Sample records for a-type intercalated cells

  1. Rechargeable LiNiO2/carbon cells

    NASA Astrophysics Data System (ADS)

    Dahn, J. R.; von Sacken, U.; Juzkow, M. W.; Al-Janaby, H.

    1991-08-01

    Rechargeable cells can be made using two different intercalation compounds, in which the chemical potential of the intercalant differs by several eV, for the electrodes. The factors that play a role in the selection of appropriate lithium intercalation compounds for such cells are discussed. For the ease of cell assembly, the cathode should be stable in air when it is fully intercalated, like LiNiO2. For the anode, the chemical potential of the intercalated Li should be close to that of Li metal, like it is in Li(x)C6. The intercalation of Li in LiNiO2 is discussed, and then in petroleum coke. Then, it is shown that LiNiO2/coke cells have high energy density, long cycle life, excellent high-temperature performance, low self-discharge rates, can be repeatedly discharged to zero volts without damage, and are easily fabricated. It is considered that this type of cell shows far more promise for widespread applications than traditional secondary Li cells using metallic Li anodes.

  2. Regulation of intracellular pH in the rabbit cortical collecting tubule.

    PubMed Central

    Weiner, I D; Hamm, L L

    1990-01-01

    The cortical collecting tubule (CCT) is an important nephron segment for Na+, K+, water and acid-base transport. Differential loading characteristics of the pH sensitive dye 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) and basolateral Cl- removal were used to identify and study intracellular pH (pHi) regulation in each of three cell types involved in this transport. Both principal cells and beta-intercalated cells were found to have a basolateral Na+/H+ exchanger based on the Na+ and amiloride sensitivity of pHi recovery from acid loads. Intercalated cells demonstrated abrupt pHi changes with basolateral Cl- removal. alpha-intercalated cells alkalinized; beta-intercalated cells acidified. In the beta-intercalated cells, luminal Cl- removal blocked changes in pHi in response to changes in luminal HCO3- or peritubular Cl-, providing direct evidence for a luminal Cl-/HCO3- exchanger. In principal cells, brief removal of either peritubular or luminal Cl- resulted in no change in pHi; however, return of peritubular Cl- after prolonged removal resulted in a rapid fall in pHi consistent with a basolateral Cl-/HCO3- exchanger, which may be relatively inactive under baseline conditions. Therefore, Cl-/HCO3- exchange is present in all three cell types but varies in location and activity. PMID:2153152

  3. Histochemical carbonic anhydrase in rat inner medullary collecting duct

    NASA Technical Reports Server (NTRS)

    Kleinman, J. G.; Bain, J. L.; Fritsche, C.; Riley, D. A.

    1992-01-01

    Rat inner medullary collecting duct (IMCD) secretes substantial amounts of H+. However, carbonic anhydrase (CA), a concomitant of H+ secretion, has been generally reported absent in this segment. To reexamine this problem, we investigated CA and the morphological phenotypes of cells comprising the IMCD by CA histochemistry, using a modified Hansson technique with light and electron microscopy. Throughout the medulla, tubule cells exhibit histochemical CA activity. In the initial third of the inner medulla, a small proportion have features of intercalated cells and demonstrate some degree of CA activity. However, the majority population in the early portions of the IMCD appears to consist of principal cells. These also show CA staining of widely variable intensity, both among and within cells. A third cell type, previously called "IMCD cells", appears in the middle portion of the IMCD and is the only cell type present near the papilla tip. In contrast to previous reports, these "IMCD cells" have histochemical CA staining, also of highly variable intensity. These results demonstrate that stainable carbonic anhydrase to support acidification is present throughout the rat IMCD, both in intercalated cells and in some cells clearly not of this type. Therefore, the presence of CA is not specific for the intercalated cell type and suggests that other cell types may participate in acid secretion in IMCD.

  4. Collecting Duct Intercalated Cell Function and Regulation

    PubMed Central

    Roy, Ankita; Al-bataineh, Mohammad M.

    2015-01-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  5. Renal Type A Intercalated Cells Contain Albumin in Organelles with Aldosterone-Regulated Abundance

    PubMed Central

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells. PMID:25874770

  6. Cell type-specific glycoconjugates of collecting duct cells during maturation of the rat kidney.

    PubMed

    Holthöfer, H

    1988-08-01

    The ontogeny of lectin-positive epithelial cell types and the maturation of polarized expression of the glycocalyx of the collecting ducts (CD) of the rat kidney were studied from samples of 18th-day fetal and neonatal kidneys of various ages. Lectins from Dolichos biflorus (DBA) and Vicia villosa (VVA), with preferential affinity to principal cells, stained virtually all CD cells of the fetal kidneys. However, within two days postnatally, the number of cells positive for DBA and VVA decreased to amounts found in the adult kidneys. Moreover, a characteristic change occurred rapidly after birth in the intracellular polarization of the reactive glycoconjugates, from a uniform plasmalemmal to a preferentially apical staining. In contrast, lectins from Arachis hypogaea (PNA), Maclura pomifera (MPA) and Lotus tetragonolobus (LTA), reacting indiscriminatively with principal and intercalated cells of adult kidneys, stained most CD cells in the fetal kidneys, and failed to show any postnatal change in the amount of positive cells or in the intracellular polarization. The immunocytochemical tests for (Na + K)-ATPase and carbonic anhydrase (CA II) revealed the characteristic postnatal decrease in the amount of principal cells and simultaneous increase in the amount of CA II rich intercalated cells. DBA and VVA reactive cells also decreased postnatally, paralleling the changes observed in the (Na + K)-ATPase positive principal cells. The present results suggest that the expression of the cell type-specific glycocalyx of principal and intercalated cells is developmentally regulated, undergoes profound changes during maturation, and is most likely associated with electrolyte transport phenomena.

  7. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  8. Resistance to hypertension mediated by intercalated cells of the collecting duct

    PubMed Central

    Chen, Daian; Herrera, Marcela; Sparks, Matthew A.; Gurley, Susan B.

    2017-01-01

    The renal collecting duct (CD), as the terminal segment of the nephron, is responsible for the final adjustments to the amount of sodium excreted in urine. While angiotensin II modulates reabsorptive functions of the CD, the contribution of these actions to physiological homeostasis is not clear. To examine this question, we generated mice with cell-specific deletion of AT1A receptors from the CD. Elimination of AT1A receptors from both principal and intercalated cells (CDKO mice) had no effect on blood pressures at baseline or during successive feeding of low- or high-salt diets. In contrast, the severity of hypertension caused by chronic infusion of angiotensin II was paradoxically exaggerated in CDKO mice compared with controls. In wild-type mice, angiotensin II induced robust expression of cyclooxygenase-2 (COX-2) in renal medulla, primarily localized to intercalated cells. Upregulation of COX-2 was diminished in CDKO mice, resulting in reduced generation of vasodilator prostanoids. This impaired expression of COX-2 has physiological consequences, since administration of a specific COX-2 inhibitor to CDKO and control mice during angiotensin II infusion equalized their blood pressures. Stimulation of COX-2 was also triggered by exposure of isolated preparations of medullary CDs to angiotensin II. Deletion of AT1A receptors from principal cells alone did not affect angiotensin II–dependent COX2 stimulation, implicating intercalated cells as the main source of COX2 in this setting. These findings suggest a novel paracrine role for the intercalated cell to attenuate the severity of hypertension. Strategies for preserving or augmenting this pathway may have value for improving the management of hypertension. PMID:28405625

  9. Activation Mobilizes the Cholesterol in the Late Endosomes-Lysosomes of Niemann Pick Type C Cells

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2012-01-01

    A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease. PMID:22276143

  10. Renal intercalated cells and blood pressure regulation.

    PubMed

    Wall, Susan M

    2017-12-01

    Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl - absorption and HCO 3 - secretion largely through pendrin-dependent Cl - /HCO 3 - exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO 3 administration. In some rodent models, pendrin-mediated HCO 3 - secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl - absorption, but also by modulating the aldosterone response for epithelial Na + channel (ENaC)-mediated Na + absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  11. An advanced model framework for solid electrolyte intercalation batteries.

    PubMed

    Landstorfer, Manuel; Funken, Stefan; Jacob, Timo

    2011-07-28

    Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011

  12. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  13. Renal intercalated cells and blood pressure regulation

    PubMed Central

    Wall, Susan M.

    2017-01-01

    Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl− absorption and HCO3− secretion largely through pendrin-dependent Cl−/HCO3− exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO3 administration. In some rodent models, pendrin-mediated HCO3− secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl− absorption, but also by modulating the aldosterone response for epithelial Na+ channel (ENaC)-mediated Na+ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure. PMID:29285423

  14. Studies of hexafluorophosphate, tetrafluoroborate, and perchlorate electro-intercalation into graphitic carbon

    NASA Astrophysics Data System (ADS)

    Seel, Jennifer Ann

    There has been some interest in using carbon materials as both working electrodes in electrochemical cells and rechargeable batteries [1--6]. This would result in the intercalation of not only of lithium ions into one carbon electrode but the anion component of the lithium salt, such as PF 6-, into the other carbon electrode. The intercalation of the anion component of the salt into carbon electrodes has not been studied extensively and it is not completely understood. The work presented here will expand on this rarely touched subject through electrochemical cycling as well as in-situ and ex-situ X-ray diffraction experiments. The anions that will be studied are: PF6- , BF4- and ClO4 -. It will be shown that anion intercalation occurs for various types of soft carbons and that the process can be greatly affected by the amount of turbostratic disorder present in the carbon material as well as by the specific anion used. It was discovered that using ethyl methyl sulfone, EMS, as the solvent component of the electrolyte resulted in more stable electrochemical cells than ethylene carbonate/diethyl carbonate, a more common solvent, at the high potentials required for anion intercalation. It was also discovered that PF 6 and BF4 formed staged phases during electrochemical cycling whereas ClO4 did not. The amount of disorder present in the carbon electrode did affect the intercalation of the anion. The samples with a greater amount of disorder present had a larger amount of capacity loss between charge and discharge capacities. It was also found that purer and more distinct staged phases occurred in the more ordered carbon samples. The turbostratically disordered carbon layers may rotate to accommodate PF6 and therefore become slightly more ordered. X-ray diffraction evidence suggests that intercalated PF6 molecules may be free-rotating between the carbon layers. However, the orientation of BF4 molecules between the carbon layers could not be determined. There may also be some co-intercalation of the solvent, mainly with ClO 4 and to a lesser extent BF4 and PF6. It is thought that a large amount of solvent co-intercalation occurs with ClO4 and this is the most probable reason why staged phases were not observed. An unfortunate aspect of this study is that dual carbon cells are not at all viable as commercial cells. The energy densities of dual carbon cells are much lower than the currently available lithium-ion cells. For dual carbon cells to become viable new inexpensive salts and solvents that can operate at high potentials and high concentrations must be discovered. With further investigation, combinations of different anions and solvents may result in higher specific capacities that would also make dual carbon cells more viable.

  15. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis.

    PubMed

    Walck-Shannon, Elise; Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig; Cochran, Hunter; Bothfeld, William; Hardin, Jeff

    2016-11-01

    Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation.

  16. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis

    PubMed Central

    Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig

    2016-01-01

    Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. PMID:27861585

  17. Chiral cell sliding drives left-right asymmetric organ twisting

    PubMed Central

    Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru

    2018-01-01

    Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. PMID:29891026

  18. Chiral cell sliding drives left-right asymmetric organ twisting.

    PubMed

    Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru; Matsuno, Kenji; Honda, Hisao

    2018-06-12

    Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified 'cell sliding,' a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. © 2018, Inaki et al.

  19. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  20. Stochasticity and stereotypy in the Ciona notochord.

    PubMed

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-15

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Stochasticity and Stereotypy in the Ciona Notochord

    PubMed Central

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-01

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. PMID:25459659

  2. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

    PubMed Central

    Bishop, Jesse M.; Lee, Hyun-Wook; Handlogten, Mary E.; Han, Ki-Hwan; Verlander, Jill W.

    2013-01-01

    The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia. PMID:23220726

  3. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining wasmore » determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.« less

  4. Pemetrexed-carboplatin with intercalated icotinib in the treatment of patient with advanced EGFR wild-type lung adenocarcinoma: A case report.

    PubMed

    Xu, Tongpeng; Wu, Hao; Jin, Shidai; Min, Huang; Zhang, Zhihong; Shu, Yongqian; Wen, Wei; Guo, Renhua

    2017-08-01

    Tyrosine kinase inhibitors (TKIs) are known to have greater efficacy in epidermal growth factor receptor (EGFR) mutation nonsmall cell lung cancer (NSCLC). However, about 10% of EGFR wild-type (wt) patients respond to TKIs. Several strategies to increase the efficacy of TKIs in wt NSCLC are the subjects of ongoing investigations. One of them is combining EGFR TKI with intercalated chemotherapy. We describe a patient with EGFR wt NSCLC, who was found with ovarian and lung metastasis, was treated with pemetrexed and intercalated icotinib. In this case, we reported the successful long-term maintenance treatment of a patient with EGFR wt NSCLC with pemetrexed and Icotinib. The patient (40-year-old female) was found with ovarian masses and lung masses. Pathological, immunohistochemical, and amplification refractory mutation system (ARMS) assay examinations of ovarian specimen suggested the expression of metastatic lung adenocarcinoma with wt EGFR. After failure treatment with paclitaxel-carboplatin, the patient received 4 cycles of pemetrexed plus platinum with intercalated icotinib and then remained on pemetrexed and icotinib. A partial response was achieved after the treatment. The patient's condition had remained stable on pemetrexed and icotinib for more than 20 months, with no evidence of progression. To our knowledge, this is the first report using the long-term maintenance treatment with pemetrexed and intercalated icotinib in EGFR wt patient. The therapeutic strategies warrant further exploration in selected populations of NSCLC.

  5. Pemetrexed-carboplatin with intercalated icotinib in the treatment of patient with advanced EGFR wild-type lung adenocarcinoma

    PubMed Central

    Xu, Tongpeng; Wu, Hao; Jin, Shidai; Min, Huang; Zhang, Zhihong; Shu, Yongqian; Wen, Wei; Guo, Renhua

    2017-01-01

    Abstract Rationale: Tyrosine kinase inhibitors (TKIs) are known to have greater efficacy in epidermal growth factor receptor (EGFR) mutation nonsmall cell lung cancer (NSCLC). However, about 10% of EGFR wild-type (wt) patients respond to TKIs. Patient concerns: Several strategies to increase the efficacy of TKIs in wt NSCLC are the subjects of ongoing investigations. One of them is combining EGFR TKI with intercalated chemotherapy. Diagnoses: We describe a patient with EGFR wt NSCLC, who was found with ovarian and lung metastasis, was treated with pemetrexed and intercalated icotinib. Interventions: In this case, we reported the successful long-term maintenance treatment of a patient with EGFR wt NSCLC with pemetrexed and Icotinib. The patient (40-year-old female) was found with ovarian masses and lung masses. Pathological, immunohistochemical, and amplification refractory mutation system (ARMS) assay examinations of ovarian specimen suggested the expression of metastatic lung adenocarcinoma with wt EGFR. After failure treatment with paclitaxel-carboplatin, the patient received 4 cycles of pemetrexed plus platinum with intercalated icotinib and then remained on pemetrexed and icotinib. Outcomes: A partial response was achieved after the treatment. The patient's condition had remained stable on pemetrexed and icotinib for more than 20 months, with no evidence of progression. Lessons: To our knowledge, this is the first report using the long-term maintenance treatment with pemetrexed and intercalated icotinib in EGFR wt patient. The therapeutic strategies warrant further exploration in selected populations of NSCLC. PMID:28816950

  6. Metal complexes as DNA intercalators.

    PubMed

    Liu, Hong-Ke; Sadler, Peter J

    2011-05-17

    DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru(II)- and Os(II)-arene complexes and the methods used to detect arene-DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure-activity relationships. The interactions between these complexes and DNA show close similarities to those of covalent polycyclic aromatic carcinogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(η(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(η(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru-arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure- activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.

  7. Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.

    PubMed

    Veeman, Michael T; Smith, William C

    2013-01-15

    Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper

    PubMed Central

    Veeman, Michael T.; Smith, William C.

    2012-01-01

    Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. PMID:23165294

  9. Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.

    2010-01-01

    The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.

  10. Environmental stability of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Jaworske, D. A.

    1985-01-01

    Graphite fibers intercalated with bromine, iodine monochloride, ferric chloride, and cupric chloride were subjected to stability tests under four environments which are encountered by engineering materials in the aerospace industry: ambient laboratory conditions, as would be experienced during handling operations and terrestrial applications; high vacuum, as would be experienced in space applications; high humidity, as would be experienced in marine applications; and high temperature, as would be experienced in some processing steps and applications. Monitoring the resistance of the fibers at ambient laboratory conditions revealed that only the ferric chloride intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were stable for long periods under high vacuum. Ferric chloride, cupric chloride, and iodine monochloride intercalated fibers were sensitive to high humidity conditions. All intercalated fibers began to degrade above 250 C. The order of their thermal stability, from lowest to highest, was cupric chloride, iodine monochloride, bromine, and ferric chloride. Of the four types of intercalated fibers tested, the bromine intercalated fibers appear to have the most potential for application, based on environmental stability.

  11. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    NASA Astrophysics Data System (ADS)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.

    2013-08-01

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  12. Layered Compounds and Intercalation Chemistry: An Example of Chemistry and Diffusion in Solids.

    ERIC Educational Resources Information Center

    Whittingham, M. Stanley; Chianelli, Russell R.

    1980-01-01

    Considers a few areas of oxide/sulfide and intercalation-type chemistry. Discusses synthesis of the disulfides of the metals of group IVB, VB, and VIB; the intercalation reaction between lithium and titanium disulfide; other intercalates; and sulfide catalysts. (CS)

  13. Calcium signaling mediates five types of cell morphological changes to form neural rosettes.

    PubMed

    Hříbková, Hana; Grabiec, Marta; Klemová, Dobromila; Slaninová, Iva; Sun, Yuh-Man

    2018-02-12

    Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of five types of morphological change: intercalation, constriction, polarization, elongation and lumen formation. Ca 2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, actin, myosin II and tubulin during intercalation, constriction and elongation. These, in turn, control the polarizing elements, ZO-1, PARD3 and β-catenin during polarization and lumen production for neural rosette formation. We further demonstrate that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promotes neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development. © 2018. Published by The Company of Biologists Ltd.

  14. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition

    NASA Astrophysics Data System (ADS)

    Gill, Martin R.; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A.; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A.

    2016-08-01

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  15. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition.

    PubMed

    Gill, Martin R; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A

    2016-08-25

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  16. The intercalation chemistry of layered iron chalcogenide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the rolemore » of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.« less

  17. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    PubMed

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  18. Cell migration, intercalation and growth regulate mammalian cochlear extension.

    PubMed

    Driver, Elizabeth Carroll; Northrop, Amy; Kelley, Matthew W

    2017-10-15

    Developmental remodeling of the sensory epithelium of the cochlea is required for the formation of an elongated, tonotopically organized auditory organ, but the cellular processes that mediate these events are largely unknown. We used both morphological assessments of cellular rearrangements and time-lapse imaging to visualize cochlear remodeling in mouse. Analysis of cell redistribution showed that the cochlea extends through a combination of radial intercalation and cell growth. Live imaging demonstrated that concomitant cellular intercalation results in a brief period of epithelial convergence, although subsequent changes in cell size lead to medial-lateral spreading. Supporting cells, which retain contact with the basement membrane, exhibit biased protrusive activity and directed movement along the axis of extension. By contrast, hair cells lose contact with the basement membrane, but contribute to continued outgrowth through increased cell size. Regulation of cellular protrusions, movement and intercalation within the cochlea all require myosin II. These results establish, for the first time, many of the cellular processes that drive the distribution of sensory cells along the tonotopic axis of the cochlea. © 2017. Published by The Company of Biologists Ltd.

  19. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  20. Eph regulates dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation.

    PubMed

    Oda-Ishii, Izumi; Ishii, Yasuo; Mikawa, Takashi

    2010-10-29

    The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood. Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete. Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.

  1. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    PubMed Central

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  2. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  3. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators

    PubMed Central

    Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.

    2006-01-01

    Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786

  4. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    PubMed Central

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  5. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    PubMed

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  6. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan.

    PubMed

    Skoglund, Paul; Keller, Ray

    2010-10-01

    The shaping of the vertebrate embryonic body plan depends heavily on the narrowing and lengthening (convergence and extension) of embryonic tissues by cell intercalation, a process by which cells actively crawl between one another along the axis of convergence to produce a narrower, longer array. We discuss recent evidence that the vertebrate non-canonical Wnt/Planar Cell Polarity (PCP) pathway, known to directly function in polarizing the movements of intercalating cells, is also involved in the localized assembly of extracellular matrix (ECM). These cell-ECM interactions, in turn, are necessary for expression of the oriented, polarized cell intercalation. The mechanism of PCP/ECM interactions, their molecular signaling, and their mechanical consequences for morphogenesis are discussed with the goal of identifying important unsolved issues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Evaluation of Carbon Anodes for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, C-K.; Surampudi, S.; Attia, A.; Halpert, G.

    1993-01-01

    Both liquid phase intercalation technique and electrochemical intercalation technique were examined for the Li-carbon material preparation. The electrochemical techniques include a intermittent discharge method and a two step method. These two electrochemical techniques can ensure to achieve the maximum reversible Li capacity for common commercially available carbon materials. The carbon materials evaluated by the intercalacation method includes: pitch coke, petroleum cole, PAN fiber and graphite materials. Their reversible Li capacity were determined and compared. In this paper, we also demonstrate the importance of EPDM binder composition in the carbon electrode. Our results indicated that it can impact the Li intercalation and de-intercalation capacity in carbon materials. Finally, two possibilities that may help explain the capacity degradation during practical cell cycling were proposed.

  8. The role of ionic liquid electrolyte in an aluminum–graphite electrochemical cell

    DOE PAGES

    Agiorgousis, Michael L.; Sun, Yi -Yang; Zhang, Shengbai

    2017-02-17

    Using first-principles calculations and molecular dynamics simulation, we study the working mechanism in an aluminum–graphite electrochemical cell, which was recently reported to exhibit attractive performance. We exclude the possibility of Al 3+ cation intercalation into graphite as in standard Li-ion batteries. Instead, we show that the AlCl 4 – anion intercalation mechanism is thermodynamically feasible. By including the ionic liquid electrolyte in the overall redox reaction, we are able to reproduce the high voltage observed in experiment. The active involvement of electrolyte in the reaction suggests that the evaluation of energy density needs to take the electrolyte into consideration. Here,more » our proposed structural model is consistent with the new peaks appearing in X-ray diffraction from the intercalation compound. The high rate capability is explained by the ultralow diffusion barriers of the AlCl 4 intercalant. With the clarified working mechanism, it becomes clear that the high voltage of the Al–graphite cell is a result of the thermodynamic instability of the AlCl 4-intercalated graphite.« less

  9. Global View of the Functional Molecular Organization of the Avian Cerebrum: Mirror Images and Functional Columns

    PubMed Central

    Jarvis, Erich D.; Yu, Jing; Rivas, Miriam V.; Horita, Haruhito; Feenders, Gesa; Whitney, Osceola; Jarvis, Syrus C.; Jarvis, Electra R.; Kubikova, Lubica; Puck, Ana E.P.; Siang-Bakshi, Connie; Martin, Suzanne; McElroy, Michael; Hara, Erina; Howard, Jason; Pfenning, Andreas; Mouritsen, Henrik; Chen, Chun-Chun; Wada, Kazuhiro

    2014-01-01

    Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. PMID:23818122

  10. Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns.

    PubMed

    Jarvis, Erich D; Yu, Jing; Rivas, Miriam V; Horita, Haruhito; Feenders, Gesa; Whitney, Osceola; Jarvis, Syrus C; Jarvis, Electra R; Kubikova, Lubica; Puck, Ana E P; Siang-Bakshi, Connie; Martin, Suzanne; McElroy, Michael; Hara, Erina; Howard, Jason; Pfenning, Andreas; Mouritsen, Henrik; Chen, Chun-Chun; Wada, Kazuhiro

    2013-11-01

    Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. Copyright © 2013 Wiley Periodicals, Inc.

  11. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  12. Tumor marker analyses from the phase III, placebo-controlled, FASTACT-2 study of intercalated erlotinib with gemcitabine/platinum in the first-line treatment of advanced non-small-cell lung cancer.

    PubMed

    Mok, Tony; Ladrera, Guia; Srimuninnimit, Vichien; Sriuranpong, Virote; Yu, Chong-Jen; Thongprasert, Sumitra; Sandoval-Tan, Jennifer; Lee, Jin Soo; Fuerte, Fatima; Shames, David S; Klughammer, Barbara; Truman, Matt; Perez-Moreno, Pablo; Wu, Yi-Long

    2016-08-01

    The FASTACT-2 study of intercalated erlotinib with chemotherapy in Asian patients found that EGFR mutations were the main driver behind the significant progression-free survival (PFS) benefit noted in the overall population. Further exploratory biomarker analyses were conducted to provide additional insight. This multicenter, randomized, placebo-controlled, double-blind, phase III study investigated intercalated first-line erlotinib or placebo with gemcitabine/platinum, followed by maintenance erlotinib or placebo, for patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Provision of samples for biomarker analysis was encouraged but not mandatory. The following biomarkers were analyzed (in order of priority): EGFR mutation by cobas(®) test, KRAS mutation by cobas(®)KRAS test, HER2 by immunohistochemistry (IHC), HER3 by IHC, ERCC1 by IHC, EGFR gene copy number by fluorescence in-situ hybridization (FISH) and EGFR by IHC. All subgroups were assessed for PFS (primary endpoint), overall survival (OS), non-progression rate and objective response rate. Overall, 256 patients provided samples for analysis. Considerable overlap was noted among biomarkers, except for EGFR and KRAS mutations, which are mutually exclusive. Other than EGFR mutations (p<0.0001), no other biomarkers were significantly predictive of outcomes in a treatment-by-biomarker interaction test, although ERCC1 IHC-positive status was predictive of improved OS for the erlotinib arm versus placebo in EGFR wild-type patients (median 18.4 vs 9.5 months; hazard ratio [HR] HR=0.32, 95% confidence intervals [CI]: 0.14-0.69, p=0.0024). Activating EGFR mutations were predictive for improved treatment outcomes with a first-line intercalated regimen of chemotherapy and erlotinib in NSCLC. ERCC1 status may have some predictive value in EGFR wild-type disease, but requires further investigation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia roretzi.

    PubMed

    Niwano, Tomoko; Takatori, Naohito; Kumano, Gaku; Nishida, Hiroki

    2009-08-25

    In the embryos of various animals, the body elongates after gastrulation by morphogenetic movements involving convergent extension. The Wnt/PCP (planar cell polarity) pathway plays roles in this process, particularly mediolateral polarization and intercalation of the embryonic cells. In ascidians, several factors in this pathway, including Wnt5, have been identified and found to be involved in the intercalation process of notochord cells. In the present study, the role of the Wnt5 genes, Hr-Wnt5alpha (Halocynthia roretzi Wnt5alpha) and Hr-Wnt5beta, in convergent extension was investigated in the ascidian H. roretzi by injecting antisense oligonucleotides and mRNAs into single precursor blastomeres of various tissues, including notochord, at the 64-cell stage. Hr-Wnt5alpha is expressed in developing notochord and was essential for notochord morphogenesis. Precise quantitative control of its expression level was crucial for proper cell intercalation. Overexpression of Wnt5 proteins in notochord and other tissues that surround the notochord indicated that Wnt5alpha plays a role within the notochord, and is unlikely to be the source of polarizing cues arising outside the notochord. Detailed mosaic analysis of the behaviour of individual notochord cells overexpressing Wnt5alpha indicated that a Wnt5alpha-manipulated cell does not affect the behaviour of neighbouring notochord cells, suggesting that Wnt5alpha works in a cell-autonomous manner. This is further supported by comparison of the results of Wnt5alpha and Dsh (Dishevelled) knockdown experiments. In addition, our results suggest that the Wnt/PCP pathway is also involved in mediolateral intercalation of cells of the ventral row of the nerve cord (floor plate) and the endodermal strand. The present study highlights the role of the Wnt5alpha signal in notochord convergent extension movements in ascidian embryos. Our results raise the novel possibility that Wnt5alpha functions in a cell-autonomous manner in activation of the Wnt/PCP pathway to polarize the protrusive activity that drives convergent extension.

  14. Acceptor-type hydroxide graphite intercalation compounds electrochemically formed in high ionic strength solutions.

    PubMed

    Miyazaki, Kohei; Iizuka, Asuka; Mikata, Koji; Fukutsuka, Tomokazu; Abe, Takeshi

    2017-09-05

    The intercalation of hydroxide ions (OH - ) into graphite formed graphite intercalation compounds (GICs) in high ionic strength solutions. GICs of solvated OH - anions with two water molecules (OH - ·2H 2 O) in alkaline aqueous solutions and GICs of only OH - anions in a molten NaOH-KOH salt solution were electrochemically synthesized.

  15. Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation.

    PubMed

    Kinoshita, Hiroki; Jeon, Il; Maruyama, Mina; Kawahara, Kenji; Terao, Yuri; Ding, Dong; Matsumoto, Rika; Matsuo, Yutaka; Okada, Susumu; Ago, Hiroki

    2017-11-01

    Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl 5 ) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl 5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫ -1 ) is realized after MoCl 5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simulation assisted characterization of kaolinite-methanol intercalation complexes synthesized using cost-efficient homogenization method

    NASA Astrophysics Data System (ADS)

    Makó, Éva; Kovács, András; Ható, Zoltán; Kristóf, Tamás

    2015-12-01

    Recent experimental and simulation findings with kaolinite-methanol intercalation complexes raised the question of the existence of more stable structures in wet and dry state, which has not been fully cleared up yet. Experimental and molecular simulation analyses were used to investigate different types of kaolinite-methanol complexes, revealing their real structures. Cost-efficient homogenization methods were applied to synthesize the kaolinite-dimethyl sulfoxide and kaolinite-urea pre-intercalation complexes of the kaolinite-methanol ones. The tested homogenization method required an order of magnitude lower amount of reagents than the generally applied solution method. The influence of the type of pre-intercalated molecules and of the wetting or drying (at room temperature and at 150 °C) procedure on the intercalation was characterized experimentally by X-ray diffraction and thermal analysis. Consistent with the suggestion from the present simulations, 1.12-nm and 0.83-nm stable kaolinite-methanol complexes were identified. For these complexes, our molecular simulations predict either single-layered structures of mobile methanol/water molecules or non-intercalated structures of methoxy-functionalized kaolinite. We found that the methoxy-modified kaolinite can easily be intercalated by liquid methanol.

  17. Preparation and characterization of an anti-inflammatory agent based on a zinc-layered hydroxide-salicylate nanohybrid and its effect on viability of Vero-3 cells

    PubMed Central

    Ramli, Munirah; Hussein, Mohd Zobir; Yusoff, Khatijah

    2013-01-01

    A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells. PMID:23345976

  18. Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells

    NASA Astrophysics Data System (ADS)

    Lemont, S.; Billaud, D.

    Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.

  19. Activation of cGAS-dependent antiviral responses by DNA intercalating agents

    PubMed Central

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J.; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G.; Williams, Bryan R.G.; Gantier, Michael P.

    2017-01-01

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. PMID:27694309

  20. Automated cell tracking identifies mechanically oriented cell divisions during Drosophila axis elongation.

    PubMed

    Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.

  1. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  2. Adam10 Mediates the Choice between Principal Cells and Intercalated Cells in the Kidney

    PubMed Central

    Guo, Qiusha; Wang, Yinqiu; Tripathi, Piyush; Manda, Kalyan R.; Mukherjee, Malini; Chaklader, Malay; Austin, Paul F.

    2015-01-01

    A disintegrin and metalloproteinase domain 10 (Adam10), a member of the ADAM family of cell membrane–anchored proteins, has been linked to the regulation of the Notch, EGF, E-cadherin, and other signaling pathways. However, it is unclear what role Adam10 has in the kidney in vivo. In this study, we showed that Adam10 deficiency in ureteric bud (UB) derivatives leads to a decrease in urinary concentrating ability, polyuria, and hydronephrosis in mice. Furthermore, Adam10 deficiency led to a reduction in the percentage of aquaporin 2 (Aqp2)+ principal cells (PCs) in the collecting ducts that was accompanied by a proportional increase in the percentage of intercalated cells (ICs). This increase was more prominent in type A ICs than in type B ICs. Foxi1, a transcription factor important for the differentiation of ICs, was upregulated in the Adam10 mutants. The observed reduction of Notch activity in Adam10 mutant collecting duct epithelium and the similar reduction of PC/IC ratios in the collecting ducts in mice deficient for mindbomb E3 ubiquitin protein ligase 1, a key regulator of the Notch and Wnt/receptor-like tyrosine kinase signaling pathways, suggest that Adam10 regulates cell fate determination through the activation of Notch signaling, probably through the regulation of Foxi1 expression. However, phenotypic differences between the Adam10 mutants, the Mib1 mutants, and the Foxi1 mutants suggest that the functions of Adam10 in determining the fate of collecting duct cells are more complex than those of a simple upstream factor in a linear pathway involving Notch and Foxi1. PMID:24904084

  3. Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2007-01-01

    This viewgraph presentation reviews the features of the Lithium-ion batteries, particularly in reference to the hazards and safety of the battery. Some of the characteristics of the Lithium-ion cell are: Highest Energy Density of Rechargeable Battery Chemistries, No metallic lithium, Leading edge technology, Contains flammable electrolyte, Charge cut-off voltage is critical (overcharge can result in fire), Open circuit voltage higher than metallic lithium anode types with similar organic electrolytes. Intercalation is a process that places small ions in crystal lattice. Small ions (such as lithium, sodium, and the other alkali metals) can fit in the interstitial spaces in a graphite lattice. These metallic ions can go farther and force the graphitic planes apart to fit two, three, or more layers of metallic ions between the carbon sheets. Other features of the battery/cell are: The graphite is conductive, Very high energy density compared to NiMH or NiCd, Corrosion of aluminum occurs very quickly in the presence of air and electrolyte due to the formation of HF from LiPF6 and HF is highly corrosive. Slides showing the Intercalation/Deintercalation and the chemical reactions are shown along with the typical charge/discharge for a cylindrical cell. There are several graphs that review the hazards of the cells.

  4. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems.

    PubMed

    Ou, Jian Zhen; Chrimes, Adam F; Wang, Yichao; Tang, Shi-yang; Strano, Michael S; Kalantar-zadeh, Kourosh

    2014-02-12

    Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.

  5. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    PubMed Central

    2013-01-01

    Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738

  6. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  7. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  8. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  9. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy

    PubMed Central

    Sett, S.; Ghosh, S.; Rakshit, T.; Mukhopadhyay, R.

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA—the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA—the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time. PMID:27183010

  10. Mathematical modeling of a nickel-cadmium battery

    NASA Technical Reports Server (NTRS)

    Fan, Deyuan; White, Ralph E.

    1991-01-01

    Extensions are presented for a mathematical model of an Ni-CD cell (Fan and White, 1991). These extensions consist of intercalation thermodynamics for the nickel electrode and oxygen generation and reduction reactions during charge and overcharge. The simulated results indicate that intercalation may be important in the nickel electrode and that including the oxygen reactions provides a means of predicting the efficiency of the cell on charge and discharge.

  11. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    PubMed

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-05-09

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  12. Characterization of synthesis and storage of TGF-alpha in rat parotid acinar and intercalated duct cells.

    PubMed

    Login, G R; Yang, J; Bryan, K P; Digenis, E C; McBride, J; Elovic, A; Quissell, D O; Dvorak, A M; Wong, D T

    1997-03-01

    Although the expression and biological role of transforming growth factor-alpha (TGF-alpha) have been explored in a variety of normal cells in mammalian species, little is known about the storage of TGF-alpha in secretory cells of exocrine organs. Parotid glands from four rats were homogenized for RNA isolation followed by reverse transcription-polymerase chain reaction to determine the presence of TGF-alpha message. In situ hybridization using a hamster-specific TGF-alpha riboprobe was done on paraffin sections. Parotid gland and isolated acinar cells were processed for transmission electron microscopy (TEM) and postembedding immunogold labeled for TGF-alpha. Gold particles were counted on approximately 200 granules in 10 acinar cells and in 10 intercalated duct cells. Labeling density was calculated as the number of gold particles per square micrometer +/- SD. Statistical significance was calculated using one-way analysis of variance. Using multiple technologies, we have established that rat parotid acinar and intercalated duct cells synthesize TGF-alpha and store the precursor form of this cytokine in their secretory granules.

  13. Spermine Attenuates the Action of the DNA Intercalator, Actinomycin D, on DNA Binding and the Inhibition of Transcription and DNA Replication

    PubMed Central

    Chen, Jeremy J. W.; Wu, Wen-Lin; Yuann, Jeu-Ming P.; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion. PMID:23144800

  14. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    PubMed

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  15. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Halpert, Gerald (Inventor); Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  16. Intercalation and de-intercalation pathway of proflavine through the minor and major grooves of DNA: roles of water and entropy.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2013-05-07

    DNA intercalation is a clinically relevant biophysical process due to its potential to inhibit the growth and survival of tumor cells and microbes through the arrest of the transcription and replication processes. Extensive kinetic and thermodynamic studies have followed since the discovery of the intercalative binding mode. However, the molecular mechanism and the origin of the thermodynamic and kinetic profile of the process are still not clear. Here we have constructed the free energy landscape of intercalation, de-intercalation and dissociation from both the major and minor grooves of DNA using extensive all-atom metadynamics simulations, capturing both the free energy barriers and stability in close agreement with fluorescence kinetic experiments. In the intercalated state, an alternate orientation of proflavine is found with an almost equal stability compared to the crystal orientation, however, separated by a 5.0 kcal mol(-1) barrier that decreases as the drug approaches the groove edges. This study provides a comprehensive picture in comparison with experiments, which indicates that the intercalation and de-intercalation of proflavine happen through the major groove side, although the effective intercalation barrier increases because the path of intercalation goes through the stable (abortive) minor groove bound state, making the process a millisecond long one in excellent agreement with the experiments. The molecular origin of the higher barrier for the intercalation from the minor groove side is attributed to the desolvation energy of DNA and the loss of entropy, while the barrier from the major groove, in the absence of desolvation energy, is primarily entropic.

  17. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries.

    PubMed

    Sada, Krishnakanth; Senthilkumar, Baskar; Barpanda, Prabeer

    2017-07-27

    Reversible electrochemical potassium-ion intercalation in P2-type Na x CoO 2 was examined for the first time. Hexagonal Na 0.84 CoO 2 platelets prepared by a solution combustion synthesis technique were found to work as an efficient host for K + intercalation. They deliver a high reversible capacity of 82 mA h g -1 , good rate capability and excellent cycling performance up to 50 cycles.

  18. Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics

    DOE PAGES

    Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan; ...

    2018-02-26

    Doped semiconductors are the most important building elements for modern electronic devices. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturallymore » grown n-type S-vacancy SnS 2, Cu intercalated bilayer SnS 2 obtained by this technique displays a hole field-effect mobility of ~40 cm 2 V -1 s -1, and the obtained Co-SnS 2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.« less

  19. Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan

    Doped semiconductors are the most important building elements for modern electronic devices. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturallymore » grown n-type S-vacancy SnS 2, Cu intercalated bilayer SnS 2 obtained by this technique displays a hole field-effect mobility of ~40 cm 2 V -1 s -1, and the obtained Co-SnS 2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.« less

  20. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics

    NASA Astrophysics Data System (ADS)

    Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan; Tang, Peizhe; Yang, Shi-Ze; Yang, Ankun; Li, Guodong; Liu, Bofei; van de Groep, Jorik; Brongersma, Mark L.; Chisholm, Matthew F.; Zhang, Shou-Cheng; Zhou, Wu; Cui, Yi

    2018-04-01

    Doped semiconductors are the most important building elements for modern electronic devices1. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4-9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of 40 cm2 V-1 s-1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene5. Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.

  1. CELL SEGREGATION, MIXING, AND TISSUE PATTERN IN THE SPINAL CORD OF THE XENOPUS LAEVIS NEURULA

    PubMed Central

    Davidson, Lance A.; Keller, Raymond E.

    2014-01-01

    Background During Xenopus laevis neurulation, neural ectodermal cells of the spinal cord are patterned at the same time that they intercalate mediolaterally and radially, moving within and between two cell layers. Curious if these rearrangements disrupt early cell identities, we lineage-traced cells in each layer from neural plate stages to the closed neural tube, and used in situ hybridization to assay gene expression in the moving cells. Results Our biotin- and fluorescent labeling of deep and superficial cells reveals that mediolateral intercalation does not disrupt cell cohorts, in other words it is conservative. However, outside the midline notoplate, later radial intercalation does displace superficial cells dorsoventrally, radically disrupting cell cohorts. The tube roof is composed almost exclusively of superficial cells, including some displaced from ventral positions; gene expression in these displaced cells must now be surveyed further. Superficial cells also flank the tube’s floor, which is, itself, almost exclusively composed of deep cells. Conclusions Our data provide: 1) a fate map of superficial- and deep-cell positions within the Xenopus neural tube, 2) the paths taken to these positions, and 3) preliminary evidence of re-patterning in cells carried out of one environment and into another, during neural morphogenesis. PMID:23813905

  2. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    PubMed

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation and decreased peak I Na at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na + channel distribution. In the intercalated disc computer model, redistributing the Na + channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na + channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac I Na , and our simulations reveal the functional role of the aggregation of Na + channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    DOE PAGES

    Byles, B. W.; West, P.; Cullen, D. A.; ...

    2015-12-03

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg 0.2MnO 2·0.5H 2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity ofmore » 158 mA h g -1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g -1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g -1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na + ion intercalation.« less

  4. Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure-activity relationship study.

    PubMed

    Ho, Si-Han Sherman; Sim, Mei-Yi; Yee, Wei-Loong Sherman; Yang, Tianming; Yuen, Shyi-Peng John; Go, Mei-Lin

    2015-11-02

    The anticancer agent YM155 is widely investigated as a specific survivin suppressant. More recently, YM155 was found to induce DNA damage and this has raised doubts as to whether survivin is its primary target. In an effort to assess the contribution of DNA damage to the anticancer activity of YM155, several analogs were prepared and evaluated for antiproliferative activity on malignant cells, participation in DNA intercalation and free radical generation by redox cycling. The intact positively charged scaffold was found to be essential for antiproliferative activity and intercalation but was less critical for redox cycling where the minimal requirement was a pared down bicyclic quinone. Side chain requirements at the N(1) and N(3) positions of the scaffold were more alike for redox cycling and intercalation than antiproliferative activity, underscoring yet again, the limited structural overlaps for these activities. Furthermore, antiproliferative activities were poorly correlated to DNA intercalation and redox cycling. Potent antiproliferative activity (IC50 9-23 nM), exceeding that of YM155, was found for a minimally substituted methyl analog AB7. Like YM155 and other dioxonaphthoimidazoliums, AB7 was a modest DNA intercalator but with weak redox cycling activity. Thus, the capacity of this scaffold to inflict direct DNA damage leading to cell death may not be significant and YM155 should not be routinely classified as a DNA damaging agent. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Forces Generated by Cell Intercalation Tow Epidermal Sheets in Mammalian Tissue Morphogenesis

    PubMed Central

    Heller, Evan; Kumar, K. Vijay; Grill, Stephan W.; Fuchs, Elaine

    2014-01-01

    Summary While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting and cell cycle inhibitors reveal that closure does not require overlying periderm, proliferation or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound-repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA and α5β1-fibronectin-mediated migration, and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue. PMID:24697897

  6. Activation of cGAS-dependent antiviral responses by DNA intercalating agents.

    PubMed

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-01-09

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Coordination of Receptor Tyrosine Kinase Signaling and Interfacial Tension Dynamics Drives Radial Intercalation and Tube Elongation. | Office of Cancer Genomics

    Cancer.gov

    We sought to understand how cells collectively elongate epithelial tubes. We first used 3D culture and biosensor imaging to demonstrate that epithelial cells enrich Ras activity, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and F-actin to their leading edges during migration within tissues. PIP3 enrichment coincided with, and could enrich despite inhibition of, F-actin dynamics, revealing a conserved migratory logic compared with single cells. We discovered that migratory cells can intercalate into the basal tissue surface and contribute to tube elongation.

  8. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.

    PubMed

    Kim, Haegyeom; Yoon, Gabin; Lim, Kyungmi; Kang, Kisuk

    2016-10-18

    Here, we demonstrate that graphite can serve as a versatile electrode for various rechargeable battery types by reversibly accommodating solvated alkali ions (such as K, Na, and Li) through co-intercalation in its galleries. The co-intercalation of alkali ions is observed to occur via staging reactions. Notably, their insertion behaviors, including their specific capacity, are remarkably similar regardless of the alkali ion species despite the different solubility limits of K, Na, and Li ions in graphite. Nevertheless, the insertion potentials of the solvated alkali ions differ from each other and are observed to be correlated with the interlayer distance in the intercalated graphite gallery.

  9. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  10. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  11. A micropatterning approach for imaging Cx43 dynamic trafficking to cell-cell borders

    PubMed Central

    Zhang, Shan-Shan; Hong, SoonGweon; Kléber, André G.; Lee, Luke P.; Shaw, Robin M.

    2014-01-01

    The precise expression and timely delivery of connexin 43 (Cx43) proteins to form gap junctions are essential for electrical coupling of cardiomyocytes. Growing evidence supports a cytoskeletal-based trafficking paradigm for Cx43 delivery directly to adherens junctions at the intercalated disc. A limitation of Cx43 localization assays in cultured cells, in which cell-cell contacts are essential, is the inability to control for cell geometry or reproducibly generate contact points. Here we present a micropatterned cell pairing system well suited for live microscopy to examine how the microtubule and actin cytoskeleton confer specificity to Cx43 trafficking to precisely defined cell-cell junctions. This system can also be adapted for other cell types and used to study dynamic intracellular movements of other proteins important for cell-cell communication‥ PMID:24444605

  12. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  13. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension.

    PubMed

    Shwartz, Yulia; Farkas, Zsuzsanna; Stern, Tomer; Aszódi, Attila; Zelzer, Elazar

    2012-10-01

    Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Zerovalent Copper Intercalated Birnessite as a Cathode for Lithium Ion Batteries: Extending Cycle Life

    DOE PAGES

    Li, Yue Ru; Poyraz, Altug S.; Hu, Xiaobing; ...

    2017-01-01

    Birnessite type layered manganese dioxides (δ-MnO 2) have attracted considerable attention in recent years as 2D intercalation cathodes for rechargeable Li +, Na +, and Mg 2+ batteries due to fast ion diffusion through their negatively charged δ-MnO 2 sheets separated by interlayer cations and a stable Mn 3+/4+ redox couple. Here we report the preparation and electrochemistry of zero and divalent copper co-intercalated birnessite type manganese dioxide (Cu 0 0.03Cu 2+ 0.21Na 0.12MnO 2·0.9H 2O). The copper intercalated birnessite materials were fully characterized utilizing powder X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM).more » The mixed valent nature of intercalated Cu 0 and Cu 2+ was confirmed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Electrochemical evaluation results show that zero valent copper intercalated birnessite exhibits higher discharge capability, improved cyclability, and lower impedance compared to the Cu 2+ only intercalated (Cu 0.26MnO 2·1.0H 2O) and Cu free Na birnessite (Na 0.40MnO 2·1.0H 2O) materials. Remarkably, zero valent copper birnessite shows almost no fade after 10 cycles at 0.1 mV/s. Electrochemical impedance spectroscopy results suggest that charge transfer resistivity of Cu 0 modified samples was much lower than that of Cu 2+ and Cu free birnessite, indicating that the presence of a small amount of Cu 0 improves the conductivity of birnessite and results in better electrochemical cyclability, rate capability, and lower impedance.« less

  15. Preparation of graphite intercalation compounds containing oligo and polyethers

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5nr08226a

  16. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo

    2017-05-19

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolytemore » and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  17. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Luo, Langli; Zhong, Li

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  18. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panicucci, R.; Heal, R.; Laderoute, K.

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 ismore » reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.« less

  19. Ciona intestinalis Noto4 contains a phosphotyrosine interaction domain and is involved in the midline intercalation of notochord cells.

    PubMed

    Yamada, Shigehiro; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki

    2011-01-01

    Brachyury plays a pivotal role in the notochord formation in ascidian embryos. Ciona intestinalis Noto4 (Ci-Noto4) was isolated as a gene downstream of Ci-Bra. This gene encodes a 307 amino-acid protein with a C-terminal phosphotyrosine interaction domain (PTB/PID). Expression of Ci-Noto4 commences at the neural plate stage and is specific to notochord cells. Suppression of Ci-Noto4 levels with specific antisense morpholino oligonucleotides resulted in the formation of two rows of notochord cells owing to a lack of midline intercalation between the bilateral populations of progenitor cells. In contrast, overexpression of Ci-Noto4 by injection of a Ci-Bra(promoter):Ci-Noto4-EGFP construct into fertilized eggs disrupted the localization of notochord cells. Ci-Noto4 overexpression did not affect cellular differentiation in the notochord, muscle, mesenchyme, or nervous system. Analysis of Ci-Noto4 regions that are responsible for its function suggested significant roles for the PTB/PID and a central region, an area with no obvious sequence similarity to other known proteins. These results suggested that PTB/PID-containing Ci-Noto4 is essential for midline intercalation of notochord cells in chordate embryos.

  20. Calcium intercalation into layered fluorinated sodium iron phosphate

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.

    2017-11-01

    The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.

  1. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  2. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent.

    PubMed

    Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun

    2017-07-19

    RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.

  3. Mechanisms of collective cell movement lacking a leading or free front edge in vivo.

    PubMed

    Uechi, Hiroyuki; Kuranaga, Erina

    2017-08-01

    Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.

  4. Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors.

    PubMed

    Dall'Agnese, Yohan; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2015-06-18

    Ion capacitors store energy through intercalation of cations into an electrode at a faster rate than in batteries and within a larger potential window. These devices reach a higher energy density compared to electrochemical double layer capacitor. Li-ion capacitors are already produced commercially, but the development of Na-ion capacitors is hindered by lack of materials that would allow fast intercalation of Na-ions. Here we investigated the electrochemical behavior of 2D vanadium carbide, V2C, from the MXene family. We investigated the mechanism of Na intercalation by XRD and achieved capacitance of ∼100 F/g at 0.2 mV/s. We assembled a full cell with hard carbon as negative electrode, a known anode material for Na ion batteries, and achieved capacity of 50 mAh/g with a maximum cell voltage of 3.5 V.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue Ru; Poyraz, Altug S.; Hu, Xiaobing

    Birnessite type layered manganese dioxides (δ-MnO 2) have attracted considerable attention in recent years as 2D intercalation cathodes for rechargeable Li +, Na +, and Mg 2+ batteries due to fast ion diffusion through their negatively charged δ-MnO 2 sheets separated by interlayer cations and a stable Mn 3+/4+ redox couple. Here we report the preparation and electrochemistry of zero and divalent copper co-intercalated birnessite type manganese dioxide (Cu 0 0.03Cu 2+ 0.21Na 0.12MnO 2·0.9H 2O). The copper intercalated birnessite materials were fully characterized utilizing powder X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM).more » The mixed valent nature of intercalated Cu 0 and Cu 2+ was confirmed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Electrochemical evaluation results show that zero valent copper intercalated birnessite exhibits higher discharge capability, improved cyclability, and lower impedance compared to the Cu 2+ only intercalated (Cu 0.26MnO 2·1.0H 2O) and Cu free Na birnessite (Na 0.40MnO 2·1.0H 2O) materials. Remarkably, zero valent copper birnessite shows almost no fade after 10 cycles at 0.1 mV/s. Electrochemical impedance spectroscopy results suggest that charge transfer resistivity of Cu 0 modified samples was much lower than that of Cu 2+ and Cu free birnessite, indicating that the presence of a small amount of Cu 0 improves the conductivity of birnessite and results in better electrochemical cyclability, rate capability, and lower impedance.« less

  6. Dynamin-mediated endocytosis is required for tube closure, cell intercalation, and biased apical expansion during epithelial tubulogenesis in the Drosophila ovary

    PubMed Central

    Peters, Nathaniel C.

    2015-01-01

    Most metazoans are able to grow beyond a few hundred cells and to support differentiated tissues because they elaborate multicellular, epithelial tubes that are indispensable for nutrient and gas exchange. To identify and characterize the cellular behaviors and molecular mechanisms required for the morphogenesis of epithelial tubes (i.e., tubulogenesis), we have turned to the D. melanogaster ovary. Here, epithelia surrounding the developing egg chambers first pattern, then form and extend a set of simple, paired, epithelial tubes, the dorsal appendage (DA) tubes, and they create these structures in the absence of cell division or cell death. This genetically tractable system lets us assess the relative contributions that coordinated changes in cell shape, adhesion, orientation, and migration make to basic epithelial tubulogenesis. We find that Dynamin, a conserved regulator of endocytosis and the cytoskeleton, serves a key role in DA tubulogenesis. We demonstrate that Dynamin is required for distinct aspects of DA tubulogenesis: DA-tube closure, DA-tube-cell intercalation, and biased apical-luminal cell expansion. We provide evidence that Dynamin promotes these processes by facilitating endocytosis of cell-cell and cell-matrix adhesion complexes, and we find that precise levels and sub-cellular distribution of E-Cadherin and specific Integrin subunits impact DA tubulogenesis. Thus, our studies identify novel morphogenetic roles (i.e., tube closure and biased apical expansion), and expand upon established roles (i.e., cell intercalation and adhesion remodeling), for Dynamin in tubulogenesis. PMID:26542010

  7. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    PubMed Central

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  8. Calling patterns in human communication dynamics

    PubMed Central

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2013-01-01

    Modern technologies not only provide a variety of communication modes (e.g., texting, cell phone conversation, and online instant messaging), but also detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study intercall duration of communications of the 100,000 most active cell phone users of a Chinese mobile phone operator. We confirm that the intercall durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the intercall durations follow a power-law distribution for only 3,460 individuals (3.46%). The intercall durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cell phone users with a power-law duration distribution fall into three anomalous clusters: robot-based callers, telecom fraud, and telephone sales. This information is of interest to both academics and practitioners, mobile telecom operators in particular. In contrast, the individual users with a Weibull duration distribution form the fourth cluster of ordinary cell phone users. We also discover more information about the calling patterns of these four clusters (e.g., the probability that a user will call the cr-th most contact and the probability distribution of burst sizes). Our findings may enable a more detailed analysis of the huge body of data contained in the logs of massive users. PMID:23319645

  9. Calling patterns in human communication dynamics.

    PubMed

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H Eugene

    2013-01-29

    Modern technologies not only provide a variety of communication modes (e.g., texting, cell phone conversation, and online instant messaging), but also detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study intercall duration of communications of the 100,000 most active cell phone users of a Chinese mobile phone operator. We confirm that the intercall durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the intercall durations follow a power-law distribution for only 3,460 individuals (3.46%). The intercall durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cell phone users with a power-law duration distribution fall into three anomalous clusters: robot-based callers, telecom fraud, and telephone sales. This information is of interest to both academics and practitioners, mobile telecom operators in particular. In contrast, the individual users with a Weibull duration distribution form the fourth cluster of ordinary cell phone users. We also discover more information about the calling patterns of these four clusters (e.g., the probability that a user will call the c(r)-th most contact and the probability distribution of burst sizes). Our findings may enable a more detailed analysis of the huge body of data contained in the logs of massive users.

  10. Hierarchical Porous Intercalation-Type V2 O3 as High-Performance Anode Materials for Li-Ion Batteries.

    PubMed

    Liu, Pengcheng; Zhu, Kongjun; Xu, Yuan; Bian, Kan; Wang, Jing; Tai, Guo'an; Gao, Yanfeng; Luo, Hongjie; Lu, Li; Liu, Jinsong

    2017-06-01

    As intercalation-type anode materials for Li-ion batteries (LIBs), the commercially used graphite and Li 4 Ti 5 O 12 exhibit good cycling and rate properties, but their theoretical specific capacities are too low to meet the ever-growing demands of high-energy applications such as electric vehicles. Therefore, the development of new intercalation-type anode materials with larger capacity is very desirable. Herein, we design and synthesize novel 3 D hierarchical porous V 2 O 3 @C micro/nanostructures consisting of crumpled nanosheets, through self-reduction under annealing from the structurally similar VO 2 (B)@C precursors without the addition of any other reducing reagent or gas. Excitingly, it is found for the first time through ex situ XRD technology that V 2 O 3 is a new, promising intercalation-type anode material for LIBs with a high capacity. V 2 O 3 @C micro/nanostructures can deliver a large capacity of 732 mAh g -1 without capacity loss at 100 mA g -1 even after 136 cycles, as well as exhibiting excellent cycling and rate performances. The application of V 2 O 3 for Na-ion batteries (NIBs) is elaborated for the first time, and excitingly, it is found that V 2 O 3 @C micro/nanostructures may be promising anode materials for NIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lithium Causes G2 Arrest of Renal Principal Cells

    PubMed Central

    de Groot, Theun; Alsady, Mohammad; Jaklofsky, Marcel; Otte-Höller, Irene; Baumgarten, Ruben; Giles, Rachel H.

    2014-01-01

    Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder characterized by polyuria and polydipsia. Lithium-induced NDI is caused by aquaporin-2 downregulation and a reduced ratio of principal/intercalated cells, yet lithium induces principal cell proliferation. Here, we studied how lithium-induced principal cell proliferation can lead to a reduced ratio of principal/intercalated cells using two-dimensional and three-dimensional polarized cultures of mouse renal collecting duct cells and mice treated with clinically relevant lithium concentrations. DNA image cytometry and immunoblotting revealed that lithium initiated proliferation of mouse renal collecting duct cells but also increased the G2/S ratio, indicating G2/M phase arrest. In mice, treatment with lithium for 4, 7, 10, or 13 days led to features of NDI and an increase in the number of principal cells expressing PCNA in the papilla. Remarkably, 30%–40% of the PCNA-positive principal cells also expressed pHistone-H3, a late G2/M phase marker detected in approximately 20% of cells during undisturbed proliferation. Our data reveal that lithium treatment initiates proliferation of renal principal cells but that a significant percentage of these cells are arrested in the late G2 phase, which explains the reduced principal/intercalated cell ratio and may identify the molecular pathway underlying the development of lithium-induced renal fibrosis. PMID:24408872

  12. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations.

    PubMed

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-05-19

    To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcome measure was marks for summative degree assessments taken after intercalating. Of 861 medical students, 154 (17.9%) students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year) performance in matching exam type, having done an IC degree was significantly associated with attaining high (18-20) common assessment scale (CAS) marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p < 0.001), 4th year OSCE (p = 0.001) and the 5th year Elective project (p = 0.010). Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine.

  13. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations

    PubMed Central

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-01-01

    Background To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. Methods This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcome measure was marks for summative degree assessments taken after intercalating. Results Of 861 medical students, 154 (17.9%) students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year) performance in matching exam type, having done an IC degree was significantly associated with attaining high (18–20) common assessment scale (CAS) marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p < 0.001), 4th year OSCE (p = 0.001) and the 5th year Elective project (p = 0.010). Conclusion Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine. PMID:19454007

  14. Novel Proinflammatory Function of Renal Intercalated Cells.

    PubMed

    Breton, Sylvie; Brown, Dennis

    2018-01-01

    Serious and often fatal acute kidney injury (AKI) is frequently seen after major surgery, local and remote organ damage, and sepsis. It is associated with uncontrolled inflammation, and is usually diagnosed only after the kidneys have gone through significant and often irreversible damage. During our work involving another type of kidney disease that leads to acid-base disorders of the blood, we unexpectedly found high levels of a protein called the P2Y14 "purinergic" receptor, in specialized kidney epithelial cells called intercalated cells (ICs). These cells are responsible for maintaining whole body acid-base balance by regulating the secretion of excess protons into the urine, which normalizes blood pH. However, it turns out that the P2Y14 receptor in these cells responds to a molecule called uridine diphosphate (UDP)-glucose, which is a danger signal released by damaged cells anywhere in the body. When UDP-glucose reaches the kidney, it stimulates ICs to produce chemoattractant cytokines; this results in renal inflammation and contributes to the onset of AKI. Key Message: Thus, our work now points to ICs as key mediators of renal inflammation and AKI, following surgery and/or damage to remote organs, sepsis, and also local insults to the kidney itself. The link between the proton secreting ICs of the kidney and AKI is an example of how a fundamental research project with a defined aim, in this case understanding acid-base homeostasis, can lead to a novel observation that has unexpected but major implications in another area of human health. © 2018 The Author(s) Published by S. Karger AG, Basel.

  15. Intercalation of Li Ions into a Graphite Anode Material: Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Abou Hamad, Ibrahim; Novotny, Mark

    2008-03-01

    Large-scale molecular dynamics simulations of the anode half-cell of a lithium-ion battery are presented. The model system is composed of an anode represented by a stack of graphite sheets, an electrolyte of ethylene carbonate and propylene carbonate molecules, and lithium and hexafluorophosphate ions. The simulations are done in the NVT ensemble and at room temperature. One charging scheme explored is normal charging in which intercalation is enhanced by electric charges on the graphitic sheets. The second charging mechanism has an external applied oscillatory electric field of amplitude A and frequency f. The simulations were performed on 2.6 GHz Opteron processors, using 160 processors at a time. Our simulation results show an improvement in the intercalation time of the lithium ions for the second charging mechanism. The dependence of the intercalation time on A and f will be discussed.

  16. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    NASA Astrophysics Data System (ADS)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  17. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation.

    PubMed

    Paternò, G M; Skoda, M W A; Dalgliesh, Robert; Cacialli, F; Sakai, V García

    2016-10-04

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  18. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    PubMed Central

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-01-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs). PMID:27698410

  19. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE PAGES

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo; ...

    2017-05-08

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn 2+ ion chemistry. There are several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. Our study utilizes a combination of analytical tools to probe the chemistry of a nanostructured δ-MnO 2 cathode in association withmore » a nonaqueous acetonitrile–Zn(TFSI) 2 electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte–electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. There are numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/δ-MnO 2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  20. Final Scientific/Technical Report for Low Cost, High Capacity Non- Intercalation Chemistry Automotive Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdichevsky, Gene

    Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A majormore » goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).« less

  1. First-principles theory of cation and intercalation ordering in Li xCoO 2

    NASA Astrophysics Data System (ADS)

    Wolverton, C.; Zunger, Alex

    Several types of cation- and vacancy-ordering are of interest in the Li xCoO 2 battery cathode material since they can have a profound effect on the battery voltage. We present a first-principles theoretical approach which can be used to calculate both cation- and vacancy-ordering patterns at both zero and finite temperatures. This theory also provides quantum-mechanical predictions (i.e., without the use of any experimental input) of battery voltages of both ordered and disordered Li xCoO 2/Li cells from the energetics of the Li intercalation reactions. Our calculations allow us to search the entire configurational space to predict the lowest-energy ground-state structures, search for large voltage cathodes, explore metastable low-energy states, and extend our calculations to finite temperatures, thereby searching for order-disorder transitions and states of partial disorder. We present the first prediction of the stable spinel structure LiCo 2O 4 for the 50% delithiated Li 0.5CoO 2.

  2. Surface tension and modeling of cellular intercalation during zebrafish gastrulation.

    PubMed

    Calmelet, Colette; Sepich, Diane

    2010-04-01

    In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.

  3. Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage

    DOE PAGES

    Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; ...

    2016-05-23

    In this study, we report intercalation pseudocapacitance of 250 F g -1 for exfoliated molybdenum disulfide (MoS 2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS 2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS 2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g -1.

  4. The cellular basis of the convergence and extension of the Xenopus neural plate.

    PubMed

    Keller, R; Shih, J; Sater, A

    1992-03-01

    There is great interest in the patterning and morphogenesis of the vertebrate nervous system, but the morphogenetic movements involved in early neural development and their underlying cellular mechanisms are poorly understood. This paper describes the cellular basis of the early neural morphogenesis of Xenopus laevis. The results have important implications for neural induction. Mapping the fate map of the midneurula (Eagleson and Harris: J. Neurobiol. 21:427-440, 1990) back to the early gastrula with time-lapse video recording demonstrates that the prospective hindbrain and spinal cord are initially very wide and very short, and thus at the beginning of gastrulation all their precursor cells lie within a few cell diameters of the inducing mesoderm. In the midgastrula, the prospective hindbrain and spinal cord undergo very strong convergence and extension movements in two phases: In the first phase they primarily undergo thinning in the radial direction and lengthening (extension) in the animal-vegetal direction, and the second phase is characterized primarily by mediolateral narrowing (convergence) and anterior-posterior lengthening (extension). These movements also occur in sandwich explants of the gastrula, thus demonstrating the local autonomy of the forces producing them. Tracing cell movements with fluorescein dextran-labeled cells in embryos or explants shows that the initial thinning and extension occurs by radial intercalation of deep cells to form fewer layers of greater area, all of which is expressed as increased length. The subsequent convergence and extension occurs by mediolateral intercalation of deep cells to form a longer, narrower array. These results establish that a similar if not identical sequence of radial and mediolateral cell intercalations underlie convergence and extension of the neural and the mesoderm tissues (Wilson and Keller: Development, 112:289-300, 1991). Moreover, these results establish that radial and mediolateral intercalation are the principal neural cell behaviors induced by the planar signals emanating from the dorsal involuting marginal zone (the Spemann organizer) in the early gastrula (Keller et al: Develop. Dynamics, 193: 218-234, 1992). Radial and mediolateral intercalation are induced among the 5 to 7 rows of cells comprising the prospective hindbrain and spinal cord, thus producing the massive convergence and extension movements that narrow and elongate these regions of the nervous system in the late gastrula. A more general significance of these results is that neural induction is best analyzed and understood in terms of the dynamics of the morphogenetic processes involved.

  5. Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes.

    PubMed

    Martínez, José I; Laikhtman, Alex; Moon, Hoi Ri; Zak, Alla; Alonso, Julio A

    2018-05-07

    Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS 2 multilayers and nanotubes. We find that H 2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H 2 on the surface of WS 2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H 2 between adjacent planar WS 2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H 2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H 2 monolayer adsorbed on top of the first WS 2 layer of a WS 2 multilayer system strongly facilitates the intercalation of H 2 between WS 2 layers underneath. This opens up an additional gate to intercalation processes.

  6. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CO2: Implications for Caprock Integrity

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2012-12-01

    The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by increases in absorbance of the OH stretching and HOH bending modes of the intercalated waters. The ATR-IR data also indicate that CO2 is intercalated in the clay. The asymmetric stretching band of the CO2 molecules that are intercalated in the clay is narrower than that stretching band of bulk scCO2, which indicates that the spectral contribution from rotational fine structure is minimal and the intercalated CO2 is rotationally constrained. A chemometrics analysis of the complete set of ATR-IR spectra spanning the range of total water concentrations covered in the titration finds that there are at least two types of intercalated waters, two types of intercalated CO2 molecules, and the concentrations of these intercalated waters and CO2 molecules are correlated. These quantitative data, when coupled with in situ XRD results that predict interlayer spacing and clay volume, demonstrate that water and CO2 intercalation processes in expandable montmorillonite clays could lead to porosity and permeability changes that directly impact caprock performance.

  7. Treasure Na-ion anode from trash coke by adept electrolyte selection

    NASA Astrophysics Data System (ADS)

    Cabello, Marta; Chyrka, Taras; Klee, Rafael; Aragón, María J.; Bai, Xue; Lavela, Pedro; Vasylchenko, Gennadiy M.; Alcántara, Ricardo; Tirado, José L.; Ortiz, Gregorio F.

    2017-04-01

    Converting 'trash' waste residua to active functional materials 'treasure' with high added value is being regarded as a promising way to achieve the sustainable energy demands. Carbonaceous materials cannot insert sodium except when graphite co-intercalates solvents such as diglyme. Here, we show that petroleum coke and shale coke annealed at different temperatures can also insert sodium by reversible intercalation phenomena in a diglyme-based electrolyte. The structural and morphological studies will reveal significant differences justifying their distinct electrochemical behavior. Galvanostatic tests exhibit a flat plateau at about 0.7 V ascribable to the reversible reaction. At the end of the discharge, a Stage-I ternary intercalation compound is detected. Two diglyme molecules are co-intercalated per alkali ion, as evidenced by 1-D Patterson diagrams, FTIR and TGA analyses. The full sodium-ion cell made with P-2500/NaPF6(diglyme)/Na3V2(PO4)3 delivered an initial reversible capacity of 75 mA h g-1 at C rate and an average potential of 2.7 V. Thus, the full cell provides an energy density of 202 W h kg-1. This sodium-ion system can be considered a promising power source that encourages the potential use of low-cost energy storage systems.

  8. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.

    PubMed

    Zhao, Enbo; Qin, Chuanli; Jung, Hong-Ryun; Berdichevsky, Gene; Nese, Alper; Marder, Seth; Yushin, Gleb

    2016-04-26

    Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and rapid ion transport through open and interconnected pore channels. The use of titanate increased both the gravimetric and volumetric capacity of porous carbons by more than an order of magnitude. High electrical conductivity of carbon and the small size of titanate crystals allowed the composite electrodes to achieve characteristic charge and discharge times comparable to that of the electric double-layer capacitors. The proposed composite synthesis methodology is simple, scalable, and applicable for a broad range of active intercalation materials, while the produced composite powders are compatible with commercial electrode fabrication processes.

  9. Tunable thermal expansion in framework materials through redox intercalation

    PubMed Central

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-01-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576

  10. Tunable thermal expansion in framework materials through redox intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-02-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

  11. The Induction of Adenomas by the Irradiation of Salivary Glands of Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glücksman, A.; Cherry, C. P.; Glucksman, A.

    1962-08-01

    Local irradiation induces adenomas in the three major salivary glands of rats. Their incidence varies with dose, over-all time of treatment, and sex of the animals. The sublingual gland is most and the parotid the least prone to adenoma formation; the submandibular gland is intermediate. With fractionated protracted doses of x rays the tumor formation is greater than with concentrated smaller doses in the parotid, the submandibular, and the skin, but lower in the sublingunal. For the same dose of x rays the sublingual produces 100% adenomas in males and 50% in females, but none in castrated females. Adenomae occurmore » only in regions in which the acini have disappeared. They are of acinar type in the sublingual and submandibular, formed by the proliferative activity of intercalated ducts. In the parotid they are of tubular type and formed by dedifferentiated ducts. Radiation causes compensatory secretory activity in the intercalated ducts of the sublingunal and the tubules of the submandibular gland but the disappearance of secretory granules in the intercalated ducts of the parotid. Adenoma formation follows the stimulation of regenerative activity in intercalated ducts and in the parotid of excretory ducts by the progressive disappearance of acini and the compensatory activity of the secretory tubules. It is influenced by the sex of the rats and by the type of radiation treatment, but is not a function of radiation dose.« less

  12. Synthesis and characterization of protocatechuic acid-loaded gadolinium-layered double hydroxide and gold nanocomposite for theranostic application

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad Sani; Hussein, Mohd Zobir; Kura, Aminu Umar; Fakurazi, Sharida; Masarudin, Mas Jaffri; Saad, Fathinul Fikri Ahmad

    2018-03-01

    A theranostic nanocomposite was developed using anticancer agent, protocatechuic acid (PA) and magnetic resonance imaging (MRI) contrast agent gadolinium nitrate (Gd) for simultaneous delivery using layered double hydroxide (LDH) as the delivery agent. Gold nanoparticles (AuNPs) were adsorbed on the surface of the LDH, which served as a complementary contrast agent. Based on the concept of supramolecular chemistry (SPC) and multimodal delivery system (MDS), the PA and Gd guests were first intercalated into the LDH host and subsequently AuNPs were surface adsorbed as the third guest. The nanohybrid developed was named MAPGAu. The MAPGAu was exposed to various characterizations at different stages of synthesis, starting with XRD analysis, which was used to confirm the intercalation episode and surface adsorption of the guest molecules. Consequently, FESEM, Hi-TEM, XRD, ICP-OES, CHNS, FTIR and UV-Vis analyses were done on the nanohybrids. The result of XRD analysis indicated successful intercalation of the Gd and PA as well the adsorption of AuNPs. The UV-Vis release study showed 90% of the intercalated drug was released at pH 4.8, which is the pH of the cancer cells. The FESEM and TEM micrographs obtained equally confirmed the formation of MAGPAu nanocomposite, with AuNPs conspicuously deposited on the LDH surface. The cytotoxicity study of the nanohybrid also showed insignificant toxicity to normal cell lines and significant toxicity to cancer cell lines. The developed MAGPAu nanocomposite has shown prospects for future theranostic cancer treatment.

  13. Intercalation of the layered solid acid HCa/sub 2/Nb/sub 3/O/sub 10/ by organic amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, A.J.; Johnson, J.W.; Lewandowski, J.T.

    1987-01-01

    Layered compounds of formula C/sub n/H/sub 2n+1/NH/sub 3/Ca/sub 2/Nb/sub 3/O/sub 10/ are formed by reaction of n-alkylamines with the solid acid HCa/sub 2/Nb/sub 3/O/sub 10/. Other organic bases such as pyridine can also be intercalated. The lattice constants of the new compounds have been determined by powder X-ray diffraction. The unit cells are tetragonal with a axes that are unchanged with variation of the intercalated amine. The c axes lengths (layer spacings) vary systematically with the hydrocarbon chain length of the alkylamine.

  14. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  15. In vitro reestablishment of cell-cell contacts in adult rat cardiomyocytes. Functional role of transmembrane components in the formation of new intercalated disk-like cell contacts.

    PubMed

    Eppenberger, H M; Zuppinger, C

    1999-01-01

    Primary adult rat cardiomyocytes (ARC)in culture are shown to be a model system for cardiac cell hypertrophy in vitro. ARC undergo a process of morphological transformation and grow only by increase in cell size, however, without loss of the cardiac phenotype. The isolated cells spread and establish new cell-cell contacts, eventually forming a two-dimensional heart tissue-like synchronously beating cell sheet. The reformation of specific cell contacts (intercalated disks) is shown also between ventricular and atrial cardiomyocytes by using antibodies against the gap junction protein connexin-43 and after microinjection into ARC of N-cadherin cDNA fused to reporter green fluorescent protein (GFP) cDNA. The expressed fusion protein allowed the study of live cell cultures and of the dynamics of the adherens junction protein N-cadherin during the formation of new cell-cell contacts. The possible use of the formed ARC cell-sheet cells under microgravity conditions as a test system for the reformation of the cytoskeleton of heart muscle cells is proposed.

  16. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

    NASA Astrophysics Data System (ADS)

    Saxena, Vipin; Diaz, Agustin; Clearfield, Abraham; Batteas, James D.; Hussain, Muhammad Delwar

    2013-02-01

    The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34242e

  17. Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Chi; Lu, Yi-Ting; Chien, Yu-An; Wang, Jeng-An; Chen, Po-Yu; Ma, Chen-Chi M.; Hu, Chi-Chang

    2018-07-01

    The sodium-pre-intercalated δ-MnO2 is in-situ grown on carbon nanofiber via a simple, one-step method for the application of asymmetric supercapacitors. The pre-intercalation of Na ions into the layered structure of δ-MnO2 reduces the crystallinity, beneficial to Na+ diffusion into/out the interlayer structure and pseudocapacitive utilization of MnO2. This NaxMnO2@CNF nanocomposite with desirable pseudo-capacitance from δ-NaxMnO2 and high electric conductivity from CNF network shows a high specific capacitance of 321 F g-1 at 1 A g-1 with ca. 75.2% capacitance retention from 1 to 32 A g-1. An ASC cell consisting of this nanocomposite and activated carbon as the positive and negative electrodes can be reversibly charged and discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 21 Wh kg-1 and 1 kW kg-1, respectively. This ASC also shows excellent cell capacitance retention (7% decay) in the 2 V, 10,000-cycle stability test, revealing superior performance.

  18. Convergence and Extrusion Are Required for Normal Fusion of the Mammalian Secondary Palate

    PubMed Central

    Kim, Seungil; Lewis, Ace E.; Singh, Vivek; Ma, Xuefei; Adelstein, Robert; Bush, Jeffrey O.

    2015-01-01

    The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and is concurrent to orthogonal cell displacement and epithelial cell extrusion. Functional studies in mice indicate that this process requires an actomyosin contractility pathway involving Rho kinase (ROCK) and myosin light chain kinase (MLCK), culminating in the activation of non-muscle myosin IIA (NMIIA). Together, these data indicate that actomyosin contractility drives cell intercalation and cell extrusion during palate fusion and suggest a general mechanism for tissue fusion in development. PMID:25848986

  19. [Expression of calponin and P63 in human submandibular glands].

    PubMed

    Lu, Yu-he; Gao, Yan

    2007-02-01

    To observe the expression of new myoepithelial cell markers calponin and P63 in human submandibular glands. Calponin and P63 antigen in routinely processed human submandibular gland tissues were immunohistochemically demonstrated by monoclonal antibodies to calponin and P63. Calponin expressed around all acinus and intercalated ducts as linear or punctuate pattern. Positive staining was also noted in peripheral area of some thin striated ducts that connect to intercalated ducts. Subulate or trigonal calponin expression was sometimes seen between the duct dells of striated ducts. P63 expressed mainly in the nucleus of the basal cells of excretory duct. Calponin is an ideal gland. P63 labels mainly the basal cells of excretory duct. marker for myoepithelial cells of human submandibular

  20. Regulation of proximal-distal intercalation during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-12-01

    Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  1. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions.

    PubMed

    Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F

    2011-11-07

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  2. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Parrish, Robert M.; Sherrill, C. David; Turney, Justin M.; Schaefer, Henry F.

    2011-11-01

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  3. Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation.

    PubMed

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S; Lu, Xinhui; Zhao, Ni

    2014-06-09

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.

  4. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  5. Interaction of injectable neurotropic drugs with the red cell membrane.

    PubMed

    Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas

    2014-10-01

    The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. Copyright © 2014. Published by Elsevier Ltd.

  6. Tunable thermal expansion in framework materials through redox intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Gao, Qilong; Sanson, Andrea

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  7. Tunable thermal expansion in framework materials through redox intercalation

    DOE PAGES

    Chen, Jun; Gao, Qilong; Sanson, Andrea; ...

    2017-02-09

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  8. Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart.

    PubMed

    Zhang, J Q; Elzey, B; Williams, G; Lu, S; Law, D J; Horowits, R

    2001-12-11

    N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.

  9. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  10. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  11. Direct Investigation of Mg Intercalation into the Orthorhombic V 2O 5 Cathode Using Atomic-Resolution Transmission Electron Microscopy [Direct Investigation of Mg intercalation into orthorhombic V 2O 5 cathode using Atomic Resolution Electron Microscopy Methods

    DOE PAGES

    Mukherjee, Arijita; Sa, Niya; Phillips, Patrick J.; ...

    2017-02-13

    Batteries based on Mg metal anode can promise much higher specific volumetric capacity and energy density compared to Li-ion systems and are, at the same time, safer and more cost-effective. While previous experimental reports have claimed reversible Mg intercalation into beyond Chevrel phase cathodes, they provide limited evidence of true Mg intercalation other than electrochemical data. Transmission electron microscopy techniques provide unique capabilities to directly image Mg intercalation and quantify the redox reaction within the cathode material. Here, we present a systematic study of Mg insertion into orthorhombic V 2O 5, combining aberration-corrected scanning transmission electron microscopy (STEM) imaging, electronmore » energy-loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDX) analysis. We compare the results from an electrochemically cycled V 2O 5 cathode in a prospective full cell with Mg metal anode with a chemically synthesized MgV 2O 5 sample. Results suggest that the electrochemically cycled orthorhombic V 2O 5 cathode shows a local formation of the theoretically predicted ϵ-Mg0.5V2O5 phase; however, the intercalation levels of Mg are lower than predicted. Lastly, this phase is different from the chemically synthesized sample, which is found to represent the δ-MgV 2O 5 phase.« less

  12. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  13. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111).

    PubMed

    Deniz, O; Sánchez-Sánchez, C; Jaafar, R; Kharche, N; Liang, L; Meunier, V; Feng, X; Müllen, K; Fasel, R; Ruffieux, P

    2018-02-08

    Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. Here, we use post-growth silicon intercalation to unambiguously access nanoribbons' energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. In agreement with first-principles calculations we find a band gap of 2.4 eV.

  14. First-Principles evaluation of the Chevrel phase intercalated with Be, Mg, Ca, Sr, and Ba

    NASA Astrophysics Data System (ADS)

    Juran, Taylor; Smeu, Manuel

    Li ion batteries are extremely useful when an item requires portability and compactness, such as laptops and cell phones; due to the lightweight/compact nature of Li ion batteries. The lightweight and compact nature of Li ion batteries comes at a high cost. It is sensible to consider Li ion battery alternatives, which are more cost effective and useable when portability is not a priority. An option for a less expensive battery source is the Ca ion battery. The Ca ion battery is interesting as many researchers overlook the potential battery source due to the perplexity of finding suitable anode materials and electrolytes. In order for this technology to work, cathodes that allow for the reversible intercalation of Ca2+ ions and also provide a preferred voltage must be identified. We investigate the Chevrel phase compounds of Mo6X8 (X = S, Se, Te) which can intercalate various ions. The concentration of the ion intercalated with the Chevrel cathode is studied. We consider doped versions of the Chevrel phase, using various dopants to substitute Mo. We use density functional theory to calculate the voltage of several intercalation ions with the Chevrel material. The resulting electronic properties of the aforementioned materials will be investigated.

  15. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid

    NASA Astrophysics Data System (ADS)

    Perioli, Luana; Ambrogi, Valeria; Rossi, Carlo; Latterini, Loredana; Nocchetti, Morena; Costantino, Umberto

    2006-05-01

    Layered double hydroxides of hydrotalcite (HTlc) type have many applications as matrices in pharmaceutical and cosmetic fields when intercalated with active species in anionic form. The aim of this work was to intercalate 2-phenyl-1H-benzimidazole-5-sulfonic acid (Eusolex 232) (EUS) as sunscreen molecule into hydrotalcites in order to obtain the sunscreen stabilization, the reduction of its photodegradation and the elimination of close contact between skin and filter. Hydrotalcites MgAl and ZnAl were used as hosts and the intercalation products obtained were characterized by TG, RX and DSC. They were also submitted to spectrophotometric assays in order to study the matrix influence on sunlight protection and on sunscreen photostability. These experiments showed that both MgAl and ZnAl HTlc intercalation products maintained the sunscreen properties and eusolex photodegradation was reduced. The in vitro EUS release from both formulations was almost negligible when compared with formulations containing free EUS. The EUS intercalation in HTlc and the respective formulations provided advantages in the maintenance of photoprotection efficacy, filter photostabilization and avoidance of a close contact between skin and filter, with consequent elimination of allergy problems and photocross reactions.

  16. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    PubMed Central

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; Pan, Chun-Jern; Chou, Hung-Lung; Chen, Hsin-An; Gong, Ming; Wu, Yingpeng; Yuan, Chunze; Angell, Michael; Hsieh, Yu-Ju; Chen, Yu-Hsun; Wen, Cheng-Yen; Chen, Chun-Wei; Hwang, Bing-Joe; Chen, Chia-Chun; Dai, Hongjie

    2017-01-01

    Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode. PMID:28194027

  17. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  18. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE PAGES

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; ...

    2017-02-13

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  19. Synchrotron x-ray diffraction studies of the structural properties of electrode materials in operating battery cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.

    Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating {ital in} {ital situ} in battery cells. Two technologically relevant electrode materials were examined; an {ital AB}{sub 2}-type anode in a nickel{endash}metal{endash}hydride cell and a LiMn{sub 2}O{sub 4} cathode in a Li-ion {open_quote}{open_quote}rocking chair{close_quote}{close_quote} cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studiesmore » of battery electrode materials is discussed. {copyright} {ital 1996 American Institute of Physics.}« less

  20. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.

  1. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming

    2018-06-01

    Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (<2 V), low cycling stability, and especially poor room-temperature performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.

  2. Trafficking Highways to the Intercalated Disc: New Insights Unlocking the Specificity of Connexin 43 Localization

    PubMed Central

    Zhang, Shan-Shan; Shaw, Robin M.

    2016-01-01

    With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell – cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes. PMID:24460200

  3. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  4. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  5. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    NASA Astrophysics Data System (ADS)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

  6. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  7. C-13 nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The C-13 NMR chemical shifts of graphite intercalation compounds have been calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about - 140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal-conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  8. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)

    DOE PAGES

    Deniz, O.; Sánchez-Sánchez, C.; Jaafar, R.; ...

    2018-01-08

    Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.

  9. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.

    2017-03-06

    Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ~10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cumore » to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ~140 Wh l-1 is shown.« less

  10. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte.

  11. Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model

    PubMed Central

    Kura, Aminu Umar; Ain, Nooraini Mohd; Hussein, Mohd Zobir; Fakurazi, Sharida; Hussein-Al-Ali, Samer Hasan

    2014-01-01

    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 μg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment. PMID:24722565

  12. Ultraviolet-induced sister chromatid exchanges in V-79 cells with normal and BrdUrd-substituted DNA and the influence of intercalating substances and cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speit, G.; Mehnert, K.; Wolf, M.

    1982-06-01

    The influence of intercalating substances (proflavine, ethidium bromide) and of an SH compound (L-cysteine) on uv-induced sister chromatid exchanges (SCEs) was investigated in V-79 cells with normal and BrdUrd-substituted DNA. The results are discussed in relation to the primary damages leading to SCE induction produced by uv irradiation. The data indicate that neither the pyrimidine dimers nor DNA single-strand breaks are the primary cause of SCE induction, and that the damages leading to SCEs by uv irradiation differ from those which cause chromosome aberrations.

  13. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    NASA Astrophysics Data System (ADS)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  14. Complex Stoichiometry reordering of PTCDA on Ag(111) upon K Intercalation

    NASA Astrophysics Data System (ADS)

    Brivio, G. P.; Baby, A.; Zwick, C.; Gruenewald, M.; Forker, R.; Fritz, T.; Fratesi, G.; Hofmann, O. T.; Zojer, E.

    Alkali metal atoms are a simple yet efficient n-type dopant of organic semiconductors. However, the molecular crystal structures need be controlled and well understood in order to optimize the electronic properties (charge carrier density and mobility) of the target material. Here, we report that potassium intercalation into PTCDA monolayer domains on a Ag(111) substrate induces distinct stoichiometry-dependent structural reordering processes, resulting in highly ordered and large KxPTCDA domains. The emerging structures are analyzed by low temperature scanning tunneling microscopy (STM), scanning tunneling hydrogen microscopy (STHM), and low-energy electron diffraction (LEED) as a function of the stoichiometry and by density functional theory (DFT) calculations. Large stable monolayer domains are found for x=2,4. The epitaxy types for all intercalated stages are determined as point-on-line. The K atoms adsorb in the vicinity of the oxygen atoms of the PTCDA molecules, and their positions are determined with sub-Angstrom precision. This is a crucial prerequisite for the prospective assessment of the electronic properties of such composite films, as they depend on the mutual alignment between donor atoms and acceptor molecules.

  15. Systematic and reliable multiscale modelling of lithium batteries

    NASA Astrophysics Data System (ADS)

    Atalay, Selcuk; Schmuck, Markus

    2017-11-01

    Motivated by the increasing interest in lithium batteries as energy storage devices (e.g. cars/bycicles/public transport, social robot companions, mobile phones, and tablets), we investigate three basic cells: (i) a single intercalation host; (ii) a periodic arrangement of intercalation hosts; and (iii) a rigorously upscaled formulation of (ii) as initiated in. By systematically accounting for Li transport and interfacial reactions in (i)-(iii), we compute the associated chracteristic current-voltage curves and power densities. Finally, we discuss the influence of how the intercalation particles are arranged. Our findings are expected to improve the understanding of how microscopic properties affect the battery behaviour observed on the macroscale and at the same time, the upscaled formulation (iii) serves as an efficient computational tool. This work has been supported by EPSRC, UK, through the Grant No. EP/P011713/1.

  16. Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface.

    PubMed

    Dinkelacker, Franz; Marzak, Philipp; Yun, Jeongsik; Liang, Yunchang; Bandarenka, Aliaksandr S

    2018-04-25

    A so-called solid electrolyte interface (SEI) in a lithium-ion battery largely determines the performance of the whole system. However, it is one of the least understood objects in these types of batteries. SEIs are formed during the initial charge-discharge cycles, prevent the organic electrolytes from further decomposition, and at the same time govern lithium intercalation into the graphite anodes. In this work, we use electrochemical impedance spectroscopy and atomic force microscopy to investigate the properties of a SEI film and an electrified "graphite/SEI/electrolyte interface". We reveal a multistage mechanism of lithium intercalation and de-intercalation in the case of graphite anodes covered by SEI. On the basis of this mechanism, we propose a relatively simple model, which perfectly explains the impedance response of the "graphite/SEI/electrolyte" interface at different temperatures and states of charge. From the whole data obtained in this work, it is suggested that not only Li + but also negatively charged species, such as anions from the electrolyte or functional groups of the SEI, likely interact with the surface of the graphite anode.

  17. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  18. Unipolar distributions of junctional Myosin II identify cell stripe boundaries that drive cell intercalation throughout Drosophila axis extension

    PubMed Central

    Tetley, Robert J; Blanchard, Guy B; Fletcher, Alexander G; Adams, Richard J; Sanson, Bénédicte

    2016-01-01

    Convergence and extension movements elongate tissues during development. Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental boundaries and two further boundaries within each parasegment, concomitant with a doubling of cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation, behaving as mechanical barriers and providing a mechanism for how cells remain ordered during GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling, suggesting pair-rule gene control. Our results are consistent with recent work showing that a combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for Myosin II polarization that we tested in a vertex-based simulation. DOI: http://dx.doi.org/10.7554/eLife.12094.001 PMID:27183005

  19. Moderate temperature rechargeable sodium batteries

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Rupich, M. W.; Pitts, L.; Elliott, J. E.

    1983-01-01

    Cells utilizing the organic electrolyte, NaI in triglyme, operated at approx. 130 C with Na(+) - intercalating cathodes. However, their rate and stability were inadequate. NaAlCl4 was found to be a highly useful electrolyte for cell operation at 165-190 C. Na(+) intercalating chalcogenides reacted with NaAlCl4 during cycling to form stable phases. Thus, VS2 became essentially VS2Cl, with reversible capacity of approx 2.8 e(-)/V, and a mid-discharge voltage of approx 2.5V and 100 deep discharge cycles were readily achieved. A positive electrode consisting of VCl3 and S plus NaAlCl4 was subjected to deep-discharge cycles 300 times and it demonstrated identity with the in-situ-formed BSxCly cathode. NiS2 and NiS which are not Na(+)-intercalating structures formed highly reversible electrodes in NaAlCl4. The indicated discharge mechanism implies a theoretical capacity 4e(-)/Ni for NiS2 and 2e(-)/Ni for NiS. The mid-discharge potentials are, respectively, 2.4V and 2.1V. A Na/NiS2 cell cycling at a C/5 rate has exceeded 500 deep discharge cycles with 2.5e(-)/Ni average utilization. A 4 A-hr nominal capacity prototype Na/NiS2 cell was tested at 190 C. It was voluntarily terminated after 80 cycles. Further development, particularly of cathode structure and hardware should produce a battery capable of at least 50-W-hr/lb and more than 1000 cycles.

  20. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application

    NASA Astrophysics Data System (ADS)

    Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng

    2017-08-01

    The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.

  1. Constructing a novel and safer energy storing system using a graphite cathode and a MoO 3 anode

    NASA Astrophysics Data System (ADS)

    Gunawardhana, Nanda; Park, Gum-Jae; Dimov, Nikolay; Thapa, Arjun Kumar; Nakamura, Hiroyoshi; Wang, Hongyu; Ishihara, Tatsumi; Yoshio, Masaki

    A cell employing a graphite cathode and a molybdenum (VI) oxide (MoO 3) anode is investigated as a possible energy storage device. Graphite cathode allows raising the voltage well above the cathode materials of LIBs without causing safety issues. The bottom potential of this anode is 2.0 V vs. Li/Li +, which is well above the lithium plating potential. Pulse polarization experiment reveals that no lithium deposition occurs, which further enhances the safety of the graphite/MoO 3 full cell. Charge/discharge mechanism of this system results from intercalation and de-intercalation of the PF 6 - in the cathode (KS-6) and Li + in the anode (MoO 3). This mechanism is supported by in situ X-ray diffraction data of the graphite/MoO 3 cell recorded at various states of charge.

  2. Synthesis and investigation of proton conductivity for intercalated kaolinite with 4-amidinopyridinium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Li-Te; College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009; Li, Xiao-Pei

    2015-12-15

    The proton-conducting materials have potential application in devices such as fuel cells. In this study, a mineral kaolinite-based proton conducting material, kaolinite-4-amidinopyridinium hydrochloride (K-4-APy–HCl), was synthesized by the intercalated compound kaolinite-4-amidinopyridine (K-4-APy) adsorbing volatilizing HCl. The thermogravimetric analysis (TG), powder X-ray diffraction (PXRD) and IR spectrum confirmed the HCl successfully inserting into the interlayer space of kaolinite and the 4-aminopyridine being protonated. The intercalation efficiency is estimated to be ca. 85.6%. With respect to K-4-APy, the interlayer space expends by 1.53 Å. The thermal decomposition mechanism was studied by PXRD and TG techniques. The K-4-APy–HCl shows proton conductivity with σ=3.379×10{supmore » −8} S cm{sup −1} at 373 K and E{sub a}=1.159 eV in the anhydrous condition, which are comparable to MOFs-based proton conducting materials. - Graphical abstract: The intercalated hybrid of mineral kaolinite with 4-amidinopyridinium hydrochloride is prepared to use as proton conducting material. - Highlights: • A new strategy is proposed for preparation of kaolinite-based proton conductor. • Intercalatied hybrid was prepared by sequentially inserting 4-amidinopyridine and adsorbing HCl. • The proton conductivity of intercalated hybrid is comparable to MOFs-based proton-conductors.« less

  3. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  4. Electrochemical Characterization of Vanadium Pentoxide (V 2O5) And Activated Carbon (AC) Electrodes in Multivalent Aluminum Nitrate (Al(NO3)3) Electrolyte for Battery-Type Hybrid Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Solanki, Ketan Subhash

    Hybrid supercapacitors (HSC) have been extensively investigated for enhanced charge storage capacity (Yoo, et al. 2014). Although Li-ion batteries are known for high energy density, but their limited power density has driven the research toward developing hybrid supercapacitors (Jayalakshmi and Balasubramanian 2008). They combine non-faradic properties of electric double layer capacitors (EDLC) and faradic properties of pseudocapacitors to provide high energy density without compromising high Power density (Yoo, et al. 2014) (Lukatskaya, Dunn and Gogotsi 2016). In HSC, one electrode will store energy by double layer mechanism whereas the other stores through redox intercalation or surface redox reactions (Lukatskaya, Dunn and Gogotsi 2016) (Karthikeyan, et al. 2010). In this study, we have examined the electrochemical characteristics of vanadium pentoxide (V2O5) and activated carbon (AC) in an aqueous multivalent aluminum nitrate (nonhydrate, Al(NO3)3) electrolyte for viable electrode applications in battery-type hybrid supercapacitors, also known as supercapattery. A Specific capacitance of 340 Fg -1 was obtained at a scanning rate of 10 mV/s. Although this configuration showed promising storage and cyclability capability but the voltage for intercalation of Al3+ ions occurred below zero voltage. Hence, right selection of electrodes for such configurations may help in obtaining intercalation and de-intercalation voltages above zero volt and thereby result in a viable practical application with better performance.

  5. Pillared graphite anodes for reversible sodiation.

    PubMed

    Zhang, Hanyang; Li, Zhifei; Xu, Wei; Chen, Yicong; Ji, Xiulei; Lerner, Michael M

    2018-08-10

    There has been a major effort recently to develop new rechargeable sodium-ion electrodes. In lithium ion batteries, LiC 6 forms from graphite and desolvated Li cations during the first charge. With sodium ions, graphite only shows a significant capacity when Na + intercalates as a solvated complex, resulting in ternary graphite intercalation compounds (GICs). Although this chemistry has been shown to be highly reversible and to support high rates in small test cells, these GICs can require >250% volume expansion and contraction during cycling. Here we demonstrate the first example of GICs that reversibly sodiate/desodiate without any significant volume change. These pillared GICs are obtained by electrochemical reduction of graphite in an ether/amine co-solvent electrolyte. The initial gallery expansion, 0.36 nm, is less than half of that in diglyme-based systems, and shows a similar capacity. Thermal analyses suggest the pillaring phenomenon arises from stronger co-intercalate interactions in the GIC galleries.

  6. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor

    NASA Astrophysics Data System (ADS)

    Paris, E.; Simonelli, L.; Wakita, T.; Marini, C.; Lee, J.-H.; Olszewski, W.; Terashima, K.; Kakuto, T.; Nishimoto, N.; Kimura, T.; Kudo, K.; Kambe, T.; Nohara, M.; Yokoya, T.; Saini, N. L.

    2016-06-01

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity.

  7. Low cost iodine intercalated graphene for fuel cells electrodes

    NASA Astrophysics Data System (ADS)

    Marinoiu, Adriana; Raceanu, Mircea; Carcadea, Elena; Varlam, Mihai; Stefanescu, Ioan

    2017-12-01

    On the theoretical predictions, we report the synthesis of iodine intercalated graphene for proton exchange membrane fuel cells (PEMFCs) applications. The structure and morphology of the samples were characterized by X-ray photoelectron spectroscopy (XPS) analysis, specific surface area by BET method, Raman investigations. The presence of elemental iodine in the form of triiodide and pentaiodide was validated, suggesting that iodine was trapped between graphene layers, leading to interactions with C atoms. The electrochemical performances of iodinated graphenes were tested and compared with a typical PEMFC configuration, containing different Pt/C loading (0.4 and 0.2 mg cm-2). If iodinated graphene is included as microporous layer, the electrochemical performances of the fuel cell are higher in terms of power density than the typical fuel cell. Iodine-doped graphenes have been successfully obtained by simple and cost effective synthetic strategy and demonstrated new insights for designing of a high performance metal-free ORR catalyst by a scalable technique.

  8. Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis.

    PubMed

    Quilty, Janne A; Cordat, Emmanuelle; Reithmeier, Reinhart A F

    2002-12-15

    Autosomal dominant distal renal tubular acidosis (dRTA) has been associated with several mutations in the anion exchanger AE1 gene. The effect of an 11-amino-acid C-terminal dRTA truncation mutation (901 stop) on the expression of kidney AE1 (kAE1) and erythroid AE1 was examined in transiently transfected HEK-293 cells. Unlike the wild-type proteins, kAE1 901 stop and AE1 901 stop mutants exhibited impaired trafficking from the endoplasmic reticulum to the plasma membrane as determined by immunolocalization, cell-surface biotinylation, oligosaccharide processing and pulse-chase experiments. The 901 stop mutants were able to bind to an inhibitor affinity resin, suggesting that these mutant membrane proteins were not grossly misfolded. Co-expression of wild-type and mutant kAE1 or AE1 resulted in intracellular retention of the wild-type proteins in a pre-medial Golgi compartment. This dominant negative effect was due to hetero-oligomer formation of the mutant and wild-type proteins. Intracellular retention of kAE1 in the alpha-intercalated cells of the kidney would account for the impaired acid secretion into the urine characteristic of dRTA.

  9. Structural and thermal properties of inorganic-organic montmorillonite: Implications for their potential environmental applications.

    PubMed

    Rathnayake, Suramya I; Xi, Yunfei; Frost, Ray L; Ayoko, Godwin A

    2015-12-01

    Inorganic-organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4(OH)24(H2O)12](7+) or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Multi-Step Lithiation of Tin Sulfide: An Investigation Using In Situ Electron Microscopy

    DOE PAGES

    Hwang, Sooyeon; Yao, Zhenpeng; Zhang, Lei; ...

    2018-04-03

    Two-dimensional metal sulfides have been widely explored as promising electrodes for lithium ion batteries since their two-dimensional layered structure allows lithium ions to intercalate between layers. For tin disulfide, the lithiation process proceeds via a sequence of three different types of reactions: intercalation, conversion, and alloying but the full scenario of reaction dynamics remains nebulous. In this paper, we investigate the dynamical process of the multi-step reactions using in situ electron microscopy and discover an intermediate rock-salt phase with the disordering of Li and Sn cations, after the initial 2-dimensional intercalation. The disordered cations occupy all the octahedral sites andmore » block the channels for intercalation, which alter the reaction pathways during further lithiation. Our first principles calculations of the non-equilibrium lithiation of SnS2 corroborate the energetic preference of the disordered rock-salt structure over known layered polymorphs. The in situ observations and calculations suggest a two-phase reaction nature for intercalation, disordering, and following conversion reactions. In addition, in situ de-lithiation observation confirms that the alloying reaction is reversible while the conversion reaction is not, which is consistent to the ex situ analysis. This work reveals the full lithiation characteristic of SnS2 and sheds light on the understanding of complex multistep reactions in two-dimensional materials.« less

  11. Multi-Step Lithiation of Tin Sulfide: An Investigation Using In Situ Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Yao, Zhenpeng; Zhang, Lei

    Two-dimensional metal sulfides have been widely explored as promising electrodes for lithium ion batteries since their two-dimensional layered structure allows lithium ions to intercalate between layers. For tin disulfide, the lithiation process proceeds via a sequence of three different types of reactions: intercalation, conversion, and alloying but the full scenario of reaction dynamics remains nebulous. In this paper, we investigate the dynamical process of the multi-step reactions using in situ electron microscopy and discover an intermediate rock-salt phase with the disordering of Li and Sn cations, after the initial 2-dimensional intercalation. The disordered cations occupy all the octahedral sites andmore » block the channels for intercalation, which alter the reaction pathways during further lithiation. Our first principles calculations of the non-equilibrium lithiation of SnS2 corroborate the energetic preference of the disordered rock-salt structure over known layered polymorphs. The in situ observations and calculations suggest a two-phase reaction nature for intercalation, disordering, and following conversion reactions. In addition, in situ de-lithiation observation confirms that the alloying reaction is reversible while the conversion reaction is not, which is consistent to the ex situ analysis. This work reveals the full lithiation characteristic of SnS2 and sheds light on the understanding of complex multistep reactions in two-dimensional materials.« less

  12. Application of a multi-channel microfluidic chip on the simultaneous detection of DNAs by using microbead-quantum dots.

    PubMed

    Le, Ngoc Tam; Kim, Jong Sung

    2014-12-01

    Several researches have shown that cancer is caused by genetic mutations especially in genes involved in cell growth and regulation. Ras family members are frequently found in their mutated, oncogenic forms in human tumors. Mutant RAS proteins are constitutively active, owing to reduce intrinsic GTPase activity and insensitivity to GTPase-activating protein (GAPs). In total, activating mutations in the RAS genes occur in approximately 20% of all human cancers, mainly in codon 12, 13 or 61. Activating mutations in the NRAS gene not only result in the reduction of intrinsic GTPase activity but also in the induction of resistance against molecules inducing such activity. In this paper, we reported a rapid, simple and portable method for detecting the mutant types of NRAS genes codon 12 and 61 simultaneously by using bead-quantum dots (QDs) based multi-channel microfluidic chip. Probe DNAs are conjugated to bead-QDs and packed in the pillars of channels in the microfluidic chip. After injection of target DNAs and intercalating dyes, the fluorescence quenching of QDs by intercalating dye was observed due to FRET phenomena. The platform can be effortlessly applied in other biological and clinical areas.

  13. Theoretical Investigation of oxides for batteries and fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ganesh, Panchapakesan; Lubimtsev, Andrew A.; Balachandran, Janakiraman

    I will present theoretical studies of Li-ion and proton-conducting oxides using a combination of theory and computations that involve Density Functional Theory based atomistic modeling, cluster-expansion based studies, global optimization, high-throughput computations and machine learning based investigation of ionic transport in oxide materials. In Li-ion intercalated oxides, we explain the experimentally observed (Nature Materials 12, 518-522 (2013)) 'intercalation pseudocapacitance' phenomenon, and explain why Nb2O5 is special to show this behavior when Li-ions are intercalated (J. Mater. Chem. A, 2013,1, 14951-14956), but not when Na-ions are used. In addition, we explore Li-ion intercalation theoretically in VO2 (B) phase, which is somewhat structurally similar to Nb2O5 and predict an interesting role of site-trapping on the voltage and capacity of the material, validated by ongoing experiments. Computations of proton conducting oxides explain why Y-doped BaZrO3 , one of the fastest proton conducting oxide, shows a decrease in conductivity above 20% Y-doping. Further, using high throughput computations and machine learning tools we discover general principles to improve proton conductivity. Acknowledgements: LDRD at ORNL and CNMS at ORNL

  14. Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines

    PubMed Central

    Ali, Samer Hasan Hussein Al; Al-Qubaisi, Mothanna; Hussein, Mohd Zobir; Zainal, Zulkarnain; Hakim, Muhammad Nazrul

    2011-01-01

    Background A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers. Methods The hippuric acid nanohybrid (HAN) was prepared by direct reaction of an aqueous suspension of zinc oxide with a solution of hippuric acid via a one-step method. Results The basal spacing of the nanohybrid was 21.3 Å, indicating that the hippurate anion was successfully intercalated into the interlayer space of ZLH, and arranged in a monolayer fashion with the carboxylate group pointing toward the ZLH inorganic interlayers. A Fourier transform infrared study confirmed the formation of the nanohybrid, while thermogravimetry and differential thermogravimetry analyses showed that the thermal stability of the nanohybrid was markedly enhanced. The loading of hippurate in the nanohybrid was estimated to be about 38.7% (w/w), and the release of hippurate from the nanohybrid was of a controlled manner, and therefore the resulting material was suitable for use as a controlled-release formulation. HAN has synergistic properties with tamoxifen toward a HepG2 cell line, with an IC50 value of 0.35 compared with hippurate. In the antiproliferative assay, the ratio of viable cells account for cells treated by the combination tamoxifen with HAN to untreated cells was sharply reduced from 66% to 13% after 24 and 72 hours, respectively. Conclusion The release of hippuric acid anions from HAN occurred in a controlled manner, and the resulting material is suitable for a controlled-release formulation. PMID:22163163

  15. Anticancer nanodelivery system with controlled release property based on protocatechuate–zinc layered hydroxide nanohybrid

    PubMed Central

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Abd Gani, Shafinaz; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-01-01

    Background We characterize a novel nanocomposite that acts as an efficient anticancer agent. Methods This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors. Results The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines. Conclusion PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer. PMID:25061291

  16. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

  17. TRPV2 is critical for the maintenance of cardiac structure and function in mice

    PubMed Central

    Katanosaka, Yuki; Iwasaki, Keiichiro; Ujihara, Yoshihiro; Takatsu, Satomi; Nishitsuji, Koki; Kanagawa, Motoi; Sudo, Atsushi; Toda, Tatsushi; Katanosaka, Kimiaki; Mohri, Satoshi; Naruse, Keiji

    2014-01-01

    The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca2+ handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca2+-dependent intracellular Ca2+ increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function. PMID:24874017

  18. TRPV2 is critical for the maintenance of cardiac structure and function in mice.

    PubMed

    Katanosaka, Yuki; Iwasaki, Keiichiro; Ujihara, Yoshihiro; Takatsu, Satomi; Nishitsuji, Koki; Kanagawa, Motoi; Sudo, Atsushi; Toda, Tatsushi; Katanosaka, Kimiaki; Mohri, Satoshi; Naruse, Keiji

    2014-05-29

    The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca(2+) handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca(2+)-dependent intracellular Ca(2+) increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function.

  19. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H⁺ excretion.

    PubMed

    Escobar, Laura; Mejía, Natalia; Gil, Helena; Santos, Fernando

    2013-01-01

    Distal renal tubular acidosis (dRTA) or RTA type I is characterised by reduced H+ hydrogen ions and ammonium urinary excretion. In children affected by dRTA there is stunted growth, vomiting, constipation, loss of appetite, polydipsia and polyuria, nephrocalcinosis, weakness and muscle paralysis due to hypokalaemia. This work summarises progress made in dRTA genetic studies in populations studied so far. DRTA is heterogeneous and as such, transporters and ion channels are analysed which have been identified in alpha-intercalated cells of the collecting duct, which could explain cases of dRTA not associated with the hitherto studied genes. DRTA can be autosomal dominant or autosomal recessive. Autosomal recessive dRTA appears in the first months of life and progresses with nephrocalcinosis and early or late hearing loss. Autosomal dominant dRTA is less severe and appears during adolescence or adulthood and may or may not develop nephrocalcinosis. In alpha-intercalated cells of the collecting duct, the acid load is deposited into the urine as titratable acids (phosphates) and ammonium. Autosomal recessive dRTA is associated with mutations in genes ATP6V1B1, ATP6V0A4 and SLC4A1, which encode subunits a4 and B1 of V-ATPase and the AE1 bicarbonate/chloride exchanger respectively. By contrast, autosomal dominant dRTA is only related to mutations in AE1.

  20. Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahuie, Farahnaz; Hussein, Mohd Zobir, E-mail: mzobir@upm.edu.my; Gani, Shafinaz Abd

    2015-01-15

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al–layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al–NO{sub 3}–LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formationmore » of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment. - Graphical abstract: Protocatechuate anions were arranged in monolayer mode with the angle of 24° for PZAE and 33° for PZAC from Z axis to maximize interaction between carboxylate groups and brucite-like layers. - Highlights: • Two methods gave nanocomposites with slightly different physico-chemical properties. • PZAE and PZAC have the potential to be used as a controlled release formulation. • The thermal stability of PA is markedly enhanced upon the intercalation process. • Higher cancer cell growth inhibition for PZAE and PZAC nanocomposites than for PA.« less

  1. Graphite fiber intercalation: Dynamics of the bromine intercalation process

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Zinolabedini, R.

    1985-01-01

    The resistance of pitch-based graphite fibers was monitored, in situ, during a series of bromine intercalation experiments. The threshold pressure for the bromine intercalation of pitch-based fibers was estimated to be 102 torr. When the bromine atmosphere was removed from the reaction chamber, the resistivity of the intercalated graphite fibers increased consistently. This increase was attributed to loss of bromine from the perimeter of the fiber. The loss was confirmed by mapping the bromine concentration across the diameter of single intercalated fibers with either energy dispersive spectroscopy or scanning Auger microscopy. A statistical study comparing fibers intercalated in bromine vapor with fibers intercalated in bromine liquid showed that similar products were obtained with both methods of intercalation.

  2. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-04-20

    Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6-24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process.Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB. An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated with normal 3T3 cells shows it reduces cell viability in a dose- and time-dependent manner. Sustained release formulation of the nanocomposite, 4-ASA intercalated into zinc layered hydroxides, with its ease of preparation, sustained release of the active and less-toxic to the cell is a step forward for a more patient-friendly chemotherapy of Tuberculosis.

  3. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

    PubMed Central

    2013-01-01

    Background Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6–24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process. Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB. Result An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated with normal 3T3 cells shows it reduces cell viability in a dose- and time-dependent manner. Conclusions Sustained release formulation of the nanocomposite, 4-ASA intercalated into zinc layered hydroxides, with its ease of preparation, sustained release of the active and less-toxic to the cell is a step forward for a more patient-friendly chemotherapy of Tuberculosis. PMID:23601852

  4. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH

    PubMed Central

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Paulais, Marc

    2016-01-01

    ClC-K2, a member of the ClC family of Cl− channels and transporters, forms the major basolateral Cl− conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl− absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl−, and Ca2+ on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca2+ strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl− has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl−/HCO3− exchange in type B intercalated cells. PMID:27574292

  5. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    PubMed

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells. © 2016 Pinelli et al.

  6. Studies on niobium triselenide cathode material for lithium rechargeable cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  7. Synthesis of protocatechuic acid-zinc/aluminium-layered double hydroxide nanocomposite as an anticancer nanodelivery system

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Gani, Shafinaz Abd; Fakurazi, Sharida; Zainal, Zulkarnain

    2015-01-01

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al-layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al-NO3-LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment.

  8. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis.

    PubMed

    Buisson, Nicolas; Sirour, Cathy; Moreau, Nicole; Denker, Elsa; Le Bouffant, Ronan; Goullancourt, Aline; Darribère, Thierry; Bello, Valérie

    2014-12-01

    Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells. © 2014. Published by The Company of Biologists Ltd.

  9. Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers.

    PubMed

    Jacques, Eric; Lindbergh, Göran; Zenkert, Dan; Leijonmarck, Simon; Kjell, Maria Hellqvist

    2015-07-01

    The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 μW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.

  10. Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology

    PubMed Central

    Prieto, Sandra P.; Powless, Amy J.; Boice, Jackson W.; Sharma, Shree G.; Muldoon, Timothy J.

    2015-01-01

    Proflavine hemisulfate, an acridine-derived fluorescent dye, can be used as a rapid stain for cytologic examination of biological specimens. Proflavine fluorescently stains cell nuclei and cytoplasmic structures, owing to its small amphipathic structure and ability to intercalate DNA. In this manuscript, we demonstrated the use of proflavine as a rapid cytologic dye on a number of specimens, including normal exfoliated oral squamous cells, cultured human oral squamous carcinoma cells, and leukocytes derived from whole blood specimens using a custom-built, portable, LED-illuminated fluorescence microscope. No incubation time was needed after suspending cells in 0.01% (w/v) proflavine diluted in saline. Images of proflavine stained oral cells had clearly visible nuclei as well as granular cytoplasm, while stained leukocytes exhibited bright nuclei, and highlighted the multilobar nature of nuclei in neutrophils. We also demonstrated the utility of quantitative analysis of digital images of proflavine stained cells, which can be used to detect significant morphological differences between different cell types. Proflavine stained oral cells have well-defined nuclei and cell membranes which allowed for quantitative analysis of nuclear to cytoplasmic ratios, as well as image texture analysis to extract quantitative image features. PMID:25962131

  11. Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology.

    PubMed

    Prieto, Sandra P; Powless, Amy J; Boice, Jackson W; Sharma, Shree G; Muldoon, Timothy J

    2015-01-01

    Proflavine hemisulfate, an acridine-derived fluorescent dye, can be used as a rapid stain for cytologic examination of biological specimens. Proflavine fluorescently stains cell nuclei and cytoplasmic structures, owing to its small amphipathic structure and ability to intercalate DNA. In this manuscript, we demonstrated the use of proflavine as a rapid cytologic dye on a number of specimens, including normal exfoliated oral squamous cells, cultured human oral squamous carcinoma cells, and leukocytes derived from whole blood specimens using a custom-built, portable, LED-illuminated fluorescence microscope. No incubation time was needed after suspending cells in 0.01% (w/v) proflavine diluted in saline. Images of proflavine stained oral cells had clearly visible nuclei as well as granular cytoplasm, while stained leukocytes exhibited bright nuclei, and highlighted the multilobar nature of nuclei in neutrophils. We also demonstrated the utility of quantitative analysis of digital images of proflavine stained cells, which can be used to detect significant morphological differences between different cell types. Proflavine stained oral cells have well-defined nuclei and cell membranes which allowed for quantitative analysis of nuclear to cytoplasmic ratios, as well as image texture analysis to extract quantitative image features.

  12. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors

    PubMed Central

    Wang, Xianfen; Kajiyama, Satoshi; Iinuma, Hiroki; Hosono, Eiji; Oro, Shinji; Moriguchi, Isamu; Okubo, Masashi; Yamada, Atsuo

    2015-01-01

    High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g−1 at 1.0 and 5.0 A g−1 (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems. PMID:25832913

  13. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  14. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  15. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  16. Aldosterone stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway

    PubMed Central

    Winter, Christian; Kampik, Nicole B.; Vedovelli, Luca; Rothenberger, Florina; Păunescu, Teodor G.; Stehberger, Paul A.; Brown, Dennis; John, Hubert

    2011-01-01

    Urinary acidification in the collecting duct is mediated by the activity of H+-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H+-ATPase activity in acid-secretory intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). Here we investigated the intracellular signaling cascade mediating this stimulatory effect. Aldosterone stimulated H+-ATPase activity in isolated mouse and human OMCDs. This effect was blocked by suramin, a general G protein inhibitor, and GP-2A, a specific Gαq inhibitor, whereas pertussis toxin was without effect. Inhibition of phospholipase C with U-73122, chelation of intracellular Ca2+ with BAPTA, and blockade of protein kinase C prevented the stimulation of H+-ATPases. Stimulation of PKC by DOG mimicked the effect of aldosterone on H+-ATPase activity. Similarly, aldosterone and DOG induced a rapid translocation of H+-ATPases to the luminal side of OMCD cells in vivo. In addition, PD098059, an inhibitor of ERK1/2 activation, blocked the aldosterone and DOG effects. Inhibition of PKA with H89 or KT2750 prevented and incubation with 8-bromoadenosine-cAMP mildly increased H+-ATPase activity. Thus, the nongenomic modulation of H+-ATPase activity in OMCD-intercalated cells by aldosterone involves several intracellular pathways and may be mediated by a Gαq protein-coupled receptor and PKC. PKA and cAMP appear to have a modulatory effect. The rapid nongenomic action of aldosterone may participate in the regulation of H+-ATPase activity and contribute to final urinary acidification. PMID:21832245

  17. Dynamics of graphite fiber intercalation: In situ resistivity measurements with a four point probe

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1984-01-01

    The dynamics of ferric chloride intercalation of single graphite fibers were studied, in situ, using a four point dc bridge. Measurements before, during and after the intercalation showed that the intercalation occurred within minutes at 200 C. Changes in fiber resistivity after exposure to air suggested hydration of the graphite intercalation compound. Deintercalation of the ferric chloride was initiated at temperatures in excess of 400 C. cycling the intercalant into and out of the graphite fiber gave no improvements in fiber resistivity. The activation energy of the ferric chloride intercalation reaction was found to be 17 + or - 4 kcal/mol 1 consistent with the concept of a preliminary nucleation step in the intercalation reaction.

  18. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors.

    PubMed

    Lin, Jun-Hong

    2018-02-08

    In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed to prevent the restack of the thermally reduce graphene oxide (TRG) sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs). The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm) that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg).

  19. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors

    PubMed Central

    Lin, Jun-Hong

    2018-01-01

    In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed to prevent the restack of the thermally reduce graphene oxide (TRG) sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs). The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm) that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg). PMID:29419773

  20. Noble-metal intercalation process leading to a protected adatom in a graphene hollow site

    NASA Astrophysics Data System (ADS)

    Narayanan Nair, M.; Cranney, M.; Jiang, T.; Hajjar-Garreau, S.; Aubel, D.; Vonau, F.; Florentin, A.; Denys, E.; Bocquet, M.-L.; Simon, L.

    2016-08-01

    In previous studies, we have shown that gold deposited on a monolayer (ML) of graphene on SiC(0001) is intercalated below the ML after an annealing procedure and affects the band structure of graphene. Here we prove experimentally and theoretically that some of the gold forms a dispersed phase composed of single adatoms, being intercalated between the ML and the buffer layer and in a hollow position with respect to C atoms of the ML on top. They are freestanding and negatively charged, due to the partial screening of the electron transfer between SiC and the ML, without changing the intrinsic n-type doping of the ML. As these single atoms decouple the ML from the buffer layer, the quasiparticles of graphene are less perturbed, thus increasing their Fermi velocity. Moreover, the hollow position of the intercalated single Au atoms might lead to spin-orbit coupling in the graphene layer covering IC domains. This effect of spin-orbit coupling has been recently observed experimentally in Au-intercalated graphene on SiC(0001) [D. Marchenko, A. Varykhalov, J. Sánchez-Barriga, Th. Seyller, and O. Rader, Appl. Phys. Lett. 108, 172405 (2016), 10.1063/1.4947286] and has been theoretically predicted for heavy atoms, like thallium, in a hollow position on graphene [C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Phys. Rev. X 1, 021001 (2011), 10.1103/PhysRevX.1.021001; A. Cresti, D. V. Tuan, D. Soriano, A. W. Cummings, and S. Roche, Phys. Rev. Lett. 113, 246603 (2014), 10.1103/PhysRevLett.113.246603].

  1. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method

    PubMed Central

    Hu, Zhimi; Xiao, Xu; Jin, Huanyu; Li, Tianqi; Chen, Ming; Liang, Zhun; Guo, Zhengfeng; Li, Jia; Wan, Jun; Huang, Liang; Zhang, Yanrong; Feng, Guang; Zhou, Jun

    2017-01-01

    Because of their exotic electronic properties and abundant active sites, two-dimensional (2D) materials have potential in various fields. Pursuing a general synthesis methodology of 2D materials and advancing it from the laboratory to industry is of great importance. This type of method should be low cost, rapid and highly efficient. Here, we report the high-yield synthesis of 2D metal oxides and hydroxides via a molten salts method. We obtained a high-yield of 2D ion-intercalated metal oxides and hydroxides, such as cation-intercalated manganese oxides (Na0.55Mn2O4·1.5H2O and K0.27MnO2·0.54H2O), cation-intercalated tungsten oxides (Li2WO4 and Na2W4O13), and anion-intercalated metal hydroxides (Zn5(OH)8(NO3)2·2H2O and Cu2(OH)3NO3), with a large lateral size and nanometre thickness in a short time. Using 2D Na2W4O13 as an electrode, a high performance electrochemical supercapacitor is achieved. We anticipate that our method will enable new path to the high-yield synthesis of 2D materials for applications in energy-related fields and beyond. PMID:28555669

  2. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    PubMed

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  3. Properties of K,Rb-intercalated C{sub 60} encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahfouz, R.; Bouhrara, M.; Kim, Y.

    2015-09-21

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C{sub 60} encapsulated inside carbon nanotubes called peapods can be derived from {sup 13}C nuclear magnetic resonance investigations. Ring currents do play a basic role in those systems; in particular, the inner cavities of nanotubes offer an ideal environment to investigate the magnetism at the nanoscale. We report the largest diamagnetic shifts down to −68.3 ppm ever observed in carbon allotropes, which is connected to the enhancement of the aromaticity of the nanotube envelope upon intercalation. The metallization of intercalated peapods is evidenced from the chemical shiftmore » anisotropy and spin-lattice relaxation (T{sub 1}) measurements. The observed relaxation curves signal a three-component model with two slow and one fast relaxing components. We assigned the fast component to the unpaired electrons charged C{sub 60} that show a phase transition near 100 K. The two slow components can be rationalized by the two types of charged C{sub 60} at two different positions with a linear regime following Korringa behavior, which is typical for metallic system and allow us to estimate the density of sate at Fermi level n(E{sub F})« less

  4. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development.

    PubMed

    Redman, R S

    2008-06-01

    Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.

  5. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    PubMed

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  6. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    PubMed

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Axial elongation in mouse embryos involves mediolateral cell intercalation behavior in the paraxial mesoderm

    NASA Astrophysics Data System (ADS)

    Yen, WeiWei; Burdsal, Carol; Periasamy, Ammasi; Sutherland, Ann E.

    2006-02-01

    The cell mechanical and signaling pathways involved in gastrulation have been studied extensively in invertebrates and amphibians, such as Xenopus, and more recently in non-mammalian vertebrates such as zebrafish and chick. However, because culturing mouse embryos extra-utero is very difficult, this fundamental process has been least characterized in the mouse. As the primary mammalian model for genetics, biochemistry, and the study of human disease and birth defects, it is important to investigate how gastrulation proceeds in murine embryos. We have developed a method of using 4D multiphoton excitation microscopy and extra-utero culture to visualize and characterize the morphogenetic movements in mouse embryos dissected at 8.5 days of gestation. Cells are labeled by expression of an X chromosome-linked enhanced green fluorescent protein (EGFP) transgene. This method has provided a unique approach, where, for the first time, patterns of cell behavior in the notochord and surrounding paraxial mesoderm can be visualized and traced quantitatively. Our observations of mouse embryos reveal both distinct differences as well as striking similarities in patterned cell motility relative to other vertebrate models such as Xenopus, where axial extension is driven primarily by mediolateral oriented cell behaviors in the notochord and paraxial somitic mesoderm. Unlike Xenopus, the width of the mouse notochord remains the same between 4-somite stage and 8-somite stage embryos. This implies the mouse notochord plays a lesser role in driving axial extension compared to Xenopus, although intercalation may occur where the anterior region of the node becomes notochordal plate. In contrast, the width of mouse paraxial mesoderm narrows significantly during this period and cells within the paraxial mesoderm are both elongated and aligned perpendicular to the midline. In addition, these cells are observed to intercalate, consistent with a role for paraxial mesoderm in driving convergence and extension. These cell behaviors are similar to those characterized in the axial mesoderm of frog embryos during convergence and extension[1], and suggests that tissues may play different roles in axial elongation between the frog and the mouse.

  8. Synthesis and electrical characterization of magnetic bilayer graphene intercalate.

    PubMed

    Kim, Namdong; Kim, Kwang S; Jung, Naeyoung; Brus, Louis; Kim, Philip

    2011-02-09

    We report synthesis and transport properties of the minimal graphite intercalation compound, a ferric chloride (FeCl(3))(n) island monolayer inside bilayer graphene. Chemical doping by the intercalant is simultaneously probed by micro-Raman spectroscopy and Hall measurements. Quantum oscillations of conductivity originate from microscopic domains of intercalated and unintercalated regions. A slight upturn in resistance related to magnetic transition is observed. Two-dimensional intercalation in bilayer graphene opens new possibilities to engineer two-dimensional properties of intercalates.

  9. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism.

    PubMed

    Meredith, Ann-Marie; Dass, Crispin R

    2016-06-01

    The use of doxorubicin, a drug utilised for many years to treat a wide variety of cancers, has long been limited due to the significant toxicity that can occur not only during, but also years after treatment. It has multiple mechanisms of action including the intercalation of DNA, inhibition of topoisomerase II and the production of free radicals. We review the literature, with the aim of highlighting the role of drug concentration being an important determinant on the unfolding cell biological events that lead to cell stasis or death. The PubMed database was consulted to compile this review. It has been found that the various mechanisms of action at the disposal of doxorubicin culminate in either cell death or cell growth arrest through various cell biological events, such as apoptosis, autophagy, senescence and necrosis. Which of these events is the eventual cause of cell death or growth arrest appears to vary depending on factors such as the patient, cell and cancer type, doxorubicin concentration and the duration of treatment. Further understanding of doxorubicin's influence on cell biological events could lead to an improvement in the drug's efficacy and reduce toxicity. © 2016 Royal Pharmaceutical Society.

  10. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated in the dark. Thereafter, the sample is exposed to visible light for five minutes, so that the DNA from dead cells will be cross-linked. Following this PMA treatment step, the sample is concentrated by centrifugation and washed (to remove excessive PMA) before DNA is extracted. The 16S rRNA gene fragments will be amplified by PCR to screen the total microbial community using PhyloChip DNA microarray analysis. This approach will detect only the viable microbial community since the PMA intercalated DNA from dead cells would be unavailable for PCR amplification. The total detection time including PCR reaction for low biomass samples will be a few hours. Numerous markets may use this technology. The food industry uses spore detection to validate new alternative food processing technologies, sterility, and quality. Pharmaceutical and medical equipment companies also detect spores as a marker for sterility. This system can be used for validating sterilization processes, water treatment systems, and in various public health and homeland security applications.

  11. Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors.

    PubMed

    Bissett, Mark A; Kinloch, Ian A; Dryfe, Robert A W

    2015-08-12

    Two-dimensional materials, such as graphene and molybdenum disulfide (MoS2), can greatly increase the performance of electrochemical energy storage devices because of the combination of high surface area and electrical conductivity. Here, we have investigated the performance of solution exfoliated MoS2 thin flexible membranes as supercapacitor electrodes in a symmetrical coin cell arrangement using an aqueous electrolyte (Na2SO4). By adding highly conductive graphene to form nanocomposite membranes, it was possible to increase the specific capacitance by reducing the resistivity of the electrode and altering the morphology of the membrane. With continued charge/discharge cycles the performance of the membranes was found to increase significantly (up to 800%), because of partial re-exfoliation of the layered material with continued ion intercalation, as well as increasing the specific capacitance through intercalation pseudocapacitance. These results demonstrate a simple and scalable application of layered 2D materials toward electrochemical energy storage.

  12. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    PubMed

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  13. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Xin; Xu Ke; Xu Yufang

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report heremore » that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P{sub 2} promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research Highlights: > B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. > B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. > B1 induced significant increase of p53 binding to Bcl-2 P{sub 2} promoter TATA box.« less

  14. Gut endoderm takes flight from the wings of mesoderm.

    PubMed

    McDonald, Angela C H; Rossant, Janet

    2014-12-01

    The endoderm layer destined to be primitive gut is a mosaic of earlier visceral endoderm and definitive endoderm that arises later, during gastrulation. Live imaging now reveals that in mouse embryos, definitive endoderm cells egress from underlying mesoderm and intercalate into the overlying cell layer. This process requires SOX17-mediated control of basement membrane organization.

  15. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    PubMed

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were <5 % at 100 HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  16. Intercalation of Lithium in Pitch-Based Graphitized Carbon Fibers Chemically Modified by Fluorine: Soft Carbon With or Without an Oxide Surface

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Prisko, Aniko

    1999-01-01

    The effects of carbon structure and surface oxygen on the carbon's performance as the anode in lithium-ion battery were studied. Two carbon materials were used for the electrochemical tests: soft carbon made from defluorination of graphite fluoride, and the carbon precursor from which the graphite fluoride was made. In this research the precursor was graphitized carbon fiber P-100. It was first fluorinated to form CF(0.68), then defluorinated slowly at 350 to 450 C in bromoform, and finally heated in 1000 C nitrogen before exposed to room temperature air, producing disordered soft carbon having basic surface oxides. This process caused very little carbon loss. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) EC and DMC/Li half cell. The cycling test had four major results. (1) The presence of a basic oxide surface may prevent solvent from entering the carbon structure and therefore prolong the carbon's cycle life for lithium intercalation-deintercalation. (2) The disordered soft carbon can store lithium through two different mechanisms. One of them is lithium intercalation. which gives the disordered carbon an electrochemical behavior similar to its more ordered graphitic precursor. The other is unknown in its chemistry, but is responsible for the high-N,oltage portion (less than 0.3V) of the charge-discharge curve. (3) Under certain conditions, the disordered carbon can store more lithium than its precursor. (4) These sample and its precursor can intercalate at 200 mA/g. and deintercalate at a rate of 2000 mA/g without significant capacity loss.

  17. Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.

    Here, we study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg 2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06–1.3 g/cm 3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m 2/g as mass density decreases from 1.3 to 0.26 g/cm 3, however, the surface area fallsmore » off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ~0.5 g/cm 3 and BET surface area ~1500 m 2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.« less

  18. Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

    DOE PAGES

    Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.; ...

    2016-03-25

    Here, we study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg 2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06–1.3 g/cm 3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m 2/g as mass density decreases from 1.3 to 0.26 g/cm 3, however, the surface area fallsmore » off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ~0.5 g/cm 3 and BET surface area ~1500 m 2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.« less

  19. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  20. Maintaining K+ balance on the low-Na+, high-K+ diet

    PubMed Central

    Cornelius, Ryan J.; Wang, Bangchen; Wang-France, Jun

    2016-01-01

    A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the “Western” high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances. PMID:26739887

  1. Rocking-Chair Configuration in Ultrathin Lithium Vanadate-Graphene Hybrid Nanosheets for Electrical Modulation

    PubMed Central

    Zhu, Haiou; Qin, Xinming; Sun, Xu; Yan, Wensheng; Yang, Jinlong; Xie, Yi

    2013-01-01

    The ability to control electronic property of a material by externally applied voltage is greatly anticipated in modern electronics, and graphene provide potential application foreground for this issue on account of its exotic ambipolar transport property. In this study, we proposed that inorganic-graphene intercalated nanosheet is an effective solution to optimize the transport property of graphene. As an example, lithium vanadate-graphene (LiVO-graphene) alternately intercalated nanosheets were designed and successfully synthesized. Theoretical calculation implied that its rocking chair configuration may provide a new pathway to switch the carrier in graphene layer between p-type and n-type while the position of embedded Li ions is controlled by an external field. Thus, a demo transistor was fabricated with layer-by-layer overlapping of LiVO-graphene nanosheets which proved that this inorganic-graphene structure could be used for electrical modulation in electronic devices. PMID:23409237

  2. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  3. Mechanisms of enhanced lithium intercalation into thin film V2O5 in ionic liquids investigated by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Luis; Światowska, Jolanta; Lair, Virginie; Zanna, Sandrine; Seyeux, Antoine; Melendez-Ceballos, Arturo; Tran-Van, Pierre; Cassir, Michel; Marcus, Philippe

    2017-10-01

    Room temperature ionic liquids (RTILs) attract much attention as a new type of environmentally benign electrolytes for Li-ion batteries due to their numerous interesting physicochemical properties. Here, in this paper, Li intercalation/deintercalation in presence of the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) and N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR13FSI) containing 0.3 M LiTFSI, was evaluated in a thin 100 nm layer of V2O5 deposited on Al substrate by atomic layer deposition. Potentiodynamic tests performed in LiTFSI/Pyr14TFSI show a quasi-reversible Li intercalation during 10 cycles (between 2.4 and 5 V) with an average coulombic efficiency of 99%. The capacity, calculated from the 1st cycle, is found to be 182 mAh g-1, about 19% (±2%) higher than the theoretical capacity reported for V2O5 (147 mAh g-1). X-ray photoelectron spectroscopy analysis confirms that the intercalation of more than 1 mol of Li+ per V2O5 is achieved as also the possible presence of a solid permeable interface (SPI) layer on the V2O5 surface. Likewise, the Li+ in-depth distribution on the V2O5 layer after intercalation in RTILs measured by time-of-flight secondary ion mass spectrometry ion depth profiles, show small irreversible electrode modifications with the presence of lithium through the entire V2O5 layer with significant lithium trapping at the V2O5 layer/Al substrate interface.

  4. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  5. Raman spectroscopic sensing of carbonate intercalation in breast microcalcifications at stereotactic biopsy

    PubMed Central

    Sathyavathi, R.; Saha, Anushree; Soares, Jaqueline S.; Spegazzini, Nicolas; McGee, Sasha; Rao Dasari, Ramachandra; Fitzmaurice, Maryann; Barman, Ishan

    2015-01-01

    Microcalcifications are an early mammographic sign of breast cancer and frequent target for stereotactic biopsy. Despite their indisputable value, microcalcifications, particularly of the type II variety that are comprised of calcium hydroxyapatite deposits, remain one of the least understood disease markers. Here we employed Raman spectroscopy to elucidate the relationship between pathogenicity of breast lesions in fresh biopsy cores and composition of type II microcalcifications. Using a chemometric model of chemical-morphological constituents, acquired Raman spectra were translated to characterize chemical makeup of the lesions. We find that increase in carbonate intercalation in the hydroxyapatite lattice can be reliably employed to differentiate benign from malignant lesions, with algorithms based only on carbonate and cytoplasmic protein content exhibiting excellent negative predictive value (93–98%). Our findings highlight the importance of calcium carbonate, an underrated constituent of microcalcifications, as a spectroscopic marker in breast pathology evaluation and pave the way for improved biopsy guidance. PMID:25927331

  6. Raman spectroscopic sensing of carbonate intercalation in breast microcalcifications at stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Sathyavathi, R.; Saha, Anushree; Soares, Jaqueline S.; Spegazzini, Nicolas; McGee, Sasha; Rao Dasari, Ramachandra; Fitzmaurice, Maryann; Barman, Ishan

    2015-04-01

    Microcalcifications are an early mammographic sign of breast cancer and frequent target for stereotactic biopsy. Despite their indisputable value, microcalcifications, particularly of the type II variety that are comprised of calcium hydroxyapatite deposits, remain one of the least understood disease markers. Here we employed Raman spectroscopy to elucidate the relationship between pathogenicity of breast lesions in fresh biopsy cores and composition of type II microcalcifications. Using a chemometric model of chemical-morphological constituents, acquired Raman spectra were translated to characterize chemical makeup of the lesions. We find that increase in carbonate intercalation in the hydroxyapatite lattice can be reliably employed to differentiate benign from malignant lesions, with algorithms based only on carbonate and cytoplasmic protein content exhibiting excellent negative predictive value (93-98%). Our findings highlight the importance of calcium carbonate, an underrated constituent of microcalcifications, as a spectroscopic marker in breast pathology evaluation and pave the way for improved biopsy guidance.

  7. Raman spectroscopic sensing of carbonate intercalation in breast microcalcifications at stereotactic biopsy.

    PubMed

    Sathyavathi, R; Saha, Anushree; Soares, Jaqueline S; Spegazzini, Nicolas; McGee, Sasha; Rao Dasari, Ramachandra; Fitzmaurice, Maryann; Barman, Ishan

    2015-04-30

    Microcalcifications are an early mammographic sign of breast cancer and frequent target for stereotactic biopsy. Despite their indisputable value, microcalcifications, particularly of the type II variety that are comprised of calcium hydroxyapatite deposits, remain one of the least understood disease markers. Here we employed Raman spectroscopy to elucidate the relationship between pathogenicity of breast lesions in fresh biopsy cores and composition of type II microcalcifications. Using a chemometric model of chemical-morphological constituents, acquired Raman spectra were translated to characterize chemical makeup of the lesions. We find that increase in carbonate intercalation in the hydroxyapatite lattice can be reliably employed to differentiate benign from malignant lesions, with algorithms based only on carbonate and cytoplasmic protein content exhibiting excellent negative predictive value (93-98%). Our findings highlight the importance of calcium carbonate, an underrated constituent of microcalcifications, as a spectroscopic marker in breast pathology evaluation and pave the way for improved biopsy guidance.

  8. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  9. Scaling Relations for Intercalation Induced Damage in Electrodes

    DOE PAGES

    Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; ...

    2016-04-02

    Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based onmore » a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.« less

  10. Solution structure and thermodynamics of 2',5' RNA intercalation.

    PubMed

    Horowitz, Eric D; Lilavivat, Seth; Holladay, Benjamin W; Germann, Markus W; Hud, Nicholas V

    2009-04-29

    As a means to explore the influence of the nucleic acid backbone on the intercalative binding of ligands to DNA and RNA, we have determined the solution structure of a proflavine-bound 2',5'-linked octamer duplex with the sequence GCCGCGGC. This structure represents the first NMR structure of an intercalated RNA duplex, of either backbone structural isomer. By comparison with X-ray crystal structures, we have identified similarities and differences between intercalated 3',5' and 2',5'-linked RNA duplexes. First, the two forms of RNA have different sugar pucker geometries at the intercalated nucleotide steps, yet have the same interphosphate distances. Second, as in intercalated 3',5' RNA, the phosphate backbone angle zeta at the 2',5' RNA intercalation site prefers to be in the trans conformation, whereas unintercalated 2',5' and 3',5' RNA prefer the -gauche conformation. These observations provide new insights regarding the transitions required for intercalation of a phosphodiester-ribose backbone and suggest a possible contribution of the backbone to the origin of the nearest-neighbor exclusion principle. Thermodynamic studies presented for intercalation of both structural RNA isomers also reveal a surprising sensitivity of intercalator binding enthalpy and entropy to the details of RNA backbone structure.

  11. Is it intelligent to intercalate? A two centre cross-sectional study exploring the value of intercalated degrees, and the possible effects of the recent tuition fee rise in England.

    PubMed

    Stubbs, Timothy Alan; Lightman, Elewys G; Mathieson, Peter

    2013-01-24

    To explore the value of intercalated degrees, including student perceptions and academic sequelae. To gauge the likely effect of the recent tuition fee rise and to identify any differences in intercalated degrees between Bristol and Sheffield universities. Cross-sectional study using questionnaires. Bristol and Sheffield Medical Schools, UK. 1484 medical students in their clinical years were e-mailed the questionnaire. 578 students responded: 291 from Bristol and 287 from Sheffield (n=578; mean age=22.41; SD 1.944; 38.9% male; 61.1% female). The response rate from previous intercalators was 52.5% from Bristol and 58.7% from Sheffield, while for non-intercalators it was 27.7% and 34.6%, respectively. (1) Student preconceptions, opinions, results and academic sequelae from intercalated degrees at both centres. (2) Students' attitudes concerning the effect of the increase in tuition fees. Those with clinical academic supervisors gained significantly more posters (p=0.0002) and publications (p<0.0001), and also showed a trend to gain more first class honours (p=0.055). Students at Sheffield had a significantly greater proportion of clinical academic supervisors than students at Bristol (p<0.0001). 89.2% said that an intercalated degree was the right decision for them; however, only 27.4% stated they would have intercalated if fees had been £9000 per annum. Students clearly value intercalated degrees, feel they gained a substantial advantage over their peers as well as skills helpful for their future careers. The rise in tuition fees is likely to reduce the number of medical students opting to undertake an intercalated degree, and could result in a further reduction in numbers following an academic path. Sheffield University have more intercalating students supervised by clinical academics. Clinical academics appear more effective as supervisors for medical students undertaking an intercalated degree in terms of results and additional academic sequelae.

  12. Onset of superconductivity in sodium and potassium intercalated molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Rembaum, A.

    1971-01-01

    Molybdenum disulfide in the form of natural crystals or powder has been intercalated at -65 to -70 C with sodium and potassium using the liquid ammonia technique. All intercalated samples were found to show a superconducting transition. A plot of the percent of diamagnetic throw versus temperature indicates the possible existence of two phases in the potassium intercalated molybdenum disulfide. The onset of superconductivity in potassium and sodium intercalated molybdenite powder was found to be approximately 6.2 and approximately 4.5 K, respectively. The observed superconductivity is believed to be due to an increase in electron density as a result of intercalation.

  13. Resolving DNA-ligand intercalation in the entropic stretching regime

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali A.

    Single molecule studies of DNA intercalation are typically conducted by applying stretching forces to obtain force-dependent DNA elongation measurements. The zero-force properties of DNA intercalation are determined by equilibrium and kinetic force-analysis. However, the applied stretching forces that are above the entropic regime (>5 pN) prevent DNA-DNA contact which may eliminate competitive DNA-ligand interactions. In particular, it is noted that cationic mono-intercalators investigated by single molecule force spectroscopy are mostly found to intercalate DNA with single rate, while bulk studies reported additional slower rates. Here, a proposed framework quantifies DNA intercalation by cationic ligands in competition with relatively rapid kinetic DNA-ligand aggregation. At a constant applied force in the entropic stretching regime, the analysis illustrates that DNA intercalation would be measurably optimized only within a narrow range of low ligand concentrations. As DNA intercalators are considered for potential DNA-targeted therapeutics, this analysis provides insights in tuning ligand concertation to maximize therapeutics efficiency.

  14. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance

    NASA Astrophysics Data System (ADS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Jiang, Quanguo

    2018-04-01

    Two-dimensional Ti3C2 MXene nanosheets were functionalized with phenylsulfonic groups derived from in situ generated diazonium ions by the corresponding amine. During the functionalization process, the aryl groups were attached onto the MXene surfaces in the form of strong MXene-aryl (Tisbnd Osbnd C) linkages. Simultaneously, the intercalation of diazonium ions enabled Ti3C2 multi-layers to be delaminated into separate few-layer nanosheets via weak sonication with low energy. As a result of chemical functionalization for MXene Ti3C2, the dispersibility was greatly improved and the specific surface area increased significantly. The grafted functional groups are still stable up to at least 200 °C upon thermogravimetric analysis measurements. With diazonium ions intercalating and electroactive groups grafting between-in MXene layers, the chemically functionalized Ti3C2 electrodes exhibited an enhanced supercapacitive performance, which acquired a specific capacitance more than double that of pristine Ti3C2 samples and excellent cycling stability (91% capacity retention after 10,000 cycles at 3 A g-1). This feasible modification scheme can be also extended to functionalize other types of MXenes materials with this or other aryl diazonium ions as surface modifiers and intercalants, thus offering scope for full potential applications of the new 2D materials.

  15. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8.more » The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by the SDS concentration which indicated changes to the environment around the DS molecule in LDH interlayer.« less

  16. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    PubMed

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-02-06

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  17. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery.

    PubMed

    Xu, Tingting; Xu, Xiaoyue; Gu, Yan; Fang, Lei; Cao, Feng

    2018-01-01

    To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.

  18. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery

    PubMed Central

    Gu, Yan

    2018-01-01

    Background To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. Purpose The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. Materials and methods CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). Results CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. Conclusions The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site. PMID:29491707

  19. Cell vertices as independent actors during cell intercalation in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Loerke, Dinah

    Epithelial sheets form the lining of organ surfaces and body cavities, and it is now appreciated that these sheets are dynamic structures that can undergo significant reorganizing events, e.g. during wound healing or morphogenesis. One of the key morphogenetic mechanisms that is utilized during development is tissue elongation, which is driven by oriented cell intercalation. In the Drosophila embryonic epithelium, this occurs through the contraction of vertical T1 interfaces and the subsequent resolution of horizontal T3 interfaces (analogous to so-called T1 transitions in soap foams), where the symmetry breaking behaviors are created by a system of planar polarity of actomyosin and adhesion complexes within the cell layer. The dominant physical model for this process posits that the anisotropy of line tension directs T1 contraction. However, this model is inconsistent with the in vivo observation that cell vertices of T1 interfaces lack physical coupling, and instead show independent movements. Thus, we propose that a more useful explanation of intercalary behaviors will be possible through a description of the radially-directed and adhesion-coupled force events that lead to vertex movements and produce subsequent dependent changes in interface lengths. This work is supported by NIH R15 GM117463-01 and by a Research Corporation for Science Advancement (RCSA) Cottrell Scholar Award.

  20. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation

    PubMed Central

    Almaqwashi, Ali A.; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2016-01-01

    DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics. PMID:27028636

  1. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  2. A local difference in Hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the Drosophila anteroposterior compartment boundary.

    PubMed

    Rudolf, Katrin; Umetsu, Daiki; Aliee, Maryam; Sui, Liyuan; Jülicher, Frank; Dahmann, Christian

    2015-11-15

    Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds. © 2015. Published by The Company of Biologists Ltd.

  3. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  4. Organo-modified anionic clays into polymer compared to smectite-type nanofiller: potential applications of the nanocomposites.

    PubMed

    Leroux, Fabrice

    2006-02-01

    The scope of the article is to provide the state of the art concerning the utilization of Layered Double Hydroxide (LDH) materials in polymer nanocomposite and to enlight their potential application and even advantage in comparison to smectite-type materials. A particular attention is paid on the synthetic procedures for the elaboration of polymer nanocomposite taking poly(styrene), poly(imide), poly(methylmethacrylate) and epoxy resin as examples. Lipophilization of the inorganic platelets used to decrease the surface polarity may be achieved either with a surfactant molecule or a surfactant monomer molecule, giving rise to reactive hybrid filler. The state of dispersion of the inorganic platelets, i.e., intercalated versus exfoliated structure is discussed. LDH-based nanocomposites present mechanical properties, such as the tensile modulus and elongation at break, always greater in comparison to virgin polymer, but also compete well with smectite-type filler. For epoxy nanocomposite, the relative gain using LDH nanofiller is superior to smectite-type filler. In both types of nanocomposites using either LDH or smectite-type nanofiller, mixed intercalated-exfoliated structure is generally met. Dispersion of LDH nanoplatelets should emerge well as flame-retardant materials and as polymer electrolyte, but may also find application in topical domains such as in sun radiation absorption.

  5. Cardiac-specific deletion of the microtubule-binding protein CENP-F causes dilated cardiomyopathy

    PubMed Central

    Dees, Ellen; Miller, Paul M.; Moynihan, Katherine L.; Pooley, Ryan D.; Hunt, R. Pierre; Galindo, Cristi L.; Rottman, Jeffrey N.; Bader, David M.

    2012-01-01

    SUMMARY CENP-F is a large multifunctional protein with demonstrated regulatory roles in cell proliferation, vesicular transport and cell shape through its association with the microtubule (MT) network. Until now, analysis of CENP-F has been limited to in vitro analysis. Here, using a Cre-loxP system, we report the in vivo disruption of CENP-F gene function in murine cardiomyocytes, a cell type displaying high levels of CENP-F expression. Loss of CENP-F function in developing myocytes leads to decreased cell division, blunting of trabeculation and an initially smaller, thin-walled heart. Still, embryos are born at predicted mendelian ratios on an outbred background. After birth, hearts lacking CENP-F display disruption of their intercalated discs and loss of MT integrity particularly at the costamere; these two structures are essential for cell coupling/electrical conduction and force transduction in the heart. Inhibition of myocyte proliferation and cell coupling as well as loss of MT maintenance is consistent with previous reports of generalized CENP-F function in isolated cells. One hundred percent of these animals develop progressive dilated cardiomyopathy with heart block and scarring, and there is a 20% mortality rate. Importantly, although it has long been postulated that the MT cytoskeleton plays a role in the development of heart disease, this study is the first to reveal a direct genetic link between disruption of this network and cardiomyopathy. Finally, this study has broad implications for development and disease because CENP-F loss of function affects a diverse array of cell-type-specific activities in other organs. PMID:22563055

  6. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics.

    PubMed

    Kevadiya, Bhavesh D; Chettiar, Shiva Shankaran; Rajkumar, Shalini; Bajaj, Hari C; Gosai, Kalpeshgiri A; Brahmbhatt, Harshad

    2013-12-01

    Intercalation of 6-mercaptopurine (6-MP), an antineoplastic drug in interlayer gallery of Na(+)-clay (MMT) was further entrapped in poly (L-lactide) matrix to form microcomposite spheres (MPs) in order to reduce the cell toxicity and enhance in vitro release and pharmacokinetic proficiency. The drug-clay hybrid was fabricated via intercalation by ion-exchange method to form MPs from hybrid. In vitro drug release showed controlled pattern, fitted to kinetic models suggested controlled exchange and partial diffusion through swollen matrix of clay inter layered gallery. The in vitro efficacy of formulated composites drug was tested in Human neuroblastoma cell line (IMR32) by various cell cytotoxic and oxidative stress marker indices. In vivo pharmacokinetics suggested that the intensity of formulated drug level in plasma was within remedial borders as compared to free drug. These clay based composites therefore have great potential of becoming a new dosage form of 6-MP. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Toxicity, mutagenicity and transport in Saccharomyces cerevisiae of three popular DNA intercalating fluorescent dyes.

    PubMed

    Sayas, Enric; García-López, Federico; Serrano, Ramón

    2015-09-01

    We have compared the toxicity, mutagenicity and transport in Saccharomyces cerevisiae of three DNA-intercalating fluorescent dyes widely used to stain DNA in gels. Safety data about ethidium bromide (EtBr) are contradictory, and two compounds of undisclosed structure (Redsafe and Gelred) have been proposed as safe alternatives. Our results indicate that all three compounds inhibit yeast growth, with Gelred being the most inhibitory and also the only one causing cell death. EtBr and Gelred, but not Redsafe, induce massive formation of petite (non-respiratory) mutants, but only EtBr induces massive loss of mitochondrial DNA. All three compounds increase reversion of a chromosomal point mutation (lys2-801(amber) ), with Gelred being the most mutagenic and Redsafe the least. These dyes are all cationic and are probably taken by cells through non-selective cation channels. We could measure the glucose-energized transport of EtBr and Gelred inside the cells, while uptake of Redsafe was below our detection limit. We conclude that although all three compounds are toxic and mutagenic in the yeast system, Redsafe is the safest for yeast, probably because of very limited uptake by these cells. Copyright © 2015 John Wiley & Sons, Ltd.

  8. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation.

    PubMed

    Etchells, J Peter; Provost, Claire M; Mishra, Laxmi; Turner, Simon R

    2013-05-01

    In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (PXY) are a multifunctional ligand-receptor pair that regulate vascular cell division, vascular organisation and xylem differentiation in vascular tissue. A transcription factor gene, WUSCHEL HOMEOBOX RELATED 4 (WOX4) has been shown to act downstream of PXY. Here we show that WOX4 acts redundantly with WOX14 in the regulation of vascular cell division, but that these genes have no function in regulating vascular organisation. Furthermore, we identify an interaction between PXY and the receptor kinase ERECTA (ER) that affects the organisation of the vascular tissue but not the rate of cell division, suggesting that cell division and vascular organisation are genetically separable. Our observations also support a model whereby tissue organisation and cell division are integrated via PXY and ER signalling, which together coordinate development of different cell types that are essential for normal stem formation.

  9. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay.

  10. Development of new intercalated cathode materials for use in sodium batteries

    NASA Technical Reports Server (NTRS)

    Mehrotra, G. M.; Worrell, W. L.

    1981-01-01

    Potassium thiochromite, sodium thiochromite, and Ti 0.5V 0.5S 2 prepared and used in cycling studies. In addition, some electrochemical studies with polymer electrolyte (PEO-NaSCN) cells were also attempted.

  11. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3.

    PubMed

    Antoci, Vasilichia; Mantu, Dorina; Cozma, Danut Gabriel; Usru, Cornelia; Mangalagiu, Ionel I

    2014-01-01

    Antitumour chemotherapy is nowadays a very active field of research, DNA targeting drugs being the most widely used group in therapy. The design, synthesis and anticancer activity of a new class of anticancer derivatives with pyrrolo-1,2-diazine and benzoquinone skeleton is presented. The synthesis is direct and efficient, involving an alkylation followed by a [3+2] dipolar cycloaddition. The penta- and tetra-cyclic pyrrolo-1,2-diazine were evaluated for their in vitro anticancer activity against an NCI 60 human tumour cell line panel. The pentacyclic-1,2-diazine exhibit a significant anticancer activity against Non-Small Cell Lung Cancer NCI-H460, Leukemia MOLT-4, Leukemia CCRF-CEM and Breast Cancer MCF7. We hypothesize that these molecules will exert their anticancer activity through multiple mechanisms of action: intercalating the DNA, inhibiting the topoisomerase enzymes and, destroying the DNA strands via electron transfer mechanism. However, the intercalation with the DNA seems to prevail in competition with the others mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  13. Comparison of fluoride intercalation/de-intercalation processes on graphite electrodes in aqueous and aqueous methanolic HF media

    NASA Astrophysics Data System (ADS)

    Noel, M.; Santhanam, R.; Francisca Flora, M.

    The solvent can play a major role in the intercalation/de-intercalation process and the stability of graphite substrates towards this process. This fact is established in the present work that involves fluoride intercalation/de-intercatlation on graphite electrodes in aqueous and aqueous methanolic HF solutions where the HF concentration is varied between 1.0 and 18.0 M. In addition to cyclic voltammetry and potentiostatic polarization, open-circuit potential decay measurements, scanning electron microscopy and X-ray diffraction measurements have been employed. In general, addition of methanol and increasing concentration of HF raise the overall intercalation/de-intercalation efficiency. Methanol is adsorbed preferentially on the graphite lattice and, hence, suppresses both oxygen evolution and the formation of passive graphite oxides. In 15.0 M HF, the optimum methanol concentration is 5 vol.%. This suggests that, in addition to the adsorption effect, there is some weakening of the structured water molecules that facilitates the solvated fluoride ions for efficient intercalation.

  14. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte

    NASA Astrophysics Data System (ADS)

    Richard, M. N.; Dahn, J. R.

    An accelerating rate calorimeter (ARC) is used to measure the thermal stability of de-intercalated Li 1+ xMn 2- xO 4 in LiPF 6 EC:DEC (33:67) electrolyte. Self-heating is detected well after the 80°C onset of self-heating measured for lithium intercalated mesocarbon microbead (MCMB) electrodes in LiPF 6 EC:DEC (33:67) electrolyte. As a result, the initial self-heating measured in a practical carbon/Li 1+ xMn 2- xO 4 lithium-ion cell is caused by reactions at the anode. In previous work, we have proposed a model for the reactions that cause self-heating in MCMB electrodes in electrolyte. By assuming that a cell self-heats only because reactions occur at the anode, the model can be used to predict the power generated by the amount of MCMB in practical cells with an inert cathode. The calculated chemically generated power can be combined with power loss measurements, due to the transfer of heat to the environment, to predict the short-circuit behaviour and the oven exposure behaviour for a cell containing an MCMB anode and an inert cathode. The results agree qualitatively with short-circuit and oven exposure results measured on NEC Moli energy 18650 cells containing an Li 1+ xMn 2- xO 4 cathode.

  15. Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors.

    PubMed

    Hormann, Jan; Malina, Jaroslav; Lemke, Oliver; Hülsey, Max J; Wedepohl, Stefanie; Potthoff, Jan; Schmidt, Claudia; Ott, Ingo; Keller, Bettina G; Brabec, Viktor; Kulak, Nora

    2018-05-07

    Many drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker. A regioisomer, in which the AQ moieties point in directions unfavorable for such an interaction, had a much weaker biological activity. The ligands alone and corresponding Zn(II) complexes (used as redox inert control compounds) also exhibited lower activity.

  16. A Novel Battery Cathode Material Based on intercalation Chemistry: Redox Reactions of the 2,5-Dimercapto-1,3,4-Thiadiazole/V2O5 Xerogel System

    DTIC Science & Technology

    1998-06-29

    of some interstitial water during intercalation of the disulfide polymer of DMcT. Elemental analysis gives a composition for the intercalation...the disulfide polymer of DMcT. Elemental analysis gives a composition for the intercalation material of [(polyDMcT)o25*V205𔃻.4H20]. The cyclic...13.5 A). This change is consistent with loss of some interstitial water during intercalation of the disulfide polymer of DMcT. Elemental analysis

  17. Antiviral and Anticancer Optimization Studies of the DNA-binding Marine Natural Product Aaptamine

    PubMed Central

    Bowling, John J.; Pennaka, Hari K.; Ivey, Kelly; Wahyuono, Subagus; Kelly, Michelle; Schinazi, Raymond F.; Valeriote, Frederick A.; Graves, David E.; Hamann, Mark T.

    2016-01-01

    Aaptamine has potent cytotoxicity that may be explained by its ability to intercalate DNA. Aaptamine was evaluated for its ability to bind to DNA to validate DNA binding as the primary mechanism of cytotoxicity. Based on UV–vis absorbance titration data, the Kobs for aaptamine was 4.0 (±0.2) × 103 which was essentially equivalent to the known DNA intercalator N-[2-(diethylamino)ethyl]-9-aminoacridine-4-carboxamide. Semi-synthetic core modifications were performed to improve the general structural diversity of known aaptamine analogs and vary its absorption characteristics. Overall, 26 aaptamine derivatives were synthesized which consisted of a simple homologous range of mono and di-N-alkylations as well as some 9-O-sulfonylation and bis-O-isoaaptamine dimer products. Each product was evaluated for activity in a variety of whole cell and viral assays including a unique solid tumor disk diffusion assay. Details of aaptamine's DNA-binding activity and its derivatives’ whole cell and viral assay results are discussed. PMID:18251774

  18. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    PubMed Central

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-01-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms. PMID:27811975

  19. Is it intelligent to intercalate? A two centre cross-sectional study exploring the value of intercalated degrees, and the possible effects of the recent tuition fee rise in England

    PubMed Central

    Stubbs, Timothy Alan; Lightman, Elewys G; Mathieson, Peter

    2013-01-01

    Aims and objectives To explore the value of intercalated degrees, including student perceptions and academic sequelae. To gauge the likely effect of the recent tuition fee rise and to identify any differences in intercalated degrees between Bristol and Sheffield universities. Design Cross-sectional study using questionnaires. Setting Bristol and Sheffield Medical Schools, UK. Participants 1484 medical students in their clinical years were e-mailed the questionnaire. 578 students responded: 291 from Bristol and 287 from Sheffield (n=578; mean age=22.41; SD 1.944; 38.9% male; 61.1% female). The response rate from previous intercalators was 52.5% from Bristol and 58.7% from Sheffield, while for non-intercalators it was 27.7% and 34.6%, respectively. Main outcome measures (1) Student preconceptions, opinions, results and academic sequelae from intercalated degrees at both centres. (2) Students’ attitudes concerning the effect of the increase in tuition fees. Results Those with clinical academic supervisors gained significantly more posters (p=0.0002) and publications (p<0.0001), and also showed a trend to gain more first class honours (p=0.055). Students at Sheffield had a significantly greater proportion of clinical academic supervisors than students at Bristol (p<0.0001). 89.2% said that an intercalated degree was the right decision for them; however, only 27.4% stated they would have intercalated if fees had been £9000 per annum. Conclusions Students clearly value intercalated degrees, feel they gained a substantial advantage over their peers as well as skills helpful for their future careers. The rise in tuition fees is likely to reduce the number of medical students opting to undertake an intercalated degree, and could result in a further reduction in numbers following an academic path. Sheffield University have more intercalating students supervised by clinical academics. Clinical academics appear more effective as supervisors for medical students undertaking an intercalated degree in terms of results and additional academic sequelae. PMID:23355672

  20. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  1. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery.

    PubMed

    Bhauriyal, Preeti; Mahata, Arup; Pathak, Biswarup

    2017-03-15

    Identifying a suitable electrode material with desirable electrochemical properties remains a primary challenge for rechargeable Al-ion batteries. Recently an ultrafast rechargeable Al-ion battery was reported with high charge/discharge rate, (relatively) high discharge voltage and high capacity that uses a graphite-based cathode. Using calculations from first-principles, we have investigated the staging mechanism of AlCl 4 intercalation into bulk graphite and evaluated the stability, specific capacity and voltage profile of AlCl 4 intercalated compounds. Ab initio molecular dynamics is performed to investigate the thermal stability of AlCl 4 intercalated graphite structures. Our voltage profiles show that the first AlCl 4 intercalation step could be a more sluggish step than the successive intercalation steps. However, the diffusion of AlCl 4 is very fast in the expanded graphite host layers with a diffusion barrier of ∼0.01 eV, which justifies the ultrafast charging rate of a graphite based Al-ion battery. And such an AlCl 4 intercalated battery provides an average voltage of 2.01-2.3 V with a maximum specific capacity of 69.62 mA h g -1 , which is excellent for anion intercalated batteries. Our density of states and Bader charge analysis shows that the AlCl 4 intercalation into the bulk graphite is a charging process. Hence, we believe that our present study will be helpful in understanding the staging mechanism of AlCl 4 intercalation into graphite-like layered electrodes for Al-ion batteries, thus encouraging further experimental work.

  2. The Role of Intercalated Cell Nedd4-2 in BP Regulation, Ion Transport, and Transporter Expression.

    PubMed

    Nanami, Masayoshi; Pham, Truyen D; Kim, Young Hee; Yang, Baoli; Sutliff, Roy L; Staub, Olivier; Klein, Janet D; Lopez-Cayuqueo, Karen I; Chambrey, Regine; Park, Annie Y; Wang, Xiaonan; Pech, Vladimir; Verlander, Jill W; Wall, Susan M

    2018-06-01

    Background Nedd4-2 is an E3 ubiquitin-protein ligase that associates with transport proteins, causing their ubiquitylation, and then internalization and degradation. Previous research has suggested a correlation between Nedd4-2 and BP. In this study, we explored the effect of intercalated cell (IC) Nedd4-2 gene ablation on IC transporter abundance and function and on BP. Methods We generated IC Nedd4-2 knockout mice using Cre-lox technology and produced global pendrin/ Nedd4-2 null mice by breeding global Nedd4-2 null ( Nedd4-2 -/- ) mice with global pendrin null ( Slc26a4 -/- ) mice. Mice ate a diet with 1%-4% NaCl; BP was measured by tail cuff and radiotelemetry. We measured transepithelial transport of Cl - and total CO 2 and transepithelial voltage in cortical collecting ducts perfused in vitro Transporter abundance was detected with immunoblots, immunohistochemistry, and immunogold cytochemistry. Results IC Nedd4-2 gene ablation markedly increased electroneutral Cl - /HCO 3 - exchange in the cortical collecting duct, although benzamil-, thiazide-, and bafilomycin-sensitive ion flux changed very little. IC Nedd4-2 gene ablation did not increase the abundance of type B IC transporters, such as AE4 ( Slc4a9 ), H + -ATPase, barttin, or the Na + -dependent Cl - /HCO 3 - exchanger ( Slc4a8 ). However, IC Nedd4-2 gene ablation increased CIC-5 total protein abundance, apical plasma membrane pendrin abundance, and the ratio of pendrin expression on the apical membrane to the cytoplasm. IC Nedd4-2 gene ablation increased BP by approximately 10 mm Hg. Moreover, pendrin gene ablation eliminated the increase in BP observed in global Nedd4-2 knockout mice. Conclusions IC Nedd4-2 regulates Cl - /HCO 3 - exchange in ICs., Nedd4-2 gene ablation increases BP in part through its action in these cells. Copyright © 2018 by the American Society of Nephrology.

  3. Method for forming solar cell materials from particulars

    DOEpatents

    Eberspacher, Chris; Pauls, Karen Lea

    2001-01-01

    Materials in bulk and film forms are prepared from fine particulate precursors such as single-phase, mixed-metal oxides; multi-phase, mixed-metal particles comprising a metal oxide; multinary metal particles; mixtures of such particles with other particles; and particulate materials intercalated with other materials.

  4. Irreversible Capacities of Graphite in Low Temperature Electrolytes for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B.; Smart, M.; Surampudi, S.; Wang, Y.; Zhang, X.; Greenbaum, S.; Hightower, A.; Ahn, C.; Fultz, B.

    1999-01-01

    Carbonaceous anode materials in lithium ion rechargeable cells experience irreversible capacity, mainly due to a consumption of lithium in the formation of surface passive films. The stability and kinetics of lithium intercalation into the carbon anodes are dictated by these films.

  5. B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism.

    PubMed

    Xu, Zhenye; Liu, Yu; Zhou, Wei; Tade, Moses O; Shao, Zongping

    2018-03-21

    Perovskite oxides are highly promising electrodes for oxygen-ion-intercalation-type supercapacitors owing to their high oxygen vacancy concentration, oxygen diffusion rate, and tap density. Based on the anion intercalation mechanism, the capacitance is contributed by surface redox reactions and oxygen ion intercalation in the bulk materials. A high concentration of oxygen vacancies is needed because it is the main charge carrier. In this study, we propose a B-site cation-ordered Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ as an electrode material with an extremely high oxygen vacancy concentration and oxygen diffusion rate. A maximum capacitance of 1050 F g -1 was achieved, and a high capacitance of 780 F g -1 was maintained even after 3000 charge-discharge cycles at a current density of 1 A g -1 with an aqueous alkaline solution (6 M KOH) electrolyte, indicating an excellent cycling stability. In addition, the specific volumetric capacitance of Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ reaches up to 2549.4 F cm -3 based on the dense construction and high tap density (3.2 g cm -3 ). In addition, an asymmetric supercapacitor was constructed using activated carbon as a negative electrode, and it displayed the highest specific energy density of 70 Wh kg -1 at the power density of 787 W kg -1 in this study.

  6. Effectiveness of Co intercalation between Graphene and Ir(1 1 1)

    NASA Astrophysics Data System (ADS)

    Carlomagno, I.; Drnec, J.; Scaparro, A. M.; Cicia, S.; Mobilio, S.; Felici, R.; Meneghini, C.

    2018-04-01

    Graphene can be used to avoid the oxidation of metallic films. This work explores the effectiveness of such stabilizing effect on Cobalt (Co) films intercalated between Graphene and Ir(1 1 1). After intercalation at 300 °C, two Co films are exposed to ambient pressure and investigated using Co-K edge X-ray Absorption Near Edge Spectroscopy. The formation of a disordered oxide phase is observed, and associated to the presence of some non-intercalated Co. Further annealing at 500 °C causes the oxide reduction to metallic Co which further intercalates below the Graphene. Once the intercalation is completed, Graphene prevents the Co from oxidation under ambient pressure conditions.

  7. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    NASA Astrophysics Data System (ADS)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  8. Controlled release formulation of an anti-depression drug based on a L-phenylalanate-zinc layered hydroxide intercalation compound

    NASA Astrophysics Data System (ADS)

    Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah

    2017-06-01

    The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.

  9. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology

    NASA Astrophysics Data System (ADS)

    Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro

    A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.

  10. Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores

    DTIC Science & Technology

    2012-11-09

    Miltenyi) by counting 10 000 events. Cell Culture and Confocal Imaging. HeLa (CCL-2) were purchased from ATCC and cultured following manufacturer’s...concentration of PI before confocal imaging. Internalization Assay and Colocalization Studies. To monitor dendrimer internalization, cells were incubated...calcein. After 2 h of incubation at 37 °C, cells were washed three times with PBS and then analyzed by confocal microscopy. Ethidium Bromide Intercalation

  11. Open-Structured V 2 O 5 · n H 2 O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bi, Xuanxuan; Bai, Ying

    The high-capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self-assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well-layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathinmore » flower petals deliver a stable capacity of 250 mA h g-1 in a Li-ion cell, 110 mA h g-1 in a Na-ion cell, and 80 mA h g-1 in an Al-ion cell in their respective potential ranges (2.0–4.0 V for Li and Na-ion batteries and 0.1–2.5 V for Al-ion battery) after 100 cycles.« less

  12. Plant Flavone Apigenin Binds to Nucleic Acid Bases and Reduces Oxidative DNA Damage in Prostate Epithelial Cells

    PubMed Central

    Bhaskaran, Natarajan; Gupta, Sanjay

    2014-01-01

    Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it’s binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2′ deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities. PMID:24614817

  13. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells.

    PubMed

    Sharma, Haripaul; Kanwal, Rajnee; Bhaskaran, Natarajan; Gupta, Sanjay

    2014-01-01

    Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.

  14. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahuie, Farahnaz; Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my; Arulselvan, Palanisamy

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the propertiesmore » of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites with slightly different physico-chemical properties. • Chlorogenate-zinc aluminium layered double hydroxide nanohybrids have the potential to be used as a controlled release formulation. • The thermal stability of chlorogenic acid is markedly enhanced upon the intercalation process. • The inhibition of cancer cell growth is higher for nanohybrids than for free chlorogenic acid.« less

  15. Electrochemical Control of Copper Intercalation into Nanoscale Bi 2Se 3

    DOE PAGES

    Zhang, Jinsong; Sun, Jie; Li, Yanbin; ...

    2017-02-20

    Intercalation of exotic atoms or molecules into the layered materials remains an extensively investigated subject in current physics and chemistry. However, traditionally melt-growth and chemical interaction strategies are either limited by insufficiency of intercalant concentrations or destitute of accurate controllability. Here, we have developed a general electrochemical intercalation method to efficaciously regulate the concentration of zerovalent copper atoms into layered Bi 2Se 3, followed by comprehensive experimental characterization and analyses. Up to 57% copper atoms (Cu 6.7Bi 2Se 3) can be intercalated with no disruption to the host lattice. Meanwhile the unconventional resistance dip accompanied by a hysteresis loop belowmore » 40 K, as well as the emergence of new Raman peak in Cu xBi 2Se 3, is a distinct manifestation of the interplay between intercalated Cu atoms with Bi 2Se 3 host. Furthermore, our work demonstrates a new methodology to study fundamentally new and unexpected physical behaviors in intercalated metastable materials.« less

  16. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; ...

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  17. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA

    NASA Astrophysics Data System (ADS)

    Cunningham, Paul D.; Bricker, William P.; Díaz, Sebastián A.; Medintz, Igor L.; Bathe, Mark; Melinger, Joseph S.

    2017-08-01

    Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.

  18. Evaluation and optimization of the conditions for an improved ferulic acid intercalation into a synthetic lamellar anionic clay.

    PubMed

    Schoubben, Aurélie; Blasi, Paolo; Giovagnoli, Stefano; Nocchetti, Morena; Ricci, Maurizio; Perioli, Luana; Rossi, Carlo

    2006-03-01

    The aim of the study is to optimize the intercalation conditions of ferulic acid (FERH), an antioxidant compound, into Mg-Al-hydrotalcite for a safe skin photoprotection. The intercalation products were prepared incubating hydrotalcite (HTlc) in aqueous solutions of FERH sodium salt at different temperatures over 4 and 8 days. Quantitative determination of intercalated FERH was performed by thermogravimetric analysis and morphology by scanning electron microscopy (SEM). FERH stability study was carried out at different pHs and temperatures. FERH was analyzed by reversed phase-high-performance liquid chromatography. Response surface methods (RSMs) were used to assess optimal intercalation conditions and FERH stability. In all intercalation products, FERH content was found to be about 48% w/w except when the intercalation process was carried out at 52 degrees C for 8 days and at 60 degrees C for both 4 and 8 days, which resulted to be 40.39, 39.99, and 34.99%, respectively. The RSM designs showed that intercalation improvement can be achieved by working at pH 6, at temperatures below 40 degrees C, and over 4 days of incubation. The optimal conditions for a proper FERH intercalation were assessed. The development of a new optimized protocol may improve HTlc-FER complex performances and safety by augmenting dosage and reducing the presence of harmful reactive species in the final formulation.

  19. Kinetics of intercalation of lithium into NbSe3 and TiS2 cathodes

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Nagasubramanian, G.; Di Stefano, S.; Bankston, C. P.

    1992-01-01

    Titanium disulfide and niobium triselenide are two well-studied candidate materials for positive electrodes in rechargeable lithium cells. A comparative study of the kinetics of intercalation of lithium in both the cathodes is made here based on various electrochemical techniques, i.e., linear polarization, potentiodynamic polarization, and ac impedance under different experimental conditions such as prismatic or disk configuration of fresh, partially discharged, or cycled electrode. Further, the diffusion coefficients of lithium ions in these cathodes are estimated under these conditions using conventional techniques, i.e., ac impedance, chronocoulometry, chronoamperometry, and current pulse relaxation. Based on the values of the diffusion coefficients, the applicability of these methods for the determination of diffusion coefficients is discussed.

  20. Stacking interactions and DNA intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo

    2009-01-01

    The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observedmore » proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.« less

  1. Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs.

    PubMed

    Ambrogi, Valeria; Fardella, Giuseppe; Grandolini, Giuliano; Nocchetti, Morena; Perioli, Luana

    2003-07-01

    A new approach of improving drug dissolution properties is described. This method exploits the property of a carrier owing to the hydrotalcite-type anionic clays (HTlc). HTlc is an inorganic layered solid that lodges anionic compounds among its layers. As HTlc dissolves at acidic pH values (pH < 4), the anions intercalated among the layers are promptly released in the medium. In this article some nonsteroidal antiinflammatory drugs were chosen as models of poorly water-soluble drugs. They were intercalated in HTlc and solubility measurements in acidic medium were performed. A remarkable improvement of drug solubility was observed especially in the case of indomethacin. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  2. K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang

    K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less

  3. K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode

    DOE PAGES

    Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang; ...

    2017-05-02

    K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less

  4. A review on acridinylthioureas and its derivatives: biological and cytotoxic activity.

    PubMed

    Kožurková, Mária; Sabolová, Danica; Kristian, Pavol

    2017-10-01

    Acridines possess two characteristics that have led many researchers to consider the agents interesting targets for future development as potential farmacophores: the planar acridine skeleton, which is able to intercalate into DNA, and the intense fluorescence of the agents. This review offers a study of the multifunctional character of acridines and the synthesis of novel acridine derivatives, with particular focus being placed on isothiocyanates and their congeners, e.g. thioureas, isothioureas, quaternary ammonium salts and platinum/gold conjugates. The review provides an overview of the structure, spectral properties, DNA binding and biological activity of acridinylthiourea congeners. These acridinylthiourea derivatives display significant cytotoxic activities against different types of cancer cell lines at micromolar concentrations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. MT4-MMP and EGFR expression levels are key biomarkers for breast cancer patient response to chemotherapy and erlotinib

    PubMed Central

    Yip, Cassandre; Foidart, Pierre; Somja, Joan; Truong, Alice; Lienard, Mehdi; Feyereisen, Emilie; Schroeder, Hélène; Gofflot, Stéphanie; Donneau, Anne-Françoise; Collignon, Joëlle; Delvenne, Philippe; Sounni, Nor Eddine; Jerusalem, Guy; Noël, Agnès

    2017-01-01

    Background: Triple-negative breast cancers (TNBC) are heterogeneous cancers with poor prognosis. We aimed to determine the clinical relevance of membrane type-4 matrix metalloproteinase (MT4-MMP), a membrane type matrix metalloproteinase that interacts with epidermal growth factor receptor (EGFR) overexpressed in >50% of TNBC. Methods: We conducted a retrospective immunohistochemical analysis on human TNBC samples (n=81) and validated our findings in in vitro and in vivo assays. Results: Membrane type-4 matrix metalloproteinase and EGFR are produced in 72.5% of TNBC samples, whereas those proteins are faintly produced by healthy tissues. Unexpectedly, tumour relapse after chemotherapy was reduced in samples highly positive for MT4-MMP. Mechanistically, this is ascribed to a higher sensitivity of MT4-MMP-producing cells to alkylating or intercalating chemotherapeutic agents, as assessed in vitro. In sharp contrast, MT4-MMP expression did not affect tumour cell sensitivity to paclitaxel that interferes with protease trafficking. Importantly, MT4-MMP expression sensitised cancer cells to erlotinib, a tyrosine kinase EGFR inhibitor. In a pre-clinical model, the growth of MT4-MMP overexpressing xenografts, but not of control ones, was reduced by epirubicin or erlotinib. The combination of suboptimal drug doses blocked drastically the growth of MT4-MMP-producing tumours. Conclusions: We demonstrate that MT4-MMP defines a sub-population of TNBC sensitive to a combination of DNA-targeting chemotherapeutic agents and anti-EGFR drugs. PMID:28196064

  6. Major versus minor groove DNA binding of a bisarginylporphyrin hybrid molecule: A molecular mechanics investigation

    NASA Astrophysics Data System (ADS)

    Gresh, Nohad; Perrée-fauvet, Martine

    1999-03-01

    On the basis of theoretical computations, we have recently synthesised [Perrée-Fauvet, M. and Gresh, N., Tetrahedron Lett., 36 (1995) 4227] a bisarginyl conjugate of a tricationic porphyrin (BAP), designed to target, in the major groove of DNA, the d(GGC GCC)2 sequence which is part of the primary binding site of the HIV-1 retrovirus site [Wain-Hobson, S. et al., Cell, 40 (1985) 9]. In the theoretical model, the chromophore intercalates at the central d(CpG)2 step and each of the arginyl arms targets O6/N7belonging to guanine bases flanking the intercalation site. Recent IR and UV-visible spectroscopic studies have confirmed the essential features of these theoretical predictions [Mohammadi, S. et al., Biochemistry, 37 (1998) 6165]. In the present study, we compare the energies of competing intercalation modes of BAP to several double-stranded oligonucleotides, according to whether one, two or three N- methylpyridinium rings project into the major groove. Correspondingly, three minor groove binding modes were considered, the arginyl arms now targeting N3, O2 sites belonging to the purine or pyrimidine bases flanking the intercalation site. This investigation has shown that: (i) in both the major and minor grooves, the best-bound complexes have the three N-methylpyridinium rings in the groove opposite to that of the phenyl group bearing the arginyl arms; (ii) major groove binding is preferred over minor groove binding by a significant energy (29 kcal/mol); and (iii) the best-bound sequence in the major groove is d(GGC GCC)2 with two successive guanines upstream from the intercalation. On the other hand, due to the flexibility of the arginyl arms, other GC-rich sequences have close binding energies, two of them being less stable than it by less than 8 kcal/mol. These results serve as the basis for the design of derivatives of BAP with enhanced sequence selectivities in the major groove.

  7. Targeting radiosensitizers to DNA by attachment of an intercalating group: Nitroimidazole-linked phenanthridines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, D.S.; Panicucci, R.; McClelland, R.A.

    The nitroimidazole-linked phenanthridine series of compounds (NLP-1, 2, and 3) were synthesized under the assumption that it should be possible to enhance the molar efficiency of 2-nitroimidazoles as hypoxic cell radiosensitizers and cytotoxins by targeting them to their likely site of action, DNA. The targeting group chosen was the phenanthridine moiety, the major component of the classical DNA intercalating compound, ethidium bromide. The sole difference between the compounds is the length of the hydrocarbon chain linking the nitroimidazole to the phenanthridine. The phenanthridine group with a three-carbon side chain, P-1, was also synthesized to allow studies on the effect ofmore » the targeting group by itself. The ability of the compounds to bind to DNA is inversely proportional to their linker chain length with binding constant values ranging from approximately 1 {times} 10(5) mol-1 for NLP-2 to 6 {times} 10(5) mol-1 for NLP-3. The NLP compounds show selective toxicity to hypoxic cells at 37 degrees C at external drug concentrations 10-40 times lower than would be required for untargeted 2-nitroimidazoles such as misonidazole in vitro. Toxicity to both hypoxic and aerobic cells is dependent on the linker chain: the shorter the chain, the greater the toxicity. In addition, the NLP compounds radiosensitize hypoxic cells at external drug concentrations as low as 0.05 mM with almost the full oxygen effect being observed at a concentration of 0.5 mM. These concentrations are 10-100 times lower than would be required for similar radiosensitization using misonidazole. Radiosensitizing ability is independent of linker chain length. The present compounds represent prototypes for further studies of the efficacy and mechanism of action of 2-nitroimidazoles targeted to DNA by linkage to an intercalating group.« less

  8. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  9. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    PubMed

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  10. Synthesis of a drug delivery vehicle for cancer treatment utilizing DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Brann, Tyler

    The treatment of cancer with chemotherapeutic agents has made great strides in the last few decades but still introduces major systemic side effects. The potent drugs needed to kill cancer cells often cause irreparable damage to otherwise healthy organs leading to further morbidity and mortality. A therapy with intrinsic selective properties and/or an inducible activation has the potential to change the way cancer can be treated. Gold nanoparticles (GNPs) are biocompatible and chemically versatile tools that can be readily functionalized to serve as molecular vehicles. The ability of these particles to strongly absorb light with wavelengths in the therapeutic window combined with the heating effect of surface plasmon resonance makes them uniquely suited for noninvasive heating in biologic applications. Specially designed DNA aptamers have shown their ability to serve as drug carriers through intercalation as well as directly acting as therapeutic agents. By combining these separate molecules a multifaceted drug delivery vehicle can be created with great potential as a selective and controllable treatment for cancer. Oligonucleotide-coated GNPs have been created using spherical GNPs but little work has been reported using gold nanoplates in this way. Using the Diasynth method gold nanoplates were produced to absorb strongly in the therapeutic near infrared (nIR) window. These particles were functionalized with two DNA oligonucleotides: one serving as an intercalation site for doxorubicin, and another, AS1411, serving directly as an anticancer targeting/therapeutic agent. These functional particles were fully synthesized and processed along with confirmation of DNA functionalization and doxorubicin intercalation. Doxorubicin is released via denaturation of the DNA structure into which doxorubicin is intercalated upon the heating of the gold nanoplate well above the DNA melting temperature. This temperature increase, due to light stimulation of surface plasmon resonance, was measured during laser application. Successful release of doxorubicin via laser application was measured with fluorescence measurements providing proof that the doxorubicin was successfully intercalated and released.

  11. An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract

    PubMed Central

    Spencer, John David; Schwaderer, Andrew L.; Eichler, Tad; Wang, Huanyu; Kline, Jennifer; Justice, Sheryl S.; Cohen, Daniel M.; Hains, David S.

    2013-01-01

    Recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Previously, we have shown that ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that has broad-spectrum antimicrobial activity against uropathogenic bacteria. The urothelium of the lower urinary tract and intercalated cells of the kidney produce RNase 7 but regulation of its antimicrobial activity has not been well defined. Here we characterize the expression of an endogenous inhibitor, ribonuclease inhibitor (RI), in the urinary tract and evaluate its effect on RNase 7’s antimicrobial activity. Using RNA isolated from non-infected human bladder and kidney tissue, quantitative real-time PCR showed that RNH1, the gene encoding RI, is constitutively expressed throughout the urinary tract. With pyelonephritis, RNH1 expression and RI peptide production significantly decrease. Immunostaining localized RI production to the umbrella cells of the bladder and intercalated cells of the renal collecting tubule. In vitro assays showed that RI bound to RNase 7 and suppressed its antimicrobial activity by blocking its ability to bind the cell wall of uropathogenic bacteria. Thus, these results demonstrate a new immunomodulatory role for RI and identified a unique regulatory pathway that may affect how RNase 7 maintains urinary tract sterility. PMID:24107847

  12. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas

    2018-02-01

    The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

  13. Carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions

    NASA Astrophysics Data System (ADS)

    Fossum, Jon Otto; Hemmen, Henrik; Rolseth, Erlend G.; Fonseca, Davi; Lindbo Hansen, Elisabeth; Plivelic, Tomas

    2012-02-01

    A molecular dynamics study by Cygan et al.[1] shows the possibility of intercalation and retention of CO2 in smectite clays at 37 ^oC and 200 bar, which suggests that clay minerals may prove suitable for carbon capture and carbon dioxide sequestration. In this work we show from x-ray diffraction measurements that gaseous CO2 intercalates into the interlayer space of the synthetic smectite clay Na-fluorohectorite. The mean interlayer distance of the clay when CO2 is intercalated is 12.5 å at -20 C and 15 bar. The magnitude of the expansion of the interlayer upon intercalation is indistinguishable from that of the dehydrated-monohydrated intercalation of H2O, but this possibility is ruled out by careful repeating the measurements exposing the clay to nitrogen gas. The dynamics of the CO2 intercalation process displays a higher intercalation rate at increased pressure, and the rate is several orders of magnitude slower than that of water or vapor at ambient pressure and temperature.[4pt] [1] Cygan, R. T.; Romanov, V. N.; Myshakin, E. M. Natural materials for carbon capture; Techincal report SAND2010-7217; Sandia National Laboratories: Albuquerque, New Mexico, November, 2010.

  14. Intercalated degrees, learning styles, and career preferences: prospective longitudinal study of UK medical students

    PubMed Central

    McManus, I C; Richards, P; Winder, B C

    1999-01-01

    Objectives To assess the effects of taking an intercalated degree (BSc) on the study habits and learning styles of medical students and on their interest in a career in medical research. Design Longitudinal questionnaire study of medical students at application to medical school and in their final year. Setting All UK medical schools. Participants 6901 medical school applicants for admission in 1991 were studied in the autumn of 1990. 3333 entered medical school in 1991 or 1992, and 2695 who were due to qualify in 1996 or 1997 were studied 3 months before the end of their clinical course. Response rates were 92% for applicants and 56% for final year students. Main outcome measures Study habits (surface, deep, and strategic learning style) and interest in different medical careers, including medical research. Identical questions were used at time of application and in final year. Results Students who had taken an intercalated degree had higher deep and strategic learning scores than at application to medical school. Those with highest degree classes had higher strategic and deep learning scores and lower surface learning scores. Students taking intercalated degrees showed greater interest in careers in medical research and laboratory medicine and less interest in general practice than their peers. The effects of the course on interest in medical research and learning styles were independent. The effect of the intercalated degree was greatest in schools where relatively few students took intercalated degrees. Conclusions Intercalated degrees result in a greater interest in research careers and higher deep and strategic learning scores. However, the effects are much reduced in schools where most students intercalate a degree. Introduction of intercalated degrees for all medical students without sufficient resources may not therefore achieve its expected effects. Key messagesAlthough intercalated degrees are well established, little is known about their effect on medical studentsIn this longitudinal study final year students who had taken intercalated degree were more interested in medical research, and had higher deep and strategic learning style scores than other studentsThe effects of the intercalated degree were dose dependent, being greatest in those gaining a first class degreeThe effects of the intercalated degree were greatest in medical schools where a relatively small proportion of medical students took the degree.Differences between medical schools are most easily explained by resource dilution PMID:10463892

  15. First-principles theory of cation- and intercalation-ordering in Li_xCoO_2

    NASA Astrophysics Data System (ADS)

    Wolverton, C.; Zunger, Alex

    1998-03-01

    Using a combination of first-principles total energies, a cluster expansion technique, and Monte Carlo simulations, we present a first-principles theory which can predict both cation- and intercalation-ordering patterns at both zero and finite temperatures, and can provide first-principles predictions of battery voltages of Li_xCoO_2/Li cells. The classes of ordering problems that we study are the following: (i) The LiMO2 oxides (M=3d metal) form a series of structures based on an octahedrally-coordinated network with anions (O) on one fcc sublattice and cations (Li and M) on the other, leading to Li/Co ordering in LiCoO2 (x=1). We find the ground state is the CuPt or (111)-layered cation arrangment, in agreement with the observed structure. (ii) In battery applications, Li is (de)intercalated from the compound, creating a vacancy (denoted Box) that can be positioned in different lattice locations; Thus, Box/Co ordering in BoxCoO2 (x=0) is also of interest. We find the ground state for BoxCoO2 is also a (111)-layered structure, although a different stacking sequence (AAA) of close-packed layers is preferred. (iii) The vacancies left behind by Li extraction can form ordered vacancy compounds in partially de-lithiated Li_xCoO_2, leading to a Box/Li ordering problem (0<=x<=1). Our calculations agree with the observed voltage profiles in these systems, and predict the existence of new intercalation-ordered compounds. Supported by BES/OER/DMS under contract DE-AC36-83CH10093.

  16. Visualization of drug-nucleic acid interactions at atomic resolution v. structure of two aminoacridine/dinucleoside monophosphate crystalline complexes, proflavine: 5-iodocytidylyl(3'-5') guanosine and acridine orange: 5-iodocytidylyl(3'-5') guanosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, B.S.; Seshadri, T.P.; Sakore, T.D.

    1979-01-01

    Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3'-5') guanosine (iodoCpG). The acridine orange-iodoCpG crystals are monoclinic, space group P2/sub 1/, with unit cell dimensions a = 14.36 A, b = 19.64 A, c = 20.67 A, ..beta.. = 102.5. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A, b = 22.23 A, c = 18.42 A, ..beta.. = 123.3. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. Acridine orange forms an intercalative structure with iodoCpG but the acridinemore » nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus. Base-pairs above and below the drug are separated by about 6.8 A and are twisted about 10/sup 0/. Proflavine demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino- groups on proflavine with phosphate oxygen atoms on the dinucleotide. Base-pairs above and below the intercalative proflavine molecule are twisted about 36/sup 0/. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed. We propose a proflavine-DNA and an acridine orange-DNA binding model. We will describe these models in detail in this paper.« less

  17. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe₂(MoO₄)₃

    DOE PAGES

    Yue, Ji-Li; Zhou, Yong-Ning; Shi, Si-Qi; ...

    2015-03-06

    The key factors governing the single-phase or multi-phase structural change behaviors during the intercalation/deintercalation of guest ions have not been well studied and understood yet. Through systematic studies of orthorhombic Fe₂(MoO₄)₃ electrode, two distinct guest ion occupation paths, namely discrete one for Li and pseudo-continuous one for Na, as well as their relationship with single-phase and two-phase modes for Na⁺ and Li⁺, respectively during the intercalation/deintercalation process have been demonstrated. For the first time, the direct atomic-scale observation of biphasic domains (discrete occupation) in partially lithiated Fe₂(MoO₄)₃ and the one by one Na occupation (pseudo-continuous occupation) at 8d sites inmore » partially sodiated Fe₂(MoO₄)₃ are obtained during the discharge processes of Li/Fe₂(MoO₄)₃ and Na/Fe₂(MoO₄)₃ cells respectively. Our combined experimental and theoretical studies bring the new insights for the research and development of intercalation compounds as electrode materials for secondary batteries.« less

  18. Ethidium and proflavine binding to a 2',5'-linked RNA duplex.

    PubMed

    Horowitz, Eric D; Hud, Nicholas V

    2006-12-06

    Despite over 40 years of physical investigations, fundamental questions persist regarding the energetics of RNA and DNA intercalation. The dramatic unwinding of a nucleic acid duplex upon intercalation immediately suggests that the nucleic acid backbone should play a significant role in dictating the free energy of intercalation. However, the contribution of the backbone to intercalation free energy is difficult to appreciate given the intertwined energetics associated with intercalation (e.g., pi-pi stacking and solvent effects). Fluorescence titrations were used to determine the association constants of two known intercalators, proflavine and ethidium, for duplex 2',5'-linked RNA. Proflavine was found to bind 2',5' RNA with an association constant 25-fold greater than that measured for standard, 3',5'-linked RNA. In contrast, ethidium binds 2',5' RNA less favorably than standard RNA.

  19. Metallothionein as a Scavenger of Free Radicals - New Cardioprotective Therapeutic Agent or Initiator of Tumor Chemoresistance?

    PubMed

    Heger, Zbynek; Rodrigo, Miguel Angel Merlos; Krizkova, Sona; Ruttkay-Nedecky, Branislav; Zalewska, Marta; Del Pozo, Elena Maria Planells; Pelfrene, Aurelie; Pourrut, Bertrand; Stiborova, Marie; Eckschlager, Tomas; Emri, Gabriella; Kizek, Rene; Adam, Vojtech

    2016-01-01

    Cardiotoxicity is a serious complication of anticancer therapy by anthracycline antibiotics. Except for intercalation into DNA/RNA structure, inhibition of DNA-topoisomerase and histone eviction from chromatin, the main mechanism of their action is iron-mediated formation of various forms of free radicals, which leads to irreversible damage to cancer cells. The most serious adverse effect of anthracyclines is, thus, cardiomyopathy leading to congestive heart failure, which is caused by the same mechanisms. Here, we briefly summarize the basic types of free radicals formed by anthracyclines and the main processes how to scavenge them. From these, the main attention is paid to metallothioneins. These low-molecular cysteine-rich proteins are introduced and their functions and properties are reviewed. Further, their role in detoxification of metals and drugs is discussed. Based on these beneficial roles, their use as a new therapeutic agent against oxidative stress and for cardioprotection is critically evaluated with respect to their ability to increase chemoresistance against some types of commonly used cytostatics.

  20. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.

    PubMed

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M

    2015-07-09

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.

  1. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica

    PubMed Central

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M.

    2015-01-01

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability. PMID:26274058

  2. Characterization of Intercalated Graphite Fibers for Microelectromechanical Systems (MEMS) Applications

    DTIC Science & Technology

    2007-03-01

    electric charge to drive movement, eg. a micromirror . These two actuator types have different characteristics and apply dif- ferent forces. The thermal...actuators include micromirrors , comb drives, cantilevers and scratch drives. A scratch drive actuator uses an applied square wave voltage to operate, as

  3. Small scale heterogeneity of Phanerozoic lower crust: evidence from isotopic and geochemical systematics of mid-Cretaceous granulite gneisses, San Gabriel Mountains, southern California

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; May, D.J.

    1992-01-01

    An elongate belt of mid-Cretaceous, compositionally banded gneisses and granulites is exposed in Cucamonga terrane, in the southeastern foothills of the San Gabriel Mountains of southern California. Banded gneisses include mafic granulites of two geochemical types: type 1 rocks are similar to high Al arc basalts and andesites but have higher HFSE (high-field-strength-element) abundances and extremely variable LILE (largeion-lithophile-element) abundances, while type 2 rocks are relatively low in Al and similar to alkali rich MOR (midocean-ridge) or intraplate basalts. Intercalated with mafic granulites are paragneisses which include felsic granulites, aluminous gneisses, marble, and calc-silicate gneisses. Type 1 mafic granulites and calcic trondhjemitic pegmatites also oceur as cross-cutting, synmetamorphic dikes or small plutons. Small-scale heterogeneity of deep continental crust is indicated by the lithologic and isotopic diversity of intercalated ortho-and paragneisses exposed in Cucamonga terrane. Geochemical and isotopic data indicate that K, Rb, and U depletion and Sm/Nd fractionation were associated with biotite +/- muscovite dehydration reactions in type 1 mafic granulites and aluminous gneisses during high-grade metamorphism. Field relations and model initial isotopic ratios imply a wide range of protolith ages, ranging from Early Proterozoic to Phanerozoic. ?? 1992 Springer-Verlag.

  4. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    NASA Astrophysics Data System (ADS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  5. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  6. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  7. Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations.

    PubMed

    Michels, L; Fossum, J O; Rozynek, Z; Hemmen, H; Rustenberg, K; Sobas, P A; Kalantzopoulos, G N; Knudsen, K D; Janek, M; Plivelic, T S; da Silva, G J

    2015-03-05

    A good material for CO2 capture should possess some specific properties: (i) a large effective surface area with good adsorption capacity, (ii) selectivity for CO2, (iii) regeneration capacity with minimum energy input, allowing reutilization of the material for CO2 adsorption, and (iv) low cost and high environmental friendliness. Smectite clays are layered nanoporous materials that may be good candidates in this context. Here we report experiments which show that gaseous CO2 intercalates into the interlayer nano-space of smectite clay (synthetic fluorohectorite) at conditions close to ambient. The rate of intercalation, as well as the retention ability of CO2 was found to be strongly dependent on the type of the interlayer cation, which in the present case is Li(+), Na(+) or Ni(2+). Interestingly, we observe that the smectite Li-fluorohectorite is able to retain CO2 up to a temperature of 35°C at ambient pressure, and that the captured CO2 can be released by heating above this temperature. Our estimates indicate that smectite clays, even with the standard cations analyzed here, can capture an amount of CO2 comparable to other materials studied in this context.

  8. Intercalation and Retention of Carbon Dioxide in a Smectite Clay promoted by Interlayer Cations

    PubMed Central

    Michels, L.; Fossum, J. O.; Rozynek, Z.; Hemmen, H.; Rustenberg, K.; Sobas, P. A.; Kalantzopoulos, G. N.; Knudsen, K. D.; Janek, M.; Plivelic, T. S.; da Silva, G. J.

    2015-01-01

    A good material for CO2 capture should possess some specific properties: (i) a large effective surface area with good adsorption capacity, (ii) selectivity for CO2, (iii) regeneration capacity with minimum energy input, allowing reutilization of the material for CO2 adsorption, and (iv) low cost and high environmental friendliness. Smectite clays are layered nanoporous materials that may be good candidates in this context. Here we report experiments which show that gaseous CO2 intercalates into the interlayer nano-space of smectite clay (synthetic fluorohectorite) at conditions close to ambient. The rate of intercalation, as well as the retention ability of CO2 was found to be strongly dependent on the type of the interlayer cation, which in the present case is Li+, Na+ or Ni2+. Interestingly, we observe that the smectite Li-fluorohectorite is able to retain CO2 up to a temperature of 35°C at ambient pressure, and that the captured CO2 can be released by heating above this temperature. Our estimates indicate that smectite clays, even with the standard cations analyzed here, can capture an amount of CO2 comparable to other materials studied in this context. PMID:25739522

  9. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Yang, Zhou; Yang, Dong; Zhang, Xu; Cui, Dong; Liu, Yucheng; Wei, Qingbo; Fan, Haibo; Liu, Shengzhong (Frank)

    2016-02-01

    Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices.Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices. Electronic supplementary information (ESI) available: XRD patterns and statistic results of solar cell performance. See DOI: 10.1039/c5nr08935b

  10. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  11. Structural evolution of Li{sub x}Mn{sub 2}O{sub 4} in lithium-ion battery cells measured in situ using synchrotron X-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukerjee, S.; Thurston, T.R.; Jisrawi, N.M.

    The authors describe synchrotron based X-ray diffraction techniques and issues related to in situ studies of intercalation processes in battery electrodes. They then demonstrate the utility of this technique, through a study of two batches of Li{sub x}Mn{sub 2}O{sub 4} cathode materials. The structural evolution of these spinel materials was monitored in situ during the initial charge of these electrodes in actual battery cells. Significant differences were observed in the two batches, particularly in the intercalation range of x = 0.45 to 0.20. The first-order structural transitions in this region indicated coexistence of two cubic phases in the batch 2more » material, whereas the batch 1 material showed suppressed two-phase coexistence. Batch 2 cells also indicated structural evolution in the low-potential region below 3.0 V in contrast to the batch 1 material. Differences in structural evolution between batches of Li{sub x}Mn{sub 2}O{sub 4} could have important ramifications in their cycle life and stability characteristics.« less

  12. α-Intercalated cells defend the urinary system from bacterial infection.

    PubMed

    Paragas, Neal; Kulkarni, Ritwij; Werth, Max; Schmidt-Ott, Kai M; Forster, Catherine; Deng, Rong; Zhang, Qingyin; Singer, Eugenia; Klose, Alexander D; Shen, Tian Huai; Francis, Kevin P; Ray, Sunetra; Vijayakumar, Soundarapandian; Seward, Samuel; Bovino, Mary E; Xu, Katherine; Takabe, Yared; Amaral, Fábio E; Mohan, Sumit; Wax, Rebecca; Corbin, Kaitlyn; Sanna-Cherchi, Simone; Mori, Kiyoshi; Johnson, Lynne; Nickolas, Thomas; D'Agati, Vivette; Lin, Chyuan-Sheng; Qiu, Andong; Al-Awqati, Qais; Ratner, Adam J; Barasch, Jonathan

    2014-07-01

    α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.

  13. α–Intercalated cells defend the urinary system from bacterial infection

    PubMed Central

    Paragas, Neal; Kulkarni, Ritwij; Werth, Max; Schmidt-Ott, Kai M.; Forster, Catherine; Deng, Rong; Zhang, Qingyin; Singer, Eugenia; Klose, Alexander D.; Shen, Tian Huai; Francis, Kevin P.; Ray, Sunetra; Vijayakumar, Soundarapandian; Seward, Samuel; Bovino, Mary E.; Xu, Katherine; Takabe, Yared; Amaral, Fábio E.; Mohan, Sumit; Wax, Rebecca; Corbin, Kaitlyn; Sanna-Cherchi, Simone; Mori, Kiyoshi; Johnson, Lynne; Nickolas, Thomas; D’Agati, Vivette; Lin, Chyuan-Sheng; Qiu, Andong; Al-Awqati, Qais; Ratner, Adam J.; Barasch, Jonathan

    2014-01-01

    α–Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC–dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system. PMID:24937428

  14. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  15. Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques.

    PubMed

    Jangir, Deepak Kumar; Dey, Sanjay Kumar; Kundu, Suman; Mehrotra, Ranjana

    2012-09-03

    Proper understanding of the mechanism of binding of drugs to their targets in cell is a fundamental requirement to develop new drug therapy regimen. Amsacrine is a rationally designed anticancer drug, used to treat leukemia and lymphoma. Binding with cellular DNA is a crucial step in its mechanism of cytotoxicity. Despite numerous studies, DNA binding properties of amsacrine are poorly understood. Its reversible binding with DNA does not permit X-ray crystallography or NMR spectroscopic evaluation of amsacrine-DNA complexes. In the present work, interaction of amsacrine with calf thymus DNA is investigated at physiological conditions. UV-visible, FT-Raman and circular dichroism spectroscopic techniques were employed to determine the binding mode, binding constant, sequence specificity and conformational effects of amsacrine binding to native calf thymus DNA. Our results illustrate that amsacrine interacts with DNA by and large through intercalation between base pairs. Binding constant of the amsacrine-DNA complex was found to be K=1.2±0.1×10(4) M(-1) which is indicative of moderate type of binding of amsacrine to DNA. Raman spectroscopic results suggest that amsacrine has a binding preference of intercalation between AT base pairs of DNA. Minor groove binding is also observed in amsacrine-DNA complexes. These results are in good agreement with in silico investigation of amsacrine binding to DNA and thus provide detailed insight into DNA binding properties of amsacrine, which could ultimately, renders its cytotoxic efficacy. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Laser fluorescence fluctuation excesses in molecular immunology experiments

    NASA Astrophysics Data System (ADS)

    Galich, N. E.; Filatov, M. V.

    2007-04-01

    A novel approach to statistical analysis of flow cytometry fluorescence data have been developed and applied for population analysis of blood neutrophils stained with hydroethidine during respiratory burst reaction. The staining based on intracellular oxidation hydroethidine to ethidium bromide, which intercalate into cell DNA. Fluorescence of the resultant product serves as a measure of the neutrophil ability to generate superoxide radicals after induction respiratory burst reaction by phorbol myristate acetate (PMA). It was demonstrated that polymorphonuclear leukocytes of persons with inflammatory diseases showed a considerably changed response. Cytofluorometric histograms obtained have unique information about condition of neutrophil population what might to allow a determination of the pathology processes type connecting with such inflammation. A novel approach to histogram analysis is based on analysis of high-momentum dynamic of distribution. The features of fluctuation excesses of distribution have unique information about disease under consideration.

  17. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  18. Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells.

    PubMed

    McCool, Nicholas S; Swierk, John R; Nemes, Coleen T; Saunders, Timothy P; Schmuttenmaer, Charles A; Mallouk, Thomas E

    2016-07-06

    Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.

  19. Design of copper DNA intercalators with leishmanicidal activity.

    PubMed

    Navarro, Maribel; Cisneros-Fajardo, Efrén José; Sierralta, Aníbal; Fernández-Mestre, Mercedes; Silva, Pedro; Arrieche, Dwight; Marchán, Edgar

    2003-04-01

    The complexes [Cu(dppz)(NO(3))]NO(3) (1), [Cu(dppz)(2)(NO(3))]NO(3) (2), [Cu(dpq)(NO(3))]NO(3) (3), and [Cu(dpq)(2)(NO(3))]NO(3) (4) were synthesized and characterized by elemental analysis, FAB-mass spectrometry, EPR, UV, and IR spectroscopies, and molar conductivity. DNA interaction studies showed that intercalation is an important way of interacting with DNA for these complexes. The biological activity of these copper complexes was evaluated on Leishmania braziliensis promastigotes, and the results showed leishmanicidal activity. Preliminary ultrastructural studies with the most active complex (2) at 1 h revealed parasite swelling and binucleated cells. This finding suggests that the leishmanicidal activity of the copper complexes could be associated with their interaction with the parasitic DNA.

  20. Structure and dynamics in low-dimensional guest host solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, J.

    1991-04-01

    This progress report presents results from work during the period of June 1, 1990 through May 31st, 1991. Topics discussed include instrumentation, publications, and personnel. Work areas discussed include: pressure-induced transitions in Li- and Ag-TiS{sub 2}, hyper-dense superconducting GIC's, temperature-dependent x-ray structure of (CH){sub x} and (CH){sub 2{sup x}}:analogies to rotator phases in short-chain alkanes, trans-(CH){sub x} at high'' pressure, broken symmetries'' in polymer intercalation channel lattices, high-resolution study of conductivity and cell potential vs. concentration in K-doped (CH){sub x}, new'' doped (CH){sub x} phases: ternary compounds and amorphous'' intercalation compounds, and vibrational density states from inelastic neutron scattering. (JF).

  1. Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties.

    PubMed

    Zak, Alla; Feldman, Yishay; Lyakhovitskaya, Vera; Leitus, Gregory; Popovitz-Biro, Ronit; Wachtel, Ellen; Cohen, Hagai; Reich, Shimon; Tenne, Reshef

    2002-05-01

    Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Recovery of the pristine compound properties (diamagnetism and semiconductivity) was observed as a result of deintercalation.

  2. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism.

    PubMed

    Bonthrone, K M; Basnakova, G; Lin, F; Macaskie, L E

    1996-05-01

    A Citrobacter sp. accumulates uranyl ion (UO2(2+)) as crystalline HUO2PO4.4H2O (HUP), using enzymatically generated inorganic phosphate. Ni was not removed by this mechanism, but cells already loaded with HUP removed Ni2+ by intercalative ion-exchange, forming Ni(UO2PO4)2.7H2O, as concluded by x-ray diffraction (XRD) and proton induced x-ray emission (PIXE) analyses. The loaded biomass became saturated with Ni rapidly, with a molar ratio of Ni:U in the cellbound deposit of approx. 1:6; Ni penetration was probably surface-localized. Cochallenge of the cells with Ni2+ and UO2(2+), and glycerol 2-phosphate (phosphate donor for phosphate release and metal bioprecipitation) gave sustained removal of both metals in a flow through bioreactor, with more extensively accumulated Ni. We propose 'Microbially Enhanced Chemisorption of Heavy Metals' (MECHM) to describe this hybrid mechanism of metal bioaccumulation via intercalation into preformed, biogenic crystals, and note also that MECHM can promote the removal of the transuranic radionuclide neptunium, which is difficult to achieve by conventional methods.

  3. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  4. Transition metal intercalated bilayer silicene

    NASA Astrophysics Data System (ADS)

    Pandey, Dhanshree; Kamal, C.; Chakrabarti, Aparna

    2018-04-01

    We investigate the electronic and magnetic properties of Mn, Fe and Co-intercalated silicene bilayer with AA and AB stacking by using spin polarized density functional theory. The intercalation of Mn increases the gap between the two layers of silicene due to the larger atomic radii of Mn as compared to Fe and Co. Bader charge analysis has been performed to understand the bonding between the TM and Si atoms. This also helps in explaining the magnetic moment possessed by the composite systems after intercalating TM in between the layers of bilayer silicene system. This study reveals that a significant net magnetic moment is observed in cases of Mn-intercalated silicene bilayers, whereas Fe has a very small moment of 0.78 µB in the case of AA stacking configuration only. Co intercalation leads to net zero magnetic moment. Further, we find that Fe and Co marginally favor the AB stacking whereas Mn has a slight preference of the AA over the AB configuration. The composite systems, specifically when intercalated with Fe and Co atoms, favor a hybridization which is far away from sp3-like hybridization along the plane of Si atoms in bilayer silicene.

  5. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  6. Torsional mechanics of DNA are regulated by small-molecule intercalation.

    PubMed

    Celedon, Alfredo; Wirtz, Denis; Sun, Sean

    2010-12-23

    Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations. The effect of EtBr intercalation on the twist stiffness was found to be significantly different from the effect on the bend persistence length. The twist stiffness of DNA was dramatically reduced at low intercalator concentration (<10 nM); however, it did not decrease further when the intercalator concentration was increased by 3 orders of magnitude. We also determined the dependence of EtBr intercalation on the torque applied to DNA. We propose a model for the elasticity of DNA base pairs with intercalated EtBr molecules to explain the abrupt decrease of twist stiffness at low EtBr concentration. These results indicate that the bend and twist stiffnesses of DNA are independent and can be differently affected by small-molecule binding.

  7. Dynamics of DNA/intercalator complexes

    NASA Astrophysics Data System (ADS)

    Schurr, J. M.; Wu, Pengguang; Fujimoto, Bryant S.

    1990-05-01

    Complexes of linear and supercoiled DNAs with different intercalating dyes are studied by time-resolved fluorescence polarization anisotropy using intercalated ethidium as the probe. Existing theory is generalized to take account of excitation transfer between intercalated ethidiums, and Forster theory is shown to be valid in this context. The effects of intercalated ethidium, 9-aminoacridine, and proflavine on the torsional rigidity of linear and supercoiled DNAs are studied up to rather high binding ratios. Evidence is presented that metastable secondary structure persists in dye-relaxed supercoiled DNAs, which contradicts the standard model of supercoiled DNAs.

  8. Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V 2 O 5 · n H 2 O Xerogel Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa, Niya; Kinnibrugh, Tiffany L.; Wang, Hao

    Functional multivalent intercalation cathodes represent one of the largest hurdles in the development of Mg batteries. While there are many reports of Mg cathodes, many times the evidence of intercalation chemistry is only circumstantial. In this work, direct evidence of Mg intercalation into a bilayer structure of V2O5·nH2O xerogel is confirmed, and the nature of the Mg intercalated species is reported. The interlayer spacing of V2O5·nH2O contracts upon Mg intercalation and expands for Mg deintercalation due to the strong electrostatic interaction between the divalent cation and the cathode. A combination of NMR, pair distribution function (PDF) analysis, and X-ray absorptionmore » near edge spectroscopy (XANES) confirmed reversible Mg insertion into the V2O5·nH2O material, and structural evolution of Mg intercalation leads to the formation of multiple new phases. Structures of V2O5·nH2O with Mg intercalation were further supported by the first principle simulations. A solvent cointercalated Mg in V2O5·nH2O is observed for the first time, and the 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to elucidate the structure obtained upon electrochemical cycling. Specifically, existence of a well-defined Mg–O environment is revealed for the Mg intercalated structures. Information reported here reveals the fundamental Mg ion intercalation mechanism in a bilayer structure of V2O5·nH2O material and provides insightful design metrics for future Mg cathodes.« less

  9. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  10. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  11. Synergetic effects of K + and Mg 2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti 3 C 2 MXene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qiang; Come, Jeremy; Naguib, Michael

    2017-01-01

    Two-dimensional materials, such as MXenes, are attractive candidates for energy storage and electrochemical actuators due to their high volume changes upon ion intercalation. Of special interest for boosting energy storage is the intercalation of multivalent ions such as Mg 2+, which suffers from sluggish intercalation and transport kinetics due to its ion size. By combining traditional electrochemical characterization techniques with electrochemical dilatometry and contact resonance atomic force microscopy, the synergetic effects of the pre-intercalation of K +ions are demonstrated to improve the charge storage of multivalent ions, as well as tune the mechanical and actuation properties of the Ti 3Cmore » 2MXene. Our results have important implications for quantitatively understanding the charge storage processes in intercalation compounds and provide a new path for studying the mechanical evolution of energy storage materials.« less

  12. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE PAGES

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.; ...

    2017-07-12

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  13. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri

    2016-04-01

    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are dominated by rip-up clasts of diatomite. The former is well continued in outcrops; however, the thickness of the latter is changeable and the lower contact is erosive. In the Hirzenbara Fm., flood-induced type includes epiphytic diatom valves as river inflows, whereas slope failure-induced type is composed of diatom valves of varved diatomite. Flood-induced types are suggested to be classified into hyperpycnal flow and hypopycnal flow types with regard to the presence of basal erosion. On the other hand, slope failure-induced types can be interpreted as debris flow deposits occurred in the lakes. Differences in the two types are also shown as bed-thickness frequency distributions indicating event magnitude.

  14. Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells.

    PubMed

    Ghasemi Hamidabadi, Hatef; Rezvani, Zahra; Nazm Bojnordi, Maryam; Shirinzadeh, Haji; Seifalian, Alexander M; Joghataei, Mohammad Taghi; Razaghpour, Mojgan; Alibakhshi, Abbas; Yazdanpanah, Abolfazl; Salimi, Maryam; Mozafari, Masoud; Urbanska, Aleksandra M; Reis, Rui L; Kundu, Subhas C; Gholipourmalekabadi, Mazaher

    2017-04-05

    In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes. The biomechanical and biological characteristics of the nanofibrous meshes were evaluated by ATR-FTIR, XRD, SEM, MTT, and LDH specific activity, contact angle, and DAPI staining. They were carried out for mechanical properties, overall viability, and toxicity of the cells. The hDPSCs were seeded on the prepared scaffolds and induced with neuronal specific differentiation media at two differentiation stages (2 days at preinduction stage and 6 days at induction stage). The neural differentiation of the cells cultured on the meshes was evaluated by determining the expression of Oct-4, Nestin, NF-M, NF-H, MAP2, and βIII-tubulin in the cells after preinduction, at induction stages by real-time PCR (RT-PCR) and immunostaining. All the synthesized nanofibers exhibited a homogeneous morphology with a favorable mechanical behavior. The population of the cells differentiated into neuronlike cells in all the experimental groups was significantly higher than that in control group. The expression level of the neuronal specific markers in the cells cultured on 5% OMMT/PVA meshes was significantly higher than the other groups. This study demonstrates the feasibility of the OMMT/PVA artificial nerve graft cultured with hDPSCs for regeneration of damaged neural tissues. These fabricated matrices may have a potential in neural tissue engineering applications.

  15. A new solution chemical method to make low dimensional thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ding, Zhongfen

    2001-11-01

    Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.

  16. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite.

    PubMed

    Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E

    2010-06-01

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.

  17. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

    PubMed Central

    2013-01-01

    Background In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities. PMID:23937664

  18. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy.

    PubMed

    Benz, Peter M; Merkel, Carla J; Offner, Kristin; Abeßer, Marco; Ullrich, Melanie; Fischer, Tobias; Bayer, Barbara; Wagner, Helga; Gambaryan, Stepan; Ursitti, Jeanine A; Adham, Ibrahim M; Linke, Wolfgang A; Feller, Stephan M; Fleming, Ingrid; Renné, Thomas; Frantz, Stefan; Unger, Andreas; Schuh, Kai

    2013-08-12

    In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities.

  19. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  20. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar spacemore » of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.« less

  1. The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Talyzin, Alexandr V.; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás

    2013-12-01

    The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04631a

  2. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  3. Recent Studies on Metal Oxides as Anodes for Li-ION Batteries

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R.

    Commercial lithium ion batteries (LIB) use layer-type compounds as the electrode materials and Li-ion conducting liquid or polymeric gel as the electrolyte. The preferred cathode and anode are LiCoO2 and graphite respectively. Efforts to improve the performance as well as safety-in-operation of LIB led to the search for alternate electrode materials. As regards the anodes, metal-oxide systems received special attention: Tin (Sn) containing mixed oxides and various 3d- and 4d- transition metal (M) mixed oxides. The reversible capacities in these systems arise either from alloying/de-alloying, formation/decomposition of Li2O aided by the nanosize metal (M) particles/Li-M-O bronze or Li-intercalation/de-intercalation. A brief account of the recent studies is presented.

  4. L1CAM/Neuroglian controls the axon-axon interactions establishing layered and lobular mushroom body architecture.

    PubMed

    Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza; Pielage, Jan

    2015-03-30

    The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits. © 2015 Siegenthaler et al.

  5. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    NASA Astrophysics Data System (ADS)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  6. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate.

    PubMed

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-12-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO 4 , K 2 Cr 2 O 7 ) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO 4 and NaClO 3 .

  7. Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 3. montmorillonite crystals with PEO oligomer intercalates.

    PubMed

    Mazo, Mikhail A; Manevitch, Leonid I; Gusarova, Elena B; Shamaev, Mikhail Yu; Berlin, Alexander A; Balabaev, Nikolay K; Rutledge, Gregory C

    2008-03-27

    We present the results of molecular dynamics (MD) simulation of the structure and thermomechanical behavior of Wyoming-type Na+-montmorillonite (MMT) with poly(ethylene oxide) (PEO) oligomer intercalates. Periodic boundary conditions in all three directions and simulation cells containing two MMT lamellae [Si248Al8][Al112Mg16]O640[OH]128 oriented parallel to the XY-plane were used. The interlamellar space, or gallery, between neighboring MMT lamellae was populated by 24 Na+ counterions and PEO macromolecules of different lengths, ranging from 2 up to 240 repeat units. We considered three different loadings of PEO within the gallery: 80, 160, and 240 repeat units, corresponding to 13, 23, and 31 wt % PEO based on total mass of the nanocomposite, respectively. In the cases of 13 and 23 wt %, the polymer chains formed one or two well-defined amorphous layers with interlayer distances of 1.35 and 1.8 nm, respectively. We have observed also formation of a wider monolayer gallery with interlayer distances of 1.6 nm. Three-layer PEO films formed in the case of 31 wt % loading. The thermal properties were analyzed over the range 300-400 K, and the isothermal linear compressibility, transversal moduli, and shear moduli were calculated at 300 K. These properties are compared with the results of our simulation of thermal and mechanical properties of MMT crystal with galleries filled by one or two water layers as well as with those of an isolated clay nanoplate.

  8. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.

    2011-11-15

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate wasmore » more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.« less

  9. Cobalt intercalation at the graphene/iridium(111) interface: Influence of rotational domains, wrinkles, and atomic steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlaic, S.; Kimouche, A.; Coraux, J.

    Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.

  10. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    PubMed

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-08

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI{sub 2} and chemical vapour deposition (CVD) of CH{sub 3}NH{sub 3}I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI{sub 2} film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH{sub 3}NH{sub 3}I is fostered for PbI{sub 2} films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film ismore » also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI{sub 2} on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved. - Graphical abstract: A two-step PVD/CVD processed perovskite film with the CVD intercalation rate of CH{sub 3}NCH{sub 3} molecules been fostered by increasing the PVD rate of PbI{sub 2} and prolonging the CVD time. - Highlights: • A simple PVD/CVD process for perovskite film production. • Increased PVD rate yields better alignment of the PbI{sub 2} (001) crystallite planes. • CH{sub 3}NH{sub 3}I intercalation process fostered by increased PbI{sub 2} PVD rate. • Stoichiometric CH{sub 3}NH{sub 3}PbI{sub 3} suitable as absorber in photovoltaic applications • Reduced PbI{sub 2} residue at the bottom of CH{sub 3}NH{sub 3}PbI{sub 3} improves device performance.« less

  12. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.

    PubMed

    Brown, Dennis; Bouley, Richard; Păunescu, Teodor G; Breton, Sylvie; Lu, Hua A J

    2012-05-15

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.

  13. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells

    PubMed Central

    Bouley, Richard; Pǎunescu, Teodor G.; Breton, Sylvie; Lu, Hua A. J.

    2012-01-01

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these “professional” proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes. PMID:22460710

  14. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.

    2017-01-01

    Benzidine, a compound bearing aromatic rings and terminal amino groups, was employed for the intercalation and simultaneous reduction of graphite oxide (GO). The aromatic diamine can be intercalated into GO as follows: (1) by grafting with the epoxy groups of GO, (2) by hydrogen bonding with the oxygen containing groups of GO. Stacking between benzidine aromatic rings and unoxidized domains of GO may occur through π-π interaction. The role of benzidine is influenced by pH conditions and the weight ratio GO/benzidine. Two weight ratios were tested i.e. 1:2 and 1:3. Under strong alkaline conditions through K2CO3 addition (pH ∼10.4-10.6) both intercalation and reduction of GO via amino groups occur, while under strong acidic conditions through HCl addition (pH ∼1.4-2.2) π-π stacking is preferred. When no base or acid is added (pH ∼5.2) and the weight ratio is 1:2, there are indications that reduction and π-π stacking occur, while at a GO/benzidine weight ratio 1:3 intercalation via amino groups and reduction seem to dominate. The aforementioned remarks render benzidine a multifunctional tool towards production of reduced graphene oxide. The effect of pH conditions and the GO/benzidine weight ratio on the quality and the electrochemical properties of the produced graphene-based materials were investigated. Cyclic voltammetry measurements using three-electrode cell and KCl aqueous solution as an electrolyte gave specific capacitance values up to ∼178 F/g. When electric double-layer capacitors (EDLC) were fabricated from these materials, the maximum capacitance in organic electrolyte i.e., tetraethyl ammonium tetrafluoroborate (TEABF4) in polycarbonate (PC) was ∼29 F/g.

  15. Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine.

    PubMed

    Chin, Der-Hang; Li, Huang-Hsien; Kuo, Hsiu-Maan; Chao, Pei-Dawn Lee; Liu, Chia-Wen

    2012-04-01

    Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role. Copyright © 2011 Wiley Periodicals, Inc.

  16. Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects

    USGS Publications Warehouse

    Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.

    1999-01-01

    The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.

  17. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya

    2017-05-01

    Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.

  18. Resistivity of Carbon-Carbon Composites Halved

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2004-01-01

    Carbon-carbon composites have become the material of choice for applications requiring strength and stiffness at very high temperatures (above 2000 C). These composites comprise carbon or graphite fibers embedded in a carbonized or graphitized matrix. In some applications, such as shielding sensitive electronics in very high temperature environments, the performance of these materials would be improved by lowering their electrical resistivity. One method to lower the resistivity of the composites is to lower the resistivity of the graphite fibers, and a proven method to accomplish that is intercalation. Intercalation is the insertion of guest atoms or molecules into a host lattice. In this study the host fibers were highly graphitic pitch-based graphite fibers, or vapor-grown carbon fibers (VGCF), and the intercalate was bromine. Intercalation compounds of graphite are generally thought of as being only metastable, but it has been shown that the residual bromine graphite fiber intercalation compound is remarkably stable, resisting decomposition even at temperatures at least as high as 1000 C. The focus of this work was to fabricate composite preforms, determine whether the fibers they were made from were still intercalated with bromine after processing, and determine the effect on composite resistivity. It was not expected that the resistivity would be lowered as dramatically as with graphite polymer composites because the matrix itself would be much more conductive, but it was hoped that the gains would be substantial enough to warrant its use in high-performance applications. In a collaborative effort supporting a Space Act Agreement between the NASA Glenn Research Center and Applied Sciences, Inc. (Cedarville, OH), laminar preforms were fabricated with pristine and bromine-intercalated pitch-based fibers (P100 and P100-Br) and VGCF (Pyro I and Pyro I-Br). The green preforms were carbonized at 1000 C and then heat treated to 3000 C. To determine whether the fibers in the samples were still intercalated after composite fabrication, they were subjected to X-ray diffraction. The composites containing intercalated graphite fibers showed much higher background scatter than that of pristine fibers, indicating the presence of bromine in the samples. More importantly, faint features indicative of intercalation were visible in the diffraction pattern, showing that the fibers were still intercalated.

  19. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G., E-mail: kowal@fuw.edu.pl; Tokarczyk, M.; Dąbrowski, P.

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) andmore » the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.« less

  20. Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates.

    PubMed

    Wang, Mengjing; Lahti, Gabriella; Williams, David; Koski, Kristie J

    2018-06-07

    Silicon telluride (Si 2 Te 3 ) is a two-dimensional, layered, p-type semiconductor that shows broad near-infrared photoluminescence. We show how, through various means of chemical modification, Si 2 Te 3 can have its optoelectronic properties modified in several independent ways without fundamentally altering the host crystalline lattice. Substitutional doping with Ge strongly redshifts the photoluminescence while substantially lowering the direct and indirect band gaps and altering the optical phonon modes. Intercalation with Ge introduces a sharp 4.3 eV ultraviolet resonance and shifts the bulk plasmon even while leaving the infrared response and band gaps virtually unchanged. Intercalation with copper strengthens the photoluminescence without altering its spectral shape. Thus silicon telluride is shown to be a chemically tunable platform of full spectrum optical properties promising for opto-electronic applications.

  1. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.

    PubMed

    Cheng, Hansong; Sha, Xianwei; Chen, Liang; Cooper, Alan C; Foo, Maw-Lin; Lau, Garret C; Bailey, Wade H; Pez, Guido P

    2009-12-16

    We present a combined theoretical and experimental study on H(2) physisorption in partially fluorinated graphite. This material, first predicted computationally using ab initio molecular dynamics simulation and subsequently synthesized and characterized experimentally, represents a novel class of "acceptor type" graphite intercalated compounds that exhibit significantly higher isosteric heat of adsorption for H(2) at near ambient temperatures than previously demonstrated for commonly available porous carbon-based materials. The unusually strong interaction arises from the semi-ionic nature of the C-F bonds. Although a high H(2) storage capacity (>4 wt %) at room temperature is predicted not to be feasible due to the low heat of adsorption, enhanced storage properties can be envisaged by doping the graphitic host with appropriate species to promote higher levels of charge transfer from graphene to F(-) anions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40%more » reduction of transmittance in the 450–850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.« less

  3. Impact of Angiotensin Type 1A Receptors in Principal Cells of the Collecting Duct on Blood Pressure and Hypertension.

    PubMed

    Chen, Daian; Stegbauer, Johannes; Sparks, Matthew A; Kohan, Donald; Griffiths, Robert; Herrera, Marcela; Gurley, Susan B; Coffman, Thomas M

    2016-06-01

    The main actions of the renin-angiotensin system to control blood pressure (BP) are mediated by the angiotensin type 1 receptors (AT1Rs). The major murine AT1R isoform, AT1AR, is expressed throughout the nephron, including the collecting duct in both principal and intercalated cells. Principal cells play the major role in sodium and water reabsorption. Although aldosterone is considered to be the dominant regulator of sodium reabsorption by principal cells, recent studies suggest a role for direct actions of AT1R. To specifically examine the contributions of AT1AR in principal cells to BP regulation and the development of hypertension in vivo, we generated inbred 129/SvEv mice with deletion of AT1AR from principal cells (PCKO). At baseline, we found that BPs measured by radiotelemetry were similar between PCKOs and controls. During 1-week of low-salt diet (<0.02% NaCl), BPs fell significantly (P<0.05) and to a similar extent in both groups. On a high-salt (6% NaCl) diet, BP increased but was not different between groups. During the initial phase of angiotensin II-dependent hypertension, there was a modest but significant attenuation of hypertension in PCKOs (163±6 mm Hg) compared with controls (178±2 mm Hg; P<0.05) that was associated with enhanced natriuresis and decreased alpha epithelial sodium channel activation in the medulla of PCKOs. However, from day 9 onward, BPs were indistinguishable between groups. Although effects of AT1AR on baseline BP and adaptation to changes in dietary salt are negligible, our studies suggest that direct actions of AT1AR contribute to the initiation of hypertension and epithelial sodium channel activation. © 2016 American Heart Association, Inc.

  4. Identification of protein kinase C α- and tyrosine hydroxylase-immunoreactive cells in the microbat retina.

    PubMed

    Park, Eun-Bee; Jeon, Joo-Yeong; Jeon, Chang-Jin

    2018-05-09

    A growing number of studies have revealed the functional neuroarchitecture of the microbat retina and suggested that microbats can see using their eyes. To better understand the organization of the microbat retina, quantitative analysis of protein kinase C alpha (PKCα)- and tyrosine hydroxylase (TH)-immunoreactive (IR) cells was conducted on the greater horseshoe bat (Rhinolophus ferrumequinum) retina. As a result, PKCα immunoreactivity was observed in rod bipolar cells, consistent with previous studies on other mammalian retinas. PKCα-IR cell distribution in the inner nuclear layer showed regional differences in density, with the highest density found in the nasal retina. The average density of PKCα-IR cells was 10,487±441 cells/mm2 (mean ± S.D.; n=4), with a total of 43,077±1,843 cells/retina. TH-IR cells in the Rhinolophus ferrumequinum retina could be classified into four types based on soma location and ramification in the inner plexiform layer: conventional amacrine, displaced amacrine, interplexiform, and intercalated cells. The majority of TH-IR cells were conventional amacrine cells. TH-IR cells were nonrandomly distributed at low density over the retina. The average density was 29.7±3.1 cells/mm2 (mean ± S.D.; n=3), with a total of 124.0±11.3 cells/retina. TH-IR processes showed varicosities and formed ring-like structures encircling AII amacrine cells. Our study provides the foundation for understanding the neurochemical architecture of the microbat retina and supports the notion that the eyes do play a role in the visual system of microbats.

  5. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  6. Staging properties of potassium-ammonia ternary graphite intercalation compounds at high ammonia pressure

    NASA Astrophysics Data System (ADS)

    Qian, X. W.; Solin, S. A.

    1989-04-01

    The pressure dependence of the (00l) x-ray diffraction patterns of the ternary graphite intercalation compound K(NH3)xC24 has been studied in the range 0.5-11 kbar (for which x~4.5) using a diamond anvil cell. A special apparatus for loading the cell with liquid ammonia at room temperature has been constructed and is briefly described. In these experiments, the pressure-transmitting fluid was also an intercalant, namely ammonia. Therefore, the chemical potential of this species was linearly coupled to the applied pressure in contrast to the usual case where the pressure-transmitting fluid is chemically passive. The pressure dependences of the basal spacings and of the relative intensities of key reflections have been measured, as have the compressibilities of the stage-1 and stage-2 components of the two-phase system. Basal-spacing anomalies and anomalies in the relative intensities occur at pressures of ~3.5 and 8.0 kbar and are tentatively attributed to in-plane coordination changes in the potassium-ammonia ratio. Using thermodynamic arguments and Le Chatelier's principle we show quantitatively that a staging phase transition from pure stage-1 phase to an admixture of stage-1 and stage-2 is expected with increased pressure above 10 bar in agreement with experiment. The saturation ammonia compositions (x values) of the admixed stages are found to be 4.5 and 5.4 for the stage-1 and -2 components, respectively. This result is interpreted as evidence that the composition is not sterically limited but is determined by the binding energy of ammonia for potassium and by the perturbation to this energy from the guest-host interaction.

  7. Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages

    PubMed Central

    Adewoyin, Malik; Mohsin, Sumaiyah Megat Nabil; Arulselvan, Palanisamy; Hussein, Mohd Zobir; Fakurazi, Sharida

    2015-01-01

    Background Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA. Methods In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined. Results Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only. Conclusion The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control. PMID:25995619

  8. Polysulfide intercalated layered double hydroxides for metal capture applications

    DOEpatents

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  9. On lunisolar calendars and intercalation schemes in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Gislén, Lars

    2018-04-01

    This is a survey of different calendar intercalation schemes, mainly in Southeast Asia. The Thai and Burmese Calendars, superficially very similar, are shown to have quite different and interesting intercalation schemes. We also investigate similarities between the original Burmese Calendar and the Romakasiddhânta from India.

  10. Interaction of Ionizing Radiation, Genetically Active Chemicals, and Radiofrequency Radiation in Human and Rodent Cells

    DTIC Science & Technology

    1990-12-01

    proflavin , a drug known to intercalate with DNA. Again, when cells were exposed simultaneously to RFR SAR = 40.8- + 13.4 (SD) W/kg or 40 W/kg at power...densities of 87 or 65 mW/cm ), no effect of the RFR on the proflavin induced mutagenicity was observed (Meltz et al., 1990). SCE Induction Previously...Meltz ML, Eagan P, and Erwin DN (1990). Proflavin and Microwave Radiation: Absence of a Mutagenic Interaction. Bioelectromagnetics 11:149-157. Ciaravino

  11. Observation of Image Potential State in Oxygen Intercalated Graphene on Iridium by Two-Photon-Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy; Dadap, Jerry; Jin, Wencan; Osgood, Richard

    In this talk, we report our experimental results on the first direct observation of image potential state (IPS) in oxygen-intercalated graphene on iridium by two-photo-photoemission spectroscopy. We demonstrate how oxygen intercalation influences the IPS in Gr/Ir and decouples the interlayer interaction. We present measurements of the electronic dispersion and work function in pristine Gr/Ir, oxygen-intercalated Gr/O/Ir, and deintercalated Gr/Ir. LEED patterns are measured during the pristine, oxygen-intercalated, and deintercalated phases of the Gr/Ir sample. Based on these measurements, relative to the pristine case, the work function and the energy location of n =1 IPS relative to the Fermi level increases by 0.39 eV and 0.3 eV, respectively, due to oxygen intercalation, whereas the effective mass of n =1 IPS is hardly influenced by the intercalation process. Moreover, we achieve the quenching and restoration of the resonance from Ir Rashba states to n =1 IPS in Gr/Ir by oxygen intercalation and deintercalation. This work was supported by the DOE, Office of Basic Energy Sciences, Division of MSE under Contract No. DE-FG 02-04-ER-46157. This research used resources of the CFN, which is the U.S. DOE Office of Science User Facility, under Contract No. DE-SC0012704.

  12. In vitro anticancer activities of Schiff base and its lanthanum complex

    NASA Astrophysics Data System (ADS)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  13. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  14. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K + ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed themore » existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  15. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE PAGES

    Yi, Tanghong; Chen, Wei; Cheng, Lei; ...

    2017-01-20

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  16. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    PubMed

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  17. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.

    PubMed

    Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing

    2015-02-11

    A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.

  18. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane.

    PubMed

    Langner, Karol M; Kedzierski, Pawel; Sokalski, W Andrzej; Leszczynski, Jerzy

    2006-05-18

    On the basis of the crystallographic structures of three nucleic acid intercalation complexes involving ethidium and proflavine, we have analyzed the interaction energies between intercalator chromophores and their four nearest bases, using a hybrid variation-perturbation method at the second-order Møller-Plesset theory level (MP2) with a 6-31G(d,p) basis set. A total MP2 interaction energy minimum precisely reproduces the crystallographic position of the ethidium chromophore in the intercalation plane between UA/AU bases. The electrostatic component constitutes the same fraction of the total energy for all three studied structures. The multipole electrostatic interaction energy, calculated from cumulative atomic multipole moments (CAMMs), was found to converge only after including components above the fifth order. CAMM interaction surfaces, calculated on grids in the intercalation planes of these structures, reasonably reproduce the alignment of intercalators in crystal structures; they exhibit additional minima in the direction of the DNA grooves, however, which also need to be examined at higher theory levels if no crystallographic data are given.

  19. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferencz, Zs.; Szabados, M.; Varga, G.

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure wasmore » also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.« less

  20. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup experiments concluded that 114 C was near the optimum temperature, but that the intercalation time needed to be lengthened by a factor of 3.

  1. Intercalated water layers promote thermal dissipation at bio-nano interfaces.

    PubMed

    Wang, Yanlei; Qin, Zhao; Buehler, Markus J; Xu, Zhiping

    2016-09-23

    The increasing interest in developing nanodevices for biophysical and biomedical applications results in concerns about thermal management at interfaces between tissues and electronic devices. However, there is neither sufficient knowledge nor suitable tools for the characterization of thermal properties at interfaces between materials of contrasting mechanics, which are essential for design with reliability. Here we use computational simulations to quantify thermal transfer across the cell membrane-graphene interface. We find that the intercalated water displays a layered order below a critical value of ∼1 nm nanoconfinement, mediating the interfacial thermal coupling, and efficiently enhancing the thermal dissipation. We thereafter develop an analytical model to evaluate the critical value for power generation in graphene before significant heat is accumulated to disturb living tissues. These findings may provide a basis for the rational design of wearable and implantable nanodevices in biosensing and thermotherapic treatments where thermal dissipation and transport processes are crucial.

  2. Deep Reinforcement Learning of Cell Movement in the Early Stage of C. elegans Embryogenesis.

    PubMed

    Wang, Zi; Wang, Dali; Li, Chengcheng; Xu, Yichi; Li, Husheng; Bao, Zhirong

    2018-04-25

    Cell movement in the early phase of C. elegans development is regulated by a highly complex process in which a set of rules and connections are formulated at distinct scales. Previous efforts have demonstrated that agent-based, multi-scale modeling systems can integrate physical and biological rules and provide new avenues to study developmental systems. However, the application of these systems to model cell movement is still challenging and requires a comprehensive understanding of regulatory networks at the right scales. Recent developments in deep learning and reinforcement learning provide an unprecedented opportunity to explore cell movement using 3D time-lapse microscopy images. We present a deep reinforcement learning approach within an agent-based modeling system to characterize cell movement in the embryonic development of C. elegans. Our modeling system captures the complexity of cell movement patterns in the embryo and overcomes the local optimization problem encountered by traditional rule-based, agent-based modeling that uses greedy algorithms. We tested our model with two real developmental processes: the anterior movement of the Cpaaa cell via intercalation and the rearrangement of the superficial left-right asymmetry. In the first case, the model results suggested that Cpaaa's intercalation is an active directional cell movement caused by the continuous effects from a longer distance (farther than the length of two adjacent cells), as opposed to a passive movement caused by neighbor cell movements. In the second case, a leader-follower mechanism well explained the collective cell movement pattern in the asymmetry rearrangement. These results showed that our approach to introduce deep reinforcement learning into agent-based modeling can test regulatory mechanisms by exploring cell migration paths in a reverse engineering perspective. This model opens new doors to explore the large datasets generated by live imaging. Source code is available at https://github.com/zwang84/drl4cellmovement. dwang7@utk.edu, baoz@mskcc.org. Supplementary data are available at Bioinformatics online.

  3. Synthesis of (Hexaconazole-Zinc/Aluminum-Layered Double Hydroxide Nanocomposite) Fungicide Nanodelivery System for Controlling Ganoderma Disease in Oil Palm.

    PubMed

    Mustafa, Isshadiba F; Hussein, Mohd Zobir; Saifullah, Bullo; Idris, Abu Seman; Hilmi, Nur Hailini Z; Fakurazi, Sharida

    2018-01-31

    A fungicide, hexaconazole was successfully intercalated into the intergalleries of zinc/aluminum-layered double hydroxide (ZALDH) using the ion-exchange method. Due to the intercalation of hexaconazole, the basal spacing of the ZALDH was increased from 8.7 Å in ZALDH to 29.4 Å in hexaconazole-intercalated ZALDH (HZALDH). The intercalation of hexaconazole into the interlayer of the nanocomposite was confirmed using the Fourier-transform infrared (FTIR) study. This supramolecular chemistry intercalation process enhanced the thermal stability of the hexaconazole moiety. The fungicide loading was estimated to be 51.8%. The nanodelivery system also shows better inhibition toward the Ganoderma boninense growth than the counterpart, free hexaconazole. The results from this work have a great potential to be further explored for combating basal stem rot (BSR) disease in oil palm plantation.

  4. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals

    PubMed Central

    Newman, Justin A.; Scarborough, Nicole M.; Pogranichniy, Nicholas R.; Shrestha, Rashmi K.; Closser, Richard G.; Das, Chittaranjan; Simpson, Garth J.

    2015-01-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  5. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaassis, Abdessamad Y.A.; Xu, Si-Min; Guan, Shanyue

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verifiedmore » by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.« less

  6. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    NASA Astrophysics Data System (ADS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  7. Hunger Promotes Fear Extinction by Activation of an Amygdala Microcircuit

    PubMed Central

    Verma, Dilip; Wood, James; Lach, Gilliard; Herzog, Herbert; Sperk, Guenther; Tasan, Ramon

    2016-01-01

    Emotions control evolutionarily-conserved behavior that is central to survival in a natural environment. Imbalance within emotional circuitries, however, may result in malfunction and manifestation of anxiety disorders. Thus, a better understanding of emotional processes and, in particular, the interaction of the networks involved is of considerable clinical relevance. Although neurobiological substrates of emotionally controlled circuitries are increasingly evident, their mutual influences are not. To investigate interactions between hunger and fear, we performed Pavlovian fear conditioning in fasted wild-type mice and in mice with genetic modification of a feeding-related gene. Furthermore, we analyzed in these mice the electrophysiological microcircuits underlying fear extinction. Short-term fasting before fear acquisition specifically impaired long-term fear memory, whereas fasting before fear extinction facilitated extinction learning. Furthermore, genetic deletion of the Y4 receptor reduced appetite and completely impaired fear extinction, a phenomenon that was rescued by fasting. A marked increase in feed-forward inhibition between the basolateral and central amygdala has been proposed as a synaptic correlate of fear extinction and involves activation of the medial intercalated cells. This form of plasticity was lost in Y4KO mice. Fasting before extinction learning, however, resulted in specific activation of the medial intercalated neurons and re-established the enhancement of feed-forward inhibition in this amygdala microcircuit of Y4KO mice. Hence, consolidation of fear and extinction memories is differentially regulated by hunger, suggesting that fasting and modification of feeding-related genes could augment the effectiveness of exposure therapy and provide novel drug targets for treatment of anxiety disorders. PMID:26062787

  8. Hunger Promotes Fear Extinction by Activation of an Amygdala Microcircuit.

    PubMed

    Verma, Dilip; Wood, James; Lach, Gilliard; Herzog, Herbert; Sperk, Guenther; Tasan, Ramon

    2016-01-01

    Emotions control evolutionarily-conserved behavior that is central to survival in a natural environment. Imbalance within emotional circuitries, however, may result in malfunction and manifestation of anxiety disorders. Thus, a better understanding of emotional processes and, in particular, the interaction of the networks involved is of considerable clinical relevance. Although neurobiological substrates of emotionally controlled circuitries are increasingly evident, their mutual influences are not. To investigate interactions between hunger and fear, we performed Pavlovian fear conditioning in fasted wild-type mice and in mice with genetic modification of a feeding-related gene. Furthermore, we analyzed in these mice the electrophysiological microcircuits underlying fear extinction. Short-term fasting before fear acquisition specifically impaired long-term fear memory, whereas fasting before fear extinction facilitated extinction learning. Furthermore, genetic deletion of the Y4 receptor reduced appetite and completely impaired fear extinction, a phenomenon that was rescued by fasting. A marked increase in feed-forward inhibition between the basolateral and central amygdala has been proposed as a synaptic correlate of fear extinction and involves activation of the medial intercalated cells. This form of plasticity was lost in Y4KO mice. Fasting before extinction learning, however, resulted in specific activation of the medial intercalated neurons and re-established the enhancement of feed-forward inhibition in this amygdala microcircuit of Y4KO mice. Hence, consolidation of fear and extinction memories is differentially regulated by hunger, suggesting that fasting and modification of feeding-related genes could augment the effectiveness of exposure therapy and provide novel drug targets for treatment of anxiety disorders.

  9. Li+ /Mg2+ Hybrid-Ion Batteries with Long Cycle Life and High Rate Capability Employing MoS2 Nano Flowers as the Cathode Material.

    PubMed

    Ju, Yanming; Meng, Yuan; Wei, Yingjin; Bian, Xiaofei; Pang, Qiang; Gao, Yu; Du, Fei; Liu, Bingbing; Chen, Gang

    2016-12-12

    The demand for large-scale and safe energy storage is increasing rapidly due to the strong push for smartphones and electric vehicles. As a result, Li + /Mg 2+ hybrid-ion batteries (LMIBs) combining a dendrite-free deposition of Mg anode and Li + intercalation cathode have attracted considerable attention. Here, a LMIB with hydrothermal-prepared MoS 2 nano flowers as cathode material was prepared. The battery showed remarkable electrochemical properties with a large discharge capacity (243 mAh g -1 at the 0.1 C rate), excellent rate capability (108 mAh g -1 at the 5 C rate), and long cycle life (87.2 % capacity retention after 2300 cycles). Electrochemical analysis showed that the reactions occurring in the battery cell involved Mg stripping/plating at the anode side and Li + intercalation at the cathode side with a small contribution from Mg 2+ adsorption. The excellent electrochemical performance and extremely safe cell system show promise for its use in practical applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.

    PubMed

    Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang

    2017-08-25

    A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte

    NASA Astrophysics Data System (ADS)

    Hasa, Ivana; Dou, Xinwei; Buchholz, Daniel; Shao-Horn, Yang; Hassoun, Jusef; Passerini, Stefano; Scrosati, Bruno

    2016-04-01

    Room-temperature rechargeable sodium-ion batteries (SIBs), in view of the large availability and low cost of sodium raw materials, represent an important class of electrochemical systems suitable for application in large-scale energy storage. In this work, we report a novel, high power SIB formed by coupling the layered P2-Na0.7CoO2 cathode with the graphite anode in an optimized ether-based electrolyte. The study firstly addresses the electrochemical optimization of the two electrode materials and then the realization and characterization of the novel SIB based on their combination. The cell represents an original sodium rocking chair battery obtained combining the intercalation/de-intercalation processes of sodium within the cathode and anode layers. We show herein that this battery, favored by suitable electrode/electrolyte combination, offers unique performance in terms of cycle life, efficiency and, especially, power capability.

  12. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    PubMed

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  13. Calcium intercalation into layered fluorinated sodium iron phosphate

    DOE PAGES

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; ...

    2017-10-09

    Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less

  14. Calcium intercalation into layered fluorinated sodium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei

    Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less

  15. Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell

    NASA Astrophysics Data System (ADS)

    Zhong, Haihong; Tian, Ran; Gong, Xiaoman; Li, Dianqing; Tang, Pinggui; Alonso-Vante, Nicolas; Feng, Yongjun

    2017-09-01

    We fabricated a NiFeOx/CoNy-C nanocomposite derived from CoPcTs-intercalated Ni2Fe-layered double hydroxides (Ni2Fe-CoPcTs-LDH), which served as high-efficiency, low-cost, and long-durability bifunctional oxygen electrocatalyst in half-cell, and a H2-O2 laminar flow unitized regenerative micro-cell (LFURMC) in alkaline media. Based on the synergistic effect between Co-Ny and NiFeOx centers, the non-noble hybrid catalyst NiFeOx/CoNy-C achieves a ΔE (η@jOER,10 - η@jORR,-3) = 0.84 V in alkaline solution, outperforming the commercial Pt/C, and very close to that of IrOx/C. In the fuel cell mode, the performance of NiFeOx/CoNy-C with the maximum power density of 56 mW cm-2 is similar to that of Pt/C (63 mW cm-2) and IrOx/C (58 mW cm-2); in the electrolysis mode, the calculated maximum electrical power consumed on NiFeOx/CoNy-C (237 mW cm-2) is more than 3 times that on Pt/C (73 mW cm-2), similar with that of IrOx/C. More importantly, the NiFeOx/CoNy-C shows a remarkable stability in alternating modes in a LFURMC system.

  16. DNA Polyplexes as Combinatory Drug Carriers of Doxorubicin and Cisplatin: An In Vitro Study

    PubMed Central

    Kang, Han Chang; Cho, Hana; Bae, You Han

    2015-01-01

    Double helix nucleic acids were used as a combination drug carrier for doxorubicin (DOX), which physically intercalates with DNA double helices, and cisplatin (CDDP), which binds to DNA without an alkylation reaction. DNA interacting with DOX, CDDP, or both was complexed with positively charged, endosomolytic polymers. Compared with the free drug, the polyplexes (100 ~ 170 nm in size) delivered more drug into the cytosol and the nucleus and demonstrated similar or superior (up to a 7-fold increase) in vitro cell-killing activity. Additionally, the gene expression activities of most of the chemical drug-loaded plasmid DNA (pDNA) polyplexes were not impaired by the physical interactions between the nucleic acid and DOX/CDDP. When a model reporter pDNA (luciferase) was employed, it expressed luciferase protein at 0.7- ~ 1.4-fold the amount expressed by the polyplex with no bound drugs (a control), which indicated the fast translocation of the intercalated or bound drugs from the “carrier DNA” to the “nuclear DNA” of target cells. The proposed concept may offer the possibility of versatile combination therapies of genetic materials and small molecule drugs that bind to nucleic acids to treat various diseases. PMID:26132975

  17. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    Blanco, Mario (Inventor); West, William C. (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  18. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance

    PubMed Central

    Conde, João; Oliva, Nuria; Artzi, Natalie

    2015-01-01

    Multidrug resistance (MDR) in cancer cells is a substantial limitation to the success of chemotherapy. Here, we describe facile means to overcome resistance by silencing the multidrug resistance protein 1 (MRP1), before chemotherapeutic drug delivery in vivo with a single local application. Our platform contains hydrogel embedded with dark-gold nanoparticles modified with 5-fluorouracil (5-FU)-intercalated nanobeacons that serve as an ON/OFF molecular nanoswitch triggered by the increased MRP1 expression within the tumor tissue microenvironment. This nanoswitch can sense and overcome MDR prior to local drug release. The nanobeacons comprise a 5-FU intercalated DNA hairpin, which is labeled with a near-infrared (NIR) dye and a dark-quencher. The nanobeacons are designed to open and release the intercalated drug only upon hybridization of the DNA hairpin to a complementary target, an event that restores fluorescence emission due to nanobeacons conformational reorganization. Despite the cross-resistance to 5-FU, more than 90% tumor reduction is achieved in vivo in a triple-negative breast cancer model following 80% MRP1 silencing compared with the continuous tumor growth following only drug or nanobeacon administration. Our approach can be applied to reverse cross-resistance to other chemotherapeutic drugs and restore treatment efficacy. As a universal nanotheranostic probe, this platform can pave the way to early cancer detection and treatment. PMID:25733851

  19. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  20. Physics and chemistry of MoS2 intercalation compounds

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1977-01-01

    An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.

  1. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives.

    PubMed

    Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Rodriguez-Martínez, Lide M; Armand, Michel

    2018-02-14

    Lithium metal (Li°) - based rechargeable batteries (LMBs), such as Li° anode vs. intercalation and/or conversion type cathode batteries, lithium-sulphur (Li-S), and lithium-oxygen (O2)/air (Li-O2/air) are becoming increasingly important for electrifying the modern transportation system, enabling sustainable mobility in the near future. Though some rechargeable LMBs batteries (e.g., Li°/LiFePO4 batteries from Bolloré Bluecar®, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is still hampered due to the existence of a number of formidable challenges, including lithium dendrite growth, electrolyte instability towards high voltage intercalation type cathode, poor electronic and ionic conductivities of sulphur (S8) and O2, as well as their corresponding reduction products (e.g., Li2S and Li2O), dissolution and shuttling of polysulphide (PS) intermediates etc. This ultimately results in short cycle life, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. Among other mitigating strategies, the use of electrolyte additives is considered as one of the most economical, and effective approach for circumventing these dilemmas. Set out to offer an in-depth insight into the rapidly growing research on the account of electrolyte additives for rechargeable LMBs, this review presents an overview of the various functional additives, that are being applied in Li-anode/intercalation cathode-based, Li-S and Li-O2 batteries. This review is believed to assess the status quo of the research and thereby arouse new thoughts and opportunities, opening new avenues for the practical realization of these appealing devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Renal Atp6ap2/(Pro)renin Receptor Is Required for Normal Vacuolar H+-ATPase Function but Not for the Renin-Angiotensin System.

    PubMed

    Trepiccione, Francesco; Gerber, Simon D; Grahammer, Florian; López-Cayuqueo, Karen I; Baudrie, Véronique; Păunescu, Teodor G; Capen, Diane E; Picard, Nicolas; Alexander, R Todd; Huber, Tobias B; Chambrey, Regine; Brown, Dennis; Houillier, Pascal; Eladari, Dominique; Simons, Matias

    2016-11-01

    ATPase H + -transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H + -ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na + -K + -2Cl - cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity. Copyright © 2016 by the American Society of Nephrology.

  3. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity

    PubMed Central

    2004-01-01

    Flavonoids and other polyphenolic compounds have been shown to inhibit human topoisomerase IB (topo I) through both inhibition of relaxation activity and through stabilization of the cleavable complex (poisoning). Some flavonoids have also been shown to intercalate DNA, and an association of topoisomerase inhibition with intercalation has been noted. We surveyed 34 polyphenolic compounds, primarily flavonoid glycones and aglycones, for their ability to inhibit topo I and to intercalate DNA using an in vitro gel electrophoresis method. We show that the most potent topo I poisons are the flavones and flavonols, and that these generally, but not always, are found to be DNA intercalators. There was no clear correlation, however, of topo-I-poisoning activity with the degree of DNA unwinding. Surprisingly, both DNA intercalation and topo I poisoning were shown to occur with some flavone glycones, including the C-glycosylflavone orientin. Inhibition of relaxation activity by flavonoids was found to be difficult to quantify and was most likely to be due to non-specific inhibition through flavonoid aggregation. As part of a structure–activity analysis, we also investigated the acid–base chemistry of flavonoids and determined that many flavonoids show acid–base activity with a pKa in the physiological pH region. For this reason, subtle pH changes can have significant effects on solution activity of flavonoids and their concomitant biological activity. In addition, these effects may be complicated by pH-dependent aggregation and oxidative degradation. Finally, we develop a simple model for the intercalation of flavonoids into DNA and discuss possible consequences of intercalation and topoisomerase inhibition on a number of cellular processes. PMID:15312049

  4. Anticancer Activity Expressed by a Library of 2,9-Diazaperopyrenium Dications

    PubMed Central

    2016-01-01

    Polyaromatic compounds are well-known to intercalate DNA. Numerous anticancer chemotherapeutics have been developed upon the basis of this recognition motif. The compounds have been designed such that they interfere with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although many promising chemotherapeutics have been developed upon the basis of polyaromatic DNA intercalating systems, these candidates did not proceed past clinical trials on account of their dose-limiting toxicity. Herein, we discuss an alternative, water-soluble class of polyaromatic compounds, the 2,9-diazaperopyrenium dications, and report in vitro cell studies for a library of these dications. These investigations reveal that a number of 2,9-diazaperopyrenium dications show similar activities as doxorubicin toward a variety of cancer cell lines. Additionally, we report the solid-state structures of these dications, and we relate their tendency to aggregate in solution to their toxicity profiles. The addition of bulky substituents to these polyaromatic dications decreases their tendency to aggregate in solution. The derivative substituted with 2,6-diisopropylphenyl groups proved to be the most cytotoxic against the majority of the cell lines tested. In the solid state, the 2,6-diisopropylphenyl-functionalized derivative does not undergo π···π stacking, while in aqueous solution, dynamic light scattering reveals that this derivative forms very small (50–100 nm) aggregates, in contrast with the larger ones formed by dications with less bulky substituents. Alteration of the aromaticitiy in the terminal heterocycles of selected dications reveals a drastic change in the toxicity of these polyaromatic species toward specific cell lines. PMID:25555133

  5. Anionic surfactant enhanced phosphate desorption from Mg/Al-layered double hydroxides by micelle formation.

    PubMed

    Shimamura, Akihiro; Jones, Mark I; Metson, James B

    2013-12-01

    Desorption of interlayer hydrogen phosphate (HPO4) from hydrogen phosphate intercalated Mg/Al-layered double hydroxide (LDH-HPO4) by anion exchange with surfactant anions has been investigated under controlled conditions. Three types of surfactant, Dodecylbenzenesulphonate (DBS), Dodecylsulphate (DS) and 1-Octanesulphonate (OS), anions were used for intercalation experiments over a range of concentrations, and for all solutions, it was shown that the desorption of hydrogen phosphate is enhanced at concentrations close to the critical micelle concentration (CMC). Intercalation of the surfactant anions into LDH-HPO4 was confirmed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM). More than 90% removal of the hydrogen phosphate was achieved at CMC. Repeat adsorption tests to investigate recyclability showed that desorption with 0.005 M DBS improved subsequent phosphate re-adsorption, allowing around 90% of the original adsorption over three cycles. This is much higher than when desorption was conducted using either Na2CO3 or NaCl-NaOH solutions, even at much higher concentrations. This study suggests potential economic and environmental advantages in using these surfactants in improving the cycling performance of LDH materials as absorbents for clean-up of water systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  7. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham

    Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less

  8. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

    DOE PAGES

    Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham; ...

    2018-06-16

    Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less

  9. IR study of dickite-formamide intercalate, Al2Si2O5(OH)4-H2NCOH.

    PubMed

    Zamama, M; Knidiri, M

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d001 spacing from 7.19 to 10.77 A. It is concluded from infrared studies that hydrogen bonds are formed between C=O groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm(-1) and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm(-1) for FAM-intercalated dickite.

  10. A micrographic and gravimetric study of intercalation and deintercalation of graphite fibers

    NASA Technical Reports Server (NTRS)

    Hung, C. C.

    1985-01-01

    Intercalation and deintercalation of Union Carbide P-100 graphite fibers with liquid and vaporous bromine was studied gravimetrically and microscopically. The mass of the bromine intercalated fibers was found to be 17 to 20 percent greater than their pristine counterpart. This variation decreased to 17 to 18 percent after heating in air for 3 days at 200 C and to 14.5 to 18 percent after 6 days of 260 C heating. The fiber length did not change throughout the experiment. The fiber diameter increased during intercalation and decreased slightly upon deintercalation but was not affected by heating to 260 C for 3 days in air. Comparing the mass and volume data to those with highly oriented pyrolitic graphite or natural single crystal graphite suggested the possibility that the intercalated P-100 fibers could be mostly stage 4.

  11. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    PubMed Central

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  12. The milling of pristine and brominated P-100 graphite fibers

    NASA Technical Reports Server (NTRS)

    Dillehay, M. E.; Gaier, J. R.

    1986-01-01

    Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.

  13. Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure

    NASA Astrophysics Data System (ADS)

    von Hoessle, F.; Plank, J.; Leroux, F.

    2015-05-01

    A series of sulfonated melamine formaldehyde (SMF) polycondensates possessing different anionic charge amounts and molecular weights was synthesized and incorporated into a hydrocalumite type layered double hydroxide structure using the rehydration method. For this purpose, tricalcium aluminate was dispersed in water and hydrated in the presence of these polymers. Defined inorganic-organic hybrid materials were obtained as reaction products. All SMF polymers tested intercalated readily into the hydrocalumite structure, independent of their different molecular weights (chain lengths) and anionic charge amounts. X-ray diffraction revealed typical patterns for weakly ordered, highly polymer loaded LDH materials which was confirmed via elemental analysis and thermogravimetry. IR spectroscopy suggests that the SMF polymers are interleaved between the [Ca2Al(OH)6]+ main sheets via electrostatic interaction, and that no chemical bond between the host matrix and the guest anion is formed. The SMF polymers well ensconced within the LDH structure exhibit significantly slower thermal degradation.

  14. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vivero-Escoto, Juan Luis

    Mesoporous silica nanoparticles (MSNs) are a highly promising platform for intracellular controlled release of drugs and biomolecules. Despite that the application of MSNs in the field of intracellular drug delivery is still at its infancy very exciting breakthroughs have been achieved in the last years. A general review of the most recent progress in this area of research is presented, including a description of the latest findings on the pathways of entry into live mammalian cells together with the intracellular trafficking, a summary on the contribution of MSNs to the development of site-specific drug delivery systems, a report on the biocompatibility of this material in vitro andin vivo, and a discussion on the most recent breakthroughs in the synthesis and application of stimuli-responsive mesoporous silica-based delivery vehicles. A gold nanoparticles (AuNPs)-capped MSNs-based intracellular photoinduced drug delivery system (PR-AuNPs-MSNs) for the controlled release of anticancer drug inside of human fibroblast and liver cells was synthesized and characterized. We found that the mesoporous channels of MSNs could be efficiently capped by the photoresponsive AuNPs without leaking the toxic drug, paclitaxel, inside of human cells. Furthermore, we demonstrated that the cargo-release property of this PR-AuNPs-MSNs system could be easily photo-controlled under mild and biocompatible conditions in vitro. In collaboration with Renato Mortera (a visiting student from Italy), a MSNs based intracellular delivery system for controlled release of cell membrane impermeable cysteine was developed. A large amount of cysteine molecules were covalently attached to the silica surface of MSNs through cleavable disulfide linkers. These cysteine-containing nanoparticles were efficiently endocytosed by human cervical cancer cells HeLa. These materials exhibit 450 times higher cell growth inhibition capability than that of the conventional N-acetylcysteine prodrug. The ability to functionalize the surface of the MSNs with organic groups was used as a way to incorporate functional molecules that can interact with intracellular structures. A series of oligonucleotides intercalating (propidium) derivative functionalized MSNs (PAP-LP-MSNs and AP-PAP-MSNs) materials were synthesized. We selectively decorated the exterior particle surface of PAP-LP-MSN and the interior pore surface of AP-PAP-MSN with the oligonucleotide intercalating functionality. We observed that these materials are internalized by HeLa cells despite that the propidium group is known by its cell membrane impermeable properties. By confocal microscopy and flow cytometry, we demonstrated that indeed PAP-LP-MSNs were able to bind to cytoplasmic oligonucleotides; such as messenger RNA, resulting in severe cell growth inhibition. In contrast, the cytotoxicity of AP-PAP-MSN, where the same oligonucleotide intercalating molecules were anchored inside the pores, was significantly lowered upon the endocytosis by HeLa cells. The results obtained prove that the biocompatibility and cell membrane trafficking properties of MSNs could be modified by selective functionalization of the two different surfaces (exterior particle and interior pore surfaces) and morphology control of MSNs.

  15. Superconductivity in Li-intercalated bilayer arsenene and hole-doped monolayer arsenene: a first-principles prediction

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Ge, Yanfeng; Zhou, Wenzhe; Peng, Mengqi; Pan, Jiangling; Ouyang, Fangping

    2018-06-01

    Using first-principles calculations, we find Li-intercalated bilayer arsenene with AB stacking is dynamically stable, which is different from pristine bilayer with AA stacking. Electron–phonon coupling of the stable Li-intercalated bilayer arsenene are dominated by the low frequency vibrational modes (E″(1), (1), E‧(1) and acoustic modes) and lead to an superconductivity with T c  =  8.68 K with isotropical Eliashberg function. Small biaxial tensile strain (2%) can improve T c to 11.22 K due to the increase of DOS and phonon softening. By considering the fully anisotropic Migdal–Eliashberg theory, T c are found to be enhanced by 50% and exhibits a single anisotropic gap nature. In addition, considering its nearly flat top valence band which is favorable for high temperature superconductivity, we also explore the superconducting properties of hole-doped monolayer arsenene under different strains. the unstrained monolayer arsenene superconducts at T c  =  0.22 K with 0.1 hole/cell doping. By applying 3% biaxial strain, T c can be lifted up strikingly to 6.69 K due to a strong Fermi nesting of the nearly flat band. Then T c decreases slowly with strain. Our findings provide another insight to realize 2D superconductivity and suggest that the strain is crucial to further enhance the transition temperature.

  16. Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells.

    PubMed

    Kumar, Rajesh; da Silva, Everson T S G; Singh, Rajesh K; Savu, Raluca; Alaferdov, Andrei V; Fonseca, Leandro C; Carossi, Lory C; Singh, Arvind; Khandka, Sarita; Kar, Kamal K; Alves, Oswaldo L; Kubota, Lauro T; Moshkalev, Stanislav A

    2018-04-01

    Palladium nanoparticles decorated reduced graphene oxide (Pd-rGO) and palladium nanoparticles intercalated inside nitrogen doped reduced graphene oxide (Pd-NrGO) hybrids have been synthesized by applying a very simple, fast and economic route using microwave-assisted in-situ reduction and exfoliation method. The Pd-NrGO hybrids materials show good activity as catalyst for ethanol electro oxidation for direct ethanol fuel cells (DEFCs) as compared to Pd-rGO hybrids. The enhanced direct ethanol fuel cell can serve as alternative to fossil fuels because it is renewable and environmentally-friendly with a high energy conversion efficiency and low pollutant emission. As proof of concept, the electrocatalytic activity of Pd-NrGO hybrid material was accessed by cyclic voltammetry in presence of ethanol to evaluate its applicability in direct-ethanol fuel cells (DEFCs). The Pd-NrGO catalyst presented higher electro active surface area (∼6.3 m 2  g -1 ) for ethanol electro-oxidation when compared to Pd-rGO hybrids (∼3.7 m 2  g -1 ). Despite the smaller catalytic activity of Pd-NrGO, which was attributed to the lower exfoliation rate of this material in relation to the Pd-rGO, Pd-NrGO showed to be very promising and its catalytic activity can be further improved by tuning the synthesis parameters to increase the exfoliation rate. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  18. Manipulation of Dirac cones in metal-intercalated epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming

    Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.

  19. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the study of MXene electrodes for supercapacitors in an organic electrolyte; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) in acetonitrile. High volumetric capacitances, up to 245 F/cm 3, were achieved by using carbon nanotubes as an additive to improve ion accessibility to Ti3C2 layers. The redox intercalation of large EMI+ cations between Ti3C2 layers at -0.4 V vs. Ag was observed by X-ray diffraction.

  20. Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges

    NASA Astrophysics Data System (ADS)

    Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann

    2017-10-01

    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.

  1. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  2. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  3. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    PubMed

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald; Hirschfeld, Peter; Valenti, Roser

    2015-03-01

    We present a theoretical investigation of alkali metal/ammonia intercalated iron selenide. Using ab-initio density functional theory we unravel how charge doping and dimensionality of the electronic structure can be controlled through the chemical composition of the intercalated molecules. Within random phase approximation spin fluctuation theory we analyze the impact of intercalation on the superconducting pairing strength. We find that high Tc is to be expected away from perfect nesting. While experimental studies have focused on the intercalation of larger molecules in the spacer layer so far, we argue that no higher Tc can be achieved this way. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SPP 1458, the National Science Foundation under Grant No. PHY11-25915 and the Department of Energy under Grant No. DE-FG02-05ER46236.

  5. Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing

    PubMed Central

    Nakayama, Shizuka; Zhou, Jie; Zheng, Yue; Szmacinski, Henryk; Sintim, Herman O

    2016-01-01

    Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. PMID:28031943

  6. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    PubMed

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Electrochemical oxygen intercalation into Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Fruchter, L.; Brouet, V.; Colson, D.; Moussy, J.-B.; Forget, A.; Li, Z. Z.

    2018-01-01

    Oxygen was electrochemically intercalated into Sr2IrO4 sintered samples, single crystals and a thin film. We estimate the diffusion length to a few μm and the concentration of the intercalated oxygen to δ ≃ 0.01. The latter is thus much smaller than for the cuprate and nickelate parent compounds, for which δ > 0.1 is obtained, which could be a consequence of larger steric effects. The influence of the oxygen doping state on resistivity is small, indicating also a poor charge transfer to the conduction band. It is shown that electrochemical intercalation of oxygen may also contribute to doping, when gating thin films with ionic liquid in the presence of water.

  8. Production of thick uniform-coating films containing rectorite on nanofibers through the use of an automated coating machine.

    PubMed

    Wu, Yang; Li, Xueyong; Shi, Xiaowen; Zhan, Yingfei; Tu, Hu; Du, Yumin; Deng, Hongbing; Jiang, Linbin

    2017-01-01

    When an efficient automated coating machine is used to process layer-by-layer (LBL) deposited nanofibrous mats, it causes an obvious planar effect on the surface of the mats, which can be eliminated through ultimate immersion. During this process, chitosan (CS) - rectorite (REC) intercalated composite films are built on the surface of cellulose acetate (CA) nanofibrous mats by a coating machine. Then, the immersion process is utilized to allow positively charged CS or CS-REC intercalated composites to uniformly assemble on the surface of negatively charged CA nanofibers. An investigation into the morphology of the resultant scaffolds confirms that the uniquely small pore size, high specific surface area and typically three-dimensional (3D) structure of nanofibrous mats remain present. The results of Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) indicate that it is feasible to assemble nanofibrous mats using a coating machine. The intercalated structure of CS-REC is confirmed by the results of small-angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD). The results of the cell experiment and antibacterial test demonstrate that the addition of REC not only has little impact on the cytocompatibility of the mats but also enhances their ability to inhibit bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents

    NASA Astrophysics Data System (ADS)

    Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie

    2016-03-01

    A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.

  10. Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract.

    PubMed

    Spencer, John David; Schwaderer, Andrew L; Wang, Huanyu; Bartz, Julianne; Kline, Jennifer; Eichler, Tad; DeSouza, Kristin R; Sims-Lucas, Sunder; Baker, Peter; Hains, David S

    2013-04-01

    The mechanisms that maintain sterility in the urinary tract are incompletely understood; however, recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Ribonuclease 7 (RNase 7), a potent antimicrobial peptide contributing to urinary tract sterility, is expressed by intercalated cells in the renal collecting tubules and is present in the urine at levels sufficient to kill bacteria at baseline. Here, we characterize the expression and function of RNase 7 in the human urinary tract during infection. Both quantitative real-time PCR and enzyme-linked immunosorbant assays demonstrated increases in RNASE7 expression in the kidney along with kidney and urinary RNase 7 peptide concentrations with infection. While immunostaining localized RNase 7 production to the intercalated cells of the collecting tubule during sterility, its expression during pyelonephritis was found to increase throughout the nephron but not in glomeruli or the interstitium. Recombinant RNase 7 exhibited antimicrobial activity against uropathogens at low micromolar concentrations by disrupting the microbial membrane as determined by atomic force microscopy. Thus, RNase 7 expression is increased in the urinary tract with infection and has antibacterial activity against uropathogens at micromolar concentrations.

  11. Ribonuclease 7, an antimicrobial peptide up-regulated during infection, contributes to microbial defense of the human urinary tract

    PubMed Central

    Spencer, John David; Schwaderer, Andrew L.; Wang, Huanyu; Bartz, Julianne; Kline, Jennifer; Eichler, Tad; DeSouza, Kristin R.; Sims-Lucas, Sunder; Baker, Peter; Hains, David S.

    2012-01-01

    The mechanisms that maintain sterility in the urinary tract are incompletely understood; however, recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Ribonuclease 7 (RNase 7), a potent antimicrobial peptide contributing to urinary tract sterility, is expressed by intercalated cells in the renal collecting tubules and is present in the urine at levels sufficient to kill bacteria at baseline. Here, we characterize the expression and function of RNase 7 in the human urinary tract during infection. Both quantitative real-time PCR and ELISA assays demonstrated increases in RNASE7 expression in the kidney along with kidney and urinary RNase 7 peptide concentrations with infection. While immunostaining localized RNase 7 production to the intercalated cells of the collecting tubule during sterility, its expression during pyelonephritis was found to increase throughout the nephron but not in glomeruli or the interstitium. Recombinant RNase 7 exhibited antimicrobial activity against uropathogens at low micromolar concentrations by disrupting the microbial membrane as determined by atomic force microscopy. Thus, RNase 7 expression is increased in the urinary tract with infection, and has antibacterial activity against uropathogens at micromolar concentrations. PMID:23302724

  12. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride)

    PubMed Central

    Samyn, Pieter; Schoukens, Gustaaf; Stanssens, Dirk

    2015-01-01

    A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln) by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride) or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide) or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects. PMID:28793445

  13. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  14. Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays.

    PubMed

    Durtschi, Jacob D; Stevenson, Jeffery; Hymas, Weston; Voelkerding, Karl V

    2007-02-01

    Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.

  15. Neural and Behavioral Correlates of PTSD and Alcohol Use

    DTIC Science & Technology

    2013-10-01

    of GABAergic interneurons known as intercalated (ITC) cells located between the BLA and CeA [69], providing an effective means of gating CeA...across different experiments. Future studies directly comparing the effects of 5- HT manipulations within the different amygdala subregions across... effects make them poorly tolerated. Furthermore, because atypical antipsychotics also have high affinity for 5- HT receptors, the contribution of DA

  16. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.

    2016-01-01

    A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.

  17. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    PubMed

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  18. Structural Analysis of HMGD-DNA Complexes Reveal Influence of Intercalation on Sequence Selectivity and DNA Bending

    PubMed Central

    Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.

    2010-01-01

    The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069

  19. Preparation of an anionic azo pigment-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material

    NASA Astrophysics Data System (ADS)

    Guo, Shengchang; Li, Dianqing; Zhang, Weifeng; Pu, Min; Evans, David G.; Duan, Xue

    2004-12-01

    A large anionic pigment has been intercalated into a layered double hydroxide (LDH) host by ion-exchange of an Mg/Al LDH-nitrate precursor with a solution of C.I. Pigment Red 48:2 (the calcium salt of 4-((5-chloro-4-methyl-2-sulfophenyl)azo)-3-hydroxy-2-naphthalene-carboxylic acid), in ethane-1,2-diol. After intercalation of the pigment, the interlayer distance in the LDH increases from 0.86 to 1.72 nm. Infrared spectra and TG-DTA curves reveal the presence of a complex system of supramolecular host-guest interactions. The UV-visible diffuse reflectance spectra of C.I. Pigment Red 48:2 show marked changes after heating at 200 °C and above, whereas there are no significant changes in the spectra of the intercalated pigment after heating at temperatures up to 300 °C, showing that the thermostability is markedly enhanced by intercalation in the LDH host. The pigment-intercalated LDHs exhibits much higher photostability to UV light than the pristine pigment, in the case of both the pure solids and their composites with polypropylene, as shown by measurement of CIE 1976 L*a*b* color difference ( ΔE) values.

  20. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.

    PubMed

    Mitzi, David B; Medeiros, David R; Malenfant, Patrick R L

    2002-04-22

    Crystals of several new hybrid tin(II) iodide-based perovskites, involving 2,3,4,5,6- pentafluorophenethylammonium or phenethylammonium cation bilayers and intercalated aryl or perfluoroaryl molecules, were grown by slow evaporation of a methanol solution containing the hybrid perovskite and the intercalating species. The (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) structure was solved at -75 degrees C in a monoclinic C2/c subcell [a = 41.089(12) A, b = 6.134(2) A, c = 12.245(3) A, beta = 94.021(5) degrees, Z = 4] and consists of sheets of corner-sharing distorted SnI(6) octahedra separated by bilayers of pentafluorophenethylammonium cations. The intercalated benzene molecules form a single well-ordered layer interposed between adjacent fluoroaryl cation layers. The corresponding hybrid with an unfluorinated organic cation and fluorinated intercalating molecule, (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)), is isostructural [a = 40.685(4) A, b = 6.0804(6) A, c = 12.163(1) A, beta = 93.136(2) degrees, Z = 4]. For each intercalated system, close C...C contacts (3.44-3.50 A) between the aromatic cation and the intercalated molecule are indicative of a significant face-to-face interaction, similar to that found in the complex C(6)H(6).C(6)F(6). Crystal growth runs with the organic cation and prospective intercalating molecule either both fluorinated or both unfluorinated did not yield stable intercalated compounds, demonstrating the significance of fluoroaryl-aryl interactions in the current intercalated structures. Thermal analysis of (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) and (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) crystals yields, in addition to the characteristic transitions of the parent perovskite, endothermic transitions [12.6(5) and 32.1(8) kJ/mol, respectively] with an onset at 145 degrees C and a weight loss corresponding to the complete loss of the intercalated molecule. The relatively high deintercalation temperature (well above the boiling point of benzene and hexafluorobenzene) demonstrates the usefulness of the hybrid perovskites in providing a stable framework for the examination of the fluoroaryl-aryl interaction, as well as the potential importance of this interaction in tailoring new hybrid perovskites. UV-vis absorption measurements on (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) thin films indicate a small reversible wavelength shift to higher energy for the tin(II) iodide framework exciton peak (with respect to that of the parent perovskite spectrum), from 608(2) nm [2.04 eV] to 595(2) nm [2.08 eV], and a corresponding shift in the band edge position. This spectral shift can most reasonably be attributed to subtle structural changes induced in the tin(II) iodide sheets by the intercalated hexafluorobenzene molecules.

  1. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.

    PubMed

    Liu, Juan; Wei, Tuo; Zhao, Jing; Huang, Yuanyu; Deng, Hua; Kumar, Anil; Wang, Chenxuan; Liang, Zicai; Ma, Xiaowei; Liang, Xing-Jie

    2016-06-01

    By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Iodine Intercalation of Bundles of Single Wall Carbon Nanotubes (SWNT)

    NASA Astrophysics Data System (ADS)

    Grigorian, L.; Fang, S. L.; Williams, K. A.; Sumanasekera, G. U.; Dickey, E. C.; Eklund, P. C.; Pennycock, S.; Rinzler, A. G.; Smalley, R. E.

    1998-03-01

    We have been able to intercalate iodine into the interstitial channels within the rope lattice by direct contact of SWNT mats with molten iodine. These continuously filled channels were observed by Z-contrast STEM imaging. The intercalated iodine atoms provide a ``chemical wedge'' which expands the rope lattice as found from x-ray powder diffraction. At low doping level, Raman-active modes and photoluminescence were used to identify the intercalated species as (I_3)^-I2 linear polyiodide chains. The observed upshift of the high-frequency tangential Raman mode, as well as decreased values of four-probe electrical resistance and thermopower are all consistent with electron transfer from SWNT to iodine. At higher doping level, another iodine-SWNT compound was formed as evidenced by a different x-ray diffraction pattern and Raman spectrum. This new compound exhibits a number of new Raman lines, apparently unrelated to the intercalated iodine, in addition to the usual SWNT Raman modes. We discuss possible mechanisms responsible for activating new Raman modes in SWNT.

  3. Localized concentration reversal of lithium during intercalation into nanoparticles

    PubMed Central

    Zhang, Wei; Yu, Hui-Chia; Wu, Lijun; Liu, Hao; Abdellahi, Aziz; Qiu, Bao; Bai, Jianming; Orvananos, Bernardo; Strobridge, Fiona C.; Zhou, Xufeng; Liu, Zhaoping; Ceder, Gerbrand; Zhu, Yimei; Thornton, Katsuyo; Grey, Clare P.; Wang, Feng

    2018-01-01

    Nanoparticulate electrodes, such as LixFePO4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual LixFePO4 nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation reveals inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. The findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes. PMID:29340302

  4. One-step synthesis of layered yttrium hydroxides in immiscible liquid-liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    NASA Astrophysics Data System (ADS)

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-01

    Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.

  5. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pH<4) give rise to the controlled release of drug molecules. Moreover, it has been partly confirmed that LDH itself is non-toxic and facilitate the cellular permeation. To check the toxicity of LDHs, the osteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  6. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.

    PubMed

    Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang

    2018-05-01

    Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Inorganic nanolayers: structure, preparation, and biomedical applications.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  8. Inorganic nanolayers: structure, preparation, and biomedical applications

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  9. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Gu, Meng; Xiao, Haiyan

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes duringmore » lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.« less

  10. Preparation and Characterization of Polyhydroxybutyrate/Polycaprolactone Nanocomposites

    PubMed Central

    Liau, Cha Ping; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan

    2014-01-01

    Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks. PMID:24600329

  11. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    PubMed

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  12. Electrochemical and in-situ X-ray diffraction studies of Ti 3C 2T x MXene in ionic liquid electrolyte

    DOE PAGES

    Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; ...

    2016-08-26

    2D titanium carbide (Ti 3C 2T x MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti 3C 2T x electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI + cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti 3C 2T x flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effectmore » between intercalated TFSI– anions and positively charged Ti 3C 2T x nanosheets or steric effect caused by de-intercalation of EMI + cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.« less

  13. Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.

    PubMed

    Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin

    2017-11-01

    Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.

  14. Proflavine sensitivity of RNA processing in isolated nuclei.

    PubMed Central

    Yannarell, A; Niemann, M; Schumm, D E; Webb, T E

    1977-01-01

    The intercalating agent proflavine inhibits the processing and subsequent release of preformed messenger RNA and ribosomal RNA from isolated liver nuclei to surrogate cytoplasm. The direct effect of proflavine on these processes, as monitored in a reconstituted cell-free system, supports the theory that base-paired segments (i.e. hairpin loops) in the precursor RNA's are involved as recognition sites in nuclear RNA processing. PMID:866181

  15. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes.

    PubMed

    Ou, Hsin-Hung; Liao, Ching-Hui; Liou, Ya-Hsuan; Hong, Jian-Hao; Lo, Shang-Lien

    2008-06-15

    Characterizations of microwave-induced titanate nanotubes (NaxH(2-x)Ti3O7, TNTs) were conducted by the determinations of specific surface area (S(BET)), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS), ionic coupled plasma-atomic emission spectrometry(ICP-AES), scanning electron microscopy/ energy dispersive X-ray (SEM/EDX), and high-resolution transmission electron microscopy (HR-TEM). The applied level of microwave irradiation during the fabrication process is responsible for both the intercalation intensity of Na atoms into TNTs and the type of crystallization phase within TNTs, which dominate the efficiency of photocatalytic NH3/NH4+. A pure TNT phase presents no powerful ability toward photocatalytic NH3/ NH4+, while the photocatalytic efficiency can be enhanced with the presence of a rutile phase within TNTs. In addition, the mixture of anatase and rutile phase within P25 TiO2 prefers forming NO3-, whereas TNTs yield higher NO2- amount Regarding the effect of acid-washing treatment on TNTs, the acid-treated TNTs with enhanced ion exchangeability considerably improve the NH3/NH4+ degradation and NO2-/NO3- yields. This result is likely ascribed to the easy intercalation of NH3/ NH4+ into the structure of acid-washing TNTs so that the photocatalytic oxidation of intercalated NH3/NH4+ is not limited to the shielding effect resulting from the overload of TNTs.

  16. Chondroitin 6-O-sulfotransferases are required for morphogenesis of the notochord in the ascidian embryo.

    PubMed

    Nakamura, Jun; Yoshida, Keita; Sasakura, Yasunori; Fujiwara, Shigeki

    2014-12-01

    Chondroitin sulfate (CS) is a sulfated polysaccharide chain that binds to various core proteins to form proteoglycans. The amount and position of sulfate groups in CS are variable among different tissues, and are determined by specific sulfotransferases. Although the ascidians are the closest relatives of vertebrates, the functions of their sulfotransferases have not been studied. The genome of the ascidian Ciona intestinalis contains eight genes encoding proteins similar to chondroitin 6-O-sulfotransferases (C6STs), which appear to have independently diverged in the ascidian lineage during evolution. Among them, Ci-C6ST-like1 and Ci-C6ST-like7 were predominantly expressed in the developing notochord. In addition, they were weakly expressed in the neural tube. The disruption of either one of them affected the convergent extension movement of notochordal cells. Presumptive notochord cells coming from both sides of the embryo did not intercalate. The results suggest that both of them are necessary. In some cases, the anterior neural tube failed to close. Forced expression of Ci-C6ST-like1 or Ci-C6ST-like7 in the notochord restored the normal intercalation of notochordal cells, indicating that the effects of morpholino oligos are specific. Ci-C6ST-like1 and Ci-C6ST-like7 are required for the morphogenesis of the notochord in the ascidian embryo. © 2014 Wiley Periodicals, Inc.

  17. Modification of thermal and electronic properties of bilayer graphene by using slow Na+ ions

    NASA Astrophysics Data System (ADS)

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-12-01

    Bilayer graphene (BLG) has an extensive list of industrial applications in graphene-based nanodevices such as energy storage devices, flexible displays, and thermoelectric devices. By doping slow Na+ ions on Li-intercalated BLG, we find significantly improved thermal and electronic properties of BLG by using angle-resolved photoemission and high-resolution core level spectroscopy (HRCLS) with synchrotron photons. Our HRCLS data reveal that the adsorbed Na+ ions on a BLG produced by Li-intercalation through single layer graphene (SLG) spontaneously intercalate below the BLG, and substitute Li atoms to form Na-Si bonds at the SiC interface while preserving the same phase of BLG. This is in sharp contrast with no intercalation of Na+ ions on SLG though neutral Na atoms intercalate. The Na+-induced BLG is found to be stable upon heating up to T = 400 °C, but returns to SLG when heated at T d = 500 °C. The evolution of the π-bands upon doping the Na+ ions followed by thermal annealing shows that the carrier concentration of the π-band may be artificially controlled without damaging the Dirac nature of the π-electrons. The doubled desorption temperature from that (T d = 250 °C) of the Na-intercalated SLG together with the electronic stability of the Na+-intercalated BLG may find more practical and effective applications in advancing graphene-based thermoelectric devices and anode materials for rechargeable batteries.

  18. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    NASA Astrophysics Data System (ADS)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  19. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  20. Gel Electrolytes with Polyamidopyridine Dendron Modified Talc for Dye-Sensitized Solar Cells.

    PubMed

    Santana Andrade, Marcos A; Tiihonen, Armi; Miettunen, Kati; Lund, Peter; Nogueira, Ana F; Pastore, Heloise O

    2017-06-21

    Organic-inorganic hybrid layered materials are proposed as additives in a quasi-solid gel electrolyte for dye-sensitized solar cells. Talcs could provide a low-cost and environmentally friendly, as well as abundant, option as gelators. Here, talcs were prepared by functionalizing an organotalc with three polyamidopyridine dendron generations, PAMPy-talc-Gn (n = 1, 2 and 3). PAMPy dendrons grow parallel to the lamellae plane and form an organized structure by intermolecular interactions. In addition, polyiodide-dendron charge-transfer complexes were prepared onto the organotalc by adsorption of iodine. In this work, the effect of the dendron generation of PAMPy-talc and the influence of polyiodide intercalation on solar cell performance and stability were investigated. The best results were reached with the use of lowest-generation PAMPy-talc (η = 4.5 ± 0.3%, V OC = 710 ± 19 mV, J sc = 10.4 ± 0.9 mA cm -2 , and FF = 61 ± 2%): 15% higher efficiency compared to similar liquid devices. While some previously studied talcs illustrate very strong absorption of the iodide from the electrolyte, in the case of PAMPy-talc such interfering effects were absent: In a 1000 h light soaking test, the PAMPy-talc cells both with and without polyiodide intercalation demonstrated stable performances. Furthermore, the color analysis of the electrolyte indicated that the color of the electrolyte remained stable after an initial period of stabilization, which is a good indication of the compound being stable and not absorbing charge carriers from the electrolyte. The performance and stability results indicate that PAMPy-talc has potential as a gelling method for electrolytes for dye solar cells.

  1. Electronic properties of carbon fibers intercalated with copper chloride

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Natarajan, V.; Woollam, J. A.; Yavrouian, A.; Haugland, E. J.; Tsuzuku, T.

    1984-01-01

    Copper chloride intercalated pitch-based carbon fibers are found to have electrical resistivities as low as 12.9 micro-ohm-cm, and are air- and thermally-stable at and above room temperature. This is therefore a good candidate system for conductor application. In addition, Shubnikov-deHaas quantum oscillatory effects were found, and electronic properties of the intercalated fiber are studied using magnetic fields to 20 tesla.

  2. The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton.

    PubMed

    Hohaus, Annette; Person, Veronika; Behlke, Joachim; Schaper, Jutta; Morano, Ingo; Haase, Hannelore

    2002-08-01

    Ahnak is a ubiquitously expressed giant protein of 5643 amino acids implicated in cell differentiation and signal transduction. In a recent study, we demonstrated the association of ahnak with the regulatory beta2 subunit of the cardiac L-type Ca2+ channel. Here we identify the most carboxyl-terminal ahnak region (aa 5262-5643) to interact with recombinant beta2a as well as with beta2 and beta1a isoforms of native muscle Ca2+ channels using a panel of GST fusion proteins. Equilibrium sedimentation analysis revealed Kd values of 55 +/- 11 nM and 328 +/- 24 nM for carboxyl-terminal (aa 195-606) and amino-terminal (aa 1-200) truncates of the beta2a subunit, respectively. The same carboxyl-terminal ahnak region (aa 5262-5643) bound to G-actin and cosedimented with F-actin. Confocal microscopy of human left ventricular tissue localized the carboxyl-terminal ahnak portion to the sarcolemma including the T-tubular system and the intercalated disks of cardiomyocytes. These results suggest that ahnak provides a structural basis for the subsarcolemmal cytoarchitecture and confers the regulatory role of the actin-based cytoskeleton to the L-type Ca2+ channel.

  3. Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy

    PubMed Central

    Asimaki, Angeliki; Kapoor, Sudhir; Plovie, Eva; Arndt, Anne Karin; Adams, Edward; Liu, ZhenZhen; James, Cynthia A.; Judge, Daniel P.; Calkins, Hugh; Churko, Jared; Wu, Joseph C.; MacRae, Calum A.; Kléber, André G.; Saffitz, Jeffrey E.

    2015-01-01

    Arrhythmogenic cardiomyopathy (ACM) is characterized by frequent cardiac arrhythmias. To elucidate the underlying mechanisms and discover potential chemical modifiers, we created a zebrafish model of ACM with cardiac myocyte–specific expression of the human 2057del2 mutation in the gene encoding plakoglobin. A high-throughput screen identified SB216763 as a suppressor of the disease phenotype. Early SB216763 therapy prevented heart failure and reduced mortality in the fish model. Zebrafish ventricular myocytes that expressed 2057del2 plakoglobin exhibited 70 to 80% reductions in INa and IK1 current densities, which were normalized by SB216763. Neonatal rat ventricular myocytes that expressed 2057del2 plakoglobin recapitulated pathobiological features seen in patients with ACM, all of which were reversed or prevented by SB216763. The reverse remodeling observed with SB216763 involved marked subcellular redistribution of plakoglobin, connexin 43, and Nav1.5, but without changes in their total cellular content, implicating a defect in protein trafficking to intercalated discs. In further support of this mechanism, we observed SB216763-reversible, abnormal subcellular distribution of SAP97 (a protein known to mediate forward trafficking of Nav1.5 and Kir2.1) in rat cardiac myocytes expressing 2057del2 plakoglobin and in cardiac myocytes derived from induced pluripotent stem cells from two ACM probands with plakophilin-2 mutations. These observations pinpoint aberrant trafficking of intercalated disc proteins as a central mechanism in ACM myocyte injury and electrical abnormalities. PMID:24920660

  4. Lithium manganese oxide spinel electrodes

    NASA Astrophysics Data System (ADS)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The results compared favorably with those available in the literature. Dynamic Monte Carlo simulations were conducted to investigate the concentration dependence of the diffusion coefficient fundamentally. The dynamic Monte Carlo predictions compare favorably with the experimental data.

  5. IR study of dickite-formamide intercalate, Al 2Si 2O 5(OH) 4-H 2NCOH

    NASA Astrophysics Data System (ADS)

    Zamama, M.; Knidiri, Mohamed

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d 001 spacing from 7.19 to 10.77 Å. It is concluded from infrared studies that hydrogen bonds are formed between CO groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm -1 and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm -1 for FAM-intercalated dickite.

  6. A molecular model for proflavine-DNA intercalation.

    PubMed Central

    Neidle, S; Pearl, L H; Herzyk, P; Berman, H M

    1988-01-01

    A molecular model has been derived for the intercalation of proflavine into the CpG site of the decamer duplex of d(GATACGATAC). The starting geometry of the intercalation site was taken from previous crystallographic studies on the d(CpG)-proflavine complex, and molecular mechanics used to obtain a stereochemically acceptable structure. This has widened grooves compared to standard A- or B- double helices, as well as distinct conformational, roll, twist and tilt features. PMID:3174439

  7. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors.

    PubMed

    Ibrahim, M K; Taghour, M S; Metwaly, A M; Belal, A; Mehany, A B M; Elhendawy, M A; Radwan, M M; Yassin, A M; El-Deeb, N M; Hafez, E E; ElSohly, M A; Eissa, I H

    2018-06-04

    New series of [1,2,4]triazolo [4,3-a]quinoxaline and bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been designed, synthesized and biologically evaluated for their cytotoxic activities against three tumor cell lines (HePG-2, Hep-2 and Caco-2). Compounds 16 e , 21, 25 a and 25 b exhibited the highest activities against the examined cell lines with IC 50 values ranging from 0.29 to 0.90 μM comparable to that of doxorubicin (IC 50 ranging from 0.51 to 0.73 μM). The most active members were further evaluated for their topoisomerase II (Topo II) inhibitory activities and DNA intercalating affinities as potential mechanisms for their anti-proliferative activities. Interestingly, the results of Topo II inhibition and DNA binding assays were consistent with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited good Topo II inhibitory activities and DNA binding affinities, comparable to that of doxorubicin. Moreover, the most active compound 25 a caused cell cycle arrest at G2/M phase and induced apoptosis in Caco-2 cells. In addition, Furthermore, molecular docking studies were performed for the novel compounds against DNA-Topo II complex to investigate their binding patterns. Based on these studies, it was concluded that DNA binding and/or Topo II inhibition may contribute to the observed cytotoxicity of the synthesized compounds. Copyright © 2018. Published by Elsevier Masson SAS.

  8. Intercalated graphitic carbon nitride: a fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyi; Huang, Jindou; Yuan, Qing; Dong, Bin

    2014-07-01

    We develop a novel humidity nanosensor based on intercalated graphitic carbon nitride (g-C3N4) nanosheets fabricated by a facile thermal polymerization of common urea in the presence of LiCl as the intercalated guest under air and ambient pressure. The response and recovery times of an optimal nanosensor can reach ~0.9 s and ~1.4 s, respectively, which are superior to most of the traditional oxide ceramic-based humidity nanosensors tested under similar conditions. By combining with the theoretical calculations, it is proposed that the ultrafast response-recovery time for this nanosensor is attributed to their unique 2D intercalated nanostructure by which Li species linked with the ``nitrogen pots'' of g-C3N4 can make the protons conduct in the first adsorbed water layer. Meanwhile, the physically adsorbed water on the surface of LiCl-intercalated g-C3N4 nanosheets can be desorbed rapidly at a relative lower RH environment due to their high adsorption energy and the strong diffusion effect of water molecules.We develop a novel humidity nanosensor based on intercalated graphitic carbon nitride (g-C3N4) nanosheets fabricated by a facile thermal polymerization of common urea in the presence of LiCl as the intercalated guest under air and ambient pressure. The response and recovery times of an optimal nanosensor can reach ~0.9 s and ~1.4 s, respectively, which are superior to most of the traditional oxide ceramic-based humidity nanosensors tested under similar conditions. By combining with the theoretical calculations, it is proposed that the ultrafast response-recovery time for this nanosensor is attributed to their unique 2D intercalated nanostructure by which Li species linked with the ``nitrogen pots'' of g-C3N4 can make the protons conduct in the first adsorbed water layer. Meanwhile, the physically adsorbed water on the surface of LiCl-intercalated g-C3N4 nanosheets can be desorbed rapidly at a relative lower RH environment due to their high adsorption energy and the strong diffusion effect of water molecules. Electronic supplementary information (ESI) available: Fig. S1-S8 and Table S1 including SEM, TEM and theoretical calculations. See DOI: 10.1039/c4nr01570c

  9. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  10. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Han, Cheng-jie; Wang, Xiao-min

    2017-06-01

    Layered molybdenum disulfide (MoS2) owns graphene-like two-dimensional structure, and when used as the electrode material for energy storage devices, the intercalation of electrolyte ions is permitted. Herein, a simple dipping and drying method is employed to stack few-layered MoS2 nanosheets on a three-dimensional graphene network (3DGN). The structure measurement results indicate that the assembled hierarchical MoS2 nanosheets own expanded interlayer spacing (∼0.75 nm) and are stacked on the surface of 3DGN uncontinuously. The composite can achieve 110.57% capacitance retention after 4000 cycles of galvanostatic charge/discharge tests and 76.73% capacitance retention with increasing the current density from 1 A g-1 to 100 A g-1. Moreover, the asymmetric coin cell supercapacitor using MoS2@3DGN and active carbon as electrode materials is assembled. This device could achieve a working voltage window of 1.6 V along with the power and energy densities of 400.0-8001.6 W kg-1 and 36.43-1.12 Wh kg-1 respectively. The enhanced electrochemical performance can be attributed to: (1) the expanded interlayer spacing of hierarchical MoS2 nanosheets which can facilitate the fast intercalation/deintercalation of electrolyte cations, (2) the uncontinuous deposition of hierarchical MoS2 nanosheets which facilitates more contact between electrolyte and the section of MoS2 nanosheets to provide more gates for the intercalation/deintercalation.

  11. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    PubMed

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  12. Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases.

    PubMed

    Balasubramanian, Sundaravadivel; Mani, Santhoshkumar; Shiraishi, Hirokazu; Johnston, Rebecca K; Yamane, Kentaro; Willey, Christopher D; Cooper, George; Tuxworth, William J; Kuppuswamy, Dhandapani

    2006-10-01

    Ubiquitin conjugation of proteins is critical for cell homeostasis and contributes to both cell survival and death. Here we studied ubiquitination of proteins in pressure overloaded (PO) myocardium in the context of cardiomyocyte survival. Analysis using a feline right ventricular pressure overload (RVPO) model revealed a robust and transient increase in ubiquitination of proteins present in the Triton X-100-insoluble fraction in 24 to 48 h PO myocardium, and confocal micrographs indicate this increase in ubiquitination occurs subsarcolemmaly near the intercalated disc area of cardiomyocytes. The ubiquitination was accompanied by changes in E3 ligases including Cbl, E6AP, Mdm2 and cIAP in the same period of PO, although atrophy-related E3 ligases, MuRF1 and MuRF3 were unaltered. Furthermore, Cbl displayed a substantial increase in both levels of expression and tyrosine phosphorylation in 48 h PO myocardium. Confocal studies revealed enrichment of Cbl at the intercalated discs of 48 h PO cardiomyocytes, as evidenced by its colocalization with N-cadherin. Although apoptosis was observed in 48 h PO myocardium by TUNEL staining, cardiomyocytes showing ubiquitin staining were not positive for TUNEL staining. Furthermore, 48 h PO resulted in the phosphorylation of inhibitor of nuclear factor kappa B (IkappaB), suggesting its ubiquitin-mediated degradation and the nuclear localization of NFkappaB for the expression of specific cell survival factors such as cIAPs. Together these data indicate that increased levels of E3 ligases that regulate cell homeostasis and promote cell survival could ubiquitinate multiple cytoskeletal protein targets and that these events that occur during the early phase of PO may contribute to both cardiomyocyte survival and hypertrophy.

  13. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-05-01

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  14. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    DTIC Science & Technology

    2012-03-16

    Mixed Monolayer- Protected Gold Nanorods with Intercalated Fullerenes Chenming Xue, Yongqian Xu, Yi Pang, Dingshan Yu, Liming Dai, Min Gao, Augustine...Protected Gold Nanorods with Intercalated Fullerenes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT... Fullerenes Chenming Xue, † Yongqian Xu, ‡ Yi Pang, ‡ Dingshan Yu, § Liming Dai, § Min Gao, † Augustine Urbas ± and Quan

  15. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  16. Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide.

    PubMed

    Arif, Taib; Colas, Guillaume; Filleter, Tobin

    2018-06-12

    In this work, the effect of humidity and water intercalation on the friction and wear behavior of few-layers of graphene and graphene oxide (GO) was studied using friction force microscopy. Thickness measurements demonstrated significant water intercalation within GO affecting its surface topography (roughness and protrusions), whereas negligible water intercalation of graphene was observed. It was found that water intercalation in GO contributed to wearing of layers at a relative humidity as low as ~30%. The influence of surface wettability and water adsorption was also studied by comparing the sliding behavior of SiO2/GO, SiO2/Graphene, and SiO2/SiO2 interfaces. Friction for the SiO2/GO interface increased with relative humidity due to water intercalation and condensation of water. In contrast, it was observed that adsorption of water molecules lubricated the SiO2/SiO2 interface due to easy shearing of water on the hydrophobic surface, particularly once the adsorbed water layers had transitioned from "ice-like water" to "liquid-like water" structures. Lastly, an opposite friction trend was observed for the graphene/SiO2 interface with water molecules failing to lubricate the interface as compared to the dry graphene/SiO2 contact.

  17. Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation

    NASA Astrophysics Data System (ADS)

    Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.

    2018-05-01

    By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.

  18. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    PubMed

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  19. Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells.

    PubMed

    Franke, Werner W; Heid, Hans; Zimbelmann, Ralf; Kuhn, Caecilia; Winter-Simanowski, Stefanie; Dörflinger, Yvette; Grund, Christine; Rickelt, Steffen

    2013-07-01

    Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions ("tessellate junctions"), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker.

  20. Intercalation of paracetamol into the hydrotalcite-like host

    NASA Astrophysics Data System (ADS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

Top