLS) on the Aura satellite is providing nearly coincident measurements of gas-phase HNO3 and H2O, the major constituents of all PSC particles. The combined analyses of these datasets enable better PSC composition discrimination and provide valuable new insight into processes such as PSC-catalyzed chlorine activation and PSC particle growth kinetics. The more than ten years of CALIOP and MLS measurements have uniquely captured the primary aspects of the seasonal and multi-year variability of PSCs in the Arctic and Antarctic and are enabling the

  20. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    NASA Astrophysics Data System (ADS)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  1. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1975-01-01

    LANDSAT and NOAA satellites data were used to study snow depth. These snow measurements were used to help forecast runoff and flooding. Many areas of California, Arizona, Colorado, and Wyoming were emphasized.

  2. Investigation of Three-Dimensional (3-D) Solar Radiative Transfer Effects Using A-Train Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ham, S.; Kato, S.; Barker, H.; Rose, F. G.

    2012-12-01

    Three-dimensional (3-D) radiative effects are examined for cloudy atmosphere obtained from A-train satellite measurements. Since CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) only provide two-dimensional (2-D) nadir profiles along the satellite track, Moderate Resolution Imaging Spectroradiometer (MODIS) spectral radiances are used to extend the 2-D cloud profiles to the cross track direction (Barker et al., 2011). Then one-dimensional (1-D) and 3-D simulations are performed to get (SW) broad band (BB) flux and heating rate profile for constructed 3-D cloud field. In the simulation, correlated k-distribution model is employed to obtain rapid estimation of gaseous optical depths for 70 solar spectral bands. The difference between 1-D and 3-D results are interpreted as 3-D solar effects, and analyzed for different cloud types and solar zenith angle. In addition, modeled top-of-atmosphere (TOA) irradiances by the 1-D and 3-D models are compared to Clouds and the Earth's Radiant Energy System (CERES)-derived TOA irradiances. The preliminary results show that 3-D cloud absorption is larger than 1-D calculation, and thus 3-D heating rate is larger than 1-D heating rate for cloud layer. On the other hand, 3-D downward flux at surface is smaller than 1-D flux. Reference Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011, A 3D cloud-construction algorithm for the EarthCARE mission, Q. J. R. Meteorol. Soc., 137, 1042-1058.

  3. Sentinel Satellites Initiate New Era in Earth Observation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-07-01

    With the European Space Agency's (ESA) Sentinel-1A satellite expected to enter into its operational phase later this summer, it ushers in a new series of Earth observation satellites. The first generation of the fleet of satellites, which will total 20 when all are launched, will comprise "the most comprehensive Earth observation system worldwide," according to Josef Aschbacher, head of program planning and coordination for ESA's Earth Observation Programs directorate. The satellites are a key part of Copernicus, the European Earth Observation Program that from 1998 to 2012 was called the Global Monitoring for Environment and Security (GMES) program.

  4. NASA A-Train and Terra Observations of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Douglass, A. R.; DaSilva, A.; Torres, O.; Levy, R.; Duncan, B. N.

    2011-01-01

    Wildfires raged throughout western Russia and parts of Eastern Europe during a persistent heat wave in the summer of 2010. Anomalously high surface temperatures (35 - 41 C) and low relative humidity (9 - 25 %) from mid- June to mid-August 2010 shown by analysis of radiosonde data from multiple sites in western Russia were ideal conditions for the wildfires to thrive. Measurements of outgoing longwave radiation (OLR) from the Atmospheric Infrared Sounder (AIRS) over western Russian indicate persistent subsidence during the heat wave. Daily three-day back-trajectories initiated over Moscow reveal a persistent anticyclonic circulation for 18 days in August, coincident with the most intense period of fire activity observed by Moderate Resolution Imaging Spectroradiometer (MODIS). This unfortunate meteorological coincidence allowed transport of polluted air from the region of intense fires to Moscow and the surrounding area. We demonstrate that the 2010 Russian wildfires are unique in the record of observations obtained by remote-sensing instruments on-board NASA satellites: Aura and Aqua (part of the A-Train Constellation) and Terra. Analysis of the distribution of MODIS fire products and aerosol optical thickness (AOT), UV aerosol index (AI) and single-scattering albedo (SSA) from Aura's Ozone Monitoring Instrument (OMI), and total column carbon monoxide (CO) from Aqua s Atmospheric Infrared Sounder (AIRS) show that the region in the center of western Russia surrounding Moscow (52-58 deg N, 33 -43 deg E) is most severely impacted by wildfire emissions. Over this area, AIRS CO, OMI AI, and MODIS AOT are significantly enhanced relative to the historical satellite record during the first 18 days in August when the anti-cyclonic circulation persisted. By mid-August, the anti-cyclonic circulation was replaced with westerly transport over Moscow and vicinity. The heat wave

  5. Observation of GEO Satellite Above Thailand’s Sky

    NASA Astrophysics Data System (ADS)

    Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.

    2017-09-01

    The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.

  6. Imaging artificial satellites: An observational challenge

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  7. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  8. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2013-06-01

    This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  9. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  10. Scheduling of VLBI satellite observations for an improved ITRF

    NASA Astrophysics Data System (ADS)

    Hellerschmied, Andreas; Böhm, Johannes; Neidhardt, Alexander; Haas, Rüdiger; Kodet, Jan; Plank, Lucia

    2015-04-01

    Observations of Earth orbiting satellites with the Very Long Baseline Interferometry (VLBI) technique provide a variety of new possibilities and promote the integration of different geodetic techniques, which is one of the main purposes of GGOS, the Global Geodetic Observing System of the IAG. Promising applications can be found e.g. in the field of inter-technique frame ties, having the potential to improve future realizations of the International Terrestrial Reference Frame (ITRF). Although several test observations to GNSS satellites have been carried out in recent years, this approach is still far away from being applied operationally. Difficulties already start at the observation planning level, with the standard VLBI scheduling software not being prepared to include satellites as observation targets in the required control files. The newly developed satellite scheduling module of the Vienna VLBI Software (VieVS) for the planning of satellite observations with VLBI antennas offers a solution to this. It allows the user to prepare schedules for selected satellites, which are simultaneously visible from a chosen station network. The generated schedule files in the current VEX format provide the possibility to carry out actual satellite observations with standard geodetic antennas, e.g. of the IVS network. The antennas can be controlled directly with the issued schedule files by commanding sequences of discrete celestial positions, without the requirement of modifications in the antenna control intended for satellite tracking. In January 2014 several successful test observations to GLONASS satellites were carried out on the baseline Onsala-Wettzell based on schedules generated with VieVS. Correlations of the recorded data showed that the observations - and therefore the scheduling with VieVS - were successful. The next step is to update the new software for the possibility to combine observations to satellites and to quasars in one schedule. The development of

  11. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    EPA Science Inventory

    The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...

  12. Satellite Observed Changes in the Arctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2004-01-01

    The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.

  13. Observations of iodine monoxide columns from satellite

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Richter, A.; Wittrock, F.; Kirk, H.; Oetjen, H.; Roscoe, H. K.; Burrows, J. P.

    2008-02-01

    Iodine species in the troposphere are linked to ozone depletion and new particle formation. In this study, a full year of iodine monoxide (IO) columns retrieved from measurements of the SCIAMACHY satellite instrument is presented, coupled with a discussion of their uncertainties and the detection limits. The largest amounts of IO are found near springtime in the Antarctic. A seasonal variation of iodine monoxide in Antarctica is revealed with high values in springtime, slightly less IO in the summer period and again larger amounts in autumn. In winter, no elevated IO levels are found in the areas accessible to satellite measurements. This seasonal cycle is in good agreement with recent ground-based measurements in Antarctica. In the Arctic region, no elevated IO levels were found in the period analysed. This implies that different conditions with respect to iodine release exist in the two Polar Regions. To investigate possible release mechanisms, comparisons of IO columns with those of tropospheric BrO, and ice coverage are described and discussed. Some parallels and interesting differences between IO and BrO temporal and spatial distributions are identified. Overall, the large spatial coverage of satellite retrieved IO data and the availability of a long-term dataset provide new insight about the abundances and distributions of iodine compounds in the troposphere.

  14. Observations of Natural Planetary Satellites with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Arlot, J. E.

    The Natural Planetary Satellites are objects of many studies as well for their dynamics as for their physical nature. They represent a large variety of different objects which may be observed thanks to small telescopes, the aperture of which being less than 2 meters. The Natural Planetary Satellites seems to belong to three families as follow: The small satellites near the planet which are orbiting in the near environment of the planet, under the influence of non gravitational effects suspected but not yet measured. Specific observations may help to detect them. The large satellites have a size similar to Mars and Mercury. More, their nature and their surfaces are of a high interest. The volcanoes on Io have a fast activity, needing continuously made observations. They are a goal for space missions and need to be observed through coordinated programs. The small outer satellites needs to be observed in order to improve our knowledge on their nature through photometric surveys and on their dynamics. All these programs of photometric or astrometric observations may be performed thanks to small telescopes and CCD targets. More, the large satellites offer phenomena which may be observed with photometric techniques, such as in 2002-2003: mutual events will occur between the Galilean Satellites of Jupiter and will be observable with telescopes with an aperture starting from 30cm. We encourage astronomers owning small telescopes to participate to the programs of observations of the Natural Planetary Stallites in order to help the improvement of our knowledge on these objects.

  15. Astrographic observations of the major Uranian satellites from Voyager 2

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.

    1992-01-01

    This article provides the reduced astrographic observations of the major Uranian satellites derived from star-satellite imaging data acquired by the Voyager 2 spacecraft. The data set contains 445 sets of spacecraft-centered right ascension and declination observations and includes all of the observations used in Voyager encounter operations. The conversion process from imaging to astrographic observations was identical to that used for the Neptunian satellites (Jacobson 1991). The effect of using the astrographic rather than imaging form in ephemeris improvement is evaluated.

  16. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  17. Multi-Satellite Observations of Oceanic Lightning

    NASA Technical Reports Server (NTRS)

    Boeck, W. L.; Jacobson, A. R.; Christian, H. J.; Goodman, S. J.

    2003-01-01

    This paper will present several case studies of active oceanic lightning storms. Measurements by instruments on the Tropical Rainfall Measuring Mission (TRMM) and Fast On-orbit Recording of Transient Events (FORTE) platforms demonstrate that the two sets of sensors reinforce and complement one another. There is spatial and temporal coincidence between the optical data sets from Lightning Imaging Sensor (LIS) on TRMM and the photo-diode detector on FORTE. The LIS flash analysis provides a framework to interpret the stroke level data from FORTE. For these cases, the VHF receiver on FORTE is slaved to the optical system to provide stroke level radio frequency (RF) diagnostics. The occasions when TRMM and FORTE simultaneously have a lightning storm in their overlapping fields of view are extremely rare. One case study in the Gulf of Mexico is within range of land based sensor networks. These networks confirm the interpretation of satellite data and well as provide context for the storm conditions.

  18. Sea surface temperature - Observations from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Bates, J. J.; Smith, W. L.

    1985-01-01

    Multispectral image data acquired from the VISSR atmospheric sounder (VAS) on the geostationary GOES satellites were used to estimate sea surface temperatures (SST). A procedure was developed to screen VAS visible and infrared data for cloud-free regions for estimation of SST from the clear infrared radiances. A data set of matches between the VAS radiances and high quality buoy estimates of SST was produced. A linear regression analysis of these matches was performed to generate an empirical algorithm relating the VAS window channel brightness temperatures to the estimates of SST recorded by NOAA fixed environment buoys. Daily maps of SST during Hurricanes Alicia (1983) and Debbie (1982) demonstrated the ability of VAS to monitor air-sea interactions at high temporal and spatial scales.

  19. The artificial satellite observation chronograph controlled by single chip microcomputer.

    NASA Astrophysics Data System (ADS)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  20. Observing Climate with Satellites - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton

    2012-01-01

    The Earth s climate is determined by irradiance from the Sun and properties of the atmosphere, oceans, and land that determine the reflection, absorption, and emission of energy within our atmosphere and at the Earth s surface. Since the 1970s, Earth-viewing satellites have complimented non-satellite geophysical observations with consistent, quantitative, and spatially-continuous measurements that have led to an unprecedented understanding of the Earth s climate system. I will describe the Earth s climate system as elaborated by satellite and in situ observations, review arguments against global warming, and show the convergence of evidence for human-caused warming of our planet.

  1. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  2. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  3. VLBI observations of GNSS-satellites: from scheduling to analysis.

    PubMed

    Plank, Lucia; Hellerschmied, Andreas; McCallum, Jamie; Böhm, Johannes; Lovell, Jim

    2017-01-01

    The possibility of observing satellites with the very long baseline interferometry (VLBI) technique has been discussed for several years in the geodetic community, with observations of either existing satellites of the global navigation satellite systems or of satellites dedicated to realise a space tie. Such observations were carried out using the Australian telescopes in Hobart and Ceduna which, for the first time, integrated all the necessary steps: planning the observations (automated scheduling), correlation of the data and the generation of a series of time delay observables suitable for a subsequent geodetic analysis. We report on the development of new and the adaptation of existing routines for observing and data processing, focusing on technology development. The aim was to use methods that are routinely used in geodetic VLBI. A series of test experiments of up to six hours duration was performed, allowing to improve the observations from session to session and revealing new problems still to be solved. The newly developed procedures and programs now enable more observations. Further development assumed, this bears the prospect of being directly applied to the observation of dedicated space-tie satellites.

  4. VLBI observations of GNSS-satellites: from scheduling to analysis

    NASA Astrophysics Data System (ADS)

    Plank, Lucia; Hellerschmied, Andreas; McCallum, Jamie; Böhm, Johannes; Lovell, Jim

    2017-07-01

    The possibility of observing satellites with the very long baseline interferometry (VLBI) technique has been discussed for several years in the geodetic community, with observations of either existing satellites of the global navigation satellite systems or of satellites dedicated to realise a space tie. Such observations were carried out using the Australian telescopes in Hobart and Ceduna which, for the first time, integrated all the necessary steps: planning the observations (automated scheduling), correlation of the data and the generation of a series of time delay observables suitable for a subsequent geodetic analysis. We report on the development of new and the adaptation of existing routines for observing and data processing, focusing on technology development. The aim was to use methods that are routinely used in geodetic VLBI. A series of test experiments of up to six hours duration was performed, allowing to improve the observations from session to session and revealing new problems still to be solved. The newly developed procedures and programs now enable more observations. Further development assumed, this bears the prospect of being directly applied to the observation of dedicated space-tie satellites.

  5. Model of load distribution for earth observation satellite

    NASA Astrophysics Data System (ADS)

    Tu, Shumin; Du, Min; Li, Wei

    2017-03-01

    For the system of multiple types of EOS (Earth Observing Satellites), it is a vital issue to assure that each type of payloads carried by the group of EOS can be used efficiently and reasonably for in astronautics fields. Currently, most of researches on configuration of satellite and payloads focus on the scheduling for launched satellites. However, the assignments of payloads for un-launched satellites are bit researched, which are the same crucial as the scheduling of tasks. Moreover, the current models of satellite resources scheduling lack of more general characteristics. Referring the idea about roles-based access control (RBAC) of information system, this paper brings forward a model based on role-mining of RBAC to improve the generality and foresight of the method of assignments of satellite-payload. By this way, the assignment of satellite-payload can be mapped onto the problem of role-mining. A novel method will be introduced, based on the idea of biclique-combination in graph theory and evolutionary algorithm in intelligence computing, to address the role-mining problem of satellite-payload assignments. The simulation experiments are performed to verify the novel method. Finally, the work of this paper is concluded.

  6. Astrometric observations of planetary satellites at the Abastumani Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. P.; Chanturiya, S. M.; Vasil'eva, T. A.; Kalinichenko, O. A.

    2012-11-01

    We present and discuss the results of the astrometry project during which we observed the satellites of Mars, Jupiter, Saturn, Uranus, and Neptune at the Abastumani Astrophysical Observatory (Georgia) between 1983 and 1994. Observations at the Abastumani Observatory were performed with the double Zeiss astrograph (DZA: D/ F = 400/3024 mm) and AZT-11 telescope ( F = 16 m). We processed a large array of observations and determined exact coordinates of the planets and their satellites in a system of reference stars of modern catalogues as well as relative coordinates of the satellites. The results were compared with modern ephemerides using the MULTI-SAT software. The comparison enabled us to estimate the accuracy of observations (their random and systematic uncertainties) and the accuracy of modern theories of the motion of planets and their satellites. Random uncertainties of observations are estimated to be 0.10″-0.40″ for various objects and observational conditions. Observational results obtained for Uranus, Neptune and the satellites Titania and Oberon were shown to deviate appreciably and systematically from theories of their motion. The results of observations are presented in the Pulkovo database for Solar System bodies that is available at the website http://www.puldb.ru.

  7. Satellite Atmosphere and Io Torus Observations

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas

    2004-01-01

    NASA's Planetary Astronomy Program has supported a vigorous three-year program of groundbased observations and detailed analysis of the Jupiter/Io system. Our work focused on Io's escaping atmosphere and the plasma torus that it creates.

  8. PSC Characteristics from Satellite Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Drdla, K.; Bokarius, K.; Fromm, M.; Alfred, J.

    2004-01-01

    POAM solar occultation observations from 1994 to present are studied for the purpose of determining Type I PSC formation characteristics and winter-long evolution. This study examines PSC observations from many years on a common basis to see if characteristics can be identified. The results show that Type Ia PSCs form at the beginning of the winter, within several days of the first drop in temperature below T_NAT, and peak early in the winter. Type Ia PSCs typically out number Ib PSCs over the winter, especially at the beginning of the winter. Type Ia and Ib PSC observations continue throughout the winter. Micro-physical models of PSC formation must match these observed characteristics. Some models predict that temperatures must be more than 5 K below T_NAT for five days before significant freezing can occur. This is not seen in the POAM observations. Differences in PSC characteristics between the first two Arctic winters (1994-1995 and 1995-1996) and later winters also suggest the influence of volcanic perturbations on PSC formation. Type Ia and Ib PSC Characteristics observed by POAM III and SAGE III for the 2002-2003 Arctic winter are compared.

  9. Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei

    2017-06-01

    Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth's surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth's Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

  10. CEOS Committee on Earth Observations Satellites consolidated report, 1992

    NASA Astrophysics Data System (ADS)

    1992-11-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  11. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  12. US EPA: A USER AGENCY PERSPECTIVE ON POLAR SATELLITE OBSERVATIONS

    EPA Science Inventory

    The Agency uses satellite sensor observations in its work on measuring, monitoring and modeling the environment and human health. It generates observations in collaboration with states, local and regional governments, tribes and others, and is a consumer of observations from a v...

  13. Using a bimodal size distribution to retrieve marine low cloud properties using A-Train satellite and ground data

    NASA Astrophysics Data System (ADS)

    West, Tyler K.

    Understanding the connection between large-scale meteorology, cloud macrophysical variables, and cloud microphysical variables is needed in order to improve the parameterization of marine boundary layer (MBL) clouds in weather and climate models. For this study, multiple aspects of MBL clouds over the Atmospheric Radiation Measurement Program (ARM) mobile site at Graciosa Island, Azores are examined. Hourly averaged raw variables of cloud fraction, column summed dBZ, liquid water path, first cloud base height, boundary layer static stability, and midtropospheric static stability are clustered together using a K-means clustering algorithm. The cluster output infers seven characteristic cloud regimes that describe the spectrum of warm boundary layer clouds that occurred over Graciosa Island during the deployment. These cloud regimes range from precipitating stratocumulus to nonprecipitating fair weather cumulus to deep clouds associated with broad synoptic scale frontal systems. Using the cluster results and NCEP/NCAR reanalysis, the typical macrophysical and meteorological environments for the MBL cloud regimes are summarized along with their average radar profiles. MBL cloud microphysical properties are then derived using a new retrieval algorithm that assumes the presence of both cloud and precipitation particle modes within a radar resolution volume. Compared to a traditional single mode particle size distribution (PSD), a bimodal PSD is closer to in-situ observations and is expected to provide improved statistics and understanding of the cloud microphysical parameters such as number concentration, precipitation rate, and effective droplet sizes. The bimodal retrieval algorithm can use either ARM ground-based or A-Train satellite-based data as an input. This study finds that ARM and A-Train versions of the bimodal algorithm retrieve plausible microphysics and the reasons for their differences are explored. Case studies are completed using the bimodal retrieval

  14. Use of meteorological satellite observations in weather modification programs

    NASA Technical Reports Server (NTRS)

    Dennis, A. S.; Smith, P. L., Jr.; Biswas, K. R.

    1973-01-01

    The potential value of weather satellite data in field operations of weather modification is appraised. It was found that satellites could play a useful role in operational weather modification projects, particularly in the recognition of treatment opportunities. Satellite cloud photographs and infrared observations appear promising in the identification of treatment opportunities in seeding orographic cloud systems for increased snowpack, in seeding convective clouds for increased rainfall, in identifying hail threats, and in tracking and observing hurricanes as an aid to timing and location of seeding treatments. It was concluded that the potential value of satellite data in the treatment and evaluation phases of operational projects is not as great as in the recognition of treatment opportunity.

  15. Satellite observations of weather and climate

    NASA Technical Reports Server (NTRS)

    Kellogg, W. W.

    1974-01-01

    The SEASAT-A program is viewed as a new way to obtain atmospheric observations for weather and climatic studies in the framework of the Global Atmospheric Research Program (GARP). Total information derived from SEASAT-A sensor package provides a synoptic picture of the upper parts of the world's oceans as a prerequisite to the development of dynamic ocean models and combined ocean/atmospheric models for weather forecasting requirements.

  16. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    NASA Astrophysics Data System (ADS)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  17. Satellite observations of the Agulhas Current system.

    PubMed

    Quartly, Graham D; Srokosz, Meric A

    2003-01-15

    The Agulhas Current system is a complex interplay of currents and eddies with the bathymetry. Components such as the East Madagascar Retroflection and the Agulhas Return Current evolve significantly over a month, and they are thus not adequately resolved by infrequent research-ship cruises. This paper contrasts the abilities of three different spaceborne sensors for monitoring these complex regimes. A key parameter is sea-surface temperature, measured by both infrared and microwave radiometers. Ocean colour observations of chlorophyll can also be used to distinguish between water masses.

  18. Satellite Atmosphere and Io Torus Observations

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas M.

    2000-01-01

    Io is the most volcanically active body in the solar system, and it is embedded deep within the strongest magnetosphere of any planet. This combination of circumstances leads to a host of scientifically compelling phenomena, including (1) an atmosphere out of proportion with such a small object, (2) a correspondingly large atmospheric escape rate, (3) a ring of dense plasma locked in a feedback loop with the atmosphere, and (4) a host of Io-induced emissions from radio bursts to UV auroral spots on Jupiter. This proposal seeks to continue our investigation into the physics connecting these phenomena, with emphasis on Io's atmosphere and plasma torus. The physical processes are clearly of interest for Io, and also other places in the solar system where they are important but not readily observable.

  19. SSETO-Small Satellite for Exoplanetary Transit Observation

    NASA Astrophysics Data System (ADS)

    Mathies, Johannes; Mauceri, Steffen; Pfeiffer, Lukas; Vietze, Marco; Roeser, Hans-Peter; Boehringer, Felix; Lengowski, Michael

    2014-11-01

    SSETO is the result of a phase-A study in context of the small satellite program of the University of Stuttgart that demonstrates the capability of a university institute to build a small satellite with a budget of 5 million Euro. The satellite will be capable of observing exoplanets in a Neptune-Earth scale and obtaining data of interstellar dust. Due to a system failure of NASA's Kepler mission, there is currently (October 2013) a lack of satellites searching for exoplanets. This paper details the design of subsystems and payload, as well as the required test tasks in accordance with the mission profile at a conceptional level. The costs for standard spacecraft testing and integration tasks are included, but not those of launch, ground support, operations and engineer working hours.

  20. Observations of Uranus' satellites: Bibliography and literature search

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.

    1985-01-01

    A literature search has yielded more than 10,000 observations of the satellites of Uranus made from 1787 to 1985. The type (photographic, micrometer) and the number of observations are tabulated in 5 year increments and a complete bibliography is provided.

  1. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  2. On the Cloud Observations in JAXA's Next Coming Satellite Missions

    NASA Technical Reports Server (NTRS)

    Nakajima, Takashi Y.; Nagao, Takashi M.; Letu, Husi; Ishida, Haruma; Suzuki, Kentaroh

    2012-01-01

    The use of JAXA's next generation satellites, the EarthCARE and the GCOM-C, for observing overall cloud systems on the Earth is discussed. The satellites will be launched in the middle of 2010-era and contribute for observing aerosols and clouds in terms of climate change, environment, weather forecasting, and cloud revolution process study. This paper describes the role of such satellites and how to use the observing data showing concepts and some sample viewgraphs. Synergistic use of sensors is a key of the study. Visible to infrared bands are used for cloudy and clear discriminating from passively obtained satellite images. Cloud properties such as the cloud optical thickness, the effective particle radii, and the cloud top temperature will be retrieved from visible to infrared wavelengths of imagers. Additionally, we are going to combine cloud properties obtained from passive imagers and radar reflectivities obtained from an active radar in order to improve our understanding of cloud evolution process. This is one of the new techniques of satellite data analysis in terms of cloud sciences in the next decade. Since the climate change and cloud process study have mutual beneficial relationship, a multispectral wide-swath imagers like the GCOM-C SGLI and a comprehensive observation package of cloud and aerosol like the EarthCARE are both necessary.

  3. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  4. Improved Ozone and Carbon Monoxide Profile Retrievals Using Multispectral Measurements from NASA "A Train", NPP, and TROPOMI Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Bowman, K. W.; Kulawik, S. S.; Miyazaki, K.; Worden, J. R.; Worden, H. M.; Livesey, N. J.; Payne, V.; Luo, M.; Natraj, V.; Veefkind, P.; Aben, I.; Landgraf, J.; Flynn, L. E.; Han, Y.; Liu, X.; Strow, L. L.; Kuai, L.

    2015-12-01

    Tropospheric ozone is at the juncture of air quality and climate. Ozone directly impacts human and plant health, and directly forces the climate system through absorption of thermal radiation. Carbon monoxide is a chemical precursor of greenhouse gases CO2 and tropospheric O3, and is also an ideal tracer of transport processes due to its medium life time (weeks to months). The Aqua-AIRS and Aura-OMI instruments in the NASA "A-Train", CrIS and OMPS instruments on the NOAA Suomi-NPP, IASI and GOME-2 on METOP and TROPOMI aboard the Sentinel 5 precursor (S5p) have the potential to provide the synoptic chemical and dynamical context for ozone necessary to quantify long-range transport at global scales and to provide an anchor to the near-term constellation of geostationary sounders: NASA TEMPO, ESA Sentinel 4, and the Korean GEMS. We introduce the JPL MUlti-SpEctral, MUlti-SpEcies, MUlti-SatEllite (MUSES) retrieval algorithm, which ingests panspectral observations across multiple platforms in a non-linear optimal estimation framework. MUSES incorporates advances in remote sensing science developed during the EOS-Aura era including rigorous error analysis diagnostics and observation operators needed for trend analysis, climate model evaluation, and data assimilation. Its performance has been demonstrated through prototype studies for multi-satellite missions (AIRS, CrIS, TROPOMI, TES, OMI, and OMPS). We present joint tropospheric ozone retrievals from AIRS/OMI and CrIS/OMPS over global scales, and demonstrate the potential of joint carbon monoxide profiles from TROPOMI/CrIS. These results indicate that ozone can be retrieved with ~2 degrees of freedom for signal (dofs) in the troposphere, which is similar to TES. Joint CO profiles have dofs similar to the MOPITT multispectral retrieval but with higher spatial resolution and coverage. Consequently, multispectral retrievals show promise in providing continuity with NASA EOS observations and pave the way towards a new

  5. In situ statistical observations of EMIC waves by Arase satellite

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  6. Satellite Type Estination from Ground-based Photometric Observation

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  7. Use of new satellite sea surface temperature observations in OSTIA

    NASA Astrophysics Data System (ADS)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon

    2017-04-01

    OSTIA is the Met Office's Operational SST (Sea Surface Temperature) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. The product is made freely available through CMEMS (Copernicus Marine Environment Monitoring Service). Additional satellite SST datasets have been assimilated into the OSTIA analysis operationally from 15 March 2016. These datasets are ACSPO VIIRS L3U from NOAA/NESDIS/STAR and AMSR2 L2P from REMSS (Remote Sensing Systems). This has led to a sizable improvement in the RMS error of the OSTIA analysis compared to independent Argo observations. Test runs assimilating ACSPO VIIRS and REMSS AMSR2 observations separately have indicated that the total improvement is due to the action of both datasets together rather than one or the other. In addition, ACSPO VIIRS replaced MetOp-A AVHRR as the reference satellite dataset used in OSTIA on 6 November 2016. The reference satellite data, in addition to in situ observations, are used for bias correction of the other satellite data types used in the analysis. The change to using VIIRS as a reference has led to notable improvements in regional biases for OSTIA compared to Argo, drifters and other satellite SST datasets, particularly in the high latitudes. Methods will be described and validation results shown in this presentation.

  8. Students as Ground Observers for Satellite Cloud Retrieval Validation

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Costulis, P. Kay; Young, David F.; Rogerson, Tina M.

    2004-01-01

    The Students' Cloud Observations On-Line (S'COOL) Project was initiated in 1997 to obtain student observations of clouds coinciding with the overpass of the Clouds and the Earth's Radiant Energy System (CERES) instruments on NASA's Earth Observing System satellites. Over the past seven years we have accumulated more than 9,000 cases worldwide where student observations are available within 15 minutes of a CERES observation. This paper reports on comparisons between the student and satellite data as one facet of the validation of the CERES cloud retrievals. Available comparisons include cloud cover, cloud height, cloud layering, and cloud visual opacity. The large volume of comparisons allows some assessment of the impact of surface cover, such as snow and ice, reported by the students. The S'COOL observation database, accessible via the Internet at http://scool.larc.nasa.gov, contains over 32,000 student observations and is growing by over 700 observations each month. Some of these observations may be useful for assessment of other satellite cloud products. In particular, some observing sites have been making hourly observations of clouds during the school day to learn about the diurnal cycle of cloudiness.

  9. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  10. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  11. NEOWISE: OBSERVATIONS OF THE IRREGULAR SATELLITES OF JUPITER AND SATURN

    SciTech Connect

    Grav, T.; Bauer, J. M.; Mainzer, A. K.

    2015-08-10

    We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE data set. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and provide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular satellites. The best-fit thermal model beaming parameters are comparable to what is observed for other small bodies in the outer solar system, while the visible, W1, and W2 albedos trace the taxonomic classifications previously established in the literature. Reflectance properties for the irregular satellites measured are similar tomore » the Jovian Trojan and Hilda Populations, implying common origins.« less

  12. Low cloud feedback from A-Train sensors using the observation-based cloud radiative kernels

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Fetzer, E. J.; Kahn, B. H.; Lebsock, M. D.; Wong, S.; Zhou, C.; Wang, T.

    2017-12-01

    Using the observation-based cloud radiative kernel (Obs-CRK) method (Yue et al. 2016), we estimate the short-term low cloud feedbacks on the interannual climate variability from observations by multiple A-Train sensors. The uncertainty due to retrieval algorithms and different instruments is quantified. The CERES-based record shows a positive shortwave feedback while a negative short-wave feedback is found from MODIS observed cloud record during the A-Train era. The cloud fraction observed by the CloudSat/CALIPSO observations over the subtropical ocean and cfSites locations indicates that it is more likely that the magnitude of the low cloud feedback depends on the compensating signals between low clouds near the surface and just below the boundary layer top. MODIS observed cloud record shows higher agreement with the CloudSat/CALIPSO cloud fraction measurements. As a result, it is more likely that the shortwave low cloud feedback during the A-Train era is negative.

  13. Satellite observations of aerosol and CO over Mexico City

    NASA Astrophysics Data System (ADS)

    Massie, Steven T.; Gille, John C.; Edwards, David P.; Nandi, Sreela

    The development of remote sensing satellite technology potentially will lead to the technical means to monitor air pollution emitted from large cities on a global basis. This paper presents observations by the moderate resolution imaging spectroradiometer (MODIS) and measurements of pollution in the troposphere (MOPITT) experiments of aerosol optical depths and CO mixing ratios, respectively, in the vicinity of Mexico City to illustrate current satellite capabilities. MOPITT CO mixing ratios over Mexico City, averaged between January-March 2002-2005, are 19% above regional values and the CO plume extends over 10° 2 in the free troposphere at 500 hPa. Time series of Red Automatica de Monitoreo Ambiental (RAMA) PM10, and (Aerosol Robotic Network) AERONET and MODIS aerosol optical depths, and RAMA and MOPITT CO time series are inter-compared to illustrate the different perspectives of ground based and satellite instrumentation. Finally, we demonstrate, by examining MODIS and MOPITT data in April 2003, that satellite data can be used to identify episodes in which pollution form fires influences the time series of ground based and satellite observations of urban pollution.

  14. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  15. Satellite observation of particulate organic carbon dynamics in ...

    EPA Pesticide Factsheets

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (<10 m depth) and lower POC on the middle (10–50 m depth) and outer shelf (50–200 m depth), and with high POC found in winter (January–March) and lower POC in summer to fall (August–October). Correlation analysis between long-term POC time series and several potential influencing factors indicated that river discharge played a dominant role in POC dynamics on the LCS, while wind and surface currents also affected POC spatial patterns on short time scales. This study adds another example where satellite data with carefully developed algorithms can greatly increase

  16. Gravity waves in the thermosphere observed by the AE satellites

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Reber, C. A.; Huang, F. T.

    1983-01-01

    Atmospheric Explorer (AE) satellite data were used to investigate the spectra characteristics of wave-like structure observed in the neutral and ionized components of the thermosphere. Power spectral analysis derived by the maximum entropy method indicate the existence of a broad spectrum of scale sizes for the fluctuations ranging from tens to thousands of kilometers.

  17. CORRECTING PHOTOLYSIS RATES ON THE BASIS OF SATELLITE OBSERVED CLOUDS

    EPA Science Inventory

    Clouds can significantly affect photochemical activities in the boundary layer by altering radiation intensity, and therefore their correct specification in the air quality models is of outmost importance. In this study we introduce a technique for using the satellite observed c...

  18. Globally Gridded Satellite (GridSat) Observations for Climate Studies

    NASA Technical Reports Server (NTRS)

    Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.; hide

    2012-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  19. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  20. Global warming trend of mean tropospheric temperature observed by satellites.

    PubMed

    Vinnikov, Konstantin Y; Grody, Norman C

    2003-10-10

    We have analyzed the global tropospheric temperature for 1978 to 2002 with the use of passive microwave sounding data from the NOAA series of polar orbiters and the Earth Observing System Aqua satellite. To accurately retrieve the climatic trend, we combined the satellite data with an analytic model of temperature that contains three different time scales: a linear trend and functions that define the seasonal and diurnal cycles. Our analysis shows a trend of +0.22 degrees to 0.26 degrees C per 10 years, consistent with the global warming trend derived from surface meteorological stations.

  1. Voyager 2 photopolarimeter observations of the Uranian satellites

    NASA Technical Reports Server (NTRS)

    Nelson, Robert M.; Buratti, Bonnie J.; Wallis, Brad D.; Lane, Arthur L.; West, Robert A.

    1987-01-01

    The surfaces of the principal Uranian satellites are characterized on the basis of UV and IR geometric albedos, phase curves, and phase coefficients obtained in full-disk photopolarimetric observations during the Voyager 2 encounter with Uranus in January 1986. The data are presented in tables and graphs and found to be consistent with a heavily cratered terrain and loosely packed regolith. The Bond albedos are calculated as 0.22 + or - 0.1 for Ariel, 0.07 + or - 0.05 for Umbriel, 0.16 + or - 0.12 for Titania, and 0.19 + or - 0.22 for Oberon. The characteristics of the Uranian satellites indicate compositions (and probably formation conditions and surface-modification mechanisms) distinct from those of the Saturnian and Jovian satellites.

  2. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-09-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  3. Background concentrations for high resolution satellite observing systems of methane

    NASA Astrophysics Data System (ADS)

    Benmergui, J. S.; Propp, A. M.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    Emerging satellite technologies promise to measure total column dry-air mole fractions of methane (XCH4) at resolutions on the order of a kilometer. XCH4 is linearly related to regional methane emissions through enhancements in the mixed layer, giving these satellites the ability to constrain emissions at unprecedented resolution. However, XCH4 is also sensitive to variability in transport of upwind concentrations (the "background concentration"). Variations in the background concentration are caused by synoptic scale transport in both the free troposphere and the stratosphere, as well as the rate of methane oxidation. Misspecification of the background concentration is aliased onto retrieved emissions as bias. This work explores several methods of specifying the background concentration for high resolution satellite observations of XCH4. We conduct observing system simulation experiments (OSSEs) that simulate the retrieval of emissions in the Barnett Shale using observations from a 1.33 km resolution XCH4 imaging satellite. We test background concentrations defined (1) from an external continental-scale model, (2) using pixels along the edge of the image as a boundary value, (3) using differences between adjacent pixels, and (4) using differences between the same pixel separated by one hour in time. We measure success using the accuracy of the retrieval, the potential for bias induced by misspecification of the background, and the computational expedience of the method. Pathological scenarios are given to each method.

  4. History of Satellite Observations of East Pacific Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Vonder Haar, T. H.; Forsythe, J. M.; Seaman, C.

    2017-12-01

    The terms "Atmospheric River" or "Tropospheric River" were not used in refereed literature until the 1990's, although earlier works hinted at the existence of narrow corridors of moisture transport. With the advent of satellite observations in the 1960's, meteorologists began to discover the fingerprints of these phenomena via cloud observations. Early geostationary satellites depicted "cloud rivers" or "pipeline cirrus" impacting the U.S. west coast, with only indirect evidence of large water vapor transport. Routine use of passive microwave imagery to retrieve total column water vapor began in the late 1980's with the launch of the Special Sensor Microwave / Imager instrument, whose descendants continue to provide realtime monitoring of atmospheric rivers today. Passive microwave data opened the door to quantitative studies of atmospheric rivers, by providing the water vapor measurements needed to compute integrated moisture flux. Atmospheric rivers are detected in near-realtime from passive microwave water vapor products. In recent years, dedicated coastal observatories, multidecadal global water vapor data sets, cloud radars, and satellite sounding systems have begun to probe the 4-dimensional moisture structure of atmospheric rivers. The timeline of our understanding of atmospheric rivers will be presented from the standpoint of evolving satellite observing systems.

  5. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  6. Satellite Observation Systems for Polar Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  7. Whistler-triggered emissions observed by ISIS satellites

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Ondoh, T.

    1989-01-01

    A statistical examination has been conducted of the ducted and nonducted whistler-triggered emissions (WTEs) observed by the ISIS satellites in the 1979-1981 period. Most WTEs are observed with simultaneous lower hybrid resonance in the topside ionosphere. The VLF emissions triggered by ducted whistlers frequently occur at L of 2-3, while those triggered by nonducted whistlers occur in the wider latitudinal regions at L of 2.2-4.3.

  8. Remote Observing with the Keck Telescope Using the ACTS Satellite

    NASA Technical Reports Server (NTRS)

    Cohen, Judy; Shopbell, Patrick; Bergman, Larry

    1998-01-01

    As a technical demonstration project for the NASA Advanced Communications Technology Satellite (ACTS), we have implemented remote observing on the 10-meter Keck II telescope on Mauna Kea in Hawaii from the California Institute of Technology campus in Pasadena. The data connection consists of optical fiber networks in Hawaii and California, connecting the end-points to high data rate (HDR) ACTS satellite antennae at JPL in Pasadena and at the Tripler Army Medical Center in Honolulu. The terrestrial fiber networks run the asynchronous transfer mode (ATM) protocol at DS-3 (45 Mbit/sec) speeds, providing ample bandwidth to enable remote observing with a software environment identical to that used for on-site observing in Hawaii. This experiment has explored the data requirements of remote observing with a modern research telescope and large-format detector arrays. While the maximum burst data rates are lower than those required for many other applications (e.g., HDTV), the network reliability and data integrity requirements are critical. As we show in this report, the former issue particularly may be the greatest challenge for satellite networks for this class of application. We have also experimented with the portability of standard TCP/IP applications to satellite networks, demonstrating the need for alternative TCP congestion algorithms and minimization of bit error rates (BER). Reliability issues aside, we have demonstrated that true remote observing over high-speed networks provides several important advantages over standard observing paradigms. Technical advantages of the high-speed network access include more rapid download of data to a user's home institution and the opportunity for alternative communication facilities between members of an observing team, such as audio- and videoconferencing.

  9. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  10. Advances in using satellite altimetry to observe storm surge

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2017-04-01

    Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  11. MODIS and OMI satellite observations supporting air quality monitoring.

    PubMed

    Di Nicolantonio, W; Cacciari, A; Petritoli, A; Carnevale, C; Pisoni, E; Volta, M L; Stocchi, P; Curci, G; Bolzacchini, E; Ferrero, L; Ananasso, C; Tomasi, C

    2009-12-01

    Within the framework of air quality monitoring, measurements by Earth-observing satellite sensors are combined here with regional meteorological and chemical transport models. Two satellite-derived products developed within the QUITSAT project, regarding significant pollutants including PM(2.5) and NO(2), are presented. Estimates of PM(2.5) concentrations at ground level were obtained using moderate resolution imaging spectroradiometer (Terra-Aqua/NASA) aerosol optical properties. The semi-empirical approach adopted takes into account PM(2.5) sampling and meteorological descriptions of the area studied, as simulated by MM5, to infer aerosol optical properties to PM projection coefficients. Daily maps of satellite-based PM(2.5) concentrations over northern Italy are derived. Monthly average values were compared with in situ PM(2.5) samplings showing good agreement. Ozone monitoring instrument (OMI) (Aura/NASA) NO(2) tropospheric contents are merged using the GAMES chemical model simulations. The method employs a weighted rescaling of the model column in the troposphere according to the OMI observations. The weightings take into account measurement errors and model column variances within the satellite ground pixel. The obtained ground-level concentrations of NO(2) show good agreement with the environmental agencies' in situ.

  12. Observing outer planet satellites (except Titan) with JWST: Science justification and observational requirements

    USGS Publications Warehouse

    Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  13. Microphysical, Macrophysical and Radiative Signatures of Volcanic Aerosols in Trade Wind Cumulus Observed by the A-Train

    NASA Technical Reports Server (NTRS)

    Yuan, T.; Remer, L. A.; Yu, H.

    2011-01-01

    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.

  14. A Multi-model Study on Warm Precipitation Biases in Global Models Compared to Satellite Observations

    NASA Astrophysics Data System (ADS)

    Jing, X.; Suzuki, K.; Guo, H.; Goto, D.; Ogura, T.; Koshiro, T.; Mulmenstadt, J.

    2017-12-01

    The cloud-to-precipitation transition process in warm clouds simulated by state-of-the-art global climate models (GCMs), including both traditional climate models and a global cloud-resolving model, is evaluated against A-Train satellites observations. The models and satellite observations are compared in the form of the statistics obtained from combined analysis of multiple satellite observables that probe signatures of the cloud-to-precipitation transition process. One common problem identified among these models is the too frequent occurrence of warm precipitation. The precipitation is found to form when the cloud particle size and the liquid water path (LWP) are both much smaller than those in observations. The too efficient formation of precipitation is found to be compensated for by errors of cloud microphysical properties, such as underestimated cloud particle size and LWP, to an extent that varies among the models. However, this does not completely cancel the precipitation formation bias. Robust errors are also found in the evolution of cloud microphysical properties in precipitation process in some GCMs, implying unrealistic interaction between precipitation and cloud water. Nevertheless, auspicious information is found for future improvement of warm precipitation representations: the adoption of more realistic autoconversion scheme or subgrid variability scheme is shown to improve the triggering of precipitation and evolution of cloud microphysical properties.

  15. Assimilating Satellite SST Observations into a Diurnal Cycle Model

    NASA Astrophysics Data System (ADS)

    Pimentel, S.; Haines, K.; Nichols, N. K.

    2006-12-01

    The wealth of satellite sea surface temperature (SST) data now available opens the possibility of large improvements in SST estimation. However the use of such data is not straight forward; a major difficulty in assimilating satellite observations is that they represent a near surface temperature, whereas in ocean models the top level represents the temperature at a greater depth. During the day, under favourable conditions of clear skies and calm winds, the near surface temperature is often seen to have a diurnal cycle that is picked up in satellite observations. Current ocean models do not have the vertical or temporal resolution to adequately represent this daytime warming. The usual approach is to discard daytime observations as they are considered diurnally `corrupted'. A new assimilation technique is developed here that assimilates observations into a diurnal cycle model. The diurnal cycle of SSTs are modelled using a 1-D mixed layer model with fine near surface resolution and 6 hourly forcing from NWP analyses. The accuracy of the SST estimates are hampered by uncertainties in the forcing data. The extent of diurnal SST warming at a particular location and time is predominately governed by a non-linear response to cloud cover and sea surface wind speeds which greatly affect the air-sea fluxes. The method proposed here combines infrared and microwave SST satellite observations in order to derive corrections to the cloud cover and wind speed values over the day. By adjusting the forcing, SST estimation and air-sea fluxes should be improved and are at least more consistent with each other. This new technique for assimilating SST data can be considered a tool for producing more accurate diurnal warming estimates.

  16. Satellite microwave observations of a storm complex: A comparative analysis

    NASA Technical Reports Server (NTRS)

    Martin, D. W.

    1985-01-01

    The hypothesis that cold events correspond to a particular stage in a class of thunderstorms was tested. That class is a storms class which updrafts are: (1) strong, broad and moist, and (2) extend well above the freezing level. Condition (1) implies strong mesoscale forcing. Condition (2) implies a tall updraft or a relatively low freezing level. Such storms should have big, intense radar echoes and cold, fast-growing anvils. The thunderstorm events were analyzed by radar, rain gauge and GOES infrared observations. Radar was the starting point for detection and definition of the hypothesized thunderstorms. The radar signature is compared to the signature of the storm in rain gauge observations, satellite infrared images and satellite microwave images.

  17. Hubble Space Telescope Observations of Planets and Satellites

    NASA Astrophysics Data System (ADS)

    James, Philip B.; Lee, Steven W.

    Although exploration by remote, in situ spacecraft has been the primary tool used in scientific exploration of the planets and other solar system objects for the last three decades, the unique capabilities of the Hubble Space Telescope (HST) have made it an invaluable tool for solar system research and have led to many important discoveries. HST's extended lifetime has made it possible to continue observations of planets and satellites that were started by earlier space missions and has thereby provided new insight into dynamic surface and atmospheric phenomena on these bodies. The ultraviolet capability of HST has made it possible to study important time-variable phenomena such as the auroras on Jupiter and Saturn and the circulation of planetary atmospheres. This review provides an overview of HST observations of and discoveries relating to planets and satellites in the solar system.

  18. Galilean satellites of jupiter: 12.6-centimeter radar observations.

    PubMed

    Campbell, D B; Chandler, J F; Pettengill, G H; Shapiro, I I

    1977-05-06

    Observations of the Galilean satellites with the radar system at the Arecibo Observatory, Puerto Rico, show that their surfaces are highly diffuse scatterers of radio waves of length 12.6 centimeters; spectra of the radar echoes are asymmetric and broad. The geometric radar albedos for the outer three satellites-0.42 +/- 0.10, 0.20 +/- 0.05, and 0.09 +/- 0.02 for Europa, Ganymede, and Callisto, respectively-show about the same relative decreases as do the optical albedos, although the latter presumably bear only on material much nearer the surface. Radii of 1420 +/- 30, 2640 +/- 80, and 2360 +/- 70 kilometers for Europa, Ganymede, and Callisto were determined from the radar data and are in good agreement with the corresponding optically derived values. Io, observed successfully only once, appears to have an albedo comparable to Ganymede's, but no radius was estimated for it.

  19. Al Gore attends Fall Meeting session on Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  20. Space-Based Observations of Satellites From the MOST Microsatellite

    DTIC Science & Technology

    2006-11-01

    information is sent to DRDC Ottawa. • Using the CVZ recommendation and access time(s), DRDC Ottawa opens a computer simulation of the MOST-target access...first Canadian led space-based observations of an Earth orbiting object. Tracks of two different Global Positioning Satellites were taken using the...Defence R&D Canada are investing in space-based SofSP platforms (SAPPHIRE and NEOSSat) and both are considering the use of technology and

  1. Rain frequency and its susceptibility to aerosols for marine stratocumulus in satellite observations and climate models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Liu, Z.; Bai, H.; Zhang, S.; Huang, X.

    2017-12-01

    Uncertainties in the estimate of cloud liquid water response to aerosols (so called cloud lifetime effects) are large for stratocumulus in climate models. Previous studies have suggested that both rain frequency and its susceptibility to aerosols have been overestimated in global climate models. In this study, we combine the A-Train satellite observations, a regional aerosol-climate model and global climate models to understand this discrepancy. In particular, the regional aerosol-climate model WRF-Chem has been used to bridge the gap between satellite observations and global climate models as it has finer spatial and temporal resolutions and more advanced physical treatments. We quantify the scale-dependence of rain frequency and its susceptibility to aerosols by running WRF-Chem at several different resolution (from about 9km to 100km) and examine how differences in scales might help to reconcile the discrepancy between satellite observations and global climate models. WRF-CHem sensitivity experiments are further performed with different physical packages to examine how key physical processes may affect simulated rain frequency and its susceptibility to aerosols, and its implications for constraining cloud water response to aerosols are further discussed.

  2. Observing system simulations for small satellite formations estimating bidirectional reflectance

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  3. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  4. Pre-seismic anomalies from optical satellite observations: a review

    NASA Astrophysics Data System (ADS)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  5. Cassini radar and radiometry observations of Saturn's airless icy satellites

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; West, R.; Janssen, M. A.; Leyrat, C.; Bonnefoy, L.; Lellouch, E.

    2017-12-01

    The Cassini Radar is a multimode microwave sensor operating in the Ku-band, at a wavelength of 2.2 cm. While it was initially designed to examine the surface of Titan through the veil of its optically-opaque atmosphere, it is occasionally used to observe airless Saturn's moons from long ranges (>50 000 km) and, less frequently, during targeted flybys. In its active mode, the instrument measures the surface reflectivity in the backscattering direction. In its passive mode - or radiometry mode - it records the microwave thermal emission from the near-surface (typically few meters). Doing so, it provides insights into the degree of purity and maturity of the water-ice regolith of the investigated objects. In particular, it can reveal hemispheric dichotomies or regional anomalies and satellite-to-satellite variabilities which give clues into what is common and what is specific to the history of each satellite and to the processes that have shaped their surface/subsurface. In this paper, we will give an overview of the Cassini radar/radiometry observations of Saturnian icy moons, most of which have not been published yet. Now that the mission has come to an end, we will describe how the radio investigation of these objects can be pursued from Earth-based radiotelescopes.

  6. Maritime NOx Emissions Over Chinese Seas Derived From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Ding, J.; van der A, R. J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P. F.

    2018-02-01

    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.

  7. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    NASA Astrophysics Data System (ADS)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  8. Satellite observations of air quality of megacities in China

    NASA Astrophysics Data System (ADS)

    Hao, N.; Valks, P.; Smedt, I. D.; Loyola, D.; Roozendael, M. V.; Zhou, B.; Zimmer, W.

    2012-04-01

    In the last three decades, air pollution has become a major environmental issue in metropolitan areas of China as a consequence of fast industrialization and urbanization, and the rapid increase of the vehicle ownership. Now in China there are 3 megacities (Beijing, Shanghai and Guangzhou) in existence. A recent study of Asian megacities showed that they cover less than 2% of the land area, hold more than 30% of the population and produce about 10% of the anthropogenic gas and aerosol emissions. Therefore, it is important to qualify and understand current air pollution distribution and development in and around the megacities of China. Satellite observations provide unique insight into the regional air quality around megacities and air pollution transport from surrounding areas. In this work, we present an investigation of air quality over Beijing, Shanghai and Guangzhou combining satellite and ground-based measurements. Aerosol optical thickness (AOT), precursors of ozone (notably NO2 and CH2O), and SO2 are observed from space. The operational GOME-2 trace gases products developed at German Aerospace Center and MODIS AOT products will be used. Moreover, near surface concentrations of particular matter (PM), NO2 and SO2 in Beijing, Shanghai and Guangzhou are investigated. The effect of air pollution transport from neighboring areas to megacities will be researched using satellite measurements. Initial comparison between satellite and ground-based measurements of air pollutants in Beijing, Shanghai and Guangzhou will be shown. We will present the relationship between AOT and PM concentrations in megacities. The use of AOT, tropospheric NO2 and CH2O columns for air quality applications will also be shown.

  9. Improving National Air Quality Forecasts with Satellite Aerosol Observations.

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Jassim; Szykman, James; Pierce, R. Bradley; Kittaka, Chieko; Neil, Doreen; Chu, D. Allen; Remer, Lorraine; Gumley, Liam; Prins, Elaine; Weinstock, Lewis; MacDonald, Clinton; Wayland, Richard; Dimmick, Fred; Fishman, Jack

    2005-09-01

    Accurate air quality forecasts can allow for mitigation of the health risks associated with high levels of air pollution. During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype tool for improving fine particulate matter (PM2.5) air quality forecasts using satellite aerosol observations. Daily forecast products were generated from a near-real-time fusion of multiple input data products, including aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS)/ Earth Observing System (EOS) instrument on the NASA Terra satellite, PM2.5 concentration from over 300 state/local/national surface monitoring stations, meteorological fields from the NOAA/NCEP Eta Model, and fire locations from the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) product. The products were disseminated via a Web interface to a small group of forecasters representing state and local air management agencies and the EPA. The MODIS data improved forecaster knowledge of synoptic-scale air pollution events, particularly over oceans and in regions devoid of surface monitors. Forecast trajectories initialized in regions of high AOD offered guidance for identifying potential episodes of poor air quality. The capability of this approach was illustrated with a case study showing that aerosol resulting from wildfires in the northwestern United States and southwestern Canada is transported across the continent to influence air quality in the Great Lakes region a few days later. The timing of this demonstration was selected to help improve the accuracy of the EPA's AIRNow (www.epa.gov/airnow/) air quality index next-day PM2.5 forecast, which began on 1 October 2003. Based on the positive response from air quality managers and forecasters, this prototype was expanded and transitioned to an operational

  10. A Comparison of Techniques for Scheduling Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2004-01-01

    Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.

  11. Compact SAR and Small Satellite Solutions for Earth Observation

    NASA Astrophysics Data System (ADS)

    LaRosa, M.; L'Abbate, M.

    2016-12-01

    Requirements for near and short term mission applications (Observation and Reconnaissance, SIGINT, Early Warning, Meteorology,..) are increasingly calling for spacecraft operational responsiveness, flexible configuration, lower cost satellite constellations and flying formations, to improve both the temporal performance of observation systems (revisit, response time) and the remote sensing techniques (distributed sensors, arrays, cooperative sensors). In answer to these users' needs, leading actors in Space Systems for EO are involved in development of Small and Microsatellites solutions. Thales Alenia Space (TAS) has started the "COMPACT-SAR" project to develop a SAR satellite characterized by low cost and reduced mass while providing, at the same time, high image quality in terms of resolution, swath size, and radiometric performance. Compact SAR will embark a X-band SAR based on a deployable reflector antenna fed by an active phased array feed. This concept allows high performance, providing capability of electronic beam steering both in azimuth and elevation planes, improving operational performance over a purely mechanically steered SAR system. Instrument provides both STRIPMAP and SPOTLIGHT modes, and thanks to very high gain antenna, can also provide a real maritime surveillance mode based on a patented Low PRF radar mode. Further developments are in progress considering missions based on Microsatellites technology, which can provide effective solutions for different user needs, such as Operational responsiveness, low cost constellations, distributed observation concept, flying formations, and can be conceived for applications in the field of Observation, Atmosphere sensing, Intelligence, Surveillance, Reconnaissance (ISR), Signal Intelligence. To satisfy these requirements, flexibility of small platforms is a key driver and especially new miniaturization technologies able to optimize the performance. An overview new micros-satellite (based on NIMBUS

  12. Relationships Between Ice Cloud Properties and Radiative Effects from A-Train Observations and Global Climate Models

    NASA Astrophysics Data System (ADS)

    Berry, B. J.; Mace, G. G.

    2014-12-01

    Using data from the A-Train satellites, we investigate the distribution of clouds and their microphysical and radiative properties in Southeast Asia during the summer monsoon. We find an approximate balance in the top of the atmosphere (TOA) cloud radiative effect, which is largely due to commonly occurring cirrus layers that warm the atmosphere, and less frequent deep layer clouds, which produce a strong cooling at the surface. The distribution of cloud ice water path (IWP) in cirrus layers, obtained from the 2C-ICE CloudSat data product, is highly skewed with a mean value of 170 g m-2 and a median of 16 g m-2. We evaluate the fraction of the total IWP observed by CloudSat and CALIPSO individually and find that both instruments are necessary for describing the overall IWP statistics and particularly the values that are most important to cirrus radiative impact. In examining how cirrus cloud radiative effects at the TOA vary as a function of IWP, we find that cirrus with IWP less than 200 g m-2 produce a net warming. Weighting the distribution of radiative effect by the frequency of occurrence of IWP values, we find that cirrus with IWP around 20 g m-2 contribute most to heating at the TOA. We conclude that the mean IWP is a poor diagnostic of radiative impact. We suggest that climate model intercomparisons with data should focus on the median IWP because that statistic is more descriptive of the cirrus that contribute most to the radiative impacts of tropical ice clouds. Given these findings, we use the A-Train observations to address the issues of IWP occurrence and high cloud forcing in a global climate model (GCM). Our goal is to determine whether the clouds that heat the upper troposphere in the model are the same genre of clouds that heat the upper troposphere in the real atmosphere. First, we define a cloud radiative kernel that's a function of IWP to determine whether the modeled ice clouds produce similar shortwave and longwave radiative effects at the TOA

  13. Contributions of Satellite Observations to Understanding Climate Change

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.

    2006-01-01

    One of the challenges facing atmospheric scientists is to interpret trends in multi-decadal data records. Although data records from satellite instruments are not as long as some ground-based records, global coverage and resolved vertical profiles provide unique information for identifying signatures of climate change. For example, the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite provided profiles of O3, H2O, HC1, HF, CH4 from October 1991 until November 2005. There are also multi-annual ground based measurements of the column HCl. Middle latitude ground-based measurements show a seasonal cycle, and the HALOE profiles show that this is driven by the seasonal change in the composition and mass of the region between the tropopause and 380K surface (the lowermost stratosphere). Understanding the processes that produce the seasonal cycle makes it possible to interpret a future change in the seasonal cycle as a marker of a change in the stratospheric residual circulation. Satellite observations have also provided key information for improving the physical basis of models used to predict future composition and climate circulation. An example is the "tape recorder" signature in tropical stratospheric water vapor, i.e., the slow ascent of high and low water vapor anomalies roughly corresponding to the tropopause temperature at the time air entered the stratosphere. This signature has become a key diagnostic of performance for climate models.

  14. Fast Emission Estimates in China Constrained by Satellite Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R.

    2013-12-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for an emerging economy such as China, where rapid economic growth changes emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. Constraining emissions from concentration measurements is, however, computationally challenging. Within the GlobEmission project of the European Space Agency (ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China, using the CHIMERE model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission estimates result in a better

  15. Comparing soil moisture memory in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  16. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    NASA Astrophysics Data System (ADS)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  17. Solar neutron observations with ChubuSat-2 satellite

    NASA Astrophysics Data System (ADS)

    Yamaoka, Kazutaka

    2016-07-01

    Solar neutron observation is a key in understanding of ion accerelation mechanism in the Sun surface since neutrons are hardly affected by magnetic field around the Sun and intersteller mediums unlike charged particles. However, there was only a few tenth detections so far since its discovery in 1982. Actually SEDA-AP Fiber detector (FIB) onboard the International Space Station (ISS) was suffered from a high neutron background produced by the ISS itself. ChubuSat is a series of 50-kg class microsatellite jointly depeloped by universities (Nagoya university and Daido university) and aerospace companies at the Chubu area of central Japan. The ChubuSat-2 is the second ChubuSat following the ChubuSat-1 which was launched by Russian DNEPR rocket on November 6, 2014. It was selected as one of four piggyback payloads of the X-ray astronomy satellite ASTRO-H in 2014 summer, and will be launched by the H-IIA launch vehcles from from JAXA Tanegashima Space Center (TNSC) in February 2016. The ChubuSat-2 carries a mission instrument, radiation detector (RD). The main mission of ChubuSat-2 is devoted for monitoring neutrons and gamma-rays which can be background source for ASTRO-H celestrial observations with the RD. The mission also involves a function of solar neutron observations which were originally proposed by graduate students who join the leadership development program for space exploration and research, program for leading graduate schools at Nagoya University. The RD has a similar detection area and efficiency to those of the SEDA-AP FIB, but is expected to have lower backgrounthan the ISS thanks to much smaller mass of the micro-satellite. In this paper, we will describe details of ChubuSat-2 satellite and RD, and in-orbit performance of RD.

  18. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  19. Satellite Observations of Desert Dust-induced Himalayan Snow Darkening

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, William K.-M.; Yasunari, Teppei J.

    2013-01-01

    The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are also advected over the Himalaya, visible as dust-laden snow surface in satellite imagery, particularly in western Himalaya. We examined spectral surface reflectance retrieved from spaceborne MODIS observations that show characteristic reduction in the visible wavelengths (0.47 nm) over western Himalaya, associated with dust-induced solar absorption. Case studies as well as seasonal variations of reflectance indicate a significant gradient across the visible (0.47 nm) to near-infrared (0.86 nm) spectrum (VIS-NIR), during premonsoon period. Enhanced absorption at shorter visible wavelengths and the resulting VIS-NIR gradient is consistent with model calculations of snow reflectance with dust impurity. While the role of black carbon in snow cannot be ruled out, our satellite-based analysis suggests the observed spectral reflectance gradient dominated by dust-induced solar absorption during premonsoon season. From an observational viewpoint, this study underscores the importance of mineral dust deposition toward darkening of the western Himalayan snow cover, with potential implications to accelerated seasonal snowmelt and regional snow albedo feedbacks.

  20. Long-term observations of tropospheric NO2 from satellite

    NASA Astrophysics Data System (ADS)

    Richter, Andreas; Hilboll, Andreas; Noguchi, Katsuyuki; Leitao, Joana; Burrows, John P.

    Nitrogen oxides (NOx = NO + NO2 ) are key species in atmospheric chemistry. Together with volatile organic compounds they determine the amount of ozone present in the troposphere. Through the formation of nitric acid they are involved in acid rain formation and in addition they contribute to radiative forcing both directly and indirectly. As nitrogen dioxide adversely affects human health it is also regulated by environmental laws. While ground-based networks provide long-term data of surface concentrations of nitrogen oxides at high temporal resolution in many countries, truly global observations can only be performed from space. By using the Differential Optical Absorption Spectroscopy (DOAS) method on spectrally resolved UV/vis measurements of scattered sunlight, column amounts of NO2 can be determined from nadir satellite observations. With additional assumptions on stratospheric NO2 and the radiative transfer, the tropospheric NO2 amounts can be retrieved. In this work, satellite observations of NO2 from several sensors (GOME, SCIAMACHY, OMI, and GOME-2) are used to study the long-term evolution of tropospheric NO2 amounts on a global scale. A particular focus is on the comparison of results retrieved from the different sensors in times of overlapping measurements and the degree of consistency achieved in regions of both large and small pollution signals. The effects of sampling statistics, time of overpass and spatial resolution are discussed as well as the influence of clouds.

  1. Seismo-magnetic observations aboard the upcoming Chinese CSES satellite

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Lammegger, Roland; Ellmeier, Michaela; Prattes, Gustav; Eichelberger, Hans U.; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong; Delva, Magda; Jernej, Irmgard; Aydogar, Özer

    2017-04-01

    One objective of the upcoming Chinese Seismo-Electromagnetic Satellite (CSES) mission is the observation of seismo-magnetic phenomena aboard CSES. Several hypothesis exist in order to explain the influence of seismic phenomena on magnetic field variations in the atmosphere and in the ionosphere. The so called microfracture electrification (Molchanov and Hayakawa, 1998) proposes the generation of a broad band electric-magnetic signal which is low-pass filtered by the crustal and atmospheric/ionospheric conductivity. Depending on the environmental conductivity sigma and on the permeability mu (Prattes et al., 2008) the electromagnetic field fluctuations with the frequency omega can propagate approximately d_skin. (d_skin) = sqrt(2/(mu*sigma*omega)) We present the sensitivity of the CSES scalar dark state magnetometer (Schwingenschuh et al., 2016) after the final tests and compare it with seismo-magnetic ULF model results using various earthquake parameters. References: Prattes, G. et al.: Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005, Nat. Hazards Earth Syst. Sci., 8, 501-507, 2008 Molchanov, O. and Hayakawa, M.: On the generation mechanism of ULF seismogenic electromagnetic emissions, Phys. of the Earth and Planet. Int., 105, 201-210, 1998 Schwingenschuh, K. et al.: Study of earthquakes and related phenomena using a satellite scalar magnetometer, Geophysical Research Abstracts, Vol. 18, EGU2016-8448, 2016

  2. Estimating tropical vertical motion profile shapes from satellite observations

    NASA Astrophysics Data System (ADS)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  3. Satellite Observation Highlights of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Douglass, Anne R.; Duncan, Bryan N.; daSilva, Arlindo; Torres, Omar

    2010-01-01

    From late-July through mid-August 2010, wildfires raged in western Russia. The resulting thick smoke and biomass burning products were transported over the highly populated Moscow city and surrounding regions, seriously impairing visibility and affecting human health. We demonstrate the uniqueness of the 2010 Russian wildfires by using satellite observations from NASA's Earth Observing System (EOS) platforms. Over Moscow and the region of major fire activity to the southeast, we calculate unprecedented increases in the MODIS fire count record of 178 %, an order of magnitude increase in the MODIS fire radiative power (308%) and OMI absorbing aerosols (255%), and a 58% increase in AIRS total carbon monoxide (CO). The exceptionally high levels of CO are shown to be of comparable strength to the 2006 El Nino wildfires over Indonesia. Both events record CO values exceeding 30x10(exp 7) molec/ square cm.

  4. LCROSS: Lunar CRater Observation and Sensing Satellite Project

    NASA Technical Reports Server (NTRS)

    Marmie, John

    2010-01-01

    This slide presentation reviews the success of the Lunar Crater Observation and Sensing Satellite (LCROSS) project. The LCROSS mission science goals was to: (1) Confirm the presence or absence of water ice in a permanently shadowed region on the Moon (2) Identify the form/state of hydrogen observed by at the lunar poles (3) Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations (4) Characterize the lunar regolith within a permanently shadowed crater on the Moon. The mission confirmed the presence of water ice on the moon by impacting a part of the spent Centaur upper stage into the Cabeus crater.. The presentation includes pictures of the development of the spacecraft, testing, launch, impact site, impact and a section of what the author called "Lunacy" which showed joking cartoons.

  5. Subtropical Gyre Variability Observed by Ocean Color Satellites

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio R.; Christian, James R.

    2002-01-01

    The subtropical gyres of the world are extensive, coherent regions that occupy about 40% of the surface of the earth. Once thought to be homogeneous and static habitats, there is increasing evidence that mid-latitude gyres exhibit substantial physical and biological variability on a variety of time scales. While biological productivity within these oligotrophic regions may be relatively small, their immense size makes their total contribution significant. Global distributions of dynamic height derived from satellite altimeter data, and chlorophyll concentration derived from satellite ocean color data, show that the dynamic center of the gyres, the region of maximum dynamic height where the thermocline is deepest, does not coincide with the region of minimum chlorophyll concentration. The physical and biological processes by which this distribution of ocean properties is maintained, and the spatial and temporal scales of variability associated with these processes, are analyzed using global surface chlorophyll-a concentrations, sea surface height, sea surface temperature and surface winds from operational satellite and meteorological sources, and hydrographic data from climatologies and individual surveys. Seasonal and interannual variability in the areal extent of the subtropical gyres are examined using 8 months (November 1996 - June 1997) of OCTS and nearly 5 years (September 1997 - June 02) of SeaWiFS ocean color data and are interpreted in the context of climate variability and measured changes in other ocean properties (i.e., wind forcing, surface currents, Ekman pumping, and vertical mixing). The North Pacific and North Atlantic gyres are observed to be shrinking over this period, while the South Pacific, South Atlantic, and South Indian Ocean gyres appear to be expanding.

  6. Snow studies using thermal infrared observations from earth satellites

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.

    1972-01-01

    The application of satellite high resolution infrared data was studied for mapping snow cover. The study has two objectives: (1) to determine whether existing radiometers onboard the Nimbus and ITOS satellites can provide hydrologically useful snow information, and (2) to develop analysis techniques applicable to future IR sensor systems on earth satellites. The IR measurements are being analyzed in conjunction with concurrent satellite photographs and conventional snow cover data.

  7. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  8. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    DOE PAGES

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; ...

    2015-07-14

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. Our paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated bymore » the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations

  9. An Examination of Intertidal Temperatures Through Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.

    2010-12-01

    MODIS Aqua and Terra satellites produce both land surface temperatures and sea surface temperatures using calibrated algorithms. In this study, the land surface temperatures were retrieved during clear-sky (non-cloudy) conditions at a 1 km2 resolution (overpass time at 10:30 am) whereas the sea surface temperatures are also retrieved during clear-sky conditions at approximately 4 km resolution (overpass time at 1:30 pm). The purpose of this research was to examine remotely sensed sea surface (SST), intertidal (IST), and land surface temperatures (LST), in conjunction with observed in situ mussel body temperatures, as well as associated weather and tidal data. In Strawberry Hill, Oregon, it was determined that intertidal surface temperatures are similar to but distinctly different from land surface temperatures although influenced by sea surface temperatures. The air temperature and differential heating throughout the day, as well as location in relation to the shore, can greatly influence the remotely sensed surface temperatures. Therefore, remotely sensed satellite data is a very useful tool in examining intertidal temperatures for regional climatic changes over long time periods and may eventually help researchers forecast expected climate changes and help determine associated biological implications.

  10. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGUs annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSI has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  11. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGO'S annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 And Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSG has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  12. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  13. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  14. International Collaboration in Satellite Observations for Disaster Management

    NASA Technical Reports Server (NTRS)

    Duda, Kenneth A.; Abrams, Michael

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  15. Satellite observations of sea surface cooling by hurricanes

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; Cornillon, Peter; Price, James F.

    1986-04-01

    Sea surface cooling associated with 13 hurricanes in the western North Atlantic between September 1981 and December 1984 is examined using satellite-derived sea surface temperature fields. Some surface cooling is observed in all cases; however, because of cloud cover and the fairly weak signal in some cases, we see pronounced cooling along an extensive and continuous portion of the storm path for only three strong hurricanes. The persistence of cooling following the passage of a hurricane varies from a few days to at least 16 days. The amplitude of cooling is moderately well correlated with hurricane strength and is as large as 3.5°C. When the hurricanes move rapidly, the maximum cooling occurs well to the right of the track (approximately 70 km), whereas for slowly moving hurricanes the maximum cooling occurs near or on the track. Because western North Atlantic hurricanes are often found in close proximity to high pressure systems, daytime satellite images must be made with some care because of diurnal warming.

  16. Moisture and diabatic initialization based on radar and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    1999-11-01

    The ``spinup'' problem is one of the most serious problems for short-range precipitation forecasting. It is known to be related to the deficiencies in the initial moisture, latent heating and divergent circulations. The motivation for this research is to mitigate the spinup problem by providing better initial conditions using radar and satellite data. Most of previous real-data diabatic initialization studies have used 2D precipitation data to derive and adjust the initial latent heating and moisture fields in order to alleviate the spinup problem. The deployment of high resolution meteorological radar and satellite observation systems has provided new resources for diabatic initialization. A cloud analysis system was developed to synthesize these data sources and to construct 3D cloud and precipitation fields. The system is based on the LAPS cloud analysis, with several modifications. Based on the three- dimensional cloud and precipitation analyses, a moisture and diabatic initialization scheme was developed. In the initialization scheme, the initial thermal field is adjusted to account for the latent heating due to cloud condensation. Relative humidity field in the analyzed cloudy regions is adjusted to alleviate the deficiencies in the conventional moisture observations. The initialization scheme was tested using both simulated storms and real data cases. The results show that the present moisture and diabatic initialization can provide significant improvement in convective-scale precipitation forecasts with the aid of radar and satellite observations over a conventional data initialization. The thermal adjustment is important in data sparse regions for improving the initial thermal field as well as the initial moisture field. Without the thermal adjustment, the moisture adjustment can be insufficient in the data sparse regions. The results show that inserting cloud or rainwater field at the initial time can help produce cold outflows at the surface and generate

  17. Status and trends of small satellite missions for Earth observation

    NASA Astrophysics Data System (ADS)

    Sandau, Rainer

    2010-01-01

    Small satellites for remote sensing—how is a small satellite characterized, what is the basis for it, what are the trends, and what the application areas. The paper gives some insights in related facts and trends. The requirements concerning spatial, spectral and time resolution for the manifold application areas indicate the wide range of potential application for small satellites. Most of them can be covered using small satellites because of their already proven high performance capabilities in terms of spatial and spectral resolution. The implementation of satellite constellations to increase the time resolution and ground coverage is a unique feature of small, low-cost satellites. One payload example (BIRD) is given to show the potential of small satellites to give even better results compared to the existing fleet of larger satellites. More examples are given for small satellite constellations and formations in order to show how small satellites can be used to improve time resolution and ground coverage as well as to solve tasks which a single satellite is unable to solve.

  18. Characterizing user requirements for future land observing satellites

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Cressy, P. J.; Schnetzler, C. C.; Salomonson, V. V.

    1981-01-01

    The objective procedure was developed for identifying probable sensor and mission characteristics for an operational satellite land observing system. Requirements were systematically compiled, quantified and scored by type of use, from surveys of federal, state, local and private communities. Incremental percent increases in expected value of data were estimated for critical system improvements. Comparisons with costs permitted selection of a probable sensor system, from a set of 11 options, with the following characteristics: 30 meter spatial resolution in 5 bands and 15 meters in 1 band, spectral bands nominally at Thematic Mapper (TM) bands 1 through 6 positions, and 2 day data turn around for receipt of imagery. Improvements are suggested for both the form of questions and the procedures for analysis of future surveys in order to provide a more quantitatively precise definition of sensor and mission requirements.

  19. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  20. Climate variability and atmospheric teleconnection from satellite observed cloud fluctuations

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Chan, P. H.

    1983-01-01

    To investigate the low-frequency variability of the large-scale circulation over the tropics and its relationship with different regions of the globe, statistics of cloud fluctuations, as inferred from outgoing longwave radiation (OLR) are used. The data consists of seven years of global OLR in a 2.5 x 2.5-deg grid derived from NOAA polar orbiting satellite observations. The time series of area-averaged monthly deviation from the seven-year mean of OLR over an equatorial Central Pacific region is presented. It is shown that positive and negative deviations reflect local drier and wetter than normal conditions, respectively. Consideration is given to teleconnection based on the Central Pacific variations and to southern oscillation contributions.

  1. Interactive analysis of a large aperture Earth Observations Satellite

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.; Smith, J. C.

    1983-01-01

    A system level design and analysis has been conducted on an Earth Observation Satellite (EOS) system using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design and analysis program. The IDEAS program consists of about 40 user-friendly technical modules and an interactive graphics display. The reflector support system and feed mast of the EOS spacecraft are constructed with a box-truss structural concept, a lattice configuration which can be packaged for delivery in a single Shuttle flight and deployed in orbit. The deployed spacecraft consists of a 120-m by 60-m parabolic reflector, a 120-m-long support structure, and a 30-m feed arc beam on the focal axis. The spacecraft was modeled for structural, thermal, and control systems analysis and structural elements were designed. On-orbit dynamic and thermal loading analyses were conducted and spacecraft weights were determined.

  2. Tropical convection regimes in climate models: evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  3. Earth observations satellite data policy: Process and outcome

    SciTech Connect

    Shaffer, L.R.

    1994-12-31

    The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less

  4. Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites

    NASA Astrophysics Data System (ADS)

    Bai, Heming; Gong, Cheng; Wang, Minghuai; Zhang, Zhibo; L'Ecuyer, Tristan

    2018-02-01

    Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) from June 2006 to April 2011 are analyzed to estimate precipitation frequency susceptibility SPOP, precipitation intensity susceptibility SI, and precipitation rate susceptibility SR in warm marine clouds. We find that SPOP strongly depends on atmospheric stability, with larger values under more stable environments. Our results show that precipitation susceptibility for drizzle (with a -15 dBZ rainfall threshold) is significantly different than that for rain (with a 0 dBZ rainfall threshold). Onset of drizzle is not as readily suppressed in warm clouds as rainfall while precipitation intensity susceptibility is generally smaller for rain than for drizzle. We find that SPOP derived with respect to aerosol index (AI) is about one-third of SPOP derived with respect to cloud droplet number concentration (CDNC). Overall, SPOP demonstrates relatively robust features throughout independent liquid water path (LWP) products and diverse rain products. In contrast, the behaviors of SI and SR are subject to LWP or rain products used to derive them. Recommendations are further made for how to better use these metrics to quantify aerosol-cloud-precipitation interactions in observations and models.

  5. Observing convection with satellite, radar, and lightning measurements

    NASA Astrophysics Data System (ADS)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  6. A web-based tool that combines satellite and weather station observations to support irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Abstract: The Satellite Irrigation Management Support (SIMS) project combines NASA's Terrestrial Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, and reference evapotranspiration from surface weather station networks to map daily crop irrigation demand in California in ...

  7. Keck Adaptive Optics Observations of Neptune's Ring and Satellite Keck Adaptive Optics Observations of Neptune's Ring and Satellite System

    NASA Astrophysics Data System (ADS)

    de Pater, I.; Gibbard, S.; Martin, S.; Marchis, F.; Roe, H. G.; Macintosh, B.

    2003-05-01

    We observed Neptune, its satellites and ring system on UT 27 and 28 July 2002, with NIRC2 on the 10-m Keck II telescope at 2.2 micron. The total field of view was 10". Each image was integrated for 1 minute; on the first day we had a total of 18 frames, and 33 images on the second day, each spread out over a time interval of 1-2 hours. The complete Adams and Le Verrier rings are visible on each day, after combining all images. In the regions away from the ring arcs, we find that the Le Verrier ring is brighter (up to 20-40%) than the Adams ring. The ring arcs are readily apparent in combinations of the data that take into account Keplerian motion. The ring arc positions are in close agreement with Nicholson et al's (1995) result, as in HST/NICMOS images (Dumas et al. 2002). The Egalite ring has broadened even more since observed with HST/NICMOS in 1998, and is clearly the brightest ring arc. Liberte has decreased in intensity since Voyager and NICMOS. Courage was extremely faint in our images. The satellites Proteus, Larissa, Galatea and Despina are easily seen on individual frames. Thalassa is detected after properly shifting/rotating and adding several frames. This is the first time since the Voyager flybys that Thalassa is detected. Preliminary astrometric measurements suggest the satellites Larissa and Galathea, relative to Proteus, to be off from their nominal (JPL Horizons) positions by 0.3", and Despina by 0.1". Recent results indicate that Proteus is offset by 0.1" compared to Triton (Martins et al. 2003). Preliminary I/F values are 0.06 for Proteus, 0.045 for Larissa and Galatea, and 0.03 for Despina and Thalassa. These observations were supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783

  8. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Garcia, L. N.; Boardsen, S. A.; Hashimoto, K.; Matsumoto, H.

    2010-12-01

    Myriametric radio emissions (with wavelengths of 10-100 km) from Earth's magnetosphere have been known to take on different forms. Most notable forms include the classical non-thermal continuum (NTC) with both escaping and trapped components, continuum enhancement (CE), and auroral myriametric radiation (AMR). Continuum radiation emanating from plasmaspheric notches at the magnetic equator can sometimes extend to higher frequencies (up to ~ 800 kHz) to form the so-called kilometric continuum (KC) radiation. CE has also been known to appear as low-frequency bursts associated with substorm particle injections. This paper presents the simultaneous IMAGE and Geotail observations of a burst of terrestrial myriametric radiation (TMRB) at 8:30-9:30 UT on August 19, 2001 (see attached figures below). The widely separated satellite observations at 10-40 kHz suggest that the TMRB was a temporal feature. We will compare the TMRB observations to the characteristics of other known TMR components to determine if the TMRB may be consistent with any of the known TMR. IMAGE RPI Spectrogram on 8/19/2001 showing TMRB (10-40 kHz) at 8:30-9:30 UT. Geotail Spectrogram on 8/19/2001 showing TMRB (10-40 kHz) at 8:30-9:30 UT.

  9. EUV observation from the Earth-orbiting satellite, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.

    2010-01-01

    An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.

  10. Satellites: New global observing techniques for ice and snow. [using erts-1 and nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Salomonson, V. V.

    1974-01-01

    The relation of aereal extent of snow cover to the average monthly runoff in a given watershed was investigated by comparing runoff records with a series of snowcover maps. Studies using the high spatial resolution available with ERTS-1 imagery were carried out for the Wind River Mountains watersheds in Wyoming, where it was found that the empirical relationship varied with mean elevation of the watershed. In addition, digital image enhancement techniques are shown to be useful for identifying glacier features related to extent of snowcover, moraine characteristics, and debris average. Longer wavelength observations using sensors on board the Nimbus 5 Satellite are shown to be useful for indicating crystal size distributions and onset of melting on glacier snow cover.

  11. Satellite Altimetry for a Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    2000-01-01

    Space-age technologies have made satellite remote sensing a powerful new tool to study the Earth on a global scale. However, the opacity of the ocean to electromagnetic sensing has limited spaceborne measurements to the properties of the surface layer of the ocean (such as sea surface temperature and color). The radar altimetric measurement of the height of the sea surface relative to the geoid, the dynamic topography of the ocean, is a very useful quantity for studying the circulation of the ocean. The ability of measuring dynamic topography from space makes satellite altimetry a uniquely useful remote sensing technique because dynamic topography reflects oceanic processes not only at the surface but at depths as well. A simple analysis shows that a one centimeter tilt in the dynamic topography is associated with a mass transport of 1-7 Sv (1Sv= 1 million tons per second) in the open ocean depending on the vertical distribution of current velocity. Such a magnitude is an appreciable fraction of the transport of the Florida Current (circa 30 Sv), for instance. TOPEX/POSEIDON has demonstrated the capability of measuring the time variation of sea level with accuracy approaching to 2 cm when the data are averaged over boxes with several hundred kilometers on each side. The data set has been used for studying ocean circulation phenomena with a wide range of scales, ranging from fast-changing barotropic variability to seasonal and interannual variability such as El Nino and La Nina. The long record of precise measurement of global sea level has also showed great promise for monitoring the variation of mean sea level, an effective indicator of global climate change. Continuation of satellite altimetry missions with capability matching or better than that of TOPEX/POSEIDON should be included as a key component of a Global Ocean Observing System. NASA and CNES have committed to continuing the measurement of TOPEX/POSEIDON with a series of follow-on missions called Jason

  12. Migration to Earth Observation Satellite Product Dissemination System at JAXA

    NASA Astrophysics Data System (ADS)

    Ikehata, Y.; Matsunaga, M.

    2017-12-01

    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  13. Improved satellite observations in coastal areas from altimetry and SAR

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Martin, Adrien; Gommenginger, Christine; Calafat, Francisco

    2017-04-01

    The coastal environment is under constant pressure by natural forces and anthropogenic activities and is very sensitive to climate change. Observations of many physical and biological parameters are critical for its monitoring and management. Satellite observations constitute an efficient way to observe the global coastal environment, but ocean satellite observations have often been designed and optimised for the open ocean: algorithms and processing techniques need to be revisited and adapted for application in the coastal zone. A case in point is that of satellite altimetry, which over the oceans is regarded as one of the most successful remote sensing techniques, as it has allowed an unprecedented mapping of the ocean surface dynamics at the large- and meso-scale. With the improvements in orbit models, radar processing, atmospheric and geophysical effect corrections that have emerged over the years, altimetry gives today also a very accurate estimation of the rate of sea level rise and its geographical variability. However, altimetric data in the near-land strip (0 to 50 km from the coastline) are often flagged as bad and left unused, essentially owing to 1) difficulties with the corrections; and/or 2) the modification of the radar returns due to the presence of land in the footprint, which makes the fitting of the altimetric echoes with a waveform model (the so-called "retracking") problematic. Techniques to recover meaningful estimates of the altimeter-derived parameters (height, significant wave height and wind) in the coastal zone have been developed and lead to a number of new applications, which will be presented here. The new observation from coastal altimetry are highly synergistic with Synthetic Aperture Radar (SAR). SAR imagers measure the backscattered signal from the ocean surface at spatial resolution better than 100m. This backscattered signal gives knowledge on the sea surface roughness, which is related to wind and waves. The very high resolution

  14. Whistler-triggered emissions observed by ISIS satellites

    SciTech Connect

    Nakamura, Y.; Ondoh, T.

    1989-01-01

    VLF emissions triggered by whistlers are often observed at middle and high latitudes in the topside ionosphere by ISIS satellites. Most of them are so-called LHR emissions lasting for a few seconds. Latitudinal distributions of the occurrence rate for the whistler-triggered emissions in the topside ionosphere have been obtained by using VLF electric field data received from the ISIS 1 and 2 satellites at Kashima station, Communications Research Laboratory, Japan. These VLF emissions are classified into two groups according to the type of whistlers, i.e., ducted whistlers with a continuous trace over the full frequency range of the spectrum andmore » nonducted whistlers without a complete trace below f{sub LHR}. The latitudinal distribution of the occurrence rate for emissions triggered by ducted whistlers is considerably different from that for emissions triggered by nonducted whistlers, especially at high latitudes. The occurrence rate for the emissions by nonducted whistlers is distributed rather randomly in latitude between L = 2.0 and L = 4.2. The occurrence rate for emissions by ducted whistlers increases with latitudes between L = 1.5 and L = 2.9, and it attains a maximum of 0.33 at L = 2.7. It then abruptly drops to 0.1 at L = 3.0, and it remains below 0.1 between L = 3.0 and L = 4.0. The decrease of the occurrence rate for emissions by ducted whistlers at L = 3.0 seems to be caused by the decrease of the radiation belt electron flux near the slot region. These results suggest that the VLF emissions triggered by ducted whistlers in the topside ionosphere are generated by the cyclotron resonant interaction of ducted whistlers with the magnetospheric electrons near the geomagnetic equatorial plane.« less

  15. FPGA Platform for Satellite Observations of VLF Emissions

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Linscott, I.; Inan, U.

    2008-12-01

    Transient Luminous Events (TLEs) are unique high-altitude phenomena which have recently been the subject of intense study because they may provide insight into the energy exchange and electromagnetic coupling of the high atmosphere and ionosphere. The systematic observation of TLEs is a difficult problem due to their rare occurrence and low signal levels. Historically, optical observations have been the primary method, and recent research indicates a potential correlation between TLE optical emissions and Very Low Frequency (VLF) radio emissions of a particular signature. Two opportunities present themselves for unique instrumentation development: first, a low-order "always-on" sensor placed in-situ on board an observational satellite can record all VLF emissions and gather statistical data on the correlation and rate of occurrence of these VLF signatures. Secondly, such a sensor can serve as a triggering mechanism to activate high-fidelity optical instruments to catch the TLE events in real time. Both of these scenarios present difficult challenges - real-time signal detection requires fast computations; and the space-environment requires both low-power consumption and high resilience to radiation. In light of these constraints, the preferred method is a specialized digital signal processor (DSP) implemented as a Field Programmable Gate Array (FPGA). This technology enables highly parallelizable data processing and due to the specialized hardware specific to this application, power consumption can be reduced. The development of FPGA platforms also offers the capability for extensibility and interoperability with similar ground-stations; additional features such as data recording, user-interfacing, and network connectivity are possible without total system redesign via the FPGA's unique development methodology. Currently, a hardware prototype has been developed which successfully performs the basic functionality for real-time signal processing and data presentation

  16. Whistler emissions in the magnetosphere - satellite observations and numerical modeling

    NASA Astrophysics Data System (ADS)

    Chum, J.; Jiricek, F.; Shklyar, D. R.

    The investigation of ionospheric and magnetospheric wave phenomena related to lightning strokes began from classical research by Eckersley (Nature, Lond., 135, 104, 1935) and Storey (Phil. Trans. Roy. Soc. Lond., A246, 908, 113-141, 1953) among others, and it has continued up to the present. VLF spectrograms from the MAGION 4 and MAGION 5 satellites contain most of the known types of VLF emissions, as well as some new ones not discussed previously. A partial list of the observed emissions involving nonducted propagation includes: magnetospherically reflected (MR) whistlers (and their subclass, Nu whistlers) predicted by Kimura (Radio Sci., 1, 3, 269-283, 1966) and then found by Smith and Angerami in the spectrograms of wave data from OGO 1 and 3 (J. Geophys. Res., 73, 1, 1-20, 1968); lower hybrid resonance (LHR) noise bands; LHR whistlers and LHR spherics; and oblique noise bands above the local LHR frequency. Recently, a new line of investigation was initiated by numerical modeling of VLF spectrograms of nonducted emissions caused by lightning. For such emissions, as observed by a satellite in the magnetosphere, the spectrograms depend on several factors: the properties of the source, the geomagnetic field structure and the cold plasma distribution which jointly influence the wave propagation, and the resonant interactions of the waves with energetic particles. Therefore, numerical modeling of spectrograms and comparing them with real ones may serve as an indirect tool for investigating the factors mentioned above and any other processes that affect the spectrograms. This tool is especially effective when the source of the emission is known, in particular with lightning-induced emissions. The main features of our numerical method for modeling spectrograms include: a) representation of the wave field as the sum of wave packets treatable by geometrical optics; b) construction of a frequency-time plot based on the notion of a group front; c) calculation of the

  17. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    NASA Astrophysics Data System (ADS)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  18. Satellite Observations of Antarctic Sea Ice Thickness and Volume

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan; Markus, Thorsten

    2012-01-01

    We utilize satellite laser altimetry data from ICESat combined with passive microwave measurements to analyze basin-wide changes in Antarctic sea ice thickness and volume over a 5 year period from 2003-2008. Sea ice thickness exhibits a small negative trend while area increases in the summer and fall balanced losses in thickness leading to small overall volume changes. Using a five year time-series, we show that only small ice thickness changes of less than -0.03 m/yr and volume changes of -266 cu km/yr and 160 cu km/yr occurred for the spring and summer periods, respectively. The calculated thickness and volume trends are small compared to the observational time period and interannual variability which masks the determination of long-term trend or cyclical variability in the sea ice cover. These results are in stark contrast to the much greater observed losses in Arctic sea ice volume and illustrate the different hemispheric changes of the polar sea ice covers in recent years.

  19. The Next Gamma-Ray Satellite GLAST for BLAZAR Observations

    NASA Astrophysics Data System (ADS)

    Fukazawa, Y.; Ohsugi, T.; Yoshida, S.; Kamae, T.; Mizuno, T.; Takahashi, T.; Ozaki, M.; Kawai, N.; Kataoka, J.; Team, G.

    The next gamma-ray satellite GLAST will be launched in 2007, under the cooperation of the USA, Japan, Italy, France, Sweden, and so on. GLAST sensitivity is several tens times higher than the EGRET, thanks to good position determination, large effective area, and wide field of view. The key technology to achieve these capabilities is low-noise ``silicon-strip-detector" (SSD), developed and designed by Hiroshima University and Hamamatsu Photonics. Most of the GLAST SSD has been produced, and found to be very high-quality devices with quite a low rate of dead channels of < 0.01 The detector assembly has started, and soon one tower will become built for various environmental tests. GLAST will detect several thousands of BLAZARs, and thus enable us to probe the jet mechanisms and evolution of massive black holes. Good position accuracy will in addition increase an identification. The high-sensitivity, wide-energy-band, and continuous-long-time observations of BLAZARs with GLAST LAT will be hoped to open a new epoch of massive black-hole observations. Especially, the flare history is very important to consider the jet mechanims and particle acceleration.

  20. Satellite microwave observations of soil moisture variations. [by the microwave radiometer on the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Rango, A.; Neff, R.

    1975-01-01

    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained.

  1. Time Resolved Atmospheric Carbon Satellite Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Edwards, David; Worden, Helen

    This presentation describes proposed satellite carbon measurements from CHRONOS (Commercially Hosted spectroRadiometer Observations and New Opportunities for Science). The primary goal of this mission is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Both CO and CH4 are chemical precursors of tropospheric ozone pollution. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution. The CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth Venture TEMPO (Tropospheric Emissions: Monitoring of Pollution

  2. Time Resolved Atmospheric Carbon Satellite Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Worden, H. M.; Deeter, M. N.; Worden, H. M.

    2013-12-01

    This presentation describes proposed satellite carbon measurements from CHRONOS (Commercially Hosted spectroRadiometer Observations and New Opportunities for Science). The primary goal of this mission is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Both CO and CH4 are chemical precursors of tropospheric ozone pollution. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution. The CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth Venture TEMPO (Tropospheric Emissions: Monitoring of Pollution

  3. PROBA2: a Micro-Satellite Observing the Sun

    NASA Astrophysics Data System (ADS)

    Katsiyannis, A.; Dominique, M.; Seaton, D. B.; Berghmans, D.; West, M. J.; Dolla, L.; Ryan, D.; Bonte, K.; Kretzschmar, M.; Dammasch, I. E.; Wauters, L.; Rachmeler, L. A.

    2015-12-01

    PROBA2 (http://proba2.oma.be) is an ESA micro-satellite that was launched in November 2009. It carries two solar-observing instruments: SWAP, an EUV imager observing the one-million-degree corona, and LYRA, a UV-EUV radiometer acquiring time-series in four broadband channels. The characteristics of both instruments make them highly complementary to bigger missions such as SDO for the observation of solar eruptions and flares. SWAP benefits from a large field-of-view and flexible off-pointing capabilities that allow the instrument to fill part of the observational gap between imagers and coronographs and to shed a new light on eruptive events (see e.g. West and Seaton, 2015; Kumar and Cho, 2014; Byrne et al., 2014) LYRA acquires at a very fast cadence (20 Hz nominally) and with a high signal-to-noise ratio, and can therefore be used for the detailed analysis of the short-timescale variations of solar irradiance, such as the so-called quasi-periodic pulsations appearing in flares that could be intrinsically related to the nature of the flaring process (see e.g. Dolla et al., 2012). The two instruments provide data suitable for the detection of space weather related events such as flares, CMEs, dimmings, EUV waves, etc. Automated tools (e.g. SOFAST, see Bonte et al. 2012) are already operational and are used daily in the frame of space weather services such as the ESA's Space Weather Coordination Centre (SSCC). These tools should be soon enriched with new capabilities.

  4. Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.

    2016-12-01

    The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale

  5. Observational capabilities of solar satellite "Coronas-Photon"

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  6. Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.

    PubMed

    Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian

    2017-05-17

    Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.

  7. Extreme ultraviolet explorer satellite observation of Jupiter's Io plasma torus

    NASA Technical Reports Server (NTRS)

    Hall, D. T; Gladstone, G. R.; Moos, H. W.; Bagenal, F.; Clarke, J. T.; Feldman, P. D.; Mcgrath, M. A.; Schneider, N. M.; Shemansky, D. E.; Strobel, D. F.

    1994-01-01

    We present the first Extreme Ultraviolet Explorer (EUVE) satellite observation of the Jupiter system, obtained during the 2 day period 1993 March 30 through April 1, which shows a rich emission-line spectrum from the Io plasma torus spanning wavelengths 370 to 735 A. The emission features correspond primarily to known multiplets of oxygen and sulfur ions, but a blended feature near 372 A is a plausible Na II transition. The summed detected energy flux of (7.2 +/- 0.2) x 10(exp -11) ergs/sq cm(s) corresponds to a radiated power of approximately equal to 4 x 10(exp 11) W in this spectral range. All ansa emissions show a distinct dawn-dusk brightness asymmetry and the measured dusk/dawn ratio of the bright S III lambda-680 feature is 2.3 +/- 0.3, significantly larger than the ratio measured by the Voyager spacecraft ultraviolet (UV) instruments. A preliminary estimate of ion partitioning indicates that the oxygen/sulfur ion ratio is approximately equal to 2, compared to the value approximately equal to 1.3 measured by Voyager, and that (Na(+))/(e) greater than 0.01.

  8. Remote sensing satellite formation for bistatic synthetic aperture radar observation

    NASA Astrophysics Data System (ADS)

    D'Errico, Marco; Moccia, Antonio

    2001-12-01

    In recent years the Italian Space Agency has been proceeding to the definition and launch of small missions. In this ambit, the BISSAT mission was proposed and selected along with five other missions for a competitive Phase A study. BISSAT mission concept consists in flying a passive SAR on board a small satellite, which observes the area illuminated by an active SAR, operating on an already existing large platform. Several scientific applications of bistatic measurements can be envisaged: improvement of image classification and pattern recognition, derivation of medium-resolution digital elevation models, velocity measurements, measurements of sea-wave spectra. BISSAT payload is developed on the basis of the X-band SAR of the COSMO/SkyMed mission, while BISSAT bus is based on an upgrade of MITA. Orbit design has been performed, leading to the same orbit parameters apart from the ascending node right ascension (5.24 degree(s) shift) and the time of the passage on the ascending node (1.17s shift). A minimum distance at the passage of the orbit crossing point of about 42 km (5.7s) is computed. To maintain adequate swath overlap along the orbit, attitude maneuver or antenna electronic steering must be envisaged and traded-off taking into account radar performance and cost of hardware upgrade.

  9. Making Data Visible: Satellite Observations of Arctic Change (SOAC)

    NASA Astrophysics Data System (ADS)

    Beitler, J.; Tanner, S.; Barrett, A. P.; Savoie, M. H.; Wilcox, H.; Hoyer, T.; Beam, K.

    2014-12-01

    A new Web site, Satellite Observations of Arctic Change (SOAC, http://nsidc.org/soac), was developed to open up NASA Earth science data that show changes taking place in the Arctic over time to a broader range of users. The site was designed to be used by decision makers, teachers, non-specialist scientists, and the motivated public without the need for technical tools or expertise in manipulating data. The data are displayed on interactive maps, allowing users to explore how and where conditions in the Arctic have changed from the 1970s to the present. Users may animate a time series, zoom in or out, and view a bar graph of anomalies over time. Supporting pages provide brief scientific discussion and background to help users understand the data and the significance of the changes. Links to the source data and documentation are also included. Initial data products for SOAC include anomalies associated with near-surface air temperature; water vapor; sea ice concentration; snow cover; and several others. The potential for use and for inclusion of more data will be discussed.

  10. First Satellite Observations of Lower Tropospheric Ammonia and Methanol

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Shephard, Mark W.; Kulawik, Susan S.; Clough, Shepard A.; Eldering, Annmarie; Bowman, Kevin W.; Sander, Stanley P.; Fisher, Brendan M.; Payne, Vivienne H.; Luo, Mingzhao; hide

    2008-01-01

    The Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite makes global measurements of infrared radiances which are used to derive profiles of species such as O3, CO, H2O, HDO and CH4 as routine standard products. In addition, TES has a variety of special modes that provide denser spatial mapping over a limited geographical area. A continuous-coverage mode (called ''transect'', about 460 km long) has now been used to detect additional molecules indicative of regional air pollution. On 10 July 2007 at about 05:37 UTC (13:24 LMST) TES conducted such a transect observation over the Beijing area in northeast China. Examination of the residual spectral radiances following the retrieval of the TES standard products revealed surprisingly strong features attributable to enhanced concentrations of ammonia (NH3) and methanol (CH3OH), well above the normal background levels. This is the first time that these molecules have been detected in space-based nadir viewing measurements that penetrate into the lower atmosphere.

  11. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  12. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    NASA Astrophysics Data System (ADS)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  13. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  14. An observational philosophy for GEOS-C satellite altimetry

    NASA Technical Reports Server (NTRS)

    Weiffenbach, G. C.

    1972-01-01

    The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.

  15. Using Satellite Observations of Cloud Vertical Distribution to Improve Global Model Estimates of Cloud Radiative Effect on Key Tropospheric Oxidants

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Ham, Seung-Hee; Crawford, James; Kato, Seiji; Chen, Gao; Voulgarakis, Apostolos; Duncan, Bryan; Yantosca, Robert

    2015-01-01

    Radiative effect of clouds is one of the major factors that affect tropospheric OH. Large differences in cloud distributions among current (chemistry-climate or chemical transport) models could contribute significantly to the wide model spread of tropospheric OH, which was reported by the ACCMIP activity (Voulgarakis et al., ACP 2013). CCCM, a 3-D cloud data product developed at NASA Langley and merged from multiple A-Train satellite observations, provides unprecedentedly strong constraints on the vertical distribution of clouds and therefore simulated effects of clouds on key tropospheric oxidants.

  16. Enhanced Satellite Geodesy through the Addition of a Pseudorange Observable

    DTIC Science & Technology

    1989-05-01

    two orbital planes, oriented to provide maximum coverage over North America. In the Block I satellites none of the codes are encrypted . As the GPS...system becomes operational with launching of the Block II satellites, the P code will be encrypted for national security reasons. The P code provides the...The added delay is a measure of the satelite -receiver range. This measured range is termed Fseudorange. since it is corrupted by clock errors. If

  17. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their

  18. Using A-Train Observations to Evaluate Ice Water Path and Ice Cloud Radiative Effects in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Berry, B. J.

    2015-12-01

    In this study we first use A-Train satellite data to investigate the distribution of clouds, along with their radiative and microphysical properties, in Southeast Asia during the summer monsoon. The distribution of ice water path (IWP) in this region is highly skewed, such that the mean value is not representative of the typical ice cloud. In examining how cirrus cloud radiative effects at the TOA vary as a function of IWP, we find that cirrus with an IWP less than 200 g m-2 produce a net warming. And weighting the radiative effect by the frequency of occurrence of IWP, reveals that cirrus with an IWP around 20 g m-2contribute most to the heating at the TOA. Next, we use the A-Train results to address the issues of IWP occurrence and high cloud forcing in the Community Atmosphere Model version 5. Our goal is to determine if the clouds that heat the upper troposphere in the model are the same genre of clouds that heat the upper troposphere in the real atmosphere. First, we assess the distribution of ice cloud fraction in the model. Then we define a cloud radiative kernel that's a function of cloud top pressure and IWP, to determine whether the modeled ice clouds produce similar shortwave and longwave radiative effects at the TOA. Lastly, we use the cloud radiative kernel and cloud fraction histogram to evaluate how the ice cloud forcing in the model compares to the ice cloud forcing derived from A-Train.

  19. MISR Satellite Observations of Aerosol Types Affecting Human Health

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Franklin, M.; Garay, M. J.; Diner, D. J.

    2015-12-01

    Ground-based observations of pollutants and concentrations of particulate matter (PM), that includes small particles designated PM2.5 and dust-dominated PM10, are the gold standard in studies of environmental impacts on human health. However, because monitoring stations are costly, they typically provide only limited spatial coverage, especially in rural and remote areas. We will demonstrate how data from the Multi-angle Imaging SpectroRadiometer (MISR) instrument that has been flying on NASA's Terra Earth Observing System satellite since early 2000 can be used to provide estimates of surface PM types. The current MISR operational aerosol retrieval uses a combination of multi-spectral and multi-angle data to retrieve aerosol optical depth (AOD) and particle property information (including dust AOD) globally at 17.6 km spatial resolution. Using the same algorithm with data collected in all 36-channels at 275 m resolution (Local Mode), which is available over greater Los Angeles area, and also was activated during 2013 DISCOVER-AQ California field campaign, high-resolution 4.4 km aerosol retrievals were performed in addition to the standard 17.6 km retrievals. The 4.4 km spatial resolution of the PM information data is fine enough to be able to resolve local differences in PM loading that may be important for understanding regional health effects of pollution in the region. In particular, we demonstrate that MISR high-resolution AOD retrievals are in better agreement with ground-based aerosol observations and reveal more details about the aerosol spatial variability compared to the MISR standard 17.6 km product. Then we will discuss techniques and show examples of the application of high-resolution MISR data to provide estimates of surface PM for the greater Los Angeles area in 2008 and for California San Joaquin Valley during the 2013 DISCOVER-AQ field campaign. Finally, we will discuss future NASA instruments that will provide new information allowing for better

  20. Observations of land-atmosphere interactions using satellite data

    NASA Astrophysics Data System (ADS)

    Green, Julia; Gentine, Pierre; Konings, Alexandra; Alemohammad, Hamed; Kolassa, Jana

    2016-04-01

    Observations of land-atmosphere interactions using satellite data Julia Green (1), Pierre Gentine (1), Alexandra Konings (1,2), Seyed Hamed Alemohammad (3), Jana Kolassa (4) (1) Columbia University, Earth and Environmental Engineering, NY, NY, USA, (2) Stanford University, Environmental Earth System Science, Stanford, CA, USA, (3) Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA, USA, (4) National Aeronautics and Space Administration/Goddard Space Flight Center, Greenbelt, MD, USA. Previous studies of global land-atmosphere hotspots have often relied solely on data from global models with the consequence that they are sensitive to model error. On the other hand, by only analyzing observations, it can be difficult to distinguish causality from mere correlation. In this study, we present a general framework for investigating land-atmosphere interactions using Granger Causality analysis applied to remote sensing data. Based on the near linear relationship between chlorophyll sun induced fluorescence (SIF) and photosynthesis (and thus its relationship with transpiration), we use the GOME-2 fluorescence direct measurements to quantify the surface fluxes between the land and atmosphere. By using SIF data to represent the flux, we bypass the need to use soil moisture data from FLUXNET (limited spatially and temporally) or remote sensing (limited by spatial resolution, canopy interference, measurement depth, and radio frequency interference) thus eliminating additional uncertainty. The Granger Causality analysis allows for the determination of the strength of the two-way causal relationship between SIF and several climatic variables: precipitation, radiation and temperature. We determine that warm regions transitioning from water to energy limitation exhibit strong feedbacks between the land surface and atmosphere due to their high sensitivity to climate and weather variability. Tropical rainforest regions show low magnitudes of

  1. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  2. Aerosol Direct Radiative Effects and Heating in the New Era of Active Satellite Observations

    NASA Astrophysics Data System (ADS)

    Matus, Alexander V.

    Atmospheric aerosols impact the global energy budget by scattering and absorbing solar radiation. Despite their impacts, aerosols remain a significant source of uncertainty in our ability to predict future climate. Multi-sensor observations from the A-Train satellite constellation provide valuable observational constraints necessary to reduce uncertainties in model simulations of aerosol direct effects. This study will discuss recent efforts to quantify aerosol direct effects globally and regionally using CloudSat's radiative fluxes and heating rates product. Improving upon previous techniques, this approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties critical for accurately evaluating the radiative impacts of aerosols. We estimate the global annual mean aerosol direct effect to be -1.9 +/- 0.6 W/m2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects related to model biases in cloud cover. A low bias in stratocumulus cloud cover over the southeastern Pacific Ocean, for example, leads to an overestimate of the radiative effects of marine aerosols. Stratocumulus clouds over the southeastern Atlantic Ocean can enhance aerosol absorption by 50% allowing aerosol layers to remain self-lofted in an area of subsidence. Aerosol heating is found to peak at 0.6 +/- 0.3 K/day an altitude of 4 km in September when biomass burning reaches a maximum. Finally, the contributions of observed aerosols components are evaluated to estimate the direct radiative forcing of anthropogenic aerosols. Aerosol forcing is computed using satellite-based radiative kernels that describe the

  3. Satellite observations of transient radio impulses from thunderstorms

    SciTech Connect

    Argo, P.E.; Kirkland, M.; Jacobson, A.

    1999-06-01

    Transient radio emissions from thunderstorms detected by satellites were first reported in 1995. The nature and source of these emissions remained a mystery until the launch of the FORTE satellite in 1997. FORTE, with its more sophisticated triggering and larger memory capacity showed that these emissions were connected to major thunderstorm systems. The analysis reported here, connecting FORTE RF events with ground based lightning location data from the National Lightning Detection Network (NLDN), shows that localized regions within thunderstorms are responsible for the creation of the satellite detected rf signals. These regions are connected with the areas of strong radarmore » returns from the NEXRAD Doppler radar system, indicating that they are from regions of intense convection. The authors will also show data from several storms detected in the extended Caribbean, in which the height profile of the source regions can be determined. Although as a single low earth orbit satellite FORTE cannot provide global coverage of thunderstorm/lightning events, follow-on satellite constellations should be able to provide detailed information on global lightning in near real-time.« less

  4. Thermospheric density estimation from SLR observations of LEO satellites - A case study with the ANDE-Pollux satellite

    NASA Astrophysics Data System (ADS)

    Blossfeld, M.; Schmidt, M.; Erdogan, E.

    2016-12-01

    The thermospheric neutral density plays a crucial role within the equation of motion of Earth orbiting objects since drag, lift or side forces are one of the largest non-gravitational perturbations acting on the satellite. Precise Orbit Determination (POD) methods can be used to estimate thermospheric density variations from measured orbit determinations. One method which provides highly accurate measurements of the satellite position is Satellite Laser Ranging (SLR). Within the POD process, scaling factors are estimated frequently. These scaling factors can be either used for the scaling of the so called satellite-specific drag (ballistic) coefficients or the integrated thermospheric neutral density. We present a method for analytically model the drag coefficient based on a couple of physical assumptions and key parameters. In this paper, we investigate the possibility to use SLR observations to the very low Earth orbiting satellite ANDE-Pollux (approximately at 350km altitude) to determine scaling factors for different a priori thermospheric density models. We perform a POD for ANDE-Pollux covering 49 days between August 2009 and September 2009 which means the time span containing the largest number of observations during the short lifetime of the satellite. Finally, we compare the obtained scaled thermospheric densities w.r.t. each other

  5. Satellite observations of NO2 trend over Romania.

    PubMed

    Constantin, Daniel-Eduard; Voiculescu, Mirela; Georgescu, Lucian

    2013-01-01

    Satellite-based measurements of atmospheric trace gases loading give a realistic image of atmospheric pollution at global, regional, and urban level. The aim of this paper is to investigate the trend of atmospheric NO2 content over Romania for the period 1996-2010 for several regions which are generally characterized by different pollutant loadings, resulting from GOME-1, SCIAMACHY, OMI, and GOME-2 instruments. Satellite results are then compared with ground-based in situ measurements made in industrial and relatively clean areas of one major city in Romania. This twofold approach will help in estimating whether the trend of NO2 obtained by means of data satellite retrievals can be connected with the evolution of national industry and transportation.

  6. Satellite Observations of NO2 Trend over Romania

    PubMed Central

    Voiculescu, Mirela; Georgescu, Lucian

    2013-01-01

    Satellite-based measurements of atmospheric trace gases loading give a realistic image of atmospheric pollution at global, regional, and urban level. The aim of this paper is to investigate the trend of atmospheric NO2 content over Romania for the period 1996–2010 for several regions which are generally characterized by different pollutant loadings, resulting from GOME-1, SCIAMACHY, OMI, and GOME-2 instruments. Satellite results are then compared with ground-based in situ measurements made in industrial and relatively clean areas of one major city in Romania. This twofold approach will help in estimating whether the trend of NO2 obtained by means of data satellite retrievals can be connected with the evolution of national industry and transportation. PMID:24453819

  7. Small Satellite Constellations: The Future for Operational Earth Observation

    NASA Technical Reports Server (NTRS)

    Stephens, J. Paul

    2007-01-01

    Nanosat, microsat and minisat are low-cost, rapid-response small-satellites built from advanced terrestrial technology. SSTL delivers the benefits of affordable access to space through low-cost, rapid response, small satellites designed and built with state-of-the-art COTS technologies by: a) reducing the cost of entry into space; b) Achieving more missions within fixed budgets; c) making constellations and formation flying financially viable; d) responding rapidly from initial concept to orbital operation; and e) bringing the latest industrial COTS component advances to space. Growth has been stimulated in constellations for high temporal revisit&persistent monitoring and military responsive space assets.

  8. Ionospheric electron density irregularities observed by satellite-to-satellite, dual-frequency, low-low Doppler tracking link

    NASA Technical Reports Server (NTRS)

    Estes, R. D.; Grossi, M. D.

    1984-01-01

    A low-low, satellite-to-satellite, dual-frequency, Doppler tracking experiment was performed. The data are analyzed here for irregularities in electron density at the altitude of 212 km. The differential Doppler data with the relative motion term removed are integrated to obtain a representation of the electron density variation along the satellite path. Well-known large-scale features such as the equatorial geomagnetic anomaly and day/night ionization level differences are clearly observed in the integrated data. The larger crest of the morning geomagnetic anomaly is seen to occur in the southern (winter) hemisphere in agreement with previous observations. In addition, a sharp peak in the electron density at the day-to-night transition point is observed in two consecutive revolutions. This effect may be due to the previously postulated atmospheric shock wave generated by supersonic motion of the terminator.

  9. Assimilation of hyperspectral satellite radiance observations within tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lin, Haidao

    The availability of high resolution temperature and water vapor data is critical for the study of mesoscale scale weather phenomena (e.g., convective initiations, and tropical cyclones). As hyperspectral infrared sounders, the Atmospheric Infrared Sounder (AIRS) and Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) could provide high resolution atmospheric profiles by measuring radiations in many thousands of different channels. This work focuses on the assessment of the potential values of satellite hyperspectral radiance data on the study of convective initiations (CI) and the assimilation of AIRS radiance observations within tropical storms. First, the potential capability of hyperspectral infrared measurements (GIFTS) to provide convective precipitation forecasts has been studied and assessed. Using both the observed and the model-predicted profiles as input to the GIFTS radiative transfer model (RTM), it is shown that the simulated GIFTS radiance could capture the high vertical and temporal variability of the real and modeled atmosphere prior to a convective initiation, as well as the differences between observations and model forecasts. This study suggests the potential for hyperspectral infrared radiance data to make an important contribution to the improvement of the forecast skill of convective precipitation. Second, as the first step toward applying AIRS data to tropical cyclone (TC) prediction, a set of dropsonde profiles during Hurricane Rita (2005) is used to simulate AIRS radiance data and to assess the ability of AIRS data in capturing the vertical variability within TCs through one-dimensional variational (1D-Var) twin experiments. The AIRS observation errors and background errors are first estimated. Five sets of 1D-Var twin experiments are then performed using different combinations of AIRS channels. Finally, results from these 1D-Var experiments are analyzed. Major findings are: (1) AIRS radiance data contain useful information about

  10. Limb-atmospheric infrared spectrum observed on the satellite Ohzora

    NASA Technical Reports Server (NTRS)

    Matsuzaki, A.; Nakamura, Y.; Itoh, T.

    1985-01-01

    The Institute of Space and Astronautical Science (ISAS) launched the 9th scientific satellite Ohzora at 17:00 JST on February 14, 1984. This satellite bears the spectrometer, which measures the infrared spectrum of the solar radiation passing the limb atmosphere in the wavelength region of 2 to 10 m. The spectrometer is based on multichannel spectroscopy by using image sensors. Since the wavelength is scanned electronically, it can measure the spectrum unaffected by the satellite motion. A definite axis, i.e., the Z-axis of the satellite, which coincides to the optical axis of the spectrometer, is controlled to the direction of the Sun, and the finer control to introduce the solar light into the spectrometer is made with a 2-axes-controlled mirror. This solar tracking equipment is derived fast enough to measure the spectra in a moment after sunrise. The solar light introduced into the spectrometer is focused on the slits of the monochromators (f=100mm). For better altitude resolution, the horizontal slit is also used with the vertical slit, which is used for the separation of the dispersion. The dispersion light is detected with the pyroelectric array sensors. To obtain maximum dynamic range and spectral resolution, the three-stage polychromator is used.

  11. Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data

    SciTech Connect

    Gu, Y.; Liou, K. N.; Jiang, Jonathan

    2012-02-15

    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol opticalmore » depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is

  12. Outline of the survey on the development of earth observation satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.

  13. On the geometric analysis and adjustment of optical satellite observations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tsimis, E.

    1972-01-01

    Satellite geodesy methods were catagorized into three divisions: geometric, dynamic, and mixed. These catagories furnish the basis for distinction between geometric and dynamic satellite geodesy. The dual adjustment, geometric analysis, and Cartesian coodinate determination are examined for two observing stations. Similar illustrations are given when more than two observing stations are used.

  14. Satellites around Massive Galaxies Since z ~ 2: Confronting the Millennium Simulation with Observations

    NASA Astrophysics Data System (ADS)

    Quilis, Vicent; Trujillo, Ignacio

    2012-06-01

    Minor merging has been postulated as the most likely evolutionary path to produce the increase in size and mass observed in the massive galaxies since z ~ 2. In this Letter, we directly test this hypothesis, comparing the population of satellites around massive galaxies in cosmological simulations versus the observations. We use state-of-the-art, publically available, Millennium I and II simulations, and the associated semi-analytical galaxy catalogs to explore the time evolution of the fraction of massive galaxies that have satellites, the number of satellites per galaxy, the projected distance at which the satellites locate from the host galaxy, and the mass ratio between the host galaxies and their satellites. The three virtual galaxy catalogs considered here overproduce the fraction of galaxies with satellites by a factor ranging between 1.5 and 6 depending on the epoch, whereas the mean projected distance and ratio of the satellite mass over host mass are in closer agreement with data. The larger pull of satellites in the semi-analytical samples could suggest that the size evolution found in previous hydrodynamical simulations is an artifact due to the larger number of infalling satellites compared to the real universe. These results advise us to revise the physical ingredients implemented in the semi-analytical models in order to reconcile the observed and computed fraction of galaxies with satellites, and eventually, it would leave some room for other mechanisms explaining the galaxy size growth not related to the minor merging.

  15. Observations of Reflected Ions and Plasma Turbulence for Satellite Potentials Greater Than the Ion Ram Energy

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Sorensen, J.; Winningham, J. D.; Gurgiolo, C.

    1997-01-01

    During the TSS-1R mission, the behavior of the ions flowing from the forward hemisphere of the Tethered Satellite System (TSS) satellite was examined as the potential on the satellite was changed from below to above 5 Volts. The ram energy of the ambient atomic oxygen ions is about 5 eV. For satellite potentials less than 5 V, no ions were observed on the ram side of the satellite. When the satellite potential was raised above 5 V, ions were observed to be flowing from the forward region of the satellite. In the region sampled, the ion flux was a few percent of the ambient with energies of about 5 eV. The temperature of the outflowing ions was observed to be enhanced, relative to the ambient ionosphere, and had a maximum in a plane containing the center of the satellite and normal to the geomagnetic field. The net current to the probe package became much more noisy for satellite potentials above 5 V as compared with satellite potentials below 5 V indicating a more disturbed plasma environment.

  16. ASPECTS OF ARCTIC SEA ICE OBSERVABLE BY SEQUENTIAL PASSIVE MICROWAVE OBSERVATIONS FROM THE NIMBUS-5 SATELLITE.

    USGS Publications Warehouse

    Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,

    1984-01-01

    Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic sea ice cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the sea ice canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key sea ice parameters, such as ice edge position, ice types, mixtures of ice types, ice concentrations, and snow melt on the ice, are presented for various parts of the Arctic.

  17. Observations of iodine monoxide (IO) columns from satellite

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Richter, A.; Wittrock, F.; Kirk, H.; Oetjen, H.; Roscoe, H. K.; Burrows, J. P.

    2007-09-01

    Iodine species in the troposphere are linked to ozone depletion and new particle formation. In this study, a full year of iodine monoxide (IO) columns retrieved from measurements of the SCIAMACHY satellite instrument is presented, alongside a discussion of their uncertainties and the detection limit. The largest amounts of IO are found near springtime Antarctica, where ground-based measurements have positively detected iodine compounds before. A seasonal variation of iodine monoxide in Antarctica is revealed with high values in springtime, slightly less IO in the summer period and again larger amounts in autumn. In winter, no elevated IO levels are found in the areas accessible to satellite measurements. This seasonal cycle is in good agreement with recent ground-based measurements in Antarctica. In the Arctic region, no elevated IO levels were found in the whole time period analysed, arguing for different conditions existing in the two Polar Regions. To investigate possible release mechanisms such as inorganic release or biogenic precursors, comparisons of IO results with tropospheric BrO maps, measurements of chlorophyll concentration, and ice coverage are discussed. Some parallels and interesting differences between IO and BrO temporal and spatial distributions are pointed out. Although no full interpretation can be given at this point, the large spatial coverage of satellite measurements and the availability of a long-term dataset give some new indications and understandings of the abundances and distributions of iodine compounds in the troposphere.

  18. Gas Flaring Volume Estimates with Multiple Satellite Observations

    NASA Astrophysics Data System (ADS)

    Ziskin, D. C.; Elvidge, C.; Baugh, K.; Ghosh, T.; Hsu, F. C.

    2010-12-01

    Flammable gases (primarily methane) are a common bi-product associated with oil wells. Where there is no infrastructure to use the gas or bring it to market, the gases are typically flared off. This practice is more common at remote sites, such as an offshore drilling platform. The Defense Meteorological Satellite Program (DMSP) is a series of satellites with a low-light imager called the Operational Linescan System (OLS). The OLS, which detects the flares at night, has been a valuable tool in the estimation of flared gas volume [Elvidge et al, 2009]. The use of the Moderate Resolution Imaging Spectroradiometer (MODIS) fire product has been processed to create products suitable for an independent estimate of gas flaring on land. We are presenting the MODIS flare product, the results of our MODIS gas flare volume analysis, and independent validation of the published DMSP estimates. Elvidge, C. D., Ziskin, D., Baugh, K. E., Tuttle, B. T., Ghosh, T., Pack, D. W., Erwin, E. H., Zhizhin, M., 2009, "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data", Energies, 2 (3), 595-622

  19. Observations of Reflected Ions and Plasma Turbulence for Satellite Potentials Greater than the Ion Ram Energy

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Sorensen, J.; Winningham, J. D.; Gurgiolo, C.

    1998-01-01

    During the TSS-1R mission, the behavior of the ions flowing from the forward hemisphere of the Tethered Satellite System (TSS) satellite was examined as the potential of the satellite was changed from below to above 5 V. The ram energy of the ambient atomic oxygen ions is approximately 5 eV. For satellite potentials less than 5 V, no ions were observed on the ram side of the satellite. When the satellite potential was raised greater than 5 V, ions were observed to be flowing from the forward region of the satellite. In the region sampled, the ion flux was a few percent of the ambient with energies of approximately 5 eV. The temperature of the out-flowing ions was observed to be enhanced, relative to the ambient ionosphere. The net current to the probe package became much more noisy for satellite potentials greater than 5 V as compared with satellite potentials less than 5 V, indicating a more disturbed plasma environment.

  20. Research on earth observing satellite segmenting and scheduling problem for area targets

    NASA Astrophysics Data System (ADS)

    He, Renjie; Ruan, Qiming

    2005-10-01

    The mission of an Earth Observing Satellite (EOS) is to acquire images of specified areas on the Earth surface, in response to observation requests from customers for strategic, environmental, commercial, agricultural, and civil analysis and research. A target imaged can have one out of two shapes: a spot and a large polygonal area. A spot can be covered by a single scene of satellite sensor, while a polygonal area may require cutting-up into several contiguous strips to be completely imaged. Because of the orbit restriction, satellite can only view target during specific windows of opportunity when flying over the target. Furthermore, the satellite can only be tasked during such access time windows. Hence a scheduling method of satellite observing tasks has to be taken into account for utilizing satellite sensor efficiently. This paper intends to solve a specific segmenting and scheduling problem for area targets, which concerned with an optical observing satellite equipped with line array CCD sensor. In the paper, based on the analysis of characters of satellite sensor and observed area target, a new method of segmenting area target is given. And on the basis of segmenting results of area target, a scheduling model for multi area targets is proposed. In the paper end, experimental results and analysis are also presented.

  1. Micro-satellite for space debris observation by optical sensors

    NASA Astrophysics Data System (ADS)

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry

    2017-11-01

    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  2. Online Resource for Earth-Observing Satellite Sensor Calibration

    NASA Technical Reports Server (NTRS)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  3. Intercalibration of Two Polar Satellite Instruments Without Simultaneous Nadir Observations

    NASA Astrophysics Data System (ADS)

    Manninen, Terhikki; Riihela, Aku; Schaaf, Crystal; Key, Jeffrey; Lattanzio, Alessio

    2016-08-01

    A new intercalibration method for two polar satellite instruments is presented. It is based on statistical fitting of two data sets covering the same area during the same period, but not simultaneously. Deming regression with iterative weights is used. The accuracy of the method was better than about 0.5 % for the MODIS vs. MODIS and AVHRR vs. AVHRR test data sets. The intercalibration of AVHRR vs. MODIS red and NIR channels is carried out and showed a difference of reflectance values of 2% (red) and 6 % (NIR). The red channel intercalibration has slightly higher accuracy for all cases studied.

  4. Geodetic satellite observations in North American (solution NA-9)

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Reilly, J. P.; Soler, T.

    1972-01-01

    A new detailed geoidal map with claimed accuracies of plus or minus 2 meters (on land), based on gravimetric and satellite data, was presented. With the new geoid and the orthometric heights given, more reliable height constraints were calculated and applied. The basic purpose of this experiment was to compute the new solution NA9 by defining the origin of the system, from the point of view of error propagation, in the most favorable position applying inner constraints and imposing new weighted height constraints to all of the stations. The major differences with respect to formerly published adjustments are presented.

  5. An analysis of satellite state vector observability using SST tracking data

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.

    1976-01-01

    Observability of satellite state vectors, using only SST tracking data was investigated by covariance analysis under a variety of satellite and station configurations. These results indicate very precarious observability in most short arc cases. The consequences of this are large variances on many state components, such as the downrange component of the relay satellite position. To illustrate the impact of observability problems, an example is given of two distinct satellite orbit pairs generating essentially the same data arc. The physical bases for unobservability are outlined and related to proposed TDRSS configurations. Results are relevant to any mission depending upon TDRSS to determine satellite state. The required mathematical analysis and the software used is described.

  6. Ephemerides of the major Neptunian satellites determined from earth-based astrometric and Voyager imaging observations

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Lewis, G. D.; Owen, W. M.; Riedel, J. E.; Roth, D. C.; Synnott, S. P.; Taylor, A. H.

    1990-01-01

    The Voyager project used Neptunian satellite ephemerides to support both navigation and acquisition of scientific data. The development of postencounter ephemerides for the satellites Triton, Nereid, and 1989N1 is discussed. Primary results are the final set of model parameters which generate orbits that best fit both the earth-based satellite observations and data acquired by Voyager. The ephemerides are compared with those generated preencounter, and the accuracy of the final ephemerides is assessed. Mean orbital elements are also provided as a geometrical representation for the satellite orbits.

  7. Tracking Cholera in Coastal Regions using Satellite Observations.

    PubMed

    Jutla, Antarpreet S; Akanda, Ali S; Islam, Shafiqul

    2010-08-01

    Cholera remains a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and then spread inland through secondary means. Cholera bacteria show strong association with plankton abundance in coastal ecosystems. This review study investigates relationship(s) between cholera incidence and coastal processes and explores utility of using remote sensing data to track coastal plankton blooms, using chlorophyll as a surrogate variable for plankton abundance, and subsequent cholera outbreaks. Most studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks. Accurate identification and mechanistic understanding of large scale climatic, geophysical and oceanic processes governing cholera-chlorophyll relationship is important for developing cholera prediction models. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset(s), which are beginning to be available through satellites. We have presented a schematic pathway and a modeling framework that relate cholera with various hydroclimatic and oceanic variables for understanding disease dynamics using latest advances in remote sensing. Satellite data, with its unprecedented spatial and temporal coverage, have potentials to monitor coastal processes and track cholera outbreaks in endemic regions.

  8. Tracking Cholera in Coastal Regions using Satellite Observations

    PubMed Central

    Jutla, Antarpreet S; Akanda, Ali S; Islam, Shafiqul

    2010-01-01

    Cholera remains a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and then spread inland through secondary means. Cholera bacteria show strong association with plankton abundance in coastal ecosystems. This review study investigates relationship(s) between cholera incidence and coastal processes and explores utility of using remote sensing data to track coastal plankton blooms, using chlorophyll as a surrogate variable for plankton abundance, and subsequent cholera outbreaks. Most studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks. Accurate identification and mechanistic understanding of large scale climatic, geophysical and oceanic processes governing cholera-chlorophyll relationship is important for developing cholera prediction models. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset(s), which are beginning to be available through satellites. We have presented a schematic pathway and a modeling framework that relate cholera with various hydroclimatic and oceanic variables for understanding disease dynamics using latest advances in remote sensing. Satellite data, with its unprecedented spatial and temporal coverage, have potentials to monitor coastal processes and track cholera outbreaks in endemic regions. PMID:21072249

  9. An observation of a mutual event between two satellites of Uranus

    NASA Astrophysics Data System (ADS)

    Hidas, M. G.; Christou, A. A.; Brown, T. M.

    2008-02-01

    We present observations of the occultation of Umbriel by Oberon on 2007 May 4. We believe this is the first observed mutual event between satellites of Uranus. Fitting a simple geometric model to the light curve, we measure the mid-event time with a precision of 4 s. We assume previously measured values for the albedos of the two satellites, and measure the impact parameter to be 500 +/- 80 km. These measurements are more precise than estimates based on current ephemerides for these satellites. Therefore observations of additional mutual events during the 2007-2008 Uranian equinox will provide improved estimates of their orbital and physical parameters.

  10. NASA Perspectives on Earth Observations from Satellite or 50 Years of Meteorological Satellite Experiments-The NASA Perspective

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco

    2010-01-01

    The NASA was established in 1959. From those very eady days to the present NASA has been intimately involved with NOAA and the scientific community in the development and operation of satellite and sensor experiments. The early efforts included experiments on the TIROS and geostationary Applications Technology Satellites (ATS) series. In the latter case the spin-scan cameras conceived by Verner Suomi, along with the TIROS cameras, opened new vistas at what could be done in meteorological studies with the daily, nearly global, synoptic views from space-borne sensors As the years passed and the Nimbus series of satellites came into being in the 1960's, more quantitative observations with longer-lifetime, increasingly capable, better calibrated instruments came into being. NASA, in collaboration with and in support of NOAA, implemented operational systems that we now know as the Polar Operational Environmental Satellite (POES) series and the Geostationary Operational Environmental Satellite (GOES) series that provided dependable, continuous, dedicated satellite observations for use by the weather and atmospheric science communities. Through the 1970's, 1980's, and 1990's improved, well-calibrated instruments with more spectral bands extending into the thermal and the microwave portions of the electromagnetic spectrum were provided to obtain accurate soundings of the atmosphere, atmospheric chemistry constituents such as ozone, global sea surface temperature, snow and ice extent, vegetation dynamics, etc. In the 1990's and up to the present the NASA/Earth Observing System (EOS) has been developed, implemented, and operated over many years to provide a very comprehensive suite of observations of the atmosphere, as well as land and ocean parameters. The future looks bright wherein the development of new systems, broadly described by the National Academy of Science Decadal Study, is now underway. NASA, along with collaborations with NOAA, other agencies, and the

  11. Evaluation of Long-Term Cloud-Resolving Model Simulations Using Satellite Radiance Observations and Multi-Frequency Satellite Simulators

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen

    2008-01-01

    This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.

  12. Dwindling groundwater resources in northern India, from satellite gravity observations

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Wahr, J.; Swenson, S.

    2009-09-01

    Northern India and its surroundings, home to roughly 600 million people, is probably the most heavily irrigated region in the world. Temporal changes in Earth's gravity field in this region as recorded by the GRACE satellite mission, reveal a steady, large-scale mass loss that we attribute to excessive extraction of groundwater. Combining the GRACE data with hydrological models to remove natural variability, we conclude the region lost groundwater at a rate of 54 ± 9 km3/yr between April, 2002 (the start of the GRACE mission) and June, 2008. This is probably the largest rate of groundwater loss in any comparable-sized region on Earth. Its likely contribution to sea level rise is roughly equivalent to that from melting Alaskan glaciers. This trend, if sustained, will lead to a major water crisis in this region when this non-renewable resource is exhausted.

  13. Monitoring tropical cyclone evolution with NOAA satellite microwave observations

    NASA Technical Reports Server (NTRS)

    Velden, C.; Smith, W. L.

    1983-01-01

    NOAA satellite microwave soundings, which penetrate high clouds, delineate the development and dissipation of the upper tropospheric warm core associated with a tropical cyclone. The storm's 'core" may be detected from microwave imagery. Vertical cross sections reveal the intensification of the upper tropospheric warm core as the storm develops, and the downward propagation of the warm core as the storm dissipates. Excellent correlation is found between the horizontal Laplacian of an upper tropospheric temperature field and the intensity of the storm, as categorized by its surface central pressure and maximum sustained wind speed at the eye wall. The microwave monitoring of tropical cyclones is achieved in real time at the University of Wisconsin's Space Science and Engineering Center through high-speed teleconnections to direct readout receiving systems at Wallops Island, Virginia and Redwood City, California.

  14. Monitoring Tropical Cyclone Evolution with NOAA Satellite Microwave Observations.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher S.; Smith, William L.

    1983-05-01

    NOAA satellite microwave soundings, which penetrate high clouds, delineate the development and dissipation of the upper tropospheric warm core associated with a tropical cyclone. The storm's `core' may be detected from microwave imagery. Vertical cross sections reveal the intensification of the upper tropospheric warm core as the storm developes, and the downward propagation of the warm core as the storm dissipates. Excellent correlation is found between the horizontal Laplacian of an upper tropospheric temperature field and the intensity of the storm, as categorized by its surface central pressure and maximum sustained wind speed at the eye wall. The microwave monitoring of tropical cyclones is achieved in real time at the University of Wisconsin's Space Science and Engineering Center through high-speed teleconnections to direct readout receiving systems at Wallops Island, Virginia and Redwood City, California.

  15. Non-Stationary Internal Tides Observed with Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  16. Fuel models and fire potential from satellite and surface observations

    USGS Publications Warehouse

    Burgan, R.E.; Klaver, R.W.; Klarer, J.M.

    1998-01-01

    A national 1-km resolution fire danger fuel model map was derived through use of previously mapped land cover classes and ecoregions, and extensive ground sample data, then refined through review by fire managers familiar with various portions of the U.S. The fuel model map will be used in the next generation fire danger rating system for the U.S., but it also made possible immediate development of a satellite and ground based fire potential index map. The inputs and algorithm of the fire potential index are presented, along with a case study of the correlation between the fire potential index and fire occurrence in California and Nevada. Application of the fire potential index in the Mediterranean ecosystems of Spain, Chile, and Mexico will be tested.

  17. An EOF Iteration Approach for Obtaining Homogeneous Radiative Fluxes from Satellites Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Banglin; Pinker, Rachel T.; Stackhouse, Paul W., Jr.

    2007-01-01

    Conventional observations of climate parameters are sparse in space and/or in time and the representativeness of such information needs to be optimized. Observations from satellites provide improved spatial coverage than point observations however they pose new challenges for obtaining homogeneous coverage. Surface radiative fluxes, the forcing functions of the hydrologic cycle and biogeophysical processes, are now becoming available from global scale satellite observations. They are derived from independent satellite platforms and sensors that differ in temporal and spatial resolution and in the size of the footprint from which information is derived. Data gaps, degraded spatial resolution near boundaries of geostationary satellites, and different viewing geometries in areas of satellite overlap, could result in biased estimates of radiative fluxes. In this study, discussed will be issues related to the sources of inhomogeneity in surface radiative fluxes as derived from satellites; development of an approach to obtain homogeneous data sets; and application of the methodology to the widely used International Satellite Cloud Climatology Project (ISCCP) data that currently serve as a source of information for deriving estimates of surface and top of the atmosphere radiative fluxes. Introduced is an Empirical Orthogonal Function (EOF) iteration scheme for homogenizing the fluxes. The scheme is evaluated in several ways including comparison of the inferred radiative fluxes against ground observations, both before and after the EOF approach is applied. On the average, the latter reduces the rms error by about 2-3 W/m2.

  18. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  19. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  20. RAMSES & CLEOPATRA: Applying Satellite Earth Observation (EO) Technologies on Oil Spill Monitoring

    NASA Astrophysics Data System (ADS)

    de Hauteclocque, Bertrand

    2004-06-01

    This article presents a set of European Projects (RAMSES and CLEOPATRA) using Erath Observation Radar Satellites, like ENVISAT and to monitor (detect, evaluate, forecast) the Oil Slick Pollution in the Mediterranean sea.

  1. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  2. Astrometry of the main satellites of Uranus: 18 years of observations

    NASA Astrophysics Data System (ADS)

    Camargo, J. I. B.; Magalhães, F. P.; Vieira-Martins, R.; Assafin, M.; Braga-Ribas, F.; Dias-Oliveira, A.; Benedetti-Rossi, G.; Gomes-Júnior, A. R.; Andrei, A. H.; da Silva Neto, D. N.

    2015-10-01

    Context. We contribute to developing dynamical models of the motions of Uranus' main satellites. Aims: We determine accurate positions of the main satellites of Uranus: Miranda, Ariel, Umbriel, Titania, and Oberon. Positions of Uranus, as derived from those of these satellites, are also determined. The observational period spans from 1992 to 2011. All runs were made at the Pico dos Dias Observatory, Brazil. Methods: We used the software called Platform for Reduction of Astronomical Images Automatically (PRAIA) to perform a digital coronography to minimise the influence of the scattered light of Uranus on the astrometric measurements and to determine accurate positions of the main satellites. The positions of Uranus were then indirectly determined by computing the mean differences between the observed and ephemeris positions of these satellites. A series of numerical filters was applied to filter out spurious data. These filters are mostly based on (a) the comparison between the positions of Oberon with those of the other satellites and on (b) the offsets as given by the differences between the observed and ephemeris positions of all satellites. Results: We have, for the overall offsets of the five satellites, -29 mas (±63 mas) in right ascension and -27 mas (±46 mas) in declination. For the overall difference between the offsets of Oberon and those of the other satellites, we have +3 mas (±30 mas) in right ascension and -2 mas (±28 mas) in declination. Ephemeris positions for the satellites were determined from DE432+ura111. Comparisons using other modern ephemerides for the solar system - INPOP13c - and for the motion of the satellites - NOE-7-2013 - were also made. They confirm that the largest contribution to the offsets we find comes from the motion of the barycenter of the Uranus system around the barycenter of the solar system, as given by the planetary ephemerides. For the period from 1992 to 2011, our final catalogues contain 584 observed positions of

  3. Overview of the upper atmosphere research satellite: Observations from 1991 to 2002

    NASA Astrophysics Data System (ADS)

    Jackman, Charles H.; Douglass, Anne R.

    2003-05-01

    The Upper Atmosphere Research Satellite (LIARS) was launched in September 1991 by the Space Shuttle Discovery and continues to make relevant atmospheric measurements (as of October 2002). This successful satellite has fostered a better understanding of the middle atmospheric processes, especially those important in the control of ozone. Seven of the original ten instruments aboard the LIARS are still functional and six instruments regularly make measurements. The LIARS is in a stable observing configuration, in spite of experiencing several anomalies over its lifetime. It is expected that the LIARS will overlap the Earth Observing System (EOS) Aura satellite (scheduled launch in January 2004) for several months before the end of the LIARS mission.

  4. Overview of the Upper Atmosphere Research Satellite: Observations from 1991 to 2002

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglass, Anne R.

    2003-01-01

    The Upper Atmosphere Research Satellite (UARS) was launched in September 1991 by the Space Shuttle Discovery and continues to make relevant atmospheric measurements (as of October 2002). This successful satellite has fostered a better understanding of the middle atmospheric processes, especially those important in the control of ozone. Seven of the original ten instruments aboard the UARS are still functional and six instruments regularly make measurements. The UARS is in a stable observing configuration, in spite of experiencing several anomalies over its lifetime. It is expected that the UARS will overlap the Earth Observing System (EOS) Aura satellite (scheduled launch in January 2004) for several months before the end of the UARS mission.

  5. First ISON observations for satellite conjunction analysis in the Western Hemisphere

    NASA Astrophysics Data System (ADS)

    Zalles, R.; Molotov, I.; Kokina, T.; Zolotov, V.; Condori, R.

    2018-01-01

    In this paper we report on observations of a pair of approaching space objects in the beginning of June 2016, observed jointly by the Tarija Observatory in Bolivia and the Mexican observatory of Sinaloa University in Cosala in the context of the ISON collaboration. These objects were the STAR ONE C1 (2007-056A) active satellite in GEO position 65\\ deg west, and the passive satellite LES 6 (1968-081D). The large number of measurements obtained in a few nights allowed a precise orbit reconstruction. The passive satellite LES 6 (with a brigtness amplitude variation of 3 magnitudes) was too faint for the small aperture of the Cosala telescope.

  6. Inferring Aerosol Angstrom Absorption Exponent using satellite observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Bhartia, P. K.; Jethva, H. T.; Ahn, C.

    2013-12-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellite-based method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols are present above clouds. The upwelling reflectance at the cloud top is attenuated by the absorption effects of the overlying aerosol layer. This attenuation effect can be described using an approximations of Beer's Law. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, the spectral AAOD is derived by an inversion of the measured spectral reflectance. The proposed technique will be discussed and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  7. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shen, S.; Leptoukh, G. G.; Romanov, P.

    2011-12-01

    Land surface temperature (LST) is an important element to measure the state of the terrestrial ecosystems and to study the surface energy budgets. In support of the land cover/land use change related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected the global monthly LST measured by MODIS since the beginning of the missions. The MODIS LST time series have ~11 years of data from Terra since 2000 and ~9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend and variability. In this study, monthly climatology from two satellite platforms are calculated and compared. The spatial patterns of LST trends are accessed, focusing on the Asian Monsoon region. Furthermore, the MODIS LST trends are compared with the skin temperature trend from the NASA's atmospheric assimilation model, MERRA (MODERN ERA RETROSPECTIVE-ANALYSIS FOR RESEARCH AND APPLICATIONS), which has longer data record since 1979. The calculated climatology and anomaly of MODIS LST will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy access and use by scientists and general public.

  8. SORCE and Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  9. Comparison of Satellite Observations of Nitrogen Dioxide to Surface Monitor Nitrogen Dioxide Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Pippin, Margaret R.; Pierce, R. Bradley; Neil, Doreen O.; Lingenfelser, Gretchen; Szykman, James J.

    2006-01-01

    Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent.

  10. CCD observations of planetary satellites at the U.S. Naval Observatory.

    NASA Astrophysics Data System (ADS)

    Pascu, D.

    1996-02-01

    A program of astrometric CCD observations of faint satellites of the planets was initiated at the U.S. Naval Observatory (USNO) to complement their photographic program for the bright satellites (Pascu 1979, Pascu et al. 1983). The program emphasizes the faint inner satellites for which the CCD is better adapted. Included in this group are Amalthea (JV), Thebe (JXIV), Helene (SXII), Telesto (SXIII), Calypso (SXIV), Miranda (UV), and Nereid (NII). Almost all of the faint outer satellites are also being observed with a CCD. In addition, an experimental program for high precision observations of the Galilean satellites was begun two years ago in support of the GALILEO Project. At present, 25 satellites cannot be observed from the ground at all, or with great difficulty. Of these, about 15 can be detected with the CCDs in the Wide Field Planetary Camera II of the Hubble Space Telescope. The USNO participates on a team which is analyzing HST astrometric observations of the inner Uranian system and is making plans to obtain similar observations of the inner Neptunian system.

  11. Observing Planetary Rings and Small Satellites with the James Webb Space Telescope: Science Justification and Observation Requirements

    NASA Technical Reports Server (NTRS)

    Tiscareno, Matthew S.; Showalter, Mark R.; French, Richard G.; Burns, Joseph A.; Cuzzi, Jeffrey N.; de Pater, Imke; Hamilton, Douglas P.; Hedman, Matthew M.; Nicholson, Philip D.; Tamayo, Daniel; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will provide unprecedented opportunities to observe the rings and small satellites in our Solar System, accomplishing three primary objectives: (1) discovering new rings and moons, (2) unprecedented spectroscopy, and (3) time-domain observations. We give details on these science objectives and describe requirements that JWST must fulfill in order to accomplish the science objectives.

  12. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  13. Scaling properties of observed and simulated satellite visible radiances

    NASA Astrophysics Data System (ADS)

    Barker, Howard W.; Qu, Zhipeng; Bélair, Stéphane; Leroyer, Sylvie; Milbrandt, Jason A.; Vaillancourt, Paul A.

    2017-09-01

    Structure functions Sq, which are related to power spectra and used to study turbulence, were computed for GOES-13 visible radiances measured on 16 May 2015 over French Guiana and adjacent Atlantic Ocean. The nested Global Environmental Multiscale (GEM) numerical weather prediction (NWP) model was run for the same time and area. Cloud data generated by GEM over (300 km)2 domains, with one-way nesting ending at horizontal grid-spacing of 0.25 km, were operated on by a 3-D solar radiative transfer model with resulting radiances degraded to GOES-13 resolution ( 1 km) and Sq computed for them, too. For GOES-13 radiances, scaling exponents ζ(2) associated with S2, for separation distances between 5 km and 25 km, were typically >0.6 for deep convective and marine boundary layer clouds and <0.4 for shallow cumuli over land. ζ(2) for GEM agreed well with GOES-13 for deep convective clouds. This suggests that the self-organizing properties of deep convection in GEM exhibit realistic geometric features, a potentially important point given the link between cloud structure and precipitation, with the latter being much more difficult to measure and assess than visible radiances. Regarding radiances for GEM's marine boundary layer clouds, their Sq differed markedly from GOES-13's; better resembling fair-weather cumulus. Likewise, GEM's shallow cumuli over land appear to have bypassed the "scattered" fair-weather stage and went straight into more organized convection. Thus, it appears that comparing time series of Sq for geostationary satellite data and corresponding modeled radiances has the potential to benefit assessment of cloud system-resolving models.

  14. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  15. Satellite Observations Defying the Long-Held Tsunami Genesis Theory

    NASA Astrophysics Data System (ADS)

    Song, Y.; Han, S.

    2009-12-01

    Using seismographs and GPS displacement measurements, we have fully estimated the seafloor deformation history of the December 2004 Sumatra-Andaman earthquake and the March 2005 Nias Island earthquake by separating their deformation period into intervals of 800-sec, 1-hour, and 6-months. Their corresponding gravity changes (induced by the seafloor deformation) are 11.3, 12.5, and 14.9 microgalileo, respectively, consistent with the Gravity Recovery and Climate Experiment (GRACE) satellites measurements of 15 microgalileo for the same period of six months. However, the vertical component of the accumulated seafloor deformation during the tsunami formation period could only generate a potential energy of 1.2E+15 Joules and account for only one third of the actual tsunami height measured by altimeters. The evidence is overwhelmingly contrary to the long-held theory that the vertical deformation of seafloor is the primary source of tsunamis. Surprisingly, we also found that a pioneering wave-maker experiment, which conceived the vertically-forced tsunami genesis theory in 1980s, used an exaggerated experimental ratio of the horizontal slip distance to the water depth, the key non-dimensional parameter that allows comparing the experiment with reality on an apple-to-apple basis, about 200 times of realistic earthquake parameters. The experiment is problematic in conceiving the vertically-forced tsunami theory. We conclude that the tsunami source has been poorly understood and the tsunami formation mechanism is not as simple as previously thought. Our study suggests a new method of using gravity measurement from space to constrain the under-sea earthquake source for tsunami modeling and to gain insight into the tsunami genesis theory. Seafloor deformation, corresponding gravity changes, and GRACE measurements of the December 26 Sumatra-Andaman earthquake and the March 2005 Nias Island earthquake.

  16. Four Decades of Microwave Satellite Soil Moisture Observations: Product validation and inter-satellite comparisons

    NASA Astrophysics Data System (ADS)

    Lanka, K.; Pan, M.; Wanders, N.; Kumar, D. N.; Wood, E. F.

    2017-12-01

    The satellite based passive and active microwave sensors enhanced our ability to retrieve soil moisture at global scales. It has been almost four decades since the first passive microwave satellite sensor was launched in 1978. Since then soil moisture has gained considerable attention in hydro-meteorological, climate, and agricultural research resulting in the deployment of two dedicated missions in the last decade, SMOS and SMAP. Signifying the four decades of microwave remote sensing of soil moisture, this work aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy of retrieving soil moisture. We considered daily coverage, temporal performance, and spatial performance to assess the accuracy of products corresponding to eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product), using 1058 ISMN in-situ stations and the VIC LSM soil moisture simulations (VICSM) over the CONUS. Our analysis indicated that the daily coverage has increased from 30 % during 1980s to 85 % (during non-winter months) with the launch of dedicated soil moisture missions SMOS and SMAP. The temporal validation of passive and active soil moisture products with the ISMN data place the range of median RMSE as 0.06-0.10 m3/m3 and median correlation as 0.20-0.68. When TMI, AMSR-E and WindSAT are evaluated, the AMSR-E sensor is found to have produced the brightness temperatures with better quality, given that these sensors are paired with same retrieval algorithm (LPRM). The ASCAT product shows a significant improvement during the temporal validation of retrievals compared to its predecessor ERS, thanks to enhanced sensor configuration. The SMAP mission, through its improved sensor design and RFI handling, shows a high retrieval accuracy under all-topography conditions

  17. Estimating Precipitation Susceptibility in Warm Marine Clouds Using Multi-sensor Aerosol and Cloud Products from A-Train Satellites

    NASA Astrophysics Data System (ADS)

    Bai, H.; Gong, C.; Wang, M.; Zhang, Z.

    2017-12-01

    Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from CALIPSO, CloudSat, MODIS, and AMSR-E from June 2006 to April 2011 are analyzed to estimate precipitation susceptibility (including precipitation frequency susceptibility SPOP, precipitation intensity susceptibility SI, and precipitation rate susceptibility SR) in warm marine clouds. Our results show that SPOP demonstrates relatively robust features throughout independent LWP products and diverse rain products. In contrast, the behaviors of SI are more subject to LWP or rain products. Our results further show that SPOP strongly depends on atmospherics stability, with larger value under more stable environment. Precipitation susceptibility calculated with respect to cloud droplet number concentration (CDNC) is generally much larger than that estimated with respect to aerosol index (AI), which results from the weak dependency of CDNC on AI.

  18. Galilean satellite observation plans for the near-infrared mapping spectrometer experiment on the Galileo spacecraft

    NASA Astrophysics Data System (ADS)

    Smythe, W. D.; Lopes-Gautier, R.; Ocampo, A.; Hui, J.; Segura, M.; Soderblom, L. A.; Matson, D. L.; Kieffer, H. H.; McCord, T. B.; Fanale, F. P.; Calvin, W. M.; Sunshine, J.; Barbinis, E.; Carlson, R. W.; Weissman, P. R.

    1995-09-01

    On December 7, 1995, the Galileo spacecraft will begin observations of the Jovian system with orbit insertion and a satellite tour of 10 orbits. The Galilean satellites will be observed with four remote sensing instruments spanning the ultraviolet, visible, near infrared, and thermal infrared regions of the spectrum. The Galileo near-infrared mapping spectrometer will observe the satellites in the wavelength range 0.7-5.2 μm, a region particularly well suited for analyzing volatile components. Planned observations include mapping most available longitudes at about 100-km resolution per pixel at full wavelength resolution, together with observing limited regions at high spatial resolution. The opportunity to affect the choice and design of observations for the Galileo tour extends until June 1996.

  19. SatelliteDL - An IDL Toolkit for the Analysis of Satellite Earth Observations - GOES, MODIS, VIIRS and CERES

    NASA Astrophysics Data System (ADS)

    Fillmore, D. W.; Galloy, M. D.; Kindig, D.

    2013-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation, (2) a unit test framework, (3) automatic message and error logs, (4) HTML and LaTeX plot and table generation, and (5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 of SatelliteDL is anticipated for the 2013 Fall AGU conference. It will distribute with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and

  20. Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro.

    PubMed

    Lund, Dane K; McAnulty, Patrick; Siegel, Ashley L; Cornelison, Ddw

    2017-01-01

    Motility and/or chemotaxis of satellite cells has been suggested or observed in multiple in vitro and in vivo contexts. Satellite cell motility also affects the efficiency of muscle regeneration, particularly in the context of engrafted exogenous cells. Consequently, there is keen interest in determining what cell-autonomous and environmental factors influence satellite cell motility and chemotaxis in vitro and in vivo. In addition, the ability of activated satellite cells to relocate in vivo would suggest that they must be able to invade and transit through the extracellular matrix (ECM), which is supported by studies in which alteration or addition of matrix metalloprotease (MMP) activity enhanced the spread of engrafted satellite cells. However, despite its potential importance, analysis of satellite cell motility or invasion quantitatively even in an in vitro setting can be difficult; one of the most powerful techniques for overcoming these difficulties is timelapse microscopy. Identification and longitudinal evaluation of individual cells over time permits not only quantification of variations in motility due to intrinsic or extrinsic factors, it permits observation and analysis of other (frequently unsuspected) cellular activities as well. We describe here three protocols developed in our group for quantitatively analyzing satellite cell motility over time in two dimensions on purified ECM substrates, in three dimensions on a living myofiber, and in three dimensions through an artificial matrix.

  1. Magnitude Standardization Procedure for OWL-Net Optical Observations of LEO Satellites

    NASA Astrophysics Data System (ADS)

    Roh, Dong-Goo; Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Park, Sun-Youp; Park, Maru; Choi, Young-Jun; Bae, Young-Ho; Park, Young-Sik; Jang, Hyun-Jung; Cho, Sungki; Kim, Ji-Hye; Park, Jang-Hyun

    2015-12-01

    As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.

  2. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    SciTech Connect

    Zoran, Maria; Savastru, Roxana; Savastru, Dan

    2016-03-25

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forestmore » areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.« less

  3. Multi-sensor Observations of the SpinSat Satellite

    DTIC Science & Technology

    2015-10-18

    Object Illumination Details a,b Pass Number 1 2 3 Date 2015-04-02 2015-04-02 2015-04-04 Rise 05:21:18 - sunlit 15:08:45 - umbra 05:07:08 – sunlit...with the effects of object-to-observer range variations removed (but otherwise not radiometrically calibrated). The upper panel (blue) shows data

  4. Ephemerides of the Uranian satellites determined from earth-based astrometric and Voyager imaging observations

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Lewis, G. D.; Riedel, J. E.; Roth, D. C.; Synnot, S. P.

    1986-01-01

    Uranian satellite ephemerides were needed by the Voyager project to support both navigation and acquisition of scientific data. This paper outlines the mathematical modeling approach taken to generate those ephemerides and discusses their pre-encounter development, real time updating, and post-encounter refinement. The results presented include the final set of model parameters which generate the ephemerides that best fit the Voyager optical data as well as the earth based observations of the satellites.

  5. Optical effects of spacecraft-environment interaction Spectrometric observations by the DE-B satellite

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Skinner, W. R.; Hays, P. B.; Yee, J.-H.

    1983-01-01

    Data from the Fabry-Perot interferometer on board the Dynamics Explorer-B satellite is used to show that the contaminant glow observed by Yee and Abreu at 7320A on the AE satellites is produced by emission lines of one or more species. A comparison is made of the contaminant spectrum near 7320A with the nightglow OH spectrum measured below 155km. Evidence is presented to the effect that OH might be one of the metastable species producing the glow.

  6. An analysis of the 1985 observations of mutual phenomena of the Galilean satellites

    SciTech Connect

    Franklin, F.A.; Africano, J.; Allen, W.

    1991-08-01

    This paper derives midtimes and relative satellite positions from nearly 200 light curves of mutual eclipses and occultations of the Galilean satellites that occurred in 1985. It is shown that, at least for observations of the highest quality, the standard errors on the midtimes are smaller than 1 s and close to 0.01 arcsec on the positional offsets in right ascension and declination. 12 refs.

  7. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  8. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  9. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, Kozo; Boardsen, Scott A.; Garcia, Leonard N.; Green, James L.; Matsumoto, Hiroshi; Reinisch, Bodo W.

    2010-01-01

    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition.

  10. Navy Prototype Optical Interferometer Observations of Geosynchronous Satellites

    DTIC Science & Technology

    2011-01-01

    include apparent position effects such as aberration and polar motion. A parallax correction had to be applied to all positions due to the 19 km distance...until the fringe is found again. A data collection scan is finished when 30 s of data have been taken while fringe tracking; for stellar observations...approximately toward the Sun. At the beginning of the spacecraft’s life, when the panels are very efficient, the panels are rotated about their long

  11. Obs4MIPS: Satellite Observations for Model Evaluation

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Waliser, D. E.; Gleckler, P. J.

    2017-12-01

    This poster will review the current status of the obs4MIPs project, whose purpose is to provide a limited collection of well-established and documented datasets for comparison with Earth system models (https://www.earthsystemcog.org/projects/obs4mips/). These datasets have been reformatted to correspond with the CMIP5 model output requirements, and include technical documentation specifically targeted for their use in model output evaluation. The project holdings now exceed 120 datasets with observations that directly correspond to CMIP5 model output variables, with new additions in response to the CMIP6 experiments. With the growth in climate model output data volume, it is increasing more difficult to bring the model output and the observations together to do evaluations. The positioning of the obs4MIPs datasets within the Earth System Grid Federation (ESGF) allows for the use of currently available and planned online tools within the ESGF to perform analysis using model output and observational datasets without necessarily downloading everything to a local workstation. This past year, obs4MIPs has updated its submission guidelines to closely align with changes in the CMIP6 experiments, and is implementing additional indicators and ancillary data to allow users to more easily determine the efficacy of an obs4MIPs dataset for specific evaluation purposes. This poster will present the new guidelines and indicators, and update the list of current obs4MIPs holdings and their connection to the ESGF evaluation and analysis tools currently available, and being developed for the CMIP6 experiments.

  12. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  13. Characteristics of medium-scale traveling ionospheric disturbances observed by CHAMP satellite

    NASA Astrophysics Data System (ADS)

    Lee, W. K.; Kil, H.

    2017-12-01

    We investigate the occurrence of medium-scale traveling ionospheric disturbances (MSTIDs) in middle latitudes as a function of local time, season, hemisphere, longitude, latitude, solar cycle, and magnetic activity by analyzing the measurements of electron density and magnetic perturbation by CHAMP satellite in 2001-2008. There exist discrepancies between the MSTID occurrence derived from ground-based and satellite-borne observation. Discrepancies also exist between the results derived from different satellite observations. The discrepancies are related to the selection of the parameters that were used as proxies of MSTIDs in satellite observations. First, we assess the validity of the MSTID proxy parameters used in previous studies. Second, we determine the valid parameters for the detection of MSTIDs in satellite observations. For this purpose, we compare the MSTID signatures in CHAMP observations with those identified in the total electron content perturbation maps over Japan and United States. The global MSTID activity is derived using the validated parameter. We discuss the physical processes underlying MSTIDs with knowledge of global MSTID distribution.

  14. Monitoring water quality from LANDSAT. [satellite observation of Virginia

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1975-01-01

    Water quality monitoring possibilities from LANDSAT were demonstrated both for direct readings of reflectances from the water and indirect monitoring of changes in use of land surrounding Swift Creek Reservoir in a joint project with the Virginia State Water Control Board and NASA. Film products were shown to have insufficient resolution and all work was done by digitally processing computer compatible tapes. Land cover maps of the 18,000 hectare Swift Creek Reservoir watershed, prepared for two dates in 1974, are shown. A significant decrease in the pine cover was observed in a 740 hectare construction site within the watershed. A measure of the accuracy of classification was obtained by comparing the LANDSAT results with visual classification at five sites on a U-2 photograph. Such changes in land cover can alert personnel to watch for potential changes in water quality.

  15. Satellite thermal observation of oil slicks on the Persian Gulf

    SciTech Connect

    Asanuma, I.; Muneyama, K.; Sasaki, Y.

    1986-04-01

    A possibility of oil slicks detection is discussed for oil slicks spread in the vicinity of the Nowruz oil fields in the Persian Gulf since March 1983 to July 1983 with considering an apparent thermal inertia. The apparent thermal was computed from continuous observations of sea surface temperature and albedo by the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-7 through day and night with 12 h interval. The apparent thermal inertia is defined as a function of a temperature difference between the daytime and the nighttime and an apparent albedo. Sea surface temperature used for computing the apparentmore » thermal inertia was obtained through an atmospheric correction with an empirical equation which uses an energy difference between two thermal channels of the AVHRR. Although there was an ambiguity on a selection of same object on water body, the computed apparent thermal inertia showed the possibility of oil slicks detection from sea water. 17 references.« less

  16. Land surface water cycles observed with satellite sensors

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Njoku, E. G.; Brakenridge, G. R.; Kim, Y.

    2005-01-01

    Acceleration of the global water cycle may lead to increased global precipitation, faster evaporation and a consequent exacerbation of hydrologic extreme. In the U.S. national assessment of the potential consequences of climate variability and change, two GCMs (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S. particularly during winter (Felzer and Heard, 1999). Increased precipitation potentially has important impacts on agricultural and water use in the southeast U.S. (Hatch et al., 1999) and in the central Great Plains (Nielsen, 1997). A hurricane model predicts a 40% precipitation increase for severe hurricanes affecting southeastern Florida, which provokes substantially greater flooding that could negate most of the benefits of present water-management practices in this basin (Gutowski et al., 1994). Thus, it is important to observe the hydroclimate on a continuous longterm basis to address the question of increased precipitation in the enhanced water cycle.

  17. Ecosystem Changes in the Diminishing Aral Sea Observed by Satellites

    NASA Astrophysics Data System (ADS)

    Shi, W.; Wang, M.

    2016-02-01

    The diminishing of the Aral Sea is "one of the worst environmental disasters in the world" (from United Nations Secretary-General Ban Ki-moon). Total coverage maps since 1981 show constant decline of the Aral Sea. The coverage dropped from 4.7-4.8×104 km2 in 1981 to about ¼ of the value in recent years. Twelve-year MODIS-Aqua observations (2002-2013) are used to quantitatively assess the water property changes in the Aral Sea. We used radiance ratio nLw(555)/nLw(443) as a surrogate to characterize the spatial and temporal variations of chlorophyll-a (Chl-a) in the Aral Sea. Both seasonal variability and significant interannual changes were observed when the Aral Sea desiccated between 2002 and 2013. All three regions of the Aral Sea show increased nLw(555)/nLw(443) ratio and the diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) during the fall season. Of the three regions, the North Aral Sea has had the least interannual variability, while South-East (SE) Aral Sea experienced drastic changes. Waters in the SE Aral Sea are the most turbid with significantly higher Kd(490) than those in the other two sub-regions. Kd(490) gradually increased from 2 m-1 in 2002 to 3.5 m-1 after 2008 in the SE Aral Sea. In comparison, both radiance ratio nLw(555)/nLw(443) and Kd(490) were relatively stable for the North Aral Sea. In the South-West (SW) Aral Sea, however, nLw(555)/nLw(443) values reached peaks in the fall of 2007 and 2010. A possible link between the Aral Sea water property change and the regional climate variation is also discussed.

  18. VLBI observations of GNSS satellites on the baseline Hobart-Ceduna

    NASA Astrophysics Data System (ADS)

    Hellerschmied, Andreas; Böhm, Johannes; Kwak, Younghee; McCallum, Jamie; Plank, Lucia

    2016-04-01

    Observations of satellites of Global Navigation Satellite Systems (GNSS) with the geodetic Very Long Baseline Interferometry (VLBI) technique open a variety of new possibilities and promote the integration of these techniques within the framework of GGOS, the Global Geodetic Observing System of the IAG. Such observations provide possibilities to directly connect the dynamic GNSS and the kinematic VLBI reference frame, which may result in improved future ITRF realizations. In our research we are trying to apply observation strategies, which are commonly used in geodetic VLBI, i.e. the main observables are group delay values derived from direct observations and the subsequent correlations of GNSS satellite signals. However, data acquisition schemes for VLBI satellite observations are still at an experimental stage. Further research is required to establish an operational process chain, similar to that applied for natural radio sources, such as quasars, which are observed generally. In 2015 we successfully carried out several experiments on the Australian baseline Ceduna-Hobart. During these sessions, with a few hours duration each, GNSS satellites (GLONASS and GPS) were observed in the L1 and L2 band along with natural radio sources for calibrations. All experiments were based on schedule files created with the satellite scheduling module in the Vienna VLBI Software (VieVS). The recorded data were successfully correlated with the DiFX correlator software in combination with a suitable input model for near field targets. A preliminary analysis of the group delay measurements derived with the AIPS software suite was carried out with VieVS. Using this workflow we can achieve a measurement precision of the group delays down to a few picoseconds (5-30, depending on the satellite) over a 5 minutes track. Nevertheless, our results also show a residual signal of a few nanoseconds, which might be caused by the ionosphere or insufficient orbit modelling in the present state of

  19. Applications of neural network methods to the processing of earth observation satellite data.

    PubMed

    Loyola, Diego G

    2006-03-01

    The new generation of earth observation satellites carries advanced sensors that will gather very precise data for studying the Earth system and global climate. This paper shows that neural network methods can be successfully used for solving forward and inverse remote sensing problems, providing both accurate and fast solutions. Two examples of multi-neural network systems for the determination of cloud properties and for the retrieval of total columns of ozone using satellite data are presented. The developed algorithms based on multi-neural network are currently being used for the operational processing of European atmospheric satellite sensors and will play a key role in related satellite missions planed for the near future.

  20. Astrometric observations of the faint satellites of Jupiter during the 1975 - 1976 opposition

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.; Shelus, P. J.; Benedict, G. F.

    1979-01-01

    The series of astrometric observations of the satellites of the trans-martian planets re-established at the McDonald Observatory in 1972 is continued. The positions deduced from photographic observations of the jovian system obtained during the 1975-76 opposition are presented together with the discovery positions of four asteroids found on these plates.

  1. Using Active Satellite Observations to Characterize Uncertatinty in Long Term Satellite Cloud Liquid Water Path Climatologies

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.

    2014-12-01

    Bias between the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 cloud liquid water path (Wc)products are explored with the aid of coincident active observations from the CloudSat radar and the CALIPSO lidar. In terms of detection, the active observations provide precise separation of cloudy from clear sky and precipitating from nonprecipitating clouds. In addition, they offer a unique quantification of precipitation water path (Wp) in warm clouds. They also provide an independent quantification of Wc that isbased on an accurate surface reference technique, which is an independent arbiter between the two passive approaches. The results herein establish the potential for CloudSat and CALIPSO to provide an independent assessment of bias between the conventional passive remote sensing methods from reflected solar and emitted microwave radiation. After applying a common data filter to the observations to account for sampling biases, AMSR-E is biased high relative to MODIS in the global mean by 26.4gm2. The RMS difference in the regional patterns is 32.4gm2, which highlights a large geographical dependence in the bias which is related to the tropical transitions from stratocumulus to cumulus cloud regimes. The contributions of four potential sources for this bias are investigated by exploiting the active observations: (1)bias in MODIS related to solar zenith angle dependence accounts for 2.3gm2, (2) bias in MODIS due to undersampling of cloud edges accounts for 4.2gm2, (3) a wind speed and water vapor-dependent "clear-sky bias" in the AMSR-E retrieval accounts for 6.3gm2, and (4) evidence suggests that much of the remaining 18gm2 bias is related to the assumed partitioning of the observed emission signal between cloud and precipitation water in the AMSR-E retrieval. This is most evident through the correlations between the regional mean patterns of Wp and the Wc bias within the

  2. Greenland iceberg melt variability from high-resolution satellite observations

    NASA Astrophysics Data System (ADS)

    Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.

    2018-02-01

    Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  3. Estimation of gross primary production capacity from global satellite observations

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Thanyapraneedkul, Juthasinee; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa

    2012-10-01

    To estimate gross primary production (GPP), the process of photosynthesis was considered as two separate phases: capacity and reduction. The reduction phase is influenced by environmental conditions such as soil moisture and weather conditions such as vapor pressure differences. For a particular leaf, photosynthetic capacity mainly depends on the amount of chlorophyll and the RuBisCO enzyme. The chlorophyll content can be estimated by the color of the leaf, and leaf color can be detected by optical sensors. We used the chlorophyll content of leaves to estimate the level of GPP. A previously developed framework for GPP capacity estimation employs a chlorophyll index. The index is based on the linear relationship between the chlorophyll content of a leaf and the maximum photosynthesis at PAR =2000 (μmolm -2s-1) on a light-response curve under low stress conditions. As a first step, this study examined the global distribution of the index and found that regions with high chlorophyll index values in winter corresponded to tropical rainforest areas. The seasonal changes in the chlorophyll index differed from those shown by the normalized difference vegetation index. Next, the capacity of GPP was estimated from the light-response curve using the index. Most regions exhibited a higher GPP capacity than that estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, except in areas of tropical rainforest, where the GPP capacity and the MODIS GPP estimates were almost identical.

  4. Acceleration Processes in the Cusp -- Observations by the FAST Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Carlson, C.; Clemmons, J.; Klumpar, D.; Moebius, E.; Elphic, R.; Strangeway, R.

    1999-01-01

    The FAST spacecraft has encountered the Earth's cusp regions near its apogee of 4175 km on numerous occasions during its first two and half years of operations. The cusp encounters are identified by their signatures of keV dispersed ion injections of solar wind origin. The FAST instruments reveal a complex microphysics inherent to many, but not all, of the cusp regions encountered by the spacecraft, that often include upgoing ion beams within regions of downgoing electrons that may appear as series of inverted-V features with energies near a few hundred eV. In many instances, upgoing electron beams have also been observed. Intense (> 100 mV/m) spikey DC-coupled electric fields and plasma waves are common features of the cusp encounters which also provide evidence for the presence of such local acceleration processes. In some cases, the FAST data show clear modulation of the precipitating magnetosheath ions indicative that they are affected by local electric potentials, as evidenced by simultaneous electron acceleration within such intervals. Furthermore, the acceleration events are sometimes organized with an apparent cellular structure that suggest Alfven waves or other large scale phenomena are controlling the localized potentials. We examine several cusp encounters in detail in order to study the complex relation of the cusp energetic particle populations with the plasma waves and DC electric fields.

  5. Acceleration Processes in the Cusp: Observations by the FAST Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Carlson, C.; McFadden, J.; Ergun, R.; Clemmons, J.; Klumpar, D.; Moebius, E.; Elphic, R.; Strangeway, R.

    1999-01-01

    The Fast Auroral Snapshot (FAST) spacecraft has encountered the Earth's cusp regions near its apogee of 4175 km on numerous occasions during its first two and half years of operations. The cusp encounters are identified by their signatures of keV dispersed ion injections of solar wind origin. The FAST instruments reveal a complex microphysics inherent to many, but not all, of the cusp regions encountered by the spacecraft, that often include upgoing ion beams within regions of downgoing electrons that may appear as series of inverted-V features with energies near a few hundred eV. In many instances, upgoing electron beams have also been observed. Intense (> 100 mV/m) spikey DC-coupled electric fields and plasma waves are common features of the cusp encounters which also provide evidence for the presence of such local acceleration processes. In some cases, the FAST data show clear modulation of the precipitating magnetosheath ions indicative that they are affected by local electric potentials, as evidenced by simultaneous electron acceleration within such intervals. Furthermore, the acceleration events are sometimes organized with an apparent cellular structure that suggest Alfv6n waves or other large scale phenomena are controlling the localized potentials. We examine several cusp encounters in detail in order to study the complex relation of the cusp energetic particle populations with the plasma waves and DC electric fields.

  6. A Satellite Instrument Proposal for Radar Observations of the Terrestrial Ionosphere

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; James, H. G.; Sofko, G. J.

    2006-12-01

    The Radio Receiver Instrument (RRI) experiment on the enhanced Polar Outflow Probe (ePOP) scientific payload of the upcoming CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission, which is to be launched in early 2008, will help clarify the propagation of radio waves through the ionosphere and the scattering processes of radio waves in the ionosphere. In light of the RRI experiment the benefit of a second experiment has become obvious. The RRI is a passive radio system receiving radio waves from transmitters located on the ground. Our proposed new satellite instrument would be an active radar system with the additional ability to obtain either radar backscatter or reflections from ionospheric structures. Coherent scatter radar observations of the ionosphere have rarely, if ever, been observed from a satellite platform, although they are routinely observed with radar systems on the ground such as the network of SuperDARN HF radars. Observing simultaneous radar observations of the same scattering volume in the ionosphere at either auroral or polar latitudes from both ground and space-borne platforms could be achieved with SuperDARN and our proposed active satellite radar system. Further to this, the proposed satellite radar could operate as a topside sounder or ionosonde (reflection radar) with near global coverage of the terrestrial ionosphere when not operating as a coherent scatter radar. There are no current topside sounder observations and have not been any on a regular basis since the ISIS II mission ended in the early 1990s. Such observations are of significant scientific interest and would complement the International Reference Ionosphere (IRI) model and TEC measurements made with GPS receivers or other radio beacons. This paper will present the proposed active radio satellite instrument and will discuss the expected science.

  7. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  8. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    NASA Astrophysics Data System (ADS)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  9. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    NASA Astrophysics Data System (ADS)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  10. An investigation of microphysics and subgrid-scale variability in warm-rain clouds using the A-Train observations and a multiscale modeling framework

    NASA Astrophysics Data System (ADS)

    Takahashi, Hanii; Lebsock, Matthew; Suzuki, Kentaroh; Stephens, Graeme; Wang, Minghuai

    2017-07-01

    A common problem in climate models is that they are likely to produce rain at a faster rate than is observed and therefore produce too much light rain (e.g., drizzle). Interestingly, the Pacific Northwest National Laboratory (PNNL) multiscale modeling framework (MMF), whose warm-rain formation process is more realistic than other global models, has the opposite problem: the rain formation process in PNNL-MMF is less efficient than the real world. To better understand the microphysical processes in warm cloud, this study documents the model biases in PNNL-MMF and evaluates warm cloud properties, subgrid variability, and microphysics, using A-Train satellite observations to identify sources of model biases in PNNL-MMF. Like other models PNNL-MMF underpredicts the warm cloud fraction with compensating large optical depths. Associated with these compensating errors in cloudiness are compensating errors in the precipitation process. For a given liquid water path, clouds in the PNNL-MMF are less likely to produce rain than are real-world clouds. However, when the model does produce rain it is able to produce stronger precipitation than reality. As a result PNNL-MMF produces about the correct mean rain rate with an incorrect distribution of rates. The subgrid variability in PNNL-MMF is also tested, and results are fairly consistent with observations, suggesting that the possible sources of model biases are likely to be due to errors in its microphysics or dynamics rather than errors in the subgrid-scale variability produced by the embedded cloud resolving model.

  11. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    SciTech Connect

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    2016-08-26

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less

  12. Investigation of snow cover dust pollution by contact and satellite observations

    NASA Astrophysics Data System (ADS)

    Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.

    2015-11-01

    The problems of reconstructing the snow cover pollution fields from dusting, point, linear and area sources according to ground and satellite observations are considered. Using reconstruction models, the methods of the combined analysis of the characteristic images of snow cover pollution haloes in the vicinity of sources of dust and contact data observations have been developed. On the basis of the numerical data analysis of ground monitoring and satellite imagery, the stable quantitative regularities between the fields of dust fallouts and the intensity of a change of tones of gray in the radial directions relative to the main sources are identified.

  13. Principal component analysis of reference sites used for calibration and validation of Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Campos, Joaquin; Ferrero, Alejandro; Woolliams, Emma; Greenwell, Claire; Bialek, Agnieszka; Hernanz, Luisa; Pons, Alicia

    2018-02-01

    Determining reflectance factor and its variability across reference sites for Earth observation satellites is a problem involving large amounts of data and measurement time. Principal component analysis (PCA) may be used to simplify this problem by reducing the size of the data and by highlighting spectral features that could be related to physical phenomena. This work presents the results obtained in applying PCA to two reference sites for calibration and validation of Earth observation satellites located at La Crau (France) and Gobabeb (Namibia), respectively.

  14. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations.

    PubMed

    Krasnopolsky, Vladimir; Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived "ocean color" (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed--signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.

  15. Using Satellite Observations to Infer the Relationship Between Cold Pools and Subsequent Convection Development

    NASA Technical Reports Server (NTRS)

    Elsaesser, Gregory

    2015-01-01

    Cold pools are increasingly being recognized as important players in the evolution of both shallow and deep convection; hence, the incorporation of cold pool processes into a number of recently developed convective parameterizations. Unfortunately, observations serving to inform cold pool parameterization development are limited to select field programs and limited radar domains. However, a number of recent studies have noted that cold pools are often associated with arcs-lines of shallow clouds traversing 10 100 km in visible satellite imagery. Boundary layer thermodynamic perturbations are plausible at such scales, coincident with such mesoscale features. Atmospheric signatures of features at these spatial scales are potentially observable from satellites. In this presentation, we discuss recent work that uses multi-sensor, high-resolution satellite products for observing mesoscale wind vector fluctuations and boundary layer temperature depressions attributed to cold pools produced by antecedent convection. The relationship to subsequent convection as well as convective system longevity is discussed. As improvements in satellite technology occur and efforts to reduce noise in high-resolution orbital products progress, satellite pixel level (10 km) thermodynamic and dynamic (e.g. mesoscale convergence) parameters can increasingly serve as useful benchmarks for constraining convective parameterization development, including for regimes where organized convection contributes substantially to the cloud and rainfall climatology.

  16. Exploring light rain in the trades as observed by satellite- and ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Burdanowitz, Jörg; Nuijens, Louise; Klepp, Christian; Stevens, Bjorn

    2013-04-01

    Satellite climatologies are usually expected to have difficulties to properly capture light rain from shallow marine clouds due to limited spatiotemporal resolution. In order to evaluate this, ground-based radar data from the RICO (Rain in Cumulus clouds over the Ocean) campaign is compared with rainfall estimates of three different satellite climatologies over the subtropical North Atlantic. In particular, these satellite products are the Hamburg Ocean Atmosphere Parameters and fluxes from Satellite data (HOAPS), the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and the Global Precipitation Climatology Project (GPCP). Different footprint sizes and temporal resolutions among the used satellite products require an up-scaling of the data to facilitate a fair comparison. Apart from that, recent micro rain radar data from the Barbados Cloud Observatory (BCO) is analyzed to further explore the nature of light rain over the subtropical ocean at a higher temporal resolution. In the trades, the dominance of light rain, i.e. low rain intensities, is ubiquitous as previously observed in several field studies. However, some of them even seem to be conservative in their estimation of light rain contribution to total rainfall according to recent BCO measurements. For active and passive satellite sensors the light rain detection still remains a challenging task. However, as main result, satellite products showed to be partly able to resolve light rain events from shallow clouds during RICO. HOAPS detects most and GPCP least of them while TMPA performs similarly to HOAPS. But along a mean trade-wind trajectory starting at the Canaries, TMPA detects less light rainfall compared to HOAPS, especially in the Caribbean region. Currently collected ship-based rain data sets will be used to further evaluate the performance of HOAPS and TMPA over larger areas of the subtropical Atlantic.

  17. First mesopause Na retrievals from satellite Na D-line nightglow observations

    NASA Astrophysics Data System (ADS)

    Savigny, C.; Langowski, M. P.; Zilker, B.; Burrows, J. P.; Fussen, D.; Sofieva, V. F.

    2016-12-01

    We report the retrieval of Na concentration profiles in the mesopause region from satellite observations of the Na D-line nightglow emission near 589 nm made by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on the Envisat spacecraft. The retrieval assumes the Na D-line excitation mechanism originally proposed by Chapman in 1939. The retrieval approach, including treatment of self-absorption by Na, a retrieval uncertainty budget, and first retrieval results, is presented. The retrieved Na profiles are compared to independent satellite measurements. Good agreement in terms of peak altitude, peak concentration, and vertical column density is found. The retrievals constitute the first Na profile retrievals from satellite observations of the Na D-line nightglow emission profile. They enable our understanding of the Na nightglow excitation mechanism to be tested.

  18. Ice Cover Of Eurasian Water Bodies And Rivers From Satellite And In Situ Observations

    NASA Astrophysics Data System (ADS)

    Kouraev, A. V.; Shimaraev, M. N.; Remy, F.; Naumenko, M. A.; Zakharova, E. A.; Suknev, A.

    2013-12-01

    We present studies of ice cover of continental water bodies and rivers using the synergy of more than 15 years-long simultaneous active (radar altimeter) and passive (radiometer) observations from radar altimetric satellites (TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On) complemented by SSM/I passive microwave data. Five largest Eurasian continental water bodies - Caspian and Aral seas, Baikal, Ladoga and Onega lakes, and the Ob' river in the Western Siberia are selected as examples. We use an ice discrimination approach based on a combined use of the data, that has been validated using in situ and independent satellite data in the visible range. We then analyse evolution of ice conditions for the lakes and inland seas using historical data, recent satellite observations and our field studies on the lakes Ladoga and Baikal.

  19. Multi-technique combination of space geodesy observations: Impact of the Jason-2 satellite on the GPS satellite orbits estimation

    NASA Astrophysics Data System (ADS)

    Zoulida, Myriam; Pollet, Arnaud; Coulot, David; Perosanz, Félix; Loyer, Sylvain; Biancale, Richard; Rebischung, Paul

    2016-10-01

    In order to improve the Precise Orbit Determination (POD) of the GPS constellation and the Jason-2 Low Earth Orbiter (LEO), we carry out a simultaneous estimation of GPS satellite orbits along with Jason-2 orbits, using GINS software. Along with GPS station observations, we use Jason-2 GPS, SLR and DORIS observations, over a data span of 6 months (28/05/2011-03/12/2011). We use the Geophysical Data Records-D (GDR-D) orbit estimation standards for the Jason-2 satellite. A GPS-only solution is computed as well, where only the GPS station observations are used. It appears that adding the LEO GPS observations results in an increase of about 0.7% of ambiguities fixed, with respect to the GPS-only solution. The resulting GPS orbits from both solutions are of equivalent quality, agreeing with each other at about 7 mm on Root Mean Square (RMS). Comparisons of the resulting GPS orbits to the International GNSS Service (IGS) final orbits show the same level of agreement for both the GPS-only orbits, at 1.38 cm in RMS, and the GPS + Jason2 orbits at 1.33 cm in RMS. We also compare the resulting Jason-2 orbits with the 3-technique Segment Sol multi-missions d'ALTimétrie, d'orbitographie et de localisation précise (SSALTO) POD products. The orbits show good agreement, with 2.02 cm of orbit differences global RMS, and 0.98 cm of orbit differences RMS on the radial component.

  20. Satellite observations of diurnal wind-convection coupling in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kilpatrick, T.; Xie, S. P.; Gille, S. T.; Nasuno, T.

    2016-12-01

    Coupling of sea breeze circulations to diurnal rainfall is an important atmosphere-ocean-land surface interaction. Here we use satellite observations to directly observe diurnal wind-convection coupling in the Bay of Bengal. We obtain surface wind convergence from satellite scatterometer observations of surface winds, utilizing a new technique to avoid rain-flagging wind observations. The divergence diurnal cycle has a peak amplitude of 10-5 s-1 near the Indian coast. Surface wind convergence peaks at the coast around midnight, and peaks progressively later in the morning as one moves toward the center of the Bay of Bengal, consistent with offshore propagation of the land breeze. The diurnal cycle of cloud brightness temperature measured by geostationary satellite shows similar offshore propagation, with the coldest cloud tops lagging the surface wind convergence by 6-10 hours, indicating that the land breeze is an important forcing mechanism for diurnal convection in the Bay of Bengal. We compare the satellite observations with an explicit-convection numerical model and show that the model does a poor job of representing the co-propagation of the land breeze and convection, highlighting the difficulty in modeling the diurnal cycle of convection.

  1. High resolution earth observation satellites and services in the next decade a European perspective

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan

    2005-07-01

    Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.

  2. Role of light satellites in the high-resolution Earth observation domain

    NASA Astrophysics Data System (ADS)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  3. Observations of the APOD satellite with the AuScope VLBI network

    NASA Astrophysics Data System (ADS)

    Hellerschmied, Andreas; Plank, Lucia; McCallum, Jamie; Sun, Jing; Lovell, Jim; Böhm, Johannes

    2017-04-01

    The Chinese APOD (Atmospheric density detection and Precise Orbit Determination) satellite, launched in September 2015, is the first LEO (Low Earth Orbit) satellite co-locating three space-geodetic techniques including VLBI. Being equipped with a dual-frequency GNSS receiver, an SLR retro-reflector and a VLBI beacon transmitting DOR tones in the S and X band it can be considered as a first prototype of a geodetic co-location satellite in space. Basically it is suitable to realize so-called space-ties, complementing the local-ties used nowadays to connect single-technique reference frame solutions in the ITRF combination. Due to the low orbit of about 470 km altitude and the accompanying high velocity of the satellite, VLBI observations become very challenging. In this contribution we discuss a series of VLBI observations of APOD which were carried out by the Australian AuScope network in late 2016. The applied satellite tracking and data acquisition schemes will be discussed along with first results of the geodetic data processing.

  4. Characterizing Open Ocean Ecosystems Using Satellite Observations: Beyond the Remote Assessment of Chlorophyll

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.

    2009-05-01

    Satellite observations have brought a new vantage for characterizing open ocean ecosystems on local to global spatial scales and from intraseasonal to interannual time scales. These satellite observations are most often used to assess the time/space distribution of the chlorophyll concentration, the primary photosynthetic pigment found in all phytoplankton. However, there are additional optically active constituents regulating the color of the open ocean besides chlorophyll. Here, we use novel satellite retrieval algorithms to partition the ocean color spectrum into three primary optically active constituents - the phytoplankton chlorophyll concentration (Chl), the absorption due to chromophoric dissolved organic matter (CDOM) and the particulate backscatter coefficient (BBP). We assess the variability and co-variability of these three optical properties on regional to global scales and evaluate the potential processes controlling these variations. We conclude that the chlorophyll concentration is the worst of the three primary bio-optical properties for characterizing ocean ecosystems. This is because of the extreme plastic nature of cellular chlorophyll concentrations in response to light and nutrient conditions and the difficulty in separating light absorption in phytoplankton Chl concentrations from CDOM. I suggest that future satellite missions consider the primary optically active constituents in the open ocean and provide a path for their robust determination. In this way we can maximize the scientific returns from our satellite infrastructure investments.

  5. Effective Utilization of Satellite Observations for Assessing Transnational Impact of Disasters

    NASA Astrophysics Data System (ADS)

    Alozie, J. E.; Anuforom, A. C.

    2014-12-01

    General meteorological observations sources for the surface, upper air and outer space are conducted using different technological equipment and instruments that meet international standards prescribed and approved by the United Nations organizations such as the International Civil Aviation Organization (ICAO) and the World Meteorological Organization (WMO). Satellite weather observations are critical for effective monitoring of the developments, propagations and disseminations of cold clouds and their expected adverse weather conditions as they move across national and transnational boundaries. The Nigerian Meteorological Agency (NiMet) which is the national weather service provider for Nigeria, utilizes an array of satellite products obtained from mainly the European Meteorological Satellite (EUMETSAT) for its routine weather and climate monitoring and forecasts. Overtime, NiMet has used weather workstations such as MSG, SYNERGIE and now PUMA for accessing satellite products such as RGB, Infra-red, Water vapour and the Multi-sensor Precipitation Estimate (MPE) obtained at near real-time periods. The satellite imageries find extensive applications in the delivery of early warning of raising of severe weather conditions such as dust storm and dust haze during the harmattan season (November - February); and thunderstorm accompanied by severe lightning and destructive strong winds. The paper will showcase some special cases of the tracking of squall lines and issuance of weather alerts through the media. The good result is that there was limited damage to infrastructure and no loss of life from the flash floods caused by the heavy rainfall from the squally thunderstorm.

  6. Challenges of coordinating global climate observations - Role of satellites in climate monitoring

    NASA Astrophysics Data System (ADS)

    Richter, C.

    2017-12-01

    Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.

  7. Satellite observation and mapping of wintertime ozone variability in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Geller, M. A.; Chi, Yuechen; Rood, R. B.; Douglass, A. R.; Kaye, J. A.; Allen, D. J.

    1993-01-01

    Comparison is made between 30 mbar ozone fields that are generated by a transport chemistry model utilizing the winds from the Goddard Space Flight Center stratospheric data assimilation system (STRATAN), observations from the LIMS instrument on Nimbus-7, and the ozone fields that result from 'flying' a mathematical simulation of LIMS observations through the transport chemistry model ozone fields. The modeled ozone fields were found to resemble the LIMS observations, but the model fields show much more temporal and spatial structure than do the LIMS observations. The 'satellite mapped' model results resemble the LIMS observations much more closely. These results are very consistent with the earlier discussions of satellite space-time sampling by Salby.

  8. Determination of the position of the Station Borowiec No. 7811 by satellite laser observations.

    NASA Astrophysics Data System (ADS)

    Dobaczewská, W.; Drozyner, A.; Rutkowska, M.; Schillak, S.; Zieliňski, J. B.

    Laser observations were performed in Borowiec in three years 1977 - 79 of the satellites Geos A and Geos C. These data were processed by means of the program ORBITA and station coordinates were calculated by dynamical methods. Another solution was found with the processing by the program GRIPE of SAO. These two dynamical solutions are compared with the translocation solution Wettzel-Borowiec.

  9. Satellite scheduling considering maximum observation coverage time and minimum orbital transfer fuel cost

    NASA Astrophysics Data System (ADS)

    Zhu, Kai-Jian; Li, Jun-Feng; Baoyin, He-Xi

    2010-01-01

    In case of an emergency like the Wenchuan earthquake, it is impossible to observe a given target on earth by immediately launching new satellites. There is an urgent need for efficient satellite scheduling within a limited time period, so we must find a way to reasonably utilize the existing satellites to rapidly image the affected area during a short time period. Generally, the main consideration in orbit design is satellite coverage with the subsatellite nadir point as a standard of reference. Two factors must be taken into consideration simultaneously in orbit design, i.e., the maximum observation coverage time and the minimum orbital transfer fuel cost. The local time of visiting the given observation sites must satisfy the solar radiation requirement. When calculating the operational orbit elements as optimal parameters to be evaluated, we obtain the minimum objective function by comparing the results derived from the primer vector theory with those derived from the Hohmann transfer because the operational orbit for observing the disaster area with impulse maneuvers is considered in this paper. The primer vector theory is utilized to optimize the transfer trajectory with three impulses and the Hohmann transfer is utilized for coplanar and small inclination of non-coplanar cases. Finally, we applied this method in a simulation of the rescue mission at Wenchuan city. The results of optimizing orbit design with a hybrid PSO and DE algorithm show that the primer vector and Hohmann transfer theory proved to be effective methods for multi-object orbit optimization.

  10. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  11. A-Train Tropospheric Chemistry Observations on 30 August 2006 over the 2006 TexAQS/GoMACCS Study Area

    NASA Astrophysics Data System (ADS)

    Salemi, A.; McMillan, W. W.; Osterman, G.; Barnet, C.; Evans, K.; Hoff, R.; Irion, F. W.; Livesey, N.; Pickering, K.; Sparling, L.; Wicks, D.; Wolf, W.; Yurganov, L.

    2007-12-01

    During the 2006 Texas Air Quality Study (TexAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), AIRS and TES Science Team members provided flight planning support for NASA and NOAA aircraft, large scale context for NOAA, EPA, and State of Texas surface measurements, and contributions to post-mission modeling analyses and the Rapid Science Synthesis (RSS) Report. We present results from our ongoing integrated analysis using a number of A-Train observations to investigate tropospheric chemistry and dynamics over the 2006 TexAQS/GoMACCS study area (Texas, surrounding states, the Gulf of Mexico, and bordering countries). Focusing on one pollution event over Houston, Texas on August 30-Sept 1, AIRS and TES retrievals of tropospheric CO indicate distant biomass burning contributed to poor air quality in Houston. Closer examination of AIRS and TES tropospheric ozone retrievals reveals additional features due to surface pollution, lightning, and stratospheric intrusions. As part of the integrated analysis, AIRS" wide swath provides context for TES" higher vertical resolution retrievals of CO and O3. Integrating MODIS, OMI, MLS, CALIPSO observations and in situ measurements into our analysis yields a more complete and complementary view of tropospheric processes.

  12. Observation of density-enhanced dielectronic satellite spectra produced during subpicosecond laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Zigler, A.; Jacobs, V. L.; Newman, D. A.; Burkhalter, P. G.; Nagel, D. J.; Luk, T. S.; McPherson, A.; Boyer, K.; Rhodes, C. K.

    1992-02-01

    An experimental verification of the theoretically predicted density enhancement of the dielectronic satellite spectra emitted by multiply charged lithiumlike ions in high-density plasmas is reported. These plasmas were created by the interaction of solid MgF2 and SiO2 targets with high-intensity, subpicosecond, ultraviolet laser radiation. Comparisons between the observed and theoretically predicted values for the intensity ratios between two different pairs of dielectronic satellite lines have enabled determinations of electron densities of the order of 1023 cm-3 to be made in these high-density laser-produced plasmas.

  13. Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.

  14. Validation practices for satellite-based Earth observation data across communities

    NASA Astrophysics Data System (ADS)

    Loew, Alexander; Bell, William; Brocca, Luca; Bulgin, Claire E.; Burdanowitz, Jörg; Calbet, Xavier; Donner, Reik V.; Ghent, Darren; Gruber, Alexander; Kaminski, Thomas; Kinzel, Julian; Klepp, Christian; Lambert, Jean-Christopher; Schaepman-Strub, Gabriela; Schröder, Marc; Verhoelst, Tijl

    2017-09-01

    Assessing the inherent uncertainties in satellite data products is a challenging task. Different technical approaches have been developed in the Earth Observation (EO) communities to address the validation problem which results in a large variety of methods as well as terminology. This paper reviews state-of-the-art methods of satellite validation and documents their similarities and differences. First, the overall validation objectives and terminologies are specified, followed by a generic mathematical formulation of the validation problem. Metrics currently used as well as more advanced EO validation approaches are introduced thereafter. An outlook on the applicability and requirements of current EO validation approaches and targets is given.

  15. Candidate configuration trade study, Stellar-inertial Measurement Systems (SIMS) for an Earth Observation Satellite (EOS)

    NASA Technical Reports Server (NTRS)

    Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.

    1972-01-01

    The results of analytical and simulation studies of the stellar-inertial measurement system (SIMS) for an earth observation satellite are presented. Subsystem design analyses and sensor design trades are reported. Three candidate systems are considered: (1) structure-mounted gyros with structure-mounted star mapper, (2) structure-mounted gyros with gimbaled star tracker, and (3) gimbaled gyros with structure-mounted star mapper. The purpose of the study is to facilitate the decisions pertaining to gimbaled versus structure-mounted gyros and star sensors, and combinations of systems suitable for the EOS satellite.

  16. Simultaneous ground-satellite observations of daytime traveling ionospheric disturbances over Japan using the GPS-TEC network and the CHAMP satellite

    NASA Astrophysics Data System (ADS)

    Moral, A. C.; Shiokawa, K.; Otsuka, Y.; Liu, H.; Nishioka, M.; Tsugawa, T.

    2017-12-01

    We report results of simultaneous ground-satellite measurements of daytime travelling ionospheric disturbances (TIDs) over Japan by using the GEONET GPS receiver network and the CHAMP satellite. For the two years of 2002 and 2008, we examined GPS measurements of TEC (Total Electron Content) and neutral and electron densities measured by CHAMP satellite. Total of fifteen TID events with clear southward moving structures in the GPS-TEC measurements are found by simultaneous ground-satellite measurements. On 2002, simultaneous events are only observed in January (1 event) and February (4 events). On 2008, ten events are observed around winter months (January (3 events), February (5), March (1), and October (1)). Neutral and electron densities measured by CHAMP show quasi-periodic fluctuations throughout the passages for all events. The CHAMP satellite crossed at least one clear TID phase front for all the events. We fitted a sinusoidal function to both ground and satellite data to obtain the frequencies and phase of the observed variations. We calculated the corresponding phase relationships between TEC variations and neutral and electron densities measured by CHAMP to categorize the events. In the presentations we report correspondence of these TID structures seen in the simultaneous ground-satellite observations by GPS-TEC and CHAMP, and discuss their phase relationship to identify the source of the daytime TIDs and specify how much of the observed variations are showing clear frequencies/or not in the nature at middle latitudes.

  17. Handling the satellite inter-frequency biases in triple-frequency observations

    NASA Astrophysics Data System (ADS)

    Zhao, Lewen; Ye, Shirong; Song, Jia

    2017-04-01

    The new generation of GNSS satellites, including BDS, Galileo, modernized GPS, and GLONASS, transmit navigation sdata at more frequencies. Multi-frequency signals open new prospects for precise positioning, but satellite code and phase inter-frequency biases (IFB) induced by the third frequency need to be handled. Satellite code IFB can be corrected using products estimated by different strategies, the theoretical and numerical compatibility of these methods need to be proved. Furthermore, a new type of phase IFB, which changes with the relative sun-spacecraft-earth geometry, has been observed. It is necessary to investigate the cause and possible impacts of phase Time-variant IFB (TIFB). Therefore, we present systematic analysis to illustrate the relevancy between satellite clocks and phase TIFB, and compare the handling strategies of the code and phase IFB in triple-frequency positioning. First, the un-differenced L1/L2 satellite clock corrections considering the hardware delays are derived. And IFB induced by the dual-frequency satellite clocks to triple-frequency PPP model is detailed. The analysis shows that estimated satellite clocks actually contain the time-variant phase hardware delays, which can be compensated in L1/L2 ionosphere-free combinations. However, the time-variant hardware delays will lead to TIFB if the third frequency is used. Then, the methods used to correct the code and phase IFB are discussed. Standard point positioning (SPP) and precise point positioning (PPP) using BDS observations are carried out to validate the improvement of different IFB correction strategies. Experiments show that code IFB derived from DCB or geometry-free and ionosphere-free combination show an agreement of 0.3 ns for all satellites. Positioning results and error distribution with two different code IFB correcting strategies achieve similar tendency, which shows their substitutability. The original and wavelet filtered phase TIFB long-term series show significant

  18. Observations of the global structure of the stratosphere and mesosphere with sounding rockets and with remote sensing techniques from satellites

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Hilsenrath, E.; Krueger, A. J.; Nordberg, W.; Prabhakara, C.; Theon, J. S.

    1972-01-01

    Brief descriptions are given of the techniques involved in determining the global structure of the mesosphere and stratosphere based on sounding rocket observations and satellite remotely sensed measurements.

  19. Geometric Positioning for Satellite Imagery without Ground Control Points by Exploiting Repeated Observation.

    PubMed

    Ma, Zhenling; Wu, Xiaoliang; Yan, Li; Xu, Zhenliang

    2017-01-26

    With the development of space technology and the performance of remote sensors, high-resolution satellites are continuously launched by countries around the world. Due to high efficiency, large coverage and not being limited by the spatial regulation, satellite imagery becomes one of the important means to acquire geospatial information. This paper explores geometric processing using satellite imagery without ground control points (GCPs). The outcome of spatial triangulation is introduced for geo-positioning as repeated observation. Results from combining block adjustment with non-oriented new images indicate the feasibility of geometric positioning with the repeated observation. GCPs are a must when high accuracy is demanded in conventional block adjustment; the accuracy of direct georeferencing with repeated observation without GCPs is superior to conventional forward intersection and even approximate to conventional block adjustment with GCPs. The conclusion is drawn that taking the existing oriented imagery as repeated observation enhances the effective utilization of previous spatial triangulation achievement, which makes the breakthrough for repeated observation to improve accuracy by increasing the base-height ratio and redundant observation. Georeferencing tests using data from multiple sensors and platforms with the repeated observation will be carried out in the follow-up research.

  20. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  1. Geometric Positioning for Satellite Imagery without Ground Control Points by Exploiting Repeated Observation

    PubMed Central

    Ma, Zhenling; Wu, Xiaoliang; Yan, Li; Xu, Zhenliang

    2017-01-01

    With the development of space technology and the performance of remote sensors, high-resolution satellites are continuously launched by countries around the world. Due to high efficiency, large coverage and not being limited by the spatial regulation, satellite imagery becomes one of the important means to acquire geospatial information. This paper explores geometric processing using satellite imagery without ground control points (GCPs). The outcome of spatial triangulation is introduced for geo-positioning as repeated observation. Results from combining block adjustment with non-oriented new images indicate the feasibility of geometric positioning with the repeated observation. GCPs are a must when high accuracy is demanded in conventional block adjustment; the accuracy of direct georeferencing with repeated observation without GCPs is superior to conventional forward intersection and even approximate to conventional block adjustment with GCPs. The conclusion is drawn that taking the existing oriented imagery as repeated observation enhances the effective utilization of previous spatial triangulation achievement, which makes the breakthrough for repeated observation to improve accuracy by increasing the base-height ratio and redundant observation. Georeferencing tests using data from multiple sensors and platforms with the repeated observation will be carried out in the follow-up research. PMID:28134779

  2. Real-time, Quasi-Global, Multi-Satellite Precipitation Analysis Using TRMM and other Satellite Observations

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2003-01-01

    A TRMM-based 3-hr analyses that use TRMM observations to calibrate polar-orbit microwave observations from SSM/I (and other satellites) and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map is described. This TRMM standard product will be available for the entire TRMM period (January 1998-present) in 2003 as part of Version 6 of the TRMM products. A real-time version of this merged product is being produced and is available at 0.25" latitude-longitude resolution over the latitude range from 50 N-500S. Examples will be shown, including its use in monitoring flood conditions and in relating weather-scale patterns to climate-scale patterns. Plans to incorporate the TRMM data and 3-hourly analysis into the Global Precipitation Climatology Project (GPCP) products are outlined. The outcome in the near future should be an improved global analysis and climatology on monthly scales for the 23 year period and finer time scale analyses for more recent periods, including 3-hourly analyses over the globe. These technique developments are potential prototypes for analyses with the Global Precipitation Measurement (GPM) mission.

  3. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics

    NASA Astrophysics Data System (ADS)

    Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Gleason, J. F.; Krotkov, N. A.; Gille, J. C.; Pickering, K. E.; Livesey, N.

    2009-09-01

    For the August-September 2008 Olympic and the Paralympic Games held in Beijing, China, strict controls on pollutant emissions and motor vehicle traffic were imposed on Beijing and neighboring provinces to the South to improve the air quality in and around the city. Satellite measurements over Beijing between July and September showed 43% reductions of tropospheric column nitrogen dioxide, compared to the past three years. When neighboring provinces to the south are included in our analyses, satellite measurements show boundary layer sulfur dioxide reductions of 13% and carbon monoxide reductions of 12% at 700 hPa. Thus, based on satellites observations alone, noticeable reductions in these pollutant tracers were measured during both games.

  4. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  5. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    PubMed

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  6. Satellites of Uranus - Disk-integrated photometry from Voyager imaging observations

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Thomas, P.; Helfenstein, P.; Brown, R. H.; Johnson, T. V.

    1987-01-01

    Voyager 2 imaging observations over a wide range of phase angles are used to determine the fundamental photometric parameters for the five largest satellites of Uranus. Over the spectral range covered by Voyager cameras (approximately 350-600 nm) the disk-averaged colors are moderately gray (no redder than the spectrum of Saturn's satellite Phoebe). Geometric albedos range from 0.19 for Umbriel to 0.40 for Ariel. Phase coefficients determined generally between phase angles of 10 and 60 deg vary from 0.021 mag/deg for Ariel to 0.028 mag/deg for Miranda. Phase integrals lie in the range of 0.5-0.65. The Bond albedos are about 0.1 for Umbriel and about 0.2 for the other satellites.

  7. Astrometric observations of the main Uranian satellites at the Pulkovo Observatory in 2007-2016

    NASA Astrophysics Data System (ADS)

    Ershova, A. P.; Roshchina, E. A.; Izmailov, I. S.

    2016-12-01

    In this paper we present the results of the observations of the Uranian satellites made with the 26-in. refractor at the Pulkovo Observatory in 2007-2016. Almost 7000 CCD frames were analyzed and reduced using the UCAC4 catalog. Coordinates of Uranus were determined indirectly using the satellite positions and their ephemeris relative to the planet. The (O-C) differences were calculated for each object using the INPOP13c planetary theory and Lainey's theory of the satellites' motion. The positioning accuracy is better than 0.5 arcsec. The mean values of (O-C) do not exceed 0 ″ .1 in RA and DEC correspondingly (Ariel: 0 ″ .043 and - 0 ″ .074 ; Umbriel: 0 . ″ 025 and - 0 . ″ 069 ; Titania: - 0 . ″ 009 and - 0 . ″ 014 ; Oberon: - 0 . ″ 001 and - 0 ″ .019 ; Uranus: 0 . ″ 002 and - 0 . ″ 016). They are in a good agreement with the ephemeris.

  8. New Earth-Observing Small Satellite Missions on This Week @NASA – November 11, 2016

    NASA Image and Video Library

    2016-11-11

    NASA this month is scheduled to launch the first of six next-generation, Earth-observing small satellites. They’ll demonstrate innovative new approaches for measuring hurricanes, Earth's energy budget – which is essential to understanding greenhouse gas effects on climate, aerosols, and other atmospheric factors affecting our changing planet. These small satellites range in size from a loaf of bread to a small washing machine, and weigh as little as a few pounds to about 400 pounds. Their size helps keeps development and launch costs down -- because they often hitchhike to space as a “secondary payload” on another mission’s rocket. Small spacecraft and satellites are helping NASA advance scientific and human exploration, test technologies, reduce the cost of new space missions, and expand access to space. Also, CYGNSS Hurricane Mission Previewed, Expedition 50-51 Crew Prepares for Launch in Kazakhstan, and Orion Underway Recovery Test 5 Completed!

  9. Use of dust storm observations on satellite images to identify areas vulnerable to severe wind erosion

    USGS Publications Warehouse

    Breed, C.S.; McCauley, J.F.

    1986-01-01

    Blowing dust is symptomatic of severe wind erosion and deterioration of soils in areas undergoing dessication and/or devegetation. Dust plumes on satellite images can commonly be traced to sources in marginally arable semiarid areas where protective lag gravels or vegetation have been removed and soils are dry, as demonstrated for the Portales Valley, New Mexico. Images from Landsat and manned orbiters such as Skylab and the Space Shuttle are useful for illustrating the regional relations of airborne dust plumes to source areas. Geostationary satellites such as GOES are useful in tracking the time-histories of episodic dust storms. These events sometimes go unrecognized by weather observers and are the precursors of long-term land degradation trends. In areas where soil maps and meteorological data are inadequate, satellite images provide a means for identifying problem areas where measures are needed to control or mitigate wind erosion. ?? 1986 D. Reidel Publishing Company.

  10. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    PubMed Central

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  11. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    PubMed

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  12. Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen: Joint AIRS and VIIRS satellite observations

    NASA Astrophysics Data System (ADS)

    Yue, J.; Miller, S. D.; Hoffmann, L.; Straka, W. C.

    2015-12-01

    We report on the first simultaneous spaceborne observations of concentric gravity wave patterns in the stratosphere and mesosphere over the Indian Ocean excited by Tropical Cyclone Mahasen. On the nights of 13-14 May 2013, concentric ring patterns in nightglow were observed in close-proximity to Mahasen by the Day/Night Band (DNB) of the Visible/Infrared Imager/Radiometer Suite (VIIRS) on the Suomi NPP satellite. The waves exhibited horizontal wavelengths of 40-60 km. On 13 May 2013, long concentric waves of 500 km wavelength were also seen west of India, far away (1500 km) from their estimated center near Mahasen. Concentric gravity waves in the stratosphere were observed nearly simultaneously by the Atmospheric Infrared Sounder on the Aqua satellite. These multi-level observations provide a clearer picture of the complex three-dimensional structure of tropical cyclone-generated gravity waves than a single instrument alone.

  13. Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen: Joint AIRS and VIIRS satellite observations

    NASA Astrophysics Data System (ADS)

    Yue, Jia; Miller, Steven D.; Hoffmann, Lars; Straka, William C.

    2014-11-01

    We report on the first simultaneous spaceborne observations of concentric gravity wave patterns in the stratosphere and mesosphere over the Indian Ocean excited by Tropical Cyclone Mahasen. On the nights of 13-14 May 2013, concentric ring patterns in nightglow were observed in close-proximity to Mahasen by the Day/Night Band (DNB) of the Visible/Infrared Imager/Radiometer Suite (VIIRS) on the Suomi NPP satellite. The waves exhibited horizontal wavelengths of 40-60 km. On 13 May 2013, long concentric waves of ~500 km wavelength were also seen west of India, far away (~1500 km) from their estimated center near Mahasen. Concentric gravity waves in the stratosphere were observed nearly simultaneously by the Atmospheric Infrared Sounder on the Aqua satellite. These multi-level observations provide a clearer picture of the complex three-dimensional structure of tropical cyclone-generated gravity waves than a single instrument alone.

  14. Astrometric observations of satellites of Uranus using a 26-inch refractor in 2007-2011

    NASA Astrophysics Data System (ADS)

    Roshchina, E. A.; Izmailov, I. S.; Kiseleva, T. P.

    2015-05-01

    This paper reports CCD observations of Uranus and its main satellites using a 26-inch refractor at the Pulkovo Observatory in 2007-2011. These are 2450 CCD frames with images of Uranus and its four main satellites, i.e., Ariel, Umbriel, Titania, and Oberon. The field of view of the FLI Proline 9000 CCD camera is 12' × 12', which allows us to obtain stars and perform astrometric reduction by Turner's method to determine the satellites' equatorial coordinates. UCAC2 is used as a reference catalogue. The equatorial coordinates are compared with the GUST 06 theory. The average accuracy of normal places is 0.030″-0.040″ in right ascension and declination. The positions of the satellites and their theoretical uranocentric coordinates by GUST 06 are used to calculate the equatorial coordinates of Uranus. The positions of Uranus are compared with the INPOP10 planetary theory. The paper also presents the satellites' differential coordinates relative to one another.

  15. The survey on data format of Earth observation satellite data at JAXA.

    NASA Astrophysics Data System (ADS)

    Matsunaga, M.; Ikehata, Y.

    2017-12-01

    JAXA's earth observation satellite data are distributed by a portal web site for search and deliver called "G-Portal". Users can download the satellite data of GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 from G-Portal. However, these data formats are different by each satellite like HDF4, HDF5, NetCDF4, CEOS, etc., and which formats are not familiar to new data users. Although the HDF type self-describing format is very convenient and useful for big dataset information, old-type format product is not readable by open GIS tool nor apply OGC standard. Recently, the satellite data are widely used to be applied to the various needs such as disaster, earth resources, monitoring the global environment, Geographic Information System(GIS) and so on. In order to remove a barrier of using Earth Satellite data for new community users, JAXA has been providing the format-converted product like GeoTIFF or KMZ. In addition, JAXA provides format conversion tool itself. We investigate the trend of data format for data archive, data dissemination and data utilization, then we study how to improve the current product format for various application field users and make a recommendation for new product.

  16. Typhoon storm surges observed by Chinese HY-2a satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Li, Xiaohui; Han, Guoqi; Chen, Dake

    2017-04-01

    Storm surge induced by an tropical cyclone (or typhoon/hurricane) is often the greatest threat to life and property of coastal areas. HY-2A is the first Chinese ocean dynamic environment monitoring satellite, which was launched in August 2011. The satellite repeats its ground track every 14 days. It plays an important role in global monitoring of sea surface winds (especially extreme winds like typhoons and hurricanes), ocean waves, currents, eddies, and extreme events like storm surges by using its four major payloads, i.e. radar altimetry, microwave scatterometer, scanning microwave radiometer and calibration microwave radiometer. The HY-2A data are obtained from China's National Satellite Ocean Application Service (NSOAS). We use 1 s along-track data with a nominal spatial resolution of about 7 km. The altimetry data are corrected for wet tropospheric (based on the onboard calibration microwave radiometer) and ionospheric path delays, and for ocean, solid earth and pole tides. Several typhoon storm surges were observed by HY-2A satellite altimetry. The storm surge magnitude and the cross-shelf e-folding decay scale are given. The present study shows that the HY-2A satellite altimetry is a useful tool for monitoring typhoon storm surges.

  17. Storm surge observed by Chinese HY-2A satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Yang, J.; Li, X.; Han, G.; Chen, N.; Chen, D.

    2017-02-01

    HY-2A is the first Chinese ocean dynamic environment monitoring satellite, which was launched in August 2011. The satellite repeats its ground track every 14 days. It plays an important role in global monitoring of sea surface winds (especially extreme winds like typhoons and hurricanes), ocean waves, currents, eddies, and extreme events like storm surges by using its four major payloads, i.e. radar altimetry, microwave scatterometer, scanning microwave radiometer and calibration microwave radiometer. The HY-2A data are obtained from China’s National Satellite Ocean Application Service (NSOAS). We use 1 s along-track data with a nominal spatial resolution of about 7 km. For example, a storm surge induced by tropical cyclone Funso in the Southwest Indian Ocean near Mozambique in January 2012 is observed by HY-2A satellite altimetry. The storm surge magnitude is estimated to be 0.49 m and the cross-shelf e-folding decay scale to be 92 km. The present study shows that the HY-2A satellite altimetry is a useful tool for monitoring storm surges and their impacts in the Indian Ocean.

  18. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  19. Research opportunities related to ESA's Swarm mission: Potential of combined ground-satellite observations

    NASA Astrophysics Data System (ADS)

    Luehr, Hermann

    ESA's Earth observation Mission Swarm is scheduled for launch middle of 2011. The fleet of three satellites will provide many opportunities for dedicated studies of ionospheric-magnetospheric processes. The Swarm spacecraft are quite similar to the German CHAMP satellite. For that reason experience gained from CHAMP measurements can be regarded as benchmarks for in-vestigations to be considered for Swarm. Here we are reporting on CHAMP results obtained from combined ground-satellite observations. The equatorial electrojet (EEJ) is an intense cur-rent system that can be deduced conveniently from ground and satellite magnetic field data. In a series of studies the EEJ has been better characterised by combining readings from above and below. Another example is the relation between vertical plasma drift and the evolution of the equatorial ionisation anomaly (EIA). By correlating the plasma drift obtained from radar measurements with simultaneous electron density measurements at 400km altitude we could determine, in which way the EIA is responding to changes of the vertical plasma velocity. Fur-thermore, we studied the substorm onset current system. Important new insights where gained by combining ground-based observatory data with CHAMP measurements. The additional constrains of observations from above and below the ionosphere helped to construct a much more detailed substorm current wedge model.

  20. The Role of Satellite Earth Observation Data in Monitoring and Verifying International Environmental Treaties

    NASA Technical Reports Server (NTRS)

    Johnston, Shaida

    2004-01-01

    The term verification implies compliance verification in the language of treaty negotiation and implementation, particularly in the fields of disarmament and arms control. The term monitoring on the other hand, in both environmental and arms control treaties, has a much broader interpretation which allows for use of supporting data sources that are not necessarily acceptable or adequate for direct verification. There are many ways that satellite Earth observation (EO) data can support international environmental agreements, from national forest inventories to use in geographic information system (GIs) tools. Though only a few references to satellite EO data and their use exist in the treaties themselves, an expanding list of applications can be considered in support of multilateral environmental agreements (MEAs). This paper explores the current uses of satellite Earth observation data which support monitoring activities of major environmental treaties and draws conclusions about future missions and their data use. The scope of the study includes all phases of environmental treaty fulfillment - development, monitoring, and enforcement - and includes a multinational perspective on the use of satellite Earth observation data for treaty support.

  1. Quasiperiodic modulations of energetic electron fluxes in the ULF range observed by the ERG satellite

    NASA Astrophysics Data System (ADS)

    Teramoto, M.; Hori, T.; Kurita, S.; Yoshizumi, M.; Saito, S.; Higashio, N.; Mitani, T.; Matsuoka, A.; Park, I.; Takashima, T.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016. The Extremely High-Energy Electron Experiment (XEP) and High-Energy Electron Experiments (HEP-L and HEP-H) are carried by the ERG satellite to observe energetic electrons. These instruments frequently observed quasiperiodic modulations of energetic electron fluxes with period of 100-600 sec. Continuous flux modulations with the period of 600 s appeared in the 700keV-3.6MeV energy range during the period 0920UT-1120UT on March 31, 2017 when the ERG satellite was located at L 5.5-6.1 and MLT 3-4 h. We compare these flux modulations with the magnetic field observed by the Magnetic Field Experiment (MGF) on the ERG satellite. It is found that these flux modulations are not accompanied by corresponding magnetic signatures. It indicates that these quasiperiodic flux modulations are not caused by drift-resonant interactions between ULF waves and energetic electrons, at least locally. In this study, we will show several events and discuss possible mechanism for quasiperiodic flux modulations of energetic electrons on XEP and HEP.

  2. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    USGS Publications Warehouse

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  3. Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, George A.; Jin, Ling; Bauer, Susanne E.; Bennartz, Ralf; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan H.

    2014-09-01

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this investigation we compare aerosols, clouds, and their interactions in three global climate models (Geophysical Fluid Dynamics Laboratory-Atmosphere Model 3 (AM3), National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5), and Goddard Institute for Space Studies-ModelE2) to Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. Modeled cloud properties are diagnosed using a MODIS simulator. Cloud droplet number concentrations (N) are computed identically from satellite-simulated and MODIS-observed values of liquid cloud optical depth and droplet effective radius. We find that aerosol optical depth (τa) simulated by models is similar to observations in many regions around the globe. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in coastal marine stratocumulus versus remote ocean regions, though modeled values, in general, are higher than observed. Aerosol-cloud interactions were computed as the sensitivity of ln(N) to ln(τa) for coastal marine liquid clouds near South Africa (SAF) and Southeast Asia where τa varies in time. AM3 and CAM5 are more sensitive than observations, while the sensitivity for ModelE2 is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the sensitivity of ln(N) to ln(τa) at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite-simulated versus standard model values of N are compared; for CAM5 in SAF, standard model values are significantly lower than satellite

  4. Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations

    NASA Astrophysics Data System (ADS)

    Gomes-Júnior, A. R.; Assafin, M.; Vieira-Martins, R.; Arlot, J.-E.; Camargo, J. I. B.; Braga-Ribas, F.; da Silva Neto, D. N.; Andrei, A. H.; Dias-Oliveira, A.; Morgado, B. E.; Benedetti-Rossi, G.; Duchemin, Y.; Desmars, J.; Lainey, V.; Thuillot, W.

    2015-08-01

    Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. The best way to obtain these parameters are observations in situ by spacecrafts or from stellar occultations by the objects. Both techniques demand that the orbits are well known. Aims: We aimed to obtain good astrometric positions of irregular satellites to improve their orbits and ephemeris. Methods: We identified and reduced observations of several irregular satellites from three databases containing more than 8000 images obtained between 1992 and 2014 at three sites (Observatório do Pico dos Dias, Observatoire de Haute-Provence, and European Southern Observatory - La Silla). We used the software Platform for Reduction of Astronomical Images Automatically (PRAIA) to make the astrometric reduction of the CCD frames. The UCAC4 catalog represented the International Celestial Reference System in the reductions. Identification of the satellites in the frames was done through their ephemerides as determined from the SPICE/NAIF kernels. Some procedures were followed to overcome missing or incomplete information (coordinates, date), mostly for the older images. Results: We managed to obtain more than 6000 positions for 18 irregular satellites: 12 of Jupiter, 4 of Saturn, 1 of Uranus (Sycorax), and 1 of Neptune (Nereid). For some satellites the number of obtained positions is more than 50% of what was used in earlier orbital numerical integrations. Conclusions: Comparison of our positions with recent JPL ephemeris suggests there are systematic errors in the orbits for some of the irregular satellites. The most evident case was an error in the inclination of Carme. Position tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  5. Chemistry-Transport Modeling of the Satellite Observed Distribution of Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Peters, Wouter; Krol, Maarten; Dentener, Frank; Thompson, Anne M.; Leloeveld, Jos; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC) from the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) to TTOC calculated by a chemistry-transport model (CTM). An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparisons indicate a widespread, systematic (20%) discrepancy over the tropical Atlantic Ocean, which maximizes during austral Spring. Although independent evidence from ozonesondes shows that some of the disagreement is due to satellite over-estimate of TTOC, the Atlantic mismatch is largely due to a misrepresentation of seasonally recurring processes in the model. Only minor differences between the model and observations over the Pacific occur, mostly due to interannual variability not captured by the model. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOX abundances in free tropospheric biomass burning plumes. The model showed the largest response to lightning NOX emissions, but systematic improvements could not be found. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrating tropospheric satellite observations into global ozone modeling studies. Conversely

  6. A Bayesian kriging approach for blending satellite and ground precipitation observations

    NASA Astrophysics Data System (ADS)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Funk, Chris

    2015-02-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  7. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  8. Comparison of DOAS Results from the Airborne CARIBIC System with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Heue, Klaus-Peter; Brenninkmeijer, Carl; Wagner, Thomas; Walter, David; Horrmann, Christoph; Sihler, Holger; Frieß, Udo; Platt, Ulrich; Krotkov, Nikolay; Lamsal, Lok

    2012-11-01

    Comparative studies between results from the CARIBIC airborne DOAS instrument on board of CARIBIC and satellite observations are presented. CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic.de) observes physical and chemical processes in the Earth's atmosphere using a fully automated measurement container aboard a Lufthansa Airbus 340-600. A special inlet system is mounted underneath the aeroplane with probes for trace gases, water vapour and aerosol particles. It also includes three telescopes of a DOAS (Differential Optical Absorption Spectroscopy) system for remote sensing. Enhanced sulphur dioxide (SO2) column densities were observed by CARIBIC DOAS after the eruptions of Kasatochi (Alaska, USA) and Eyjafjallaj¨okull (Iceland) as well as downwind of the nickel smelter in Norilsk (Siberia). For all cases detailed studies were performed and the data were used for comparisons with products from several satellite instruments. To reduce the additional uncertainty caused by trajectory calculation, the satellite with the shortest time difference relative to the CARIBIC observation was validated. For the Kasatochi plume wind speeds were relevant for the comparison in view of a discrepancy in the timing of aeroplane and satellite overpass. In the case of a dedicated flight designed to intercept parts of the Eyjafjallaj¨okull plume, also Bromine Monoxide (BrO) was detected. Due to high noise in both CARIBIC and GOME-2 (Global Ozone Monitoring Experiment) data a qualitative comparison of the BrO vertical column densities was not performed. For Norilsk, where NO2 enhancements were also detected, wind data were used to estimate the SO2 flux. The flux estimate based on CARIBIC data was in a good agreement with independent data including OMI (Ozone Monitoring Instrument) based results. In general, good agreement between CARIBIC and the satellite data was obtained.

  9. Mutual Events of the Uranian Satellites Observed with the Faulkes Telescopes

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos; Lewis, F.; Hidas, M. G.; Brown, T. M.; Roche, P.

    2008-09-01

    The 2007 Uranian Equinox allowed unique observations of the planet, its rings and satellites, possible only twice during the planet's 84 year orbit. Among these were mutual eclipses and occultations between the 5 classical satellites Ariel, Umbriel, Titania, Oberon and Miranda. These ``mutual'' events are extremely useful as reality checks of satellite ephemerides. In addition, they provide an opportunity to improve our knowledge of the satellite orbits and the system constants. We observed several mutual events in 2007 using the 2m Faulkes Telescopes North (FTN) and South (FTS) located in Haleakala, Maui and Siding Spring, Australia respectively, operated by the Las Cumbres Observatory Global Telescope (LCOGT) network. To mitigate against Uranus' glare, we utilized wide-band imaging in the near-IR, a small image scale and a posteriori subtraction of the planet's PSF. We obtained positive detections of six mutual events, three occultations and three eclipses, among these satellites. Three of these events involved Miranda, a difficult target due to its proximity to Uranus. Furthermore, we recorded at least two events that were predicted to occur with high confidence but did not, in fact, occur. During this presentation we will describe our observing strategy, operational setup and data reduction techniques and present examples of obtained lightcurves. Our observational results have been compared with predictions based on ephemerides by Laskar and Jacobson (1987; GUST86), by Lainey and Arlot (2006; LA06) and by Rush and Jacobson (2007; RJ07). Offsets with respect to the Voyager-era GUST86 are quite significant, of the order of minutes in the event midtimes. Smaller, yet significant trends in the data also appear with respect to LA06 and RJ07. We will discuss the nature of these trends and how they can be interpreted in terms of potential improvements in our knowledge of the Uranian system.

  10. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  11. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  12. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  13. Nighttime Medium-Scale Traveling Ionospheric Disturbances From Airglow Imager and Global Navigation Satellite Systems Observations

    NASA Astrophysics Data System (ADS)

    Huang, Fuqing; Lei, Jiuhou; Dou, Xiankang; Luan, Xiaoli; Zhong, Jiahao

    2018-01-01

    In this study, coordinated airglow imager, GPS total electron content (TEC), and Beidou geostationary orbit (GEO) TEC observations for the first time are used to investigate the characteristics of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) over central China. The results indicated that the features of nighttime MSTIDs from three types of observations are generally consistent, whereas the nighttime MSTID features from the Beidou GEO TEC are in better agreement with those from airglow images as compared with the GPS TEC, given that the nighttime MSTID characteristics from GPS TEC are significantly affected by Doppler effect due to satellite movement. It is also found that there are three peaks in the seasonal variations of the occurrence rate of nighttime MSTIDs in 2016. Our study revealed that the Beidou GEO satellites provided fidelity TEC observations to study the ionospheric variability.

  14. Ionospheric Perturbations Observed by Micro-Satellite Demeter Possibly Connected with Seismicity

    NASA Astrophysics Data System (ADS)

    Gwal, Ashok Kumar

    Ionospheric perturbations observed by micro-satellite DEMETER possibly connected with seismicity A.K.Gwal, Kalpana Malhotra and M.Parrot2 1. Space Science Laboratory, Department of Physics, Barkatullah University, Bhopal-462026 e-mail: splakg@sancharnet.in 2. LPCE/CNRS 3A Avenue de la Recherche Scientifique, 45071 - Orĺans Cedex 2, France e Satellite observations have major advantages of covering almost all the area of seismic activity throughout the world in a short duration. In the present study, we present some noticeable results showing sudden plasma parameters variations and low frequency electric burst prior to the seismic events derived from the continuous monitoring of seismic regions for months together by DEMETER satellite. DEMETER is an ionospheric micro-satellite launched on a polar orbit at an altitude of 710km. The scientific payloads of DEMETER composed of several sensors, which allow to measure the important plasma parameters and also measure waves in broad frequency ranges (DC-4MHz). In brief, on the basis of the findings of the study it is concluded that there is possibility of getting the precursors in the form of plasma variations and electric burst at different frequency ranges in the ionosphere possibly associated with seismicity.

  15. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  16. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  17. Comparison of UV erythemal doses from surface and satellite observations in Barcelona

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Sola, Yolanda; Albert, Ossó; Lorente, Jerónimo

    2015-04-01

    In this study we present a comparison of UV erythemal doses from ground-based broadband radiometer observations and the Ozone Monitoring Instrument (OMI) satellite estimations. We consider a large data set ranging from 2005 to 2012 from a YES UVB-1 instrument belonging to the Spanish Radiometer Network of the Spanish Meteorological Agency AEMET. These data are completed also with cloud type and cover manual observations from the Fabra observatory in Barcelona city. Based upon a previous climatology of UV index observations in Barcelona (Bech et al. 2015), the objective of this research is to characterize the average and extreme dose values at different time periods (annual, seasonal, monthly, daily and midday hours) considering the satellite overpass time retrievals and ground observations. Results will contribute to the validation of satellite retrievals with special consideration of the cloud conditions given the importance of biological effects of UV radiation. Reference Bech, J., Sola, Y., Ossó, A. and Lorente, J. (2015), Analysis of 14 years of broadband ground-based solar UV index observations in Barcelona. International Journal of Climatology, 35: 45-56. http://dx.doi.org/10.1002/joc.3961

  18. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  19. Fast emission estimates in China and South Africa constrained by satellite observations

    NASA Astrophysics Data System (ADS)

    Mijling, Bas; van der A, Ronald

    2013-04-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for emerging economies such as China and South Africa, where rapid economic growth change emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. However, constraining emissions from observations of concentrations is computationally challenging. Within the GlobEmission project (part of the Data User Element programme of ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China and South Africa, using the CHIMERE chemical transport model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e

  20. Design and implementation of a Cube satellite mission for Antarctic glacier and sea ice observation

    NASA Astrophysics Data System (ADS)

    Wu, Shufan; Zhao, Tiancheng; Gao, Yuan; Cheng, Xiao

    2017-10-01

    The research for global climate changes calls for high quality satellite data and imageries regarding the Polar Regions. In recent years, the emerging Earth-Observation micro/nano satellite technology provides new data sources for polar region observations. The STU-2A, also named TW-1A, is such a nano satellite designed for polar region observation activities. It is a 3U CubeSat of 2.9 kg with a size of 30 × 10 × 10 cm carrying an Earth observation camera, launched into a Sun Synchronous Orbit (SSO) at 481 km with an inclination of 97.3°, on September 25, 2015. During the Antarctic summer of 2015/16, it has acquired visible-light true color images with a resolution of 94 m, covering different sea and coastal regions including Amundsen Sea, Ross Sea and Vincennes Bay. These images were used to analyze the change of glacier and sea ice, compared and calibrated with reference to the publically available MODIS images with a resolution of 250 m. As the camera was specially designed for the Polar regions which have an environment of low solar elevation angle and high surface reflectance, it eliminates the oversaturation problem of the MODIS sensors and can provide high quality images. Based on data analysis and assessment, it is confirmed that this satellite data can meet the demand of glacier and sea ice observation. This paper presents the Cubesat system design and configuration, the payload camera design, and its application in Antarctic glacier and sea ice observation.

  1. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    NASA Astrophysics Data System (ADS)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  2. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    NASA Astrophysics Data System (ADS)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  3. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  4. Sentinel-2: next generation satellites for optical land observation from space

    NASA Astrophysics Data System (ADS)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  5. Lower Tropospheric Ozone Retrievals from Infrared Satellite Observations Using a Self-Adapting Regularization Method

    NASA Astrophysics Data System (ADS)

    Eremenko, M.; Sgheri, L.; Ridolfi, M.; Dufour, G.; Cuesta, J.

    2017-12-01

    Lower tropospheric ozone (O3) retrievals from nadir sounders is challenging due to the lack of vertical sensitivity of the measurements and towards the lowest layers. If improvements have been made during the last decade, it is still important to explore possibilities to improve the retrieval algorithms themselves. O3 retrieval from nadir satellite observations is an ill-conditioned problem, which requires regularization using constraint matrices. Up to now, most of the retrieval algorithms rely on a fixed constraint. The constraint is determined and fixed beforehand, on the basis of sensitivity tests. This does not allow ones to take advantage of the entire capabilities of the satellite measurements, which vary with the thermal conditions of the observed scenes. To overcome this limitation, we developed a self-adapting and altitude-dependent regularization scheme. A crucial step is the choice of the strength of the constraint. This choice is done during an iterative process and depends on the measurement errors and on the sensitivity of the measurements to the target parameters at the different altitudes. The challenge is to limit the use of a priori constraints to the minimal amount needed to perform the inversion. The algorithm has been tested on synthetic observations matching the future IASI-NG satellite instrument. IASI-NG measurements are simulated on the basis of O3 concentrations taken from an atmospheric model and retrieved using two retrieval schemes (the standard and self-adapting ones). Comparison of the results shows that the sensitivity of the observations to the O3 amount in the lowest layers (given by the degrees of freedom for the solution) is increased, which allows a better description of the ozone distribution, especially in the case of large ozone plumes. Biases are reduced and the spatial correlation is improved. Tentative of application to real observations from IASI, currently onboard the Metop satellite will also be presented.

  6. Extreme weather monitoring system with combination of micro-satellites and ground-based observation networks

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, M.; Castro, E. C.; Ishida, T.; Marciano, J. J.; Kubota, H.; Yamashita, K.

    2017-12-01

    Thunderstorm causes torrential rainfall and is the energy source of typhoon. In these decades it has been revealed that lightning discharge is a very good proxy of thunderstorm activity. However, operational and sustainable observation system that can provide sufficient information of lightning strokes has not been constructed in Asia. On the other hand, 50-kg micro-satellite is now one of the operational tools for remote-sensing, which could be fabricated also by developing countries. International project to promote the combination of the micro-satellites and ground-based observation networks, supported by programs of SATREPS by DOST and JST-JICA, e-ASIA by JST and other Asian agencies and Core-to-core by JSPS, is now going under international agreement among Asian countries. We will establish a new way to obtain very detail semi-real time information of thunderstorm and typhoon activities, using visible stereo and thermal infrared imaging by target pointing with 50-kg micro-satellite, and ground-based networks consisting of lightning sensors, AWS and infrasound sensors, that cannot be achieved only with existing observation methods. Based on these new techniques together with advanced radar system and drop/radio sondes, we will try to construct the cutting-edge observation system to monitor the development of thunderstorm and typhoon, which may greatly contribute to the prediction of disasters and the public alerting system.

  7. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  8. GRACE satellite observations reveal the severity of recent water over-consumption in the United States

    DOE PAGES

    Solander, Kurt C.; Reager, John T.; Wada, Yoshihide; ...

    2017-08-18

    Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. Themore » long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.« less

  9. Observations and Analysis of Mutual Events between the Uranus Main Satellites

    NASA Astrophysics Data System (ADS)

    Assafin, M.; Vieira-Martins, R.; Braga-Ribas, F.; Camargo, J. I. B.; da Silva Neto, D. N.; Andrei, A. H.

    2009-04-01

    Every 42 years, the Earth and the Sun pass through the plane of the orbits of the main satellites of Uranus. In these occasions, mutual occultations and eclipses between these bodies can be seen from the Earth. The current Uranus equinox from 2007 to 2009 offers a precious opportunity to observe these events. Here, we present the analysis of five occultations and two eclipses observed from Brazil during 2007. For the reduction of the CCD images, we developed a digital coronagraphic method that removed the planet's scattered light around the satellites. A simple geometric model of the occultation/eclipse was used to fit the observed light curves. Dynamical quantities such as the impact parameter, the relative speed, and the central time of the event were then obtained with precisions of 7.6 km, 0.18 km s-1, and 2.9 s, respectively. These results can be further used to improve the parameters of the dynamical theories of the main Uranus satellites. Based on observations made at Laboratório Nacional de Astrofísica (LNA), Itajubá-MG, Brazil.

  10. GRACE satellite observations reveal the severity of recent water over-consumption in the United States.

    PubMed

    Solander, Kurt C; Reager, John T; Wada, Yoshihide; Famiglietti, James S; Middleton, Richard S

    2017-08-18

    Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003-2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. The long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003-2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.

  11. Cassini VIMS observations of the Galilean satellites including the VIMS calibration procedure

    USGS Publications Warehouse

    McCord, T.B.; Coradini, A.; Hibbitts, C.A.; Capaccioni, F.; Hansen, G.B.; Filacchione, G.; Clark, R.N.; Cerroni, P.; Brown, R.H.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Buratti, B.J.; Bussoletti, E.; Combes, M.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2004-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) observed the Galilean satellites during the Cassini spacecraft's 2000/2001 flyby of Jupiter, providing compositional and thermal information about their surfaces. The Cassini spacecraft approached the jovian system no closer than about 126 Jupiter radii, about 9 million kilometers, at a phase angle of < 90 ??, resulting in only sub-pixel observations by VIMS of the Galilean satellites. Nevertheless, most of the spectral features discovered by the Near Infrared Mapping Spectrometer (NIMS) aboard the Galileo spacecraft during more than four years of observations have been identified in the VIMS data analyzed so far, including a possible 13C absorption. In addition, VIMS made observations in the visible part of the spectrum and at several new phase angles for all the Galilean satellites and the calculated phase functions are presented. In the process of analyzing these data, the VIMS radiometric and spectral calibrations were better determined in preparation for entry into the Saturn system. Treatment of these data is presented as an example of the VIMS data reduction, calibration and analysis process and a detailed explanation is given of the calibration process applied to the Jupiter data. ?? 2004 Elsevier Inc. All rights reserved.

  12. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    NASA Technical Reports Server (NTRS)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  13. Deep Subaru Hyper Suprime-Cam Observations of Milky Way Satellites Columba I and Triangulum II

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Muñoz, Ricardo R.; Spekkens, Kristine; Willman, Beth; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2017-12-01

    We present deep, wide-field Subaru Hyper Suprime-Cam photometry of two recently discovered satellites of the Milky Way (MW): Columba I (Col I) and Triangulum II (Tri II). The color-magnitude diagrams of both objects point to exclusively old and metal-poor stellar populations. We re-derive structural parameters and luminosities of these satellites, and find {M}{{V},{Col}{{I}}}=-4.2+/- 0.2 for Col I and {M}{{V},{Tri}{II}}=-1.2+/- 0.4 for Tri II, with corresponding half-light radii of {r}{{h},{Col}{{I}}}=117+/- 17 pc and {r}{{h},{Tri}{II}}=21+/- 4 pc. The properties of both systems are consistent with observed scaling relations for MW dwarf galaxies. Based on archival data, we derive upper limits on the neutral gas content of these dwarfs, and find that they lack H I, as do the majority of observed satellites within the MW virial radius. Neither satellite shows evidence of tidal stripping in the form of extensions or distortions in matched-filter stellar density maps or surface-density profiles. However, the smaller Tri II system is relatively metal-rich for its luminosity (compared to other MW satellites), possibly because it has been tidally stripped. Through a suite of orbit simulations, we show that Tri II is approaching pericenter of its eccentric orbit, a stage at which tidal debris is unlikely to be seen. In addition, we find that Tri II may be on its first infall into the MW, which helps explain its unique properties among MW dwarfs. Further evidence that Tri II is likely an ultra-faint dwarf comes from its stellar mass function, which is similar to those of other MW dwarfs. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini-satellite

  15. Multidisciplinary Approach for Earthquake Atmospheric Precursors Validation by Joint Satellite and Ground Based Observations

    NASA Astrophysics Data System (ADS)

    Ouzounov, D. P.; Pulinets, S. A.; Hattori, K.; Liu, J. G.; Parrot, M.; Kafatos, M.; Yang, T. F.; Jhuang, H.; Taylor, P.; Ohyama, K.; Kon, S.

    2010-12-01

    Previous studies have shown that there were electromagnetic (EM) effects in the atmosphere/ionosphere caused by some strong earthquakes. Several major earthquakes are accompanied by an intensification of the vertical transport of charged aerosols in the lower atmosphere. These processes lead to the generation of external electric currents in specific regions of the atmosphere and the modifications, by DC electric fields, in the ionosphere-atmosphere electric circuit. Our methodology of integrated satellite terrestrial framework (ISTF) is based on the use of multi-sensor data and a cross-correlation between ground and satellite observations to record any atmospheric thermal anomalies and ionospheric perturbations associated with these activities. We record thermal infrared data from the Aqua, GOES, POES satellites and DEMETER provides space plasma variations related to the growth of the DC electric field. Simultaneously we continuously monitor ground-based multi-parameter GPS/TEC, ion concentration, radon, and magnetic field array data. We integrate these joint observations into the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. The significance of this combined satellite and ground-based analysis is that it permits us to generate hindcasts of historical seismicity in Japan, Taiwan (2003-2009) and recent catastrophic events in Italy (M6.3, 2009), Haiti (M7.0, 2010) and Chile (M8.8, 2010). This joint analysis of ground and satellite data during the time of major earthquakes has shown the presence of persistent anomalies in the atmosphere over regions of maximum stress (along plate boundaries), and are not of meteorological origin, since they are stationary over the same region. Our approach provides the framework for a multidisciplinary validation of earthquake precursors and we are looking forward to validating this approach over high seismicity regions.

  16. Observations of urban and suburban environments with global satellite scatterometer data

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Balk, D.; Rodriguez, E.; Neumann, G.; Sorichetta, A.; Small, C.; Elvidge, C. D.

    A global and consistent characterization of land use and land change in urban and suburban environments is crucial for many fundamental social and natural science studies and applications. Presented here is a dense sampling method (DSM) that uses satellite scatterometer data to delineate urban and intraurban areas at a posting scale of about 1 km. DSM results are analyzed together with information on population and housing censuses, with Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, and with Defense Meteorological Satellite Program (DMSP) night-light data. The analyses include Dallas-Fort Worth and Phoenix in the United States, Bogotá in Colombia, Dhaka in Bangladesh, Guangzhou in China, and Quito in Ecuador. Results show that scatterometer signatures correspond to buildings and infrastructures in urban and suburban environments. City extents detected by scatterometer data are significantly smaller than city light extents, but not all urban areas are detectable by the current SeaWinds scatterometer on the QuikSCAT satellite. Core commercial and industrial areas with high buildings and large factories are identified as high-backscatter centers. Data from DSM backscatter and DMSP nighttime lights have a good correlation with population density. However, the correlation relations from the two satellite datasets are different for different cities indicating that they contain complementary information. Together with night-light and census data, DSM and satellite scatterometer data provide new observations to study global urban and suburban environments and their changes. Furthermore, the capability of DSM to identify hydrological channels on the Greenland ice sheet and ecological biomes in central Africa demonstrates that DSM can be used to observe persistent structures in natural environments at a km scale, providing contemporaneous data to study human impacts beyond urban and suburban areas.

  17. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect

    Ban-Weiss, George; Jin, Ling; Bauer, S.

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial patternmore » of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.« less

  18. Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska

    NASA Technical Reports Server (NTRS)

    Schumacher, James D.; Barber, Willard E.; Holt, Benjamin; Liu, Antony K.

    1991-01-01

    The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features.

  19. Quantifying Arctic Cloud Biases in Global Models Using Active Satellite Observations

    NASA Astrophysics Data System (ADS)

    L'Ecuyer, T. S.; Sledd, A.; Mateling, M.; Schlegel, N.; Christensen, M.

    2017-12-01

    Observations from active sensors aboard polar orbiting satellites have yielded valuable new insights into the character and impacts of clouds and precipitation in polar regions. For example, recent analyses of CloudSat and CALIPSO datasets have quantified the influence of clouds on ice sheet energy balance and confirmed the importance of super-cooled liquid clouds in modulating surface melt processes. Perhaps more importantly, new observation-based reconstructions of the Arctic energy budget and its annual cycle have revealed that reanalyses and climate models exhibit significant biases in several key energy flows in the region. These biases, in turn, lead to discrepancies in the seasonal cycle of implied surface heat storage and energy transport into the Arctic from lower latitudes. To begin to diagnose possible sources of these biases, a new multi-satellite, multi-model combined Arctic dataset will be used to explore variability in the Arctic cloud radiative effects associated with changes in sea ice and snow cover.

  20. Utilization of satellite and surface observations in a gravity wave study

    NASA Technical Reports Server (NTRS)

    Pecnick, M. J.; Young, J. A.

    1982-01-01

    The possibility of detecting gravity waves in the upper troposphere by means of satellite imagery is examined. Attention is focused on the gravity wave event of March 27, 1975, for which the surface wave is analyzed by a pressure perturbation analysis based on barograph traces and a surface wind divergence analysis. IR observations were also made of the event with instrumentation on board the synchronous meteorological satellite (SMS-1). Strong wind gusts were reported at surface stations immediately following severe drops in the surface pressures, events which were found not to be connected with convective activity. The wave was concluded to extend throughout the troposphere with an axis tilted with height, indicating the wave was generated from an upper level energy source. It is suggested that the gravity wave was an adjustment to ageostrophic motions within the jet stream entering the Midwest. The finding is in concert with previous observations of jet streaks upstream from surface gravity waves.

  1. Photographical observations of planet satellite carried out in MAO NASU in 1961- 1990

    NASA Astrophysics Data System (ADS)

    Izhakevich, E. M.; Kulik, I. V.; Shatohina, S. V.

    2001-10-01

    Intensive photographic observations of the Solar System body were made during the 1961-1990 at Golosiiv. More than 300 photographic plates were obtained for this period. The images of the satellites of Jupiter, Saturn, Uran are available in these plates. The photographic observations of the natural moons were acquired in 1986-1990 at Majdanak. All accumulated plates were remeasured and astrometric positions all available moons were obtained in the ACT and Tyho-2 systems. We present about 900 positions of eight Saturian satellites, Uranium moons Ariel, Umbriel, Oberon, Titanium and Neptunium moon Triton. The differences calculated and theoretical positions were obtained. Mean rms errors of the (O-C) are in the range 0.2-0.3 arcsec.

  2. Momentum Flux Estimates for South Georgia Island Mountain Waves in the Stratosphere Observed via Satellite

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Eckermann, Stephen D.; Broutman, Dave; Ma, Jun

    2009-01-01

    We show high-resolution satellite observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern Atlantic Ocean and compute the wave momentum fluxes for these events. The fluxes are large, and they imply important drag forces on the circulation. Small island orography is generally neglected in mountain wave parameterizations used in global climate models because limited model resolution treats the grid cell containing the island as ocean rather than land. Our results show that satellite observations can be used to quantitatively constrain mountain wave momentum fluxes, and they suggest that mountain waves from island topography may be an important missing source of drag on the atmospheric circulation.

  3. Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations

    NASA Technical Reports Server (NTRS)

    Waliser, Duane

    2011-01-01

    Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.

  4. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    PubMed

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  5. The ecology of malaria--as seen from Earth-observation satellites.

    PubMed

    Thomson, M C; Connor, S J; Milligan, P J; Flasse, S P

    1996-06-01

    Data from sensors on board geostationary and polar-orbiting, meteorological satellites (Meteosat and NOAA series) are routinely obtained free, via local reception systems, in an increasing number of African countries. Data collected by these satellites are processed to produce proxy ecological variables which have been extensively investigated for monitoring changes in the distribution and condition of different natural resources, including rainfall and vegetation state. How these data products (once incorporated, along with other data, into a geographical information system) could contribute to the goals of monitoring patterns of malaria transmission, predicting epidemics and planning control strategies is the subject of the present review. By way of illustration, an analysis of two of these products, normalized difference vegetation index (NVDI) and cold-cloud duration (CCD), is given in conjunction with epidemiological and entomological data from The Gambia, a country where extensive studies on malaria transmission have been undertaken in recent years. Preliminary results indicate that even simple analysis of proxy ecological variables derived from satellite data can indicate variation in environmental factors affecting malaria-transmission indices. However, it is important to note that the associations observed will vary depending on the local ecology, season and species of vector. Whilst further quantitative research is required to validate the relationship between satellite-data products and malaria-transmission indices, this approach offers a means by which detailed knowledge of the underlying spatial and temporal variation in the environment can be incorporated into a decision-support system for malaria control.

  6. Astrometric observations of the faint satellites of Jupiter and minor planets, 1974-1977

    NASA Technical Reports Server (NTRS)

    Benedict, G. R.; Shelus, P. J.; Mulholland, J. D.

    1978-01-01

    Precise positions of the faint satellites VI-XII of Jupiter during the 1974 opposition, and for Jupiter XIII during the 1976-1977 and 1977-1978 oppositions, have been obtained from plates taken with the 2.1-m Otto Struve reflector of the McDonald Observatory by the use of a new quasi-automatic plate measurement and reduction procedure on a PDS microdensitometer. Observations of selected asteroids, including two of 1977 UB (Chiron) are given also.

  7. Simultaneous all-sky and multi-satellite observations of auroral breakup and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Ieda, A.; Machida, S.; Nishimura, Y.; Miura, T.

    2017-12-01

    A substorm is a large-scale disturbance including auroral breakup in the ionosphere and magnetic reconnection in the magnetotail. Two predominant models of the substorm time history have been proposed: the near-Earth neutral line (NENL) model and the current disruption model. The former is of outside-in type with tailward propagation of the disturbance, whereas the latter is of inside-out type with earthward propagation of the disturbance. To determine such time histories of such substorms using aurora all-sky and magnetotail multi-satellite observations, the National Aeronautics and Space Administration (NASA) is conducting a mission named the "Time History of Events and Macroscale Interactions during Substorms (THEMIS)". The time history of a substorm is expected to be best clarified when satellites are aligned along the tail axis. A substorm occurred under such a satellite distribution on 0743:42 UT February 27, 2009, and we investigated the auroral breakup and fast plasma flows produced by the magnetic reconnection in this substorm. The THEMIS satellites observed that a northward magnetic field variation propagated earthward. Because this earthward propagation is consistent with the NENL model, observation of a substorm onset after the magnetic reconnection was expected. However, the substorm onset was observed in the all-sky images before the magnetic reconnection, as noted in a previous study. In this study, we report that another earthward fast plasma flow occurred before the substorm onset, indicating that another magnetic reconnection occurred before the substorm onset. In addition, we confirm that the above mentioned post-onset magnetic reconnection occurred simultaneously with auroral poleward expansion, within a 1-min period. These results support the NENL model and further suggest that the two-step development of magnetic reconnection is a key component of the substorm time history.

  8. Arctic and Antarctic Sea Ice, 1978-1987: Satellite Passive-Microwave Observations and Analysis

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.; Cavalieri, Donald J.; Comiso, Josefino C.; Parkinson, Claire L.; Zwally, H. Jay

    1992-01-01

    This book contains a description and analysis of the spatial and temporal variations in the Arctic and Antarctic sea ice covers from October 26, 1978 through August 20, 1987. It is based on data collected by the Scanning Multichannel Microwave Radiometer (SMMR) onboard the NASA Nimbus 7 satellite. The 8.8-year period, together with the 4 years of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) observations presented in two earlier volumes, comprises a sea ice record spanning almost 15 years.

  9. How well does cloud correction of satellite observations of tropospheric NO2 work?

    NASA Astrophysics Data System (ADS)

    Munassar, Saqr; Richter, Andreas; Hilboll, Andreas; Behrens, Lisa K.; Burrows, John P.

    2017-04-01

    Satellite observations of tropospheric trace gases are limited by the presence of clouds which block part of the troposphere from the satellite view (shielding effect). They also enhance the sensitivity of satellite observations to absorbers located above clouds (albedo effect). In order to correct for these effects, most satellite data products use cloud correction schemes which apply cloud fraction and cloud height retrieved from measurements of columns of O2 or the O2-O2 dimer in combination with radiative transfer calculations. If the vertical profile of the trace gas of interest is known, such correction approaches can in theory remove most of the cloud dependence from the retrieved tropospheric columns. In practice however, neither the cloud parameters nor the vertical distribution of reactive gases such as NO2 are well known, and it is therefore useful to investigate how well the current approaches used for cloud correction work on real data. In this study, several versions of the FRESCO+ and O2-O2 cloud retrievals are applied to GOME2a and OMI data. The retrieved cloud parameters as well as the resulting tropospheric NO2 columns are compared between algorithm versions and between instruments for a number of selected regions in polluted, background and biomass burning regions. In addition, different sources are used for the a priori NO2 profiles used in the retrieval. The results show that differences in cloud parameters between algorithm versions and instruments can be quite large, but effects on tropospheric NO2 columns are limited. Comparison of model predicted and observed cloud fraction dependency of tropospheric NO2 slant columns disagrees in many regions in particular over China, where the largest NO2 columns are not observed at smallest cloud fractions as expected. As a result, tropospheric NO2 vertical columns have a significant cloud fraction dependency, indicating that improvements are needed to further reduce cloud related uncertainties.

  10. Arctic Sea ice, 1973-1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.; Zwally, H. Jay; Cavalieri, Donald J.; Gloersen, Per; Campbell, William J.

    1987-01-01

    The Arctic region plays a key role in the climate of the earth. The sea ice cover affects the radiative balance of the earth and radically changes the fluxes of heat between the atmosphere and the ocean. The observations of the Arctic made by the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 research satellite are summarized for the period 1973 through 1976.

  11. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    DTIC Science & Technology

    2015-08-27

    accuracy of aerosol speciation in NAAPS through the use of a 3-D aerosol assimilation method on satellite-based lidar observations and a generalized...future. Evaluating MODIS collection 6 dark target over water aerosol products for multi-sensor data fusion (Shi et al. 2014: presented at the 2014 AGU...Lee, Evaluating MODIS Collection 6 Dark Target Over Water Aerosol Products for Multi-sensor Data Fusion , Abstract A21F-3093, presented at 2014 Fall

  12. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  13. Ozone column content variability at the Kishinev site from satellite retrievals and ground observations

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    It is analyzed variability of the total ozone content (TOC) in column of atmosphere by using ozone retrievals from satellite platform and from direct ground observations at the Kishinev site, Moldova (47.00N; 28.56E). Direct ground observations of the TOC are regular carried out by Atmospheric Research Group (ARG), Institute of Applied Physics at the ground-based solar radiation monitoring station, Kishinev site, by using of hand-held ozonemeter MICROTOPS II. TOC measurements started since 2003. Data of ozone observations are presented at the research group web-site http://arg.phys.asm.md. Satellite TOC dataset at specific coordinates of Kishinev site was derived by using linear interpolation of the parent gridded databases from TOMS (1979-2004) and OMI (2005-2008) observations. It was established that relative difference of TOC between periods from 1979 to 1983 and from 2004 to 2008 was -5.16 %. Data were processed by applying of 5-year averaging "window". For a period from 1979 to 2008 statistical estimation of linear trend of the TOC was -2.08% per decade. Climatic norm of TOC for this period was equal to 335 DU. Variation of ozone column content at Kishinev site shows it seasonal character with maximum of the order of ~378 DU (in March and April) and with minimum of the order of ~289 DU (in October). The largest and lowest range of oscillations of monthly means of the TOC retrieved for Kishinev site from TOMS and OMI observations in the course of the period from 1979 to 2008 were ~ 102 DU (in February) and ~29 DU (in October). Extremely low and high values of the TOC ever registered for Kishinev site from TOMS and OMI observations were ~ 209 DU (on December 1, 1999) and ~ 532 DU (on March 3, 1988). It was shown that ARG ground observations give overestimated TOC values in comparison with the TOMS and OMI observations from satellite platforms. Relative differences or biases (in %) between satellite and ARG ground observations of the TOC at Kishinev site were

  14. Can we observe and study the Mediterranean outflow and meddies from satellite remote sensing?

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Hai; Jo, Young-Heon; Liu, W. Timothy; He, Ming-Xia

    2004-02-01

    Previous studies of the Mediterranean outflow and meddies (O&M) were limited by poor spatial and temporal resolution of the conventional observations. Little is known about meddies formation and transport, and the spatial and temporal variation of its trajectories. Generally speaking, most of the satellite observations are confined to the ocean's surface or its surface layer, while meddies were located, on an average, at a depth of 1000m. We developed a new remote sensing method to observe and study the O&M through unique approaches in satellite multi-sensor data integration analyses. Satellite altimeter, scatterometer, SST and XBT data were used to detect and calculate the trajectories and the relative transport of the O&M. We found that more northwestward meddies occurred in the spring and more southward meddies occurred in the fall than previously thought. Since the O&M play a significant role in carrying salty water from the Mediterranean into the Atlantic and contribute to the North Atlantic Deep Water (NADW) formation, such new knowledge about their trajectories, transport and life histories is important to understand their mixing and interaction with the North Atlantic water, adn hence, to lead to a better understanding of the global ocean circulation and the global change.

  15. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  16. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  17. OBSERVATIONS AND ANALYSIS OF MUTUAL EVENTS BETWEEN THE URANUS MAIN SATELLITES

    SciTech Connect

    Assafin, M.; Vieira-Martins, R.; Braga-Ribas, F.

    2009-04-15

    Every 42 years, the Earth and the Sun pass through the plane of the orbits of the main satellites of Uranus. In these occasions, mutual occultations and eclipses between these bodies can be seen from the Earth. The current Uranus equinox from 2007 to 2009 offers a precious opportunity to observe these events. Here, we present the analysis of five occultations and two eclipses observed from Brazil during 2007. For the reduction of the CCD images, we developed a digital coronagraphic method that removed the planet's scattered light around the satellites. A simple geometric model of the occultation/eclipse was usedmore » to fit the observed light curves. Dynamical quantities such as the impact parameter, the relative speed, and the central time of the event were then obtained with precisions of 7.6 km, 0.18 km s{sup -1}, and 2.9 s, respectively. These results can be further used to improve the parameters of the dynamical theories of the main Uranus satellites.« less

  18. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    NASA Astrophysics Data System (ADS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  19. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  20. Satellite Analyses of Cirrus Cloud Properties During the FIRE Phase 2 Cirrus Intensive Field Observations over Kansas

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide

    1992-01-01

    The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.

  1. Paddy field mapping and yield estimation by satellite imagery and in situ observations

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.

    2011-12-01

    Since Asian countries are responsible for approximately 90% of the world rice production and consumptions, rice is the most significant cereal crop in Asia. In order to ensure food security and take mitigation strategies or policies to manage food shortages, timely and accurate statistics of rice production are essential. It is time and cost consuming work to create accurate statistics of rice production by ground-based measurements. Hence, satellite remote sensing is expected to contribute food security through the systematic collection of food security related information such as crop growth or yield estimation. In 2011, Japan Aerospace Exploration Agency (JAXA) is collaborating with GISTDA (Geo-Informatics and Space Technology Development Agency, Thailand) in research projects of rice yield estimation by integrating satellite imagery and in situ data. Thailand is one of the largest rice production countries and the largest rice exporting country, therefore rice related statistics are imperative for food security and economy in the country. However, satellite observation by optical sensor in tropics including Thailand is highly limited, because the area is frequently covered by cloud. In contrast, Japanese microwave sensor, namely Phased-Array L-Band Synthetic Aperture Radar (PALSAR) on board Advanced Land Observing Satellite (ALOS) is suitable for monitoring cloudy area such as Southeast Asia, because PALSAR can penetrate clouds and collect land-surface information even if the area is covered by cloud. In this study, rice crop yield over Khon Kaen, northeast part of Thailand was estimated by combining satellite imagery and in-situ observation. This study consists of mainly two parts, paddy field mapping and yield estimation by numerical crop model. First, paddy field areas were detected by integrating PALSAR and AVNIR-2 data. PALSAR imagery has much speckle noise and the border of each landcover is ambiguous compared to that of optical sensor. To overcome this

  2. Global Temperature Assimilation using Artificial Neural Networks in SPEEDY Model: Satellite Observation

    NASA Astrophysics Data System (ADS)

    Cintra, R.; Campos Velho, H.

    2012-04-01

    An Artificial Neural Network (ANN) is designed to investigate a application for data assimilation. This procedure provides an appropriated initial condition to the atmosphere to numerical weather prediction (NWP). The NWP incorporates the equations of atmospheric dynamics with physical process and it can predict the future state of the atmosphere. Data assimilation procedure combines information from observations and from a prior short-term forecast producing an current state estimate. Operational satellite data are taken and processed in real-time and distributed around the world. The use of observations from the earth-orbiting satellites in operational NWP provides large data volumes and increases the computational effort. The goal here is to simulate the process for assimilating temperature data computed from satellite radiances and introduce new technique in analysis to Weather Forecasting and climate. This performance can be faster than conventional schemes for data assimilation. The numerical experiment is carried out with global model: the Simplified Parameterizations, primitivE-Equation DYnamics (SPEEDY) and the synthetic observations of temperatures from model plus a random noise. For the data assimilation technique was applied a Multilayer Perceptron (MLP-NN) with supervised training, which observation, local point observation and the Local Ensemble Transform Kalman Filter (LETKF) analysis are used as input vector. The global analysis is done in the activation MLP-NN with only, synthetic observation and its local point. In this experiment, the MLP-ANN was trained with the first six months considering the years 1982, 1983, and 1984 data. A hindcasting experiment for data assimilation performed a cycle for January of 1985 with MLP-NN and SPEEDY model. LETKF was performed at the same cycle. The results for MLP-NN analysis are very close with the results obtained from LETKF. The simulations show that the major advantage of using ANN is the better

  3. Recent changes in stratospheric aerosol budget from ground-based and satellite observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry

    2017-04-01

    Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background

  4. Development of SELENE small sub-satellites: Rstar and Vstar for lunar gravity field observation

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Minamino, H.; Namiki, N.; Hanada, H.; Kawano, N.; Takano, T.

    Two small sub-satellites Relay Satellite Rstar and VLBI Radio Satellite Vstar which are separated from SELENE Main Orbiter will execute four-way Doppler measurements and differential VLBI observation to make global mapping of the lunar gravity field These sub-satellites are requested to be simply structured light weighted and optimized for the selenodesy mission We have therefore adopted spin stabilization without thrusters to control orbits and attitudes which yield precise measurements of orbit perturbed by lunar gravity field We developed a low-mass type release mechanism which consists of two rings connected with 24 stretching bow springs Characteristic of the mechanism have been confirmed by the ground tests and displayed on orbit using Micro-Lab Sat We also develop four-way tracking system to track two fully moving links between lunar orbiters The transponder to receive a signal from the lunar satellite and to send a signal to an earth station has been designed by the concept of a broadband receiver instead of a PLL receiver By this concept a troublesome and difficult operation of carrier acquisition can be omitted on the last link of the four-way tracking Performances of the four-way signal acquiring process have been examined by the compatibility tests at the ground station which shows the enough performances to track two moving links between the lunar orbits Properties of the light weighted S-band patch antenna and S X-band dipole antenna have also been adjusted by ground tests The S X-band dipole antenna should have a beam wide

  5. GEO Satellite Characterization through Polarimetry using Simultaneous Observations from nearby Optical Sensors

    NASA Astrophysics Data System (ADS)

    Cegarra Polo, M.; Alenin, A.; Vaughn, I.; Lambert, A.

    2016-09-01

    Polarimetry has shown capacity for both geometry inference and material classification in recent years. By carefully selecting a polarimetric modality with higher contrast for the objects of interest, it becomes possible to discriminate those objects by leveraging the understanding of differing geometry, material characteristics, and its mapping into consequent polarisation measurements. Expansion of the measurement dimensionality increases the potential to discriminate unresolved objects, thereby widening the possible set of imaging tasks. The use of polarimetry as a technique to characterise non-resolved GEO satellites using telescopes of small aperture (less than 0.5 meters) is currently under study by the Space Research Group in UNSW Canberra. First experiments are currently being performed in order to evaluate the use of this technique to characterise GEO satellites. A comparison of both polarimetric and irradiance only acquisitions is being implemented. Two telescopes separated by 1000m are used for the experiments. One of them (USAFA funded Falcon Telescope Network) has the capability to be remote controlled and time tasks assigned, and the other can be operated on-site and is connected to a computer in a network which can control the former with known latency, both synchronised by the same GPS clock. A linear polariser is situated in a collimated beam section of the light path in one of the telescopes to capture polarised photometric measurements, while the other is acquiring the non-polarised photometric signature of the same GEO satellite under observation. The telescope detectors are to be radiometrically calibrated to one another in order to evaluate the photometric data at the same scale. We evaluate the polarised and non-polarised synchronous time photometric curves as a preliminary test to determine satellite signature and its variation over time. We report on the discrimination of unresolved satellites and the merit of including polarisation sensing

  6. Radiation Environment at GEO from the FY2G Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2016-12-01

    WANG Chun-Qin1,2*, Zhang Shen-Yi1,2 Jing Tao1,2, Zhang Huan-Xin1,2 Li Jia-Wei3 Zhang Xiao-Xin3 Sun Yue-Qiang1,2 Liang Jin-Bao1,2 Wei Fei1,2 Shen Guo-Hong1,2 Huang Cong3 Shi Chun-Yan1,21.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; 2.Beijing Key Laboratory of Space Environment Exploration, Beijing 100190,China 3.National Satellite Meteorological Center, National Center for Space Weather, Beijing 100081, China; Abstract Recent measurements of the high energy electrons and protons with energetic particle instrument carried on the FY-2G satellite are presented. The instrument consist of two detectors-the high energy electrons instrument which can measure 200keV to greater than 4MeV electrons with eleven channels, and the high energy protons and heavy ions instrument which mainly senses incident flux of solar protons with seven channels from 4MeV to 300 MeV. The paper shows electrons and protons observations from Jan 2015 until Oct 2015. A precise description and preliminary analysis of particle dynamic during disturbances of magnetic storms、substorms and solar eruptions suggest that both of the detectors show accurate response to various disturbances and provide refined particles data. Comparison results of FY2G satellite with GOES series satellites reflect obvious local difference in particle flux evolvement especially during intensive disturbances time, which can be helpful for data assimilation of multi-satellite as well as further research in more complicated magnetosphere energy particle dynamic.

  7. POD experiments using real and simulated time-sharing observations for GEO satellites in C-band transfer ranging system

    NASA Astrophysics Data System (ADS)

    Fen, Cao; XuHai, Yang; ZhiGang, Li; ChuGang, Feng

    2016-08-01

    The normal consecutive observing model in Chinese Area Positioning System (CAPS) can only supply observations of one GEO satellite in 1 day from one station. However, this can't satisfy the project need for observing many GEO satellites in 1 day. In order to obtain observations of several GEO satellites in 1 day like GPS/GLONASS/Galileo/BeiDou, the time-sharing observing model for GEO satellites in CAPS needs research. The principle of time-sharing observing model is illuminated with subsequent Precise Orbit Determination (POD) experiments using simulated time-sharing observations in 2005 and the real time-sharing observations in 2015. From time-sharing simulation experiments before 2014, the time-sharing observing 6 GEO satellites every 2 h has nearly the same orbit precision with the consecutive observing model. From POD experiments using the real time-sharing observations, POD precision for ZX12# and Yatai7# are about 3.234 m and 2.570 m, respectively, which indicates the time-sharing observing model is appropriate for CBTR system and can realize observing many GEO satellites in 1 day.

  8. NOAA Observing System Integrated Analysis (NOSIA): development and support to the NOAA Satellite Observing System Architecture

    NASA Astrophysics Data System (ADS)

    Reining, R. C.; Cantrell, L. E., Jr.; Helms, D.; LaJoie, M.; Pratt, A. S.; Ries, V.; Taylor, J.; Yuen-Murphy, M. A.

    2016-12-01

    There is a deep relationship between NOSIA-II and the Federal Earth Observation Assessment (EOA) efforts (EOA 2012 and 2016) chartered under the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, co-chaired by the White House Office of Science and Technology Policy, NASA, NOAA, and USGS. NOSIA-1, which was conducted with a limited scope internal to NOAA in 2010, developed the methodology and toolset that was adopted for EOA 2012, and NOAA staffed the team that conducted the data collection, modeling, and analysis effort for EOA 2012. EOA 2012 was the first-ever integrated analysis of the relative impact of 379 observing systems and data sources contributing to the key objectives identified for 13 Societal Benefit Areas (SBA) including Weather, Climate, Disasters, Oceans and Coastal Resources, and Water Resources. This effort culminated in the first National Plan for Civil Earth Observations. NOAA conducted NOSIA-II starting in 2012 to extend the NOSIA methodology across all of NOAA's Mission Service Areas, covering a representative sample (over 1000) of NOAA's products and services. The detailed information from NOSIA-II is being integrated into EOA 2016 to underpin a broad array of Key Products, Services, and (science) Objectives (KPSO) identified by the inter-agency SBA teams. EOA 2016 is expected to provide substantially greater insight into the cross-agency impacts of observing systems contributing to a wide array of KPSOs, and by extension, to societal benefits flowing from these public-facing products. NOSIA-II is being adopted by NOAA as a corporate decision-analysis and support capability to inform leadership decisions on its integrated observing systems portfolio. Application examples include assessing the agency-wide impacts of planned decommissioning of ships and aircraft in NOAA's fleet, and the relative cost-effectiveness of alternative space-based architectures in the post-GOES-R and JPSS era

  9. Determination of the plasmapause boundary using ground magnetometer field line resonances, satellite observations, and modeling

    NASA Astrophysics Data System (ADS)

    Zesta, E.; Boudouridis, A.; Jorgensen, A. M.; Yizengaw, E.; Chi, P. J.; Moldwin, M.; Carranza, T.; Mann, I. R.; Johnston, W. R.; Wilson, G. R.

    2012-12-01

    The plasmapause boundary layer (PBL) separates the cold and dense plasmaspheric plasma from the more tenuous and hot plasma sheet plasma and organizes the spatial distribution of ULF and VLF waves that can contribute to acceleration or loss processes of radiation belt particles through wave-particle interactions. The PBL has been traditionally determined by in situ observations and can be given by empirical models. Recent work has shown that a mid-latitude chain of well-spaced ground magnetometers can also determine the PBL boundary location. Spectral properties, like the cross-phase reversal between two stations closely aligned in latitude, have been shown to indicate the presence of a sharp PBL. We show here an example of such a PBL identification during the moderate storm of Nov 9-12, 2006. We combine observations from the SAMBA (South American Meridional B-field Array), MEASURE (Magnetometers along the Eastern Atlantic Seaboard for Undergraduate Research and Education), McMAC (Mid-continent Magnetoseismic Chain), and CARISMA ground magnetometer chains covering L values from L=2 to L=5 to statistically determine how commonly the PBL is determined from ground magnetometers. In our initial study we examine observations from June to December, 2006. We compare our PBL determinations with the determination of the same boundary from the Defense Meteorological Satellite Program (DMSP) satellites, based on the H+ density observations, which have been shown to accurately identify the PBL from a low-Earth orbiting satellite. We also compare our PBL identification with those determined from a global GPS TEC map and GPS TEC tomography technique used by a chain of ground GPS receivers. Finally, we compare our observations with results from the Dynamic Global Core Plasma Model (DGCPM), as well as existing empirical models based on in situ observations.

  10. Review: advances in in situ and satellite phenological observations in Japan

    NASA Astrophysics Data System (ADS)

    Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M.; Suzuki, Rikie

    2016-04-01

    To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.

  11. Tropical Cyclone Intensity, Structure and Track Observed with Multi-Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Yang, S.; Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2016-12-01

    Tropical cyclones (TCs) are among the most severe weather systems and can lead to catastrophic damage to human lives, properties, and society. A TC's intensity, structure and track are the major parameters for weather forecasts of TC activities. Satellite sensors provide the only method of global, near real-time observations of TC life cycles. Passive microwave sensors, such as Advanced Microwave Scanning Radiometer 2 (AMSR-2), Global Precipitation Measurement microwave imager (GMI), and Special Sensor Microwave Imager/Sounder (SSMIS), can present accurate analysis of TC intensity, center position, eyewall, and spiral convection zones because of the ability for microwave frequencies to penetrate clouds and observe hydrometeor structure. Multi-satellite sensors are required to provide a near real-time global coverage of TCs because each Low Earth Orbit (LEO) sensor can make observations twice per day over a given location. The Naval Research Laboratory-Monterey (NRL-MRY) TC web page is the one-stop site where people can search for all available TC microwave sensor observations and associated numerical weather prediction (NWP) TC forecasts for current TCs and historical TC datasets. This TC web page can provide information of near real-time TC observations and predictions for local/regional managements to make better decisions on mitigating potential TC damages. This presentation will describe recent advances on the rich resources of satellite-based TC observations and related NWP forecasts on the NRL-MRY TC web page, including the inter-sensor calibration on frequency shift between sensors for consistent view of TC brightness temperatures (TBs) among these sensors, recenter of TC position with the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) algorithm, and a new interpolation scheme to create a unified TC TB database. An improved TC track analysis and TC diurnal properties with this new TC TB database will also be presented and discussed for better

  12. Review: advances in in situ and satellite phenological observations in Japan.

    PubMed

    Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M; Suzuki, Rikie

    2016-04-01

    To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.

  13. KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data

    NASA Astrophysics Data System (ADS)

    Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg

    2015-04-01

    One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.

  14. Ionospheric perturbations in the equatorial region during strong earthquakes observed by DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Gwal, Ashok Kumar; Shivalika, Shivalika; Parrot, Michel

    Ionospheric perturbations in the equatorial region during strong earthquakes observed by DEMETER satellite A.K. Gwala, Shivalika Sarkara and M. Parrotb (a) Space Science Laboratory, Department of Physics, Barkatullah University, Bhopal 462026, India (b) LPCE/CNRS, 3A Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France Satellite data has proved to be very useful in studying the seismo-ionospheric effects in the equatorial latitudes. Some of the major seismic zones lie in the equatorial region. The equatorial ionosphere is highly dynamical and characterized by the existence of many irregularities. The attempts to understand the association between variations of the important plasma parameters (electron density, ion composition and temperature) and earthquakes in the equatorial region are discussed with help of some case studies in the equatorial region. Data from the Langmuir Probe instrument and Thermal Plasma Analyzer onboard DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite has been used for the study of the perturbations of the plasma parameters. The orbit of DEMETER is polar, circular with an altitude of 710 km. The considered examples show that during earthquake preparation the equatorial ionosphere has strong density zones in comparison with the ambient background level. A statistical analysis is also performed to confirm that the observed perturbations are due to seismic activity.

  15. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  16. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.

    2000-01-01

    Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.

  17. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.

    PubMed

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang; Tang, Zeyan; Cheng, Yongcun; Pichel, William G

    2013-06-15

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil spills, we performed two numerical simulations to simulate the trajectories of the oil spills with the GNOME (General NOAA Operational Modeling Environment) model. For the first time, we drive the GNOME with currents obtained from an operational ocean model (NCOM, Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (ASCAT, the Advanced Scatterometer). Both data sets are freely and openly available. The initial oil spill location inputs to the model are based on the detected oil spill locations from the SAR images acquired on June 11 and 14. Three oil slicks are tracked simultaneously and our results show good agreement between model simulations and subsequent satellite observations in the semi-enclosed shallow sea. Moreover, GNOME simulation shows that the number of 'splots', which denotes the extent of spilled oil, is a vital factor for GNOME running stability when the number is less than 500. Therefore, oil spill area information obtained from satellite sensors, especially SAR, is an important factor for setting up the initial model conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Some properties of trans-equatorial ion whistlers observed by Isis satellites during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Watanabe, S.; Ondoh, T.

    1986-01-01

    Several ion whistlers were observed by the polar orbiting satellites, Isis, during geomagnetic storms associated with large solar flares in 1982. It seems that the proton density ratio to the total ions deduced from the crossover frequency of the transequatorial ion whistlers observed at geomagnetic low latitudes during the main phase of the geomagnetic storm on July 14, 1982 was lower than the usual density ratio. An anomalous pattern seen on the time-compressed dynamic spectra of the ion whistlers on September 6, 1982 may suggest the existence of effects by the component He(3+) in a quite small amount.

  19. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  20. Satellite-observed sensitivity of weather condition for predicting malaria vector distribution in Bandarban district, Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Rahman, Atiqur; Roytman, Leonid; Kogan, Felix; Powell, Al; Goldberg, Mitch

    2009-05-01

    A better understanding of the relationship between malaria epidemics, satellite data and the climatic anomalies could help mitigate the world-wide increase in incidence of the mosquitotransmitted diseases. This paper analyzes correlation between malaria cases and vegetation health (VH) Indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI)) computed for each week over a period of 14 years (1992-2005). Following the results of correlation analysis the principal components regression (PCR) method was performed on weather components (TCI, VCI) of satellite data and climate variability during each of the two annual malaria seasons to construct a model to predict malaria as a function of the VH. A statistically significant relation was found between malaria cases and TCI during the month of June-July and September-October. Furthermore the simulated results found from PCR model were compared with observed malaria statistics showing that the error of the estimates of malaria is 5%.

  1. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  2. Ozone Pollution, Transport and Variability: Examples from Satellite and In-Situ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    Regional and intercontinental transport of ozone has been observed from satellite, aircraft and sounding data. Over the past several years, we have developed new tropospheric ozone retrieval techniques from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses Level 2 total ozone and was used to follow the 1997 fires in the wake of the El-Nino-related fires in southeast Asia and the Indonesian maritime continent. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) is a newer algorithm that uses TOMS radiances directly to extract tropospheric ozone. Ozonesonde data that have been taken in campaigns (e.g. TRACE-P) and more consistently in the SHADOZ (Southern Hemisphere Additional Ozonesondes) project, reveal layers of pollution traceable with trajectories. Examples will be shown of long-range transport and recirculation over Africa during SAFARI-2000.

  3. Satellite and aircraft passive microwave observations during the Marginal Ice Zone Experiment in 1984

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.

    1988-01-01

    This paper compares satellite data on the marginal ice zone obtained during the Marginal Ice Zone Experiment in 1984 by Nimbus 7 with simultaneous mesoscale aircraft (in particular, the NASA CV-990 airborne laboratory) and surface observations. Total and multiyear sea ice concentrations calculated from the airborne multichannel microwave radiometer were found to agree well with similar calculations using the Nimbus SMMR data. The temperature dependence of the determination of multiyear sea-ice concentration near the melting point was found to be the same for both airborne and satellite data. It was found that low total ice concentrations and open-water storm effects near the ice edge could be reliably distinguished by means of spectral gradient ratio, using data from the 0.33-cm and the 1.55-cm radiometers.

  4. Local cooling and warming effects of forests based on satellite observations.

    PubMed

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-03-31

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.

  5. Application of satellite data in observational and theoretical studies of the evolving structure of baroclinic waves

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1987-01-01

    A variety of observational and theoretical studies were performed which were designed to clarify the relationship between satellite measurements of cloud and radiation and the evolution of transient and stationary circulation in middle latitudes. Satellite outgoing longwave radiation data are used to: (1) estimate the generation of available potential energy due to infrared radiation, and (2) show the extent to which these data can provide the signature of high and low frequency weather phenomena including blocking. In a significant series of studies the nonlinear, energetical, and predictability properties of these blocking situations, and the ralationship of blocking to the planetary, scale longwave structure are described. These studies form the background for continuing efforts to describe and theoretically account for these low frequency planetary wave phenomena in terms of their bimodal properties.

  6. Contrasting trends in light pollution across Europe based on satellite observed night time lights

    PubMed Central

    Bennie, Jonathan; Davies, Thomas W.; Duffy, James P.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Since the 1970s nighttime satellite images of the Earth from space have provided a striking illustration of the extent of artificial light. Meanwhile, growing awareness of adverse impacts of artificial light at night on scientific astronomy, human health, ecological processes and aesthetic enjoyment of the night sky has led to recognition of light pollution as a significant global environmental issue. Links between economic activity, population growth and artificial light are well documented in rapidly developing regions. Applying a novel method to analysis of satellite images of European nighttime lights over 15 years, we show that while the continental trend is towards increasing brightness, some economically developed regions show more complex patterns with large areas decreasing in observed brightness over this period. This highlights that opportunities exist to constrain and even reduce the environmental impact of artificial light pollution while delivering cost and energy-saving benefits. PMID:24445659

  7. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  8. Local cooling and warming effects of forests based on satellite observations

    PubMed Central

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-01-01

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529

  9. Evaluation of methods to derive green-up dates based on daily NDVI satellite observations

    NASA Astrophysics Data System (ADS)

    Doktor, Daniel

    2010-05-01

    Bridging the gap between satellite derived green-up dates and in situ phenological observations has been the purpose of many studies over the last decades. Despite substantial advancements in satellite technology and data quality checks there is as yet no universally accepted method for extracting phenological metrics based on satellite derived vegetation indices. Dependent on the respective method derived green-up dates can vary up to serveral weeks using identical data sets. Consequently, it is difficult to compare various studies and to accurately determine an increased vegetation length due to changing temperature patterns as observed by ground phenological networks. Here, I compared how the characteristic NDVI increase over temperate deciduous forests in Germany in spring relates to respective budburst events observed on the ground. MODIS Terra daily surface reflectances with a 250 m resolution (2000-2008) were gathered to compute daily NDVI values. As ground truth, observations of the extensive phenological network of the German Weather Service were used. About 1500 observations per year and species (Beech, Oak and Birch) were available evenly distributed all over Germany. Two filtering methods were tested to reduce the noisy raw data. The first method only keeps NDVI values which are classified as ‚ideal global quality' and applies on those a temporal moving window where values are removed which differ more than 20% of the mean. The second method uses an adaptation of the BISE (Best Index Slope Extraction) algorithm. Subsequently, three functions were fitted to the selected observations: a simple linear interpolation, a sigmoidal function and a double logistic sigmoidal function allowing to approximate two temporally separated green-up signals. The green-up date was then determined at halfway between minimum and maximum (linear interpolation) or at the inflexion point of the sigmoidal curve. A number of global threshold values (NDVI 0.4,0.5,0.6) and

  10. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  11. Application of a Topological Metric for Assessing Numerical Ocean Models with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Morey, S. L.; Dukhovskoy, D. S.; Hiester, H. R.; Garcia-Pineda, O. G.; MacDonald, I. R.

    2015-12-01

    Satellite-based sensors provide a vast amount of observational data over the world ocean. Active microwave radars measure changes in sea surface height and backscattering from surface waves. Data from passive radiometers sensing emissions in multiple spectral bands can directly measure surface temperature, be combined with other data sources to estimate salinity, or processed to derive estimates of optically significant quantities, such as concentrations of biochemical properties. Estimates of the hydrographic variables can be readily used for assimilation or assessment of hydrodynamic ocean models. Optical data, however, have been underutilized in ocean circulation modeling. Qualitative assessments of oceanic fronts and other features commonly associated with changes in optically significant quantities are often made through visual comparison. This project applies a topological approach, borrowed from the field of computer image recognition, to quantitatively evaluate ocean model simulations of features that are related to quantities inferred from satellite imagery. The Modified Hausdorff Distance (MHD) provides a measure of the similarity of two shapes. Examples of applications of the MHD to assess ocean circulation models are presented. The first application assesses several models' representation of the freshwater plume structure from the Mississippi River, which is associated with a significant expression of color, using a satellite-derived ocean color index. Even though the variables being compared (salinity and ocean color index) differ, the MHD allows contours of the fields to be compared topologically. The second application assesses simulations of surface oil transport driven by winds and ocean model currents using surface oil maps derived from synthetic aperture radar backscatter data. In this case, maps of time composited oil coverage are compared between the simulations and satellite observations.

  12. Magnetic ripples observed by Swarm satellites and their enhancement during typhoon activity

    NASA Astrophysics Data System (ADS)

    Aoyama, Tadashi; Iyemori, Toshihiko; Nakanishi, Kunihito

    2017-07-01

    The Swarm satellites observed small-amplitude (0.1-5 nT) magnetic fluctuations perpendicular to the geomagnetic field. These so-called magnetic ripples (MRs) have a period of around a few tens of seconds along the satellite orbit in the topside ionosphere at middle and low latitudes. They are spatial structures from small-scale field-aligned currents. We investigated the following three characteristics of the MRs. First, we used Swarm observations to confirm their basic characteristics obtained from the Challenging Minisatellite Payload satellite. That is, the global distribution of the average MR amplitudes has clear geographic, seasonal, and local time dependence that is highly correlated with ionospheric conductivities. Second, we found that the average amplitudes of the MRs derived from the Swarm-B satellite, which flies at a 50 km higher altitude, are slightly smaller than those of the Swarm-A and Swarm-C. This difference suggests that the location of the origin of MRs is below 460 km altitude, i.e., not in the magnetosphere. Last, to provide evidence of correlation between the MRs and meteorological phenomena, we performed statistical and event analyses with typhoon track data, which are a source of acoustic and gravity waves. The data from 54 typhoons during the period from November 26, 2013, to July 31, 2016, were used for statistical analysis. The results show that the average amplitudes of the MRs during typhoon activity on the dawn, dusk, and night sides are larger than those during non-typhoon conditions. Event analyses indicate amplitude enhancements of the MRs around typhoons, and the latitude of the enhancement migrated with the typhoon. These analyses indicate that typhoon activity is correlated with MR activity and that cumulus convection activity other than typhoons may also affect MR amplitudes.[Figure not available: see fulltext.

  13. Mapping man-made CO2 emissions using satellite-observed nighttime lights

    NASA Astrophysics Data System (ADS)

    Oda, T.; Maksyutov, S. S.; Andres, R. J.; Elvidge, C.; Baugh, K.; Hsu, F. C.; Roman, M. O.

    2015-12-01

    The Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) is a global high spatial resolution (1x1km) emission dataset for CO2 emissions from fossil fuel combustion. The original version of ODIAC was developed at the Japanese Greenhouse Gas Observing Satellite (GOSAT) project to prescribe their inverse model. ODIAC first introduced the combined use of satellite-observed nighttime light data and individual power plant emission/geolocation information to estimate the spatial extent of fossil fuel CO2. The ODIAC emission data has been widely used by the international carbon cycle research community and appeared in a number of publications in the literature. Since its original publication in 2011, we have made numerous modifications to the ODIAC emission model and the emission data have been updated on annual basis. We are switching from BP statistical data based emission estimates to estimates made by Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory. In recent versions of ODIAC data, the emission seasonality has been adopted from the CDIAC monthly emission dataset. The emissions from international bunkers, which are not included in the CDIAC gridded emission data, are estimated using the UN Energy Database and included with the spatial distributions. In the next version of ODIAC emission model, we will explore the use of satellite data collected by the NASA's Suomi National Polar-orbiting Partnership (NPP) satellite. We will estimate emission spatial distributions using global 500x500m nighttime lights data created from VIIRS data. We will also utilize a combustion detection algorithm Nightfire developed at NOAA National Geophysical Data Center to map gas flaring emissions. We also plan to expand our two emission sector emission distributing approach (power plant emission and non-point source emissions) by introducing a transportation emission sector which should improve emission distributions in urban and rural areas.

  14. Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic

  15. Mars Operational Environmental Satellite (MOES): A post-Mars Observer discovery mission

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1993-01-01

    Mars Operational Environmental Satellite (MOES) is a Discovery concept mission that is designed to observe the global short-term weather phenomena on Mars in a systematic fashion. Even after the Mariner, Viking, and, soon, Mars Observer missions, crucial aspects of the martian atmosphere will remain unobserved systematically. Achieving a better understanding of the cycles of dust, water vapor, and ices on Mars requires detailed information about atmospheric transports of those quantities associated with the weather systems, particularly those arising in mid latitudes during fall and winter. It also requires a quantitive understanding of the processes responsible for the onset and evolution of dust storms on all scales. Whereas on Earth the system of geosynchronous and polar orbiting satellites provides continuous coverage of the weather systems, on Mars the time history of important events such as regional and global dust storms remains unobserved. To understand the transport of tracers in the martian atmosphere and particularly to identify their sources and sinks, it is necessary to have systematic global, synoptic observations that have yet to be attained. Clearly these requirements are not easy to achieve from a single spacecraft in orbit, but if we focus on specific regions of the planet, e.g., polar vs. low and mid latitudes, then it is possible to attain a nearly ideal coverage at a reasonable spatial and temporal resolution with a system of just two satellites. Mars Observer is about to yield good coverage of the polar latitudes, so we focus initially on the region not covered well in terms of diurnal coverage, and in terms of desired observations will provide the initial data for the numerical models of the martian weather and climate that can be verified only with better temporal and spatial data.

  16. Mars Operational Environmental Satellite (MOES): A post-Mars Observer discovery mission

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.

    Mars Operational Environmental Satellite (MOES) is a Discovery concept mission that is designed to observe the global short-term weather phenomena on Mars in a systematic fashion. Even after the Mariner, Viking, and, soon, Mars Observer missions, crucial aspects of the martian atmosphere will remain unobserved systematically. Achieving a better understanding of the cycles of dust, water vapor, and ices on Mars requires detailed information about atmospheric transports of those quantities associated with the weather systems, particularly those arising in mid latitudes during fall and winter. It also requires a quantitive understanding of the processes responsible for the onset and evolution of dust storms on all scales. Whereas on Earth the system of geosynchronous and polar orbiting satellites provides continuous coverage of the weather systems, on Mars the time history of important events such as regional and global dust storms remains unobserved. To understand the transport of tracers in the martian atmosphere and particularly to identify their sources and sinks, it is necessary to have systematic global, synoptic observations that have yet to be attained. Clearly these requirements are not easy to achieve from a single spacecraft in orbit, but if we focus on specific regions of the planet, e.g., polar vs. low and mid latitudes, then it is possible to attain a nearly ideal coverage at a reasonable spatial and temporal resolution with a system of just two satellites. Mars Observer is about to yield good coverage of the polar latitudes, so we focus initially on the region not covered well in terms of diurnal coverage, and in terms of desired observations will provide the initial data for the numerical models of the martian weather and climate that can be verified only with better temporal and spatial data.

  17. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  18. Improving the Transition of Earth Satellite Observations from Research to Operations

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  19. Combining satellite observations to develop a global soil moisture product for near-real-time applications

    NASA Astrophysics Data System (ADS)

    Enenkel, Markus; Reimer, Christoph; Dorigo, Wouter; Wagner, Wolfgang; Pfeil, Isabella; Parinussa, Robert; De Jeu, Richard

    2016-10-01

    The soil moisture dataset that is generated via the Climate Change Initiative (CCI) of the European Space Agency (ESA) (ESA CCI SM) is a popular research product. It is composed of observations from 10 different satellites and aims to exploit the individual strengths of active (radar) and passive (radiometer) sensors, thereby providing surface soil moisture estimates at a spatial resolution of 0.25°. However, the annual updating cycle limits the use of the ESA CCI SM dataset for operational applications. Therefore, this study proposes an adaptation of the ESA CCI product for daily global updates via satellite-derived near-real-time (NRT) soil moisture observations. In order to extend the ESA CCI SM dataset from 1978 to present we use NRT observations from the Advanced Scatterometer on-board the two MetOp satellites and the Advanced Microwave Scanning Radiometer 2 on-board GCOM-W. Since these NRT observations do not incorporate the latest algorithmic updates, parameter databases and intercalibration efforts, by nature they offer a lower quality than reprocessed offline datasets. In addition to adaptations of the ESA CCI SM processing chain for NRT datasets, the quality of the NRT datasets is a main source of uncertainty. Our findings indicate that, despite issues in arid regions, the new CCI NRT dataset shows a good correlation with ESA CCI SM. The average global correlation coefficient between CCI NRT and ESA CCI SM (Pearson's R) is 0.80. An initial validation with 40 in situ observations in France, Spain, Senegal and Kenya yields an average R of 0.58 and 0.49 for ESA CCI SM and CCI NRT, respectively. In summary, the CCI NRT product is nearly as accurate as the existing ESA CCI SM product and, therefore, of significant value for operational applications such as drought and flood forecasting, agricultural index insurance or weather forecasting.

  20. Study of sub-auroral radio emissions observed by ICE experiment onboard DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Mogilevski, M. M.; Sawas, S.; Blecki, J.; Berthelier, J. J.; Voller, W.

    2012-04-01

    We report on the terrestrial kilometric and hectometric radio emissions recorded by the DEMETER/ICE (Instrument Champ Electrique) experiment. This instrument measures the electric field components of electromagnetic and electrostatic waves in the frequency range from DC to 3.25 MHz. Despite the limited satellite invariant latitude (data acquisition below about 65°), specific events have been observed, close to the sub-auroral region, in the frequency range from 100 kHz to about 1 MHz. This range covers the well-known auroral kilometric radiation (AKR), the terrestrial kilometric continuum, and the sub-auroral terrestrial emission at higher frequency up to 3 MHz. The high spectral capability of the experiment leads us to distinguish between the bursty and the continuum emissions. Selected events have been found to principally occur in the late evening and early morning sectors of the magnetosphere (22 MLT - 02 MLT) but others have been observed on the dayside. Our first results are compared to previous radio observations performed on board INTERBALL-1 (Kuril'chik et al, Cosmic Research, 43, 2005) and GEOTAIL (Hashimoto et al., JGR, 104, 1999) satellites. We also discuss the common and different features of the Earth and Jovian radio emissions. We emphasis on the observational parameters: the occurrence probability, the emission beam and the spectral emission types. We show that the physical interpretation of the auroral phenomena needs a good knowledge of the geometric configuration of the source and observer and the reception system (antenna beam and receivers).

  1. The utility of satellite observations for constraining fine-scale and transient methane sources

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  2. Model Evaluation with Multi-wavelength Satellite Observations Using a Neural Network

    NASA Astrophysics Data System (ADS)

    Kolassa, Jana; Jimenez, Carlos; Aires, Filipe

    2013-04-01

    A methodology has been developed to evaluate fields of modelled parameters against a set of satellite observations. The method employs a Neural Network (NN) to construct a statistical model capturing the relationship between the satellite observations and the parameter from a land surface model, in this case the Soil Moisture (SM). This statistical model is then used to estimate the parameter of interest from the set of satellite observations. These estimates are compared to the modelled parameter in order to detect local deviations indicating a possible problem in the model or in the satellite observations. Several synthetic tests, during which an artificial error was added to the"true" soil moisture fields, showed that the methodology is able to correct the errors (Jimenez et al., submitted, 2012). This evaluation technique is very general and can be applied to any modelled parameter for which sensitive satellite observations are available. The use of NNs simplifies the evaluation of the model against satellite observations and is particularly well-suited to utilize the synergy from the observations at different wavelengths (Aires et al., 2005, 2012). In this study the proposed methodology has been applied to evaluate SM fields from a number of land surface models against a synergy of satellite observations from passive and active microwave, infrared and visible sensors. In an inter-comparison of the performance of several land surface models (ORCHIDEE (de Rosnay et al., 2002), HTESSEL (Balsamo et al., 2009), JULES (Best et al., 2011) ) it was found that the soil moisture fields from JULES, HTESSEL and ORCHIDEE are very consistent with the observations, but ORCHIDEE soil moisture shows larger local deviations close to some river basins (Kolassa et al., in press, 2012; Jimenez et al., submitted, 2012). Differences between all models and the observations could also be observed in the Eastern US and over mountainous regions, however, the errors here are more likely

  3. Performance of a New Satellite Retrieval Scheme for Observations of Lake Surface Temperature

    NASA Astrophysics Data System (ADS)

    MacCallum, Stuart N.; Merchant, Christopher J.

    2010-12-01

    Lakes are a vital component of the Earth's fresh water resources, and are of fundamental importance for terrestrial life. Lake water temperature is one of the key parameters determining ecological conditions within a lake, as it influences both chemical and biological processes. In addition to the impact on lake ecology, lake water temperatures determine air-water heat and moisture exchanges, and are therefore vital for understanding the hydrological cycle. Lake surface temperature (LST) and lake ice cover (LIC) observations therefore have potential environmental and meteorological applications for inland water management and numerical weather prediction (NWP). The series of (Advanced) Along Track Scann