Science.gov

Sample records for a-type hecke algebras

  1. Eisenstein Hecke algebras and Iwasawa theory

    NASA Astrophysics Data System (ADS)

    Wake, Preston

    We show that if an Eisenstein component of the p-adic Hecke algebra associated to modular forms is Gorenstein, then it is necessary that the plus-part of a certain ideal class group is trivial. We also show that this condition is sufficient whenever a conjecture of Sharifi holds. We also formulate a weaker Gorenstein property, and show that this weak Gorenstein property holds if and only if a weak form of Sharifi's conjecture and a weak form of Greenberg's conjecture hold.

  2. Spherical Hecke algebra in the Nekrasov-Shatashvili limit

    NASA Astrophysics Data System (ADS)

    Bourgine, Jean-Emile

    2015-01-01

    The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ɛ 2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.

  3. Two-rowed Hecke algebra representations at roots of unity

    NASA Astrophysics Data System (ADS)

    Welsh, Trevor Alan

    1996-02-01

    In this paper, we initiate a study into the explicit construction of irreducible representations of the Hecke algebraH n (q) of typeA n-1 in the non-generic case whereq is a root of unity. The approach is via the Specht modules ofH n (q) which are irreducible in the generic case, and possess a natural basis indexed by Young tableaux. The general framework in which the irreducible non-genericH n (q)-modules are to be constructed is set up and, in particular, the full set of modules corresponding to two-part partitions is described. Plentiful examples are given.

  4. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    NASA Astrophysics Data System (ADS)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  5. On boundary fusion and functional relations in the Baxterized affine Hecke algebra

    SciTech Connect

    Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk

    2014-04-15

    We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.

  6. Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation

    NASA Astrophysics Data System (ADS)

    Rim, Chaiho; Zhang, Hong

    2017-06-01

    AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres-Douglas theory, which involves summation of functions over Young diagrams.

  7. Early Algebra with Graphics Software as a Type II Application of Technology

    ERIC Educational Resources Information Center

    Abramovich, Sergei

    2006-01-01

    This paper describes the use of Kid Pix-graphics software for creative activities of young children--in the context of early algebra as determined by the mathematics core curriculum of New York state. It shows how grade-two appropriate pedagogy makes it possible to bring about a qualitative change in the learning process of those commonly…

  8. Kinetic Study of the Heck Reaction: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Gozzi, Christel; Bouzidi, Naoual

    2008-01-01

    The aim of this experiment is to study and calculate the kinetic constant of a Heck reaction: the arylation of but-3-en-2-ol by iodobenzene catalyzed by palladium acetate in presence of triethylamine in DMF. The reaction leads to a mixture of two ketones. Students use GC analysis to quantify reagents and products of reaction. They control the…

  9. The Heck Reaction: A Microscale Synthesis Using a Palladium Catalyst

    NASA Astrophysics Data System (ADS)

    Martin, William B.; Kateley, Laura J.

    2000-06-01

    Palladium catalysts are central to a large variety of modern organic syntheses. Heck reactions use palladium acetate as the preferred precatalyst to effect vinylic substitutions involving haloarenes and haloalkenes. The microscale synthesis described uses a reaction between a bromoiodobenzene and acrylic acid to produce a bromocinnamic acid. Structure verification for the product uses IR and 1H NMR spectroscopy. This experiment is appropriate for a second-semester introductory organic chemistry laboratory or an intermediate-level organic synthesis laboratory. It could be adapted as a project for two or three students, with each member of the group preparing a different isomer or using a different catalyst source.

  10. The behaviour of resonances in Hecke triangular billiards under deformation

    NASA Astrophysics Data System (ADS)

    Howard, P. J.; O'Mahony, P. F.

    2007-08-01

    The right-hand boundary of Artin's billiard on the Poincaré half-plane is continuously deformed to generate a class of chaotic billiards which includes fundamental domains of the Hecke groups Γ(2, n) at certain values of the deformation parameter. The quantum scattering problem in these open chaotic billiards is described and the distributions of both real and imaginary parts of the resonant eigenvalues are investigated. The transitions to arithmetic chaos in the cases n ∈ {4, 6} are closely examined and the explicit analytic form for the scattering matrix is given together with the Fourier coefficients for the scattered wavefunction. The n = 4 and 6 cases have an additional set of regular equally spaced resonances compared to Artin's billiard (n = 3). For a general deformation, a numerical procedure is presented which generates the resonance eigenvalues and the evolution of the eigenvalues is followed as the boundary is varied continuously which leads to dramatic changes in their distribution. For deformations away from the non-generic arithmetic cases, including that of the tiling Hecke triangular billiard n = 5, the distributions of the positions and widths of the resonances are consistent with the predictions of a random matrix theory.

  11. Drinfeld-Sokolov reduction in quantum algebras: canonical form of generating matrices

    NASA Astrophysics Data System (ADS)

    Gurevich, Dimitri; Saponov, Pavel; Talalaev, Dmitry

    2018-04-01

    We define the second canonical forms for the generating matrices of the Reflection Equation algebras and the braided Yangians, associated with all even skew-invertible involutive and Hecke symmetries. By using the Cayley-Hamilton identities for these matrices, we show that they are similar to their canonical forms in the sense of Chervov and Talalaev (J Math Sci (NY) 158:904-911, 2008).

  12. Magnetically Separable Fe3O4@DOPA-Pd: A Heterogeneous Catalyst for Aqueous Heck Reaction

    EPA Science Inventory

    Magnetically separable Fe3O4@DOPA-Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via non-covalent interaction and the catalyst is utilized for expeditious Heck coupling in aqueous media.

  13. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    PubMed

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  14. Regularized inner products and weakly holomorphic Hecke eigenforms

    NASA Astrophysics Data System (ADS)

    Bringmann, Kathrin; Kane, Ben

    2018-01-01

    We show that the image of repeated differentiation on weak cusp forms is precisely the subspace which is orthogonal to the space of weakly holomorphic modular forms. This gives a new interpretation of weakly holomorphic Hecke eigenforms. The research of the first author is supported by the Alfried Krupp Prize for Young University Teachers of the Krupp foundation and the research leading to these results receives funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant agreement n. 335220—AQSER. The research of the second author was supported by grants from the Research Grants Council of the Hong Kong SAR, China (project numbers HKU 27300314, 17302515, and 17316416).

  15. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  16. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  17. Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles

    DOE PAGES

    Shrestha, Bijay; Basnet, Prakash; Dhungana, Roshan K.; ...

    2017-07-24

    We disclose a strategy for Ni-catalyzed regioselective dicarbofunctionalization of olefins in styrene derivatives by intercepting Heck C(sp 3)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometallation, and stabilizing the Heck C(sp 3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely-substituted 1,1,2-riarylethyl products that occur as structural motifs in various natural products.

  18. A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst

    EPA Science Inventory

    The Heck-type arylation of alkenes was achieved in aqueous polyethylene glycol using a magnetically recoverable heterogenized palladium catalyst employing diaryliodonium salts under ambient conditions. The benign reaction medium and the stability of the catalyst are the salient f...

  19. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  20. Derive Workshop Matrix Algebra and Linear Algebra.

    ERIC Educational Resources Information Center

    Townsley Kulich, Lisa; Victor, Barbara

    This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…

  1. Algebra for Everyone.

    ERIC Educational Resources Information Center

    Edwards, Edgar L., Jr., Ed.

    The fundamentals of algebra and algebraic thinking should be a part of the background of all citizens in society. The vast increase in the use of technology requires that school mathematics ensure the teaching of algebraic thinking as well as its use at both the elementary and secondary school levels. Algebra is a universal theme that runs through…

  2. Banach Synaptic Algebras

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  3. Quantum cluster algebras and quantum nilpotent algebras.

    PubMed

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  4. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  5. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    PubMed Central

    Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu

    2014-01-01

    Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709

  6. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multicomponent, flow diazotization/Mizoroki-Heck coupling protocol: dispelling myths about working with diazonium salts.

    PubMed

    Nalivela, Kumara S; Tilley, Michael; McGuire, Michael A; Organ, Michael G

    2014-05-26

    A single pass flow diazotization/Mizoroki-Heck protocol has been developed for the production of cinnimoyl and styryl products. The factors that govern aryl diazonium salt stability have been examined in detail leading to the development of a MeOH/DMF co-solvent system in which the diazonium salts can be generated in the presence of all other reaction components and then coupled selectively to give the desired products. Finally the key role of the reaction quench for flow reactions has been demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2013-06-01

    We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.

  9. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki-Heck reaction.

    PubMed

    Wucher, Philipp; Caporaso, Lucia; Roesle, Philipp; Ragone, Francesco; Cavallo, Luigi; Mecking, Stefan; Göttker-Schnetmann, Inigo

    2011-05-31

    In modern methods for the preparation of small molecules and polymers, the insertion of substrate carbon-carbon double bonds into metal-carbon bonds is a fundamental step of paramount importance. This issue is illustrated by Mizoroki-Heck coupling as the most prominent example in organic synthesis and also by catalytic insertion polymerization. For unsymmetric substrates H(2)C = CHX the regioselectivity of insertion is decisive for the nature of the product formed. Electron-deficient olefins insert selectively in a 2,1-fashion for electronic reasons. A means for controlling this regioselectivity is lacking to date. In a combined experimental and theoretical study, we now report that, by destabilizing the transition state of 2,1-insertion via steric interactions, the regioselectivity of methyl acrylate insertion into palladium-methyl and phenyl bonds can be inverted entirely to yield the opposite "regioirregular" products in stoichiometric reactions. Insights from these experiments will aid the rational design of complexes which enable a catalytic and regioirregular Mizoroki-Heck reaction of electron-deficient olefins.

  10. Generalized EMV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  11. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  12. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  13. Hurwitz Algebras and the Octonion Algebra

    NASA Astrophysics Data System (ADS)

    Burdik, Čestmir; Catto, Sultan

    2018-02-01

    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  14. Quiver W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  15. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    PubMed Central

    Huras, Bogumiła

    2015-01-01

    Summary Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  16. Learning Activity Package, Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  17. Pre-Algebra Lexicon.

    ERIC Educational Resources Information Center

    Hayden, Dunstan; Cuevas, Gilberto

    The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

  18. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  19. Catching Up on Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…

  20. Who Takes College Algebra?

    ERIC Educational Resources Information Center

    Herriott, Scott R.; Dunbar, Steven R.

    2009-01-01

    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  1. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  2. Numerical Linear Algebra.

    DTIC Science & Technology

    1980-09-08

    February 1979 through 31 March 1980 Title of Research: NUMERICAL LINEAR ALGEBRA Principal Investigators: Gene H. Golub James H. Wilkinson Research...BEFORE COMPLETING FORM 2 OTAgSSION NO. 3. RECIPIENT’S CATALOG NUMBER ITE~ btitle) ~qEE NUMERICAL LINEAR ALGEBRA #I ~ f#7&/8 PER.ORMING ORG. REPORT NUM 27R 7

  3. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  4. Understanding Anionic "Ligandless" Palladium Species in the Mizoroki-Heck Reaction.

    PubMed

    Schroeter, Felix; Strassner, Thomas

    2018-05-07

    The anionic complex [NBu 4 ][Pd(DMSO)Cl 3 ], as a "ligandless" system, was shown to be an active catalyst in the Mizoroki-Heck coupling of aryl chlorides in the absence of strongly σ-donating ligands. To investigate the experimentally observed influence of halides and the amount of water on the catalytic activity, we employed a combination of experiments and theoretical calculations. The presence of water was shown to be critical for the formation of the active palladium(0) species by oxidation of in situ generated tributylamine. Oxidative addition to an anionic palladium(0) species was found to be the rate-determining step of the catalytic cycle. For the ensuing steps, both neutral and anionic pathways were considered. It was shown that, in the absence of strongly σ-donating neutral ligands, chloride ions stabilize the catalytic intermediates. Therefore, an anionic pathway is preferred, which explains the need for tetrabutylammonium chloride as an additive. The study of the influence of bromide ions on the catalytic activity revealed that the strongly exergonic displacement of the neutral substrates by bromide ions lowers the catalytic activity.

  5. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  6. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems.

  7. Elliptic biquaternion algebra

    NASA Astrophysics Data System (ADS)

    Özen, Kahraman Esen; Tosun, Murat

    2018-01-01

    In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.

  8. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  9. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  10. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  11. Enhancement in the catalytic activity of Pd/USY in the heck reaction induced by H2 bubbling.

    PubMed

    Okumura, Kazu; Tomiyama, Takuya; Moriyama, Sayaka; Nakamichi, Ayaka; Niwa, Miki

    2010-12-24

    Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H₂ bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)₂. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H₂O gave the highest activity (TOF = 61,000 h⁻¹), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  12. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    PubMed Central

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-01-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044

  13. Continuous-flow Heck synthesis of 4-methoxybiphenyl and methyl 4-methoxycinnamate in supercritical carbon dioxide expanded solvent solutions

    PubMed Central

    Lau, Phei Li; Allen, Ray W K

    2013-01-01

    Summary The palladium metal catalysed Heck reaction of 4-iodoanisole with styrene or methyl acrylate has been studied in a continuous plug flow reactor (PFR) using supercritical carbon dioxide (scCO2) as the solvent, with THF and methanol as modifiers. The catalyst was 2% palladium on silica and the base was diisopropylethylamine due to its solubility in the reaction solvent. No phosphine co-catalysts were used so the work-up procedure was simplified and the green credentials of the reaction were enhanced. The reactions were studied as a function of temperature, pressure and flow rate and in the case of the reaction with styrene compared against a standard, stirred autoclave reaction. Conversion was determined and, in the case of the reaction with styrene, the isomeric product distribution was monitored by GC. In the case of the reaction with methyl acrylate the reactor was scaled from a 1.0 mm to 3.9 mm internal diameter and the conversion and turnover frequency determined. The results show that the Heck reaction can be effectively performed in scCO2 under continuous flow conditions with a palladium metal, phosphine-free catalyst, but care must be taken when selecting the reaction temperature in order to ensure the appropriate isomer distribution is achieved. Higher reaction temperatures were found to enhance formation of the branched terminal alkene isomer as opposed to the linear trans-isomer. PMID:24367454

  14. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  15. Synthesis of Pd-N-heterocyclic carbene Pd-catalyst and its application in MW-assisted Heck and Suzuki reaction

    EPA Science Inventory

    The first Pd-N-heterocyclic carbene (NHC) complex in the form of organic silica is prepared using sol-gel method and its application in Heck and Suzuki reactions are demonstrated. These C-C coupling reactions proceeded efficiently under the influence of microwave irradiation, wit...

  16. Scope and limitations of the Heck-Matsuda-coupling of phenol diazonium salts and styrenes: a protecting-group economic synthesis of phenolic stilbenes.

    PubMed

    Schmidt, Bernd; Elizarov, Nelli; Berger, René; Hölter, Frank

    2013-06-14

    4-Phenol diazonium salts undergo Pd-catalyzed Heck reactions with various styrenes to 4'-hydroxy stilbenes. In almost all cases higher yields and fewer side products were observed, compared to the analogous 4-methoxy benzene diazonium salts. In contrast, the reaction fails completely with 2- and 3-phenol diazonium salts. For these substitution patterns the methoxy-substituted derivatives are superior.

  17. Algebra for Gifted Third Graders.

    ERIC Educational Resources Information Center

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  18. Quiver elliptic W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    We define elliptic generalization of W-algebras associated with arbitrary quiver using our construction (Kimura and Pestun in Quiver W-algebras, 2015. arXiv:1512.08533 [hep-th]) with six-dimensional gauge theory.

  19. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  20. Derivation in INK-algebras

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, M.; Indhira, K.

    2018-04-01

    In 2017 we introduced a new notion of algebra called IKN-algebra. Motivated by some result on derivations (rightleft)-derivation and (leftright)- derivation in ring. In this paper we introduce derivation in INK-Algebras and investigate some important result.

  1. An algebra of reversible computation.

    PubMed

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  2. On Weak-BCC-Algebras

    PubMed Central

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  3. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  4. Visual Salience of Algebraic Transformations

    ERIC Educational Resources Information Center

    Kirshner, David; Awtry, Thomas

    2004-01-01

    Information processing researchers have assumed that algebra symbol skills depend on mastery of the abstract rules presented in the curriculum (Matz, 1980; Sleeman, 1986). Thus, students' ubiquitous algebra errors have been taken as indicating the need to embed algebra in rich contextual settings (Kaput, 1995; National Council of Teachers of…

  5. College Algebra I.

    ERIC Educational Resources Information Center

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

  6. The Power of Algebra.

    ERIC Educational Resources Information Center

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative…

  7. Algebraic Thinking through Origami.

    ERIC Educational Resources Information Center

    Higginson, William; Colgan, Lynda

    2001-01-01

    Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)

  8. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  9. Case Report of Focal Epithelial Hyperplasia (Heck's Disease) with Polymerase Chain Reaction Detection of Human Papillomavirus 13.

    PubMed

    Brehm, Mary A; Gordon, Katie; Firan, Miahil; Rady, Peter; Agim, Nnenna

    2016-05-01

    Focal epithelial hyperplasia (FEH), or Heck's disease, is an uncommon benign proliferation of oral mucosa caused by the human papillomavirus (HPV), particularly subtypes 13 and 32. The disease typically presents in young Native American patients and is characterized by multiple asymptomatic papules and nodules on the oral mucosa, lips, tongue, and gingiva. The factors that determine susceptibility to FEH are unknown, but the ethnic and geographic distribution of FEH suggests that genetic predisposition, particularly having the human lymphocytic antigen DR4 type, may be involved in pathogenesis. We report a case of FEH with polymerase chain reaction detection of HPV13 in a healthy 11-year-old Hispanic girl and discuss the current understanding of disease pathogenesis, susceptibility, and treatment. © 2016 Wiley Periodicals, Inc.

  10. Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols.

    PubMed

    Hilton, Margaret J; Xu, Li-Ping; Norrby, Per-Ola; Wu, Yun-Dong; Wiest, Olaf; Sigman, Matthew S

    2014-12-19

    The mechanism of the redox-relay Heck reaction was investigated using deuterium-labeled substrates. Results support a pathway through a low energy palladium-alkyl intermediate that immediately precedes product formation, ruling out a tautomerization mechanism. DFT calculations of the relevant transition structures at the M06/LAN2DZ+f/6-31+G* level of theory show that the former pathway is favored by 5.8 kcal/mol. Palladium chain-walking toward the alcohol, following successive β-hydride eliminations and migratory insertions, is also supported in this study. The stereochemistry of deuterium labels is determined, lending support that the catalyst remains bound to the substrate during the relay process and that both cis- and trans-alkenes form from β-hydride elimination.

  11. Algebra of Majorana doubling.

    PubMed

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  12. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  13. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  14. The tensor hierarchy algebra

    SciTech Connect

    Palmkvist, Jakob, E-mail: palmkvist@ihes.fr

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of ourmore » Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.« less

  15. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  16. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  17. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    PubMed Central

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  18. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    PubMed

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  19. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    SciTech Connect

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  20. Single-step synthesis of styryl phosphonic acids via palladium-catalyzed Heck coupling of vinyl phosphonic acid with aryl halides

    DOE PAGES

    McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan

    2017-10-27

    Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).

  1. Algebra and Algebraic Thinking in School Math: 70th YB

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  2. Abstract Algebra to Secondary School Algebra: Building Bridges

    ERIC Educational Resources Information Center

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  3. Statecharts Via Process Algebra

    NASA Technical Reports Server (NTRS)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  4. The Unitality of Quantum B-algebras

    NASA Astrophysics Data System (ADS)

    Han, Shengwei; Xu, Xiaoting; Qin, Feng

    2018-02-01

    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  5. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  6. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  7. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  8. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  9. Elementary maps on nest algebras

    NASA Astrophysics Data System (ADS)

    Li, Pengtong

    2006-08-01

    Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.

  10. Astro Algebra [CD-ROM].

    ERIC Educational Resources Information Center

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  11. Quantum Observables and Effect Algebras

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    2018-03-01

    We study observables on monotone σ-complete effect algebras. We find conditions when a spectral resolution implies existence of the corresponding observable. We characterize sharp observables of a monotone σ-complete homogeneous effect algebra using its orthoalgebraic skeleton. In addition, we study compatibility in orthoalgebras and we show that every orthoalgebra satisfying RIP is an orthomodular poset.

  12. The Algebra of the Arches

    ERIC Educational Resources Information Center

    Buerman, Margaret

    2007-01-01

    Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…

  13. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  14. Continuum analogues of contragredient Lie algebras (Lie algebras with a Cartan operator and nonlinear dynamical systems)

    NASA Astrophysics Data System (ADS)

    Saveliev, M. V.; Vershik, A. M.

    1989-12-01

    We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.

  15. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  16. Quantized Algebra I Texts

    NASA Astrophysics Data System (ADS)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  17. Macdonald index and chiral algebra

    NASA Astrophysics Data System (ADS)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  18. Macdonald index and chiral algebra

    SciTech Connect

    Song, Jaewon

    For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less

  19. Macdonald index and chiral algebra

    DOE PAGES

    Song, Jaewon

    2017-08-10

    For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less

  20. Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.

    ERIC Educational Resources Information Center

    Leitze, Annette Ricks; Kitt, Nancy A.

    2000-01-01

    Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)

  1. Algorithms for computations of Loday algebras' invariants

    NASA Astrophysics Data System (ADS)

    Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.

    2017-04-01

    The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.

  2. Constructing Meanings and Utilities within Algebraic Tasks

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2004-01-01

    The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…

  3. A non-commutative *-algebra of Borel functions

    NASA Astrophysics Data System (ADS)

    Hart, Robert

    To the pair (E, sigma), where E is a countable Borel equivalence relation on a standard Borel space ( X, A ) and sigma a normalized Borel T -valued 2-cocycle on E, we associate a sequentially weakly closed Borel *-algebra B*r (E, sigma), contained in the bounded linear operators on ℓ2(E). Associated to B*r (E, sigma) is a natural (Borel) Cartan subalgebra (Definition 6.4.10) L( Bo (X)) isomorphic to the bounded Borel functions on X. Then L( Bo (X)) and its normalizer (the set of the unitaries u ∈ B*r (E, sigma) such that u* fu ∈ L( Bo (X)), f ∈ L( Bo (X))) countably generates the Borel *-algebra B*r (E, sigma). In this thesis, we study B*r (E, sigma) and in particular prove that: i) If E is smooth, then B*r (E, sigma) is a type I Borel *-algebra (Definition 6.3.10). ii) If E is a hyperfinite, then B*r (E, sigma) is a Borel AF-algebra (Definition 7.5.1). iii) Generalizing Kumjian's definition, we define a Borel twist Gamma over E and its associated sequentially closed Borel *-algebra B*r (Gamma). iv) Let a Borel Cartan pair ( B,B0 ) denote a sequentially closed Borel *-algebra B with a Borel Cartan subalgebra B0 , where B is countably B0 -generated. Generalizing Feldman-Moore's result, we prove that any pair ( B,B0 ) can be realized uniquely as a pair ( B*r (E, sigma), L( Bo (X))). Moreover, we show that the pair ( B*r (E), L( Bo (X))) is a complete invariant of the countable Borel equivalence relation E. v) We prove a Krieger type theorem, by showing that two aperiodic hyperfinite countable equivalence relations are isomorphic if and only if their associated Borel *-algebras B*r (E1) and B*r (E2) are isomorphic.

  4. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  5. Semiclassical states on Lie algebras

    SciTech Connect

    Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following themore » methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.« less

  6. Cartooning in Algebra and Calculus

    ERIC Educational Resources Information Center

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  7. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  8. Algebraic Systems and Pushdown Automata

    NASA Astrophysics Data System (ADS)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  9. Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces

    SciTech Connect

    Koibuchi, H.

    1991-10-10

    In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.

  10. Lattices of Varieties of Algebras

    NASA Astrophysics Data System (ADS)

    Volkov, M. V.

    1980-02-01

    Let A be an associative and commutative ring with 1, S a subsemigroup of the multiplicative semigroup of A, not containing divisors of zero, and \\mathfrak{X} some variety of A-algebras. A study is made of the homomorphism from the lattice L(\\mathfrak{X}) of all subvarieties of \\mathfrak{X} into the lattice of all varieties of S^{-1} A-algebras, which is induced in a certain natural sense by the functor S^{-1}. Under one weak restriction on \\mathfrak{X} a description is given of the kernel of this homomorphism, and this makes it possible to establish a good interrelation between the properties of the lattice L(\\mathfrak{X}) and the lattice of varieties of S^{-1} A-algebras. These results are applied to prove that a number of varieties of associative and Lie rings have the Specht property.Bibliography: 18 titles.

  11. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  12. On the structure of quantum L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias

    2017-10-01

    It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.

  13. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  14. Computer Algebra Systems in Undergraduate Instruction.

    ERIC Educational Resources Information Center

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  15. Surface defects and chiral algebras

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng

    2017-05-01

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  16. Making Algebra Work: Instructional Strategies that Deepen Student Understanding, within and between Algebraic Representations

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2009-01-01

    Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…

  17. Post-Lie algebras and factorization theorems

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans

    2017-09-01

    In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.

  18. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  19. Discrimination in a General Algebraic Setting

    PubMed Central

    Fine, Benjamin; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421

  20. Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra

    NASA Astrophysics Data System (ADS)

    Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio

    2018-03-01

    By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.

  1. Constraint-Referenced Analytics of Algebra Learning

    ERIC Educational Resources Information Center

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  2. Algebra? A Gate! A Barrier! A Mystery!

    ERIC Educational Resources Information Center

    Mathematics Educatio Dialogues, 2000

    2000-01-01

    This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…

  3. FRT presentation of the Onsager algebras

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Belliard, Samuel; Crampé, Nicolas

    2018-03-01

    A presentation à la Faddeev-Reshetikhin-Takhtajan (FRT) of the Onsager, augmented Onsager and sl_2 -invariant Onsager algebras is given, using the framework of the nonstandard classical Yang-Baxter algebras. Associated current algebras are identified, and generating functions of mutually commuting quantities are obtained.

  4. The BMS4 algebra at spatial infinity

    NASA Astrophysics Data System (ADS)

    Troessaert, Cédric

    2018-04-01

    We show how a global BMS4 algebra appears as part of the asymptotic symmetry algebra at spatial infinity. Using linearised theory, we then show that this global BMS4 algebra is the one introduced by Strominger as a symmetry of the S-matrix.

  5. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  6. Teaching Strategies to Improve Algebra Learning

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  7. Teacher Actions to Facilitate Early Algebraic Reasoning

    ERIC Educational Resources Information Center

    Hunter, Jodie

    2015-01-01

    In recent years there has been an increased emphasis on integrating the teaching of arithmetic and algebra in primary school classrooms. This requires teachers to develop links between arithmetic and algebra and use pedagogical actions that facilitate algebraic reasoning. Drawing on findings from a classroom-based study, this paper provides an…

  8. Build an Early Foundation for Algebra Success

    ERIC Educational Resources Information Center

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  9. Difficulties in Initial Algebra Learning in Indonesia

    ERIC Educational Resources Information Center

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  10. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  11. Unifying the Algebra for All Movement

    ERIC Educational Resources Information Center

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  12. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  13. Algebraic methods in system theory

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  14. Experts Question California's Algebra Edict

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    Business leaders from important sectors of the American economy have been urging schools to set higher standards in math and science--and California officials, in mandating that 8th graders be tested in introductory algebra, have responded with one of the highest such standards in the land. Still, many California educators and school…

  15. A New Age for Algebra

    ERIC Educational Resources Information Center

    Oishi, Lindsay

    2011-01-01

    "Solve for x." While many people first encountered this enigmatic instruction in high school, the last 20 years have seen a strong push to get students to take algebra in eighth grade or even before. Today, concerns about the economy highlight a familiar worry: American eighth-graders trailed their peers in five Asian countries on the…

  16. Algebra, Home Mortgages, and Recessions

    ERIC Educational Resources Information Center

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  17. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  18. The Visual Syntax of Algebra.

    ERIC Educational Resources Information Center

    Kirshner, David

    1989-01-01

    A structured system of visual features is seen to parallel the propositional hierarchy of operations usually associated with the parsing of algebraic expressions. Women more than men were found to depend on these visual cues. Possible causes and consequences are discussed. Subjects were secondary and college students. (Author/DC)

  19. Algebra. A Guidebook for Teaching.

    ERIC Educational Resources Information Center

    Goodman, Terry A.; And Others

    This book provides a general framework for organizing the instructional program in algebra. For each topic, a general approach for instruction, together with specific strategies, activities, and resources that can be used daily, are provided. Also included are worksheet pages that can be used with students. Most activities provide for student…

  20. Exploring Algebraic Misconceptions with Technology

    ERIC Educational Resources Information Center

    Sakow, Matthew; Karaman, Ruveyda

    2015-01-01

    Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…

  1. Algebraic Procedures and Creative Thinking

    ERIC Educational Resources Information Center

    Tabach, Michal; Friedlander, Alex

    2017-01-01

    Simplifying symbolic expressions is usually perceived in middle school algebra as an algorithmic activity, achieved by performing sequences of short drill-and-practice tasks, which have little to do with conceptual learning or with creative mathematical thinking. The aim of this study is to explore possible ways by which ninth-grade students can…

  2. Algebraic Activities Aid Discovery Lessons

    ERIC Educational Resources Information Center

    Wallace-Gomez, Patricia

    2013-01-01

    After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…

  3. Monitoring Student Learning in Algebra

    ERIC Educational Resources Information Center

    Accardo, Amy L.; Kuder, S. Jay

    2017-01-01

    Mr. Perez and Mrs. Peterson co-teach a ninth-grade algebra class. Perez and Peterson's class includes four students with individualized education programs (IEPs). In response to legislation, such as the No Child Left Behind (NCLB) Act (2001) and the Individuals with Disabilities Education Improvement Act (2006), an increasing number of students…

  4. Algebra for All. Research Brief

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2009-01-01

    The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless…

  5. Algebra from Chips and Chopsticks

    ERIC Educational Resources Information Center

    Yun, Jeong Oak; Flores, Alfinio

    2012-01-01

    Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…

  6. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  7. Dimension independence in exterior algebra.

    PubMed Central

    Hawrylycz, M

    1995-01-01

    The identities between homogeneous expressions in rank 1 vectors and rank n - 1 covectors in a Grassmann-Cayley algebra of rank n, in which one set occurs multilinearly, are shown to represent a set of dimension-independent identities. The theorem yields an infinite set of nontrivial geometric identities from a given identity. PMID:11607520

  8. Inequalities, Assessment and Computer Algebra

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  9. Principals + Algebra (- Fear) = Instructional Leadership

    ERIC Educational Resources Information Center

    Carver, Cynthia L.

    2010-01-01

    Recent state legislation in Michigan mandates that all graduating seniors successfully pass algebra I and II. Numerous initiatives have been enacted to help mathematics teachers meet this challenge, yet school principals have had little preparation for the necessary curricular and instructional changes. To address this unmet need, university-based…

  10. Adventures in Flipping College Algebra

    ERIC Educational Resources Information Center

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  11. Teachers' Understanding of Algebraic Generalization

    NASA Astrophysics Data System (ADS)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  12. Roughness in Lattice Ordered Effect Algebras

    PubMed Central

    Xin, Xiao Long; Hua, Xiu Juan; Zhu, Xi

    2014-01-01

    Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ordered effect algebra E and build a relationship between it and congruence classes. Then we study some properties about approximation of lattice ordered effect algebras. PMID:25170523

  13. Surface defects and chiral algebras

    DOE PAGES

    Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng

    2017-05-26

    Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less

  14. Surface defects and chiral algebras

    SciTech Connect

    Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng

    Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less

  15. Synthesis and characterization of Heck-cross coupling 4-(4-nitrostyryl) aniline as potential precursor in Schiff-base synthesis

    NASA Astrophysics Data System (ADS)

    Hassan, Norhafiefa; Izwani, Fatin; Yusoff, H. M.

    2017-09-01

    This is a preliminary study of alkoxy substituted Heck-schiff base compound as recognition layer in electrochemical DNA sensor for liver cancer. 4-(4-nitrostyryl)aniline was synthesized by bis (triphenylphosphine) palladium (II) dichloride as catalyst and has been characterized by using Fourier transform-infrared spectrometer (FTIR), UV-Vis spectrophotometer and Nuclear Magnetic Resonance (NMR) spectra. The result obtained from FTIR show that there are formation of N=O (NO2) asymmetric stretching vibrations 1340 cm-1. In UV-vis, absorbance of NO2 can be observed at peak 410 nm. While in the 1H NMR and 13C NMR the peak of C-C coupling was found in the range of δH 6.84-7.09 ppm and δC 125.23 ppm.

  16. A facile one-pot solvothermal method for synthesis of magnetically recoverable Pd-Fe3O4 hybrid nanocatalysts for the Mizoroki-Heck reaction

    NASA Astrophysics Data System (ADS)

    Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing

    2018-03-01

    Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.

  17. Synthesis and characterization of para-pyridine linked NHC palladium complexes and their studies for the Heck-Mizoroki coupling reaction.

    PubMed

    Liu, Ya-Ming; Lin, Yi-Chun; Chen, Wen-Ching; Cheng, Jen-Hao; Chen, Yi-Lin; Yap, Glenn P A; Sun, Shih-Sheng; Ong, Tiow-Gan

    2012-06-28

    This paper describes the synthesis of 1-(pyridine-4-ylmethyl) NHC and their Pd(II) and Ag(I) complexes, which are fully characterized. Interestingly, we have also synthesized a Pd complex 3a-CO(3) using a more direct treatment of K(2)CO(3) with PdCl(2). 3a-CO(3) represents the first reported solid structure of a Pd η(2)-carbonato complex stabilized by an NHC framework. 3a-CO(3) can be easily converted to a PdCl(2) derivative by treating it with chloroform. We have found these palladium complexes mediate the Heck-Mizoroki coupling with a low catalyst loading. Furthermore, we also expand such catalytic manifold toward constructing fused polyaromatic substrates, a highly useful class of compounds in optoelectronic chemistry.

  18. Fractional quiver W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-04-01

    We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.

  19. Kleene Algebra and Bytecode Verification

    DTIC Science & Technology

    2016-04-27

    computing the star (Kleene closure) of a matrix of transfer functions. In this paper we show how this general framework applies to the problem of Java ...bytecode verification. We show how to specify transfer functions arising in Java bytecode verification in such a way that the Kleene algebra operations...potentially improve the performance over the standard worklist algorithm when a small cutset can be found. Key words: Java , bytecode, verification, static

  20. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  1. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  2. Representing k-graphs as Matrix Algebras

    NASA Astrophysics Data System (ADS)

    Rosjanuardi, R.

    2018-05-01

    For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.

  3. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  4. Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjie; Gao, Xing; Guo, Li

    2016-10-01

    The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.

  5. Algebraic Algorithm Design and Local Search

    DTIC Science & Technology

    1996-12-01

    method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a...synthesis. Our approach was to follow KIDS in spirit, but to adopt a pure algebraic formalism, supported by Kestrel’s SPECWARE environment (79), that...design was developed that is more purely algebraic than that of KIDS. This method was then applied to local search. A general theory of local search was

  6. Assessing non-uniqueness: An algebraic approach

    SciTech Connect

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  7. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  8. On character amenability of Banach algebras

    NASA Astrophysics Data System (ADS)

    Kaniuth, E.; Lau, A. T.; Pym, J.

    2008-08-01

    We continue our work [E. Kaniuth, A.T. Lau, J. Pym, On [phi]-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85-96] in the study of amenability of a Banach algebra A defined with respect to a character [phi] of A. Various necessary and sufficient conditions of a global and a pointwise nature are found for a Banach algebra to possess a [phi]-mean of norm 1. We also completely determine the size of the set of [phi]-means for a separable weakly sequentially complete Banach algebra A with no [phi]-mean in A itself. A number of illustrative examples are discussed.

  9. Literal algebra for satellite dynamics. [perturbation analysis

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1975-01-01

    A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.

  10. An Arithmetic-Algebraic Work Space for the Promotion of Arithmetic and Algebraic Thinking: Triangular Numbers

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos

    2016-01-01

    This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…

  11. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  12. The Growing Importance of Linear Algebra in Undergraduate Mathematics.

    ERIC Educational Resources Information Center

    Tucker, Alan

    1993-01-01

    Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)

  13. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  14. Parabolas: Connection between Algebraic and Geometrical Representations

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    A parabola is an interesting curve. What makes it interesting at the secondary school level is the fact that this curve is presented in both its contexts: algebraic and geometric. Being one of Apollonius' conic sections, the parabola is basically a geometric entity. It is, however, typically known for its algebraic characteristics, in particular…

  15. Using Students' Interests as Algebraic Models

    ERIC Educational Resources Information Center

    Whaley, Kenneth A.

    2012-01-01

    Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…

  16. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  17. Practicing Algebraic Skills: A Conceptual Approach

    ERIC Educational Resources Information Center

    Friedlander, Alex; Arcavi, Abraham

    2012-01-01

    Traditionally, a considerable part of teaching and learning algebra has focused on routine practice and the application of rules, procedures, and techniques. Although today's computerized environments may have decreased the need to master algebraic skills, procedural competence is still a central component in any mathematical activity. However,…

  18. Using the Internet To Investigate Algebra.

    ERIC Educational Resources Information Center

    Sherwood, Walter

    The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…

  19. Algebraic Thinking through Koch Snowflake Constructions

    ERIC Educational Resources Information Center

    Ghosh, Jonaki B.

    2016-01-01

    Generalizing is a foundational mathematical practice for the algebra classroom. It entails an act of abstraction and forms the core of algebraic thinking. Kinach (2014) describes two kinds of generalization--by analogy and by extension. This article illustrates how exploration of fractals provides ample opportunity for generalizations of both…

  20. The operator algebra approach to quantum groups

    PubMed Central

    Kustermans, Johan; Vaes, Stefaan

    2000-01-01

    A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116

  1. Focus on Fractions to Scaffold Algebra

    ERIC Educational Resources Information Center

    Ooten, Cheryl Thomas

    2013-01-01

    Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…

  2. THE RADICAL OF A JORDAN ALGEBRA

    PubMed Central

    McCrimmon, Kevin

    1969-01-01

    In this paper we define a Jacobson radical for Jordan algebras analogous to that for associative algebras and show that it enjoys many of the properties of the associative radical. We then relate the corresponding notion of “semisimplicity” to the previously defined notion of “nondegeneracy” (Jacobson, N., these Proceedings, 55, 243-251 (1966)). PMID:16591736

  3. Symbolic Notations and Students' Achievements in Algebra

    ERIC Educational Resources Information Center

    Peter, Ebiendele E.; Olaoye, Adetunji A.

    2013-01-01

    This study focuses on symbolic notations and its impact on students' achievement in Algebra. The main reason for this study rests on the observation from personal and professional experiences on students' increasing hatred for Algebra. One hundred and fifty (150) Senior Secondary School Students (SSS) from Ojo Local Education District, Ojo, Lagos,…

  4. School Algebra Reform: Meeting the Grade?

    ERIC Educational Resources Information Center

    Telese, James A.

    This paper reports on a case study that was conducted at five high schools from a large, urban school district located in South Texas. The purpose of the study was to gain an understanding of Algebra 1 teaching strategies. The research questions were: (1) What is the predominant mode of instruction for Algebra 1? and (2) What is the level of…

  5. The Structural Algebra Option: A Discussion Paper.

    ERIC Educational Resources Information Center

    Kirshner, David

    The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…

  6. Calif. Laws Shift Gears on Algebra, Textbooks

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2012-01-01

    New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…

  7. Playing Your Cards Right: Integers for Algebra

    ERIC Educational Resources Information Center

    Tillema, Erik; Gatza, Andrew; Ulrich, Catherine

    2017-01-01

    The number and algebra strand of the "Australian Curriculum: Mathematics" (2015) advocates for holding together the study of number and algebra across years K-8--a position that mathematics educators have endorsed in many countries. This recommendation along with the report "Shape of the Australian Curriculum: Mathematics"…

  8. An Inquiry-Based Linear Algebra Class

    ERIC Educational Resources Information Center

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  9. Deriving the Regression Line with Algebra

    ERIC Educational Resources Information Center

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  10. Just Say Yes to Early Algebra!

    ERIC Educational Resources Information Center

    Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy

    2015-01-01

    Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…

  11. Relational Algebra and SQL: Better Together

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart

    2013-01-01

    In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…

  12. From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    2012-12-01

    Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.

  13. Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Huang, Hua-Lin; Yang, Yuping

    2016-01-01

    By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.

  14. Entanglement classification with algebraic geometry

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  15. Quantum Sets and Clifford Algebras

    NASA Astrophysics Data System (ADS)

    Finkelstein, David

    1982-06-01

    The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.

  16. Irrational "Coefficients" in Renaissance Algebra.

    PubMed

    Oaks, Jeffrey A

    2017-06-01

    Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  17. N-heterocycle carbene (NHC)-ligated cyclopalladated N,N-dimethylbenzylamine: a highly active, practical and versatile catalyst for the Heck-Mizoroki reaction.

    PubMed

    Peh, Guang-Rong; Kantchev, Eric Assen B; Zhang, Chi; Ying, Jackie Y

    2009-05-21

    The wide dissemination of catalytic protocols in academic and industrial laboratories is facilitated by the development of catalysts that are not only highly active but also user-friendly, stable to moisture, air and long term storage and easy to prepare on a large scale. Herein we describe a protocol for the Heck-Mizoroki reaction mediated by cyclopalladated N,N-dimethylbenzylamine (dmba) ligated with a N-heterocyclic carbene, 1,3-bis(mesityl)imidazol-2-ylidene (IMes), that fulfils these criteria. The precatalyst can be synthesized on approximately 100 g scale by a tri-component, sequential, one-pot reaction of N,N-dimethylbenzylamine, PdCl2 and IMes.HCl in refluxing acetonitrile in air in the presence of K2CO3. This single component catalyst is stable to air, moisture and long term storage and can be conveniently dispensed as a stock solution in NMP. It mediates the Heck-Mizoroki reaction of a range of aryl- and heteroaryl bromides in reagent grade NMP at the 0.1-2 mol% range without the need for rigorous anhydrous techniques or a glovebox, and is active even in air. The catalyst is capable of achieving very high levels of catalytic activity (TON of up to 5.22 x 10(5)) for the coupling of a deactivated arylbromide, p-bromoanisole, with tBu acrylate as a benchmark substrate pair. A wide range of aryl bromides, iodides and, for the first time with a NHC-Pd catalyst, a triflate was coupled with diverse acrylate derivatives (nitrile, tert-butyl ester and amides) and styrene derivatives. The use of excess (>2 equiv.) of the aryl bromide and tert-butyl acrylate leads to mixture of tert-butyl beta,beta-diarylacrylate and tert-butyl cinnamate derivatives depending on the substitution pattern of the aryl bromide. Electron rich m- and p-substituted arylbromides give the diarylated products exclusively, whereas electron-poor aryl bromides give predominantly mono-arylated products. For o-substituted aryl bromides, no doubly arylated products could be obtained under any

  18. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  19. Inequalities, assessment and computer algebra

    NASA Astrophysics Data System (ADS)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.

  20. Three-dimensional polarization algebra.

    PubMed

    R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto

    2016-10-01

    If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.

  1. Teaching materials of algebraic equation

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi

    2017-12-01

    The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

  2. Filiform Lie algebras of order 3

    SciTech Connect

    Navarro, R. M., E-mail: rnavarro@unex.es

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de lamore » variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.« less

  3. Working memory, worry, and algebraic ability.

    PubMed

    Trezise, Kelly; Reeve, Robert A

    2014-05-01

    Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Chinese Algebra: Using Historical Problems to Think about Current Curricula

    ERIC Educational Resources Information Center

    Tillema, Erik

    2005-01-01

    The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…

  5. The hopf algebra of vector fields on complex quantum groups

    NASA Astrophysics Data System (ADS)

    Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno

    1992-10-01

    We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.

  6. Probing the evolution of palladium species in Pd@MOF catalysts during the Heck coupling reaction: An operando X-ray absorption spectroscopy study.

    PubMed

    Yuan, Ning; Pascanu, Vlad; Huang, Zhehao; Valiente, Alejandro; Heidenreich, Niclas; Leubner, Sebastian; Inge, A Ken; Gaar, Jakob; Stock, Norbert; Persson, Ingmar; Martin-Matute, Belen; Zou, Xiaodong

    2018-06-11

    The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance ( 1 H NMR) kinetic studies. A custom-made reaction cell was used allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is pro-posed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl - ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.

  7. I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…

  8. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  9. A double commutant theorem for Murray–von Neumann algebras

    PubMed Central

    Liu, Zhe

    2012-01-01

    Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165

  10. A note on derivations of Murray-von Neumann algebras.

    PubMed

    Kadison, Richard V; Liu, Zhe

    2014-02-11

    A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.

  11. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  12. Identities of Finitely Generated Algebras Over AN Infinite Field

    NASA Astrophysics Data System (ADS)

    Kemer, A. R.

    1991-02-01

    It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.

  13. Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

    NASA Astrophysics Data System (ADS)

    Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-07-01

    An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.

  14. Highest-weight representations of Brocherd`s algebras

    SciTech Connect

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  15. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    ERIC Educational Resources Information Center

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  16. Applications: Using Algebra in an Accounting Practice.

    ERIC Educational Resources Information Center

    Eisner, Gail A.

    1994-01-01

    Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)

  17. Positive basis for surface skein algebras

    PubMed Central

    Thurston, Dylan Paul

    2014-01-01

    We show that the twisted SL2 skein algebra of a surface has a natural basis (the bracelets basis) that is positive, in the sense that the structure constants for multiplication are positive integers. PMID:24982193

  18. Imagination, Intuition, and Computing in School Algebra.

    ERIC Educational Resources Information Center

    Kieren, Thomas E.; Olson, Alton T.

    1989-01-01

    Two incidents involving novice teachers with classes in grades 7 and 10 are presented. Then considered are the nature of intuitive mathematics and contributions computers can make to such intuitive mathematics, particularly in Algebra. (MNS)

  19. Vague Congruences and Quotient Lattice Implication Algebras

    PubMed Central

    Qin, Xiaoyan; Xu, Yang

    2014-01-01

    The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207

  20. Geometric interpretation of vertex operator algebras.

    PubMed Central

    Huang, Y Z

    1991-01-01

    In this paper, Vafa's approach to the formulation of conformal field theories is combined with the formal calculus developed in Frenkel, Lepowsky, and Meurman's work on the vertex operator construction of the Monster to give a geometric definition of vertex operator algebras. The main result announced is the equivalence between this definition and the algebraic one in the sense that the categories determined by these definitions are isomorphic. PMID:11607240

  1. SATA II - Stochastic Algebraic Topology and Applications

    DTIC Science & Technology

    2017-01-30

    AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications ...has recently been submitted to AFOSR. 15. SUBJECT TERMS Network Theory, Sensor Technology, Mathematical Modeling, EOARD 16. SECURITY CLASSIFICATION OF

  2. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  3. Algebra and topology for applications to physics

    NASA Technical Reports Server (NTRS)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  4. Gauss Elimination: Workhorse of Linear Algebra.

    DTIC Science & Technology

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  5. On Orders of Observables on Effect Algebras

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    2017-12-01

    On the set of bounded observables on an effect algebra, the Olson order defined by spectral resolutions and the standard order defined by a system of σ-additive states are introduced. We show that sharp bounded observables form a Dedekind σ-complete sublattice of a Dedekind complete lattice under the Olson order. In addition, we compare both orders, and we illustrate them on different effect algebras.

  6. Card Games and Algebra Tic Tacmatics on Achievement of Junior Secondary II Students in Algebraic Expressions

    ERIC Educational Resources Information Center

    Okpube, Nnaemeka Michael; Anugwo, M. N.

    2016-01-01

    This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…

  7. Developing "Algebraic Thinking": Two Key Ways to Establish Some Early Algebraic Ideas in Primary Classrooms

    ERIC Educational Resources Information Center

    Ormond, Christine

    2012-01-01

    Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…

  8. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  10. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  11. Lie algebra of conformal Killing-Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  12. The analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference

    NASA Astrophysics Data System (ADS)

    Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi

    2017-08-01

    The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.

  13. Dynamical systems defined on infinite dimensional lie algebras of the ''current algebra'' or ''Kac-Moody'' type

    NASA Astrophysics Data System (ADS)

    Hermann, Robert

    1982-07-01

    Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.

  14. Commutative Algebras of Toeplitz Operators in Action

    NASA Astrophysics Data System (ADS)

    Vasilevski, Nikolai

    2011-09-01

    We will discuss a quite unexpected phenomenon in the theory of Toeplitz operators on the Bergman space: the existence of a reach family of commutative C*-algebras generated by Toeplitz operators with non-trivial symbols. As it tuns out the smoothness properties of symbols do not play any role in the commutativity, the symbols can be merely measurable. Everything is governed here by the geometry of the underlying manifold, the hyperbolic geometry of the unit disk. We mention as well that the complete characterization of these commutative C*-algebras of Toeplitz operators requires the Berezin quantization procedure. These commutative algebras come with a powerful research tool, the spectral type representation for the operators under study, which permit us to answer to many important questions in the area.

  15. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  16. Current algebra, statistical mechanics and quantum models

    NASA Astrophysics Data System (ADS)

    Vilela Mendes, R.

    2017-11-01

    Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.

  17. Computational algebraic geometry of epidemic models

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  18. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  19. Homomorphisms in C*-ternary algebras and JB*-triples

    NASA Astrophysics Data System (ADS)

    Park, Choonkil; Rassias, Themistocles M.

    2008-01-01

    In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation

  20. An Algebraic Approach to the Eigenstates of the Calogero Model

    NASA Astrophysics Data System (ADS)

    Ujino, Hideaki

    2002-11-01

    An algebraic treatment of the eigenstates of the (AN-1-) Calogero model is presented, which provides an algebraic construction of the nonsymmetric orthogonal eigenvectors, symmetrization, antisymmetrization and calculation of square norms in a unified way.

  1. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  2. Using Student Work to Develop Teachers' Knowledge of Algebra

    ERIC Educational Resources Information Center

    Herbel-Eisenmann, Beth A.; Phillips, Elizabeth Difanis

    2005-01-01

    This article describes a set of learning activities that use algebraic problems and written student work to help preservice and in-service teachers understand students' algebraic thinking. (Contains 4 figures.)

  3. Weak Lie symmetry and extended Lie algebra

    SciTech Connect

    Goenner, Hubert

    2013-04-15

    The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).

  4. Shapes and stability of algebraic nuclear models

    NASA Technical Reports Server (NTRS)

    Lopez-Moreno, Enrique; Castanos, Octavio

    1995-01-01

    A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.

  5. Chiral algebras in Landau-Ginzburg models

    NASA Astrophysics Data System (ADS)

    Dedushenko, Mykola

    2018-03-01

    Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

  6. Bisimulation equivalence of differential-algebraic systems

    NASA Astrophysics Data System (ADS)

    Megawati, Noorma Yulia; Schaft, Arjan van der

    2018-01-01

    In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.

  7. Quantum walled Brauer algebra: commuting families, Baxterization, and representations

    NASA Astrophysics Data System (ADS)

    Semikhatov, A. M.; Tipunin, I. Yu

    2017-02-01

    For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.

  8. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  9. Simple nuclear C*-algebras not isomorphic to their opposites

    PubMed Central

    Hirshberg, Ilan

    2017-01-01

    We show that it is consistent with Zermelo–Fraenkel set theory with the axiom of choice (ZFC) that there is a simple nuclear nonseparable C∗-algebra, which is not isomorphic to its opposite algebra. We can furthermore guarantee that this example is an inductive limit of unital copies of the Cuntz algebra O2 or of the canonical anticommutation relations (CAR) algebra. PMID:28559339

  10. Internally connected graphs and the Kashiwara-Vergne Lie algebra

    NASA Astrophysics Data System (ADS)

    Felder, Matteo

    2018-06-01

    It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1, thus giving a way to interpolate between these two Lie algebras.

  11. Abstract Numeric Relations and the Visual Structure of Algebra

    ERIC Educational Resources Information Center

    Landy, David; Brookes, David; Smout, Ryan

    2014-01-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…

  12. On Maximal Subalgebras and the Hypercentre of Lie Algebras.

    ERIC Educational Resources Information Center

    Honda, Masanobu

    1997-01-01

    Derives two sufficient conditions for a finitely generated Lie algebra to have the nilpotent hypercenter. Presents a relatively large class of generalized soluble Lie algebras. Proves that if a finitely generated Lie algebra has a nilpotent maximal subalgebra, the Fitting radical is nilpotent. (DDR)

  13. Eighth Grade Algebra Placement Policies: Promoting Equity, Achievement, and Access

    ERIC Educational Resources Information Center

    Wambsgans, Cynthia

    2014-01-01

    This study was an investigation of a standardized 8th grade Algebra I placement policy across multiple educational districts. Researchers have documented benefits of students' 8th grade Algebra I education, while others have detailed the consequences of algebra enrollment without necessary prerequisite skills. The purpose of this study was to…

  14. Meanings Given to Algebraic Symbolism in Problem-Posing

    ERIC Educational Resources Information Center

    Cañadas, María C.; Molina, Marta; del Río, Aurora

    2018-01-01

    Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…

  15. Classical versus Computer Algebra Methods in Elementary Geometry

    ERIC Educational Resources Information Center

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  16. Effectiveness of Cognitive Tutor Algebra I at Scale

    ERIC Educational Resources Information Center

    Pane, John F.; Griffin, Beth Ann; McCaffrey, Daniel F.; Karam, Rita

    2014-01-01

    This article examines the effectiveness of a technology-based algebra curriculum in a wide variety of middle schools and high schools in seven states. Participating schools were matched into similar pairs and randomly assigned to either continue with the current algebra curriculum for 2 years or to adopt Cognitive Tutor Algebra I (CTAI), which…

  17. The Ideas of Algebra, K-12. 1988 Yearbook.

    ERIC Educational Resources Information Center

    Coxford, Arthur F., Ed.; Shulte, Albert P., Ed.

    This volume is organized into six parts. Chapters 1-5, which make up Part 1, first discuss the forces impinging on algebra in the curriculum and suggest possible directions for change. Chapters 6-8, Part 2, concentrate on concepts and teaching possibilities available prior to the formal introduction of algebra. The notion that algebraic ideas are…

  18. Using Linguistics in the Teaching of Developmental and Remedial Algebra.

    ERIC Educational Resources Information Center

    Lesnak, Richard J.

    Basic algebra at Robert Morris College (RMC) in Pittsburgh, Pennsylvania, is a remedial course for students with virtually no algebra background, and for students whose previous experiences with algebra have created math blocks and math anxiety. A study was conducted in an effort to measure quantitatively the benefits of using linguistic methods…

  19. A Relational Algebra Query Language for Programming Relational Databases

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole

    2011-01-01

    In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…

  20. How Middle Grade Teachers Think about Algebraic Reasoning

    ERIC Educational Resources Information Center

    Glassmeyer, David; Edwards, Belinda

    2016-01-01

    Algebraic reasoning is an essential habit of mind for building conceptual knowledge in K-12 mathematics, yet little is known about how middle school mathematics teachers think about algebraic reasoning. In this article we describe a research project examining how algebraic reasoning was considered by grades 6, 7, or 8 mathematics teachers in a…

  1. Assessing Mathematics Automatically Using Computer Algebra and the Internet

    ERIC Educational Resources Information Center

    Sangwin, Chris

    2004-01-01

    This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…

  2. Preparing Elementary Prospective Teachers to Teach Early Algebra

    ERIC Educational Resources Information Center

    Hohensee, Charles

    2017-01-01

    Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers…

  3. Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras

    NASA Astrophysics Data System (ADS)

    Molev, A. I.; Ragoucy, E.

    We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.

  4. Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates

    ERIC Educational Resources Information Center

    Schachter, Ron

    2013-01-01

    graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…

  5. Applications of Maple To Algebraic Cryptography.

    ERIC Educational Resources Information Center

    Sigmon, Neil P.

    1997-01-01

    Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…

  6. Regular Gleason Measures and Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij; Janda, Jiří

    2015-12-01

    We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.

  7. Alternative Delivery Systems for Introductory Algebra.

    ERIC Educational Resources Information Center

    Keating, John; And Others

    Since 1988, Massachusetts' Massasoit Community College has offered two alternative introductory algebra courses for students receiving low scores on mathematics admission tests. One alternative course provides 5 hours of instruction per week, rather than the 3 hours per week in the traditional course, while the other segments the traditional…

  8. Hungry for Early Spatial and Algebraic Reasoning

    ERIC Educational Resources Information Center

    Cross, Dionne I.; Adefope, Olufunke; Lee, Mi Yeon; Perez, Arnulfo

    2012-01-01

    Tasks that develop spatial and algebraic reasoning are crucial for learning and applying advanced mathematical ideas. In this article, the authors describe how two early childhood teachers used stories as the basis for a unit that supports spatial reasoning in kindergartners and first graders. Having mathematical experiences that go beyond…

  9. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  10. Fundamental Theorems of Algebra for the Perplexes

    ERIC Educational Resources Information Center

    Poodiak, Robert; LeClair, Kevin

    2009-01-01

    The fundamental theorem of algebra for the complex numbers states that a polynomial of degree n has n roots, counting multiplicity. This paper explores the "perplex number system" (also called the "hyperbolic number system" and the "spacetime number system") In this system (which has extra roots of +1 besides the usual [plus or minus]1 of the…

  11. Pre-Algebra Groups. Concepts & Applications.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…

  12. A Linear Algebraic Approach to Teaching Interpolation

    ERIC Educational Resources Information Center

    Tassa, Tamir

    2007-01-01

    A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…

  13. Reading Bombelli's x-purgated Algebra.

    ERIC Educational Resources Information Center

    Arcavi, Abraham; Bruckheimer, Maxim

    1991-01-01

    Presents the algorithm to approximate square roots as reproduced from the 1579 edition of an algebra book by Rafael Bombelli. The sequence of activities illustrates that the process of understanding an original source of mathematics, first at the algorithmic level and then with respect to its mathematical validity in modern terms, can be an…

  14. Local algebraic analysis of differential systems

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2015-06-01

    We propose a new approach for studying the compatibility of partial differential equations. This approach is a synthesis of the Riquier method, Gröbner basis theory, and elements of algebraic geometry. As applications, we consider systems including the wave equation and the sine-Gordon equation.

  15. Invariant algebraic surfaces for a virus dynamics

    NASA Astrophysics Data System (ADS)

    Valls, Claudia

    2015-08-01

    In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.

  16. Multilinear Computing and Multilinear Algebraic Geometry

    DTIC Science & Technology

    2016-08-10

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...performance period of this project. 15. SUBJECT TERMS Tensors , multilinearity, algebraic geometry, numerical computations, computational tractability, high...Reset DISTRIBUTION A: Distribution approved for public release. DISTRIBUTION A: Distribution approved for public release. INSTRUCTIONS FOR COMPLETING

  17. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  18. Journal Writing: Enlivening Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    Meel, David E.

    1999-01-01

    Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…

  19. SMP That Help Foster Algebraic Thinking

    ERIC Educational Resources Information Center

    Billings, Esther M. H.

    2017-01-01

    Arithmetic is a major mathematical focus in elementary school curriculum, and researchers such as Mason (2008) claim that "algebraic thinking is required in order to make sense of arithmetic" (p. 58). When adding, subtracting, multiplying, and dividing, learners must rely on a small set of fundamental properties also important for the…

  20. Modern Geometric Algebra: A (Very Incomplete!) Survey

    ERIC Educational Resources Information Center

    Suzuki, Jeff

    2009-01-01

    Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…

  1. Lattices, vertex algebras, and modular categories

    NASA Astrophysics Data System (ADS)

    van Ekeren, Jethro

    2018-03-01

    In this note we give an account of recent progress on the construction of holomorphic vertex algebras as cyclic orbifolds as well as related topics in lattices and modular categories. We present a novel computation of the Schur indicator of a lattice involution orbifold using finite Heisenberg groups and discriminant forms.

  2. Some Unexpected Results Using Computer Algebra Systems.

    ERIC Educational Resources Information Center

    Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin

    2001-01-01

    Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…

  3. Digital Maps, Matrices and Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2005-01-01

    The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…

  4. Window of Opportunity? Adolescence, Music, and Algebra

    ERIC Educational Resources Information Center

    Helmrich, Barbara H.

    2010-01-01

    Research has suggested that musicians process music in the same cortical regions that adolescents process algebra. An early adolescence synaptogenesis might present a window of opportunity during middle school for music to create and strengthen enduring neural connections in those regions. Six school districts across Maryland provided scores from…

  5. Avoiding Communication in Dense Linear Algebra

    DTIC Science & Technology

    2013-08-16

    Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...and parallelizing Strassen’s matrix multiplication algorithm (Chapter 11). 6 Chapter 2 Preliminaries 2.1 Notation and Definitions In this section we...between computations and algo- rithms). The following definition is based on [56]: Definition 2.1. A classical algorithm in linear algebra is one that

  6. A Linear Algebra Measure of Cluster Quality.

    ERIC Educational Resources Information Center

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  7. A Concurrent Support Course for Intermediate Algebra

    ERIC Educational Resources Information Center

    Cooper, Cameron I.

    2011-01-01

    This article summarizes the creation and implementation of a concurrent support class for TRS 92--Intermediate Algebra, a developmental mathematics course at Fort Lewis College in Durango, Colorado. The concurrent course outlined in this article demonstrates a statistically significant increase in student success rates since its inception.…

  8. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  9. A Process Algebra Approach to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  10. Stability of Linear Equations--Algebraic Approach

    ERIC Educational Resources Information Center

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  11. Constructive Learning in Undergraduate Linear Algebra

    ERIC Educational Resources Information Center

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  12. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  13. Modules as Learning Tools in Linear Algebra

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  14. Using Technology to Balance Algebraic Explorations

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2013-01-01

    In 2000, the "National Council of Teachers of Mathematics" recommended that Algebra Standards, "instructional programs from prekindergarten through grade 12 should enable all students to use mathematical models to represent and understand quantitative relationships." In this article, the authors suggest the "Balance"…

  15. Using Group Explorer in Teaching Abstract Algebra

    ERIC Educational Resources Information Center

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-01-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in…

  16. Proof in Algebra: Reasoning beyond Examples

    ERIC Educational Resources Information Center

    Otten, Samuel; Herbel-Eisenmann, Beth A.; Males, Lorraine M.

    2010-01-01

    The purpose of this article is to provide an image of what proof could look like in beginning algebra, a course that nearly every secondary school student encounters. The authors present an actual classroom vignette in which a rich opportunity for student reasoning arose. After analyzing the proof schemes at play, the authors provide a…

  17. Titration Calculations with Computer Algebra Software

    ERIC Educational Resources Information Center

    Lachance, Russ; Biaglow, Andrew

    2012-01-01

    This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…

  18. Mathematics: Algebra and Geometry. GED Scoreboost.

    ERIC Educational Resources Information Center

    Hoyt, Cathy

    GED "Scoreboost" materials target exactly the skills one needs to pass the General Educational Development (GED) tests. This book focuses on the GED Mathematics test. To prepare for the test, the test taker needs to learn skills in number and operation sense, data and statistics, geometry and measurement, and algebra. To pass the test,…

  19. Algebra for All: The Effect of Algebra Coursework and Classroom Peer Academic Composition on Low-Achieving Students

    ERIC Educational Resources Information Center

    Nomi, Takako; Raudenbush, Stephen W.

    2014-01-01

    Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…

  20. a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra

    NASA Astrophysics Data System (ADS)

    Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.

    Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.

  1. Generalized conformal realizations of Kac-Moody algebras

    SciTech Connect

    Palmkvist, Jakob

    2009-01-15

    We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of Hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f{sub 4}, e{sub 6}, e{sub 7}, e{sub 8} for n=2. Moreover, we obtain their infinite-dimensional extensions for n{>=}3. In the casemore » of 2x2 matrices, the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q)« less

  2. A calculus based on a q-deformed Heisenberg algebra

    DOE PAGES

    Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...

    1999-04-27

    We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less

  3. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the

  4. Selecting reusable components using algebraic specifications

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.

  5. Stable homotopical algebra and [Gamma]-spaces

    NASA Astrophysics Data System (ADS)

    Schwede, Stefan

    1999-03-01

    In this paper we advertise the category of [Gamma]-spaces as a convenient framework for doing ‘algebra’ over ‘rings’ in stable homotopy theory. [Gamma]-spaces were introduced by Segal [Se] who showed that they give rise to a homotopy category equivalent to the usual homotopy category of connective (i.e. ([minus sign]1)-connected) spectra. Bousfield and Friedlander [BF] later provided model category structures for [Gamma]-spaces. The study of ‘rings, modules and algebras’ based on [Gamma]-spaces became possible when Lydakis [Ly] introduced a symmetric monoidal smash product with good homotopical properties. Here we develop model category structures for modules and algebras, set up (derived) smash products and associated spectral sequences and compare simplicial modules and algebras to their Eilenberg-MacLane spectra counterparts.

  6. Using Group Explorer in teaching abstract algebra

    NASA Astrophysics Data System (ADS)

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-04-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in abstract algebra. A total of 26 participants in an undergraduate course studying group theory were surveyed regarding their experiences using Group Explorer. Findings indicate that all participants believed that the software was beneficial to their learning and described their attitudes regarding the software in terms of using the technology and its helpfulness in learning concepts. A multiple regression analysis reveals that representational fluency of concepts with the software correlated significantly with participants' understanding of group concepts yet, participants' attitudes about Group Explorer and technology in general were not significant factors.

  7. An algebraic interpretation of PSP composition.

    PubMed

    Vaucher, G

    1998-01-01

    The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.

  8. Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.

    PubMed

    Sialaros, Michalis; Christianidis, Jean

    2016-06-01

    Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

  9. Renormalization group flows and continual Lie algebras

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis

    2003-08-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.

  10. Dual algebraic formulation of differential GPS

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Dur, S.

    2003-05-01

    A new approach to differential GPS is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory. The notion of double difference, which is related to that of closure in the sense of Kirchhoff, is revisited in this context. The Moore-Penrose pseudo-inverse of the closure operator plays a key role in the corresponding dual formulation. This approach, which is very attractive from a conceptual point of view, sheds a new light on the Teunissen formulation.

  11. Special Year on Numerical Linear Algebra

    DTIC Science & Technology

    1988-09-01

    ORNL) Worley, Pat (ORNL) A special acknowledgement should go to Mary Drake (UT) and Mitzy Denson (ORNL) who carried the burden of making the innumerable...a time step appropriate for the regular cells with no stability restriction. Entrance to Y-12 requires a pass. Contact Mitzy Denson (615) 574-3125 to...requires a pass. Contact Mitzy Denson (615) 574-3125 to obtain one. ’This seminar is part of the Special Year on Numerical Linear Algebra sponsored by the

  12. Boolean Operations with Prism Algebraic Patches

    PubMed Central

    Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi

    2009-01-01

    In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262

  13. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  15. Relativistic Causality and Quasi-Orthomodular Algebras

    NASA Astrophysics Data System (ADS)

    Nobili, Renato

    2006-05-01

    The concept of fractionability or decomposability in parts of a physical system has its mathematical counterpart in the lattice--theoretic concept of orthomodularity. Systems with a finite number of degrees of freedom can be decomposed in different ways, corresponding to different groupings of the degrees of freedom. The orthomodular structure of these simple systems is trivially manifest. The problem then arises as to whether the same property is shared by physical systems with an infinite number of degrees of freedom, in particular by the quantum relativistic ones. The latter case was approached several years ago by Haag and Schroer (1962; Haag, 1992) who started from noting that the causally complete sets of Minkowski spacetime form an orthomodular lattice and posed the question of whether the subalgebras of local observables, with topological supports on such subsets, form themselves a corresponding orthomodular lattice. Were it so, the way would be paved to interpreting spacetime as an intrinsic property of a local quantum field algebra. Surprisingly enough, however, the hoped property does not hold for local algebras of free fields with superselection rules. The possibility seems to be instead open if the local currents that govern the superselection rules are driven by gauge fields. Thus, in the framework of local quantum physics, the request for algebraic orthomodularity seems to imply physical interactions! Despite its charm, however, such a request appears plagued by ambiguities and criticities that make of it an ill--posed problem. The proposers themselves, indeed, concluded that the orthomodular correspondence hypothesis is too strong for having a chance of being practicable. Thus, neither the idea was taken seriously by the proposers nor further investigated by others up to a reasonable degree of clarification. This paper is an attempt to re--formulate and well--pose the problem. It will be shown that the idea is viable provided that the algebra of

  16. Classical Affine W-Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2018-06-01

    We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.

  17. The Great Debate: Should All 8th Graders Take Algebra?

    ERIC Educational Resources Information Center

    McKibben, Sarah

    2009-01-01

    While 8th grade algebra was once reserved as a course for the gifted, today, more U.S. 8th graders take algebra than any other math course. This article discusses a report from the Brookings Institution which chronicles the history of the 8th-grade algebra surge and its impact on today's low-performing students. The report indicates that many of…

  18. Computing Gröbner Bases within Linear Algebra

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira

    In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.

  19. Metric 3-Leibniz algebras and M2-branes

    NASA Astrophysics Data System (ADS)

    Méndez-Escobar, Elena

    2010-08-01

    This thesis is concerned with superconformal Chern-Simons theories with matter in 3 dimensions. The interest in these theories is two-fold. On the one hand, it is a new family of theories in which to test the AdS/CFT correspondence and on the other, they are important to study one of the main objects of M-theory (M2-branes). All these theories have something in common: they can be written in terms of 3-Leibniz algebras. Here we study the structure theory of such algebras, paying special attention to a subclass of them that gives rise to maximal supersymmetry and that was the first to appear in this context: 3-Lie algebras. In chapter 2, we review the structure theory of metric Lie algebras and their unitary representations. In chapter 3, we study metric 3-Leibniz algebras and show, by specialising a construction originally due to Faulkner, that they are in one to one correspondence with pairs of real metric Lie algebras and unitary representations of them. We also show a third characterisation for six extreme cases of 3-Leibniz algebras as graded Lie (super)algebras. In chapter 4, we study metric 3-Lie algebras in detail. We prove a structural result and also classify those with a maximally isotropic centre, which is the requirement that ensures unitarity of the corresponding conformal field theory. Finally, in chapter 5, we study the universal structure of superpotentials in this class of superconformal Chern-Simons theories with matter in three dimensions. We provide a uniform formulation for all these theories and establish the connection between the amount of supersymmetry preserved and the gauge Lie algebra and the appropriate unitary representation to be used to write down the Lagrangian. The conditions for supersymmetry enhancement are then expressed equivalently in the language of representation theory of Lie algebras or the language of 3-Leibniz algebras.

  20. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  1. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  2. The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra.

    ERIC Educational Resources Information Center

    Carlson, David; And Others

    1993-01-01

    Presents five recommendations of the Linear Algebra Curriculum Study Group: (1) The syllabus must respond to the client disciplines; (2) The first course should be matrix oriented; (3) Faculty should consider the needs and interests of students; (4) Faculty should use technology; and (5) At least one follow-up course should be required. Provides a…

  3. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    NASA Astrophysics Data System (ADS)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  4. Algebraic approach to electronic spectroscopy and dynamics.

    PubMed

    Toutounji, Mohamad

    2008-04-28

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated

  5. Bialgebra deformations and algebras of trees

    NASA Technical Reports Server (NTRS)

    Grossman, Robert; Radford, David

    1991-01-01

    Let A denote a bialgebra over a field k and let A sub t = A((t)) denote the ring of formal power series with coefficients in A. Assume that A is also isomorphic to a free, associative algebra over k. A simple construction is given which makes A sub t a bialgebra deformation of A. In typical applications, A sub t is neither commutative nor cocommutative. In the terminology of Drinfeld, (1987), A sub t is a quantum group. This construction yields quantum groups associated with families of trees.

  6. Optical linear algebra processors - Architectures and algorithms

    NASA Technical Reports Server (NTRS)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  7. Spatial Operator Algebra for multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1992-01-01

    The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

  8. Vector fields and nilpotent Lie algebras

    NASA Technical Reports Server (NTRS)

    Grayson, Matthew; Grossman, Robert

    1987-01-01

    An infinite-dimensional family of flows E is described with the property that the associated dynamical system: x(t) = E(x(t)), where x(0) is a member of the set R to the Nth power, is explicitly integrable in closed form. These flows E are of the form E = E1 + E2, where E1 and E2 are the generators of a nilpotent Lie algebra, which is either free, or satisfies some relations at a point. These flows can then be used to approximate the flows of more general types of dynamical systems.

  9. Basic linear algebra subprograms for FORTRAN usage

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.

    1977-01-01

    A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.

  10. Performance assessment in algebra learning process

    NASA Astrophysics Data System (ADS)

    Lestariani, Ida; Sujadi, Imam; Pramudya, Ikrar

    2017-12-01

    The purpose of research to describe the implementation of performance assessment on algebra learning process. The subject in this research is math educator of SMAN 1 Ngawi class X. This research includes descriptive qualitative research type. Techniques of data collecting are done by observation method, interview, and documentation. Data analysis technique is done by data reduction, data presentation, and conclusion. The results showed any indication that the steps taken by the educator in applying the performance assessment are 1) preparing individual worksheets and group worksheets, 2) preparing rubric assessments for independent worksheets and groups and 3) making performance assessments rubric to learners’ performance results with individual or groups task.

  11. Algebraic approach to electronic spectroscopy and dynamics

    SciTech Connect

    Toutounji, Mohamad

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted

  12. Reasoning algebraically with IT: A cognitive perspective

    NASA Astrophysics Data System (ADS)

    Mok, Ida; Johnson, David

    2000-12-01

    The focus of this paper is on the implications of key findings and theoretical positions from social psychology and cognitive developmental psychology (Piagetian/neo-Piagetian) for the use of IT tools to support learning in algebra. Particular reference is made to the research of the UK Cognitive Acceleration through Mathematics Education (CAME) project. The feasibility of the CAME model in the exploration of mathematical relationships supported by graphics calculators was addressed in a small-scale study in Hong Kong. The research provides evidence that, with appropriate mediation, cognitive conflict can be utilised to provide valuable appropriate for students to engage in increasingly higher levels of mathematical thinking.

  13. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  14. Algebra 1r, Mathematics (Experimental): 5215.13.

    ERIC Educational Resources Information Center

    Strachan, Florence

    This third of six guidebooks on minimum course content for first-year algebra includes work with laws of exponents; multiplication, division, and factoring of polynomials; and fundamental operations with rational algebraic expressions. Course goals are stated, performance objectives listed, a course outline provided, testbook references specified…

  15. Gender differences in algebraic thinking ability to solve mathematics problems

    NASA Astrophysics Data System (ADS)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  16. Teaching Linear Algebra: Must the Fog Always Roll In?

    ERIC Educational Resources Information Center

    Carlson, David

    1993-01-01

    Proposes methods to teach the more difficult concepts of linear algebra. Examines features of the Linear Algebra Curriculum Study Group Core Syllabus, and presents problems from the core syllabus that utilize the mathematical process skills of making conjectures, proving the results, and communicating the results to colleagues. Presents five…

  17. Soft Translations and Soft Extensions of BCI/BCK-Algebras

    PubMed Central

    Sultana, Nazra; Rani, Nazia; Ali, Muhammad Irfan

    2014-01-01

    The concept of soft translations of soft subalgebras and soft ideals over BCI/BCK-algebras is introduced and some related properties are studied. Notions of Soft extensions of soft subalgebras and soft ideals over BCI/BCK-algebras are also initiated. Relationships between soft translations and soft extensions are explored. PMID:25298968

  18. Soft translations and soft extensions of BCI/BCK-algebras.

    PubMed

    Sultana, Nazra; Rani, Nazia; Ali, Muhammad Irfan; Hussain, Azhar

    2014-01-01

    The concept of soft translations of soft subalgebras and soft ideals over BCI/BCK-algebras is introduced and some related properties are studied. Notions of Soft extensions of soft subalgebras and soft ideals over BCI/BCK-algebras are also initiated. Relationships between soft translations and soft extensions are explored.

  19. Digital Tools for Algebra Education: Criteria and Evaluation

    ERIC Educational Resources Information Center

    Bokhove, Christian; Drijvers, Paul

    2010-01-01

    In the Netherlands, as in many other countries, the algebraic expertise of students graduating from secondary education is an issue. The use of digital tools for algebra education is expected to change epistemologies, activity structures and student achievement. Therefore, a study was set up to investigate in what way the use of ICT in upper…

  20. Implementing the Curriculum and Evaluation Standards: First-Year Algebra.

    ERIC Educational Resources Information Center

    Kysh, Judith

    1991-01-01

    Described is an alternative first year algebra program developed to bridge the gap between the NCTM's Curriculum and Evaluation Standards and institutional demands of schools. Increased attention is given to graphing as a context for algebra, calculator use, solving "memorable problems," and incorporating geometry concepts, while…

  1. Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.

    ERIC Educational Resources Information Center

    Natour, Denise M.

    This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…

  2. Introduction to Algebra Curriculum Guide, Grade 8, 1987. Bulletin 1802.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    Because of the high incidence of failure in algebra I among ninth-grade students, the Louisiana State Board of Elementary and Secondary Education requested the development of this guide with the intention of providing a good pre-algebra foundation. The purposes of the guide are to recognize standards that involve the application of mathematical…

  3. Intertextuality and Sense Production in the Learning of Algebraic Methods

    ERIC Educational Resources Information Center

    Rojano, Teresa; Filloy, Eugenio; Puig, Luis

    2014-01-01

    In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…

  4. Measuring the Readability of Elementary Algebra Using the Cloze Technique.

    ERIC Educational Resources Information Center

    Kulm, Gerald

    The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…

  5. Algebraic Generalization Strategies Used by Kuwaiti Pre-Service Teachers

    ERIC Educational Resources Information Center

    Alajmi, Amal Hussain

    2016-01-01

    This study reports on the algebraic generalization strategies used by elementary and middle/high school pre-service mathematics teachers in Kuwait. They were presented with 9 tasks that involved linear, exponential, and quadratic situations. The results showed that these pre-service teachers had difficulty in generalizing algebraic rules in all 3…

  6. Particle-like structure of coaxial Lie algebras

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  7. Resources for Teaching Linear Algebra. MAA Notes Volume 42.

    ERIC Educational Resources Information Center

    Carlson, David, Ed.; And Others

    This book takes the position that the teaching of elementary linear algebra can be made more effective by emphasizing applications, exposition, and pedagogy. It includes the recommendations of the Linear Algebra Curriculum Study Group with their core syllabus for the first course, and the thoughts of mathematics faculty who have taught linear…

  8. Introduction to Matrix Algebra, Student's Text, Unit 23.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…

  9. The Algebra Initiative Colloquium. Volume 2: Working Group Papers.

    ERIC Educational Resources Information Center

    Lacampagne, Carole B., Ed.; And Others

    This volume presents recommendations from four working groups at a conference on reform in algebra held in Leesburg, Virginia, December 9-12, 1993. Working Group 1: Creating an Appropriate Algebra Experience for All Grades K-12 Students produced the following papers: (1) "Report" (A. H. Schoenfeld); (2) "Five Questions About Algebra…

  10. Comparing the Effectiveness of Collaborative Instructional Practices in Algebra

    ERIC Educational Resources Information Center

    Triaga, Russell D.

    2014-01-01

    The use of multiple forms of collaborative instruction to teach integrated algebra makes it difficult for teachers to determine which collaborative form is best suited for the curriculum. An inconsistent approach to integrated algebra instruction at the study school needed to be addressed for the benefit of teacher effectiveness and student…

  11. A Learning Progressions Approach to Early Algebra Research and Practice

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Knuth, Eric

    2015-01-01

    We detail a learning progressions approach to early algebra research and how existing work around learning progressions and trajectories in mathematics and science education has informed our development of a four-component theoretical framework consisting of: a curricular progression of learning goals across big algebraic ideas; an instructional…

  12. Earth Algebra: Real-Life Mathematics in Navajoland.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Srivastava, Ravindra

    1995-01-01

    An algebra class at Navajo Community College (Shiprock, New Mexico) uses traditional algebra topics to study real-life situations, focuses on environmental issues, encourages collaborative learning, uses modern technology, and promotes development of critical thinking and decision-making skills. Students follow principles of Dine educational…

  13. Concreteness Fading of Algebraic Instruction: Effects on Learning

    ERIC Educational Resources Information Center

    Ottmar, Erin; Landy, David

    2017-01-01

    Learning algebra is difficult for many students in part because of an emphasis on the memorization of abstract rules. Algebraic reasoners across expertise levels often rely on perceptual-motor strategies to make these rules meaningful and memorable. However, in many cases, rules are provided as patterns to be memorized verbally, with little overt…

  14. College Algebra Students' Attitudes toward Mathematics in Their Careers

    ERIC Educational Resources Information Center

    Champion, Joe; Parker, Frieda; Mendoza-Spencer, Bernadette; Wheeler, Ann

    2011-01-01

    The purpose of this study was to identify the degree to which college algebra students' value mathematical skills in their prospective careers. A survey was administered to N = 144 students in 6 college algebra classes at a mid-sized doctoral granting university. Students in half the classes completed a data analysis project, and half of the…

  15. Pay-Offs from Expanding Summer Credit Recovery in Algebra

    ERIC Educational Resources Information Center

    Allensworth, Elaine; Nomi, Takako; Heppen, Jessica

    2013-01-01

    The consequences of failing core academic courses during the first year are dire. In Chicago, over a quarter of students fail at least one semester of algebra in their ninth grade year, and only 13% of students who fail both semesters of Algebra I in ninth grade graduate in 4 years. Offering credit recovery options is one strategy to deal with…

  16. Complex quantum enveloping algebras as twisted tensor products

    NASA Astrophysics Data System (ADS)

    Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno

    1994-12-01

    We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.

  17. Modular operads and the quantum open-closed homotopy algebra

    NASA Astrophysics Data System (ADS)

    Doubek, Martin; Jurčo, Branislav; Münster, Korbinian

    2015-12-01

    We verify that certain algebras appearing in string field theory are algebras over Feynman transform of modular operads which we describe explicitly. Equivalent description in terms of solutions of generalized BV master equations are explained from the operadic point of view.

  18. Analyzing Algebraic Thinking Using "Guess My Number" Problems

    ERIC Educational Resources Information Center

    Patton, Barba; De Los Santos, Estella

    2012-01-01

    The purpose of this study was to assess student knowledge of numeric, visual and algebraic representations. A definite gap between arithmetic and algebra has been documented in the research. The researchers' goal was to identify a link between the two. Using four "Guess My Number" problems, seventh and tenth grade students were asked to write…

  19. Questions Arise about Algebra 2 for All Students

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2013-01-01

    Should all students take Algebra 2? Florida seemed to say "no" this spring with the passage of a law striking it from graduation requirements. Texas said much the same in legislation Republican Gov. Rick Perry signed this week that also backs away from Algebra 2 for all. Those steps come as the Common Core State Standards for math set…

  20. Early Integration of Tutorial Support in Beginning Algebra

    ERIC Educational Resources Information Center

    Copus, Colleen; McKinney, Betsy

    2016-01-01

    Anecdotal observations reveal that most students with strong arithmetic skills will succeed in the Beginning Algebra course even if they have no previous experience with algebra. In trying to quantify this with an initial teacher-created survey of arithmetic skills, it was observed, for three consecutive semesters, that students who scored in the…

  1. Student and Instructor Perceptions of a Flipped College Algebra Classroom

    ERIC Educational Resources Information Center

    Jaster, Robert W.

    2017-01-01

    Each year about half a million students fail to make planned academic progress due to college algebra, hence the need for researchers to find ways of improving the quality of instruction in the course. Recent research suggests that flipping college algebra to allow time for active learning in the classroom may improve student performance. Also,…

  2. Schroedinger operators with the q-ladder symmetry algebras

    NASA Technical Reports Server (NTRS)

    Skorik, Sergei; Spiridonov, Vyacheslav

    1994-01-01

    A class of the one-dimensional Schroedinger operators L with the symmetry algebra LB(+/-) = q(+/-2)B(+/-)L, (B(+),B(-)) = P(sub N)(L), is described. Here B(+/-) are the 'q-ladder' operators and P(sub N)(L) is a polynomial of the order N. Peculiarities of the coherent states of this algebra are briefly discussed.

  3. Promoting Quantitative Literacy in an Online College Algebra Course

    ERIC Educational Resources Information Center

    Tunstall, Luke; Bossé, Michael J.

    2016-01-01

    College algebra (a university freshman level algebra course) fulfills the quantitative literacy requirement of many college's general education programs and is a terminal course for most who take it. An online problem-based learning environment provides a unique means of engaging students in quantitative discussions and research. This article…

  4. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    ERIC Educational Resources Information Center

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  5. Statistical Aspects of Coherent States of the Higgs Algebra

    NASA Astrophysics Data System (ADS)

    Shreecharan, T.; Kumar, M. Naveen

    2018-04-01

    We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.

  6. Emphasizing Language and Visualization in Teaching Linear Algebra

    ERIC Educational Resources Information Center

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-01-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…

  7. An Uncommon Approach to a Common Algebraic Error

    ERIC Educational Resources Information Center

    Rossi, Paul S.

    2008-01-01

    The basic rules of elementary algebra can often appear beyond the grasp of many students. Even though most subjects, including calculus, prove to be more difficult, it is the simple rules of algebra that continue to be the "thorn in the side" of many mathematics students. In this paper we present a result intended to help students achieve a…

  8. Designing Spreadsheet-Based Tasks for Purposeful Algebra

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2005-01-01

    We describe the design of a sequence of spreadsheet-based pedagogic tasks for the introduction of algebra in the early years of secondary schooling within the Purposeful Algebraic Activity project. This design combines two relatively novel features to bring a different perspective to research in the use of spreadsheets for the learning and…

  9. Algebraic Concepts: What's Really New in New Curricula?

    ERIC Educational Resources Information Center

    Star, Jon R.; Herbel-Eisenmann, Beth A.; Smith, John P., III

    2000-01-01

    Examines 8th grade units from the Connected Mathematics Project (CMP). Identifies differences in older and newer conceptions, fundamental objects of study, typical problems, and typical solution methods in algebra. Also discusses where the issue of what is new in algebra is relevant to many other innovative middle school curricula. (KHR)

  10. The Aftermath of Accelerating Algebra: Evidence from District Policy Initiatives

    ERIC Educational Resources Information Center

    Clotfelter, Charles T.; Ladd, Helen F.; Vigdor, Jacob L.

    2014-01-01

    In 2008, the California State Board of Education voted to require all students to enroll in algebra by 8th grade. This policy initiative, yet to be actually implemented, represents the culmination of a decades-long movement toward offering algebra instruction before the traditional high school years. Nationally, the proportion of 8th grade…

  11. Paper 3: Content and Rigor of Algebra Credit Recovery Courses

    ERIC Educational Resources Information Center

    Walters, Kirk; Stachel, Suzanne

    2014-01-01

    This paper describes the content, organization and rigor of the f2f and online summer algebra courses that were delivered in summers 2011 and 2012. Examining the content of both types of courses is important because research suggests that algebra courses with certain features may be better than others in promoting success for struggling students.…

  12. Abstract Algebra for Teachers: An Evaluative Case Study

    ERIC Educational Resources Information Center

    Hoffman, Andrew Joseph

    2017-01-01

    This manuscript describes the study of an abstract algebra course for preservice secondary mathematics teachers (PSMTs). Often, courses in abstract algebra have not been viewed as productive, beneficial learning experiences for future teachers, both by researchers and PSMTs themselves. This despite calls for increased content knowledge for…

  13. Noncommutative Differential Geometry of Generalized Weyl Algebras

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz

    2016-06-01

    Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.

  14. Algebraic approach to solve ttbar dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-01-01

    The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.

  15. Introduction to quantized LIE groups and algebras

    SciTech Connect

    Tjin, T.

    1992-10-10

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less

  16. The Standard Model Algebra - a summary

    NASA Astrophysics Data System (ADS)

    Cristinel Stoica, Ovidiu

    2017-08-01

    A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

  17. An Algebraic Formulation of Level One Wess-Zumino Models

    NASA Astrophysics Data System (ADS)

    Böckenhauer, Jens

    The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.

  18. Quantum teleportation and Birman-Murakami-Wenzl algebra

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zhang, Yong

    2017-02-01

    In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.

  19. Algebraic special functions and SO(3,2)

    SciTech Connect

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less

  20. The Development of Children's Algebraic Thinking: The Impact of a Comprehensive Early Algebra Intervention in Third Grade

    ERIC Educational Resources Information Center

    Blanton, Maria; Stephens, Ana; Knuth, Eric; Gardiner, Angela Murphy; Isler, Isil; Kim, Jee-Seon

    2015-01-01

    This article reports results from a study investigating the impact of a sustained, comprehensive early algebra intervention in third grade. Participants included 106 students; 39 received the early algebra intervention, and 67 received their district's regularly planned mathematics instruction. We share and discuss students' responses to a written…

  1. From No to Yes: The Impact of an Intervention on The Persistence of Algebraic Misconceptions among Secondary School Algebra Students

    ERIC Educational Resources Information Center

    Zielinski, Susan F.

    2017-01-01

    Many students enter high school with persistent algebraic misconceptions that limit their success in mathematics and, by extension, limit potential educational attainment and future earnings. The purpose of this study was to assess the effectiveness of a warm conceptual change based intervention on remediating algebraic misconceptions held by…

  2. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    NASA Astrophysics Data System (ADS)

    Van Daele, Alfons

    2014-08-01

    In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique

  3. Algebraic grid generation with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, M.; Lombard, C. K.

    1983-01-01

    A simple noniterative algebraic procedure is presented for generating smooth computational meshes on a quadrilateral topology. Coordinate distribution and normal derivative are provided on all boundaries, one of which may include a slope discontinuity. The boundary conditions are sufficient to guarantee continuity of global meshes formed of joined patches generated by the procedure. The method extends to 3-D. The procedure involves a synthesis of prior techniques stretching functions, cubic blending functions, and transfinite interpolation - to which is added the functional form of the corner solution. The procedure introduces the concept of generalized blending, which is implemented as an automatic scaling of the boundary derivatives for effective interpolation. Some implications of the treatment at boundaries for techniques solving elliptic PDE's are discussed in an Appendix.

  4. Numerical stability in problems of linear algebra.

    NASA Technical Reports Server (NTRS)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  5. Integrals of motion from quantum toroidal algebras

    NASA Astrophysics Data System (ADS)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  6. Magnonic qudit and algebraic Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Lulek, B.; Lulek, T.

    2010-03-01

    A magnonic qudit is proposed as the memory unit of a register of a quantum computer. It is the N-dimensional space, extracted from the 2N-dimensional space of all quantum states of the magnetic Heisenberg ring of N spins 1/2, as the space of all states of a single magnon. Three bases: positional, momentum, and that of Weyl duality are described, together with appropriate Fourier and Kostka transforms. It is demonstrated how exact Bethe Ansatz (BA) eigenfunctions, classified in terms of rigged string configurations, can be coded using a collection of magnonic qudits. To this aim, the algebraic BA is invoked, such that a single magnonic qudit is prepared in a state corresponding to a magnon in one of the states provided by spectral parameters emerging from the corresponding BA equations.

  7. Experimental Tests of the Algebraic Cluster Model

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2018-02-01

    The Algebraic Cluster Model (ACM) of Bijker and Iachello that was proposed already in 2000 has been recently applied to 12C and 16O with much success. We review the current status in 12C with the outstanding observation of the ground state rotational band composed of the spin-parity states of: 0+, 2+, 3-, 4± and 5-. The observation of the 4± parity doublet is a characteristic of (tri-atomic) molecular configuration where the three alpha- particles are arranged in an equilateral triangular configuration of a symmetric spinning top. We discuss future measurement with electron scattering, 12C(e,e’) to test the predicted B(Eλ) of the ACM.

  8. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  9. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  10. Modularity of logarithmic parafermion vertex algebras

    NASA Astrophysics Data System (ADS)

    Auger, Jean; Creutzig, Thomas; Ridout, David

    2018-05-01

    The parafermionic cosets Ck = {Com} ( H , Lk(sl2) ) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck . Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck , irreducible Ck - and Bk -modules are obtained from those of Lk(sl2) . Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk -modules. The irreducible Ck - and Bk -characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C_2 -cofinite vertex operator algebras.

  11. A New Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.

  12. Clifford Algebra Implying Three Fermion Generations Revisited

    NASA Astrophysics Data System (ADS)

    Krolikowski, Wojciech

    2002-09-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.

  13. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime

  14. q-Derivatives, quantization methods and q-algebras

    SciTech Connect

    Twarock, Reidun

    1998-12-15

    Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less

  15. A Geometric Construction of Cyclic Cocycles on Twisted Convolution Algebras

    NASA Astrophysics Data System (ADS)

    Angel, Eitan

    2010-09-01

    In this thesis we give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. In his seminal book, Connes constructs a map from the equivariant cohomology of a manifold carrying the action of a discrete group into the periodic cyclic cohomology of the associated convolution algebra. Furthermore, for proper étale groupoids, J.-L. Tu and P. Xu provide a map between the periodic cyclic cohomology of a gerbe twisted convolution algebra and twisted cohomology groups. Our focus will be the convolution algebra with a product defined by a gerbe over a discrete translation groupoid. When the action is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial notions related to ideas of J. Dupont to construct a simplicial form representing the Dixmier-Douady class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial Dixmier-Douady form to the mixed bicomplex of certain matrix algebras. Finally, we define a morphism from this complex to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.

  16. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  17. The Dixmier Map for Nilpotent Super Lie Algebras

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2012-07-01

    In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.

  18. Algebra for All: California’s Eighth-Grade Algebra Initiative as Constrained Curricula

    PubMed Central

    Domina, Thurston; Penner, Andrew M.; Penner, Emily K.; Conley, Annemarie

    2015-01-01

    Background/Context Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course offerings and placing more students into Algebra I. This paper provides a quantitative single-case research study of policy-driven curricular intensification in one California school district. Research Questions (1a) What effect did 8th eighth grade curricular intensification have on mathematics course enrollment patterns in Towering Pines Unified schools? (2b) How did the distribution of prior achievement in Towering Pines math classrooms change as the district constrained the curriculum by universalizing 8th eighth grade Algebra? (3c) Did 8th eighth grade curricular intensification improve students’ mathematics achievement? Setting Towering Pines is an immigrant enclave in the inner-ring suburbs of a major metropolitan area. The district’s 10 middle schools together enroll approximately 4,000 eighth graders each year. The districts’ students are ethnically diverse and largely economically disadvantaged. The study draws upon administrative data describing 8th eighth graders in the district in the 2004–20-05 through 2007–20-08 school years. Intervention/Program/Practice During the study period, Towering Pines dramatically intensified middle school students’ math curricula: In the 2004–20-05 school year 32% of the district’s 8th eighth graders enrolled in Algebra or a higher- level mathematics course; by the 2007–20-08 school year that proportion had increased to 84%. Research Design We use an interrupted time-series design, comparing students’ 8th eighth grade math course enrollments, 10th grade math course enrollments, and 10th grade math test scores across the four cohorts, controlling for demographics and

  19. Algebra for All: California's Eighth-Grade Algebra Initiative as Constrained Curricula.

    PubMed

    Domina, Thurston; Penner, Andrew M; Penner, Emily K; Conley, Annemarie

    2014-08-01

    Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course offerings and placing more students into Algebra I. This paper provides a quantitative single-case research study of policy-driven curricular intensification in one California school district. (1a) What effect did 8th eighth grade curricular intensification have on mathematics course enrollment patterns in Towering Pines Unified schools? (2b) How did the distribution of prior achievement in Towering Pines math classrooms change as the district constrained the curriculum by universalizing 8th eighth grade Algebra? (3c) Did 8th eighth grade curricular intensification improve students' mathematics achievement? Towering Pines is an immigrant enclave in the inner-ring suburbs of a major metropolitan area. The district's 10 middle schools together enroll approximately 4,000 eighth graders each year. The districts' students are ethnically diverse and largely economically disadvantaged. The study draws upon administrative data describing 8th eighth graders in the district in the 2004-20-05 through 2007-20-08 school years. During the study period, Towering Pines dramatically intensified middle school students' math curricula: In the 2004-20-05 school year 32% of the district's 8th eighth graders enrolled in Algebra or a higher- level mathematics course; by the 2007-20-08 school year that proportion had increased to 84%. We use an interrupted time-series design, comparing students' 8th eighth grade math course enrollments, 10th grade math course enrollments, and 10th grade math test scores across the four cohorts, controlling for demographics and prior achievement. We find that students' odds of taking higher level mathematics courses increased as this

  20. Towards classical spectrum generating algebras for f-deformations

    NASA Astrophysics Data System (ADS)

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  1. A tensor Banach algebra approach to abstract kinetic equations

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; van der Mee, C. V. M.

    The study deals with a concrete algebraic construction providing the existence theory for abstract kinetic equation boundary-value problems, when the collision operator A is an accretive finite-rank perturbation of the identity operator in a Hilbert space H. An algebraic generalization of the Bochner-Phillips theorem is utilized to study solvability of the abstract boundary-value problem without any regulatory condition. A Banach algebra in which the convolution kernel acts is obtained explicitly, and this result is used to prove a perturbation theorem for bisemigroups, which then plays a vital role in solving the initial equations.

  2. Quantum walks, deformed relativity and Hopf algebra symmetries.

    PubMed

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-05-28

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. © 2016 The Author(s).

  3. On Non-Abelian Extensions of 3-Lie Algebras

    NASA Astrophysics Data System (ADS)

    Song, Li-Na; Makhlouf, Abdenacer; Tang, Rong

    2018-04-01

    In this paper, we study non-abelian extensions of 3-Lie algebras through Maurer-Cartan elements. We show that there is a one-to-one correspondence between isomorphism classes of non-abelian extensions of 3-Lie algebras and equivalence classes of Maurer-Cartan elements in a DGLA. The structure of the Leibniz algebra on the space of fundamental objects is also analyzed. Supported by National Natural Science Foundation of China under Grant No. 11471139 and National Natural Science Foundation of Jilin Province under Grant No. 20170101050JC

  4. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  5. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  6. Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.

    ERIC Educational Resources Information Center

    Menghini, Marta

    1994-01-01

    Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)

  7. Conceptualizing Routines of Practice That Support Algebraic Reasoning in Elementary Schools: A Constructivist Grounded Theory

    ERIC Educational Resources Information Center

    Store, Jessie Chitsanzo

    2012-01-01

    There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…

  8. Implementation of Algebra I in Eighth Grade: An "Ex-Post Facto" Study on Student Achievement

    ERIC Educational Resources Information Center

    Realdine, Dorothy S.

    2010-01-01

    Only recently have school districts across the nation begun to offer Algebra I to all eighth grade students. Currently, most eighth grade Algebra I curriculum does not have a national consistent focus of topics or level of rigor. A key issue of implementing Algebra I in eighth grade is defining national Algebra I concepts and skills that students…

  9. Spontaneous Meta-Arithmetic as a First Step toward School Algebra

    ERIC Educational Resources Information Center

    Caspi, Shai; Sfard, Anna

    2012-01-01

    Taking as the point of departure the vision of school algebra as a formalized meta-discourse of arithmetic, we have been following five pairs of 7th grade students as they progress in algebraic discourse during 24 months, from their informal algebraic talk to the formal algebraic discourse, as taught in school. Our analysis follows changes that…

  10. The Xs and Whys of Algebra: Key Ideas and Common Misconceptions

    ERIC Educational Resources Information Center

    Collins, Anne; Dacey, Linda

    2011-01-01

    In many ways, algebra can be as challenging for teachers as it is for students. With so much emphasis placed on procedural knowledge and the manipulations of variables and symbols, it can be easy to lose sight of the key ideas that underlie algebraic thinking and the relevance algebra has to the real world. In the The Xs and Whys of Algebra: Key…

  11. On special Lie algebras having a faithful module with Krull dimension

    NASA Astrophysics Data System (ADS)

    Pikhtilkova, O. A.; Pikhtilkov, S. A.

    2017-02-01

    For special Lie algebras we prove an analogue of Markov's theorem on {PI}-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.

  12. Constitutive relations in optics in terms of geometric algebra

    NASA Astrophysics Data System (ADS)

    Dargys, A.

    2015-11-01

    To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.

  13. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  14. Assessment of polytechnic students' understanding of basic algebra

    NASA Astrophysics Data System (ADS)

    Mokmin, Nur Azlina Mohamed; Masood, Mona

    2015-12-01

    It is important for engineering students to excel in algebra. Previous studies show that the algebraic fraction is a subtopic of algebra that was found to be the most challenging for engineering students. This study is done with 191 first semester engineering students who have enrolled in engineering programs in Malaysian polytechnic. The respondents are divided into Group 1 (Distinction) and Group 2 (Credit) based on their Mathematics SPM result. A computer application is developed for this study to assess student information and understanding of the algebraic fraction topic. The result is analyzed using SPSS and Microsoft Excel. The test results show that there are significant differences between Group 1 and Group 2 and that most of the students scored below the minimum requirement.

  15. Classical affine W-algebras associated to Lie superalgebras

    NASA Astrophysics Data System (ADS)

    Suh, Uhi Rinn

    2016-02-01

    In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.

  16. Multidimensional integrable systems and deformations of Lie algebra homomorphisms

    SciTech Connect

    Dunajski, Maciej; Grant, James D. E.; Strachan, Ian A. B.

    We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S{sup 1})

  17. Applied Algebra: The Modeling Technique of Least Squares

    ERIC Educational Resources Information Center

    Zelkowski, Jeremy; Mayes, Robert

    2008-01-01

    The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)

  18. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  19. Application of laser speckle to randomized numerical linear algebra

    NASA Astrophysics Data System (ADS)

    Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif

    2018-02-01

    We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.

  20. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  1. Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Riegler, Max

    2017-02-01

    In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.

  2. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  3. Teaching Basic Algebra Courses at the College Level

    ERIC Educational Resources Information Center

    Mallenby, Michel L.; Mallenby, Douglas W.

    2004-01-01

    Three dysfunctional behaviors of basic algebra students are described: Silence as Camouflage, Wing and a Prayer, and Ignorance is OK. These behavior patterns are explained, and beneficial teaching methods that address the weaknesses are presented.

  4. Some Applications Of Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2009-11-01

    An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.

  5. Tensor Algebra Library for NVidia Graphics Processing Units

    SciTech Connect

    Liakh, Dmitry

    This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less

  6. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  7. Paving the Way To Algebraic Thought Using Residue Designs.

    ERIC Educational Resources Information Center

    Johnson, Iris DeLoach

    1998-01-01

    Presents a brief definition and examples of residue designs while sharing some of the algebraic thought that a student used to form generalizations about the patterns discovered during the investigations of residue designs. (ASK)

  8. Classical affine W-algebras associated to Lie superalgebras

    SciTech Connect

    Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr

    2016-02-15

    In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalizationmore » of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.« less

  9. General Algebraic Modeling System Tutorial | High-Performance Computing |

    Science.gov Websites

    power generation from two different fuels. The goal is to minimize the cost for one of the fuels while Here's a basic tutorial for modeling optimization problems with the General Algebraic Modeling System (GAMS). Overview The GAMS (General Algebraic Modeling System) package is essentially a compiler for a

  10. Algebraic invariant curves of plane polynomial differential systems

    NASA Astrophysics Data System (ADS)

    Tsygvintsev, Alexei

    2001-01-01

    We consider a plane polynomial vector field P(x,y) dx + Q(x,y) dy of degree m>1. With each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω = dx/P = dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate has already been found by Cerveau and Lins Neto in a different way.

  11. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  12. The algebraic criteria for the stability of control systems

    NASA Technical Reports Server (NTRS)

    Cremer, H.; Effertz, F. H.

    1986-01-01

    This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.

  13. Quantum walks, deformed relativity and Hopf algebra symmetries

    PubMed Central

    2016-01-01

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014 Phys. Rev. A 90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras–the usual Poincaré and the κ-Poincaré algebras. PMID:27091171

  14. Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models

    NASA Technical Reports Server (NTRS)

    Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.

    1996-01-01

    An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.

  15. Birman—Wenzl—Murakami Algebra and Topological Basis

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Cheng; Xue, Kang; Wang, Gang-Cheng; Sun, Chun-Fang; Du, Gui-Jiao

    2012-02-01

    In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley—Lieb algebra (TLA), then a family of 9 × 9-matrix representations of Birman—Wenzl—Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.

  16. Pawlak Algebra and Approximate Structure on Fuzzy Lattice

    PubMed Central

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties. PMID:25152922

  17. Pawlak algebra and approximate structure on fuzzy lattice.

    PubMed

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.

  18. On alphabetic presentations of Clifford algebras and their possible applications

    NASA Astrophysics Data System (ADS)

    Toppan, Francesco; Verbeek, Piet W.

    2009-12-01

    In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named "alphabetic (re)presentations." The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the problem of the alphabetic presentations, deriving the main properties and some general results. At the end, we briefly discuss the motivations of this work and outline some possible applications.

  19. Quantum Torus Algebras and B(C)-Type Toda Systems

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Chuanzhong

    2017-12-01

    In this paper, we construct a new even constrained B(C)-type Toda hierarchy and derive its B(C)-type Block-type additional symmetry. Also we generalize the B(C)-type Toda hierarchy to the N-component B(C)-type Toda hierarchy which is proved to have symmetries of a coupled \\bigotimes ^NQT_+ algebra ( N-fold direct product of the positive half of the quantum torus algebra QT).

  20. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics

    PubMed Central

    Simzar, Rahila M.; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210

  1. Yang-Baxter algebras, integrable theories and Bethe Ansatz

    SciTech Connect

    De Vega, H.J.

    1990-03-10

    This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less

  2. Linear {GLP}-algebras and their elementary theories

    NASA Astrophysics Data System (ADS)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  3. On the homotopy equivalence of simple AI-algebras

    SciTech Connect

    Aristov, O Yu

    1999-02-28

    Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less

  4. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.

    PubMed

    Simzar, Rahila M; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.

  5. Algebraic approach to characterizing paraxial optical systems.

    PubMed

    Wittig, K; Giesen, A; Hügel, H

    1994-06-20

    The paraxial propagation formalism for ABCD systems is reviewed and written in terms of quantum mechanics. This formalism shows that the propagation based on the Collins integral can be generalized so that, in addition, the problem of beam quality degradation that is due to aberrations can be treated in a natural way. Moreover, because this formalism is well elaborated and reduces the problem of propagation to simple algebraic calculations, it seems to be less complicated than other approaches. This can be demonstrated with an easy and unitary derivation of several results, which were obtained with different approaches, in each case matched to the specific problem. It is first shown how the canonical decomposition of arbitrary (also complex) ABCD matrices introduced by Siegman [Lasers, 2nd ed. (Oxford U. Press, London, 1986)] can be used to establish the group structure of geometric optics on the space of optical wave functions. This result is then used to derive the propagation law for arbitrary moments in eneral ABCD systems. Finally a proper generalization to nonparaxial propagation operators that allows us to treat arbitrary aberration effects with respect to their influence on beam quality degradation is presented.

  6. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero

    2017-10-01

    The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current

  7. An algebraic approach to the analytic bootstrap

    DOE PAGES

    Alday, Luis F.; Zhiboedov, Alexander

    2017-04-27

    We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. Here, we analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers ofmore » operators in the crossed channel. We apply this method to the critical O(N ) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N ) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.« less

  8. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  9. Relativity symmetries and Lie algebra contractions

    SciTech Connect

    Cho, Dai-Ning; Kong, Otto C.W., E-mail: otto@phy.ncu.edu.tw

    We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m,n) symmetry as an isometry on an m+n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m,n) preserving a symmetry of the same type at dimension m+n−1, e.g. a G(m,n−1), together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example ofmore » symmetries obtained from the contraction of SO(2,4), which is the particular case for our interest on the physics side as the proposed relativity symmetry for “quantum spacetime”. The contractions from G(1,3) may be relevant to real physics.« less

  10. Algebraic motion of vertically displacing plasmas

    DOE PAGES

    Pfefferle, D.; Bhattacharjee, A.

    2018-02-27

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  11. Interactive algebraic grid-generation technique

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Wiese, M. R.

    1986-01-01

    An algebraic grid generation technique and use of an associated interactive computer program are described. The technique, called the two boundary technique, is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are referred to as the bottom and top, and they are defined by two ordered sets of points. Left and right side boundaries which intersect the bottom and top boundaries may also be specified by two ordered sets of points. when side boundaries are specified, linear blending functions are used to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly space computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth-cubic-spline functions is presented. The technique works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. An interactive computer program based on the technique and called TBGG (two boundary grid generation) is also described.

  12. Fast matrix multiplication and its algebraic neighbourhood

    NASA Astrophysics Data System (ADS)

    Pan, V. Ya.

    2017-11-01

    Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.

  13. Universal effective hadron dynamics from superconformal algebra

    DOE PAGES

    Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter; ...

    2016-05-25

    An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin–spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Ourmore » analysis is consistently applied to the excitation spectra of the π , ρ , K , K* and Φ meson families as well as to the N , Δ, Λ, Σ, Σ* , Ξ and Ξ* in the baryon sector. Here, we also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.« less

  14. Maximizing algebraic connectivity in interconnected networks.

    PubMed

    Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina

    2016-03-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.

  15. Algebraic motion of vertically displacing plasmas

    SciTech Connect

    Pfefferle, D.; Bhattacharjee, A.

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  16. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    SciTech Connect

    Gorbatsevich, Vladimir V

    2012-07-31

    The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra ismore » considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.« less

  17. Connections between Kac-Moody algebras and M-theory

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.

    2007-11-01

    We investigate some of the motivations and consequences of the conjecture that the Kac-Moody algebra E11 is the symmetry algebra of M-theory, and we develop methods to aid the further investigation of this idea. The definitions required to work with abstract root systems of Lie algebras are given in review leading up to the definition of a Kac-Moody algebra. The motivations for the E11 conjecture are presented and the nonlinear realisation of gravity relevant to the conjecture is described. We give a beginner's guide to producing the algebras of E11, relevant to M-theory, and K27, relevant to the bosonic string theory, along with their l1 representations are constructed. Reference tables of low level roots are produced for both the adjoint and l1 representations of these algebras. In addition a particular group element, having a generic form for all G+++ algebras, is shown to encode all the half-BPS brane solutions of the maximally oxidised supergravities. Special analysis is given to the role of space-time signature in the context of this group element and subsequent to this analysis spacelike brane solutions are derived from the same solution generating group element. Finally the appearance of U-duality charge multiplets from E11 is reviewed. General formulae for finding the content of arbitrary brane charge multiplets are given and the content of the particle and string multiplets in dimensions 4,5,6,7 and 8 is shown to be contained in the l1 representation of E11.

  18. The general symmetry algebra structure of the underdetermined equation ux=(vxx)2

    NASA Astrophysics Data System (ADS)

    Kersten, Paul H. M.

    1991-08-01

    In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.

  19. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  20. Hilbert space structure in quantum gravity: an algebraic perspective

    SciTech Connect

    Giddings, Steven B.

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  1. Tensor models, Kronecker coefficients and permutation centralizer algebras

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  2. Development of abstract mathematical reasoning: the case of algebra

    PubMed Central

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16–17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15–16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition. PMID:25228874

  3. Hilbert space structure in quantum gravity: an algebraic perspective

    DOE PAGES

    Giddings, Steven B.

    2015-12-16

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  4. On squares of representations of compact Lie algebras

    SciTech Connect

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less

  5. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  6. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  7. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  8. Development of abstract mathematical reasoning: the case of algebra.

    PubMed

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

  9. Directed Abelian algebras and their application to stochastic models.

    PubMed

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  10. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    PubMed

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  11. Super-BMS3 algebras from {N}=2 flat supergravities

    NASA Astrophysics Data System (ADS)

    Lodato, Ivano; Merbis, Wout

    2016-11-01

    We consider two possible flat space limits of three dimensional {N}=(1, 1) AdS supergravity. They differ by how the supercharges are scaled with the AdS radius ℓ: the first limit (democratic) leads to the usual super-Poincaré theory, while a novel `twisted' theory of supergravity stems from the second (despotic) limit. We then propose boundary conditions such that the asymptotic symmetry algebras at null infinity correspond to supersymmetric extensions of the BMS algebras previously derived in connection to non- and ultra-relativistic limits of the {N}=(1, 1) Virasoro algebra in two dimensions. Finally, we study the supersymmetric energy bounds and find the explicit form of the asymptotic and global Killing spinors of supersymmetric solutions in both flat space supergravity theories.

  12. Generic, Type-Safe and Object Oriented Computer Algebra Software

    NASA Astrophysics Data System (ADS)

    Kredel, Heinz; Jolly, Raphael

    Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.

  13. Boundaries for algebras of holomorphic functions on Marcinkiewicz sequence spaces

    NASA Astrophysics Data System (ADS)

    Choi, Yun Sung; Han, Kwang Hee

    2006-11-01

    Let be the Banach algebra of all complex-valued bounded continuous functions on the closed unit ball BE of a complex Banach space E and holomorphic in the interior of BE and let be the closed subalgebra of those functions which are uniformly continuous on BE. For the case whose bidual is a Marcinkiewicz sequence space Mw, we describe some sufficient conditions for a set to be a boundary of either or . Moreover, we consider some analogous problems on to those which were studied on the Gowers space Gp of characteristic p by Grados and Moraes [L.R. Grados, L.A. Moraes, Boundaries for algebras of holomorphic functions, J. Math. Anal. Appl. 281 (2003) 575-586; L.R. Grados, L.A. Moraes, Boundaries for an algebra of bounded holomorphic functions, J. Korean Math. Soc. 41 (1) (2004) 231-242].

  14. Emphasizing language and visualization in teaching linear algebra

    NASA Astrophysics Data System (ADS)

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-06-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his approach in both lectures and tutorials, and how he employed visualization and an emphasis on language to encourage conceptual thinking. We use Tall's framework of three worlds of mathematical thinking to reflect on the effect of these activities in students' learning. An analysis of students' attitudes to the course and their test and examination results help to answer questions about the value of such an approach, suggesting ways forward in teaching linear algebra.

  15. Natural differential operations on manifolds: an algebraic approach

    NASA Astrophysics Data System (ADS)

    Katsylo, P. I.; Timashev, D. A.

    2008-10-01

    Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles \\mathscr{V},\\mathscr{W}\\to M all the natural differential operations D\\colon\\Gamma(\\mathscr{V})\\to\\Gamma(\\mathscr{W}) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds.Bibliography: 21 titles.

  16. Image-algebraic design of multispectral target recognition algorithms

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.

    1994-06-01

    In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.

  17. Thought beyond language: neural dissociation of algebra and natural language.

    PubMed

    Monti, Martin M; Parsons, Lawrence M; Osherson, Daniel N

    2012-08-01

    A central question in cognitive science is whether natural language provides combinatorial operations that are essential to diverse domains of thought. In the study reported here, we addressed this issue by examining the role of linguistic mechanisms in forging the hierarchical structures of algebra. In a 3-T functional MRI experiment, we showed that processing of the syntax-like operations of algebra does not rely on the neural mechanisms of natural language. Our findings indicate that processing the syntax of language elicits the known substrate of linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions previously implicated in the representation of magnitude. This double dissociation argues against the view that language provides the structure of thought across all cognitive domains.

  18. Division Algebras, Supersymmetry and Higher Gauge Theory

    NASA Astrophysics Data System (ADS)

    Huerta, John Gmerek

    2011-12-01

    Starting from the four normed division algebras---the real numbers, complex numbers, quaternions and octonions, with dimensions k = 1, 2, 4 and 8, respectively---a systematic procedure gives a 3-cocycle on the Poincare Lie superalgebra in dimensions k + 2 = 3, 4, 6 and 10. A related procedure gives a 4-cocycle on the Poincare Lie superalgebra in dimensions k+3 = 4, 5, 7 and 11. The existence of these cocycles follow from certain spinor identities that hold only in these dimensions, and which are closely related to the existence of superstring and super-Yang--Mills theory in dimensions k + 2, and super-2-brane theory in dimensions k + 3. In general, an (n+1)-cocycle on a Lie superalgebra yields a 'Lie n-superalgebra': that is, roughly speaking, an n-term chain complex equipped with a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the Poincare superalgebra in dimensions 3, 4, 6, and 10, and Lie 3-superalgebras extending the Poincare superalgebra in dimensions 4, 5, 7 and 11. As shown in Sati, Schreiber and Stasheff's work on generalized connections valued in Lie n-superalgebras, Lie 2-superalgebra connections describe the parallel transport of strings, while Lie 3-superalgebra connections describe the parallel transport of 2-branes. Moreover, in the octonionic case, these connections concisely summarize the fields appearing in 10- and 11-dimensional supergravity. Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a 'Lie n-supergroup' that is hugely infinite-dimensional. However, when the Lie n-superalgebra is obtained from an (n + 1)-cocycle on a nilpotent Lie superalgebra, there is a geometric procedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup. In general, a smooth (n+1)-cocycle on a supergroup yields a 'Lie n-supergroup': that is, a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the 3-cocycle in

  19. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model

    SciTech Connect

    Burdik, C., E-mail: burdik@kmlinux.fjfi.cvut.cz; Navratil, O.

    2011-06-15

    We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.

  1. The Effects of History of Mathematics on Attitudes Toward Mathematics of College Algebra Students

    ERIC Educational Resources Information Center

    McBride, Cecil; Rollins, James H.

    1977-01-01

    Two college algebra classes were exposed to items from mathematics history in their classroom instruction, while two other college algebra classes received no such exposure. Results showed a significant positive attitude change of the mathematics history group. (DT)

  2. Operator algebra as an application of logarithmic representation of infinitesimal generators

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2018-02-01

    The operator algebra is introduced based on the framework of logarithmic representation of infinitesimal generators. In conclusion a set of generally-unbounded infinitesimal generators is characterized as a module over the Banach algebra.

  3. The smooth entropy formalism for von Neumann algebras

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-01

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  4. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  5. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  6. Quantization of set theory and generalization of the fermion algebra

    NASA Astrophysics Data System (ADS)

    Arik, M.; Tekin, S. C.

    2002-05-01

    The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.

  7. The smooth entropy formalism for von Neumann algebras

    SciTech Connect

    Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch

    2016-01-15

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  8. Learning algebra through MCREST strategy in junior high school students

    NASA Astrophysics Data System (ADS)

    Siregar, Nurfadilah; Kusumah, Yaya S.; Sabandar, J.; Dahlan, J. A.

    2017-09-01

    The aims of this paper are to describe the use of MCREST strategy in learning algebra and to obtain empirical evidence on the effect of MCREST strategy es specially on reasoning ability. Students in eight grade in one of schools at Cimahi City are chosen as the sample of this study. Using pre-test and post-test control group design, the data then analyzed in descriptive and inferential statistics. The results of this study show the students who got MCREST strategy in their class have better result in test of reasoning ability than students who got direct learning. It means that MCREST strategy gives good impact in learning algebra.

  9. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  10. Multi-loop Integrand Reduction with Computational Algebraic Geometry

    NASA Astrophysics Data System (ADS)

    Badger, Simon; Frellesvig, Hjalte; Zhang, Yang

    2014-06-01

    We discuss recent progress in multi-loop integrand reduction methods. Motivated by the possibility of an automated construction of multi-loop amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-loop integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gröbner bases and primary decomposition of ideals. We present some results for two and three loop amplitudes obtained with the help of the MACAULAY2 computer algebra system and the Mathematica package BASISDET.

  11. Arithmetic Circuit Verification Based on Symbolic Computer Algebra

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo

    This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.

  12. Algebraic approach to small-world network models

    NASA Astrophysics Data System (ADS)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  13. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  14. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  15. Algebraic criteria for positive realness relative to the unit circle.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1973-01-01

    A definition is presented of the circle positive realness of real rational functions relative to the unit circle in the complex variable plane. The problem of testing this kind of positive reality is reduced to the algebraic problem of determining the distribution of zeros of a real polynomial with respect to and on the unit circle. Such reformulation of the problem avoids the search for explicit information about imaginary poles of rational functions. The stated algebraic problem is solved by applying the polynomial criteria of Marden (1966) and Jury (1964), and a completely recursive algorithm for circle positive realness is obtained.

  16. Characterizations of Some Fuzzy Prefilters (Filters) in EQ-Algebras

    PubMed Central

    Xin, Xiao Long; Yang, Yong Wei

    2014-01-01

    We introduce and study some types of fuzzy prefilters (filters) in EQ-algebras. First, we present several characterizations of fuzzy positive implicative prefilters (filters), fuzzy implicative prefilters (filters), and fuzzy fantastic prefilters (filters). Next, using their characterizations, we mainly consider the relationships among these special fuzzy filters. Particularly, we find some conditions under which a fuzzy implicative prefilter (filter) is equivalent to a fuzzy positive implicative prefilter (filter). As applications, we obtain some new results about classical filters in EQ-algebras and some related results about fuzzy filters in residuated lattices. PMID:24892096

  17. Hom Gel'fand-Dorfman bialgebras and Hom-Lie conformal algebras

    SciTech Connect

    Yuan, Lamei, E-mail: lmyuan@hit.edu.cn

    2014-04-15

    The aim of this paper is to introduce the notions of Hom Gel'fand-Dorfman bialgebra and Hom-Lie conformal algebra. In this paper, we give four constructions of Hom Gel'fand-Dorfman bialgebras. Also, we provide a general construction of Hom-Lie conformal algebras from Hom-Lie algebras. Finally, we prove that a Hom Gel'fand-Dorfman bialgebra is equivalent to a Hom-Lie conformal algebra of degree 2.

  18. Generalized derivation extensions of 3-Lie algebras and corresponding Nambu-Poisson structures

    NASA Astrophysics Data System (ADS)

    Song, Lina; Jiang, Jun

    2018-01-01

    In this paper, we introduce the notion of a generalized derivation on a 3-Lie algebra. We construct a new 3-Lie algebra using a generalized derivation and call it the generalized derivation extension. We show that the corresponding Leibniz algebra on the space of fundamental objects is the double of a matched pair of Leibniz algebras. We also determine the corresponding Nambu-Poisson structures under some conditions.

  19. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  20. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…