Science.gov

Sample records for a-type post-agb stars

  1. Hot Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Gauba, G.; Fujii, T.; Nakada, Y.

    2001-08-01

    From the study of IRAS sources with far-IR colors similar to planetary nebulae (PNe), several proto-planetary nebulae with hot (OB) post-AGB central stars have been detected. These stars form an evolutionary link between the cooler G,F,A supergiant stars that have evolved off the Asymptotic Giant Branch (AGB) and the hot (OB) central stars of PNe. The optical spectra of these objects show strong Balmer emission lines and in some cases low excitation nebular emission lines such as [NII] and [SII] superposed on the OB stellar continuum. The absence of of [OIII] 5007Å line and the presence of low excitation nebular emission lines indicate that photoionisation has just started. The UV(IUE) spectra of some of these objects revealed violet shifted stellar wind P-Cygni profiles of CIV, SiIV and NV, indicating hot and fast stellar wind and post-AGB mass loss. These objects appear to be rapildy evolving into the early stages of PNe similar to that observed in the case of Hen1357 IRAS 17119-5926 (Stingray Nebula) and IRAS 18062+2410 SAO85766.

  2. Spectroscopic survey of post-AGB star candidates

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Miranda, L. F.

    2007-01-01

    Aims:Our goal is to establish the true nature of post-AGB star candidates and to identify new post-AGB stars. Methods: We used low resolution optical spectroscopy and we compared the spectra of the candidate post-AGB stars with those of stars in the library specta available in the literature and with spectra of "standard" post-AGB stars, and direct imaging in narrow-band filters. Results: Spectra were obtained for 16 objects: 14 objects have not been observed previously and 2 objects are already known post-AGB stars used as "standards" for identification. From the spectra we identify: six new post-AGB stars with spectral types between G5 and F5, two H ii regions the morphology of which is revealed in the direct images for the first time, a G giant with infrared emission, a young stellar object, a probable post-AGB star with emission lines and three objects for which the classification is still unclear. As a whole, our results provide new, reliable identifications for 10 objects among listed post-AGB star candidates. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and at the Observatorio de Sierra Nevada, which is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Appendices A-D are only available in electronic form at http://www.aanda.org

  3. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  4. Nonradial instability strips for post-AGB stars

    SciTech Connect

    Stanghellini, L. ); Cox, A.N. ); Starrfield, S.G. . Dept. of Physics and Astronomy Los Alamos National Lab., NM )

    1990-01-01

    We test several pre-degenerate (PNN and DO) and degenerate (DB) models for stability against nonradial oscillations. These models lie on the 0.6 M{sub {circle dot}} evolutionary track calculated by Iben. The post-AGB stars have a residual CO core with only a little surface hydrogen and helium. In order to match all the observed pulsators. We use three different surface compositions for the DO stars, and a pure helium surface for the DB white dwarfs. We find 3 DO and 1 DB instability strips that we compare to the available observations. 16 refs., 1 fig.

  5. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  6. Circumstellar grain extinction properties of recently discovered post AGB stars

    NASA Technical Reports Server (NTRS)

    Buss, Richard H., Jr.; Lamers, Henny J. G. L. M.; Snow, Theodore P., Jr.

    1989-01-01

    The circumstellar grains of two hot evolved post asymptotic giant branch (post AGB) stars, HD 89353 and HD 213985 were examined. From ultraviolet spectra, energy balance of the flux, and Kurucz models, the extinction around 2175 A was derived. With visual spectra, an attempt was made to detect 6614 A diffuse band absorption arising from the circumstellar grains so that we could examine the relationship of these features to the infrared features. For both stars, we did not detect any diffuse band absorption at 6614 A, implying the carrier of this diffuse band is not the carrier of the unidentified infrared features not of the 2175 A bump. The linear ultraviolet extinction of the carbon-rich star HD 89353 was determined to continue across the 2175 A region with no sign of the bump; for HD 213985 it was found to be the reverse: a strong, wide bump in the mid-ultraviolet. The 213985 bump was found to be positioned at 2340 A, longward of its usual position in the interstellar medium. Since HD 213985 was determined to have excess carbon, the bump probably arises from a carbonaceous grain. Thus, in view of the ultraviolet and infrared properties of the two post AGB stars, ubiquitous interstellar infrared emission features do not seem to be associated with the 2175 A bump. Instead, the infrared features seem related to the linear ultraviolet extinction component: hydrocarbon grains of radius less than 300 A are present with the linear HD 89353 extinction; amorphous anhydrous carbonaceous grains of radius less than 50 A might cause the shifted ultraviolet extinction bump of HD 213985.

  7. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up.

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; Wood, P. R.; Asplund, M.; Karakas, A. I.; Lattanzio, J. C.

    2017-02-01

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type (T eff = 8250 ± 250 K) luminous (8200 ± 700 L ⊙) metal-poor ([Fe/H] = -1.18 ± 0.10) low-mass (M initial ≈ 1.5-2.0 M ⊙) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancement (upper limit of [C/Fe] < 0.50) nor enrichment of s-process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.

  8. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  9. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  10. FUV and Optical Spectroscopy of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Dixon, William V.

    2004-01-01

    The goal of this program was to determine the atmospheric parameters (effective temperature and surface gravity) and abundances of the hot, post-AGB (PAGB) stars in globular clusters observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-l and 2 missions.

  11. FUV and Optical Spectroscopy of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Dixon, William V.

    2004-01-01

    The goal of this program was to determine the atmospheric parameters (effective temperature and surface gravity) and abundances of the hot, post-AGB (PAGB) stars in globular clusters observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-l and 2 missions.

  12. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  13. A mid-infrared imaging survey of post-AGB stars

    NASA Astrophysics Data System (ADS)

    Lagadec, Eric; Verhoelst, Tijl; Mékarnia, Djamel; Suárez, Olga; Zijlstra, Albert A.; Bendjoya, Philippe; Szczerba, Ryszard; Chesneau, Olivier; Van Winckel, Hans; Barlow, Michael J.; Matsuura, Mikako; Bowey, Janet E.; Lorenz-Martins, Silvia; Gledhill, Tim

    2012-08-01

    Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the planetary nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the proto-planetary nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology. The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.

  14. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-12-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M stars, C stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-red giant branch (post-RGB) stars, discovered previously in our Small Magellanic Cloud survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 L⊙), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show spectral energy distribution properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.

  15. Stellar parameters of the post-AGB star HD 56126 from observations and non-linear radiative pulsation models

    NASA Astrophysics Data System (ADS)

    Le Coroller, Herve; Fokin, A. B.; Lèbre, A.; Gillet, D.

    2001-05-01

    After the AGB phase and before becoming planetary nebulae, the stars cross a post-AGB phase during a short time of approximately 10 000 years. Stars at this evolution stage are thus statistically rare and their pulsation mechanisms, probably related to the propagation of shocks in their atmosphere, remain badly known. It thus appeared essential to carry out an in-depth study on a typical post-AGB object. Thus, we present an analysis of the spectroscopic and photometric data on HD 56126, a post-AGB variable star, rich in carbon. A previous work (Barthes et al, 2000, A&A 359,168) finds a 37 days pulsation period. We present here the results of a non-linear model which allowed to deduce the stellar parameters of this star (Teff, L, M). We also discuss the limits of such a model to simulate the complex atmospheric dynamics of post-AGB objects.

  16. A VISIR Mid-infrared Imaging Survey of Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Lagadec, E.; Verhoelst, T.; Mekarnia, D.; Suarez, O.; Zijlstra, A. A.; Bendjoya, P.; Szczerba, R.; Chesneau, O.; van Winckel, H.; Barlow, M. J.; Matsuura, M.; Bowey, J. E.; Lorenz-Martins, S.; Gledhill, T.

    2011-06-01

    Post asymptotic giant branch (AGB) stars are key objects for the study of the dramatic morphological changes that low- to intermediate-mass stars undergo during their evolution from the AGB towards the planetary nebula stage. There is growing evidence that binary interaction processes may play a determining role in shaping many objects, but so far direct evidence for binarity is still weak. We report on a systematic study of the dust distribution around a large sample of post-AGB stars that probes the symmetry-breaking in the nebulae around these systems.

  17. RELICS OF ANCIENT POST-AGB STARS IN A PRIMITIVE METEORITE

    SciTech Connect

    Jadhav, M.; Huss, G. R.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.

    2013-11-10

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low {sup 12}C/{sup 13}C isotopic ratios in these grains are a result of abundant {sup 12}C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ∼10{sup 15} cm{sup –3}, typical of the i-process, are achieved during this phase in post-AGB stars. The large {sup 42,43,44}Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from {sup 46,48}Ca, which cannot be resolved from the isobars {sup 46,48}Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  18. AGB star intershell abundances inferred from UV spectra of extremely hot post-AGB stars

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Reiff, E.; Kruk, J. W.

    2009-04-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  19. Monitoring Observatinos of H2O and SiO Masers Toward Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Kim, Jaeheon; Cho, Se-Hyung; Yoon, Dong-Hwan

    2016-12-01

    We present the results of simultaneous monitoring observations of H_2O 6_{1,6}-5_{2,3} (22 GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129 GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both H_2O and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect H_2O maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected H_2O masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the H_2O maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3 → OH13.1+5.1 → OH16.1-0.3 → OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the H_2O maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and H_2O masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the 1.2 - 160 μm spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations

  20. High rotational CO lines in post-AGB stars and PNe

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.

    1995-01-01

    A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.

  1. Modelling the dusty circumstellar envelopes of axisymmetric post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pérez-Estrada, A. M.; Molina, C. A.; Pérez-Sánchez, A. F.

    2017-07-01

    We studied the dust component of the dense circumstellar envelope (CSE) of two post-AGB sources known as Water Fountain nebulae: IRAS 16342-3814 and IRAS 18113-2503. The goal was to derive some of their physical properties and determine the dust temperature distribution of the sources. It has been proposed that axisymmetric post-AGB stars could be the progenitors of non-spherical planetary nebulae. The study of the structure and physical properties of the dusty CSE of these sources allows the assessment of this hypothesis, and casts light on the processes that occur during the last stages of evolution of low- to intermediate-mass stars. We considered a model with a dust density distribution consisting of a spherical distribution in the external region of the CSE and a component with axial symmetry inside, as well as a set of physical parameters for each source. Then, we performed radiative transfer calculations using the RADMC-3D code, which is a software package that runs thermal Monte Carlo simulations to compute the dust temperature, images and spectra for a model in dust continuum. We compared synthetic infrared spectral energy distributions with those observed by telescopes such as Spitzer and ISO, in order to get the best fit possible. As a result, we found good fits for both sources and axisymmetric dust temperature distributions for each one. Therefore, we concluded that our model is a suitable approximation to describe the dusty CSE of these stars, and it might be proposed to model the other water fountain sources known to date.

  2. An N Band Interferometric Survey of The Disks Around Post-AGB Binary Stars

    NASA Astrophysics Data System (ADS)

    Hillen, M.

    2015-12-01

    It is now well established that FGK post-AGB stars that are surrounded by both hot and cold dust (as derived from the spectral energy distribution), are almost always part of a binary system with 100 < Porb < 5000 days. The properties and long-term stability of the dust emission requires it to arise from a gas- and dust-rich, puffed-up and (semi-)stable circumbinary disk. This interpretation has been confirmed with spatially resolved observations at a range of wavelengths for various individual objects. Here I present the first results of the first mid-IR interferometric survey of this class of objects. Our sample comprises 18 sources, most of which are confirmed binaries and which cover a range in IR excess. Our analysis clearly shows the compactness of the dust structures in these systems. We perform a statistical comparison with radiative transfer disk models, showing that most objects are indeed continuous disks from the sublimation radius outwards.

  3. Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Cernicharo, J.; Engels, D.; Perea-Calderón, J. V.

    2016-07-01

    Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H2 O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC3N, CH3C2H, and CH3 in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates (∼⃒10-4 Mʘ /yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

  4. Probing collimated outflows from post-AGB stars with H_2

    NASA Astrophysics Data System (ADS)

    Forde, K. P.; Gledhill, T. M.; Smith, M. D.

    We present an analysis of the H2 molecular excitation and shaping mechanisms of the circumstellar envelope (CSE) of IRAS 16594-4656, using VLT/SINFONI K-band integral field spectroscopy. We detect several collisionally excited H2 emission lines, i.e., the H2 traces the shock-front produced by the interacting winds. In this wavelength range post-AGB objects with H2 can display several ro-vibrational emission lines. We use this H2 emission to form line maps and line-ratio maps to distinguish between shock and fluorescent excitation. The line ratios also allow us to determine the ortho-to-para ratio and rotational/vibrational temperatures for this object. We calculate a 1-0/2-1S(1) ratio of ˜19 at various locations across the object. A comparison of several vibrational lines permitted a rotational temperature of ˜1400 K to be estimated. Using these observed values as constraints, we use magneto- hydrodynamic planar shock models to determine properties of these stellar outflows such as magnetic field strength, gas densities, and shock velocities, which are otherwise difficult to measure. We find that a fast wind impacting the slower moving post-AGB outflow of density 10^7 cm-3 drives the H2 excitation via shocks with a velocity of ˜20 km s-1, while the Br-γ emission is confined to the region directly around the central star. In order to fully match shock models to our observations, an extensive grid of models covering all variable parameters is required. It might be the case that more complex models are required, i.e., planar shocks are not representative of the type of shock recorded in IRAS 16594-4656.

  5. IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?

    SciTech Connect

    Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra; Lambert, David L. E-mail: pandey@iiap.res.in E-mail: dll@astro.as.utexas.edu

    2011-08-10

    We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric and not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.

  6. Radial-Velocity Analysis of the Post-AGB Star, HD101584

    NASA Astrophysics Data System (ADS)

    Díaz, F.; Hearnshaw, J.; Rosenzweig, P.; Guzman, E.; Sivarani, T.; Parthasarathy, M.

    2007-08-01

    This project concerns the analysis of the periodicity of the radial velocity of the peculiar emission-line supergiant star HD 101584 (F0 Ia), and also we propose a physical model to account for the observations. From its peculiarities, HD 101584 is a star that is in the post-AGB phase. This study is considered as a key to clarify the multiple aspects related with the evolution of the circum-stellar layer associated with this star's last phase. The star shows many lines with P Cygni profiles, including H-alpha, Na D lines in the IR Ca triplet, indicating a mass outflow. For HD 101584 we have performed a detailed study of its radial-velocity variations, using both emission and absorption lines over a wide range of wavelength. We have analyzed the variability and found a periodicity for all types of lines of 144 days, which must arise from the star's membership in a binary system. The data span a period of five consecutive years and were obtained using the 1-m telescope of Mt John Observatory, in New Zealand., with the echelle and Hercules high resolution spectrographs and CCD camera. HD101584 is known to be an IRAS source, and our model suggests it is a proto-planetary nebula, probably with a bipolar outflow and surrounded by a dusty disk as part of a binary system. We have found no evidence for HD101584 to contain a B9 star as found by Bakker et al (1996). A low resolution IUE spectrum shows the absence of any strong UV continuum that would be expected for a B star to be in this system.

  7. Revealing the transition from post-AGB stars to planetary nebulae

    NASA Astrophysics Data System (ADS)

    Bains, Indra; Chapman, Jessica M.; Cohen, Martin; Redman, Matt

    2009-04-01

    In 2005, we used ATCA at 3- & 6-cm to detect the onset of ionizing winds in a biased sub-sample of post-AGB stars selected from an OH maser survey. The evolutionary status of the objects was indicated by 2-colour plots of IRAS and MSX data as well as OH maser profile characteristics. We detected 7/28 sources in radio continuum and found that 2 had non-thermal spectral indices, consistent with wind shock interactions rather than photoionization by an evolving progenitor (Bains et al, 2008, MNRAS submitted). Furthermore, SED modelling of some of the radio-detected sources revealed central star temperatures << 30,000 K, the threshold for significant photoionization. To refine the diagnostic capabilities of the infrared colours and maser characteristics in predicting both the evolutionary phase of these objects and the presence of ionizing winds within them, we now propose to complete the ATCA survey of the remainder of the sample (57 targets) at 3 & 6 cm. This ATCA detection experiment provides an excellent showcase for the unprecedented sensitivity of the CABB.

  8. Detailed abundance study of four s-process enriched post-AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; Van Winckel, H.; De Smedt, K.; Kamath, D.; Wood, P. R.

    2013-06-01

    Context. The photospheric abundances of evolved solar-type stars of different metallicities serve as probes into stellar evolution theory. Aims: Stellar photospheres of post-asymptotic giant branch (post-AGB) stars bear witness to the internal chemical enrichment processes, integrated over their entire stellar evolution. Here we study post-AGB stars in the Large Magellanic Cloud (LMC). With their known distances, these rare objects are ideal tracers of AGB nucleosynthesis and dredge-up phenomena. Methods: We used the UVES spectrograph mounted on the Very Large Telescope at the European Southern Observatory, to obtain high-resolution spectra with high signal-to-noise of a sample of four post-AGB stars. The objects display a spectral energy distribution that indicates the presence of circumstellar dust. We perform a detailed abundance analysis on the basis of these spectra. Results: All objects are C-rich, and strongly enhanced in s-process elements. We deduced abundances of heavy s-process elements for all stars in the sample, and even found an indication of the presence of Hg in the spectrum of one object. The metallicity of all stars except J053253.51-695915.1 is considerably lower than the average value that is observed for the LMC. The derived luminosities show that we witness the late evolution of low-mass stars with initial masses close to 1 M⊙. An exception is J053253.51-695915.1 and we argue that this object is likely a binary. Conclusions: We confirmed the correlation between the efficiency of the third-dredge up and the neutron exposure that is detected in Galactic post-AGB stars. The non-existence of a correlation between metallicity and neutron irradiation is also confirmed and expanded to smaller metallicities. We confirm the status of 21 μm stars as post-carbon stars. Current theoretical AGB models overestimate the observed C/O ratios and fail to reproduce the variety of s-process abundance patterns that is observed in otherwise very similar objects

  9. Post-AGB Stars in Nearby Galaxies as Calibrators for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    2003-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as

  10. High-resolution spectroscopy of the extremely iron-poor post-AGB star CC Lyr

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Matsuno, Tadafumi; Honda, Satoshi; Parthasarathy, Mudumba; Li, Haining; Suda, Takuma

    2017-04-01

    High-resolution optical spectroscopy was conducted for the metal-poor post-AGB star CC Lyr to determine its chemical abundances and spectral line profiles. Our standard abundance analysis confirms its extremely low metallicity ([Fe/H] < -3.5) and a clear correlation between abundance ratios and the condensation temperature for 11 elements, indicating that dust depletion is the cause of the abundance anomaly of this object. The very low abundances of Sr and Ba, which are detected for the first time for this object, suggest that heavy neutron-capture elements are not significantly enhanced in this object by the s-process during its evolution through the AGB phase. The radial velocity of this object and profiles of some atomic absorption lines show variations depending on pulsation phases, which could be formed by dynamics of the atmosphere rather than by binarity or contributions of circumstellar absorption. On the other hand, the Hα emission with double peaks shows no evident velocity shift, suggesting that the emission is originating from the circumstellar matter, presumably the rotating disk around the object.

  11. A model for the formation of large circumbinary disks around post AGB stars

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2008-04-01

    We propose that the large, radius of ˜10 3 AU, circumbinary rotating disks observed around some post-asymptotic giant branch (post-AGB) binary stars are formed from slow AGB wind material that is pushed back to the center of the nebula by wide jets. We perform 2D-axisymmetrical numerical simulations of fast and wide jets that interact with the previously ejected slow AGB wind. In each system there are two oppositely launched jets, but we use the symmetry of the problem and simulate only one jet. A large circularization-flow (vortex) is formed to the side of the jet which together with the thermal pressure of the shocked jet material accelerate cold slow-wind gas back to the center from distances of ˜10 3-10 4 AU. We find for the parameters we use that up to ˜10 -3M⊙ is back-flowing to the center. We conjecture that the orbital angular momentum of the disk material results from the non-axisymmetric structure of jets launched by an orbiting companion. This conjecture will have to be tested with 3D numerical codes.

  12. Radial velocity variable, hot post-AGB stars from the MUCHFUSS project. Classification, atmospheric parameters, formation scenarios

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Geier, S.; Kupfer, T.; Bloemen, S.; Schaffenroth, V.; Heber, U.; Barlow, B. N.; Østensen, R. H.

    2016-03-01

    In the course of the MUCHFUSS project we recently discovered four radial velocity (RV) variable, hot (Teff≈ 80 000-110 000 K) post-asymptotic giant branch (AGB) stars. Among them, we found the first known RV variable O(He) star, the only second known RV variable PG 1159 close binary candidate, as well as the first two naked (i.e., without planetary nebula (PN)) H-rich post-AGB stars of spectral type O(H) that show significant RV variations. We present a non-LTE spectral analysis of these stars along with one further O(H)-type star whose RV variations were found to be not significant. We also report the discovery of a far-infrared excess in the case of the PG 1159 star. None of the stars in our sample displays nebular emission lines, which can be explained well in terms of a very late thermal pulse evolution in the case of the PG 1159 star. The "missing" PNe around the O(H)-type stars seems strange, since we find that several central stars of PNe have much longer post-AGB times. Besides the non-ejection of a PN, the occurrence of a late thermal pulse, or the re-accretion of the PN in the previous post-AGB evolution offer possible explanations for those stars not harbouring a PN (anymore). In the case of the O(He) star J0757, we speculate that it might have been previously part of a compact He transferring binary system. In this scenario, the mass transfer must have stopped after a certain time, leaving behind a low-mass close companion that may be responsible for the extreme RV shift of 107.0 ± 22.0 km s-1 that was measured within only 31 min.

  13. CEN 34 - high-mass YSO in M 17 or background post-AGB star?

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Liu, Yao; Fang, Min; Jiang, Zhibo

    2013-09-01

    We investigate the proposed high-mass young stellar object (YSO) candidate CEN 34, thought to be associated with the star-forming region M 17. Its optical to near-infrared (550-2500 nm) spectrum reveals several photospheric absorption features, such as Hα, the Ca ii triplet, and the CO bandhead, but lacks emission lines. The spectral features in the range 8375-8770 Å are used to constrain an effective temperature Teff = 5250 ± 250 K (early-/mid-G) and a log g = 2.0 ± 0.3 (supergiant). The spectral energy distribution (SED) displays a faint infrared excess that resembles that of a high-mass YSO or an evolved star of intermediate mass. Moreover, the observed temperature and surface gravity are identical for high-mass YSOs and evolved stars. The radial velocity of CEN 34 relative to the local standard of rest (VLSR) as obtained from various photospheric lines is of the order of -60 km s-1 and thus distinct from the +25 km s-1 found for several OB stars in the cluster and for the associated molecular cloud. The SED modeling yields 10-4 M⊙ of circumstellar material, which contributes only a tiny fraction to the total visual extinction (11 mag). The distance of CEN 34 is between 2.0 kpc and 4.5 kpc. In the case of a YSO, a dynamical ejection process is proposed to explain the VLSR difference between CEN 34 and M 17. Additionally, to match the temperature and luminosity, we speculate that CEN 34 had accumulated the bulk of its mass with an accretion rate >4 × 10-3M⊙/yr over a very short time span (~103 yrs), and it is currently undergoing a phase of gravitational contraction without any further mass gain. However, all the aforementioned characteristics of CEN 34 are compatible with an evolved star of 5-7 M⊙ and an age of 50-100 Myr, so it is most likely a background post-AGB star with a distance between 2.0 kpc and 4.5 kpc. We consider the latter classification as the more likely interpretation. Further discrimination of the two possible scenarios should come

  14. The lead discrepancy in intrinsically s-process enriched post-AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P.

    2014-03-01

    Context. Our understanding of the s-process nucleosynthesis in asymptotic giant branch (AGB) stars is incomplete. AGB models predict, for example, large overabundances of lead (Pb) compared to other s-process elements in metal-poor low-mass AGB stars. This is indeed observed in some extrinsically enhanced metal-poor stars, but not in all. An extensive study of intrinsically s-process enriched objects is essential for improving our knowledge of the AGB third dredge-up and associated s-process nucleosynthesis. Aims: We compare the spectral abundance analysis of the SMC post-AGB star J004441.04-732136.4 with state-of-the-art AGB model predictions with a main focus on Pb. The low signal-to-noise (S/N) in the Pb line region made the result of our previous study inconclusive. We acquired additional data covering the region of the strongest Pb line. Methods: By carefully complementing re-reduced previous data, with newly acquired UVES optical spectra, we improve the S/N of the spectrum around the strongest Pb line. Therefore, an upper limit for the Pb abundance is estimated from a merged weighted mean spectrum using synthetic spectral modeling. We then compare the abundance results from the combined spectra to predictions of tailored AGB evolutionary models from two independent evolution codes. In addition, we determine upper limits for Pb abundances for three previously studied LMC post-AGB objects. Results: Although theoretical predictions for J004441.04-732136.4 match the s-process distribution up to tungsten (W), the predicted very high Pb abundance is clearly not detected. The three additional LMC post-AGB stars show a similar lack of a very high Pb abundance. Conclusions: From our study, we conclude that none of these low-mass, low-metallicity post-AGB stars of the LMC and SMC are strong Pb producers. This conflicts with current theoretical predictions. Based on observations collected with the Very Large Telescope at the ESO Paranal Observatory (Chili) of programme

  15. Broad-band and multi-band polarimetric observations of post-AGB and RV Tauri stars

    NASA Astrophysics Data System (ADS)

    Akras, S.; Ramirez-Velez, J.; Hiriart, D.; Lopez, M.; Bonanos, A.

    2013-02-01

    We present optical broad-band (UBVRI) aperture polarimetry of 52 post-AGB stars, selected from De Ruyter et al. (2006) and the Torun Catalog, based on the shape of their SED and near-infrared excess. We find 10 (19%) of the stars in our sample to have high polarization (P > 5%), 30 (56%) intermediate/low polarization (1% < P < 5%) and 13 (25%) very low (or non-polarized) polarization (P < 1%). Our observations show clear evidence of asymmetric circumstellar envelopes or equatorial density enhancement around post-AGB stars, probably formed at the beginning of the AGB phase. Some stars exhibit wavelength-independent polarization suggesting scattered light by large dust grains or free electrons (Thomson scattering), while others show wavelength-dependent polarization originated from scattering by small dust grains (Rayleigh scattering). Finally, we conclude that highly polarized sources (P > 3%), show systematically [12] - [25] > 1.5, J - H > 0.5 and J - K > 0.5, clearly separated from the group of RV Tauri stars, which are found to have very low polarization (P < 3%).

  16. Searching for heavily obscured post-AGB stars and planetary nebulae. II. Near-IR observations of IRAS sources

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Guerrero, M. A.; Suárez, O.; Miranda, L. F.; Gómez, J. F.

    2012-09-01

    The most massive AGB stars are expected to result in heavily obscured post-AGB stars, proto-PNe and PNe with highly axisymmetric morphologies. To investigate this evolutionary connection, we have selected a sample of 165 presumably obscured IRAS post-AGB star and PN candidates and obtained near-IR JHK images for 164 of them. These images, in conjunction with DSS, 2MASS, Spitzer GLIMPSE, MSX, AKARI, and IRAS archival data, have allowed us to identify the near-IR counterparts of 154 of these sources, providing reliable finding charts and coordinates. Near-IR narrow-band Brγ, H2, and K continuum images were acquired for 6 of these sources that were found to be resolved in near-IR JHK images. Among the extended post-AGB source and PN candidates, three are round and seven have bipolar morphologies. Five of the extended sources are ionized and may have thus entered the PN stage. We note that all extended sources with water maser emission have bipolar morphology. We have investigated the Galactic distribution of sources with the largest flux drop from the 9 μm AKARI band to the near-IR J band and found that the width of the distribution in Galactic latitude is consistent with those of bipolar PNe and DUPLEX (DUst-Prominent Longitudinally EXtended) sources. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (081.D-0812), observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations with AKARI, a JAXA project with the participation of ESA.

  17. IRAS 11472-0800: an extremely depleted pulsating binary post-AGB star

    NASA Astrophysics Data System (ADS)

    Van Winckel, H.; Hrivnak, B. J.; Gorlova, N.; Gielen, C.; Lu, W.

    2012-06-01

    Aims: We focus here on one particular and poorly studied object, IRAS 11472-0800. It is a highly evolved post-asymptotic giant branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. Methods: We deployed a multi-wavelength study that includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. Results: The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS 11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H] = -4.2, we discovered that IRAS 11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS 11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. Conclusions: We conclude that IRAS 11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close to the orbital plane, therefore the optical light is dominated by scattered light. IRAS 11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV Tauri stars to the non-pulsating class of strongly depleted objects. Based on observations collected at the European Southern Observatory, Chile. Programme ID: 65.L-0615(A), on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos and on observations obtained with the HERMES

  18. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  19. VizieR Online Data Catalog: LMC post-AGB, post-RGB star and YSOs (Kamath+, 2015)

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; van Winckel, H.

    2015-06-01

    To obtain an initial sample selection for our spectroscopic survey, we adopted the sample selected by van Aarle et al. (2011A&A...530A..90V, Cat. J/A+A/530/A90), who identified optically visible post-AGB star candidates in the LMC based on photometry. We obtained low-resolution spectra of stars selected from the initial sample of objects. The spectra were taken using the AAOmega double-beam multi-fibre spectrograph mounted on the 3.9m Anglo Australian Telescope (AAT) at Siding Spring Observatory (SSO). AAOmega allows for the simultaneous observation of 392 targets (including science objects, sky-positions, and fiducial guide stars) over a 2 degree field using the 2dF fibre positioner. (11 data files).

  20. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: candidate selection, spectral energy distributions and spectroscopic examination

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2014-04-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) candidates in the Small Magellanic Cloud (SMC). First, we used mid-IR observations from the Spitzer Space Telescope to select optically visible candidates with excess mid-IR flux and then we obtained low-resolution optical spectra for 801 of the candidates. After removing poor-quality spectra and contaminants, such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies, we ended up with a final sample of 63 high-probability post-AGB/RGB candidates of A-F spectral type. From the spectral observations, we estimated the stellar parameters: effective temperature (Teff), surface gravity (log g) and metallicity ([Fe/H]). We also estimated the reddening and deduced the luminosity using the stellar parameters combined with photometry. For the post-AGB/RGB candidates, we found that the metallicity distribution peaks at [Fe/H] ≈ -1.00 dex. Based on a luminosity criterion, 42 of these 63 sources were classified as post-red giant branch (post-RGB) candidates and the remaining 21 as post-AGB candidates. From the spectral energy distributions, we were able to infer that 6 of the 63 post-AGB/RGB candidates have a surrounding circumstellar shell suggesting that they are single stars, while 27 of the post-AGB/RGB candidates have a surrounding disc, suggesting that they lie in binary systems. For the remaining 30 post-AGB/RGB candidates the nature of the circumstellar environment was unclear. Variability is displayed by 38 of the 63 post-AGB/RGB candidates with the most common variability types being the Population II Cepheids (including RV-Tauri stars) and semiregular variables. This study has also revealed a new RV Tauri star in the SMC, J005107.19-734133.3, which shows signs of s-process enrichment. From the numbers of post-AGB/RGB stars in the SMC, we were able to estimate evolutionary rates. We find that the number of post-AGB and post-RGB candidates that

  1. A Luminous Yellow Post-AGB Star in the Galactic Globular Cluster M79

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Siegel, Michael H.

    2016-02-01

    We report the discovery of a luminous F-type post-asymptotic-giant-branch (PAGB) star in the Galactic globular cluster (GC) M79 (NGC 1904). At visual apparent and absolute magnitudes of V=12.20 and {M}V=-3.46, this “yellow” PAGB star is by a small margin the visually brightest star known in any GC. It was identified using CCD observations in the uBVI photometric system, which is optimized to detect stars with large Balmer discontinuities, indicative of very low surface gravities. Follow-up observations with the SMARTS 1.3 and 1.5 m telescopes show that the star is not variable in light or radial velocity, and that its velocity is consistent with cluster membership. Near- and mid-infrared observations with 2MASS and WISE show no evidence for circumstellar dust. We argue that a sharp upper limit to the luminosity function exists for yellow PAGB stars in old populations, making them excellent candidates for Population II standard candles, which are four magnitudes brighter than RR Lyrae variables. Their luminosities are consistent with the stars being in a PAGB evolutionary phase, with core masses of ˜ 0.53 {M}⊙ . We also detected four very hot stars lying above the horizontal branch (“AGB-manqué” stars); along with the PAGB star, they are the brightest objects in M79 in the near-ultraviolet. In the Appendix, we give periods and light curves for five variables in M79: three RR Lyrae stars, a Type II Cepheid, and a semiregular variable. Based in part on observations with the 1.3 and 1.5 m telescopes operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  2. SPITZER DETECTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SILICATE FEATURES IN POST-AGB STARS AND YOUNG PLANETARY NEBULAE

    SciTech Connect

    Cerrigone, Luciano; Hora, Joseph L.; Umana, Grazia; Trigilio, Corrado

    2009-09-20

    We have observed a small sample of hot post-asymptotic giant branch (AGB) stars with the Infrared Array Camera (IRAC) and the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The stars were selected from the literature on the basis of their far-infrared (IR) excess (i.e., post-AGB candidates) and B spectral type (i.e., close to the ionization of the envelope). The combination of our IRAC observations with Two Micron All Sky Survey and IRAS catalog data, along with previous radio observations in the cm range (where available) allowed us to model the spectral energy distributions of our targets and find that in almost all of them at least two shells of dust at different temperatures must be present, the hot dust component ranging up to 10{sup 3} K. In several targets, grains larger than 1 {mu}m are needed to match the far-IR data points. In particular, in IRAS 17423-1755 grains up to 100 {mu}m must be introduced to match the emission in the millimeter range. We obtained IRS spectra to identify the chemistry of the envelopes and found that more than one-third of the sources in our sample have mixed chemistry, showing both mid-IR bands attributed to polycyclic aromatic hydrocarbons (PAHs) and silicate features. The analysis of the PAH features indicates that these molecules are located in the outflows, far away from the central stars. We consider the larger than expected percentage of mixed-chemistry targets as a selection bias toward stars with a disk or torus around them. Our results strengthen the current picture of mixed chemistry being due to the spatial segregation of different dust populations in the envelopes.

  3. An infrared photometric and spectroscopic study of post-AGB stars

    NASA Astrophysics Data System (ADS)

    Raman, V. Venkata; Anandarao, B. G.; Janardhan, P.; Pandey, R.

    2017-09-01

    We present here Spitzer mid-infrared (IR) spectra and modelling of the spectral energy distribution (SED) of a selection of post-asymptotic giant branch (PAGB) stars. The mid-IR spectra of the majority of these sources showed spectral features such as polycyclic aromatic hydrocarbons (PAHs) and silicates in emission. Our results from SED modelling showed interesting trends of dependence between the photospheric and circumstellar parameters. A trend of dependence is also noticed between the ratios of equivalent widths (EWs) of various vibrational modes of PAHs and the photospheric temperature T* and model-derived stellar parameters for the sample stars. The PAGB mass-loss rates derived from the SED models are found to be higher than those for AGB stars. In a few objects, low- and high-excitation fine-structure emission lines were identified, indicating their advanced stage of evolution. Further, IR vibration modes of fullerene (C60) were detected for the first time in the PAGB star IRAS 21546+4721.

  4. Probing Collimated Outflows from Post-AGB Stars with H2

    NASA Astrophysics Data System (ADS)

    Forde, K. P.; Gledhill, T. M.; Smith, M. D.

    2011-09-01

    We present K-band integral field spectroscopy observations of the circumstellar envelope of the post-asymptotic giant branch star IRAS 16594-4656, revealing several collisionally excited H2 emission lines. The principal aim of this work is to investigate the nature of the H2 excitation mechanisms via line transitions coupled with shock model predictions for these transitions. Spatial and spectral information were simultaneously acquired using the SINFONI integral field unit on VLT with adaptive optics; the medium resolution mode covering the entire K-band (1.95 - 2.45μm) was used.

  5. Carbonaceous molecules in the oxygen-rich circumstellar environment of binary post-AGB stars. C60 fullerenes and polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gielen, C.; Cami, J.; Bouwman, J.; Peeters, E.; Min, M.

    2011-12-01

    Context. The circumstellar environment of evolved stars is generally rich in molecular gas and dust. Typically, the entire environment is either oxygen-rich or carbon-rich, depending on the evolution of the central star. Aims: In this paper we discuss three evolved disc sources with evidence of atypical emission lines in their infrared spectra. The stars were taken from a larger sample of post-AGB binaries for which we have Spitzer infrared spectra, characterised by the presence of a stable oxygen-rich circumbinary disc. Our previous studies have shown that the infrared spectra of post-AGB disc sources are dominated by silicate dust emission, often with an extremely high crystallinity fraction. However, the three sources described here are selected because they show a peculiar molecular chemistry. Methods: Using Spitzer infrared spectroscopy, we study in detail the peculiar mineralogy of the three sample stars. Using the observed emission features, we identify the different observed dust, molecular and gas species. Results: The infrared spectra show emission features due to various oxygen-rich dust components, as well as CO2 gas. All three sources show the strong infrared bands generally ascribed to polycyclic aromatic hydrocarbons. Furthermore, two sample sources show C60 fullerene bands. Conclusions: Even though the majority of post-AGB disc sources are dominated by silicate dust in their circumstellar environment, we do find evidence that, for some sources at least, additional processing must occur to explain the presence of large carbonaceous molecules. There is evidence that some of these sources are still oxygen-rich, which makes the detection of these molecules even more surprising. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Based on observations made with the Spitzer Space Telescope (program id 3274, 50092), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract

  6. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  7. Variability and possible rapid evolution of the hot post-AGB stars Hen 3-1347, Hen 3-1428, and LSS 4634

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Burlak, M. A.; Esipov, V. F.; Ikonnikova, N. P.; Kniazev, A. Yu.; Komissarova, G. V.; Tekola, A.

    2014-08-01

    We present the results of spectroscopic and photometric observations for three hot southern-hemisphere post-AGB objects, Hen 3-1347 = IRAS 17074-1845, Hen 3-1428 = IRAS 17311-4924, and LSS 4634 = IRAS 18023-3409. In the spectrograms taken with the 1.9-m telescope of the South African Astronomical Observatory (SAAO) in 2012, we have measured the equivalent widths of the most prominent spectral lines. Comparison of the new data with those published previously points to a change in the spectra of Hen 3-1428 and LSS 4634 in the last 20 years. Based on ASAS data, we have detected rapid photometric variability in all three stars with an amplitude up to 0{·/ m }3-0{·/ m }4 in the V band. A similarity between the patterns of variability for the sample stars and other hot protoplanetary nebulae is pointed out. We present the results of UBV observations for Hen 3-1347, according to which the star undergoes rapid irregular brightness variations with maximum amplitudes Δ V = 0{·/ m }25, Δ B = 0{·/ m }25, and Δ U = 0{·/ m }30 and shows color-magnitude correlations. Based on archival data, we have traced the photometric history of the stars over more than 100 years. Hen 3-1347 and LSS 4634 have exhibited a significant fading on a long time scale. The revealed brightness and spectrum variations in the stars, along with evidence for their enhanced mass, may be indicative of their rapid post-AGB evolution.

  8. VizieR Online Data Catalog: IR colours of AGB and post-AGB stars (Groenewegen+, 2006)

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.

    2005-11-01

    36 files are available electronically, corresponding to Tables A1-A36 of the Appendix, in the sub-directory "apx"; these files were grouped in 4 different files, delaing with AGB and post-AGB stages, and in the filters of 2MASS JHK and SPITZER (mag1) and ASTRO-F (mag2) The original files have names of the type: MAGNITUDE[n]AB_C.DAT, where -- n=1 list the VI, JHK, IRAC, MIPS colours; -- n=2 the various ASTRO-F colours. -- A= chemical type and effective temperature: C2650, C3600, M0, M6, M10. -- B= dust type and composition: AMC, AMCSIC15, AlOx, dpmod60alox40, dpmod. -- C= AGB or pAGB. For C= AGB the first column list the mass loss rate; for C=pAGB the first column list the temperature at the inner dust radius. (4 data files).

  9. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  10. Post-AGB stars in the SMC as tracers of stellar evolution: the extreme s-process enrichment of the 21 μm star J004441.04-732136.4

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P. R.

    2012-05-01

    Context. This paper is part of a larger project in which we want to focus on the still poorly understood asymptotic giant branch (AGB) third dredge-up processes and associated s-process nucleosynthesis. Aims: We confront accurate spectral abundance analyses of post-AGB stars in both the Magellanic Clouds, to state-of-the-art AGB model predictions. With this comparison we aim at improving our understanding of the 3rd dredge-up phenomena and their dependencies on initial mass and metallicity. Methods: Because of the well constrained distance with respect to Galactic post-AGB stars, we choose an extra-galactic post-AGB star for this contribution, namely the only known 21 μm object of the Small Magellanic Cloud (SMC): J004441.04-732136.4. We used optical UVES spectra to perform an accurate spectral abundance analysis. With photometric data of multiple catalogues we construct a spectral energy distribution (SED) and perform a variability analysis. The results are then compared to predictions of tailored theoretical chemical AGB evolutionary models for which we used two evolution codes. Results: Spectral abundance results reveal J004441.04-732136.4 to be one of the most s-process enriched objects found up to date, while the photospheric C/O ratio of 1.9 ± 0.7, shows the star is only modestly C-rich. J004441.04-732136.4 also displays a low [Fe/H] = -1.34 ± 0.32, which is significantly lower than the mean metallicity of the SMC. From the SED, a luminosity of 7600 ± 200 L⊙ is found, together with E(B - V) = 0.64 ± 0.02. According to evolutionary post-AGB tracks, the initial mass should be ≈1.3 M⊙. The photometric variability shows a clear period of 97.6 ± 0.3 days. The detected C/O as well as the high s-process overabundances (e.g. [Y/Fe] = 2.15, [La/Fe] = 2.84) are hard to reconcile with the predictions. The chemical models also predict a high Pb abundance, which is not compatible with the detected spectrum, and a very high 12C/13C, which is not yet constrained

  11. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P. R.

    2015-11-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of extra-galactic post-asymptotic giant branch (post-AGB) stars. The aim of our programme is to derive chemical abundances of stars covering a large range in luminosity and metallicity with the ultimate goal of testing, constraining, and improving our knowledge of the poorly understood AGB phase, especially the third dredge-up mixing processes and associated s-process nucleosynthesis. Aims: Post-AGB photospheres are dominated by atomic lines and indicate the effects of internal chemical enrichment processes over the entire stellar lifetime. In this paper, we study two carefully selected post-AGB stars: J051213.81-693537.1 and J051848.86-700246.9 in the Large Magellanic Cloud (LMC). Both objects show signs of s-process enhancement. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances (and hence luminosities and initial masses) make these objects ideal probes of the AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and subsequently perform detailed elemental abundance studies of post-AGB stars. Additionally, we use available photometric data covering optical and IR bands to construct spectral energy distributions for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: We obtained accurate atmospheric parameters for J051213.81-693537.1 (Teff = 5875 ± 125 K, log g = 1.00 ± 0.25 dex, [Fe/H] = -0.56 ± 0.16 dex) and J051848.86-700246.9 (Teff = 6000 ± 125 K, log g = 0.50 ± 0.25 dex, [Fe/H] = -1.06 ± 0.17 dex). Both stars show extreme s-process enrichment associated with relatively low C/O ratios of 1.26 ± 0.40 and 1.29 ± 0.30 for J051213-693537.1 and J051848

  12. The optically bright post-AGB population of the LMC

    NASA Astrophysics Data System (ADS)

    van Aarle, Els; van Winckel, Hans; Lloyd Evans, Tom; Wood, Peter R.

    2009-03-01

    The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-AGB stars is so large, that there is no consensus yet on how individual objects are linked by evolutionary channels. The evaluation is complicated by the fact that the distances and hence luminosities of these objects are poorly known. In this contribution we report on our project to overcome this problem by focusing on a significant sample of post-AGB stars with known distances: those in the LMC. Via cross-correlation of the infrared SAGE-SPITZER catalogue with optical catalogues we selected a sample of 322 LMC post-AGB candidates based on their position in the various colour-colour diagrams. We determined the fundamental properties of 82 of them, using low resolution optical spectra that we obtained at Siding Spring and SAAO. We selected a subsample to be studied at high spectral resolution in order to obtain accurate abundances of a wide range of species. This will allow us to connect the theoretical predictions with the obtained surface chemistry at a given luminosity and metallicity. By this, we want to constrain important structure parameters of the evolutionary models. Preliminary results of the selection process are presented.

  13. Post-AGB Evolution Much Faster Than Previously Phought

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2017-03-01

    For 32 central stars of PNe we present their parameters interpolated among new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 M⊙ in good agreement with the peak in the white dwarf mass distribution. Consequently, the inferred star formation history of the Galactic bulge is well restricted between 3 and 11 Gyr and is compatible with other published studies. The new evolutionary tracks proved very good as a tool for analysis of late stages of stars life. The results provide a compelling confirmation of the accelerated post-AGB evolution.

  14. Post-AGB Binaries and Their Connection to the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Van Winckel, H.

    2017-02-01

    We argue in this contribution that secondary stable disks around evolved stars can be found over a wide range in luminosity all over the HR-diagram. The disks around B[e] supergiants form the high luminosity end of similar structures found around post-Asymptotic Giant Branch (post-AGB) stars as well as the recently discovered post-Red Giant Branch (post-RGB) stars. We focus here on the observational properties of disks around binary post-AGB stars and end with a link to the B[e] phenomenon.

  15. VizieR Online Data Catalog: Torun catalog of post-AGB and related objects (Szczerba+, 2007)

    NASA Astrophysics Data System (ADS)

    Szczerba, R.; Siodmiak, N.; Stasinska, G.; Borkowski, J.

    2007-09-01

    With the ongoing AKARI infrared sky survey, of much greater sensitivity than IRAS, a wealth of post-AGB objects may be discovered. It is thus time to organize our present knowledge of known post-AGB stars in the galaxy with a view to using it to search for new post-AGB objects among AKARI sources. We searched the literature available on the NASA Astrophysics Data System up to 1 October 2006, and defined criteria for classifying sources into three categories: very likely, possible and disqualified post-AGB objects. The category of very likely post-AGB objects is made up of several classes. We have created an evolutionary, on-line catalogue of Galactic post-AGB objects, to be referred to as the Torun catalogue of Galactic post-AGB and related objects. The present version of the catalogue contains 326 very likely, 107 possible and 64 disqualified objects. For the very likely post-AGB objects, the catalogue gives the available optical and infrared photometry, infrared spectroscopy and spectral types, and links to finding charts and bibliography. (3 data files).

  16. The optically bright post-AGB population of the LMC

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; van Winckel, H.; Lloyd Evans, T.; Ueta, T.; Wood, P. R.; Ginsburg, A. G.

    2011-06-01

    Context. The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-asymptotic giant branch (AGB) stars is so large that there is no consensus yet on how the different objects are linked by evolutionary channels. The evaluation is complicated by the fact that their distances and hence luminosities remain largely unknown. Aims: We construct a catalogue of the optically bright post-AGB stars in the Large Magellanic Cloud (LMC). The sample forms an ideal testbed for stellar evolution theory predictions of the final phase of low- and intermediate-mass stars, because the distance and hence luminosity and also the current and initial mass of these objects is well constrained. Methods: Via cross-correlation of the Spitzer SAGE catalogue with optical catalogues we selected a sample of LMC post-AGB candidates based on their [8] - [24] colour index and estimated luminosity. We determined the fundamental properties of the central stars of 105 of these objects using low-resolution, optical spectra that we obtained at Siding Spring Observatory and SAAO. Results: We constructed a catalogue of 70 high probability and 1337 candidate post-AGB stars that is available at the CDS. About half of the objects in our sample of post-AGB candidates show a spectral energy distribution (SED) that is indicative of a disc rather than an expanding and cooling AGB remnant. Like in the Galaxy, the disc sources are likely associated with binary evolution. Important side products of this research are catalogues of candidate young stellar objects, candidate supergiants with circumstellar dust, and discarded objects for which a spectrum was obtained. These too are available at the CDS. Appendices A-D are available in electronic form at http://www.aanda.orgCatalogues are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A90

  17. Imaging the transition between pre-planetary and planetary nebulae: integral field spectroscopy of hot post-AGB stars with NIFS

    NASA Astrophysics Data System (ADS)

    Gledhill, T. M.; Forde, K. P.

    2015-02-01

    We present 2-2.4 μm integral field spectroscopy of a sample of hot post-asymptotic giant branch stars with early-B spectral types, using the Near-infrared Integral Field Spectrometer instrument on Gemini North. These stars are just beginning to ionize their immediate environments and turn into planetary nebulae (PNe). We use molecular hydrogen emission lines together with hydrogen and helium recombination lines to explore the distribution of molecular and atomic gas and the extent of the developing ionized region. We see a range of evolutionary stages: IRAS 18062+2410 and IRAS 18379-1707 have recently developed compact and unresolved regions of photoionized H within axisymmetric molecular envelopes, with the former object increasing its Brγ flux by a factor of 5.3 in 14 years; IRAS 22023+5249 and IRAS 20462+3416 have extended Brγ nebulae and in the latter object only weak H2 emission remains; IRAS 19336-0400 is at a more advanced stage of PN formation where H2 is mostly dissociated and we see structure in both the H and He recombination line nebulae. IRAS 19200+3457 is the only object not to show the He I line at 2.058 μm and is probably the least evolved object in our sample; the H2 emission forms a ring around the star and we suggest that this object may be a rare example of a `round' pre-PN in transition to a `round' PN.

  18. The Impact of FUSE on our Understanding of Stellar Post-AGB Evolution

    SciTech Connect

    Rauch, T.; Werner, K.; Ziegler, M.; Koesterke, L.; Kruk, J. W.; Oliveira, C. M.

    2009-05-24

    State-of-the-art non-LTE spectral analysis requires high-resolution and high-S/N observations of strategic metal lines in order to achieve reliable photospheric parameters like, e.g., effective temperature, surface gravity, and element abundances.Hot stars with effective temperatures higher than about 40 000 K exhibit their metal-line spectrum arising from highly ionized species predominantly in the (far) ultraviolet wavelength range.FUSE observations of hot, compact stars provided the necessary data. With these, it has been, e.g., possible to identify fluorine for the first time in observations of post-AGB stars. The evaluation of ionization equilibria of highly ionized neon, phosphorus, sulfur, and argon provides a new sensitive tool to determine effective temperatures of the hottest stars precisely. Moreover, abundance determinations have put constraints on stellar evolutionary models which, in turn, have improved greatly our picture of post-AGB evolution.

  19. Probing the collimation of pristine post-AGB jets with STIS

    NASA Astrophysics Data System (ADS)

    Sanchez Contreras, Carmen

    2009-07-01

    The shaping of planetary and protoplanetary nebulae {PNe and PPNe} is probably the most exciting yet least understood problem in the late evolution of 1-8 solar mass stars. An increasing number of astronomers believe that fast jet-like winds ejected in the PPN phase are responsible for carving out the diverse shapes in the dense envelopes of the Asymptotic Giant Branch {AGB} stars. To date, the properties of these post-AGB jets have not been characterized and, indeed, their launching/collimation mechanism is still subject to controversial debate. This is due to the lack of the direct observations probing the spatio-kinematic structure of post-AGB winds in the stellar vicinity { 10e16cm}, which is only possible with HST+STIS. Recently, STIS observations have allowed us for the first time the DIRECT study of the structure and kinematics of the elusive post-AGB winds in one PPN, He3-1475 {Sanchez Contreras & Sahai 2001}. Those winds have been discovered through H-alpha blue-shifted absorption features in the inner 0.3"-0.7" of the nebula. These STIS observations have revealed an ultra-fast collimated outflow relatively unaffected by the interaction with the AGB wind that is totally hidden in ground-based spectroscopic observations and HST images. The discovery of the pristine ultra-fast { 2300km/s} jet in He3-1475 is the first observational confirmation of the presence of collimated outflows as close as 10e16cm from the central star. Most importantly, the spatio-kinematic structure of the ultra-fast jet clearly rules out hydrodynamical collimation alone and favors magnetic wind collimation. Therefore, STIS observations provide a unique method of probing the structure, kinematics, and collimation mechanism of the elusive post-AGB winds. We now propose similar observations for a sample of bipolar PPNe with ongoing post-AGB ejections in order to investigate the frequency of jets like those in He3-1475 in other PPNe and elucidate their nature and collimation mechanism

  20. Variability Studies in Two Hypergiants and a Post-AGB Object

    NASA Astrophysics Data System (ADS)

    Freund, Stephen; Hrivnak, Bruce J.; Lu, Wenxian

    2016-01-01

    In the course of long-term photometric monitoring of post-AGB stars at the Valparaiso University campus observatory, we have also observed some objects of uncertain evolutionary state. This includes two objects that have some of the characteristics of post-AGB stars, such as large IR excesses and F-G spectral types. The weight of recent evidence suggests that two of these, IRAS 19114+0002 (AFGL 2343) and IRAS 19244+1115 (IRC+10 420), are instead hypergiants, objects of very high luminosity arising from evolved high-mass progenitors. A third object, IRAS 20004+2955 (V1027 Cyg), appears to be a cool post-AGB star evolving from a low or intermediate-mass progenitor. We have light and color curves from 1994-2007, along with some radial velocity data from 1991-1995. These three objects display complex light and color curves with evidence of periodicity in the range of 100 to 300 days. We will present the results of these studies. This research is supported by grants from the National Science Foundation (most recently AST 1413660), the Indiana Space Grant Consortium, and Valparaiso University.

  1. Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hu, J. Y.; Slijkhuis, S.

    1989-01-01

    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates.

  2. Post-AGB A and F Supergiants as Standard Candles

    NASA Astrophysics Data System (ADS)

    Fullton, L. K.; Bond, H. E.; Saha, A.; Schaefer, K. G.

    1995-12-01

    Low-mass stars leaving the asymptotic giant branch (AGB) and passing through spectral types F and A should, theoretically, have a very narrow luminosity function. The upper limit is set by the much shorter lifetimes of the more luminous post-AGB (PAGB) stars, and the lower limit corresponds to the turnoff mass of the oldest stars in the parent population. A handful of PAGB A-F supergiants are known in Milky Way globular clusters, and gratifyingly show a very small scatter around absolute magnitude M_V = -3.4. Moreover, PAGB A-F stars are readily recognized because of their enormous Balmer jumps, lie in regions of spirals that are relatively free of internal absorption, should also exist in ellipticals, and do not require a long time series of observations for their detection. In order to calibrate PAGB stars as standard candles, we are searching for them with Gunn u plus Johnson-Kron-Cousins BVI CCD photometry in old populations of Local Group galaxies, and we report preliminary results here. In the halo of M31, we have used the KPNO 4-m telescope to find PAGB stars in the numbers expected from theoretical evolutionary lifetimes, with a scatter in absolute magnitude of only sigma =0.3 mag. We have also used the Curtis Schmidt and 1.5-m telescope at CTIO to search for PAGB stars in the two Magellanic Clouds, and in NGC 6822 and IC 1613, in order to calibrate any metallicity effects. Assuming that the predicted sharp luminosity function is confirmed within the Local Group, we next plan to apply the method to the Sculptor and M81 Groups with ground-based telescopes. The ultimate aim will be to use HST and its Advanced Camera to determine the distance to the Virgo Cluster with this ``Population II'' candle, which will be directly calibrated within the Milky Way and entirely independent of the Population I Cepheid distance scale. Supported by NASA Grant NAGW-4361.

  3. The composition of freshly-formed dust in recent (post-)AGB thermal pulses

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak

    2013-01-01

    We recently discovered a candidate Asymptotic Giant Branch (AGB) star undergoing a thermal pulse (TP). WISE J1810--3305 is one of only two sources in the WISE sky survey which show very red WISE colors but a very blue 2MASS [K] vs. WISE [W1 (3.4 mu m)] color, and drastic brightening at 12 mu m since IRAS observation. This favours a scenario in which we have caught a massive dust ejection event during a TP that began only ~15 years ago. The other source is Sakurai's object, which also underwent a massive dust expulsion around the same time, but is in a later evolutionary (post-AGB) phase. Few firm constraints exist on the TP stage because of its brevity. These objects provide a unique opportunity for understanding TP evolution and dust production in real-time. Here we propose COMICS spectroscopy of WISE J1810--3305 in order to study the composition of the circumstellar dust. We will search for molecular bands, and identify whether the central object is an Oxygen or Carbon rich AGB star. We also propose identical spectroscopy of Sakurai's object in order to compare AGB with post-AGB evolution. These objects are presently brightest in the mid-IR, and COMICS is the only ground-based mid-IR camera with the requisite capability for observation.

  4. First detection of methanol towards a post-AGB object, HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W. H. T.; Bergman, P.; Humphreys, E. M. L.; Lindqvist, M.; Maercker, M.; Nyman, L.; Ramstedt, S.; Tafoya, D.

    2017-07-01

    The circumstellar environments of objects on the asymptotic giant branch and beyond are rich in molecular species. Nevertheless, methanol has never been detected in such an object, and is therefore often taken as a clear signpost for a young stellar object. However, we report the first detection of CH3OH in a post-AGB object, HD 101584, using ALMA. Its emission, together with emissions from CO, SiO, SO, CS, and H2CO, comes from two extreme velocity spots on either side of the object where a high-velocity outflow appears to interact with the surrounding medium. We have derived molecular abundances, and propose that the detected molecular species are the effect of a post-shock chemistry where circumstellar grains play a role. We further provide evidence that HD 101584 was a low-mass, M-type AGB star.

  5. Improving the distances of post-AGB objects in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vickers, Shane B.; Frew, David J.; Owers, Matt S.; Parker, Quentin A.; Bojičič, Ivan S.

    2016-07-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

  6. Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1998-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.

  7. Pulsational variability in proto-planetary nebulae and other post-AGB objects

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.

    2016-07-01

    Light and velocity curves of several classes of pulsating stars have been successfully modeled to determine physical properties of the stars. In this observational study, we review briefly the pulsational variability of the main classes of post-AGB stars. Our attention is focused in particular on proto-planetary nebulae (PPNe), those in the short-lived phase from AGB stars to the planetary nebulae. New light curves and period analyses have been used to determine the following general properties of the PPNe variability: (a) periods range from 35 to 160 days for those of F—G spectral types, with much shorter periods (< 1 day) found for those of early-B spectral type; (b) there is a correlation between the pulsation period, maximum amplitude, and temperature of the star, with cooler stars pulsating with longer periods and larger amplitudes; (c) similar correlations are found for carbon-rich, oxygen-rich, and lower-metalicity PPNe; and (d) multiple periods are found for all of them, with P2/P1 = 1.0±0.1. New models are needed to exploit these results.

  8. Stellar parameters for Pop II A-type stars from IUE spectra and new-ODF ATLAS9 model atmospheres

    NASA Astrophysics Data System (ADS)

    Castelli, F.; Cacciari, C.

    2001-12-01

    Stellar parameters for twenty-seven field horizontal branch A-type stars, a post-AGB star (BD +32 2188), and a possible cool sdB star (BD +00 0145) were obtained by fitting the whole IUE energy distributions taken from the IUE-INES archive to the ultraviolet energy distributions predicted by new-ODF ATLAS9 model atmospheres, which include the Lyman-alpha H-H+ and H-H quasi-molecular absorptions near 1400 Å and 1600 Å. The sample of stars was extensively studied by Kinman et al. (2000), who derived stellar parameters for them by using visual observations and also an ultraviolet color index. The effective temperatures obtained by fitting the IUE spectra to the new-ODF models agree with T_eff derived by Kinman et al. (2000) for most of the stars in the sample. The gravities from UV agree with those from Kinman et al. (2000) for stars hotter than about 8700 K, while they are lower, on average, by 0.3 dex for the cooler stars. The same discrepancy is present when log g from the ultraviolet energy distribution is compared with log g from the visible energy distribution. The difference is insensitive to reddening, microturbulent velocity, metallicity, or mixing-length parameter for the treatment of the convection. Figures A.1 to A.15 are only available in electronic form at http://www.edpsciences.org

  9. VizieR Online Data Catalog: Water maser emission toward post-AGB and PN (Gomez+, 2015)

    NASA Astrophysics Data System (ADS)

    Gomez, J. F.; Rizzo, J. R.; Suarez, O.; Palau, A.; Miranda, L. F.; Guerrero, M. A.; Ramos-Larios, G.; Torrelles, J. M.

    2015-09-01

    The observed sources are listed in Table 1. They comprise most of the sources in Ramos-Larios et al. (2009A&A...501.1207R). They are post-AGB stars and PN candidates with the IRAS color criteria of Suarez et al. (2006A&A...458..173S) and with signs of strong optical obscuration. We have also included some optically visible post-AGB stars from Suarez et al. (2006A&A...458..173S) that were not included in our previous water maser observations of Suarez et al. (2007A&A...467.1085S, 2009A&A...505..217S) or for which those observations had poor sensitivity. We observed the 616-523 transition of H2O (rest frequency = 22235.08MHz) using three different telescopes: the DSS-63 antenna (70m diameter) at the Madrid Deep Space Communications Complex (MDSCC) near Robledo de Chavela (Spain), the 64m antenna at the Parkes Observatory of the Australia Telescope National Facility (ATNF), and the 100m Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Observatory. The observed positions, rms noise per spectral channel, and observing dates are listed in Table 1. (3 data files).

  10. A second post-AGB nebula that contains gas in rotation and in expansion: ALMA maps of IW Carinae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Van Winckel, H.; Sánchez Contreras, C.; Santander-García, M.

    2017-01-01

    Aims: We aim to study the presence of both rotation and expansion in post-AGB nebulae, in particular around IW Car, a binary post-AGB star that was suspected to be surrounded by a Keplerian disk. Methods: We obtained high-quality ALMA observations of 12CO and 13CO J = 3-2 lines in IW Car. The maps were analyzed by means of a simplified model of CO emission, based on those used for similar objects. Results: Our observations clearly show the presence of gas components in rotation, in an equatorial disk, and expansion, which shows an hourglass-like structure with a symmetry axis perpendicular to the rotation plane and is probably formed of material extracted from the disk. Our modeling can reproduce the observations and shows moderate uncertainties. The rotation velocity corresponds to a central stellar mass of approximately 1 M⊙. We also derive the total mass of the molecule-rich nebula, found to be of 4 × 10-3M⊙; the outflow is approximately eight times less massive than the disk. From the kinematical age of the outflow and the mass values derived for both components, we infer a (future) lifetime of the disk of approximately 5000-10 000 yr.

  11. Do A-type stars flare?

    NASA Astrophysics Data System (ADS)

    Pedersen, M. G.; Antoci, V.; Korhonen, H.; White, T. R.; Jessen-Hansen, J.; Lehtinen, J.; Nikbakhsh, S.; Viuho, J.

    2017-04-01

    For flares to be generated, stars have to have a sufficiently deep outer convection zone (F5 and later), strong large-scale magnetic fields (Ap/Bp-type stars) or strong, radiatively driven winds (B5 and earlier). Normal A-type stars possess none of these and therefore should not flare. Nevertheless, flares have previously been detected in the Kepler light curves of 33 A-type stars and interpreted to be intrinsic to the stars. Here, we present new and detailed analyses of these 33 stars, imposing very strict criteria for the flare detection. We confirm the presence of flare-like features in 27 of the 33 A-type stars. A study of the pixel data and the surrounding field of view reveals that 14 of these 27 flaring objects have overlapping neighbouring stars and five stars show clear contamination in the pixel data. We have obtained high-resolution spectra for 2/3 of the entire sample and confirm that our targets are indeed A-type stars. Detailed analyses revealed that 11 out of 19 stars with multiple epochs of observations are spectroscopic binaries. Furthermore, and contrary to previous studies, we find that the flares can originate from a cooler, unresolved companion. We note the presence of Hα emission in eight stars. Whether this emission is circumstellar or magnetic in origin is unknown. In summary, we find possible alternative explanations for the observed flares for at least 19 of the 33 A-type stars, but find no truly convincing target to support the hypothesis of flaring A-type stars.

  12. AE and A type shell stars

    NASA Astrophysics Data System (ADS)

    Jaschek, C.; Andrillat, Y.

    1998-06-01

    We present and discuss the observations of 14 Ae and A type shell stars in the visual, the Hα region and the near infrared. At least 57% of these stars are spectrum variables. The Paschen lines are formed in a region which has the characterics of giant stars. We find that the systems lie one magnitude above the main sequence and that a large percentage belong to double and triple systems.

  13. Enanas blancas post-AGB deficientes en Hidrógeno: su evolución espectral PG1159-DB-DQ

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Córsico, A. H.; Serenelli, A. M.; Scóccola, C. G.; García-Berro, E.

    This work explore the formation and evolution of hydrogen-deficient post-AGB white dwarfs. To this end, we compute the complete evolution of an initially 2.7 M sun star from the ZAMS through the thermally pulsing and mass-loss phases to the white dwarf stage. Particular attention is given to the chemical abundance changes during the whole evolution. The evolution is extended to the domain of the helium-rich, carbon-contaminated DQ white dwarfs to exploring the possible evolutionary connection PG1159-DB-DQ.

  14. AI canis minoris, a pulsating low-mass supergiant at an early transition phase from the AGB to the post-AGB stage of evolution

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Ikonnikova, N. P.; Esipov, V. F.; Komissarova, G. V.

    2017-06-01

    The U BV photometry and low-resolution spectroscopy for the semiregular variable AI CMi, a candidate for post-AGB objects, performed in 1996-2016 and 2000-2013, respectively, are presented. The star showed multiperiodic brightness variations with an amplitude up to 1\\underset{\\cdot}{m} 5 in the V band, a significant (up to 0\\underset{\\cdot}{m} 4) bluing of the B - V and U - B colors as the star faded, and a change of its spectrum from G5 I to K3-5 I, depending on its brightness. A possible long-term fading of AI CMi below 8\\underset{\\cdot}{m} 5 in the period from May 2013 to early 2015 is observed in the light curve. The colors in this episode did not change the pattern of their unusual behavior with brightness. The main feature of the spectrum for AI CMi is the appearance and strengthening of TiO absorption bands as its brightness declines, which are atypical in the spectra of ordinary G5-K3 supergiants. The bluing of the B - V and U - B colors is interpreted as the blanketing of stellar radiation predominantly in V (and to a lesser extent in B) by the TiO absorption bands whose intensity increases dramatically with decreasing brightness. Another cause of the bluing can be the scattering of stellar radiation by small dust particles in the gas-dust shell of AI CMi. The star's continuum-normalized spectra over the period from 2000 to 2013 in the wavelength range 4200 to 7700 or 9200 Å are presented. These were taken at different phases of the pulsation cycle and clearly demonstrate the behavior of the TiO absorption bands depending on the V magnitude and B - V color. The equivalent widths of individual TiO bands weremeasured, and their correlation with the photometric parameters of the star is shown. AI CMi belongs to the O-rich branch of AGB/post-AGB supergiants and has a luminosity of 4000 L ⊙ at a distance of 1500 ± 700 pc. The mass of AI CMi is most likely small and close to the lower mass limit for post-AGB stars. The connection of the star

  15. A mid-IR interferometric survey with MIDI/VLTI: resolving the second-generation protoplanetary disks around post-AGB binaries

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Van Winckel, H.; Menu, J.; Manick, R.; Debosscher, J.; Min, M.; de Wit, W.-J.; Verhoelst, T.; Kamath, D.; Waters, L. B. F. M.

    2017-02-01

    Aims: We present a mid-IR interferometric survey of the circumstellar environment of a specific class of post-asymptotic giant branch (post-AGB) binaries. For this class the presence of a compact dusty disk has been postulated on the basis of various spatially unresolved measurements. The aim is to determine the angular extent of the N-band emission directly and to resolve the compact circumstellar structures. Methods: Our interferometric survey was performed with the MIDI instrument on the VLTI. In total 19 different systems were observed using variable baseline configurations. Combining all the visibilities at a single wavelength at 10.7 μm, we fitted two parametric models to the data: a uniform disk and a ring model mimicking a temperature gradient. We compared our observables of the whole sample, with synthetic data computed from a grid of radiative transfer models of passively irradiated disks in hydrostatic equilibrium. These models are computed with a Monte Carlo code that has been widely applied to describe the structure of protoplanetary disks around young stellar objects (YSO). Results: The spatially resolved observations show that the majority of our targets cluster closely together in the distance-independent size-colour diagram, and have extremely compact N-band emission regions. The typical uniform disk diameter of the N-band emission region is 40 mas, which corresponds to a typical brightness temperature of 400-600 K. The resolved objects display very similar characteristics in the interferometric observables and in the spectral energy distributions. Therefore, the physical properties of the disks around our targets must be similar. Our results are discussed in the light of recently published sample studies of YSOs to compare quantitatively the secondary discs around post-AGB stars to the ones around YSOs. Conclusions: Our high-angular-resolution survey further confirms the disk nature of the circumstellar structures present around wide post-AGB

  16. Mapping the 12CO J = 1-0 and J = 2-1 emission in AGB and early post-AGB circumstellar envelopes. I. The COSAS program, first sample

    NASA Astrophysics Data System (ADS)

    Castro-Carrizo, A.; Quintana-Lacaci, G.; Neri, R.; Bujarrabal, V.; Schöier, F. L.; Winters, J. M.; Olofsson, H.; Lindqvist, M.; Alcolea, J.; Lucas, R.; Grewing, M.

    2010-11-01

    We present COSAS (CO Survey of late AGB Stars), a project to map and analyze the 12CO J = 1-0 and J = 2-1 line emission in a representative sample of circumstellar envelopes around AGB and post-AGB stars. The survey was undertaken with the aim of investigating small- and large-scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS combines the high sensitivity and spatial resolving power of the IRAM Plateau de Bure interferometer with the better capability of the IRAM 30 m telescope to map extended emission. The global sample encompasses 45 stars selected to span a range in chemical type, variability type, evolutionary state, and initial mass. COSAS provides means to quantify variations in the mass-loss rates, assess morphological and kinematical features, and to investigate the appearance of fast aspherical winds in the early post-AGB phase. This paper, which is the first of a series of COSAS papers, presents the results from the analyses of a first sample of 16 selected sources. The envelopes around late AGB stars are found to be mostly spherical, often mingled with features such as concentric arcs (R Cas and TX Cam), a broken spiral density pattern (TX Cam), molecular patches testifying to aspherical mass-loss (WX Psc, IK Tau, V Cyg, and S Cep), and also with well-defined axisymmetric morphologies and kinematical patterns (X Her and RX Boo). The sources span a wide range of angular sizes, from relatively compact (CRL 2362, OH 104.9+2.4 and CRL 2477) to very large (χ Cyg and TX Cam) envelopes, sometimes partially obscured by self-absorption features, which particularly for IK Tau and χ Cyg testifies to the emergence of aspherical winds in the innermost circumstellar regions. Strong axial structures with more or less complex morphologies are detected in four early post-AGB stars (IRAS 20028+3910, IRAS 23321+6545, IRAS 19475+3119 and IRAS 21282+5050) of the sub

  17. Amorphous carbon in the disk around the post-AGB binary HR 4049. Discerning dust species with featureless opacity curves

    NASA Astrophysics Data System (ADS)

    Acke, B.; Degroote, P.; Lombaert, R.; de Vries, B. L.; Smolders, K.; Verhoelst, T.; Lagadec, E.; Gielen, C.; Van Winckel, H.; Waelkens, C.

    2013-03-01

    Context. Infrared spectroscopy has been extensively used to determine the mineralogy of circumstellar dust. The identification of dust species with featureless opacities, however, is still ambiguous. Here we present a method to lift the degeneracy using the combination of infrared spectroscopy and interferometry. Aims: The binary post-AGB star HR 4049 is surrounded by a circumbinary disk viewed at a high inclination angle. Apart from gaseous emission lines and molecular emission bands of polycyclic aromatic hydrocarbons (PAH), diamonds, and fullerenes, the 2-25 μm infrared spectrum is featureless. The goal of the paper is to identify the dust species responsible for the smooth spectrum. Methods: We gathered high-angular-resolution measurements in the near- and mid-infrared with the VLTI interferometric instruments AMBER and MIDI. The data set is expanded with archival Geneva optical photometry, ISO-SWS and Spitzer-IRS infrared spectroscopy, and VISIR N-band images and spectroscopy. We computed a grid of radiative-transfer models of the circumbinary disk of HR 4049 using the radiative-transfer code MCMax. We searched for models that provide good fits simultaneously to all available observations. Results: We find that the variable optical extinction towards the primary star is consistent with the presence of very small (0.01 μm) iron-bearing dust grains or amorphous carbon grains. The combination of the interferometric constraint on the disk extent and the shape of the infrared spectrum points to amorphous carbon as the dominant source of opacity in the circumbinary disk of HR 4049. The disk is optically thick to the stellar radiation in the radial direction. At infrared wavelengths it is optically thin. The PAH emission is spatially resolved in the VISIR data and emanates from a region with an extent of several hundreds of AU, with a projected photocenter displacement of several tens of AU from the disk center. The PAHs most likely reside in a bipolar outflow

  18. Integral field spectroscopy of H2 and CO emission in IRAS 18276-1431: evidence for ongoing post-AGB mass-loss

    NASA Astrophysics Data System (ADS)

    Gledhill, T. M.; Forde, K. P.; Lowe, K. T. E.; Smith, M. D.

    2011-03-01

    We present K-band integral field spectroscopy of the bipolar post-asymptotic giant branch (post-AGB) object IRAS 18276-1431 (OH 17.7-2.0) using SINFONI on the VLT. This allows us to image both the continuum and molecular features in this object from 1.95 to 2.45 μm with a spatial resolution down to 70 mas and a spectral resolution of ˜5000. We detect a range of H2 rovibrational emission lines which are consistent with shock excitation in regions of dense (˜107 cm-3) gas with shock velocities in the range of 25-30 km s-1. The distribution of H2 emission in the bipolar lobes suggests that a fast wind is impinging on material in the cavity walls and tips. H2 emission is also seen along a line of sight close to the obscured star as well as in the equatorial region to either side of the stellar position which has the appearance of a ring with radius 0.3 arcsec. This latter feature may be radially cospatial with the boundary between the AGB and post-AGB winds. The first overtone 12CO bandheads are observed longward of 2.29 μm with the v = 2-0 bandhead prominently in emission. The CO emission has the same spatial distribution as the K-band continuum and therefore originates from an unresolved central source close to the star. We interpret this as evidence for ongoing mass-loss in this object. This conclusion is further supported by a rising K-band continuum indicating the presence of warm dust close to the star, possibly down to the condensation radius. The redshifted scattered peak of the CO bandhead is used to estimate a dust velocity along the bipolar axis of 95 km s-1 for the collimated wind. This places a lower limit of ˜125 yr on the age of the bipolar cavities, meaning that the collimated fast wind turned on very soon after the cessation of AGB mass-loss.

  19. The COSAS survey I: First results from the IRAM mapping survey of 12CO J=1-0 & J=2-1 emission in AGB and early post-AGB circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Alcolea Jimanez, J.; Castr-Carrizo, A.; Quintana-Lacaci, G.; Neri, R.; Bujarrabal, V.; Schoeier, F. L.; Winters, J. M.; Olofsson, H.; Lindqvist, M.; Lucas, R.; Grewing, M.

    Here we present the first result from the COSAS (CO Survey of late AGB Stars) program (P.I. A. Castro-Carrizo), a J=1-0 and J=2-1 line emission mapping survey of a statistically representative sample of circumstellar envelopes around AGB and post-AGB stars. This mapping survey has been carried out to investigate the small and large scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS ideally combines the high spatial resolution and sensitivity of the IRAM Plateau de Bure Interferometer, with the IRAM Pico de Veleta 30m-MRT capabilities to map more extended emission. The whole program includes of 45 stars, selected to sample a wide variety in mass loss rate, chemical type (M, S and C types), variability type (regular variables like Miras and OH/IRs, semiregulars, irregulars, and non varying post-AGBs), evolutionary state, and initial mass. By no means it is an unbiased sample, so results must be interpreted with care, and in terms of the different population of sources represented in the sample. COSAS products (at first. maps and velocity fields, and after modeling, excitation and density profiles across the envelopes) provides means to quantify variations in the mass-loss rate history, assess on the prevalence of different morphological and kinematical features, and investigate the appearance of fast aspherical winds in the late-AGB and early post-AGB phases. This paper, which is the first of a series of COSAS papers, presents the results from the final mapping of a sample of 16 selected sources (about 1/3 of the whole list), namely: WX Psc, IK Tau, TX Cam, RX Boo, X Her, CRL 2362, x Cyg, V Cyg, S Cep, OH 104.9+2.4, R Cas, IRAS 19475+3119, IRAS 20028+3910, IRAS 21282+5050, IRAS 23321+6545 and CRL 2477. The envelopes around late AGB stars are found to be mostly spherical, but often presenting features like concentric arcs (R Cas and TX Cam), spiral density patterns

  20. Abundances in A-type Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Wilhelm, R.; Smith, V. V.

    1998-12-01

    As part of a program to explore correlations between abundance anomilies and physical parameters (e.g. Teff, vsini) in horizontal branch stars, we present preliminary results from high-resolution (R ~ 18,000) spectral observations of a small sample of A-type, horizontal branch stars. The sample was obtained using the 2.1m telescope and Sandiford Echelle at McDonald Observatory. A total of six standard FHB stars were observed including two, HD 130095 and HD 167105, which have been previously shown by Adleman and Philip to posses anomalously low [Ca/Fe] values. We have also obtained observations of eight of the brighter (B = 11.5-12.5) FHB stars from the HK objective-prism survey and two BHB stars from the globular cluster, M4. We will present abundance results that include [Ca/Fe], [Mg/Fe], and vsini values for the sample along with O and Na results for the two M4 stars. Our findings will be compared to previously published results for cluster BHB and field HB stars.

  1. EVIDENCE FOR GRANULATION IN EARLY A-TYPE STARS

    SciTech Connect

    Kallinger, Thomas; Matthews, Jaymie M.

    2010-03-01

    Stars with spectral types earlier than about F0 on (or close) to the main sequence have long been believed to lack observable surface convection, although evolutionary models of A-type stars do predict very thin surface convective zones. We present evidence for granulation in two {delta} Scuti stars of spectral type A2: HD 174936 and HD 50844. Recent analyses of space-based CoRoT data revealed up to some 1000 frequencies in the photometry of these stars. The frequencies were interpreted as individual pulsation modes. If true, there must be large numbers of nonradial modes of very high degree l which should suffer cancellation effects in disk-integrated photometry (even of high space-based precision). The p-mode interpretation of all the frequencies in HD 174936 and HD 50844 depends on the assumption of white (frequency-independent) noise. Our independent analyses of the data provide an alternative explanation: most of the peaks in the Fourier spectra are the signature of non-white granulation background noise, and less than about 100 of the frequencies are actual stellar p-modes in each star. We find granulation timescales which are consistent with scaling relations that describe cooler stars with known surface convection. If the granulation interpretation is correct, the hundreds of low-amplitude Fourier peaks reported in recent studies are falsely interpreted as independent pulsation modes and a significantly lower number of frequencies are associated with pulsation, consistent with only modes of low degree.

  2. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    SciTech Connect

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun E-mail: yangwuming@bnu.edu.cn

    2013-03-10

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 {approx}< t/t{sub MS} {approx}< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  3. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, Marcelo Miguel

    2016-04-01

    Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at

  4. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  5. B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR-FORMING REGION

    SciTech Connect

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-07-10

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), {tau} Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  6. VizieR Online Data Catalog: VAST Survey. A-type stars multiplicity (De Rosa+, 2014)

    NASA Astrophysics Data System (ADS)

    De Rosa, R. J.; Patience, J.; Wilson, P. A.; Schneider, A.; Wiktorowicz, S. J.; Vigan, A.; Marois, C.; Song, I.; Macintosh, B.; Graham, J. R.; Doyon, R.; Bessell, M. S.; Thomas, S.; Lai, O.

    2014-11-01

    To measure the frequency of stellar binary companions, and the distribution of their separations and mass ratios, we have obtained observations of a sample of 435 nearby A-type stars. The sample is composed of two overlapping sets of A-type stars within 75pc: a 363 star sample observed with AO instrumentation and a 228 star sample investigated with astrometry obtained from all-sky photographic surveys, with an overlap of 156 stars. (5 data files).

  7. Polarization maser observations of late-type stars at OH 1665 and 1667 MHz

    NASA Astrophysics Data System (ADS)

    Gonidakis, I.; Chapman, J. M.; Deacon, R. M.; Green, A. J.

    2014-10-01

    We present full-polarization observations, taken with the Parkes radio telescope, of the OH masers at 1665 and 1667 MHz in 34 evolved stars comprising 25 post-Asymptotic Giant Branch (post-AGB) stars and nine high-mass AGB stars (known as LI sources). The main objectives of the present study were to investigate the OH mainline polarization properties of post-AGB stars and high-mass AGB stars and to determine whether there is an association between polarization properties and evolutionary age. Circular and/or linear polarization was detected from 21 of the 34 observed stars. Linear polarization was detected as often as circular polarization, and was relatively more common in the 1667 MHz line. Circular polarization is stronger at 1665 MHz. The massive AGB stars appear to have the strongest magnetic fields. For the post-AGB stars there is a trend for increasing magnetic field strength at the location of the OH mainline masers with increasing post-AGB age. We infer that changes to the stellar magnetic fields play a significant role in the emergence of non-spherical morphologies in post-AGB stars. Six sources show narrow linearly polarized features at 1667 MHz with no corresponding circular polarization at 1667 MHz, that are interpreted as candidate π-components. In one source, a candidate π-component is identified through a Zeeman triplet.

  8. Spectral Analysis of the O(He)-Type Central Stars of the Planetary Nebulae K 1-27 and LoTr 4

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Ringat, E.; Rauch, T.; Werner, K.; Kruk, J. W.

    2011-01-01

    The four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-defiCient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.

  9. Models of the Hydrodynamic Histories of Post-AGB Stars. I. Multiflow Shaping of OH 231.8+04.2

    NASA Astrophysics Data System (ADS)

    Balick, Bruce; Frank, Adam; Liu, Baowei; Huarte-Espinosa, Martín

    2017-07-01

    We present a detailed hydrodynamic model that matches the present structure of the well-observed preplanetary nebula (“pPN”) OH 231.8+04.2 (“OH231”). The purpose of the model is to present a physically justified and coherent picture of its evolutionary history from about 100 years from the start of the formation of its complex outer structures to the present. We have adopted a set of initial conditions that are heavily constrained by high-quality observations of its present structure and kinematics. The shaping of the nebula occurs while the densities of the flows are “light,” i.e., less than the surrounding AGB-wind environment. The simulations show that pairs of essentially coeval clumps and sprays of the same extent and density, but different outflow speeds, sculpted both the pair of thin axial flow “or spine” and the bulbs. The total ejected mass and momentum in the best-fit model are surprisingly large—3 M ⊙ and 2.2 × 1041 gm cm s-1, respectively—however, these values are reduced by up to a factor of 10 in other models that fit the data almost as well. Our ultimate goal is to combine the present model results of masses, momenta, flow speeds, and flow geometries for OH231 with those of other models to be published in the future in order to find common attributes of their ejection histories.

  10. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  11. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  12. Nuclear processes associated with peculiar A-type stars.

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1971-01-01

    A discussion is given of the various roles that nuclear reactions may play in production of anomalous abundances of elements in peculiar A stars. The effects which may be expected to occur both in the surface nuclear reactions and in some possible internal reactions that can occur in advanced stages of stellar evolution are considered. It is suggested that various features of peculiar A stars may require simultaneous operation of two or more of the processes of surface diffusion, surface nuclear reactions, and internal nuclear reactions.

  13. Flares on A-type Stars: Evidence for Heating of Solar Corona by Nanoflares?

    NASA Astrophysics Data System (ADS)

    Švanda, Michal; Karlický, Marian

    2016-11-01

    We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler. We found that the histogram of occurrence frequencies of stellar flares is systematically shifted toward a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws toward flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that, for A-type stars, the total energy flux density was at least four-times smaller than for G stars. We speculate that this deficit in energy supply may explain the lack of hot coronae on A-type stars. Our results indicate the importance of nanoflares for heating and formation of the solar corona.

  14. A survey for pulsations in A-type stars using SuperWASP

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.

    2015-12-01

    "It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational

  15. A Catalog of Candidate Field Horizontal-Branch and A-Type Stars. II.

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Wilhelm, Ronald; Doinidis, Stephen P.; Mattson, Caroline J.

    1996-04-01

    We present coordinates and brightness estimates for 4175 candidate field horizontal-branch and A-type stars, in the magnitude range 10 ≤ B ≤ 15.5, selected using an objective-prism/interference-filter survey technique. The candidates lie primarily in the northern Galactic hemisphere and complement a previously published sample of southern Galactic hemisphere candidates. Available spectroscopy and photometry indicates that the great majority of the candidates are likely to be bona fide members of either the field blue horizontal-branch population or the blue, metal-deficient, high surface gravity stars referred to by Preston, Beers, & Shectman as BMP stars. The remaining stars in the catalog are likely to be a mix of metal-deficient turnoff stars, metallic-line (Am) stars, field red horizontal-branch stars, optical doubles with overlapping objective-prism spectra, and (particularly among the fainter candidates) inadvertently included late-type stars.

  16. Identification and Analysis of Horizontal-Branch and Other A-Type Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rossi, Silvia C. F.; Beers, Timothy C.; Wilhelm, Ronald J.

    New techniques are being developed for the identification of Field Horizontal-Branch (FHB) and other A-type stars based on moderate-resolution spectroscopic observations and broadband UBV photometry. Physical parameters (T_eff, log g, and feh\\ ) for these stars can be estimated with accuracy on the order of sigma (T_eff) = 250 K, sigma (log g) = 0.35 dex, and sigma (feh ) = 0.30 dex, respectively. Detailed analysis such as this is required in order to form a ``clean'' sample of FHB stars, as such samples are easily confounded by the presence of halo blue stragglers (or BMP stars) and other high-gravity A-type stars. We summarize these analysis techniques, and discuss their application to a new large sample of FHB/A stars identified as part of the ongoing HK interference-filter/objective-prism survey of Beers and collaborators.

  17. CO observations of candidates for carbon-rich asymptotic giant branch and post-asymptotic giant branch stars

    NASA Technical Reports Server (NTRS)

    Volk, Kevin; Kwok, Sun; Woodsworth, Andrew W.

    1993-01-01

    Circumstellar CO emission has been detected in a number of featureless or weak SiC emission, low color temperature IRAS sources. The CO detections confirm the suggestion that these are either extreme carbon stars, carbon-rich proto-planetary nebulae (PPNs), or carbon-rich planetary nebulae (PNs). We find that the CO emission is relatively stronger for a given luminosity in post-AGB stars than AGB stars, suggesting a more efficient excitation mechanism is at work in the post-AGB phase. One probable post-AGB star was detected in HCN for the first time. The available HCN data suggest a rapid decline in HCN emission after the AGB. Molecular emission is shown to be a useful tracer of the evolution from asymptotic giant branch to the planetary nebula phase.

  18. Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    DTIC Science & Technology

    2007-02-01

    unresolved close companions are detected. Key words: astrometry — planetary nebulae: general — stars : AGB and post - AGBstars : distances 1. INTRODUCTION... hot , hydrogen-rich star , and is still unusual, despite the fact that the temperature derived now by Barstow et al. (2003) for RE 1738+665 (and for...TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2

  19. About the new B- and A-type periodic variable stars

    NASA Astrophysics Data System (ADS)

    Mowlavi, Nami; Saesen, Sophie; Barblan, Fabio; Semaan, Thierry; Eyer, Laurent

    2015-08-01

    New periodic variable stars of type B and A were discovered in 2013 in the open cluster NGC 3766 (Mowlavi et al. 2013), in a region of the Hertzsprung-Rusell diagram on the main sequence, between delta-Scuti and Slowly Pulsating B stars, where no periodic star was expected to be found. The observational properties of the potentially new class of variability challenged model predictions of pulsating stars that were available at the time of their discovery, and triggered new theoretical developments in the field.Meanwhile, we obtained additional observational elements that shed new light on these new periodic variable stars. First, we analyzed photometric data of three other young clusters with ages between about 15 to about 70 million years, for which we had up to seven years of observations. The analysis reveals the presence of the new periodic B- and A-type stars in those clusters as well, with properties similar to those found in NGC 3766, but with also new features. Second, we took spectra of all new periodic variables found in NGC 3766, using Giraffe multi-fiber spectrometer mounted on the VLT. Those data enable a better characterization of the nature of those stars.We present in this contribution the results of those two new studies, and their impacts on our understanding of the new periodic stars.

  20. Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Holland, W. S.; Matthews, B. C.; Marshall, J. P.; Dent, W. R. F.; Woitke, P.; Wyatt, M. C.; Matrà, L.; Jackson, A.

    2016-10-01

    Discs of dusty debris around main-sequence stars indicate fragmentation of orbiting planetesimals, and for a few A-type stars, a gas component is also seen that may come from collisionally released volatiles. Here we find the sixth example of a CO-hosting disc, around the ˜30 Myr-old A0-star HD 32997. Two more of these CO-hosting stars, HD 21997 and 49 Cet, have also been imaged in dust with SCUBA-2 within the SCUBA-2 Survey of Nearby Stars project. A census of 27 A-type debris hosts within 125 pc now shows 7/16 detections of carbon-bearing gas within the 5-50 Myr epoch, with no detections in 11 older systems. Such a prolonged period of high fragmentation rates corresponds quite well to the epoch when most of the Earth was assembled from planetesimal collisions. Recent models propose that collisional products can be spatially asymmetric if they originate at one location in the disc, with CO particularly exhibiting this behaviour as it can photodissociate in less than an orbital period. Of the six CO-hosting systems, only β Pic is in clear support of this hypothesis. However, radiative transfer modelling with the ProDiMo code shows that the CO is also hard to explain in a proto-planetary disc context.

  1. Magnetic fields in X-ray emitting A-type stars

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-04-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this hypothesis can be shown to be correct in some cases, there is also evidence suggesting that low-mass companions cannot be the proper cause for the observed X-ray activity in all cases. Babel and Montmerle (1997) presented a theoretical framework to explain the X-ray emission from magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. We test whether this theoretical model is capable of explaining the observed X-ray emissions. We present observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS 1. Although the emission of those objects with magnetic fields does fit the prediction of the Babel & Montmerle model, not all X-ray detections are related to the presence of a magnetic field. Additionally, the strengths of magnetic fields do not correlate with the X-ray luminosity and thus the magnetically-confined wind shock model cannot explain the X-ray emission from all investigated stars.

  2. Magnetic fields in A-type stars associated with X-ray emission

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-06-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this assumption can be shown to be correct in some cases, a number of lines of evidence suggests that low-mass companions cannot be the correct cause for the observed activity in all cases. A model explains the X-ray emission for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this paper we test whether this theoretical model is able to explain the observed X-ray emission. We present the observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS1. Although the emission of those objects that possess magnetic fields fits the prediction of the Babel and Montmerle model, not all X-ray detections are connected to the presence of a magnetic field. Additionally, the measured magnetic fields do not correlate with the X-ray luminosity. Accordingly, the magnetically confined wind shock model cannot explain the X-ray emission from all the presented stars.

  3. Circumstellar Gas-Disk Variability Around A-Type Stars: The Detection of Exocomets?

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Montgomery, Sharon

    2013-07-01

    We present medium spectral resolution (R ∼ 60,000) observations of the CaII K-line (3,933 Å) absorption profiles observed toward 21 nearby A-type stars thought to possess circumstellar gas debris disks. The stars were repeatedly observed over two observing runs on the 2.1 m Otto Struve telescope at the McDonald Observatory, Texas in 2011 May and 2012 November. Nightly changes in the absorption strength of the CaII K-line near the stellar radial velocity were observed in four of the stars (HD 21620, HD 110411, HD 145964 and HD 183324). This type of absorption variability indicates the presence of a circumstellar gas disk around these stars. We also have detected weak absorption features that sporadically appear with velocities in the range ± 100 km s-1 of the main circumstellar K-line in the spectra of HD 21620, HD 42111, HD 110411 and HD 145964. Due to the known presence of both gas and dust disks surrounding these four stars, these transient absorption features are most probably associated with the presence of Falling Evaporated Bodies (FEBs, or exocomets) that are thought to liberate gas on their grazing trajectory toward and around the central star. This now brings the total number of A-type stars in which the evaporation of CaII gas from protoplanetary bodies (i.e., exocomets) has been observed to vary on a nightly basis to 10 systems. A statistical analysis of the 10 A-stars showing FEB-activity near the CaII K-line compared to 21 A-type stars that exhibit no measurable variability reveals that FEB-activity occurs in significantly younger stellar systems that also exhibit chemical peculiarities. The presence of FEB-activity does not appear to be associated with a strong mid-IR excess. This is probably linked to the disk inclination angle, since unless the viewing angle is favorable the detection of time-variable absorption may be unlikely. Additionally, if the systems are more evolved then the evaporation of gas due to FEB activity could have ceased

  4. Detection of Variable Gaseous Absorption Features in the Debris Disks Around Young A-type Stars

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon L.; Welsh, Barry Y.

    2012-10-01

    We present medium resolution (R = 60,000) absorption measurements of the interstellar Ca II K line observed towards five nearby A-type stars (49 Ceti, 5 Vul, ι Cyg, 2 And, and HD 223884) suspected of possessing circumstellar gas debris disks. The stars were observed on a nightly basis during a six night observing run on the 2.1-meter Otto Struve telescope at the McDonald Observatory, Texas. We have detected nightly changes in the absorption strength of the Ca II K line observed near the stellar radial velocity in three of the stars (49 Ceti, i Cyg and HD 223884). Such changes in absorption suggest the presence of a circumstellar (atomic) gas disk around these stars. In addition to the absorption changes in the main Ca II K line profile, we have also observed weak transient absorption features that randomly appear at redshifted velocities in the spectra of 49 Ceti, 5 Vul, and 2 And. These absorption features are most probably associated with the presence of falling evaporated bodies (exo-comets) that liberate evaporating gas on their approach to the central star. This now brings the total number of systems in which exocomet activity has been observed at Ca II or Na I wavelengths on a nightly basis to seven (β Pic, HR 10, HD 85905, β Car, 49 Ceti, 5 Vul, and 2 And), with 2 And exhibiting weaker and less frequent changes. All of the disk systems presently known to exhibit either type of short-term variability in Ca II K line absorption are rapidly rotating A-type stars (V sin i > 120 km s-1). Most exhibit mid-IR excesses, and many of them are very young (< 20 Myr), thus supporting the argument that many of them are transitional objects between Herbig Ae and “Vega-like” A-type stars with more tenuous circumstellar disks. No mid-IR excess (due to the presence of a dust disk) has yet been detected around either 2 And or HD 223884, both of which have been classified as λ Boötis-type stars. This may indicate that the observed changes in gas absorption for these

  5. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    SciTech Connect

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo E-mail: mjb@star.ucl.ac.uk E-mail: y.unruh@imperial.ac.uk

    2009-04-10

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 {mu}m. From observed colors in the (r' - H{alpha}) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 {mu}m spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 {mu}m excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 {mu}m excess fraction is adjusted to {approx}0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 {mu}m. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L {sub IR}/L {sub *} from 2.2 x 10{sup -3} - 1.9 x 10{sup -2}, with a mean value of 7.9 x 10{sup -3} (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  6. SiO and H2O Maser Survey toward Post-asymptotic Giant Branch and Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Hwan; Cho, Se-Hyung; Kim, Jaeheon; Yun, Young joo; Park, Yong-Sun

    2014-03-01

    We performed simultaneous observations of SiO v = 1, 2, 29SiO v = 0, J = 1-0 and H2O 616-523 maser lines toward 143 AGB and 164 post-asymptotic giant branch (AGB) stars in order to investigate how evolutionary characteristics from AGB to post-AGB stars appear in both SiO and H2O maser emissions. The observations were carried out from 2011 February to 2012 March using the Korean VLBI Network single-dish telescopes. We have detected SiO and/or H2O maser emission from 21 sources out of 164 post-AGB stars including 12 new detections. Of 143 AGB stars, we detected SiO and/or H2O maser emission from 44 stars including 24 new detections. SiO v = 2, J = 1-0 maser emission without a SiO v = 1 maser was detected from 7 sources among 14 SiO-detected post-AGB stars, and the intensity of the SiO v = 2, J = 1-0 maser tends to be much stronger than that of SiO v = 1, which is different from those of AGB stars. This may be related to the development of hot dust shells according to the evolutionary processes of post-AGB stars. We also found that both SiO and H2O masers were detected in the blue group (LI, or Left of IRAS), while only the H2O maser was detected in the red group (RI, or Right of IRAS) for post-AGB stars. These different detection rates between SiO and H2O masers may originate from the different abundances of masing molecules in the circumstellar envelope according to the different mass and expansion velocity between LI and RI regions together with their evolutionary stages.

  7. On the anomaly of Balmer line profiles of A-type stars. Fundamental binary systems

    NASA Astrophysics Data System (ADS)

    Smalley, B.; Gardiner, R. B.; Kupka, F.; Bessell, M. S.

    2002-11-01

    In previous work, Gardiner et al. (\\cite{GKS99}) found evidence for a discrepancy between the Teff obtained from Balmer lines with that from photometry and fundamental values for A-type stars. An investigation into this anomaly is presented using Balmer line profiles of stars in binary system with fundamental values of both Teff and log g. A revision of the fundamental parameters for binary systems given by Smalley & Dworetsky (\\cite{SD95}) is also presented. The Teff obtained by fitting Hα and Hβ line profiles is compared to the fundamental values and those obtained from uvby photometry. We find that the discrepancy found by Gardiner et al. (\\cite{GKS99}) for stars in the range 7000 K <~ Teff <~ 9000 K is no longer evident. Partly based on DENIS data obtained at the European Southern Observatory.

  8. Abundance analysis of two late A-type stars HD 32115 and HD 37594

    NASA Astrophysics Data System (ADS)

    Bikmaev, I. F.; Ryabchikova, T. A.; Bruntt, H.; Musaev, F. A.; Mashonkina, L. I.; Belyakova, E. V.; Shimansky, V. V.; Barklem, P. S.; Galazutdinov, G.

    2002-07-01

    We have performed abundance analysis of two slowly rotating, late A-type stars, HD 32115 (HR 1613) and HD 37594 (HR 1940), based on obtained echelle spectra covering the spectral range 4000-9850 Å. These spectra allowed us to identify an extensive line list for 31 chemical elements, the most complete to date for A-type stars. Two approaches to abundance analysis were used, namely a ``manual'' (interactive) and a semi-automatic procedure for comparison of synthetic and observed spectra and equivalent widths. For some elements non-LTE (NLTE) calculations were carried out and the corresponding corrections have been applied. The abundance pattern of HD 32115 was found to be very close to the solar abundance pattern, and thus may be used as an abundance standard for chemical composition studies in middle and late A stars. Further, its Hα line profile shows no core-to-wing anomaly like that found for cool Ap stars and therefore also may be used as a standard in comparative studies of the atmospheric structures of cool, slowly rotating Ap stars. HD 37594 shows a metal deficiency at the level of -0.3 dex for most elements and triangle-like cores of spectral lines. This star most probably belongs to the delta Sct group. Based on observations obtained at the 2-m telescope of Peak Terskol Observatory near Elbrus mountain, International Center of Astronomical and Medical-Ecological Researches, Russia. Table 4 is only available in electronic form at http://www.edpsciences.org

  9. A high speed photometric survey of normal and peculiar A-type stars

    NASA Astrophysics Data System (ADS)

    Kurtanidze, Omar; Nikolashvili, Maria G.

    The rapidly-oscillating Ap stars represent the only main-sequence stars, despite the Sun, which pulsate in high-overtone low degree p-moges with their axis aligned with oblique ones. We have undertook a long-term programme of high-speed photometric observations about two hundred Normal and Peculiar A-type stars with 125cm RC telescope equipped by Two-Star Photometer. It enables to chop as frequently as need between objects, sky and dark due to effects of sky transparency and background variations are remouved and scintillation noise spectra are obtained. An attempt was made to include representative number of each spectral subtypes. The selected objects lie in the range of 8-10 magnitudes in the Jonhson wide-band B filter. At first stage it is planned to carry out a pilot survey with duration of 6-8 hours divided between two observing sessions. The objects with noticable oscillations will be studied photometrically as well as spectroscopically in detail. During the pleliminary observations one rapidly-oscillating Ap star HD231427 was revealed which should be considered as tentative.

  10. A High Speed Photometric Survey of Normal and Peculiar A-Type Stars

    NASA Astrophysics Data System (ADS)

    Kurtanidze, O. M.; Nikolashvili, M. G.

    The rapidly-oscillating Ap stars represent the only main-sequence stars, despite the Sun, which pulsate in high-overtone low degree p-moges with their axis aligned with oblique ones. We have undertook a long-term programme of high-speed photometric observations about two hundred Normal and Peculiar A-type stars with 125cm RC telescope equipped by Two-Star Photometer. It enables to chop as frequently as need between objects, sky and dark due to effects of sky transparency and background variations are remouved and scintillation noise spectra are obtained. An attempt was made to include representative number of each spectral subtypes. The selected objects lie in the range of 8-10 magnitudes in the Jonhson wide-band B filter. At first stage it is planned to carry out a pilot survey with duration of 6-8 hours divided between two observing sessions. The objects with noticable oscillations will be studied photometrically as well as spectroscopically in detail. During the preliminary observations one rapidly-oscillating Ap star HD231427 was revealed which should be considered as tentative.

  11. A High Speed Photometry Survey of Normal and Peculiar A-Type Stars

    NASA Astrophysics Data System (ADS)

    Kurtanidze, O. M.; Nikolashvili, M. G.

    The rapidly-oscillating Ap stars represent the only main-sequence stars, other than the Sun, which pulsate in high-overtone, low-degree, oblique-axis p-modes. We have undertaken a long-term programme of high-speed photometric observations of about two hundred normal and peculiar A-type stars with the 125 cm RC telescope equipped with a Two-Star Photometer. It enables chopping as frequently as needed between object, sky, and dark channels, so that effects of sky transparency and background variations are removed and scintillation noise spectra are obtained. An attempt was made to include a representative number of each spectral subtype. The selected objects lie in the magnitude range of 8-10 in Jonhson's B wide-band filter. For the first stage it is planned to carry out a pilot survey with a duration of 6-8 hours distributed over two observing runs. The objects with noticeable oscillations will be studied in detai photometrically as well as spectroscopically. During the preliminary observations one rapidly-oscillating Ap star, HDE 231427, was revealed which should be considered as tentative.

  12. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.

    PubMed

    Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J

    2003-08-07

    Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.

  13. Analytical solutions of stellar winds in B-A type supergiants stars

    NASA Astrophysics Data System (ADS)

    Araya, Ignacio; Cure, Michel

    2013-06-01

    An analytical solution for the δ-slow hydrodynamic solution (Cure et al. 2011) in B-A type supergiants stars is developed. The methodology is based on the analytical solutions of a) Villata (1992), which is described in terms of the stellar and wind parameters and b) Muller & Vink (2008), which is described in terms of fitting parameters from a numerical solution (hydrodynamic). These methodologies only apply for fast solutions, for that reason the line acceleration term (gL) of Muller & Vink method is modified in order to obtain an analytical solution for the δ-slow solution. To find a relationship between the parameters from the fit and the stellar and wind parameters, a computational grid, based on the grid of stellar models from Ekstrom et al. (2012), is created for B-A type supergiants stars with δ-slow hydrodynamic solution. Finally, an analytical solution for B-A type supergiants stars is obtained based on the Lambert W function (Corless et al. 1996). Comparing with the numerical solutions, the terminal velocity has a median relative error below 4% and the mass loss rate has a median relative error below 5%. In addition, we calculated the wind-momentum luminosity relationship (WLR) with the models from the computational grid and compared with the observations, showing a very good agreement.

  14. An observational study of post-asymptotic-giant-branch stars

    NASA Astrophysics Data System (ADS)

    Sahin, T.

    2008-05-01

    In this thesis, we present an LTE model atmosphere analyses of a group of early B-type postasymptotic giant branch (pAGB) stars. With initial masses ≤ 9M⊙, post-AGB stars form an important group of evolved stars and provide a unique opportunity to study stellar evolution almost on a human time-scale. Post-AGB stars have spectral types ranging from K to B and luminosities between 103 and 104L⊙. These objects ended their asymptotic giant branch (AGB) evolution phase with a period of strong mass loss (10-7 - 10-4M⊙ yr-1) and have been evolving from cooler to hotter temperatures at almost constant luminosity on a timescale of ˜ 104yr. B-type pAGB stars span a wide range in effective temperature (10 000 - 30 000K). Their expected surface gravities (log g ) and effective temperatures ( Teff ) coincide with those of B stars evolving from the main sequence. Therefore systematic observational analyses are required to distinguish these two groups. Furthermore, p! ost-AGB stars may be divided into four distinct groups based on their chemical composition. In this thesis, groups I and II represent post-AGB stars which are very metal deficient with C/O ≈ 1 and metal poor with C/O<1, when compared with the Sun, respectively. The question is whether hot pAGB stars belong to either of these four groups. Three further objectives included: 1. to discover whether post-AGB star have helium-normal or helium-rich photospheres. 2. the detection and measurement of s-process element abundances (e.g. Sr, Y, Ba, Hf). 3. to determine whether they show any anomaly in phosphorus abundance such as that seen in the extreme helium stars (EHes). High-resolution ´echelle spectra of several post-AGB stars were obtained at the AAT in 1999 and 2005 in order to study chemical composition, rotation velocities and other fundamental properties. Echelle spectra present many difficulties for data reduction, including the problems of order rectification and merging. To address these problems we

  15. New bright optical spectrophotometric standards: A-type stars from the STIS Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; del Burgo, C.

    2016-02-01

    Exoplanets have sparked interest in extremely high signal-to-noise ratio spectroscopic observations of very bright stars, in a regime where flux calibrators, in particular DA white dwarfs, are not available. We argue that A-type stars offer a useful alternative and reliable space-based spectrophotometry is now available for a number of bright ones in the range 3 < V < 8 mag. By means of comparing observed spectrophotometry and model fluxes, we identify 18 new very bright trustworthy A-type flux standards for the optical range (400-800 nm), and provide scaled model fluxes for them. Our tests suggest that the absolute fluxes for these stars in the optical are reliable to within 3 per cent. We limit the spectral range to 400-800 nm, since our models have difficulties to reproduce the observed fluxes in the near-infrared and, especially, in the near-UV, where the discrepancies rise up to ˜10 per cent. Based on our model fits, we derive angular diameters with an estimated accuracy of about 1 per cent.

  16. VizieR Online Data Catalog: Horizontal-branch and A-type star catalog. II (Beers+ 1996)

    NASA Astrophysics Data System (ADS)

    Beers, T. C.; Wilhelm, R.; Doinidis, S. P.; Mattson, C. J.

    1996-09-01

    We present coordinates and brightness estimates for 4175 candidate field horizontal-branch and A-type stars, in the magnitude range 10<=B<=15.5, selected using an objective-prism/interference-filter survey technique. The candidates lie primarily in the northern Galactic hemisphere and complement a previously published sample of southern Galactic hemisphere candidates. Available spectroscopy and photometry indicates that the great majority of the candidates are likely to be bona fide members of either the field blue horizontal- branch population or the blue, metal-deficient, high surface gravity stars referred to by Preston, Beers, & Schectman (1994AJ....108..538P) as BMP stars. The remaining stars in the catalog are likely to be a mix of metal-deficient turnoff stars, metallic-line (Am) stars, field red horizontal-branch stars, optical doubles with overlapping objective-prism spectra, and (particularly among the fainter candidates) inadvertently included late-type stars. (1 data file).

  17. Spectroscopy of Hot Stars in the Galactic Halo. III. Analysis of a Large Sample of Field Horizontal-Branch and Other A-Type Stars

    NASA Astrophysics Data System (ADS)

    Wilhelm, Ronald; Beers, Timothy C.; Sommer-Larsen, Jesper; Pier, Jeffrey R.; Layden, Andrew C.; Flynn, Chris; Rossi, Silvia; Christensen, Per Rex

    1999-05-01

    We present results from an analysis of medium-resolution spectroscopy and UBV photometry for a sample of 1121 A-type stars in the halo (and disk) of the Galaxy. A previously developed calibration technique is used to assign estimates of effective temperature, surface gravity, and stellar metal abundance, as parameterized by [Fe/H]. Radial velocities are reported with an accuracy of ~10 km s^-1. Distance estimates are obtained for the stars with well-determined luminosity classes. Note that although we refer to ``A-type'' stars, which dominate the present sample, the present data set includes roughly 100 stars of later spectral types, as a result of the temperature range we have chosen to explore in this paper (6000 K<=T_eff<=10,000 K). Included in the hot star sample are 444 stars we classify as field horizontal-branch stars, 416 we classify as main-sequence-gravity A-type (or slightly later) stars (including stars that are likely members of the blue metal-poor population, the so-called BMPs), 140 stars we classify as likely metallic-line (Am) or peculiar (Ap) stars, and 121 stars that cannot be unambiguously classified based on the present data. Examination of the distributions in metallicity and velocity indicates that the field horizontal-branch and main-sequence A-type samples are quite distinct; hence we expect only a modest amount of cross-contamination between the subsamples. We identify 58 RR Lyrae candidates among the hot star sample, based on incompatibilities in their photometric and spectroscopic data. There are 19 stars in the sample that have been previously classified as RR Lyrae variables, and one additional star that had been previously suggested as a variable, though not necessarily of the RR Lyrae class. There are 115 stars in the sample that were previously classified as BMPs by Preston, Beers, & Shectman, most of which fall into the main-sequence A-type category, but 10 of which are found among the Am/Ap classifications. Furthermore, 53 of

  18. RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS-PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS

    SciTech Connect

    Bowler, Brendan P.; Johnson, John Asher; Liu, Michael C.; Marcy, Geoffrey W.; Peek, Kathryn M. G.; Henry, Gregory W.; Fischer, Debra A.; Clubb, Kelsey I.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-20

    We present an analysis of approx5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 approx< M{sub *}/M{sub sun}approx< 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov-Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26{sup +9}{sub -8}%, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to left brace0.2, 0.3, 0.5, 0.6, 1.3right brace M{sub Jup} within left brace0.1, 0.3, 0.6, 1.0, 3.0right brace AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN propor to M {sup a}lpha P {sup b}eta dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of alpha and beta for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4sigma level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (approx50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets.

  19. WHY ARE THERE NORMAL SLOW ROTATORS AMONG A-TYPE STARS?

    SciTech Connect

    Abt, Helmut A.

    2009-07-15

    I wondered why there are still slowly rotating (V < 120 km s{sup -1}) normal A0-A9 field stars when such stars should have become Ap or Am stars by a diffusion mechanism. My first guess was that this was related to an unusually high binary frequency, but the frequency turned out to be normal, as shown in a paper in preparation. Next, I wondered whether all the slow rotators have had enough time to become Ap or Am stars. That process is rapid for Ap(Si), Ap(HgMn), and Am stars, but slow for Ap(SrCrEu) stars. For Ap(SrCrEu) stars, it takes about half of their main-sequence lifetime to show their abnormality. Under the assumption of a constant formation rate of field A stars, about half of the eventual Ap(SrCrEu) will appear as normal slow rotators. That is why there are still normal slow rotators in A0-A3. That is the main conclusion of this study. I discuss recent doubts about the length of time it takes to form an Ap(SrCr) star and found that the doubts are inappropriate. For the A4-F0 stars, I confirm that all the stars in binaries with orbital periods of 2-10 days became Am stars because their rotational velocities have been reduced by tidal interactions below V = 120 km s{sup -1}, a requirement for diffusion to act. It is also confirmed that all the normal stars in binaries have orbital periods above {approx}100 days because the tidal interactions in such binaries are inadequate to bring the rotational velocities below 120 km s{sup -1}. However, both Am and normal stars occur in binaries with orbital periods between 10 and 100 days, and at present we do not know why.

  20. What is the unusual material orbiting the dustiest main sequence A-type stars HD 131488 and HD 121191?

    NASA Astrophysics Data System (ADS)

    Melis, Carl

    2015-10-01

    Only a small percentage of main sequence stars exhibit excess mid-infrared emission indicative of substantial quantities of warm (T >~ 300 K), inner planetary system material that likely originated in recent transient collisional processes. Detailed study of these events can provide us with insight into how rocky terrestrial-like planets form and evolve through collisional pathways. We have identified two young A-type stars with mid-infrared luminosity brighter than and spectrally distinct from that at any other known main-sequence A-type star. T-ReCS N-band and IRTF SpeX spectroscopy combined with IRAS, Herschel, WISE, and T-ReCS photometric measurements indicate that these stars host two distinct infrared emitting regions, one with characteristic temperatures of >300 K (equivalent to temperatures inside 1 AU in the solar system) and a second of ~100 K (equivalent to the temperature near Saturn). The T-ReCS N-band spectra present an enigma: a putative emission feature with peak wavelength near 6-7 microns is not reproducible with common silicate species. SOFIA-FORCAST narrow-band imaging is the only means available to settling the identity of these strange emission features and hence clarify the nature of the inner planetary system material around these two stars.

  1. Metal abundances of A-type stars in galactic clusters. III. alpha Persei: new results

    NASA Astrophysics Data System (ADS)

    Hui-Bon-Hoa, A.

    1999-03-01

    We complete our study (Hui-Bon-Hoa et al. 1997) of the abundances of Mg, Ca, Sc, Cr, Fe, and Ni in alpha Per cluster stars using new spectra of two stars of the previous sample and also adding two more objects. The new spectra of BD +48°894 and HD 21527 show that the former has an almost solar composition whereas the latter is an Am star with the iron peak elements being all enhanced and Ca marginally underabundant. As for the additional stars of this study, HD 19954 has a pattern very close to solar, and HD 20135 is an SB2 system where both components seem to be Am stars: Ca and Sc are strongly deficient; Cr and Ni are overabundant in one component. A more thorough study is needed for confirmation. Based on observations collected at the Observatoire de Haute-Provence (France)

  2. Detection of a red supergiant progenitor star of a type II-plateau supernova.

    PubMed

    Smartt, Stephen J; Maund, Justyn R; Hendry, Margaret A; Tout, Christopher A; Gilmore, Gerard F; Mattila, Seppo; Benn, Chris R

    2004-01-23

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8(+4)(-2) solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.

  3. Exceptional Stars

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Hansen, B.; van Kerkwijk, M.; Phinney, E. S.

    2005-12-01

    As part of our Interdisciplinary Scientist effort (PI, Kulkarni) for the Space Interferometry Mission (SIM) we proposed an investigation with SIM of a number of exceptional stars. With SIM we plan to observe dozens of nearby white dwarfs and search for planets surviving the evolution away from the main sequence as well as (newly formed) planets formed in the circumbinary disks of post-AGB binaries or as a result of white dwarf mergers. We propose to measure the proper motion of a sample of X-ray binaries and Be star binaries with the view of understanding the originof high latitude objects and inferring natal kicks and pre-supernova orbits. We plan to observe several compact object binaries to determine the mass of the compact star. Of particular importance is the proposed observation of SS 433 (for which we propose to use the spectrometer on SIM to measure the proper motion of the emission line clumps embedded in the relativistic jets). Separately we are investigating the issue of frame tie between SIM and the ecliptic frame (by observing binary millisecond pulsars with SIM; the position of these objects is very well determined by pulsar timing) and the degree to which highly precise visibility amplitude measurements can be inverted to infer binary parameters.

  4. The Onset of Chromospheres in A-Type Stars - the ALTAIR Affair

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Gouttebroze, P.; Marilli, E.; Freire Ferrero, R.

    Here we present preliminary results on the study of the chromosphere of Altair from L high dispersion profiles. We report also the detection of L chromospheric emission from Cep (A7 V) and TrA (F0 V) with the ME. We show that chromosphere may exist up to B - V = 0.22. The possible heating mechanism, magnetic or nonmagnetic, for the chromosphere of these stars is also discussed.

  5. Stellar convection theory. III - Dynamical coupling of the two convection zones in A-type stars by penetrative motions

    NASA Technical Reports Server (NTRS)

    Latour, J.; Toomre, J.; Zahn, J.-P.

    1981-01-01

    The thermal convection occurring over many density scale heights in an A-type star outer envelope, encompassing both the hydrogen and helium convectively unstable zones, is examined by means of anelastic modal equations. The single-mode anelastic equations for such compressible convection display strong overshooting of the motions into adjacent radiative zones, which would preclude diffusive separation of elements in the supposedly quiescent region between the two unstable zones. In addition, the anelastic solutions reveal that the two zones of convective instability are dynamically coupled by the overshooting motions. The two solutions that the nonlinear single-mode equations admit for the same horizontal wavelength are distinguished by the sense of the vertical velocity at the center of the three-dimensional cell. It is suggested that strong horizontal shear flows should be present just below the surface of the star, and that the large-scale motions extending into the stable atmosphere would appear mainly as horizontal flows.

  6. On the Evolution of O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.; Reindl, N.; Rauch, T.; Werner, K.

    2012-01-01

    O(He) stars represent a small group of four very hot post-AGB stars whose atmospheres are composed of almost pure helium. Their evolution deviates from the hydrogen-deficient post-AGO evolutionary sequence of carbon-dominated stars like e.g. PG 1159 or Wolf- Rayet stars. While (very) late thermal pulse evolutionary models can explain the observed He/C/O abundances in these objects, they do not reproduce He-dominated surface abundances. Currently it seems most likely that the O(He) stars originate from a double helium white dwarf merger and so they could be the successors of the luminous helium-rich sdO-stars. An other possibility is that O(He)-stars could be successors of RCB or EHe stars.

  7. The evolutionary state of UU Herculis stars

    SciTech Connect

    Fernie, J.D.; Sasselov, D.D. )

    1989-05-01

    UU Her stars are often considered to be postasymptotic-giant-branch stars, which in turn implies that they should be in a state of rapid blueward evolution in the H-R diagram. A recent reviewer of theoretical models suggests an increase in effective temperature at the rate of 10 K to 40 K per year. Measurements of the (B-V) color indices of these stars over as much as 35 years, and the pulsational period of UU Her itself over 83 years are examined, and no evidence is found for detectable change in either of these quantities. This is found to constrain any rate of effective temperature change to less than 0.5 K per year and, therefore, it is concluded that most likely the UU Her stars are not post-AGB stars. 26 refs.

  8. EFFECT OF HIGH-ENERGY RESONANCES ON THE {sup 18}O(p, {alpha}){sup 15}N REACTION RATE AT AGB AND POST-AGB RELEVANT TEMPERATURES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A. M.

    2010-11-10

    The {sup 18}O(p, {alpha}){sup 15}N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as {sup 19}F, {sup 18}O, and {sup 15}N. Fluorine is synthesized in the intershell region of asymptotic giant branch (AGB) stars, together with s-elements, by {alpha} radiative capture on {sup 15}N, which in turn is produced in the {sup 18}O proton-induced destruction. Peculiar {sup 18}O abundances are observed in R-Coronae Borealis stars, having {sup 16}O/{sup 18}O {approx}< 1, hundreds of times smaller than the galactic value. Finally, there is no definite explanation of the {sup 14}N/{sup 15}N ratio in pre-solar grains formed in the outer layers of AGB stars. Again, such an isotopic ratio is influenced by the {sup 18}O(p, {alpha}){sup 15}N reaction. In this work, a high accuracy {sup 18}O(p, {alpha}){sup 15}N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of {sup 19}F. In particular, we have focused on the study of the broad 660 keV 1/2{sup +} resonance corresponding to the 8.65 MeV level of {sup 19}F. Since {Gamma} {approx} 100-300 keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. Here, we provide a reaction rate that is a factor of two larger above T {approx} 0.5 10{sup 9} K based on our new improved determination of its resonance parameters, which could strongly influence present-day astrophysical model predictions.

  9. SiO AND H{sub 2}O MASER SURVEY TOWARD POST-ASYMPTOTIC GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Yoon, Dong-Hwan; Park, Yong-Sun; Cho, Se-Hyung; Kim, Jaeheon; Yun, Young joo E-mail: yspark@astro.snu.ac.kr E-mail: jhkim@kasi.re.kr

    2014-03-01

    We performed simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0 and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 143 AGB and 164 post-asymptotic giant branch (AGB) stars in order to investigate how evolutionary characteristics from AGB to post-AGB stars appear in both SiO and H{sub 2}O maser emissions. The observations were carried out from 2011 February to 2012 March using the Korean VLBI Network single-dish telescopes. We have detected SiO and/or H{sub 2}O maser emission from 21 sources out of 164 post-AGB stars including 12 new detections. Of 143 AGB stars, we detected SiO and/or H{sub 2}O maser emission from 44 stars including 24 new detections. SiO v = 2, J = 1-0 maser emission without a SiO v = 1 maser was detected from 7 sources among 14 SiO-detected post-AGB stars, and the intensity of the SiO v = 2, J = 1-0 maser tends to be much stronger than that of SiO v = 1, which is different from those of AGB stars. This may be related to the development of hot dust shells according to the evolutionary processes of post-AGB stars. We also found that both SiO and H{sub 2}O masers were detected in the blue group (LI, or Left of IRAS), while only the H{sub 2}O maser was detected in the red group (RI, or Right of IRAS) for post-AGB stars. These different detection rates between SiO and H{sub 2}O masers may originate from the different abundances of masing molecules in the circumstellar envelope according to the different mass and expansion velocity between LI and RI regions together with their evolutionary stages.

  10. HST/COS Observations of the UV-Bright Star Y453 in the Globular Cluster M4 (NGC 6121)

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Chayer, Pierre; Benjamin, Robert A.

    2016-01-01

    Post-AGB stars represent a short-lived phase of stellar evolution during which stars cross the optical color-magnitude diagram from the cool, red tip of the assymptotic giant branch (AGB) to the hot, blue tip of the white-dwarf cooling curve. Their surface chemistry reflects the nuclear-shell burning, mixing, and mass-loss processes characteristic of AGB stars, and their high effective temperatures allow the detection of elements that are unobservable in cool giants. Post-AGB stars in globular clusters offer the additional advantages of known distance, age, and initial chemistry. To better understand the AGB evolution of low-mass stars, we have observed the post-AGB star Y453 in the globular cluster M4 (NGC 6121) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. The star, which has an effective temperature of at least 60,000 K, shows absorption from He, C, N, O, Ne, Si, S, Ti, Cr, Mn, Fe, Co, Ni, and Ga. While the star's C and O abundances are consistent with those measured in a sample of nitrogen-poor RGB stars in M4, its N abundance is considerably enhanced. The star's low C abundance suggests that it left the AGB before the onset of third dredge-up.This work was supported by NASA grant HST-GO-13721.001-A to the University of Wisconsin, Whitewater. P.C. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics.

  11. Discovery of starspots on Vega. First spectroscopic detection of surface structures on a normal A-type star

    NASA Astrophysics Data System (ADS)

    Böhm, T.; Holschneider, M.; Lignières, F.; Petit, P.; Rainer, M.; Paletou, F.; Wade, G.; Alecian, E.; Carfantan, H.; Blazère, A.; Mirouh, G. M.

    2015-05-01

    Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims: The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods: Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895-6270 Å. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a Teff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results: We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes ΔF/Fc ~ 5 × 10-4. A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower

  12. ON THE INDUCED GRAVITATIONAL COLLAPSE OF A NEUTRON STAR TO A BLACK HOLE BY A TYPE Ib/c SUPERNOVA

    SciTech Connect

    Rueda, Jorge A.; Ruffini, Remo E-mail: ruffini@icra.it

    2012-10-10

    It is understood that the supernovae (SNe) associated with gamma-ray bursts (GRBs) are of Type Ib/c. The temporal coincidence of the GRB and the SN continues to represent a major enigma of Relativistic Astrophysics. We elaborate here, from the earlier paradigm, that the concept of induced gravitational collapse is essential to explain the GRB-SN connection. The specific case of a close (orbital period <1 hr) binary system composed of an evolved star with a neutron star (NS) companion is considered. We evaluate the accretion rate onto the NS of the material expelled from the explosion of the core progenitor as a Type Ib/c SN and give the explicit expression of the accreted mass as a function of the nature of the components and binary parameters. We show that the NS can reach, in a few seconds, critical mass and consequently gravitationally collapse to a black hole. This gravitational collapse process leads to the emission of the GRB.

  13. A mid-infrared imaging catalogue of post-asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Lagadec, Eric; Verhoelst, Tijl; Mékarnia, Djamel; Suáeez, Olga; Zijlstra, Albert A.; Bendjoya, Philippe; Szczerba, Ryszard; Chesneau, Olivier; van Winckel, Hans; Barlow, Michael J.; Matsuura, Mikako; Bowey, Janet E.; Lorenz-Martins, Silvia; Gledhill, Tim

    2011-10-01

    Post-asymptotic giant branch (post-AGB) stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the AGB towards the planetary nebula stage. There is growing evidence that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VLT spectrometer and imager for the mid-infrared (VISIR)/VLT, T-Recs/Gemini-South and Michelle/Gemini-North. We found that all the proto-planetary nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non-resolved. The resolved targets can be divided into two categories. (i) The nebulae with a dense central core, that are either bipolar and multipolar and (ii) the nebulae with no central core, with an elliptical morphology. The dense central torus observed likely hosts binary systems which triggered fast outflows that shaped the nebulae. Based on observations made at the Very Large Telescope at Paranal Observatory under the programme 081D.0630.

  14. Ultraviolet properties of hot stars in globular clusters

    SciTech Connect

    Altner, B.M.

    1988-01-01

    Most of the interesting and important stages of stellar evolution beyond the horizontal branch (HB) occur in the temperature realms best investigated by ultraviolet (UV) astronomy. In this dissertation the author studies the UV properties of hot HB and post-HB stars found in a sample of galactic globular clusters, based on spectra obtained with the International Ultraviolet Explorer (IUE). Using techniques developed specifically for the purpose, he separates the overlapping spectra of individual hot stars in the crowded central regions of the clusters. He determines the physical properties of the separated core sources by comparing them to model stellar atmospheres, Population I standards, faint blue halo stars and previously known UV-bright cluster stars, from which he attempts to better understand their evolutionary status. The majority of the more than one hundred spatially separated components turn out to be individual blue HB stars, but a few have properties similar to those of the more evolved supra-HB stars or post-asymptotic-giant-branch (post-AGB) stars, substantially increasing the number of UV-bright stars found in galactic globular clusters. Derived properties of the post-AGB stars imply, through the use of the Paczynski mass-luminosity relation, that these stars span a very narrow range in total core mass, with a mean value near 0.55 Mass of sun - somewhat smaller than that derived for central stars of planetary nebulae in the galactic disk. Several of the clusters observed to have luminous ultraviolet sources in their cores have also shown the presence of a central cusp in the visual.

  15. Exceptional Stars Origins, Companions, Masses and Planets

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Hansen, Bradley M. S.; Phinney, Sterl; vanKerkwijk, Martin H.; Vasisht, Gautam

    2004-01-01

    As SIM Interdisciplinary Scientist, we will study the formation, nature and planetary companions of the exotic endpoints of stellar evolution. Our science begins with stars evolving from asymptotic branch giants into white dwarfs. We will determine the parallax and orbital inclination of several iron-deficient post-AGB stars, who peculiar abundances and infrared excesses are evidence that they are accreting gas depleted of dust from a circumbinary disk. Measurement of the orbital inclination, companion mass arid parallax will provide critical constraints. One of these stars is a prime candidate for trying nulling observations, which should reveal light reflected from both the circumbinary and Roche disks. The circumbinary disks seem favorable sites for planet formation. Next, we will search for planets around white dwarfs, both survivors froni the main-sequence stage, and ones newly formed from the circumbinary disks of post-AGB binaries or in white dwarf mergers. Moving up in mass, we will measure the orbital reflex of OB/Be companions to pulsars, determine natal kicks and presupernova orbits, and expand the sample of well-determined neutron star masses. We will obtain the parallax of a transient X-ray binary, whose quiescent emission may be thermal emission from the neutron star, aiming for precise measurement of the neutron star radius. Finally, black holes. We will measure the reflex motions of the companion of what appear to be the most massive stellar black holes. The visual orbits will determine natal kicks, and test the assumptions underlying mass estimates made from the radial velocity curves, projected rotation, and ellipsoidal variations. In addition, we will attempt to observe the visual orbit of SS 433, as well as the proper motion of the emission line clumps in its relativistic jets. Additional information is included in the original document.

  16. Exceptional Stars Origins, Companions, Masses and Planets

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Hansen, Bradley M. S.; Phinney, Sterl; vanKerkwijk, Martin H.; Vasisht, Gautam

    2004-01-01

    As SIM Interdisciplinary Scientist, we will study the formation, nature and planetary companions of the exotic endpoints of stellar evolution. Our science begins with stars evolving from asymptotic branch giants into white dwarfs. We will determine the parallax and orbital inclination of several iron-deficient post-AGB stars, who peculiar abundances and infrared excesses are evidence that they are accreting gas depleted of dust from a circumbinary disk. Measurement of the orbital inclination, companion mass arid parallax will provide critical constraints. One of these stars is a prime candidate for trying nulling observations, which should reveal light reflected from both the circumbinary and Roche disks. The circumbinary disks seem favorable sites for planet formation. Next, we will search for planets around white dwarfs, both survivors froni the main-sequence stage, and ones newly formed from the circumbinary disks of post-AGB binaries or in white dwarf mergers. Moving up in mass, we will measure the orbital reflex of OB/Be companions to pulsars, determine natal kicks and presupernova orbits, and expand the sample of well-determined neutron star masses. We will obtain the parallax of a transient X-ray binary, whose quiescent emission may be thermal emission from the neutron star, aiming for precise measurement of the neutron star radius. Finally, black holes. We will measure the reflex motions of the companion of what appear to be the most massive stellar black holes. The visual orbits will determine natal kicks, and test the assumptions underlying mass estimates made from the radial velocity curves, projected rotation, and ellipsoidal variations. In addition, we will attempt to observe the visual orbit of SS 433, as well as the proper motion of the emission line clumps in its relativistic jets. Additional information is included in the original document.

  17. HERSCHEL-RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS AROUND A-TYPE STARS: HD 70313, HD 71722, HD 159492, AND F-TYPE: HD 104860

    SciTech Connect

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R.

    2013-10-20

    We present dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions (SEDs) suggest two-ring disk architectures that mirror that of the asteroid-Kuiper Belt geometry of our own solar system. The Herschel observations at 100 μm spatially resolve the cold/outer-dust component for each star-disk system for the first time, finding evidence of planetesimals at >100 AU, i.e., a larger size than assumed from a simple blackbody fit to the SED. By breaking the degeneracy between the grain properties and the dust's radial location, the resolved images help constrain the dust grain-size distribution for each system. Three of the observed stars are A-type and one solar-type. On the basis of the combined Spitzer/IRS+MIPS (5-70 μm), the Herschel/PACS (100 and 160 μm) dataset, and under the assumption of idealized spherical grains, we find that the cold/outer belts of the three A-type stars are well fit with a mixed ice/rock composition rather than pure rocky grains, while the debris around the solar-type star is consistent with either rock or ice/rock grains. For the solar-type star HD 104860, we find that the minimum grain size is larger than expected from the threshold set by radiative blowout. The A-type stars HD 71722 and HD 159492, on the other hand, require minimum grain sizes that are smaller than blowout for inner- and outer-ring populations. In the absence of spectral features for ice, we find that the behavior of the continuum can help constrain the composition of the grains (of icy nature and not pure rocky material) given the Herschel-resolved locations of the cold/outer-dust belts.

  18. Spectral Analysis of PG 1034+001, the Exciting Star of Hewett 1

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Mahsereci, M.; Ringat, E.; Rauch, T.; Werner, K.

    2011-01-01

    PG 1034+001 is an extremely hot, helium-rich DO-type star that excites the planetary nebula Hewett 1 and large parts of the surrounding interstellar medium. We present preliminary results of an ongoing spectral analysis by means of non-LTE model atmospheres that consider most elements from hydrogen to nickel. This analysis is based on high-resolution ultraviolet (FUSE, IUE) and optical (VLT/UVES, KECK) data. The results are compared with those of PG 1034+001's spectroscopic twin, the DO star PG 0038+ 199. Keywords. stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: individual (PG 1034+001, PG 0038+ 199), planetary nebulae: individual (Hewett 1)

  19. Spectral Analysis of PG 1034+001, the Exciting Star of Hewett 1

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Mahsereci, M.; Ringat, E.; Rauch, T.; Werner, K.

    2011-01-01

    PG 1034+001 is an extremely hot, helium-rich DO-type star that excites the planetary nebula Hewett 1 and large parts of the surrounding interstellar medium. We present preliminary results of an ongoing spectral analysis by means of non-LTE model atmospheres that consider most elements from hydrogen to nickel. This analysis is based on high-resolution ultraviolet (FUSE, IUE) and optical (VLT/UVES, KECK) data. The results are compared with those of PG 1034+001's spectroscopic twin, the DO star PG 0038+ 199. Keywords. stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: individual (PG 1034+001, PG 0038+ 199), planetary nebulae: individual (Hewett 1)

  20. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  1. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    NASA Astrophysics Data System (ADS)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Helton, L. A.; Shenoy, D.; Evans, A.; Keller, L. D.; Hinkle, K. H.; Jura, M.; Lebzelter, T.; Lisse, C. M.; Rushton, M. T.; Mizrachi, J.

    2017-07-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  2. A 40 Myr OLD GASEOUS CIRCUMSTELLAR DISK AT 49 CETI: MASSIVE CO-RICH COMET CLOUDS AT YOUNG A-TYPE STARS

    SciTech Connect

    Zuckerman, B.; Song, Inseok E-mail: song@physast.uga.edu

    2012-10-20

    The gaseous molecular disk that orbits the main-sequence A-type star 49 Ceti has been known since 1995, but the stellar age and the origin of the observed carbon monoxide molecules have been unknown. We now identify 49 Ceti as a member of the 40 Myr old Argus Association and present a colliding comet model to explain the high CO concentrations seen at 49 Ceti and the 30 Myr old A-type star HD 21997. The model suggests that massive-400 Earth mass-analogs of the Sun's Kuiper Belt are in orbit around some A-type stars, that these large masses are composed primarily of comet-like objects, and that these objects are rich in CO and perhaps also CO{sub 2}. We identify additional early-type members of the Argus Association and the Tucana/Horologium and Columba Associations; some of these stars display excess mid-infrared emission as measured with the Widefield Infrared Survey Explorer.

  3. Search for bright stars with infrared excess

    SciTech Connect

    Raharto, Moedji

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  4. IC 4663: the first unambiguous [WN] Wolf-Rayet central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.

    2012-06-01

    We report on the serendipitous discovery of the first central star of a planetary nebula (PN) that mimics the helium- and nitrogen-rich WN sequence of massive Wolf-Rayet (WR) stars. The central star of IC 4663 (PN G346.2-08.2) is dominated by broad He II and N V emission lines which correspond to a [WN3] spectral type. Unlike previous [WN] candidates, the surrounding nebula is unambiguously a PN. At an assumed distance of 3.5 kpc, corresponding to a stellar luminosity of 4000 L⊙, the V= 16.9 mag central star remains 4-6 mag fainter than the average luminosity of massive WN3 stars even out to an improbable d= 8 kpc. The nebula is typical of PNe with an elliptical morphology, a newly discovered asymptotic giant branch (AGB) halo, a relatively low expansion velocity (vexp= 30 km s-1) and a highly ionized spectrum with an approximately solar chemical abundance pattern. The [WN3] star is hot enough to show Ne VII emission (T*= 140 ± 20 kK) and exhibits a fast wind (v∞= 1900 km s-1), which at d= 3.5 kpc would yield a clumped mass-loss rate of ?= 1.8 × 10-8 M⊙ yr-1 with a small stellar radius (R*= 0.11 R⊙). Its atmosphere consists of helium (95 per cent), hydrogen (<2 per cent), nitrogen (0.8 per cent), neon (0.2 per cent) and oxygen (0.05 per cent) by mass. Such an unusual helium-dominated composition cannot be produced by any extant scenario used to explain the H-deficiency of post-AGB stars. The O(He) central stars share a similar composition and the discovery of IC 4663 provides the first evidence for a second He-rich/H-deficient post-AGB evolutionary sequence [WN] →O(He). This suggests that there is an alternative mechanism responsible for producing the majority of H-deficient post-AGB stars that may possibly be expanded to include other He-rich/H-deficient stars such as R Coronae Borealis stars and AM Canum Venaticorum stars. The origin of the unusual composition of [WN] and O(He) central stars remains unexplained. Based on observations made with Gemini

  5. Abundances in Hot Evolved Stars

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Kruk, Jeffrey W.

    2009-05-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  6. VizieR Online Data Catalog: Effective temperature of metal-poor A-type stars (Kinman+, 2002)

    NASA Astrophysics Data System (ADS)

    Kinman, T.; Castelli, F.

    2002-07-01

    Effective temperatures (Teff) can be determined from (V- (V-H)0 and (V-K)0 colours that are derived from 2MASS magnitudes. This gives another way to estimate the Teff of faint blue halo stars (V<~15) whose temperatures are now usually deduced from (BV)0_. Transformations (adapted from Carpenter, 2001AJ....121.2851C) are used to change colours derived from the 2MASS data to the Johnson system. Teff is then derived from these colours using an updated Kurucz model. Tables are given to derive Teff as a function of (V-J)0, (V-H)0 and (V-K)0 for a variety of metallicities and suitable for blue horizontal branch and main sequence stars. The temperatures obtained in this way are compared with those in the recent literature for various stars with 5<=V<=15 and Teff in the range 6500 to 9500K; systematic differences are ~100K. An exception is the sample of BHB stars observed by Wilhelm et al. (1999, Cat. ) whose Teff are significantly cooler than those we derive by an amount that increases with increasing temperature. Description: (2 data files).

  7. FAR-INFRARED IMAGING OF POST-ASYMPTOTIC GIANT BRANCH STARS AND (PROTO)-PLANETARY NEBULAE WITH THE AKARI FAR-INFRARED SURVEYOR

    SciTech Connect

    Cox, N. L. J.; Garcia-Hernandez, D. A.; Manchado, A.

    2011-04-15

    By tracing the distribution of cool dust in the extended envelopes of post-asymptotic giant branch stars and (proto)-planetary nebulae ((P)PNe), we aim to recover, or constrain, the mass-loss history experienced by these stars in their recent past. The Far-Infrared Surveyor (FIS) instrument on board the AKARI satellite was used to obtain far-infrared maps for a selected sample of post-AGB stars and (P)PNe. We derived flux densities (aperture photometry) for 13 post-AGB stars and (P)PNe at four far-infrared wavelengths (65, 90, 140, and 160 {mu}m). Radial (azimuthally averaged) profiles are used to investigate the presence of extended emission from cool dust. No (detached) extended emission is detected for any target in our sample at levels significant with respect to background and cirrus emission. Only IRAS 21046+4739 reveals tentative excess emission between 30'' and 130''. Estimates of the total dust and gas mass from the obtained maps indicate that the envelope masses of these stars should be large in order to be detected with the AKARI FIS. Imaging with higher sensitivity and higher spatial resolution is needed to detect and resolve, if present, any cool compact or extended emission associated with these evolved stars.

  8. The UV-Bright Stars of Omega Centauri

    NASA Astrophysics Data System (ADS)

    Landsman, Wayne B.

    During the first flight of the ASTRO observatory in 1990 December, we obtained a 1620 A image of the globular cluster Omega Centauri using the Ultraviolet Imaging Telescope (UIT). This image revealed that Omega Cen contains a rich population of "UV-bright" stars. We have previously obtained IUE spectra of six UV-bright stars discovered on the UIT image and have found a variety of spectra probably indicative of different evolutionary states. Two stars (ROA 5342 and Dk 3873) have sdO spectra indicative of very high temperatures, while the two core UV-bright stars have spectra similar to main-sequence B stars. Only one star (ROA 3596) appears have the luminosity expected of a classical post-AGB star. We now propose to obtain IUE low-dispersion spectra of four additional UV bright stars in Omega Cen. Three of the stars (UIT-151, UIT-1435 and Dickens 3089) are known from comparison of UIT and ground-based photometry to be quite hot (>> 20000 K) although such broad-band photometry can only set a lower limit on their effective temperature. We will use the IUE spectra to determine the effective temperature and luminosity of these stars, in order to help determine their evolutionary status. Our combined survey of 11 UV-bright stars in a single cluster should yield insights concerning the late evolution of low mass stars, and may provide clues to the origin of the ultraviolet light in elliptical galaxies.

  9. A FIVE-YEAR SPECTROSCOPIC AND PHOTOMETRIC CAMPAIGN ON THE PROTOTYPICAL {alpha} CYGNI VARIABLE AND A-TYPE SUPERGIANT STAR DENEB

    SciTech Connect

    Richardson, N. D.; Morrison, N. D.; Kryukova, E. E.; Adelman, S. J. E-mail: nmorris@utnet.utoledo.edu E-mail: adelmans@citadel.edu

    2011-01-15

    Deneb is often considered the prototypical A-type supergiant and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high-resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Stroemgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H{alpha} profile, H{alpha} equivalent widths, and radial velocities measured from Si II {lambda}{lambda} 6347, 6371. Time-series analysis reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets and suggest radial pulsations at two epochs. No correlation is found between the variability of the H{alpha} profiles and that of the radial velocities or the photometry. Lucy found evidence that Deneb was a long-period single-lined spectroscopic binary star, but our data set shows no evidence for radial velocity variations caused by a binary companion.

  10. TP-AGB Stars in M31: Results from PHAT

    NASA Astrophysics Data System (ADS)

    Girardi, L.; Beerman, L. C.; Boyer, M. L.; Dalcanton, J. J.; Dolphin, A.; Fouesnaeu, M.; Hamren, K.; Johnson, L. C.; Lang, D.; Lewis, A.; Marigo, P.; Rosenfield, P.; Senchyna, P.; Seth, A. C.; Veyette, M.; Weisz, D. R.; Williams, B. F.

    2015-08-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that mapped one-third of M31 from the UV through the near-IR. It provides photometry in up to 6 filters for about 117 million stars distributed across ˜20 kpc of the M31 disk, with a spatial resolution comparable to that routinely attained for the Magellanic Clouds from the ground. These data are revolutionising our view of the spatial distribution of stars and dust across M31. Here we present an overview of PHAT data and results, with a focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars. We comment on (1) the overall spatial distribution of TP-AGB stars as compared to stars of the red giant branch (RGB); (2) the detection of a dramatic drop in the C/M ratio toward the inner M31 disk; (3) the large population of TP-AGB stars in star clusters; (4) an improved view of the planetary nebula population; and (5) the unusual populations of UV-bright stars in the M31 bulge, which correspond to either post-AGB or "failed-AGB” stars. These rich datasets allow us to test the evolution of TP-AGB stars in a metal-rich and star-forming environment, avoiding the incompleteness and distance uncertainties that severely limit similar studies in the Milky Way.

  11. CURiuos Variables Experiment (CURVE): Variable Stars in the Metal-Poor Globular Cluster M56

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Olech, A.; Kedzierski, P.; Zloczewski, K.; Wisniewski, M.; Mularczyk, K.

    2008-06-01

    We surveyed a 6.5'x6.5' field centered on the globular cluster M56 (NGC 6779) in a search for variable stars detecting seven variables, among which two objects are new identifications. One of the new variables is an RR Lyrae star, the third star of that type in M56. Comparison of the new observations and old photometric data for an RVTauri variable V6 indicates a likely period change in the star. Its slow and negative rate of -0.005+/-0.003 d/yr would disagree with post-AGB evolution, however this could be a result of blue-loop evolution and/or random fluctuations of the period.

  12. Multiwavelength observations of RV Tauri stars. 4: SX Centauri

    NASA Astrophysics Data System (ADS)

    Shenton, M.; Evans, A.; Albinson, J. S.; Barrett, P.; Davies, J. K.; Goldsmith, M. J.; Hutchinson, M. G.; Laney, D.; Maddison, R. C.

    1994-12-01

    We present ultraviolet, optical and infrared observations of the RV Tauri star SX Cen. From a fit of model atmospheres to the data we conclude that Z/Z solar = 0.033, that SX Cen has an extended atmosphere, and that the spectral types implied by the ultraviolet data close to deep minimum are consistent with those implied from optical spectra. Unlike AC Her, there seems to be no silicate component in the circumstellar dust shell, and the star pulsates in purely radial modes. The implication is that, despite their many similarities, SX Cen seems to be at a significantly earlier phase of post-AGB evolution than AC Her. Additional data, particularly in the infrared, are necessary to confirm this conclusion.

  13. Multiwavelength observations of RV Tauri stars. 4: SX Centauri

    NASA Technical Reports Server (NTRS)

    Shenton, M.; Evans, A.; Albinson, J. S.; Barrett, P.; Davies, J. K.; Goldsmith, M. J.; Hutchinson, M. G.; Laney, D.; Maddison, R. C.

    1994-01-01

    We present ultraviolet, optical and infrared observations of the RV Tauri star SX Cen. From a fit of model atmospheres to the data we conclude that Z/Z solar = 0.033, that SX Cen has an extended atmosphere, and that the spectral types implied by the ultraviolet data close to deep minimum are consistent with those implied from optical spectra. Unlike AC Her, there seems to be no silicate component in the circumstellar dust shell, and the star pulsates in purely radial modes. The implication is that, despite their many similarities, SX Cen seems to be at a significantly earlier phase of post-AGB evolution than AC Her. Additional data, particularly in the infrared, are necessary to confirm this conclusion.

  14. Iron Abundance in the Prototype PG 1159 Star, GW Vir Pulsator PG 1159-035, and Related Objects

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.; Kurucz, R. L.

    2011-01-01

    We performed an iron abundance determination of the hot, hydrogen deficient post-AGB star PG 1159-035. which is the prototype of the PG 1159 spectral class and the GW Vir pulsators, and of two related objects (PG 1520+525, PG 1144+005), based on the first detection of Fe VIII lines in stellar photospheres. In another PG 1159 star. PG 1424+535. we detect Fe VII lines. In all four stars, each within T(sub eff) = 110,000-150,000 K, we find a solar iron abundance. This result agrees with our recent abundance analysis of the hottest PG 1159 stars (T(sub eff) = 150,000-200,000 K) that exhibit Fe x lines. On the whole, we find that the PG 1159 stars are not significantly iron deficient, in contrast to previous notions.

  15. The WISE View of RV Tauri Stars

    NASA Astrophysics Data System (ADS)

    Gezer, I.; Van Winckel, H.; Bozkurt, Z.

    2015-08-01

    RV Tauri stars are luminous population II Cepheids which show a characteristic light curve of alternating deep and shallow minima. There are 170 known RV Tauri variables in our Galaxy and several have been found in the LMC and SMC. The evolutionary nature of RV Tauri stars is not understood yet. A limited number of RV Tauri stars were detected by IRAS and found to show a large IR excess due to thermal emission from dust, and hence these were classified as post-AGB stars (Jura 1986). These objects occupy a specific region in the IRAS color-color diagram due to the presence of a long-lived, hot, rather stable dusty disk (Lloyd Evans 1999; De Ruyter et al. 2006; Hillen et al. 2014). We have expanded the analysis based on IRAS colors to a similar but much deeper one using WISE (Wide-Field Infrared Survey) data. WISE was launched in December 2009 and scanned the whole sky in 3.4, 4.6, 12 and 22 μm bands (Wright et al. 2010). We study systematically the infrared properties of all 170 Galactic RV Tauri pulsators and differentiate between likely disk sources, expanding shells, and objects without dust excesses. The aim is to correlate infrared properties with chemical peculiarities and the possible binary nature of the central stars. This will lead to a better understanding of the evolutionary status of RV Tauri stars.

  16. The UV-Bright Stars of Omega Centauri

    NASA Astrophysics Data System (ADS)

    Landsman, Wayne B.

    During the first flight of the ASTRO observatory in 1990 December, we obtained a 1620 A image of the globular cluster Omega Centauri using the Ultraviolet Imaging Telescope (UIT). This image revealed that Omega Cen contained numerous "UV-bright" stars. We subsequently obtained IUE discretionary time to study two UV-bright stars found within 2' of the center of Omega Cen. We found that these stars were insufficiently luminous to be postAGB stars, and suggested that they could be evolved hot horizontal branch stars or postearly AGB stars. We now propose to obtain IUE low-dispersion spectra of four additional UV-bright stars in Omega Cen. Three of the stars (ROA 5342, ROA 5857, and Dickens 3873) are known from comparison of UIT and ground-based photometry to be quite hot (>> 20000 K) although such broad-band photometry can only set a lower limit on their effective temperature. We will use the IUE spectra to determine the effective temperature and luminosity of these stars, in order to help determine their evolutionary status. Our results will yield insights concerning the the late evolution of low mass stars, and may provide clues to the origin of the ultraviolet light in elliptical galaxies.

  17. NuSTAR OBSERVATION OF A TYPE I X-RAY BURST FROM GRS 1741.9-2853

    SciTech Connect

    Barrière, Nicolas M.; Krivonos, Roman; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Bachetti, Matteo; Chakrabarty, Deepto; Christensen, Finn E.; Hailey, Charles J.; Mori, Kaya; Harrison, Fiona A.; Hong, Jaesub; Stern, Daniel; Zhang, William W.

    2015-02-01

    We report on two NuSTAR observations of GRS 1741.9-2853, a faint neutron star (NS) low-mass X-ray binary burster located 10' away from the Galactic center. NuSTAR detected the source serendipitously as it was emerging from quiescence: its luminosity was 6 × 10{sup 34} erg s{sup –1} on 2013 July 31 and 5 × 10{sup 35} erg s{sup –1} in a second observation on 2013 August 3. A bright, 800 s long, H-triggered mixed H/He thermonuclear Type I burst with mild photospheric radius expansion (PRE) was present during the second observation. Assuming that the luminosity during the PRE was at the Eddington level, an H mass fraction X = 0.7 in the atmosphere, and an NS mass M = 1.4 M {sub ☉}, we determine a new lower limit on the distance for this source of 6.3 ± 0.5 kpc. Combining with previous upper limits, this places GRS 1741.9-2853 at a distance of 7 kpc. Energy independent (achromatic) variability is observed during the cooling of the NS, which could result from the disturbance of the inner accretion disk by the burst. The large dynamic range of this burst reveals a long power-law decay tail. We also detect, at a 95.6% confidence level (1.7σ), a narrow absorption line at 5.46 ± 0.10 keV during the PRE phase of the burst, reminiscent of the detection by Waki et al. We propose that the line, if real, is formed in the wind above the photosphere of the NS by a resonant Kα transition from H-like Cr gravitationally redshifted by a factor 1 + z = 1.09, corresponding to a radius range of 29.0-41.4 km for a mass range of 1.4-2.0 M {sub ☉}.

  18. Identification of oxygen-rich late/post-asymptotic giant branch stars and water fountains via maser and infrared criteria

    NASA Astrophysics Data System (ADS)

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Henkel, Christian; Hsia, Chih-Hao

    2016-07-01

    The transitional phase between the asymptotic giant branch (AGB) and post-AGB phases holds the key to our understanding of the late-stage metamorphosis of intermediate-mass stars. In particular, high velocity jets forming during this phase are suggested to contribute significantly to the shaping of planetary nebulae. For oxygen-rich stars, the rare “water fountains (WFs)” have been regarded as representative objects in this phase, and it is important to identify more of them for further studies. Here we briefly report the results of our latest OH and H2O maser surveys in which a new WF candidate (IRAS 19356+0754) was found. We also performed radiative transfer modelling on the spectral energy distributions (SEDs) of all known WFs. It is concluded that WFs might in fact not be the transitional objects, as opposed to previous belief. WFs could be AGB or post-AGB stars with no obvious similarities amongst their SEDs. Further efforts are still needed to improve the identification criteria.

  19. Multi-band polarimetry of post-asymptotic giant branch stars - I. Optical measurements

    NASA Astrophysics Data System (ADS)

    Akras, S.; Ramírez Vélez, J. C.; Nanouris, N.; Ramos-Larios, G.; López, J. M.; Hiriart, D.; Panoglou, D.

    2017-04-01

    We present new optical broad-band (UBVRI) aperture polarimetric observations of 53 post-asymptotic giant branch (AGB) stars selected to exhibit a large near-infrared excess. 24 out of the 53 stars (45 per cent of our sample) are presented for the first time. A statistical analysis shows four distinctive groups of polarized post-AGB stars: unpolarized or very lowly polarized (degree of polarization or DoP < 1 per cent), lowly polarized (1 per cent < DoP < 4 per cent), moderately polarized (4 per cent < DoP < 8 per cent) and highly polarized (DoP > 8 per cent). 23 out of the 53 (66 per cent) belong to the first group, 10 (19 per cent) to the second, five (9 per cent) to the third and only three (6 per cent) to the last group. Approximately 34 per cent of our sample was found to be unpolarized objects, which is close to the percentage of round planetary nebulae. On average, the low and moderate groups show a wavelength-dependent polarization that increases towards shorter wavelengths, implying an intrinsic origin of the polarization, which signifies a Rayleigh-like scattering spectrum typical for non-symmetrical envelopes composed principally of small dust grains. The moderately polarized stars exhibit higher K - W3 and W1 - W3 colour indices compared with the group of lowly polarized stars, suggesting a possible relation between DoP and mass-loss rate. Moreover, they are found to be systematically colder (redder in B - V), which may be associated with the condensation process close to these stars that results in a higher degree of polarization. We also provide evidence that multiple scattering in optically thin polar outflows is the mechanism that gives high DoP in post-AGB stars with bipolar or multi-polar envelopes.

  20. Element Abundance Determination in Hot Evolved Stars

    NASA Astrophysics Data System (ADS)

    Werner, Klaus

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  1. THEoretical Modelling and multi-wavelength Observations of evolved Stars (THEMOS)

    NASA Astrophysics Data System (ADS)

    Uscanga, L.; Boumis, P.

    2013-09-01

    Planetary Nebulae (PNe) are one of the last phases in the evolution of low/intermediate mass stars (<8Msun), characterized by extended diffuse ionized and neutral gas surrounding the dying hot cores of highly evolved stars. Their immediate precursors are stars in the asymptotic giant branch (AGB), characterized by a strong mass-loss, followed by a short (100-10000 yr) transitional post-AGB phase. While the morphology of the mass-loss processes in the AGB phase is usually spherically symmetric, PNe show complex bipolar or multipolar structures. Diverse structural components of these evolved stars can be observed at different wavelengths, i.e., 1) ionised bipolar/multipolar structures in PNe, observed from optical to cm-wavelengths; 2) maser emission tracing outflows/discs in post- AGBs/extremely young Pne, observed at cm-wavelengths; 3) circumstellar molecular gas presumably tracing dense toroidal structures towards the centre of PNe, observed at mm/submm-wavelengths. These multi wavelength studies together with theoretical modelling (3D hydrodynamical simulations, kinematical models, and radiative transfer studies) are important to derive a complete picture of the evolution of low/intermediate mass stars. The aim of THEMOS project is to determine the genesis of the asymmetry in these evolved stars by studying their physical conditions, morphology, and kinematics of ionized and neutral gas. These studies will cover a wide range of spatial scales from hundreds of AU for optical studies, down to a few AU, using radio interferometric techniques. We will present our first results from our radio interferometric observations in PNe, as well as the hydrodynamical modeling of the morphology and kinematics of the PN NGC 6302.

  2. The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes

    NASA Astrophysics Data System (ADS)

    Singh, R.; van de Ven, G.; Jahnke, K.

    2014-07-01

    Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus or AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher AGN-luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. For 48 galaxies with LINER-like emission we show, that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with gas present and with stars older than ~1 Gyr, unless a stronger radiation field from young hot stars or an AGN outshines them. This means, that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.

  3. The UV-Bright Stars of Omega Centauri

    NASA Astrophysics Data System (ADS)

    Landsman, W. B.; Crotts, A.; O'Connell, R. W.; Whitney, J. H.; Lanz, T.; Stecher, T. P.

    1995-05-01

    Images of the globular cluster Omega Centauri obtained with the Ultraviolet Imaging Telescope (UIT) in 1990 revealed numerous hot stars more luminous than zero-age horizontal branch (Whitney et al. 1994, AJ, 108, 1350). We have obtained CTIO 4m and IUE low-dispersion spectra of seven of the brightest stars in the Whitney et al. catalog. The target stars include UIT-1 and UIT-2 in the core of Omega Cen (Landsman et al. 1992 ApJL, 395, L21), as well as ROA 5342, Dk 3873, and Dk 3089 from the catalog of Dickens (1988). All of the target stars are found to be radial velocity members of the cluster. Three of the stars (ROA 5342, UIT-151, Dk 3873) show strong He II lines in their spectra and are probably very hot (> 50,000 K) post-AGB stars. The remaining four stars show strong He I lines, and UIT-1 also shows numerous nitrogen lines. We present results of an atmospheric analysis to constrain the reddening, effective temperatures, and helium abundances.

  4. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    SciTech Connect

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia; Sargent, Benjamin A.; Boyer, Martha L.; Sewiło, Marta; Hony, Sacha

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  5. The Dustiest Post-Main Sequence Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Sargent, Benjamin A.; Boyer, Martha L.; Sewiło, Marta; Hony, Sacha; Roman-Duval, Julia

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf-Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  6. On Helium-Dominated Stellar Evolution: The Mysterious Role of the O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-01-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs.

  7. On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-06-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims: A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods: We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results: We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions: A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs. Based on observations with the NASA

  8. Temperature Scale of Central Stars Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffry

    2005-01-01

    The goal of this project was to gain new insight into both the true temperatures of the central stars of planetary nebulae and their evolutionary histories. The temperature scale of the hottest central stars of planetary nebulae is poorly known. The temperature diagnostics available at visible wavelengths are not useful for these very hot stars, or suffer from as-yet unresolved systematic uncertainties. However, the combination of FUSE FUV spectra and HST NUV spectra allows precise temperature determinations by utilizing ionization balances of C III, C IV and O V, O VI lines. The sample comprises hot hydrogen-rich central stars covering the hottest phase of post-AGB evolution (T_eff greater than 70,000K). The spectra were analyzed with fully metal line blanketed NLTE model atmospheres in order to determine T_eff, surface gravity, and chemical composition. In addition to the temperature scale, the spectra help address the question of metal abundances at the surface of these stars. Depending on the particular star, the metal abundances are either dominated by ongoing diffusion processes or they originate from dredge-up phases during previous AGB evolution. The sample was selected so as to include objects that were expected to exhibit both processes, in order to assess their relative importance and to gain insight into the evolutionary history of the stars. The objects that show qualitatively a metal abundance pattern which points at dredge-up phases, can be used to quantitatively check against abundance predictions of stellar evolution theory. The other objects, where gravitational diffusion and radiative acceleration determine the photospheric metal abundances, will be used to check our NLTE models which for the first time include diffusion processes self-consistently.

  9. Modelling the cometary structure of the planetary nebula HFG1 based on the evolution of its binary central star V664 Cas

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Boumis, P.; Nanouris, N.; Meaburn, J.; Dimitriadis, G.

    2016-03-01

    HFG1 is the first well-observed planetary nebula (PN) which reveals a cometary-like structure. Its main morphological features consist of a bow-shaped shell, which surrounds the central star, accompanied by a long collimated tail. In this study, we perform two-dimensional hydrodynamic simulations modelling the formation of HFG1 from the interaction of the local ambient medium with the mass outflows of its asymptotic giant branch (AGB) progenitor star. We attribute the cometary appearance of HFG1 to the systemic motion of the PN with respect to the local ambient medium. Due to its vital importance, we re-estimate the distance of HFG1 by modelling the spectral energy distribution of its central star, V664 Cas, and we find a distance of 490 ± 50 pc. Our simulations show that none of our models with time invariant stellar wind and ambient medium properties are able to reproduce simultaneously the extended bow shock and the collimated tail observed in HFG1. Given this, we increase the complexity of our modelling considering that the stellar wind is time variable. The wind description is based on the predictions of the AGB and post-AGB evolution models. Testing a grid of models, we find that the properties of HFG1 are best reproduced by the mass outflows of a 3 M⊙ AGB star. Such a scenario is consistent with the current observed properties of V664 Cas primary star, an O-type subdwarf, and bridges the evolutionary history of HFG1 central star with the observables of the PN. We discuss the implications of our study in the understanding of the evolution of AGB/post-AGB stars towards the formation of O-type subdwarfs surrounded by PNe.

  10. R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS

    SciTech Connect

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie

    2015-08-20

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10{sup −3} yr{sup −1}) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, we calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains.

  11. Quantitative Spectral Analysis of Evolved Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Kruk, Jeffrey W.

    2009-09-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  12. Studying evolved stars with Herschel observations

    NASA Astrophysics Data System (ADS)

    da Silva Santos, João Manuel

    2016-07-01

    A systematic inspection of the far-infrared (FIR) properties of evolved stars allows not only to constrain physical models, but also to understand the chemical evolution that takes place in the end of their lives. In this work we intend to study the circumstellar envelopes (CSE) on a sample of stars in the THROES catalogue from AGB/post-AGB stars to planetary nebulae using photometry and spectroscopy provided by the PACS instrument on-board Herschel telescope. In the first part we are interested in obtaining an estimate of the size of FIR emitting region and to sort our targets in two classes: point-like and extended. Secondly, we focus on the molecular component of the envelope traced by carbon monoxide (CO) rotational lines. We conduct a line survey on a sample of evolved stars by identifying and measuring flux of both 12CO and 13CO isotopologues in the PACS range, while looking at the overall properties of the sample. Lastly, we will be interested in obtaining physical parameters of the CSE, namely gas temperature, mass and mass-loss rate on a sample of carbon stars. For that, we make use of PACS large wavelength coverage, which enables the simultaneous study of a large number of CO transitions, to perform the rotational diagram analysis. We report the detection of CO emission in a high number of stars from the catalogue, which were mostly classified as point-like targets with a few exceptions of planetary nebulae. High J rotational number transitions were detected in a number of targets, revealing the presence of a significant amount of hot gas (T ˜ 400-900 K) and high mass-loss rates. We conclude that Herschel/PACS is in a privileged position to detect a new population of warmer gas, typically missed in sub-mm/mm observations.

  13. The ultraviolet-bright stars of Omega Centauri, M3, and M13

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.; O'Connell, Robert W.; Whitney, Jonathan H.; Bohlin, Ralph C.; Hill, Robert S.; Maran, Stephen P.; Parise, Ronald A.; Roberts, Morton S.; Smith, Andrew A.; Stecher, Theodore P.

    1992-01-01

    Two new UV-bright stars detected within 2 arcmin of the center of Omega Cen are spectroscopically investigated with the short-wavelength spectrograph of the IUE. The IUE spectra of the UV-bright stars UIT-1 and UIT-2 in the core of Omega Cen superficially resemble those of Population I mid-B stars. The absorption lines of the core UV-bright stars are significantly weaker than in Population I stars, consistent with their membership in the cluster. Synthetic spectra calculated from low-metallicity Kurucz model stellar atmospheres are compared with the spectra. These objects are insufficiently luminous to be classical hydrogen-burning post-AGB stars. They may be evolved hot horizontal branch stars which have been brightened by more than 3 mag since leaving the zero-age horizontal branch. It is inferred from the spectra and luminosity of the core UV-bright stars that similar objects could provide the source of the UV light in elliptical galaxies.

  14. The ultraviolet-bright stars of Omega Centauri, M3, and M13

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.; O'Connell, Robert W.; Whitney, Jonathan H.; Bohlin, Ralph C.; Hill, Robert S.; Maran, Stephen P.; Parise, Ronald A.; Roberts, Morton S.; Smith, Andrew A.; Stecher, Theodore P.

    1992-01-01

    Two new UV-bright stars detected within 2 arcmin of the center of Omega Cen are spectroscopically investigated with the short-wavelength spectrograph of the IUE. The IUE spectra of the UV-bright stars UIT-1 and UIT-2 in the core of Omega Cen superficially resemble those of Population I mid-B stars. The absorption lines of the core UV-bright stars are significantly weaker than in Population I stars, consistent with their membership in the cluster. Synthetic spectra calculated from low-metallicity Kurucz model stellar atmospheres are compared with the spectra. These objects are insufficiently luminous to be classical hydrogen-burning post-AGB stars. They may be evolved hot horizontal branch stars which have been brightened by more than 3 mag since leaving the zero-age horizontal branch. It is inferred from the spectra and luminosity of the core UV-bright stars that similar objects could provide the source of the UV light in elliptical galaxies.

  15. A Spectroscopic Study of the High-Latitude Far Evolved Star V534 Lyr

    NASA Astrophysics Data System (ADS)

    Sendzikas, E. G.; Chentsov, E. L.

    2017-06-01

    We study a pulsating variable post-AGB star V534 Lyr = HD172324 based on five high resolution spectra (R=60000) obtained with the NES echelle spectrograph of the 6-meter Russian telescope (BTA) in 2010 and 2013. Using the atmosphere modeling method and the Kurucz model set, we obtained the effective temperature Teff=10500 K, surface gravity log g=2.5, and microturbulent velocity ξt=4.0 km/s. The underabundance of the iron group elements [Met/H]⊙ = -0.50 was detected. This fact in combination with high spatial velocity indicates that V534 Lyr does not belong to the disk population. The radial velocity gradient in the V534 Lyr atmosphere is minimum: differential shifts of lines are close to measurement errors. The spectral class A0 Iab corresponds to the distance to V534 Lyr, d≍6 kpc.

  16. How to Build Pentagons and Heptagons from Hexagons around AGB Stars

    NASA Astrophysics Data System (ADS)

    Öttl, S.; Huber, S. E.; Niederwanger, F.; Kimeswenger, S.

    2015-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are known to be one of the carriers of the ubiquitous aromatic infrared bands that are frequently observed in post-AGB stars and planetary nebulae (PNe). Although PAH features are identified in a wide variety of environments, the characteristics of the individual molecules are not clear so far. Several emission features are observed, but cannot be explained. Therefore a sophisticated understanding of all possible types and subtypes is required. This study presents a theoretical investigation of the IR spectra of PAHs containing (5,7)-member ring defects. Such defects consist of pentagons and heptagons instead of some of the hexagons usually constituting PAHs. Using density functional theory, the influence of the defects on the IR spectra of pyrene (C16H10) and coronene (C24H12) and their cations and anions were examined in detail. Additionally, the potential energy surface of the neutral species was explored.

  17. Current hot questions on the s process in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; D'Orazi, V.; Karakas, A. I.; Garcia-Hernandez, D. A.; Stancliffe, R. J.; Tagliente, G.; Iliadis, C.; Rauscher, T.

    2016-01-01

    Asymptotic giant branch (AGB) stars are a main site of production of nuclei heavier than iron via the s process. In massive (>4 M⊙) AGB stars the operation of the 22Ne neutron source appears to be confirmed by observations of high Rb enhancements, while the lack of Tc in these stars rules out 13C as a main source of neutrons. The problem is that the Rb enhancements are not accompanied by Zr enhancements, as expected by s-process models. This discrepancy may be solved via a better understanding of the complex atmospheres of AGB stars. Second- generation stars in globular clusters (GCs), on the other hand, do not show enhancements in any s-process elements, not even Rb. If massive AGB stars are responsible for the composition of these GC stars, they may have evolved differently in GCs than in the field. In AGB stars of lower masses, 13C is the main source of neutrons and we can potentially constrain the effects of rotation and proton-ingestion episodes using the observed composition of post-AGB stars and of stardust SiC grains. Furthermore, independent asteroseismology observations of the rotational velocities of the cores of red giants and of white dwarves will play a fundamental role in helping us to better constrain the effect of rotation. Observations of carbon-enhanced metal-poor stars enriched in both Ba and Eu may require a neutron flux in-between the s and the r process, while the puzzling increase of Ba as function of the age in open clusters, not accompanied by increase in any other element heavier than iron, require further observational efforts. Finally, stardust SiC provides us high-precision constraints to test nuclear inputs such as neutron-capture cross sections of stable and unstable isotopes and the impact of excited nuclear states in stellar environments.

  18. Lithium, Sodium, and Potassium Abundances in Sharp-Lined A-Type Stars Takeda, Yoichi; Kang, Dong-Il; Han, Inwoo; Lee, Byeong-Cheol; Kim, Kang-Min; Kawanomoto, Satoshi; Ohishi, Naoko;

    NASA Astrophysics Data System (ADS)

    2012-04-01

    The abundances of alkali elements (Li, Na, and K) were determined from the Li I 6708, Na I 5682/5688, and K I 7699 lines by taking into account the non-LTE effect for 24 sharp-lined A-type stars (ve sin i ≲ 50 km s-1, 7000 K &lesssim Teff &lessim 10000 K, many showing Am peculiarities to different degrees), based on high-dispersion and high-S/N spectral data secured at BOAO (Korea) and OAO (Japan). We found a significant trend that A(Na) tightly scales with A(Fe) irrespective of Teff, which means that Na becomes enriched similarly to Fe in accordance with the degree of Am peculiarity. Regarding lithium, A(Li) mostly ranges between ˜ 3 and ˜ 3.5 (i.e., almost the same as or slightly less than the solar system abundance of 3.3) with a weak decreasing tendency with a lowering of Teff at Teff &lesssim 8000 K, though several stars exceptionally show distinctly larger depletion. The abundances of potassium also revealed an apparent Teff-dependence in the sense that A(K) in late-A stars tends to be mildly subsolar [possibly with a weak anti-correlation with A(Fe)] systematically decreasing from ˜ 5.0 (Teff ˜ 8500 K) to ˜ 4.6 (Teff ˜ 7500 K), while those for early-A stars remain near-solar around ˜ 5.0-5.2. These observational facts may serve as important constraints for any theory aiming to explain chemical anomalies of A-type stars.

  19. Formaldehyde Masers: Exclusive Tracers of High-mass Star Formation

    NASA Astrophysics Data System (ADS)

    Araya, E. D.; Olmi, L.; Morales Ortiz, J.; Brown, J. E.; Hofner, P.; Kurtz, S.; Linz, H.; Creech-Eakman, M. J.

    2015-11-01

    The detection of four formaldehyde (H2CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H2CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H2CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H2CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H2CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH3OH masers. We detected a new 6 cm H2CO emission line in G32.74-0.07. This work provides further evidence that supports an exclusive association between H2CO masers and young regions of high-mass star formation. Furthermore, we detected H2CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH3OH (5005 MHz), and CH2NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  20. Estimating the binary fraction of central stars of planetary nebulae using the infrared excess method

    NASA Astrophysics Data System (ADS)

    Douchin, D.; De Marco, O.; Frew, D. J.; Jacoby, G. H.; Fitzgerald, M.; Jasniewicz, G.; Moe, M.; Passy, J. C.; Hillwig, T.; Harmer, D.

    2014-04-01

    There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape nebulae whose shapes are not spherical or mildly elliptical, implying that many single post-AGB stars do not make a PN at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebula and to compare it with that of the main sequence population. Preliminary results from the infrared excess technique indicate that the binary fraction of central stars of planetary nebula is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. I will present new results from a search of red and infrared flux excess in an extended sample of central stars of planetary nebula and compare the improved estimate of the PN binary fraction with that of main sequence stars.

  1. Testing the presence of lithium on the surfaces of cool Ap stars

    NASA Astrophysics Data System (ADS)

    Nesvacil, N.; Hubrig, S.; Mathys, G.

    2004-12-01

    The possibility of a quite high Li abundance in the Ap stars was first raised by Wallerstein & Merchant (1965). Since then many studies investigated the problem of Li. The more recent observations in the lithium region indicate that in some Ap stars the λ 6708 feature is variable and this variability can be explained by the existence of Li rich spots on the stellar surface. Atomic data for the Ce II λ 6708.099 were released by the D.R.E.A.M. database in 2002. The line was used to identify the prominent suspected Li-feature in post AGB stars and might as well be responsible for the absorption feature in Ap stars. Recent studies have mentioned this possibility, but it has yet to be investigated in more detail. Other physical phenomena, such as the occurrence of a partial Paschen-Back effect in the presence of magnetic fields, as well as possible hyperfine structure splitting of some Rare Earth transitions, must be taken into account to provide correct line identifications in the wavelength region around the Li-doublet at λ 6708. We discuss a possible strategy to clarify the presence of Li in Ap stars.

  2. Infra-Red Characteristics of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2017-07-01

    Infra-Red (IR) astronomical databases, namely, IRAS, 2MASS, WISE, and Spitzer, are used to analyze photometric data of 126 carbon (C) stars whose spectra are visible in the First Byurakan Survey (FBS) (Markarian et al. 1989) low-resolution (lr) spectral plates. In this work several IR color-color diagrams are studied. Early and late-type C stars are separated in the JHK Near-Infra-Red (NIR) color-color plots, as well as in the WISE W3-W4 versus W1-W2 diagram. Late N-type Asymptotic Giant Branch (AGB) stars are redder in W1-W2, while early-types (CH and R giants) are redder in W3-W4 as expected. Objects with W2-W3 > 1.0m show double-peaked spectral energy distribution (SED), indicating the existence of the circumstellar envelopes around them. 26 N-type stars have IRAS Point Source Catalog (PSC) associations. The reddest object among the targets is N-type C star FBS 2213+421, which belong to the group of the cold post-AGB R Coronae Borealis (R CrB) variables (Rossi et al. 2016).

  3. Following the rapid evolution of the central star of the Stingray Nebula in real time

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole

    2014-10-01

    SAO 244567 is an unusually fast evolving star. Within twenty years only, it has turned from a B-type supergiant into the central star of the Stingray nebula. Space and ground-based observations obtained over the last decades have revealed that its spectrum changes noticeably over just a few years, showing stellar evolution in real time. Previous analysis indicates it must be a low mass star and thus the observed fast evolution is in strong contradiction with canonical post-asymptotic giant branch (AGB) evolution. A late He-shell flash is able to account for the rapid evolution. This scenario would predict an evolution back to the AGB, e.g. a decrease of the effective temperature (which is already indicated by the FUSE observations in 2006) and an increase of luminosity. With COS spectroscopy we want to follow the evolution of the surface properties of SAO 244567 to verify this thesis. The very compact nebula of SAO 244567 makes it impossible to derive these parameters from optical spectra, because most of the photospheric lines are blended by nebular emission lines thus they are not suitable for a spectral analysis. The derived surface parameters will establish constraints for late thermal pulse evolutionary calculations. With these calculations we aim not only to explain the nature of SAO 244567, but they also will provide a deeper insight in the formation process of hydrogen deficient stars, which make up 25% of the post AGB-stars and white dwarfs.

  4. An Enigmatic Variable Star in the Backyard of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    O'Connor, Christopher; Gautam, Abhimat; Do, Tuan; Ghez, Andrea M.; Sakai, Shoko; Morris, Mark; Lu, Jessica R.; Witzel, Gunther; Sitarski, Breann; Chappell, Samantha

    2017-01-01

    We present updates on a search for stellar near-infrared (K') variability in the Milky Way's galactic center (GC), using twelve years of Keck adaptive optics data. In particular, one late-type variable star within a few arcseconds of the central supermassive black hole, Sgr A*, features a long period (~6.5 years); a large near-infrared amplitude (~1.7 mag); and an apparently regular, non-sinusoidal profile in its light curve. Multiple interpretations are plausible for this signal: For instance, the source could be an AGB or post-AGB star experiencing rapid mass loss; it may then host molecular masers, with ramifications for precision astrometry in the GC. A second, more exotic possibility is that of a "V Hydrae" object—a mass-losing giant orbited eccentrically by a main-sequence companion. This second case may provide evidence for the action of the eccentric Kozai-Lidov mechanism in the GC due to third-body perturbations from Sgr A*.

  5. Rapid line-profile variability of H-alpha and H-beta in the A-type shell star HD 163296

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.

    1994-02-01

    The results of the H-alpha and H-beta line profile investigation of an A0-shell star HD 163296 are presented. 47 high-resolution CCD spectra (35 for H-alpha and 12 for H-beta) were obtained on July 15-20, 1991 and on July 24-27, 1992. A considerable profile variability is found on time scales from one hour to a few days. The main properties of the night-to-night variations are strong change in shape of the entire line profile with the exception of the primary PCyg-absorption which remains relatively constant both in strength and in position. Two types of extremely rapid variations (tau approximately equal hours) are discovered: (a) positional shift of sharp spectral bumps, and (b) monotonous flux variations of different parts of a profile during a night. A qualitative explanation in the framework of the model for an envelope containing an active non-stable region formed by an equatorially concentrated stellar wind and an external cool shell is proposed for the observed variability. Some reasons for the extremely rapid profile changes are considered.

  6. Maser and infrared studies of oxygen-rich late/post-asymptotic giant branch stars and water fountains: development of a new identification method

    SciTech Connect

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Henkel, Christian

    2014-10-10

    We explored an efficient method to identify evolved stars with oxygen-rich envelopes in the late asymptotic giant branch (AGB) or post-AGB phase of stellar evolution, which include a rare class of objects—the 'water fountains (WF)'. Our method considers the OH and H{sub 2}O maser spectra, the near-infrared Q-parameters (these are color indices accounting for the effect of extinction), and far-infrared AKARI colors. Here we first present the results of a new survey on OH and H{sub 2}O masers. There were 108 color-selected objects: 53 of them were observed in the three OH maser lines (1612, 1665, and 1667 MHz), with 24 detections (16 new for 1612 MHz); and 106 of them were observed in the H{sub 2}O maser line (22 GHz), with 24 detections (12 new). We identify a new potential WF source, IRAS 19356+0754, with large velocity coverages of both OH and H{sub 2}O maser emission. In addition, several objects with high-velocity OH maser emission are reported for the first time. The Q-parameters as well as the infrared [09]–[18] and [18]–[65] AKARI colors of the surveyed objects are then calculated. We suggest that these infrared properties are effective in isolating aspherical from spherical objects, but the morphology may not necessarily be related to the evolutionary status. Nonetheless, by considering altogether the maser and infrared properties, the efficiency of identifying oxygen-rich late/post-AGB stars could be improved.

  7. IR Excesses of Four Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Bilikova, Jana; Chu, Y.; Gruendl, R. A.; Su, K. Y. L.

    2008-03-01

    An infrared excess of a star indicates the presence of an additional object that is cooler and dimmer and therefore undetectable at optical wavelengths, such as a low-mass companion, a planet, or a dust disk. Dust disks have been detected around post-AGB stars and a number of white dwarfs (WDs). An intermediate stage between these two, the central stars of planetary nebulae (CSPNs), have been neglected in the search for dust disks. PN researches focus more on the nebulosity than the CSPN, and any detected excess is usually assumed to originate from stellar ejecta without further investigation. The Helix Nebula's central star was the first one found to exhibit IR excess after careful subtraction of nebular emission, and the origin of this excess was found to be a dust continuum. To search for more cases of IR excess of CSPNs, we have surveyed 40 resolved PNe in the Spitzer archive. For the PNe with resolved central stars, we carried out photometric measurements, and combined them with supplemental optical and near-IR data to construct their spectral energy distributions (SEDs). We further modeled stellar emission using appropriate stellar temperature, distance, and de-reddened V or B magnitude. We find four CSPNs that exhibit IR excess - NGC 2346, NGC 2438, NGC 6804 and NGC 7139. The nature and the origin of the IR excess in these CSPNs is still unclear and needs to be verified spectroscopically. If it is indeed continuous in nature, it is likely due to the presence of a dust disk, which could be produced in a common-envelope binary evolution, or result from tidal breakup of asteroids or collisions among Kuiper-Belt-like objects.

  8. Short-Period Be and Related Variable Stars Discovered or Confirmed by Self-Correlation Analysis of Hipparcos Epoch Photometry

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Harlow, C. D. W.; Wu, A. P. S.

    2003-05-01

    We have surveyed 277 bright Be stars for short-period photometric variability, using self-correlation analysis of Hipparcos epoch photometry. This extends the work of Percy et al. (2002 PASP 114, 551-558); the methods are as described therein. We report the discovery, time scale and amplitude of short-period variability in: HD 7636 (V764 Cas), HD 11606 (V777 Cas), HD 13661 (V549 Per), HD 34921, HD 36408, HD 40978, HD 58343 (FW CMa), HD 63460 (o Pup), HD 88195 (17 Sex), HD 89353 (AG Ant, HR 4049), HD 129954 (CO Cir), HD 158220 (V862 Ara), HD 173219 (V947 Sct), and HD 187567 (V1339 Aql). We report the confirmation of short-period variability, using an independent form of analysis, in HD 52918 (19 Mon), HD 105382 (V863 Cen), HD 137387 (κ -1 Aps), HD 157832 (V750 Ara), and HD 163868 (V3984 Sgr). These include a β Cephei star (19 Mon), a Vega-type star (17 Sex) and a post-AGB B star (HR 4049). We call attention to a small group of active Be stars whose self-correlation diagram (Δ mag versus Δ time) rises linearly with Δ time up to several days or more. Supported by NSERC Canada, and the Ontario Work-Study Program.

  9. Observational survey of the puzzling star HD 179821: Photometric variations and period analysis

    NASA Astrophysics Data System (ADS)

    Le Coroller, H.; Lèbre, A.; Gillet, D.; Chapellier, E.

    2003-03-01

    From new photometric observations (UBVRI), we present the characteristic features of the light variations of the evolved star HD 179821 (= SAO 124414 = IRAS 19114+0002). Our data, collected through 1999 and 2000, have been combined together with previous photometric measurements available in the literature. Thus, a long term V-light curve (gathering more than 10 years of observations for HD 179821) has been composed. We have analysed it with the Fourier transform method. Two main frequencies are present in the resulting power spectrum, reflecting a dominant bimodal pulsator behavior. A long term phenomenon is also found, but it is not possible to decide whether it is periodic. The Fourier analysis has also been applied on two other filters (U and B) and confirms the detected frequencies. On the basis of our period analysis, we discuss the nature of HD 179821: low-mass post-AGB star or high-mass star. based on observations carried out at the Observatoire de Haute Provence, France, operated by the Centre National de la Recherche Scientifique (CNRS).

  10. Hot Companions and Warm Disks Around Cool Stars

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    Almost all stars in the Universe end their lives quietly, evolving through the Red Giant Branch (RGB), Asymptotic Giant Branch (AGB), and planetary nebula (PN) evolutionary phases. Single-star evolutionary models tell us that most stars that leave the main sequence in less than a Hubble time will end their lives in this way, but will induce profound effects on their environment. The heavy mass loss which they experience at the end of their lives fundamentally affect their evolution, and makes them the main suppliers of dust and gas enriched by nucleosynthesis to the general interstellar medium (ISM). But our overall understanding of the late evolution of these stars are based on single-star models, when it is well-known that most stars begin their lives in binary systems, and binarity can drastically affect both mass-loss and late stellar evolution. The study of binarity in systems with low and intermediate-mass evolved stars can yield crucial information regarding the initial mass function near the bottom of the main-sequence and below, and the long-term stability and suvivability of low-mass objects in orbit around post-AGB stars.We propose a 3-year study which investigates binarity in two important classes of stars: AGB stars and dwarf carbon (dC) stars (and CH star: the immediate post-main sequence counterparts of dC stars), primarily using the GALEX and WISE databases. Direct observational evidence for binarity in AGB stars is of fundamental importance, but a huge challenge because of their high luminosities compared to their companions; only in the UV bands (observed with GALEX) there is a strong potential for finding the companions. The existence of dC stars has long been a mystery as carbon can only be produced in AGB stars -- it is believed that dC stars are normal dwarfs stars that became C-rich due to mass-transfer from a companion when it was a C-rich AGB star (but is now a white dwarf). The detection of a statistical sample of such objects in the UV

  11. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  12. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  13. First detections of FS Canis Majoris stars in clusters. Evolutionary state as constrained by coeval massive stars

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Trombley, C.; Davies, B.; Figer, D. F.

    2015-03-01

    Context. FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary state remains a puzzle. These stars are surrounded by compact disks of warm dust of unknown origin. Hitherto, membership of FS CMa stars to coeval populations has never been confirmed. Aims: The discovery of low-luminosity line emitters in the young massive clusters Mercer 20 and Mercer 70 prompts us to investigate the nature of such objects. We intend to confirm membership to coeval populations in order to characterize these emission-line stars through the cluster properties. Methods: Based on ISAAC/VLT medium-resolution spectroscopy and NICMOS/HST photometry of massive cluster members, new characterizations of Mercer 20 and Mercer 70 are performed. Coevality of each cluster and membership of the newly-discovered B[e] objects are investigated using our observations as well as literature data of the surroundings. Infrared excess and narrow-band photometric properties of the B[e] stars are also studied. Results: We confirm and classify 22 new cluster members, including Wolf-Rayet stars and blue hypergiants. Spectral types (O9-B1.5 V) and radial velocities of B[e] objects are compatible with the remaining cluster members, while emission features of Mg ii, Fe ii], and [Fe ii] are identified in their spectra. The ages of these stars are 4.5 and 6 Myr, and they show mild infrared excesses. Conclusions: We confirm the presence of FS CMa stars in the coeval populations of Mercer 20 and Mercer 70. We discuss the nature and evolutionary state of FS CMa stars, discarding a post-AGB nature and introducing a new hypothesis about mergers. A new search method for FS CMa candidates in young massive clusters based on narrow-band Paschen-α photometry is proposed and tested in photometric data of other clusters, yielding three new candidates. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program IDs 083.D

  14. The 13C Neutron Source and s-Processing in AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, Oscar; Busso, Maurizio; Palmerini, Sara; La Cognata, Marco

    The main component of the s-process accounts for about 50% of elements heavier than Kr, through n-captures occurring in asymptotic giant branch (AGB) stars, where the 13C(α, n)16O reaction is the main neutron source. Its activation below the convective envelope at third dredge-up (TDU) and its efficiency are still matters of debate, as: (i) the astrophysical factor is affected by a broad resonance near the reaction threshold and (ii) mixing mechanisms to locally produce 13C were so far mimicked mainly parametrically. We discuss both problems and, in particular, we adopt one of the recent model proposed for producing 13C and based on an exact multi-D analytical solution of MHD equations, where magnetic buoyancy induces partial mixing at the envelope border. The resulting distribution of 13C is used, together with our upgraded prescription for the reaction rate, to reproduce solar abundances through AGB models. It can account for the chemical evolution of s-elements and for the s/(C/O) ratios in low-metallicity post-AGB stars.

  15. Observations of ultraviolet-bright stars in globular clusters with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Van Dyke Dixon, W.; Davidsen, Arthur F.; Ferguson, Henry C.

    1994-01-01

    Two UV-bright stars in globular clusters, UV5 in NGC 1851 and vZ 1128 in M3, were observed with the Hopkins Ultraviolet Telescope (HUT) during the Astro-1 space shuttle mission in 1990 December. The stars' spectra show weak absorption features and no significant emission features other than well known geocoronal lines. Detailed fitting of Kurucz (1991) stellar atmosphere models using a chi(sup 2) minimization technique indicates T(sub eff) = 16 000 K, log g = 2.5, and abundance (-1.0) (logarithm of abundance of elements heavier than helium relative to solar) for UV5, and T(sub eff) = 35 000 K, log g = 4.0, and abundance (-3.5) for vZ 1128. The Kurucz model which best fits vZ 1128 overpredicts the flux in the region below approximately 1000 A, an effect seen in previous models of O-type stars. Our results are robust (to within approximately 1000 K) with respect to uncertainties in interstellar reddening and atomic and molecular hydrogen column densities. We do not see significant molecular hydrogen absorption, which might have indicated material in a circumstellar shell, in either star's spectrum. We estimate the stellar luminosities to be log L/solar luminosity = 3.33 +/- 0.15 for UV5 and log L/solar luminosity = 3.21 +/- 0.12 for vZ 1128. These atmospheric parameters place both stars on the Schoenberner (post-AGB) tracks, though the stellar masses derived from the best-fitting Kurucz models are somewhat less than those predicted by the Schoenberner models. Examination of individual absorption line strengths reveals no significant abundance anomalies in either star.

  16. Lithium and zirconium abundances in massive Galactic O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Plez, B.; Manchado, A.; D'Antona, F.; Lub, J.; Habing, H.

    2007-02-01

    Lithium and zirconium abundances (the latter taken as representative of s-process enrichment) are determined for a large sample of massive Galactic O-rich AGB stars, for which high-resolution optical spectroscopy has been obtained (R˜ 40 000{-}50 000). This was done by computing synthetic spectra based on classical hydrostatic model atmospheres for cool stars and using extensive line lists. The results are discussed in the framework of "hot bottom burning" (HBB) and nucleosynthesis models. The complete sample is studied for various observational properties such as the position of the stars in the IRAS two-colour diagram ([ 12] - [25] vs. [ 25] - [60] ), Galactic distribution, expansion velocity (derived from the OH maser emission), and period of variability (when available). We conclude that a considerable fraction of these sources are actually massive AGB stars (M>3{-}4 M⊙) experiencing HBB, as deduced from the strong Li overabundances we found. A comparison of our results with similar studies carried out in the past for the Magellanic Clouds (MCs) reveals that, in contrast to MC AGB stars, our Galactic sample does not show any indication of s-process element enrichment. The differences observed are explained as a consequence of metallicity effects. Finally, we discuss the results obtained in the framework of stellar evolution by comparing our results with the data available in the literature for Galactic post-AGB stars and PNe. Based on observations at the 4.2 m William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias. Also based on observations with the ESO 3.6 m telescope at La Silla Observatory (Chile). Tables [see full text]-[see full text] are only available in electronic form at http://www.aanda.org

  17. Predicting the fate of binary red giants using the observed sequence E star population: binary planetary nebula nuclei and post-RGB stars

    NASA Astrophysics Data System (ADS)

    Nie, J. D.; Wood, P. R.; Nicholls, C. P.

    2012-07-01

    Sequence E variables are close binary red giants that show ellipsoidal light variations. They are likely the immediate precursors of planetary nebulae (PNe) with close binary central stars as well as other binary post-asymptotic giant branch (post-AGB) and binary post-red giant branch (post-RGB) stars. We have made a Monte Carlo simulation to determine the fraction of red giant binaries that go through a common envelope event leading to the production of a close binary system or a merged star. The novel aspect of this simulation is that we use the observed frequency of sequence E binaries in the Large Magellanic Cloud (LMC) to normalize our calculations. This normalization allows us to produce predictions that are relatively independent of model assumptions. In our standard model, and assuming that the relative numbers of PNe of various types are proportional to their birth rates, we find that in the LMC today the fraction of PNe with close binary central stars is 7-9 per cent, the fraction of PNe with intermediate period binary central stars having separations capable of influencing the nebula shape (orbital periods less than 500 yr) is 23-27 per cent, the fraction of PNe containing wide binaries that are unable to influence the nebula shape (orbital period greater than 500 yr) is 46-55 per cent, the fraction of PNe derived from single stars is 3-19 per cent, and 5-6 per cent of PNe are produced by previously merged stars. We also predict that the birth rate of post-RGB stars is ˜4 per cent of the total PN birth rate, equivalent to ˜50 per cent of the production rate of PNe with close binary central stars. These post-RGB stars most likely appear initially as luminous low-mass helium white dwarf binaries. The average lifetime of sequence E ellipsoidal variability with amplitude more than 0.02 mag is predicted to be ˜0.95 Myr. We use our model and the observed number of red giant stars in the top one magnitude of the RGB in the LMC to predict the number of PNe in

  18. V453 Oph: a s-process enriched, but carbon-deficient RV Tauri star of low intrinsic metallicity

    NASA Astrophysics Data System (ADS)

    Deroo, P.; Reyniers, M.; van Winckel, H.; Goriely, S.; Siess, L.

    2005-08-01

    This paper reports the detection of a heavy element enriched RV Tauri variable with an abundance pattern that differs significantly from a standard s-process enriched object: V453 Oph. Based on optical high-resolution spectra, we determined that this object of low intrinsic metallicity ([Fe/H]=-2.2) has a mild, but significant, enrichment ([s/Fe]˜ + 0.5) of heavy elements for which the distribution points to slow neutron capture nucleosynthesis. This result is strengthened by a comparative analysis to the non-enriched RV Tauri star DS Aqr ([s/Fe]= 0.0). Although V453 Oph is the first RV Tauri star showing a strong s-process signature, it is not accompanied by C enhancement, challenging our current nucleosynthetic models of post-AGB stars that predict a simultaneous enrichment in C and s-process elements. The low N abundance excludes CN cycling as being responsible for the low C abundance. We explore three different scenarios to explain the heavy element distribution in this evolved object: an enrichment of the parental cloud, an accretion scenario in which the chemical patterns were acquired by mass transfer in a binary system and an intrinsic enrichment by dredge-up.

  19. Studies of circumstellar shells in AGB stars by multifrequency (sub)mm-VLBI observations of maser emission

    NASA Astrophysics Data System (ADS)

    Colomer, F.; Desmurs, J. F.; Bujarrabal, V.; Baudry, A.; de Vicente, P.; Soria-Ruiz, R.; Alcolea, J.; Diaz-Pulido, A.; Gómez, M.

    2017-03-01

    VLBI observations of maser emission are a basic tool to study the circumstellar envelopes (CSEs) around evolved stars, mainly around AGB and post-AGB stars. The maser lines of water and silicon monoxide are particularly intense. They provide us with high spatial resolution data on the very inner CSEs around AGB stars, including the pulsating layers previous to grain formation and outer regions where the fast expansion characteristic of such envelopes is already present. The analysis of the pumping mechanism of SiO masers and of the physical conditions in the emitting clumps requires accurate maps of the various lines, which show different excitation requirements. A large observational effort is being done to obtain (quasi-)simultaneous multiline data at the highest spatial resolution, using VLBI techniques, which makes possible to compare the relative distribution of the maser lines. We present the state-of-the-art in the field, and discuss preliminary results of SiO masers observed with the Global Millimeter VLBI Array (GMVA) which provide a new view into the physics of these AGB envelopes. The participation of ALMA in these VLBI arrays will boost the study of these masers, at higher frequencies.

  20. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    SciTech Connect

    Araya, E. D.; Brown, J. E.; Olmi, L.; Ortiz, J. Morales; Hofner, P.; Creech-Eakman, M. J.; Kurtz, S.; Linz, H.

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  1. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved

  2. OT2_rsahai_6: Probing the molecular disk in Y Gem: an AGB star with variable UV emission signifying accretion onto a binary companion

    NASA Astrophysics Data System (ADS)

    Sahai, R.

    2011-09-01

    We propose to observe CO J=6-5 and 9-8 line emission from a cool AGB star, Y Gem, which, in dramatic contrast to most objects in its class, has relatively strong and variable FUV and NUV fluxes - evidence of variable accretion of matter onto an accretion disk in a binary system. We found Y Gem as a UV source serendipitously, while combing the GALEX archive as part of a project to look for hot binary companions to cool AGB stars. This object may represent the earliest phases of an AGB star with a growing accretion disk which will produce collimated jets that are widely believed to sculpt the round circumstellar envelopes of AGB stars into bipolar planetary nebulae. It may evolve into a member of the class of post-AGB objects which show no extended outflows, but only circumbinary disks. HIFI observations of high-J CO lines are needed to probe the warmest and innermost circumstellar regions where the hypothesized accretion disk resides and jet launching may occur. Furthermore, the proposed CO observations, together with our existing CO J=2-1 data, will allow us to accurately constrain the CO excitation temperature, and the optical depths of the CO lines and thus the total mass of the emitting region. The disk or torus mass will provide an important constraint on its formation process (e.g., common envelope evolution or Bondi-Hoyle wind-accretion/ Roche lobe overflow.)

  3. Establishing binarity amongst Galactic RV Tauri stars with a disc⋆

    NASA Astrophysics Data System (ADS)

    Manick, Rajeev; Van Winckel, Hans; Kamath, Devika; Hillen, Michel; Escorza, Ana

    2017-01-01

    Context. Over the last few decades it has become more evident that binarity is a prevalent phenomenon amongst RV Tauri stars with a disc. This study is a contribution to comprehend the role of binarity upon late stages of stellar evolution. Aims: In this paper we determine the binary status of six Galactic RV Tauri stars, namely DY Ori, EP Lyr, HP Lyr, IRAS 17038-4815, IRAS 09144-4933, and TW Cam, which are surrounded by a dusty disc. The radial velocities are contaminated by high-amplitude pulsations. We disentangle the pulsations from the orbital signal in order to determine accurate orbital parameters. We also place them on the HR diagram, thereby establishing their evolutionary nature. Methods: We used high-resolution spectroscopic time series obtained from the HERMES and CORALIE spectrographs mounted on the Flemish Mercator and Swiss Leonhard Euler Telescopes, respectively. An updated ASAS/AAVSO photometric time series is analysed to complement the spectroscopic pulsation search and to clean the radial velocities from the pulsations. The pulsation-cleaned orbits are fitted with a Keplerian model to determine the spectroscopic orbital parameters. We also calibrated a PLC relationship using type II cepheids in the LMC and apply the relation to our Galactic sample to obtain accurate distances and hence luminosities. Results: All six of the Galactic RV Tauri stars included in this study are binaries with orbital periods ranging between 650 and 1700 days and with eccentricities between 0.2 and 0.6. The mass functions range between 0.08 to 0.55 M⊙ which points to an unevolved low-mass companion. In the photometric time series we detect a long-term variation on the timescale of the orbital period for IRAS 17038-4815, IRAS 09144-4933, and TW Cam. Our derived stellar luminosities indicate that all except DY Ori and EP Lyr are post-AGB stars. DY Ori and EP Lyr are likely examples of the recently discovered dusty post-RGB stars. Conclusions: The orbital parameters

  4. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  5. The post-common envelope central stars of the planetary nebulae Henize 2-155 and Henize 2-161

    NASA Astrophysics Data System (ADS)

    Jones, D.; Boffin, H. M. J.; Rodríguez-Gil, P.; Wesson, R.; Corradi, R. L. M.; Miszalski, B.; Mohamed, S.

    2015-08-01

    We present a study of Hen 2-155 and Hen 2-161, two planetary nebulae which bear striking morphological similarities to other planetary nebulae known to host close-binary central stars. Both central stars are revealed to be photometric variables while spectroscopic observations confirm that Hen 2-155 is host to a double-eclipsing, post-common-envelope system with an orbital period of 3h33m making it one of the shortest period binary central stars known. The observations of Hen 2-161 are found to be consistent with a post-common-envelope binary of period ~1 day. A detailed model of the central star of Hen 2-155 is produced, showing the nebular progenitor to be a hot, post-AGB remnant of approximately 0.62 M⊙, consistent with the age of the nebula, and the secondary star to be an M dwarf whose radius is almost twice the expected zero age main sequence radius for its mass. In spite of the small numbers, all main-sequence companions, of planetary nebulae central stars, to have had their masses and radii constrained by both photometric and spectroscopic observations have also been found to display this "inflation". The cause of the "inflation" is uncertain but is probably related to rapid accretion, immediately before the recent common-envelope phase, to which the star has not yet thermally adjusted. The chemical composition of both nebulae is also analysed, showing both to display elevated abundance discrepancy factors. This strengthens the link between elevated abundance discrepancy factors and close binarity in the nebular progenitor. Full Tables 2-5, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A19

  6. Radio variability and non-thermal components in stars evolving towards planetary nebulae

    NASA Astrophysics Data System (ADS)

    Cerrigone, L.; Umana, G.; Trigilio, C.; Leto, P.; Buemi, C. S.; Ingallinera, A.

    2017-07-01

    We present new Karl G. Jansky Very Large Array multifrequency measurements of a set of stars in transition from the post-AGB to the planetary nebula phase monitored in the radio range over several years. Clear variability is found for five sources. Their light curves show increasing and decreasing patterns. New radio observations at high angular resolution are also presented for two sources. Among these is IRAS 18062 + 2410, whose radio structure is compared to near-infrared images available in the literature. With these new maps, we can estimate inner and outer radii of 0.03 and 0.08 arcsec for the ionized shell, an ionized mass of 3.2 × 10-4 M⊙ and a density at the inner radius of 7.7 × 105 cm-3, obtained by modelling the radio shell with the new morphological constraints. The combination of multifrequency data and, where available, spectral-index maps leads to the detection of spectral indices not due to thermal emission, contrary to what one would expect in planetary nebulae. Our results allow us to hypothesize the existence of a link between radio variability and non-thermal emission mechanisms in the nebulae. This link seems to hold for IRAS 22568 + 6141 and may generally hold for those nebulae where the radio flux decreases over time.

  7. Constraining Models of Evolved UV-Bright Stars in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip

    2014-10-01

    We aim to use HST observations of M31 to generate the definitive data set for modeling the population of the UV-bright stars that contribute to the UV flux in old stellar populations (i.e., the "UV excess" seen in some elliptical galaxies and spiral bulges).We propose to place stringent observational constraints on the post-AGB (P-AGB) and post-early AGB (PE-AGB) phases of stellar evolution using a UV survey of M31's bulge. M31 is a critical laboratory for testing these models, as it hosts an old, metal-rich stellar population with high stellar densities such that even rare evolutionary phases are well-represented.We will (1) assemble a catalog of UV-bright stars in the center of M31 in F336W and F225W, extending out to ~0.7 kpc, to sample stellar populations with different metallicities; and (2) image a smaller 0.9 sqr-arcmin strip with ACS/SBC in F140LP, to image the regions with the highest density of rapidly-evolving P-AGB stars. The FUV imaging will allow us to separate the P-AGB from the PE-AGB. These observations will include thousands of UV-bright stars, increasing the size of existing samples by orders of magnitude.These new observations will drive revisions in models for post-HB evolution, which we will merge into new isochrone libraries and stellar population synthesis codes. The revisions will have important implications for AGB evolution, spectral evolution models of galaxies, and for mass loss on the RGB. The observations will also have a direct impact on interpreting (1) the UV flux from old stellar populations; (2) the emission line flux from M31's nuclear spiral; and (3) models of dust heating by old stellar populations.

  8. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    SciTech Connect

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Girardi, Leo; Bressan, Alessandro; Lang, Dustin; Guhathakurta, Puragra; Dorman, Claire E.; Lauer, Tod R.; Olsen, Knut A. G.; Bell, Eric F.; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Kalirai, Jason; Larsen, Soren S.; Rix, Hans-Walter; and others

    2012-08-20

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' Multiplication-Sign 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of {approx}4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  9. Spacially-resolved STIS spectroscopy of young H-deficient central stars of PN.

    NASA Astrophysics Data System (ADS)

    De Marco, O.; Cohen, M.; Barlow, M. J.

    2000-12-01

    Hydrogen-deficient central stars of planetary nebula (PN) present a mystery and a challenge in the evolution of low mass stars after they ascend the Asymptotic Giant Branch (AGB). This class represents about 20% of all known central stars and seems to evolve as a result of an outburst event early in the life of the post-AGB star. During this event, which is thought to be similar to a helium shell outburst, ALL the hydrogen is burned or ejected, leaving a central star made of helium and carbon, which can later develop strong mass-loss. SwSt1 is one such star. It has a very young PN, with high density and a very small apparent radius. Its star is hot (35000K) and has a substantial mass-loss. Because of its youth, this object, together with a handful of central stars, can be used to trace the evolution of this class back to their AGB ancestry and to the event that made them different from H-rich central stars. Recently-acquired spacially-resolved STIS observations, show density and abundance layering in the PN gas, which can be used to trace the object's history. In this paper, the HST observations are analyzed with stellar non-LTE codes, to determine the stellar parameters and hence the stellar evolutionary status (effective temperature and radius). Nebular photo-ionization codes, which use the synthetic stellar atmosphere as input, are then used to model the nebular emission as a function of radius. Probing into as little as the last 500 years in the life of this class of objects using their young PN, can characterize the event that is responsible for their hydrogen-deficient nature. Mass-loss on and after the AGB is still one of the least understood events in stellar astrophysics. Progress in understanding the super-efficient mass-loss that leads to central stars stripped of hydrogen would constitute a significant advance in characterizing AGB mass-loss in general.

  10. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE {sup 19}F(p, {alpha}{sub 0}){sup 16}O REACTION AT ASTROPHYSICAL ENERGIES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Indelicato, I.; Cherubini, S.; Gulino, M.; Kiss, G. G.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Mukhamedzhanov, A. M.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Piskor, S.; Coc, A.

    2011-10-01

    The {sup 19}F(p, {alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E {sub cm} {approx}< 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F, {alpha}{sup 16}O)n and the {sup 19}F({sup 3}He, {alpha}{sup 16}O)d reactions. The TH measurement of the {alpha}{sub 0} channel shows the presence of resonant structures not observed before, which cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential consequences for stellar nucleosynthesis.

  11. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    SciTech Connect

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  12. X-Ray Imaging of Planetary Nebulae with Wolf-Rayet-type Central Stars: Detection of the Hot Bubble in NGC 40

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo, Jr.; Kastner, Joel H.; De Marco, Orsola; Soker, Noam

    2005-12-01

    We present the results of Chandra X-Ray Observatory observations of the planetary nebulae (PNs) NGC 40 and Hen 2-99. Both PNs feature late-type Wolf-Rayet central stars that are currently driving fast (~1000 km s-1), massive winds into denser, slow-moving (~10 km s-1) material ejected during recently terminated asymptotic giant branch (AGB) evolutionary phases. Hence, these observations provide key tests of models of wind-wind interactions in PNs. In NGC 40, we detect faint, diffuse X-ray emission distributed within a partial annulus that lies nested within a ~40" diameter ring of nebulosity observed in optical and near-infrared images. Hen 2-99 is not detected. The inferred X-ray temperature (TX~106 K) and luminosity (LX~2×1030 ergs s-1) of NGC 40 are the lowest measured thus far for any PN displaying diffuse X-ray emission. These results, combined with the ringlike morphology of the X-ray emission from NGC 40, suggest that its X-ray emission arises from a ``hot bubble'' that is highly evolved and is generated by a shocked, quasi-spherical fast wind from the central star, as opposed to AGB or post-AGB jet activity. In contrast, the lack of detectable X-ray emission from Hen 2-99 suggests that this PN has yet to enter a phase of strong wind-wind shocks.

  13. Magnetically Driven Winds from Post-Asymptotic Giant Branch Stars: Solutions for High-Speed Winds and Extreme Collimation

    NASA Astrophysics Data System (ADS)

    García-Segura, Guillermo; López, José Alberto; Franco, José

    2005-01-01

    This paper explores the effects of post-asymptotic giant branch (AGB) winds driven solely by magnetic pressure from the stellar surface. It is found that winds can reach high speeds under this assumption and lead to the formation of highly collimated proto-planetary nebulae. Bipolar knotty jets with periodic features and constant velocity are well reproduced by the models. Several wind models with terminal velocities from a few tens of km s-1 up to 103 km s-1 are calculated, yielding outflows with linear momenta in the range 1036-1040 g cm s-1, and kinetic energies in the range 1042-1047 ergs. These results are in accord with recent observations of proto-planetary nebulae that have pointed out serious energy and momentum deficits if radiation pressure is considered as the only driver for these outflows. Our models strengthen the notion that the large mass loss rates of post-AGB stars, together with the short transition times from the late AGB to the planetary nebula stage, could be directly linked with the generation of strong magnetic fields during this transition stage.

  14. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    SciTech Connect

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  15. Analysis of the FUSE Spectrum of the Hot, Evolved Star GD 605

    NASA Astrophysics Data System (ADS)

    Fontaine, M.; Chayer, P.; Oliveira, C. M.; Wesemael, F.; Fontaine, G.

    2008-05-01

    We present an analysis of the atmospheric properties of the evolved, hydrogen-rich object GD 605 using FUSE, IUE, and optical spectra in conjunction with non-LTE (NLTE) model atmospheres and synthetic spectra. We also present an analysis of the interstellar medium along the line of sight toward this star. Our effective temperature determination relies on the constraints on the ionization balance O IV/O V imposed by the FUSE data, while the surface gravity relies on a match to the Balmer lines in the optical spectrum. Our analysis yields Teff ~ 85,000 K, log g ~ 5.25, and a helium abundance close to the solar value. These parameters suggest that GD 605 is in a post-AGB evolutionary phase and belongs to the class of hydrogen-rich central star of planetary nebulae, subclass O(H). Apart from lines of hydrogen and helium, about two dozen photospheric lines are observed in the FUSE data, which are dominated by the O VI λλ1031.9 and 1037.6 transitions. In addition, we detect lines associated with the following ions: N IV, O IV, O V, Si IV, S VI, Ar VII, as well as Fe VII. Synthetic spectra based on NLTE line-blanketed model atmospheres reproduce most of the line profiles observed in what appears to be an atmosphere deficient in heavy elements. Our calculations do not fully reproduce the strength of the strongest ultraviolet lines seen, the O VI doublet, perhaps a sign that some contribution to this structure may arise in the interstellar medium or in a circumstellar environment. We discuss various scenarios to account for the absence of a visible nebula and the dearth of heavy elements in the atmosphere of GD 605. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.

  16. Magnetic fields around evolved stars: further observations of H2O maser polarization

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M. L.; Vlemmings, W. H. T.; Kemball, A.; Amiri, N.

    2013-06-01

    Context. A low- or intermediate-mass star is believed to maintain a spherical shape throughout the evolution from the main sequence to the asymptotic giant branch (AGB) phase. However, many post-AGB objects and planetary nebulae exhibit non-spherical symmetry. Several candidates have been suggested as factors that can play a role in this change of morphology, but the problem is still not well understood. Magnetic fields are one of these possible agents. Aims: We aim to detect the magnetic field and infer its properties around four AGB stars using H2O maser observations. The sample we observed consists of the following sources: the semi-regular variable RT Vir, and the Mira variables AP Lyn, IK Tau, and IRC+60370. Methods: We observed the 61,6 -52,3 H2O maser rotational transition in full-polarization mode to determine its linear and circular polarization. Based on the Zeeman effect, one can infer the properties of the magnetic field from the maser polarization analysis. Results: We detected a total of 238 maser features in three of the four observed sources. No masers were found toward AP Lyn. The observed masers are all located between 2.4 and 53.0 AU from the stars. Linear and circular polarization was found in 18 and 11 maser features, respectively. Conclusions: We more than doubled the number of AGB stars in which a magnetic field has been detected from H2O maser polarization. Our results confirm the presence of fields around IK Tau, RT Vir, and IRC+60370. The strength of the field along the line of sight is found to be between 47 and 331 mG in the H2O maser region. Extrapolating this result to the surface of the stars, assuming a toroidal field (∝ r-1), we find magnetic fields of 0.3-6.9 G on the stellar surfaces. If, instead of a toroidal field, we assume a poloidal field (∝ r-2), then the extrapolated magnetic field strength on the stellar surfaces are in the range between 2.2 and ~115 G. Finally, if a dipole field (∝ r-3) is assumed, the field

  17. MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397. I. The first comprehensive HRD of a globular cluster

    NASA Astrophysics Data System (ADS)

    Husser, Tim-Oliver; Kamann, Sebastian; Dreizler, Stefan; Wendt, Martin; Wulff, Nina; Bacon, Roland; Wisotzki, Lutz; Brinchmann, Jarle; Weilbacher, Peter M.; Roth, Martin M.; Monreal-Ibero, Ana

    2016-04-01

    Aims: We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods: The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results: We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of vrad = 17.84 ± 0.07 km s-1 and a mean metallicity of [Fe/H] = -2.120 ± 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion. Data products are available at http://muse-vlt.eu/scienceBased on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme ID 60.A-9100(C)).

  18. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  19. Stars and Star Myths.

    ERIC Educational Resources Information Center

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  20. Stars and Star Myths.

    ERIC Educational Resources Information Center

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  1. Central Stars of Planetary Nebulae in the SMC

    NASA Technical Reports Server (NTRS)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 3's program C056 we studied four Central Stars of Planetary Nebulae (CSPN) in the Small Magellanic Could. All FUSE observations have been successfully completed and have been reduced and analyzed. The observation of one object (SMP SMC 5) appeared to be off-target and no useful stellar flux was gathered. For another observation (SMP SMC 1) the voltage problems resulted in the loss of data from one of the SiC detectors, but we were still able to analyze the remaining data. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.4). The flux of these SMC post-AGB objects is at the threshold of FUSE S sensitivity, and the targets required many orbit-long exposures, each of which typically had low (target) count-rates. The background subtraction required special care during the reduction, and was done in a similar manner to our FUSE cycle 2 BOO1 objects. The resulting calibrated data from the different channels were compared in the overlapping regions for consistency. The final combined, extracted spectra of each target was then modeled to determine the stellar and nebular parameters. The FUSE spectra, combined with archival HST spectra, have been analyzed using stellar atmospheres codes such as TLUSTY and CMFGEN to derive photospheric and wind parameters of the central stars, and with ISM models to determine the amount and temperature of the surrounding atomic and molecular hydrogen. We have combined these results with those of our cycle 4 (D034) program (CSPN of the LMC) in Herald & Bianchi 2004a (paper in preparation, will be submitted to ApJ in June 2004). Two of the three SMC objects analyzed were found to have significantly lower stellar temperatures than had been predicted using nebular photoionization models, indicating either a hotter ionizing companion or the existence of strong shocks in the nebular environment. The analysis also revealed that

  2. NEW DETERMINATION OF THE {sup 13}C({alpha}, n){sup 16}O REACTION RATE AND ITS INFLUENCE ON THE s-PROCESS NUCLEOSYNTHESIS IN AGB STARS

    SciTech Connect

    Guo, B.; Li, Z. H.; Li, Y. J.; Su, J.; Yan, S. Q.; Bai, X. X.; Chen, Y. S.; Fan, Q. W.; Jin, S. J.; Li, E. T.; Li, Z. C.; Lian, G.; Liu, J. C.; Liu, X.; Shu, N. C.; Lugaro, M.; Buntain, J.; Pang, D. Y.; Karakas, A. I.; Shi, J. R. E-mail: guobing@ciae.ac.cn; and others

    2012-09-10

    We present a new measurement of the {alpha}-spectroscopic factor (S{sub {alpha}}) and the asymptotic normalization coefficient for the 6.356 MeV 1/2{sup +} subthreshold state of {sup 17}O through the {sup 13}C({sup 11}B, {sup 7}Li){sup 17}O transfer reaction and we determine the {alpha}-width of this state. This is believed to have a strong effect on the rate of the {sup 13}C({alpha}, n){sup 16}O reaction, the main neutron source for slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the {sup 13}C({alpha}, n){sup 16}O reaction. At a temperature of 100 MK, our rate is roughly two times larger than that by Caughlan and Fowler and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected s-process elements and isotopic ratios. There are no changes in the final results using the different rates for the {sup 13}C({alpha}, n){sup 16}O reaction when the {sup 13}C burns completely in radiative conditions. When the {sup 13}C burns in convective conditions, as in stars of initial mass lower than {approx}2 M{sub Sun} and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available.

  3. New Magellanic Cloud R Coronae Borealis and DY Persei type stars from the EROS-2 database: the connection between RCBs, DYPers, and ordinary carbon stars

    NASA Astrophysics Data System (ADS)

    Tisserand, P.; Wood, P. R.; Marquette, J. B.; Afonso, C.; Albert, J. N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Beaulieu, J. P.; Charlot, X.; Coutures, C.; Ferlet, R.; Fouqué, P.; Glicenstein, J. F.; Goldman, B.; Gould, A.; Gros, M.; de Kat, J.; Lesquoy, É.; Loup, C.; Magneville, C.; Maurice, É.; Maury, A.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Rich, J.; Schwemling, P.; Spiro, M.; Vidal-Madjar, A.

    2009-07-01

    Context: R Coronae Borealis stars (RCB) are a rare type of evolved carbon-rich supergiant stars that are increasingly thought to result from the merger of two white dwarfs, called the Double degenerate scenario. This scenario is also studied as a source, at higher mass, of type Ia Supernovae (SnIa) explosions. Therefore a better understanding of RCBs composition would help to constrain simulations of such events. Aims: We searched for and studied RCB stars in the EROS Magellanic Clouds database. We also extended our research to DY Per type stars (DYPers) that are expected to be cooler RCBs (T ˜ 3500 K) and much more numerous than their hotter counterparts. With the aim of studying possible evolutionary connections between RCBs and DYPers, and also ordinary carbon stars, we compared their publically available broad band photometry in the optical, near, and mid-infrared. Methods: The light curves of ~70 millions stars, monitored for 6.7 years (from July 1996 to February 2003), have been analysed to search for the main signature of RCBs and DYPers: a large (up to 9 mag) drop in luminosity. Carbon stars with fading episodes were also found by inspecting numerous light curves of objects that presented an infrared excess in the 2MASS and Spitzer- SAGE and S^3MC databases. Follow-up optical spectroscopy was used to confirm each photometric candidate found. Results: We have discovered and confirmed 6 new Magellanic Cloud RCB stars and 7 new DYPers, but also listed new candidates: 3 RCBs and 14 DYPers. Optical and infrared colour magnitude diagrams that give new insights into these two sets of stars are discussed. We estimated a range of Magellanic RCB shell temperatures between 360 and 600 K. Conclusions: We confirm the wide range of absolute luminosity known for RCB stars, MV ˜ -5.2 to -2.6. Our study further shows that mid-infrared surveys are ideal to search for RCB stars, since they have thinner and cooler circumstellar shells than classical post-AGB stars. In

  4. Pseudosynchronization of Heartbeat Stars

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mara; Thompson, Susan E.; Hambleton, Kelly; Fuller, Jim; Shporer, Avi; Isaacson, Howard T.; Howard, Andrew; Kurtz, Donald

    2016-01-01

    A type of eccentric binary star that undergoes extreme dynamic tidal forces, known as Heartbeat stars, were discovered by the Kepler Mission. As the two stars pass through periastron, the tidal distortion causes unique brightness variations. Short period, eccentric binary stars, like these, are theorized to pseudosynchronize, or reach a rotational frequency that matches the weighted average orbital angular velocity of the system. This pseudosynchronous rate, as predicted by Hut (1981), depends on the binary's orbital period and eccentricity. We tested whether sixteen heartbeat stars have pseudosynchronized. We measure the rotation rate from obvious spot signatures in the light curve. We measure the eccentricity by fitting the light curve using PHOEBE and are actively carrying out a radial velocity monitoring program with Keck/HIRES in order to improve these orbital parameters. Our initial results show that while most heartbeat stars appear to have pseudosynchronized we find stars with rotation frequencies both longer and shorter than this rate. We thank the SETI Institute REU program, the NSF, and the Kepler Guest Observer Program for making this work possible.

  5. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  6. s-PROCESSING IN AGB STARS REVISITED. II. ENHANCED {sup 13}C PRODUCTION THROUGH MHD-INDUCED MIXING

    SciTech Connect

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-20

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M{sub ⊙} ≲ 3), where the main neutron source is the {sup 13}C(α, n){sup 16}O reaction. This last reaction is activated from locally produced {sup 13}C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the {sup 13}C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing {sup 13}C reservoirs of several 10{sup −3} M{sub ⊙}. The ensuing {sup 13}C-enriched zone has an almost flat profile, while only a limited production of {sup 14}N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large {sup 13}C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  7. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing

    NASA Astrophysics Data System (ADS)

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-01

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M⊙ ≲ 3), where the main neutron source is the 13C(α, n)16O reaction. This last reaction is activated from locally produced 13C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the 13C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing 13C reservoirs of several 10-3 M⊙. The ensuing 13C-enriched zone has an almost flat profile, while only a limited production of 14N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large 13C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  8. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  9. CH Stars and Barium Stars

    NASA Astrophysics Data System (ADS)

    Bond, H.; Sion, E.; Murdin, P.

    2000-11-01

    The classical barium (or `Ba II') stars are RED GIANT STARS whose spectra show strong absorption lines of barium, strontium and certain other heavy elements, as well as strong features due to carbon molecules. Together with the related class of CH stars, the Ba II stars were crucial in establishing the existence of neutron-capture reactions in stellar interiors that are responsible for the synt...

  10. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  11. RUNAWAY STARS, HYPERVELOCITY STARS, AND RADIAL VELOCITY SURVEYS

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. E-mail: skenyon@cfa.harvard.ed E-mail: mgeller@cfa.harvard.ed

    2009-12-01

    Runaway stars ejected from the Galactic disk populate the halo of the Milky Way. To predict the spatial and kinematic properties of runaways, we inject stars into a Galactic potential, compute their trajectories through the Galaxy, and derive simulated catalogs for comparison with observations. Runaways have a flattened spatial distribution, with higher velocity stars at Galactic latitudes less than 30{sup 0}. Due to their shorter stellar lifetimes, massive runaway stars are more concentrated toward the disk than low mass runaways. Bound (unbound) runaways that reach the halo probably originate from distances of 6-12 kpc (10-15 kpc) from the Galactic center, close to the estimated origin of the unbound runaway star HD 271791. Because runaways are brighter and have smaller velocities than hypervelocity stars (HVSs), radial velocity surveys are unlikely to confuse runaway stars with HVSs. We estimate that at most one runaway star contaminates the current sample. We place an upper limit of 2% on the fraction of A-type main-sequence stars ejected as runaways.

  12. Neutron Stars

    NASA Technical Reports Server (NTRS)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  13. (F)UV Spectral Analysis of 15 Hot, Hydrogen-Rich Central Stars of PNe

    NASA Astrophysics Data System (ADS)

    Ziegler, Marc

    2013-07-01

    the sample are still too small to start gravitational settling. For the elements C, N, O, Si, P, and S we find increasing abundances with increasing log(Teff^4/g), while the abundances for Ar and Fe decrease. The latter is unexpected as the higher the Teff^4/g ratio, the more the radiative force dominates the gravitational force and, thus, the elements should be kept in the atmosphere. The determined abundances were compared with previous literature values, with abundances predicted from diusion calculations, with abundances from Asymptotic Giant Branch (AGB) nucleosynthesis calculations, and, if available, with abundances found for the corresponding nebulae. The agreement was of mixed quality. The derived Teff and log g values confirmed some literature values while others had to be revised (e.g. for LSS 1362 and NGC1360). However, most of them agree with the previous literature values within the error limits. No difference in Teff can be found for DAO and O(H)-type stars, but O(H)-type stars have a lower log g (5.4 - 6.0) compared to the DAOs (6.5 - 7.4). The exception is the O(H)-type central star of the planetary nebula (CSPN) of Lo 1 with log g = 7.0. A comparison of the positions of each object with stellar evolutionary tracks for post-AGB stars in the log Teff - log g diagram lead to the respective stellar masses. The derived mean mass of the analyzed sample (M = 0.536 ± 0.023 Msol) agrees within the error limits with the expected mean mass for these objects. In the literature M = 0.638 - 0.145 Msol can be found for DA-type white dwarfs, the immediate successors of DAO-type white dwarfs. For two objects (A 35, Sh 2-174) extremely low masses were found. For A35 the derived mass (M_A35 = 0.523 ± 0.05Msol) lies at the lower end of possible masses predicted for post-AGB stars. The very low mass of Sh 2-174 (M_Sh 2-174 = 0.395 ± 0.05Msol) points at Sh 2-174 being a post-extended horizontal branch (EHB) star and not a CSPN. If a stellar mass is too low, it is

  14. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  15. Radio stars

    NASA Astrophysics Data System (ADS)

    Hjellming, Robert M.

    The state of knowledge on continuum radio emission from the stars is considered. Fundamental radio emission process and stellar radiative transfer are reviewed, and solar radio emission is examined. Flare stars and active binaries are addressed, and stellar winds and cataclysmic variables are considered. Radio-emitting X-ray binaries are discussed.

  16. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  17. DRAMATIC INFRARED VARIABILITY OF WISE J1810-3305: CATCHING EARLY-TIME DUST EJECTION DURING THE THERMAL PULSE OF AN ASYMPTOTIC GIANT BRANCH STAR?

    SciTech Connect

    Gandhi, Poshak; Yamamura, Issei; Takita, Satoshi

    2012-05-20

    We present the discovery of a source with broadband infrared photometric characteristics similar to Sakurai's object. WISE J180956.27-330500.2 (hereafter J1810-3305) shows very red WISE colors, but a very blue 2MASS [K] versus WISE [W1 (3.4 {mu}m)] color. It was not visible during the IRAS era, but now has a 12 {mu}m flux well above the IRAS point-source catalog detection limit. There are also indications of variability in historical optical photographic plates as well as in multi-epoch AKARI mid-infrared measurements. The broadband infrared spectral energy distribution (SED) shape, post-IRAS brightening, and multiwavelength variability are all characteristics also shared by Sakurai's object-a post-asymptotic giant branch (post-AGB) star which underwent a late thermal pulse and recently ejected massive envelopes of dust that are currently expanding and cooling. Optical progenitor colors suggest that J1810-3305 may have been of late spectral class. Its dramatic infrared brightening and the detection of a late-type optical counterpart are consistent with a scenario in which we have caught an extremely massive dust ejection event (in 1998 or shortly before) during the thermal pulse of an AGB star, thus providing a unique opportunity to observe stellar evolution in this phase. J1810-3305 is the only source in the entire WISE preliminary data release with similar infrared SED and variability, emphasizing the rarity of such sources. Confirmation of its nature is of great importance.

  18. The central star of the planetary nebula PB 8: a Wolf-Rayet-type wind of an unusual WN/WC chemical composition

    NASA Astrophysics Data System (ADS)

    Todt, H.; Peña, M.; Hamann, W.-R.; Gräfener, G.

    2010-06-01

    A considerable fraction of the central stars of planetary nebulæ (CSPNe) are hydrogen-deficient. As a rule, these CSPNe exhibit a chemical composition of helium, carbon, and oxygen with the majority showing Wolf-Rayet-like emission line spectra. These stars are classified as CSPNe of a spectral type [WC]. We perform a spectral analysis of CSPN PB 8 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. The source PB 8 displays wind-broadened emission lines from strong mass loss. Most strikingly, we find that its surface composition is hydrogen-deficient, but not carbon-rich. With mass fractions of 55% helium, 40% hydrogen, 1.3% carbon, 2% nitrogen, and 1.3% oxygen, it differs greatly from the 30-50% of carbon which are typically seen in [WC]-type central stars. The atmospheric mixture in PB 8 has an analogy in the WN/WC transition type among the massive Wolf-Rayet stars. Therefore we suggest to introduce a new spectral type [WN/WC] for CSPNe, with PB 8 as its first member. The central star of PB 8 has a relatively low temperature of T* = 52 kK, as expected for central stars in their early evolutionary stages. Its surrounding nebula is less than 3000 years old, i.e. relatively young. Existing calculations for the post-AGB evolution can produce hydrogen-deficient stars of the [WC] type, but do not predict the composition found in PB 8. We discuss various scenarios that might explain the origin of this unique object. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the AURA, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided mainly by the NASA Office of Space Science via grant NAG5-7584. Based on INES data from the IUE satellite.

  19. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Vir systems from eclipse timings. The high incidence of circumbinary substellar objects suggests that most of the planets are formed from the remaining CE material (second generation planets). Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ω Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars’ evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M < 0.3 M ⊙), have recently been discovered, filling a gap in the mosaic of binary stellar evolution. Like most sdB stars the ELM white dwarfs are the stripped cores of red giants, the known companions are either white dwarfs, neutron stars (pulsars) or F- or A-type main sequence stars (“EL CVn” stars). In the near future, the Gaia mission will provide high-precision astrometry for a large sample of subdwarf stars to disentangle the different stellar

  20. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  1. 28SiO v = 0 J = 1-0 emission from evolved stars

    NASA Astrophysics Data System (ADS)

    de Vicente, P.; Bujarrabal, V.; Díaz-Pulido, A.; Albo, C.; Alcolea, J.; Barcia, A.; Barbas, L.; Bolaño, R.; Colomer, F.; Diez, M. C.; Gallego, J. D.; Gómez-González, J.; López-Fernández, I.; López-Fernández, J. A.; López-Pérez, J. A.; Malo, I.; Moreno, A.; Patino, M.; Serna, J. M.; Tercero, F.; Vaquero, B.

    2016-05-01

    Aims: Observations of 28SiO v = 0J = 1-0 line emission (7-mm wavelength) from asymptotic giant branch (AGB) stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB stars and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We aim to systematically study the profile shape of 28SiO v = 0J = 1-0 lines in evolved stars and to discuss the origin of the composite profile structure. Methods: We present observations of 28SiO v = 0J = 1-0 emission in 28 evolved stars, including O-rich, C-rich, and S-type Mira-type variables, OH/IR stars, semiregular long-period variables, red supergiants and one yellow hypergiant. Most objects were observed in several epochs, over a total period of time of one and a half years. The observations were performed with the 40 m radio telescope of the Instituto Geográfico Nacional (IGN) in Yebes, Spain. Results: We find that the composite core plus plateau profiles are systematically present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira (χ Cyg) and in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those observed in other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the very inner circumstellar layers, prior to dust formation. The central spectral feature is found to be systematically composed of a number of narrow spikes, except for X Her and RS Cnc, in which it shows a smooth shape that is very similar to that observed in CO emission. These spikes show a significant (and mostly chaotic) time variation, while in all cases the smooth components remain constant within the uncertainties. The profile shape could come from the superposition

  2. Symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  3. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; De Marco, Orsola; Davies, James; Lotarevich, I.; Bond, Howard E.; Harrington, J. Patrick; Lanz, Thierry

    2017-02-01

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M ⊙ for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M ⊙) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and Hα emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained [from the Data Archive] at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11558.

  4. Chameleon stars

    SciTech Connect

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas

    2011-10-15

    We consider a gravitating spherically symmetric configuration consisting of a scalar field nonminimally coupled to ordinary matter in the form of a perfect fluid. For this system we find static, regular, asymptotically flat solutions for both relativistic and nonrelativistic cases. It is shown that the presence of the nonminimal interaction leads to substantial changes both in the radial matter distribution of the star and in the star's total mass. A simple stability test indicates that, for the choice of parameters used in the paper, the solutions are unstable.

  5. Rainbow's stars

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Mandanici, Gianluca

    2017-01-01

    In recent years, a growing interest in the equilibrium of compact astrophysical objects like white dwarf and neutron stars has been manifested. In particular, various modifications due to Planck-scale energy effects have been considered. In this paper we analyze the modification induced by gravity's rainbow on the equilibrium configurations described by the Tolman-Oppenheimer-Volkoff (TOV) equation. Our purpose is to explore the possibility that the rainbow Planck-scale deformation of space-time could support the existence of different compact stars.

  6. IRAS 17423-1755 (HEN 3-1475) REVISITED: AN O-RICH HIGH-MASS POST-ASYMPTOTIC GIANT BRANCH STAR

    SciTech Connect

    Manteiga, M.; GarcIa-Hernandez, D. A.; Manchado, A.; GarcIa-Lario, P.

    2011-03-15

    The high-resolution (R {approx} 600) Spitzer/IRS spectrum of the bipolar protoplanetary nebula (PN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high-quality Spitzer/IRS spectrum shows weak 9.7 {mu}m absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 {mu}m absorption feature seen in the Infrared Space Observatory spectrum as due to acetylene (C{sub 2}H{sub 2}). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 {mu}m C{sub 2}H{sub 2}, 14.0 {mu}m HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 {mu}m absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, an [Ne II] nebular emission line at 12.8 {mu}m is clearly detected, indicating that the ionization of its central region may be already started. The spectral energy distribution in the infrared ({approx}2-200 {mu}m) and other observational properties of IRAS 17423-1755 are discussed in comparison with the similar post-asymptotic giant branch (AGB) objects IRAS 19343+2926 and IRAS 17393-2727. We conclude that IRAS 17423-1755 is an O-rich high-mass post-AGB object that represents a link between OH/IR stars with extreme outflows and highly bipolar PN.

  7. Star Power

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  8. Morning Star

    NASA Image and Video Library

    2013-03-04

    Dawn on Saturn is greeted across the vastness of interplanetary space by the morning star, Venus, in this image from NASA Cassini spacecraft. Venus appears just off the edge of the planet directly above the white streak of Saturn G ring.

  9. Star Power

    SciTech Connect

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  10. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  11. Star clusters

    NASA Astrophysics Data System (ADS)

    Labhardt, Lukas; Binggeli, Bruno

    Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.

  12. Christmas star.

    NASA Astrophysics Data System (ADS)

    Biała, J.

    There are continuous attempts to identify the legendary Christmas Star with a real astronomical event accompanying the birth of Jesus from Nazareth. Unfortunately, the date of birth is difficult to establish on the basis of historical records with better accuracy than a few years. During that period a number of peculiar astronomical events were observed and it seem to be impossible to identify the right one unambiguously.

  13. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  14. Paramètres fondamentaux complémentaires pour les étoiles AGB/post-AGB.

    NASA Astrophysics Data System (ADS)

    Barthès, D.; Alvarez, R.; Mennessier, M. O.

    Les parallaxes et paramètres cinématiques HIPPARCOS, exploités conjointement avec les courbes de lumière, d'autres données et des modèles théoriques, contribueront à l'affinement de nos connaissances sur la luminosité, la masse et la métallicité des étoiles variables à longue période ainsi que sur l'histoire de la Galaxie, dont elles sont un traceur privilégié.

  15. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  16. A Photometric Survey of Peculiar A-type

    NASA Astrophysics Data System (ADS)

    Kurtanidze, O. M.; Ogadze, G.

    The rapidly-oscillating Ap stars represent the only main-sequence stars, despite the Sun, which pulsate in high-overtone low degree p-moges with their axis aligned with oblique ones. We have undertook a long-term programme of high-speed photometric observations about two hundred Normal and Peculiar A-type stars with 125cm RC telescope equipped by Two-Star Photometer. It enable us to chop as frequently as need between objects, sky and dark due to effects of sky transparency and background variations are remouved and scintillation noise spectra are obtained. An attempt was made to include representative number of each spectral subtypes. The selected objects lie in the range of 8-10 magnitudes in the Jonhson wide-band B filter. At first stage it is planned to carry out a pilot survey with duration of 6-8 hours divided between two observing sessions. The objects with noticable oscillations will be studied photometrically as well as spectroscopically in detail. During the pleliminary observations one rapidly-oscillating Ap star HD231427 was revealed which should be considered as tentative.

  17. A mess of stars

    NASA Image and Video Library

    2015-08-10

    Bursts of pink and red, dark lanes of mottled cosmic dust, and a bright scattering of stars — this NASA/ESA Hubble Space Telescope image shows part of a messy barred spiral galaxy known as NGC 428. It lies approximately 48 million light-years away from Earth in the constellation of Cetus (The Sea Monster). Although a spiral shape is still just about visible in this close-up shot, overall NGC 428’s spiral structure appears to be quite distorted and warped, thought to be a result of a collision between two galaxies. There also appears to be a substantial amount of star formation occurring within NGC 428 — another telltale sign of a merger. When galaxies collide their clouds of gas can merge, creating intense shocks and hot pockets of gas and often triggering new waves of star formation. NGC 428 was discovered by William Herschel in December 1786. More recently a type Ia supernova designated SN2013ct was discovered within the galaxy by Stuart Parker of the BOSS (Backyard Observatory Supernova Search) project in Australia and New Zealand, although it is unfortunately not visible in this image. This image was captured by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field and Planetary Camera 2 (WFPC2). A version of this image was entered into the Hubble’s Hidden Treasures Image Processing competition by contestants Nick Rose and the Flickr user penninecloud. Links: Nick Rose’s image on Flickr Penninecloud’s image on Flickr

  18. Metal-rich SX Phe stars in the Kepler field

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Balona, Luis A.; Murphy, Simon J.; Kinemuchi, Karen; Jeon, Young-Beom

    2017-04-01

    A spectroscopic and photometric analysis has been carried out for 32 candidate SX Phe variable blue straggler stars in the Kepler field. Radial velocities (RVs), space motions (U, V, W), projected rotation velocities (vsin i), spectral types and atmospheric characteristics (Teff, log g, [Fe/H], ξt, ζRT, etc.) are presented for 30 of the 32 stars. Although several stars are metal-weak with extreme halo orbits, the mean [Fe/H] of the sample is near-solar, thus the stars are more metal-rich than expected for a typical sample of Pop. II stars and more like halo metal-rich A-type stars. Two-thirds of the stars are fast rotators with vsin i > 50 km s-1, including four stars with vsin i > 200 km s-1. Three of the stars have (negative) RVs > 250 km s-1, five have retrograde space motions and 21 have total speeds (relative to the Local Standard of Rest) >400 km s-1. All but one of the 30 stars have positions in a Toomre diagram consistent with the kinematics of bona fide halo stars (the exception being a thick-disc star). Observed Rømer time delays, pulsation frequency modulations and light curves suggest that at least one-third of the stars are in binary (or triple) systems with orbital periods ranging from 2.3 d to more than four years.

  19. Compact planetary nebulae in the Galactic disk: Analysis of the central stars

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, Manuel; Villaver, Eva; Shaw, Richard A.; Stanghellini, Letizia

    2016-09-01

    Context. We have obtained multi-wavelength observations of compact Galactic planetary nebulae (PNe) to probe post-asymptotic giant branch (AGB) evolution from the onset of nebular ejection. Here we analyze new observations from HST to derive the masses and evolutionary status of their central stars (CSs). Aims: Our objective here is to derive the masses of the CSs hosted by compact PNe in order to better understand the relationship between the CS properties and those of the surrounding nebulae. We also compare this sample with others we obtained using the same technique in different metallicity environments: the Large and Small Magellanic Clouds. Methods: This paper is based on HST/WFC3 images of 51 targets obtained in a snapshot survey (GO-11657). The high spatial resolution of HST allows us to resolve these compact PNe and distinguish the CS emission from that of their surrounding PNe. We derive CS bolometric luminosities and effective temperatures using the Zanstra technique, from a combination of HST photometry and ground-based spectroscopic data. The targets were imaged through the filters F200LP, F350LP, and F814W from which we derive Johnson V and I magnitudes. We infer CS masses by placing the stars on a temperature-luminosity diagram and compare their location with the best available, single star post-AGB evolutionary tracks. Results: We present new, unique photometric measurements of 50 CSs, and we derive effective temperatures and luminosities for most of them. Central star masses for 23 targets were derived with the evolutionary track technique; the remaining masses were indeterminate most likely because of underestimates of the stellar temperature, or because of substantial errors in the adopted statistical distances to these objects. We expect these problems will be largely overcome when the Gaia distance catalog becomes available. We find that objects with the higher ratios of Zanstra temperatures T(H i)/T( He ii ) tend to have lower-mass progenitors

  20. Ice Stars

    NASA Image and Video Library

    2017-09-27

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  1. Newly Discovered B[e] Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; Wood, P. R.

    2017-02-01

    We report on the detection of a new sample of objects, in the Large Magellanic Cloud (LMC), that likely show signatures of the B[e] phenomenon. The discovery of this sample was a by-product of our extensive low-resolution optical spectroscopic survey of post-Asymptotic Giant Branch (post-AGB) candidates in the LMC. It is known that post-AGB binaries are surrounded by a stable, dusty disc similar to that observed in objects that show the B[e] phenomenon. A few of the already known LMC objects that display the B[e] phenomenon were therefore recovered in our survey. However, interestingly, we found several other objects, spread across various evolutionary phases, with signatures of the B[e] phenomenon. Our observations corroborates the fact that the B[e] phenomenon can be active during several phases of stellar evolution. On analyzing the SED of our new sample of likely B[e] candidates, we found that all these objects show the presence of a dusty disc. Here we present a preliminary list and study on these new B[e] candidates.

  2. Heavy Metal Factory

    NASA Astrophysics Data System (ADS)

    Löbling, Lisa

    2017-07-01

    The metal enrichment in the cosmic circuit of matter is dominated by the yields of asymptotic giant branch (AGB) nucleosynthesis, that are blown back into the interstellar medium just before these stars die as white dwarfs. To establish constraints on AGB processes, spectral analyses of hot post-AGB stars are mandatory. These show that such stars are heavy metal factories due to the AGB s-process. The Virtual Observatory service TheoSSA offers access to synthetic stellar spectra calculated with our Tübingen non-local thermodynamic equilibrium model-atmosphere package that are suitable for the analysis of hot post-AGB stars.

  3. Gravitational Interactions of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit

    2016-03-01

    In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.

  4. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  5. Lifestyles of the Stars.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  6. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  7. Magnetic Fields in Stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J.; Murdin, P.

    2000-11-01

    Magnetism—the force that deflects the needle of a compass—and magnetic fields have been found in some hundreds of stars during the past 50 yr. Magnetic fields have been detected in T Tauri stars and other pre-main-sequence stars, several types of main sequence stars, white dwarfs and neutron stars. We now know a number of methods by which such magnetic fields may be detected, we are in the proces...

  8. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  9. O stars and Wolf-Rayet stars.

    NASA Astrophysics Data System (ADS)

    Baade, D.; Conti, P. S.; Divan, L.; Garmany, C. D.; Henrichs, H. F.; Kudritzki, R. P.; Pauldrach, A.; Prévot-Burnichon, M.-L.; Puls, J.; Underhill, A. B.; Thomas, R. N.

    Contents: Perspective (R. N. Thomas).Part I. Introduction (L. Divan, M.-L. Prévot-Burnichon).1. Introducing the O and Wolf-Rayet stars.Part II. One perspective on O, Of, and Wolf-Rayet stars emphasizing winds and mass loss, with remarks on environment and evolution:2. Overview of O, Of, and Wolf-Rayet populations (P. S. Conti). 3. Intrinsic stellar parameters (P. S. Conti, D. Baade). 4. Stellar winds: (a) Introduction (P. S. Conti). (b) Mass loss from O stars (C. D. Garmany). (c) Mass loss in Wolf-Rayetstars (P. S. Conti). (d) Radiation-driven winds of hot luminous stars (R. P. Kudritzki, A. Pauldrach, J. Puls). (e) Intrinsic variability in ultraviolet spectra of early-type stars: the discrete absorption lines (H. Henrichs). 5. Environments and evolution (P. S. Conti).Part III. Another perspective on O, Of, and Wolf-Rayet stars, emphasizing model atmospheres and possibilities for atmospheric heating (A. B. Underhill): 6. Understanding the O and Wolf-Rayet stars. 7. Model Atmospheres and the theoryof spectra for O and Wolf-Rayet stars. 8. The physics of the mantles of hot stars. 9. Summary of processes influencing the spectra of O andWolf-Rayet stars.

  10. MULTIPLICITY AMONG F-TYPE STARS

    SciTech Connect

    Fuhrmann, K.; Chini, R.

    2012-12-15

    As part of a homogeneous all-sky volume-complete sample of half a thousand solar-type stars within 25 pc we present a census for the subset of the 150-mostly F-type stars-in the mass range 1.1 M{sub Sun} {<=} M {<=} 1.7 M{sub Sun} in terms of their observed multiplicities. The major obstacle, as expected, arises from the onset of stellar rotation in this mass range for it continues to support many hidden companions. Yet, a solid increase of the fraction of binary and higher level systems as a function of the primary mass is manifest. There is even the prospect that on account of many companion candidates the single-star fraction may already converge to zero at the transition to the A-type stars.

  11. The Discovery of λ Bootis Stars: The Southern Survey I

    NASA Astrophysics Data System (ADS)

    Gray, R. O.; Riggs, Q. S.; Koen, C.; Murphy, S. J.; Newsome, I. M.; Corbally, C. J.; Cheng, K.-P.; Neff, J. E.

    2017-07-01

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μm. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μm.

  12. Theoretical Study of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan

    2015-04-01

    We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.

  13. CCD star trackers

    NASA Technical Reports Server (NTRS)

    Goss, W. C.

    1975-01-01

    The application of CCDs to star trackers and star mappers is considered. Advantages and disadvantages of silicon CCD star trackers are compared with those of image dissector star trackers. It is concluded that the CCD has adequate sensitivity for most single star tracking tasks and is distinctly superior in multiple star tracking or mapping applications. The signal and noise figures of several current CCD configurations are discussed. The basic structure of the required signal processing is described, and it is shown that resolution in excess of the number of CCD elements may be had by interpolation.

  14. The Millennium Star Atlas

    NASA Astrophysics Data System (ADS)

    Sinnott, R. W.

    1997-08-01

    Derived from Hipparcos and Tycho observations, the Millennium Star Atlas is a set of 1548 charts covering the entire sky to about magnitude 11. It stands apart from all previous printed atlases in completeness to magnitude 10 and in uniformity around the sky. The generous chart scale has made possible a number of innovations never before seen in a star atlas: arrows on high-proper-motion stars, double-star ticks conveying separation and position angle for a specific modern epoch, distance labels for nearby stars, and variable stars coded by amplitude, period, and type. Among the nonstellar objects plotted, more than 8000 galaxies are shown with aspect ratio and orientation.

  15. Evidence of rocky planetesimals orbiting two Hyades stars

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Gänsicke, B. T.; Koester, D.

    2013-07-01

    The Hyades is the nearest open cluster, relatively young and containing numerous A-type stars; its known age, distance, and metallicity make it an ideal site to study planetary systems around 2-3 M⊙ stars at an epoch similar to the late heavy bombardment. Hubble Space Telescope far-ultraviolet spectroscopy strongly suggests ongoing, external metal pollution in two remnant Hyads. For ongoing accretion in both stars, the polluting material has log [n(Si)/n(C)] > 0.2, is more carbon deficient than chondritic meteorites and is thus rocky. These data are consistent with a picture where rocky planetesimals and small planets have formed in the Hyades around two main-sequence A-type stars, whose white dwarf descendants bear the scars. These detections via metal pollution are shown to be equivalent to infrared excesses of LIR/L* ˜ 10-6 in the terrestrial zone of the stars.

  16. Massive Star Makes Waves

    NASA Image and Video Library

    2012-12-18

    The giant star Zeta Ophiuchi, a young, large and hot star located around 370 light-years away, is having a hocking effect on the surrounding dust clouds in this infrared image from NASA Spitzer Space Telescope.

  17. Sloshing Star Goes Supernova

    NASA Image and Video Library

    2014-02-19

    NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott.

  18. Assembly Line of Stars

    NASA Image and Video Library

    2010-05-06

    This image from NASA Herschel, in the constellation of Vulpecula, shows an entire assembly line of newborn stars. The diffuse glow reveals the widespread cold reservoir of raw material that our Milky Way galaxy has in stock for building stars.

  19. Star formation: Cosmic feast

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  20. Star formation: Cosmic feast

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone

    2016-11-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  1. Astrophysics: Stars fight back

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2014-12-01

    Galaxies contain fewer stars than predicted. The discovery of a massive galactic outflow of molecular gas in a compact galaxy, which forms stars 100 times faster than the Milky Way, may help to explain why. See Letter p.68

  2. AgSTAR Accomplishments

    EPA Pesticide Factsheets

    Showcases AgSTAR's accomplishments reducing greenhouse gas emissions in the agriculture sector. Through outreach, education, training, and other tools, AgSTAR continues to help evaluate, construct, and maintain anaerobic digesters on livestock farms.

  3. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  4. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  5. White Dwarf Stars

    NASA Image and Video Library

    1999-12-01

    Peering deep inside a cluster of several hundred thousand stars, NASA Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

  6. Another Death Star?

    NASA Image and Video Library

    2012-12-03

    Although Mimas holds the unofficial designation of Death Star moon, Tethys is seen here also vaguely resembling the space station from Star Wars. Apparently, Tethys doesnt want Mimas to have all the fun!

  7. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  8. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  9. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  10. America's Star Libraries

    ERIC Educational Resources Information Center

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  11. America's Star Libraries

    ERIC Educational Resources Information Center

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  12. Seeing Stars in Serpens

    NASA Image and Video Library

    2006-12-08

    Infant stars are glowing gloriously in this image of the Serpens star-forming region, captured by NASA Spitzer Space Telescope. The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it.

  13. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    evolved stars that have shed their outer envelopes. Swift XRT Image Swift XRT Image (Credit: NASA / GSFC / CXC /S.Immler) Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists. "It challenges some aspects of our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova." "SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about." SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli. See also NASA Goddard press release at: http://www.nasa.gov/centers/goddard/news/topstory/ 2007/supernova_imposter.html

  14. 131-TAURI - another Lambda-Bootis Star with a Shell

    NASA Astrophysics Data System (ADS)

    Bohlender, D. A.; Walker, G. A. H.

    1994-02-01

    High signal-to-noise ratio spectra of 131 Tau indicate that this peculiar λ Boo star has a circumstellar shell similar to that of the well-known Ae shell star 17 Sex. The shell is most apparent in low-excitation Fe II and Ti II lines, but is also visible as narrow core components at Ca II H and K, and in the Balmer lines. The Hα profile of the star is partly filled in by weak emission, in addition to having a shell core. This is the first known case of a λ Boo star displaying shell characteristics in the Balmer line profiles. The presence of circumstellar material supports the recent suggestion that λ Boo stars are A-type stars which are currently accreting atmospheres from interstellar gas that has been metal-depleted by selective condensation into interstellar grains.

  15. A Star Close Encounter

    NASA Image and Video Library

    2006-10-03

    The potential planet-forming disk (or "protoplanetary disk") of a sun-like star is being violently ripped away by the powerful winds of a nearby hot O-type star in this image from NASA's Spitzer Space Telescope. At up to 100 times the mass of sun-like stars, O stars are the most massive and energetic stars in the universe. The O star can be seen to the right of the image, as the large orange spot with the white center. To the left, the comet-like structure is actually a neighboring solar system that is being destroyed by the O star's powerful winds and intense ultraviolet light. In a process called "photoevaporation," immense output from the O star heats up the nearby protoplanetary disk so much that gas and dust boil off, and the disk can no longer hold together. Photon (or light) blasts from the O star then strip the potential planet-forming disk off its neighbor star by blowing away evaporated material. This effect is illustrated in the smaller system's comet-like structure. The system is located about 2,450 light-years away in the star-forming cloud IC 1396. The image was taken with Spitzer's multiband imaging photometer instrument at 24 microns. The picture is a pseudo-color stretch representing intensity. Yellow and white represent hot areas, whereas purple and blue represent relatively cooler, fainter regions.

  16. Star field simulator

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A Star Field Simulator has been developed to serve as a source of radiation for the ASTRO Star Tracker. The star tracker and simulator are components of a motion compensation test facility located at Marshall Space Flight Center in Huntsville, Alabama. Preflight tests and simulations using various levels of guide stars are performed in the test facility to establish performance of the motion compensation system before being used in a flight environment. The ASTRO Star Tracker operates over a wide dynamic range of irradiance corresponding to visual stellar magnitudes of -0.8 to 8. A minimum of three simulated guide stars with variable magnitudes are needed to fully test the Star Tracker performance under simulated mission conditions.

  17. Spectrophotometry of Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  18. Ponderable soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.

  19. Massive Compact Stars as Quark Stars

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hilário; Barbosa Duarte, Sérgio; de Oliveira, José Carlos T.

    2011-03-01

    High-mass compact stars have been reported recently in the literature, providing strong constraints on the properties of the ultra dense matter beyond the saturation nuclear density. In view of these results, the calculations of quark star or hybrid star equilibrium structure must be compatible with the provided observational data. But since the equations of state used in describing quark matter are in general too soft in comparison with the equation of states used to describe the hadronic or nuclear matter, the calculated quark star models presented in the literature are in general not suitable to explain the stability of highly-compact massive objects. In this work, we present the calculations of a spherically symmetric quark star structure by using an equation of state that takes into account the superconducting color-flavor locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. The quark matter behavior introduced by this model stiffens the corresponding equation of state. We thus investigate the influence of this model on the mass-radius diagram of quark stars. We obtain massive quark stars due to the stiffness of the equation of state, when a reasonable parameterization of the color superconducting gap is used. Models of quark stars enveloped by a nucleonic crust composed of a nuclear lattice embedded in an electron gas, with nuclei close to neutron drip line, are also discussed.

  20. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  1. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  2. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  3. STAR in CTO PCI: When is STAR not a star?

    PubMed

    Hira, Ravi S; Dean, Larry S

    2016-04-01

    Subintimal tracking and reentry (STAR) has been used as a bailout strategy and involves an uncontrolled dissection and recanalization into the distal lumen to reestablish vessel patency. In the current study, thrombolysis in myocardial infarction (TIMI) flow < 3 was the only variable which they found to be significantly associated with restenosis and reocclusion after stent placement. It may be reasonable to consider second generation drug eluting stent placement in patients receiving STAR that have TIMI 3 flow, however, this should only be done if there is no compromise of major side branches. If unsure, we recommend to perform balloon angioplasty without stenting. © 2016 Wiley Periodicals, Inc.

  4. The First Stars

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2010-10-01

    The standard cosmological model predicts that the first cosmological objects are formed when the age of the universe is a few hundred million years. Recent theoretical studies and numerical simulations consistently suggest that the first objects are very massive primordial stars. We introduce the key physics and explain why the first stars are thought to be massive, rather than to be low-mass stars. The state-of-the-art simulations include all the relevant atomic and molecular physics to follow the thermal evolution of a prestellar gas cloud to very high ``stellar'' densities. Evolutionary calculations of the primordial stars suggest the formation of massive blackholes in the early universe. Finally, we show the results from high-resolution simulations of star formation in a low-metallicity gas. Vigorous fragmentation is triggered in a star-forming gas cloud at a metallicity of as low as Z = 10-5Zsolar.

  5. Equilibrium Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Krumholz, Mark R.; McKee, Christopher F.

    2006-04-01

    We argue that rich star clusters take at least several local dynamical times to form and so are quasi-equilibrium structures during their assembly. Observations supporting this conclusion include morphologies of star-forming clumps, momentum flux of protostellar outflows from forming clusters, age spreads of stars in the Orion Nebula cluster (ONC) and other clusters, and the age of a dynamical ejection event from the ONC. We show that these long formation timescales are consistent with the expected star formation rate in turbulent gas, as recently evaluated by Krumholz & McKee. Finally, we discuss the implications of these timescales for star formation efficiencies, the disruption of gas by stellar feedback, mass segregation of stars, and the longevity of turbulence in molecular clumps.

  6. Age-Defying Star

    NASA Image and Video Library

    2016-08-29

    An age-defying star called IRAS 19312+1950 exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA's Spitzer Space Telescope. IRAS 19312+1950 is the bright red star in the center of this image. A NASA-led team of scientists thinks the star -- which is about 10 times as massive as our sun and emits about 20,000 times as much energy -- is a newly forming protostar. That was a big surprise, because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. http://photojournal.jpl.nasa.gov/catalog/PIA20914

  7. SIRTF and star formation

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.

    1988-01-01

    Four problems in the field of star formation that can be attacked to advantage with SIRTF are discussed: (1) the patterns of star formation in spiral galaxies, (2) the physical mechanism for bimodal star formation, (3) the nature of bipolar outflows from young stellar objects, and (4) the birth of brown dwarfs. In each case, SIRTF can provide the crucial combination of high angular resolution with great sensitivity over a broad range of wavelengths that is needed to address the relevant issues.

  8. Strange nonchaotic stars.

    PubMed

    Lindner, John F; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-02-06

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  9. The Theatre of stars

    NASA Astrophysics Data System (ADS)

    Cavedon, M.; Peri, F.

    Planetariums are special instruments in education and didactics of Astronomy and Astrophysics. Since 1930 the Planetarium of Milan, the most important planetarium in Italy, has played a fundamental role in outreach to the public. Italian tradition always preferred didactics in ``live'' lessons. Now technology expands the potential of the star projector and the theatre of stars is a real window on the universe, where you can travel among the stars and galaxies, to reach the boundaries of space and time.

  10. Nagyszombat and the stars

    NASA Astrophysics Data System (ADS)

    Zsoldos, E.

    Péter Pázmány, founder of the University of Nagyszombat, considered stars in terms inherited from medieval times. The theses, connected to the university graduation, soon left this definition, and imagined stars as made from sublunar elements. The 1753 decree of the Empress Maria Theresia ordered university professors to publish textbooks. These textbooks, together with the theses showed a definite improvement, defining stars according to contemporary knowledge.

  11. Parameters of Selected Central Stars of Planetary Nebulae from Consistent Optical and UV Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Kaschinski, Cornelius Bernhard

    Low mass stars have zero age main sequence masses of roughly 0.8-8.0 solar masses. Once their H and He source is depleted, low mass stars reaching the tip of the asymptotic giant branch (AGB) eject their envelopes becoming Central Stars of Planetary Nebulae (CSPNs). In the main part of this thesis we investigate the stellar parameters of a selected samples of CSPNS in order to further examine the validity of the commonly accepted core mass-luminosity relation of CSPNs. The necessity of such a critical examination was highlighted by a mismatch between the derived stellar parameters from hydrodynamical self-consistent UV analysis and those from a plane-parallel model fit to photospheric H and He absorption lines. The consistently derived masses from the UV analysis showed a wider spread than the masses derived from the optical analysis, which were obtained using theoretical post-AGB evolutionary tracks. This investigation was carried out using the non-local thermodynamic equilibrium atmosphere code "WM-basic", which has been previously used as the basis for the earlier consistent UV analysis performed on the sample of selected CSPNs. First, we improved the code by implementing the Stark broadening effect, so as to model optical H and He lines simultaneously along with the UV spectrum. This allowed a self-consistent re-analysis of the most and least massive of the CSPNs sampled. Using the UV parameter set we then reproduced not only the observed UV spectra but also produced optical line profiles which are nearly identical to those from optical stellar parameter models. The consistent models using the optical parameter set reproduce neither spectrum accurately. The lack of consistency between stellar and wind parameters of the optical parameter set is also evident from a different approach based on an investigation of the dynamical wind parameters. In a subsequent study, we further improved the WM-basic code by implementing the treatment of clumping. The strength of

  12. Strangeon and Strangeon Star

    NASA Astrophysics Data System (ADS)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  13. Delta Scuti stars: Theory

    NASA Technical Reports Server (NTRS)

    Guzik, J. A.

    1998-01-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one's understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying (delta) Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for (delta) Scuti stars, using FG Vir, (delta) Scuti, and CD-24(degree) 7599 as examples.

  14. Massive soliton stars

    NASA Astrophysics Data System (ADS)

    Chiu, Hong-Yee

    1990-05-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  15. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  16. Delta Scuti stars: Theory

    SciTech Connect

    Guzik, J.A.

    1998-03-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one`s understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying {delta} Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for {delta} Scuti stars, using FG Vir, {delta} Scuti, and CD-24{degree} 7599 as examples.

  17. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  18. Ecospheres around binary stars

    NASA Astrophysics Data System (ADS)

    Deka, B.

    2011-01-01

    Scientific investigations concerning ecospheres of other stars are very important for understanding the posibilities of existence and evolution of extraterrestrial life. In several last years astronomers discovered hundreds of extrasolar planets. Identification of stars with ecospheres is the first step in selecting those planets which could be inhabited. Usually an ecosphere of a single star is considered but it may also exist in planetary systems with two suns. This possibility is very promising in search for life on other planets as more that 60 % of stars reside in binary or multiple systems.

  19. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  20. Charged Proca stars

    NASA Astrophysics Data System (ADS)

    Landea, Ignacio Salazar; García, Federico

    2016-11-01

    In this paper, we study gauged solutions associated with a massive vector field representing a spin-1 condensate, namely, the Proca field. We focus on regular spherically symmetric solutions which we construct either using a self-interaction potential or general relativity in order to glue the solutions together. We start generating nongravitating solutions—so-called Proca Q -balls and charged Proca Q -balls. Then we turn on backreaction on the metric, allowing gravity to hold together the Proca condensate, to study the so-called Proca stars, charged Proca stars, Proca Q -stars, and charged Proca Q -stars.

  1. Delta Scuti stars: Theory

    NASA Technical Reports Server (NTRS)

    Guzik, J. A.

    1998-01-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one's understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying (delta) Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for (delta) Scuti stars, using FG Vir, (delta) Scuti, and CD-24(degree) 7599 as examples.

  2. Strange Nonchaotic Stars

    NASA Astrophysics Data System (ADS)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  3. Combinations of 148 navigation stars and the star tracker

    NASA Technical Reports Server (NTRS)

    Duncan, R.

    1980-01-01

    The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.

  4. GLOBAL STAR FORMATION REVISITED

    SciTech Connect

    Silk, Joseph; Norman, Colin E-mail: norman@stsci.edu

    2009-07-20

    A general treatment of disk star formation is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star formation law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star formation, enhances star formation efficiency. An upper limit is derived for the disk star formation rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid formation, AGN-driven winds trigger star formation, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star formation rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star formation is mediated by turbulent pressure and relates spheroid star formation rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star formation can occur at high redshift.

  5. Stars Brewing in Cygnus X

    NASA Image and Video Library

    2012-01-10

    A bubbling cauldron of star birth is highlighted in this image from NASA Spitzer Space Telescope. Massive stars have blown bubbles, or cavities, in the dust and gas -- a violent process that triggers both the death and birth of stars.

  6. Cooking up the First Stars

    NASA Image and Video Library

    2011-11-10

    Scientists are simulating how the very first stars in our universe were born. The stars we see today formed out of collapsing clouds of gas and dust. In the very early universe, however, the stars had fewer ingredients available.

  7. Observations of FK Comae stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1981-01-01

    Observations on the FK Comae stars are described. FK Com, UZ Lib and HD 199178 are compared and related as a group of stars. The crucial observational tests of the proposed evolutionary status of these stars are noted.

  8. Neutron Star Compared to Manhattan

    NASA Image and Video Library

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  9. Star Trek in the Schools

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1977

    1977-01-01

    Describes specific educational programs for using the Star Trek TV program from kindergarten through college. For each grade level lesson plans, ideas for incorporating Star Trek into future classes, and reports of specific programs utilizing Star Trek are provided. (SL)

  10. Hybrid stars that masquerade as neutron stars

    SciTech Connect

    Mark Paris; Mark Alford; Matt Braby; Sanjay Reddy

    2004-11-01

    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M{sub solar} for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

  11. Stars and Flowers, Flowers and Stars

    NASA Astrophysics Data System (ADS)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  12. Observational Study of Morphological Changes in Medium-mass Evolved Stars

    NASA Astrophysics Data System (ADS)

    Chong, Sze-Ning

    2014-02-01

    Medium-mass (or intermediate-mass) stars refer to main sequence stars with masses ranging from 0.4 to 8 solar masses. These stars are believed to finally evolve into the central stars of planetary nebulae (PNe) and white dwarfs. One of the fascinating aspects of PNe is their diverse morphology. To understand the mechanisms of the morphological changes from spherical circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars to those forming highly diversified PNe, it is necessary to investigate the true three-dimensional (3D) morphology of PNe from two-dimensional images, and the short transition phase in-between the two phases should also be explored. "Water Fountain" (WF) sources belong to transition phase objects; they are AGB or post-AGB stars with collimated jets traced by high velocity water maser emissions in their CSEs. This thesis comprises of four chapters. The results can be divided into two major parts. Chapter 1 is the introduction on the related fields with brief reviews of previous observational studies on PNe and the rapidly evolving transition phase objects. Basic theories necessary for understanding the next chapters were also described, including those explaining the commonly observed Hα emission in PNe, the formation of multipolar PNe, the maser emission and the role of shock in circumstellar materials. The first major part of the results, about the morphological classification of multipolar PNe, is presented in Chapter 2. At the beginning of the chapter, the problems on the previous classification methods were pointed out. Then a three-lobed model was introduced. By changing the combination of the orientations of the three pairs of lobes, simulations using the model produced statistical results in classification and quantified the errors of misidentification. Assuming that all PNe observed have the true structure of three lobes, due to projection effect, only 49% of them would be correctly classified. 46% and 5% of them would be

  13. Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Neumayer, Nadine

    2017-03-01

    The centers of galaxies host two distinct, compact components: massive black holes and nuclear star clusters. Nuclear star clusters are the densest stellar systems in the universe, with masses of ~ 107M⊙ and sizes of ~ 5pc. They are almost ubiquitous at the centres of nearby galaxies with masses similar to, or lower than the Milky Way. Their occurrence both in spirals and dwarf elliptical galaxies appears to be a strong function of total galaxy light or mass. Nucleation fractions are up to 100% for total galaxy magnitudes of M B = -19mag or total galaxy luminosities of about L B = 1010 L ⊙ and falling nucleation fractions for both smaller and higher galaxy masses. Although nuclear star clusters are so common, their formation mechanisms are still under debate. The two main formation scenarios proposed are the infall and subsequent merging of star clusters and the in-situ formation of stars at the center of a galaxy. Here, I review the state-of-the-art of nuclear star cluster observations concerning their structure, stellar populations and kinematics. These observations are used to constrain the proposed formation scenarios for nuclear star clusters. Constraints from observations show, that likely both cluster infall and in-situ star formation are at work. The relative importance of these two mechanisms is still subject of investigation.

  14. Dusty Dead Star

    NASA Image and Video Library

    2010-03-29

    A composite image from NASA Chandra and Spitzer space telescopes shows the dusty remains of a collapsed star, a supernova remnant called G54.1+0.3. The white source at the center is a dead star called a pulsar.

  15. Magnetized Compact Stars

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    2015-01-01

    The magnetized color flavor locked matter phase can be more stable than the unpaired phase, thus becoming the ground state inside neutron stars. In the presence of a strong magnetic field, there exist an anisotropy in the pressures. We estimate the mass-radius relation of magnetized compact stars taking into account the parallel and perpendicular (to the magnetic field) pressure components.

  16. Star System Bonanza Illustration

    NASA Image and Video Library

    2014-02-27

    This illustration shows the unusual orbit of planet Kepler-413b around a close pair of orange and red dwarf stars. The planet 66-day orbit is tilted 2.5 degrees with respect to the plane of the binary stars orbit.

  17. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  18. Hyperons in neutron stars

    SciTech Connect

    Glendenning, N.K.

    1986-04-01

    Generalized beta equilibrium involving nucleons, hyperons, and isobars is examined for neutron star matter. The hyperons produce a considerable softening of the equation of state. It is shown that the observed masses of neutron stars can be used to settle a recent controversy concerning the nuclear compressibility. Compressibilities less than 200 MeV are incompatible with observed masses. 7 refs., 9 figs.

  19. ENERGY STAR Certified Televisions

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Televisions that are effective as of October 30, 2015. A detailed listing of key efficiency criteria are available at https://www.energystar.gov/index.cfm?c=tv_vcr.pr_crit_tv_vcr.

  20. How do stars form

    NASA Astrophysics Data System (ADS)

    Tscharnuter, W. M.

    1980-02-01

    Modes and model concept of star formation are reviewed, beginning with the theory of Kant (1755), via Newton's exact mathematical formulation of the laws of motion, his recognition of the universal validity of general gravitation, to modern concepts and hypotheses. Axisymmetric and spherically symmetric collapse models are discussed, and the origin of double and multiple star systems is examined.

  1. Science Through ARts (STAR)

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  2. Science through ARts (STAR)

    ERIC Educational Resources Information Center

    Densmore, Marycay; Kolecki, Joseph C.; Miller, Allan; Petersen, Ruth; Terrell, Mike

    2005-01-01

    Science Through ARts (STAR) is a free, international, cross-curricular program thematically aligned with "The Vision for Space Exploration," a framework of goals and objectives published by NASA in February 2004. Through the STAR program, students in grades 5 through 12 are encouraged to apply their knowledge in creative ways as they approach a…

  3. Nebraska STARS: Achieving Results

    ERIC Educational Resources Information Center

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  4. Nebraska STARS: Achieving Results

    ERIC Educational Resources Information Center

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  5. Science through ARts (STAR)

    ERIC Educational Resources Information Center

    Densmore, Marycay; Kolecki, Joseph C.; Miller, Allan; Petersen, Ruth; Terrell, Mike

    2005-01-01

    Science Through ARts (STAR) is a free, international, cross-curricular program thematically aligned with "The Vision for Space Exploration," a framework of goals and objectives published by NASA in February 2004. Through the STAR program, students in grades 5 through 12 are encouraged to apply their knowledge in creative ways as they approach a…

  6. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  7. SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS

    SciTech Connect

    Cure, M.; Cidale, L.; Granada, A.

    2011-08-10

    The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars that could explain the origin of these discrepancies. We solve the one-dimensional hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars, the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical wind-momentum-luminosity relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.

  8. Star spot location estimation using Kalman filter for star tracker.

    PubMed

    Liu, Hai-bo; Yang, Jian-kun; Wang, Jiong-qi; Tan, Ji-chun; Li, Xiu-jian

    2011-04-20

    Star pattern recognition and attitude determination accuracy is highly dependent on star spot location accuracy for the star tracker. A star spot location estimation approach with the Kalman filter for a star tracker has been proposed, which consists of three steps. In the proposed approach, the approximate locations of the star spots in successive frames are predicted first; then the measurement star spot locations are achieved by defining a series of small windows around each predictive star spot location. Finally, the star spot locations are updated by the designed Kalman filter. To confirm the proposed star spot location estimation approach, the simulations based on the orbit data of the CHAMP satellite and the real guide star catalog are performed. The simulation results indicate that the proposed approach can filter out noises from the measurements remarkably if the sampling frequency is sufficient.

  9. Young Star HD 141569

    NASA Image and Video Library

    2017-01-30

    This image shows the dusty disk of planetary material surrounding the young star HD 141569, located 380 light-years away from Earth. It was taken using the vortex coronagraph on the W.M. Keck Observatory. The vortex suppressed light from the star in the center, revealing light from the innermost ring of planetary material around the star (blue). The disk around the star, made of olivine particles, extends from 23 to 70 astronomical units from the star. By comparison, Uranus is over 19 astronomical units from our sun, and Neptune about 30 astronomical units. One astronomical unit is the distance between Earth and our sun. http://photojournal.jpl.nasa.gov/catalog/PIA21090

  10. The Carbon Star Phenomenon

    NASA Astrophysics Data System (ADS)

    Wing, Robert F.

    2000-06-01

    The atmospheres of many stars have chemical compositions that are significantly different from that of the interstellar medium from which they are formed. This symposium considered all kinds of late-type stars showing altered compositions, the carbon stars being simply the best-known of these. All stages of stellar evolution from the main sequence to the ejection of a planetary nebula were considered, with emphasis on the changes that occur on the asymptotic giant branch. The spectroscopic properties of the photospheres and circumstellar envelopes of chemically-peculiar red giant stars, their origins via single-star evolution or mass transfer in binary systems, and the methods currently used to study them were all discussed in detail. This volume includes the full texts of papers given orally at the symposium and abstracts of the posters. Link: http://www.wkap.nl/book.htm/0-7923-6347-7

  11. Producing Runaway Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the

  12. TYCHO star recognition

    NASA Astrophysics Data System (ADS)

    Halbwachs, J. L.; Hog, E.; Bastian, U.; Schwekendiek, P.; Schwekendiek, P.

    1992-05-01

    The observations of the first year of mission of the Tycho program will be used for revising the Tycho Input Catalogue (TIC). The Tycho Input Catalogue Revision essentially defines the list of objects in the final Tycho output catalogs. This paper describes the mathematical and practical details of this revision process. The stars will be recognized with three different processes, according to their distances from the positions in the TIC. The main process concerns the stars closer than 6 arcsec to the T/C positions; stars with separations between 6 and 20 arcsec are recognized too, but the threshold in detection is slightly brighter than in the main process. Stars absent from the input catalog could also be recognized, but with an even higher threshold in detection. An assessment based on about 85 hours of actual Hipparcos observations is presented. It points to a Tycho Input Catalogue Revision containing about 1 million stars.

  13. Neutron stars - General review

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  14. How Stars Form

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.

    2017-01-01

    Stars are the atoms of the universe. The process by which stars form is at the nexus of astrophysics since they are believed to be responsible for the re-ionization of the universe, they created the heavy elements, they play a central role in the formation and evolution of galaxies, and their formation naturally leads to the formation of planets. Whereas early work on star formation was based on the assumption that it is a quiescent process, it is now believed that turbulence plays a dominant role. In this overview, I shall discuss the evolution of our understanding of how stars form and current ideas about the stellar initial mass function and the rate of star formation.

  15. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  16. Gaia and Variable Stars

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Soszyński, I.; Skowron, D. M.; Skowron, J.; Pietrukowicz, P.; Mróz, P.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Wyrzykowski, Ł.; Ulaczyk, K.; Pawlak, M.

    2016-12-01

    We present a comparison of the Gaia DR1 samples of pulsating variable stars - Cepheids and RR Lyr type - with the OGLE Collection of Variable Stars aiming at the characterization of the Gaia mission performance in the stellar variability domain. Out of 575 Cepheids and 2322 RR Lyr candidates from the Gaia DR1 samples located in the OGLE footprint in the sky, 559 Cepheids and 2302 RR Lyr stars are genuine pulsators of these types. The number of misclassified stars is low indicating reliable performance of the Gaia data pipeline. The completeness of the Gaia DR1 samples of Cepheids and RR Lyr stars is at the level of 60-75% as compared to the OGLE Collection dataset. This level of completeness is moderate and may limit the applicability of the Gaia data in many projects.

  17. The Wolf-Rayet Star Population of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kanarek, Graham

    Wolf-Rayet (WR) stars are a late stage in the evolution of massive stars (M ≥ 25 M), characterized by strong stellar winds ( M˙ 10-5 M/yr). Ionizing radiation from the central star heats the expanding outer envelope of material, leading to recombination emission lines of helium, carbon, nitrogen, oxygen, and/or hydrogen in the WR star spectrum. This outflow of material enriches the surrounding ISM, which is further enriched when the WR star likely explodes as a type Ib or Ic supernova. WR stars are also likely progenitors for long soft gamma-ray bursts, and they are excellent tracers of the present sites of massive star formation in our Galaxy. The current Galactic WR star catalog is very incomplete. I discuss three methods of selecting strong WR star candidates from crowded fields in the Galactic plane: image subtraction, narrowband (NB) color, and broadband (BB) color. Using these methods, an extensive near-infrared narrowband survey begun in 2005-2006, and extended by me, has yielded 28% of the known Galactic WR stars to date; I add 59 new WR stars to the total in this thesis. I then compare two recent models of the Galactic population of WR stars, discuss the implications with respect to how many WR stars remain to be found, and use these results to inform an analysis of the remaining 834 strong carbon-rich WC star candidates from the survey. I also provide a listing of these 834 WC star candidates throughout our Galaxy, and map them; a central result of this thesis. Finally, I present selection criteria which may be used to identify [WR] stars (central stars of planetary nebulae which display WR spectral features), and proof of concept observations which led to 7 new confirmed [WC] stars.

  18. Extrasolar Planets located in the habitable zone of the main sequence stars

    NASA Astrophysics Data System (ADS)

    Peña-Cabrera, G. V. Y.; Romero-Sanchez, M. C.; Durand-Manterola, H. J.

    In the search of extraterrestrial life it was speculated about the existence of a Circumstellar Habitable Zone (CHZ) around stars at which inside planets are suitable for life. Different researches show that the stars types at which CHZ support life are the stars K, G, and F with the type G as the more probable. However in a recent work, Peña-Cabrera and Durand-Manterola (2004) estimate that this probability (p) increases from M-type stars (p˜ 0.0004) to A-type stars (p˜ 0.11) while B and O-types stars have probability of zero because the CHZ is further of the planetary zone. In this work we made an analysis of the extrasolar planets and we obtain the percentage of planets that are inside the CHZ. Our results agree with the conclusions of Peña-Cabrera and Durand-Manterola. Our results show that the F-type stars have the highest number of planets and by contrast, the M-type stars have the lowest one. About A-type stars we cannot say anything because this stars has not been studied in the search of extrasolar planets, but on basis of the earlier results we could expect that many extrasolar planets will be find in the CHZ of this stars.

  19. A long-dead star

    NASA Image and Video Library

    2016-07-25

    This NASA/ESA Hubble Space Telescope image captures the remnants of a long-dead star. These rippling wisps of ionised gas, named DEM L316A, are located some 160 000 light-years away within one of the Milky Way’s closest galactic neighbours — the Large Magellanic Cloud (LMC). The explosion that formed DEM L316A was an example of an especially energetic and bright variety of supernova, known as a Type Ia. Such supernova events are thought to occur when a white dwarf star steals more material than it can handle from a nearby companion, and becomes unbalanced. The result is a spectacular release of energy in the form of a bright, violent explosion, which ejects the star’s outer layers into the surrounding space at immense speeds. As this expelled gas travels through the interstellar material, it heats it up and ionise it, producing the faint glow that Hubble’s Wide Field Camera 3 has captured here. The LMC orbits the Milky Way as a satellite galaxy and is the fourth largest in our group of galaxies, the Local Group. DEM L316A is not alone in the LMC; Hubble came across another one in 2010 with SNR 0509 (heic1018), and in 2013 it snapped SNR 0519 (potw1317a).

  20. Catch a Star!

    NASA Astrophysics Data System (ADS)

    2006-11-01

    ESO and the European Association for Astronomy Education are launching today the 2007 edition of 'Catch a Star!', their international astronomy competition for school students. Now in its fifth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. Students are invited to 'become astronomers' and embark on a journey to explore the Universe. ESO PR Photo 42/06 The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. For the artistically minded, 'Catch a Star!' also includes an artwork competition, 'Catch a Star Artists'. "'Catch a Star!' offers a unique opportunity for students to learn more about astronomy and about the methods scientists use to discover new things about the Universe", said Douglas Pierce-Price, Education Officer at ESO. In teams, students choose an astronomical topic to study and produce an in-depth report. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes or a telescope of the future can contribute to their investigations of the subject. As well as the top prize - a trip to one of ESO's observatory sites in Chile - visits to observatories in Germany, Austria and Spain, and many other prizes are also available to be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners chosen with the help of a public online vote. The first editions of 'Catch a Star!' have attracted several hundred entries from more than 25 countries worldwide. Previous winning entries have included "Star clusters and the structure of the Milky Way" (Budapest, Hungary), "Vega" (Acqui Terme, Italy) and "Venus

  1. Searching For and Monitoring Ae and A Shell Stars at the DAO

    NASA Astrophysics Data System (ADS)

    Bohlender, D.

    2016-11-01

    To demonstrate the continued utility of the venerable DAO 1.8-m Plaskett telescope to carry out large spectroscopic observing programs, we have obtained high S/N, moderate-resolution spectra of the Hα profile of ≍ 400 A-type stars north of δ = 20° and with v sin i>150 km s-1. These data have been used to estimate the incidence of circumstellar shell and emission line features in rapidly rotating A stars. Hα shell or emission features are observed in more than 60 stars, or about 15% of the survey sample, and approximately 30 of these are bright, previously unreported shell or emission line stars. As has been observed for the classical Be stars, the frequency of shell or emission features in A-type stars decreases towards late-A spectral types and also with decreasing vsin{i}.

  2. Making star teams out of star players.

    PubMed

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  3. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  4. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  5. Heartbeat Stars Artist Concept

    NASA Image and Video Library

    2016-10-21

    This artist's concept depicts "heartbeat stars," which have been detected by NASA's Kepler Space Telescope and others. The illustration shows two heartbeat stars swerving close to one another in their closest approach along their highly elongated orbits around one another. The mutual gravitation of the two stars would cause the stars themselves to become slightly ellipsoidal in shape. A third, more distant star in the system is shown in the upper left. Astronomers speculate that such unseen companions may exist in some of these heartbeat star systems, and could be responsible for maintaining these oddly stretched-out orbits. The overlaid curve depicts the inferred cyclic change in velocities in one such system, called KIC 9965691, looking something like the graph of an electrocardiogram (hence the name "heartbeat stars"). The solid points represent measurements made by the HIRES instrument at the W.M. Keck Observatory, and the curve is the best fit model for the motions of this system. http://photojournal.jpl.nasa.gov/catalog/PIA21075

  6. From stars to nuclei

    NASA Astrophysics Data System (ADS)

    Meynet, G.

    2008-04-01

    We recall the basic physical principles governing the evolution of stars with some emphasis on the role played by the nuclear reactions. We argue that in general it is not possible from observations of stars to deduce constraints on the nuclear reaction rates. This is the reason why precise measurements of nuclear reaction rates are a necessity in order to make progresses in stellar physics, nucleosynthesis and chemical evolution of galaxies. There are however some stars which provides useful constraints on nuclear processes. The Wolf-Rayet stars of the WN type present at their surface CNO equilibrium patterns. There is also the particular case of the abundance of 22Ne at the surface of WC stars. The abundance of this element is a measure of the initial CNO content. Very interestingly, recent determinations of its abundance at the surface of WC stars tend to confirm that massive stars in the solar neighborhood have initial metallicities in agreement with the Asplund et al. [1] solar abundances.

  7. Neutron star evolutionary sequences

    NASA Technical Reports Server (NTRS)

    Richardson, M. B.; Van Horn, H. M.; Ratcliff, K. F.; Malone, R. C.

    1982-01-01

    Detailed numerical calculations which are solutions of the full set of general relativistic equations describing the evolution of a spherical star are presented, for the case of the evolution of neutron stars that are cooling over the central temperatures range of 10 to the 10th to 10 to the 7th K. The effects of nucleon superfluidity in the inner crust and core are included, and models are constructed with and without a pion condensate at high densities. It is found that the localized neutrino cooling which dominates the early evolution of neutron stars is so rapid that heat transport within the star cannot keep pace, and temperature distribution is not isothermal. The residual contraction of the neutron star during the early cooling phase contributes little to the heat budget of the star, and most of the gravitational energy released raises the Fermi energy of the degenerate nucleons. It is concluded that since calculations with and without pion condensate are consistent with the upper limits of current observations, these are not sufficient in distinguishing between the various models of neutron star cooling.

  8. Starspots on A stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2017-05-01

    Rotation modulation of Kepler light curves in mid-A to late-B stars is shown to be present. This is demonstrated by the high correlation of projected rotational velocities with photometric frequencies in 30 stars. The time-frequency diagrams show stochastic variations in all respects similar to those in spotted cool stars. This disposes of any explanation in terms of binary proximity effects. More than half of the sample of stars with effective temperatures in the range of 8300-12 000 K show rotational modulation, indicating that starspots are the rule rather than the exception among A stars. The periodograms of a subset of these stars show a characteristic pattern in which a broad peak is flanked by a sharp peak at a slightly higher frequency. It is demonstrated that the sharp peak has the same width as the spectral window, indicating a stable period over the duration of the 4-yr Kepler observations. It is speculated that this might be a signature of a reflection effect in a non-transiting planet. These observations suggest that the presence of localized magnetic fields in A and B stars and that current views of radiative stellar envelopes need to be revised.

  9. Dense Axion Stars

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  10. Highly-evolved stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1981-01-01

    The ways in which the IUE has proved useful in studying highly evolved stars are reviewed. The importance of high dispersion spectra for abundance analyses of the sd0 stars and for studies of the wind from the central star of NGC 6543 and the wind from the 0 type component of Vela X-1 is shown. Low dispersion spectra are used for absolute spectrophotometry of the dwarf nova, Ex Hya. Angular resolution is important for detecting and locating UV sources in globular clusters.

  11. Superradiance in stars

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Brito, Richard; Rosa, João L.

    2015-06-01

    It has long been known that dissipation is a crucial ingredient in the superradiant amplification of wave packets off rotating objects. We show that, once appropriate dissipation mechanisms are included, stars are also prone to superradiance and superradiant instabilities. In particular, ultralight dark matter with small interaction cross section with the star material or self-annihilation can trigger a superradiant instability. On long time scales, the instability strips the star of most of its angular momentum. Whether or not new stationary configurations surrounded by scalar condensates exist remains to be seen.

  12. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  13. Infrared spectroscopy of stars

    NASA Technical Reports Server (NTRS)

    Merrill, K. M.; Ridgway, S. T.

    1979-01-01

    This paper reviews applications of IR techniques in stellar classification, studies of stellar photospheres, elemental and isotopic abundances, and the nature of remnant and ejected matter in near-circumstellar regions. Qualitative IR spectral classification of cool and hot stars is discussed, along with IR spectra of peculiar composite star systems and of obscured stars, and IR characteristics of stellar populations. The use of IR spectroscopy in theoretical modeling of stellar atmospheres is examined, IR indicators of stellar atmospheric composition are described, and contributions of IR spectroscopy to the study of stellar recycling of interstellar matter are summarized. The future of IR astronomy is also considered.

  14. Mass loss of massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2015-12-01

    In this contribution we review the properties of the winds of massive stars. We focus on OB stars, red supergiants, Luminous Blue Variables (LBVs) and Wolf-Rayet stars. For each type of star, we summarize the main wind properties and we give a brief description of the physical mechanism(s) responsible for mass loss.

  15. R Coronae Borealis stars

    NASA Astrophysics Data System (ADS)

    Skuljan, Ljiljana; Cottrell, Peter L.

    2004-05-01

    In the last ten years a significant step forward has been made toward a better understanding of the evolutionary status and unusual nature of the R Coronae Borealis (RCB) stars, a rare class of hydrogen-poor and carbon-rich variable stars. More detailed abundance analyses of the majority of RCB stars, and objects related to them, have become available in the last couple of years. In addition to this, recent theoretical studies of the most popular evolutionary models (`Double Degenerate' and `Final Flash')provide a new insight into the origin of these stars. Regarding the nature of the RCB declines, more observations from the light maxima and the decline phase are now available, including more data from space. However, the characteristics of the various emission lines appearing during the RCB declines, and the nature of their emitting regions, are still not entirely understood.

  16. Tabby's Star (Illustration)

    NASA Image and Video Library

    2017-10-04

    This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Astronomers have found the dimming of the star over long periods appears to be weaker at longer infrared wavelengths of light and stronger at shorter ultraviolet wavelengths. Such reddening is characteristic of dust particles and inconsistent with more fanciful "alien megastructure" concepts, which would evenly dim all wavelengths of light. By studying observations from NASA's Spitzer and Swift telescopes, as well as the Belgian AstroLAB IRIS observatory, the researchers have been able to better constrain the size of the dust particles. This places them within the range found in dust disks orbiting stars, and larger than the particles typically found in interstellar dust. The system is portrayed with a couple of comets, consistent with previous studies that have found evidence for cometary activity within the system. https://photojournal.jpl.nasa.gov/catalog/PIA22081

  17. Winds from cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1995-01-01

    Spectral observations of cool stars enable study of the presence and character of winds and the mass loss process in objects with effective temperatures, gravities, and atmospheric compositions which differ from that of the Sun. A wealth of recent spectroscopic measurements from the Hubble Space Telescope, and the Extreme Ultraviolet Explorer complement high resolution ground-based measures in the optical and infrared spectral regions. Such observations when combined with realistic semi-empirical atmospheric modeling allow us to estimate the physical conditions in the atmospheres and winds of many classes of cool stars. Line profiles support turbulent heating and mass motions. In low gravity stars, evidence is found for relatively fast (approximately 200 km s(exp -1)), warm winds with rapid acceleration occurring in the chromosphere. In some cases outflows commensurate with stellar escape velocities are present. Our current understanding of cool star winds will be reviewed including the implications of stellar observations for identification of atmospheric heating and acceleration processes.

  18. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  19. Chaotic Star Birth

    NASA Image and Video Library

    2005-11-15

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. This image is from NASA Spitzer Space Telescope.

  20. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  1. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  2. Guide star probabilities

    NASA Technical Reports Server (NTRS)

    Soneira, R. M.; Bahcall, J. N.

    1981-01-01

    Probabilities are calculated for acquiring suitable guide stars (GS) with the fine guidance system (FGS) of the space telescope. A number of the considerations and techniques described are also relevant for other space astronomy missions. The constraints of the FGS are reviewed. The available data on bright star densities are summarized and a previous error in the literature is corrected. Separate analytic and Monte Carlo calculations of the probabilities are described. A simulation of space telescope pointing is carried out using the Weistrop north galactic pole catalog of bright stars. Sufficient information is presented so that the probabilities of acquisition can be estimated as a function of position in the sky. The probability of acquiring suitable guide stars is greatly increased if the FGS can allow an appreciable difference between the (bright) primary GS limiting magnitude and the (fainter) secondary GS limiting magnitude.

  3. Magnetospheres of massive stars

    NASA Astrophysics Data System (ADS)

    Küker, M.

    We study the interaction of line-driven winds from massive stars with the magnetic field rooted in these stars by carrying out numerical simulations using the Nirvana MHD code in 2D in spherical polar coordinates. The code's adaptive mesh refinement feature allows high spatial resolution across the whole simulation box. We study both O and Wolf-Rayet stars for a range of magnetic field strengths from weak to strong as measured by the confinement parameter. For weak fields our simulations show that the initially dipolar field opens up far away from the star and a thin disk-like structure forms in the equatorial plane of the magnetic field. For stronger fields the disk is disrupted close to the stellar surface and closed field lines persist at low latitudes. For very strong fields a pronounced magnetosphere forms where the gas is forced to move along the field lines and eventually falls back to the stellar surface.

  4. Discovery of variable stars

    NASA Technical Reports Server (NTRS)

    Kurochkin, N. Y.

    1973-01-01

    Instrumented methods of discovering variable stars are reviewed, specifically the blink comparator, color contrast method, positive-negative method, and television method. Among the empirical methods discussed, the Van Gent method is the most important.

  5. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  6. Conformally symmetric relativistic star

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Maharaj, Sunil D.; Sardar, Iftikar Hossain; Chakraborty, Koushik

    2017-03-01

    We investigate whether compact stars having Tolman-like interior geometry admit conformal symmetry. Taking anisotropic pressure along the two principal directions within the compact object, we obtain physically relevant quantities such as transverse and radial pressure, density and redshift function. We study the equation of state (EOS) for the matter distribution inside the star. From the relation between pressure and density function of the constituent matter, we explore the nature and properties of the interior matter. The redshift function and compactness parameter are found to be physically reasonable. The matter inside the star satisfies the null, weak and strong energy conditions. Finally, we compare the masses and radii predicted from the model with corresponding values in some observed stars.

  7. Dark Wombs of Stars

    NASA Image and Video Library

    2009-10-02

    This image from the Herschel Observatory, a European Space Agency mission, reveals some of the coldest and darkest material in our galaxy. The yellow filaments show the coldest dust dotted with the youngest embryonic stars.

  8. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners

  9. Sounds of a Star

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  10. The discovery of nonthermal radio emission from magnetic Bp-Ap stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.

    1987-01-01

    In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.

  11. Astro STARS Camp

    NASA Image and Video Library

    2011-06-28

    Tom Nicolaides, an aerospace technologist in the Engineering & Test Directorate at Stennis Space Center, looks on as 2011 Astro STARS participants take turns gazing at the sun through a special telescope. The sun-gazing activity was part of the Astro STARS (Spaceflight, Technology, Astronomy & Robotics at Stennis) camp for 13-to-15-year-olds June 27 - July 1. The weeklong science and technology camp is held each year onsite at the rocket engine test facility.

  12. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  13. Star of Bethlehem

    NASA Astrophysics Data System (ADS)

    Hughes, D.; Murdin, P.

    2001-07-01

    The biblical Star of Bethlehem, which heralded the birth of Jesus Christ, is only mentioned in the Gospel of St Matthew 2. The astrologically significant 7 bc triple conjunction of Jupiter and Saturn in the constellation of Pisces is the most likely candidate, although a comet/nova in 5 bc and a comet in 4 bc cannot be ruled out. There is also the possibility that the star was simply fictitious....

  14. A messy star factory

    NASA Image and Video Library

    2014-12-15

    This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers to study star formation, as their conditions are similar to those thought to exist in the early Universe. Markarian 209 in particular has been studied extensively. It is filled with diffuse gas and peppered with star-forming regions towards its core. This image captures it undergoing a particularly dramatic burst of star formation, visible as the lighter blue cloudy region towards the top right of the galaxy. This clump is filled with very young and hot newborn stars. This galaxy was initially thought to be a young galaxy undergoing its very first episode of star formation, but later research showed that Markarian 209 is actually very old, with an almost continuous history of forming new stars. It is thought to have never had a dormant period — a period during which no stars were formed — lasting longer than 100 million years. The dominant population of stars in Markarian 209 is still quite young, in stellar terms, with ages of under 3 million years. For comparison, the Sun is some 4.6 billion years old, and is roughly halfway through its expected lifespan. The observations used to make this image were taken using Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, and span the ultraviolet, visible, and infrared parts of the spectrum. A scattering of other bright galaxies can be seen across the frame, including the bright golden oval that could, due to a trick of perspective, be mistaken as part of Markarian 209 but is in fact a background galaxy. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Nick Rose. Links: Nick Rose’s Hidden Treasures entry on Flickr

  15. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  16. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  17. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  18. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  19. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  20. ENERGY STAR Certified Products - Lighting

    EPA Pesticide Factsheets

    This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories including ENERGY STAR Unique IDs, ENERGY STAR partners, model names and numbers, and brand names. Learn more about ENERGY STAR products at www.energystar.gov/products. A full list of ENERGY STAR specifications can be found at www.energystar.gov/specifications.

  1. Radio emission from binary stars

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1986-01-01

    This paper reviews the radio emission from binary star systems - the emission processes that occur, the characteristics of the binary systems inferred from the radio observations, and the reasons for the activity. Several classes of binary stars are described including those with two main sequence stars, those with one normal star and a white dwarf, and those containing a neutron star or a black hole.

  2. Seeing Stars in Serpens

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA's Spitzer Space Telescope.

    The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or 'protoplanetary disk,' that may eventually form planets, surrounds the infant stars.

    Wisps of green throughout the image indicate the presence of carbon rich molecules called polycyclic aromatic hydrocarbons. On Earth, these molecules can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way galaxy.

    The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation.

    The image is a three-channel, false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.

  3. Young Stars with SALT

    NASA Astrophysics Data System (ADS)

    Riedel, Adric R.; Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L.; Henry, Todd J.

    2017-05-01

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups. Based on observations made with the Southern African Large Telescope (SALT).

  4. Seeing Stars in Serpens

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA's Spitzer Space Telescope.

    The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or 'protoplanetary disk,' that may eventually form planets, surrounds the infant stars.

    Wisps of green throughout the image indicate the presence of carbon rich molecules called polycyclic aromatic hydrocarbons. On Earth, these molecules can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way galaxy.

    The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation.

    The image is a three-channel, false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.

  5. Star formation around isolated T Tauri stars?

    NASA Astrophysics Data System (ADS)

    Hoff, W.; Pfau, W.; Henning, T.

    1996-02-01

    The authors want to present their search for young stellar objects around the two isolated T Tau stars TW Hya (Rucinski and Krautter 1983) and CoD -29°8887 (de la Reza et al. 1989). From the known spectroscopic features of these objects, TW Hya is to be classified as a classical T Tau star (CTTS), but it is not associated with a dark cloud region like all other known CTTSs. The same situation turns out for the weak-line T Tau star (WTTS) CoD -29°8887. One possible explanation for their isolated position is that they have formed from small dark clouds or globules, which were later destroyed. The authors carried out two ROSAT PSPC observations pointing at TW Hya and CoD -29°8887 and used a source detection procedure considering all the standard ROSAT energy bands to test this hypothesis. Spectroscopic follow-up observations were made for 24 possible T Tauri candidates, but there are no further low-mass young stellar objects in the vicinity of the two targets. The study shows that the objects are definitely not formed in a cluster at the positions of the objects.

  6. Collapsing Enormous Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    One of the big puzzles in astrophysics is how supermassive black holes (SMBHs) managed to grow to the large sizes weve observed in the very early universe. In a recent study, a team of researchers examines the possibility that they were formed by the direct collapse of supermassive stars.Formation MysterySMBHs billions of times as massive as the Sun have been observed at a time when the universe was less than a billion years old. But thats not enough time for a stellar-mass black hole to grow to SMBH-size by accreting material so another theory is needed to explain the presence of these monsters so early in the universes history. A new study, led by Tatsuya Matsumoto (Kyoto University, Japan), poses the following question: what if supermassive stars in the early universe collapsed directly into black holes?Previous studies of star formation in the early universe have suggested that, in the hot environment of these primordial times, stars might have been able to build up mass much faster than they can today. This could result in early supermassive stars roughly 100,000 times more massive than the Sun. But if these early stars end their lives by collapsing to become massive black holes in the same way that we believe massive stars can collapse to form stellar-mass black holes today this should result in enormously violent explosions. Matusmoto and collaborators set out to model this process, to determine what we would expect to see when it happens!Energetic BurstsThe authors modeled the supermassive stars prior to collapse and then calculated whether a jet, created as the black hole grows at the center of the collapsing star, would be able to punch out of the stellar envelope. They demonstrated that the process would work much like the widely-accepted collapsar model of massive-star death, in which a jet successfully punches out of a collapsing star, violently releasing energy in the form of a long gamma-ray burst (GRB).Because the length of a long GRB is thought to

  7. IRAS 18455+0448: An OH Fountain Source

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    2015-08-01

    IRAS 18455+0448 has been monitored annually since its 1612 MHz masers disappeared in 2001. At Xmas 2012, an intense, new, 1665 MHz feature at ˜3ve appeared, which points to the initiation of a jet in this post-AGB star.

  8. SN 1993J: A Type IIb supernova

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Eastman, Ronald G. (Editor); Weaver, Thomas A; Pinto, Philip A.

    1994-01-01

    The evolution of the bright Type II supernova discovered last year in M81, SN 1993J, is consistent with that expected for the explosion of a star which on the main sequence had a mass of 13-16 Solar Mass but which, owing to mass exchange with a binary companion (a intially approximately 3-5 AU, depending upon the actual presupernova radius and the masses of the two stars) lost almost all of its hydrogen-rich envelope during late helium burning. At the time of explosion, the helium core mass was 4.0 +/- 0.5 Solar Mass and the hydrogen envelope, 0.20 +/- 0.05 Solar Mass. The envelope was helium and nitrogen-rich (carbon-deficient) and the radius of the star, 4 +/- 1 x 10(exp 13) cm. The luminosity of the presupernova star was 3 + 1 x 10(exp 38) ergs/s, with the companion star contributing an additional approximately 10(exp 38) ergs/s. The star may have been a pulsating variable at the time of the explosion. For an explosion energy near 10(exp 51) ergs (KE at infinity) and an assumed distance of 3.3 Mpc, a mass of Ni-56 in the range 0.07 +/- 0.01 Solar Mass was produced and ejected. This presciption gives a light curve which compares favorably with the bolomatric observations. Color photometry is more restrictive and requires a model in which the hydrogen-envelope mass is low and the mixing of hydrogen inward has been small, but in which appreciable Ni-56 has been mixed outward into the helium and heavy-element core. It is possible to obtain good agreement with B and V light curves during the first 50 days, but later photometry, especially in bands other than B and V, will require a non-local thermo-dynamic equilibrium (LTE) spectral calculation for comparison. Based upon our model, we predict a flux of approximately 10(exp -5)(3.3 Mpc/D)(exp 2) photons/sq cm/s in the 847 keV line of CO-56 at peak during 1993 August. It may be easier to detect the Computonized continuum which peaks at a few times 10(exp -4) photons /s/sq cm/MeV at 40 keV a few months after the

  9. Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  10. Models of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  11. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  12. Life Cycle of Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  13. Neutron stars as type-I superconductors.

    PubMed

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R

    2004-04-16

    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  14. Synchronization of magnetic stars in binary systems

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Aly, J.-J.; Cook, M. C.; Lamb, D. Q.

    1983-01-01

    Asynchronous rotation of magnetic stars in close binary systems drives substantial field-aligned electrical currents between the magnetic star and its companion. The resulting magnetohydrodynamic torque is able to account for the heretofore unexplained synchronous rotation of the strongly magnetic degenerate dwarf component in systems like AM Her, VV Pup, AN UMa, and EF Eri as well as the magnetic A type component in systems like HD 98088 and 41 Tauri. The electric fields produced by even a small asynchronism are large and may accelerate some electrons to high energies, producing radio emission. The total energy dissipation rate in systems with degenerate dwarf spin periods as short as 1 minute may reach 10 to the 33rd ergs/s. Total luminosities of this order may be a characteristic feature of such systems.

  15. Stars and Nebulae in the Southern Crown

    NASA Astrophysics Data System (ADS)

    2000-10-01

    The R Coronae Australis complex of young stars and interstellar gas clouds is one of the nearest star-forming regions, at a distance of approx. 500 light-years from the Sun. It is seen in the southern constellation of that name (The "Southern Crown"). Images of this sky area were recently obtained with the Wide Field Imager (WFI) , a 67-million pixel digital camera that is installed at the 2.2-m MPG/ESO Telescope at ESO's La Silla Observatory. Some of these exposures have been combined into a magnificent colour image, here reproduced as PR Photo 25a/00 . The field shown measures about 4.7 x 4.7 light-years 2. It displays the central part of the complex, its brightest stars, and the nebulosity that they illuminate. The interstellar clouds that are associated with the complex are visible all across this field and also beyond its borders (on other exposures), due to the obscuring effect of the dust particles that "dim" the light of stars behind these clouds. This effect is particularly noticeable in the lower left corner where very few stars are seen. R Coronae Australis , the bright star from which the entire complex is named, is located at the center of the field and illuminates the reddish nebula around it. The bright star in the lower part, illuminating a somewhat bluer nebula, is known as TY Coronae Australis . The brightness of these two stars and several others in the same field is variable. They belong to the so-called "T Tauri" class , a type that is quite common in star-forming regions. T Tauri stars are in the early stages of stellar evolution and display various observable characteristics of this phase, e.g. emission at visible and infrared wavelengths due to the accretion of matter left over from their formation, as well as X-ray emission. The nebulosity seen in this picture is mostly due to reflection of the stellar light by small dust particles. The stars in the R Coronae Australis complex do not emit sufficient ultraviolet light to ionize a substantial

  16. Characterization of the hot white dwarfs population in the Milky Way with GALEX, SDSS, PanSTARRS, and HST, to understand post-AGB evolution.

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Shiao, Bernie; Barstow, Martin; Keller, Graziela

    2016-07-01

    Hot white dwarfs are important astrophysical probes: their progenitors enrich the interstellar medium with carbon, nitrogen and other important elements. However, these stellar remnants are elusive at all wavelengths except the UV: they have small radii and low optical luminosity, and high temperatures to which optical colors are saturated. Therefore, this important component of the Milky Way stellar population remained hard to identify until recently, resulting in some critical aspects of stellar evolution to be still poorly understood. From the GALEX UV sky surveys (Bianchi 2014), matched to multi-band optical surveys (SDSS, PanSTARRS), we extracted an unprecedented, unbiased census of hot WDs, as well as identified those in binary systems with cooler companions. We compared the entire population with Milky Way models, and we further investigated selected sub-samples with HST photometry and spectroscopy, in order to constrain with multiple approaches the initial-final mass relation, shedding light on mass loss during AGB phases, which is critical to ultimately understand the chemical evolution of the galaxy. We also extend our study to the time-domain, looking for short-period oscillations or eclipses in the UV from GALEX photon data, and longer-term variations from GALEX and Pan-STARSS databases. We present our updated catalog of UV-identified hot WDs, and the early results from these related projects. In one HST project in particular we aim at resolving some of the binaries with a hot WD, to refine the stellar parameters of both components and the evolutionary status of the system, a method we will then apply to our entire sample with Gaia data.

  17. Chemical analysis of a triple system of A-type stars

    NASA Astrophysics Data System (ADS)

    Frémat, Y.; Lampens, P.; Hensberge, H.

    2004-12-01

    Components of multiple systems generally originate from the same protostellar environment. Their similarities or differences in surface chemical composition therefore relates to their individual evolutionary paths (stellar evolution, rotation) and the possible influence of a close companion.

  18. Star Caught Smoking

    NASA Astrophysics Data System (ADS)

    2007-08-01

    VLTI Snapshots Dusty Puff Around Variable Star Using ESO's Very Large Telescope Interferometer, astronomers from France and Brazil have detected a huge cloud of dust around a star. This observation is further evidence for the theory that such stellar puffs are the cause of the repeated extreme dimming of the star. ESO PR Photo 34a/07 ESO PR Photo 34a/07 Dust Cloud in a R CrB Star (Artist's Impression) R Coronae Borealis stars are supergiants exhibiting erratic variability. Named after the first star that showed such behaviour [1], they are more than 50 times larger than our Sun. R Coronae Borealis stars can see their apparent brightness unpredictably decline to a thousandth of their nominal value within a few weeks, with the return to normal light levels being much slower. It has been accepted for decades that such fading could be due to obscuration of the stellar surface by newly formed dusty clouds. This 'Dust Puff Theory' suggests that mass is lost from the R Coronae Borealis (or R CrB for short) star and then moves away until the temperature is low enough for carbon dust to form. If the newly formed dust cloud is located along our line-of-sight, it eclipses the star. As the dust is blown away by the star's strong light, the 'curtain' vanishes and the star reappears. RY Sagittarii is the brightest member in the southern hemisphere of this family of weird stars. Located about 6,000 light-years away towards the constellation of Sagittarius (The Archer), its peculiar nature was discovered in 1895 by famous Dutch astronomer Jacobus Cornelius Kapteyn. In 2004, near-infrared adaptive optics observations made with NACO on ESO's Very Large Telescope allowed astronomers Patrick de Laverny and Djamel Mékarnia to clearly detect the presence of clouds around RY Sagittarii. This was the first direct confirmation of the standard scenario explaining the light variations of R CrB stars by the presence of heterogeneities in their envelope surrounding the star. ESO PR Photo 32e

  19. Fingerprinting Nearby Star Suspects

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Bean, Jacob; Golimowski, Dave; Jao, Wei-Chun; Subasavage, John; Walkowicz, Lucianne

    2002-02-01

    To identify and characterize the Sun's neighbors, we propose to obtain red spectra (5300-9900+ Å) for suspected nearby red, brown, and white dwarfs. These spectra play an important role in a new parallax effort initiated as part of a small telescope consortium operating at CTIO. This new effort, CTIOPI2, will be an expansion of the highly successful CTIOPI effort - an NOAO Surveys Program in which we are measuring parallaxes for more than 200 southern nearby stars. Both are carried out under the RECONS (Research Consortium on Nearby Stars) effort based at Georgia State U., Johns Hopkins U., and U. Virginia. During RECONS' two previous CTIO spectroscopic observing runs, we had two partly cloudy nights in Feb 1998, and three rainy nights in Jul 2001. Nonetheless, from the earlier run's meager data we have identified six new stars within 25 pc, two of which lie within 10 pc. High quality spectra for these new nearby stars are being provided to the fundamental database of the NASA/NSF NStars Project. This proposal is similar to our previous proposal, 2001A-0270, although we now include three new samples of stars that are being examined for CTIOPI2 targets. These samples are being used for both PhD (Jao, Subasavage) and undergraduate senior (Bean, Walkowicz) theses.

  20. Circulation of Stars

    NASA Astrophysics Data System (ADS)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  1. Apollo Project- star projector

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The specially designed star projector used in the Projection Planetarium. From A.W. Vogeley, 'Piloted Space-Flight Simulation at Langley Research Center,' Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. 'Another approach to the scene-generation problem is the point-light-source projection technique. This technique has been used in the Langley Projection Planetarium,... to study Apollo launch-abort problems. This method was very effective in providing the required horizon-to-horizon view of Florida as seen from about 100,000 feet.' 'This projector operates on a concept developed by Spitz. It consists of a point-light source reflecting off a centrally located highly reflective sphere which directs the light outward through the many holes representing the stars. The size of the holes is varied to vary star magnitude. The star images are brought into focus on the inside of the planetarium by lenses glued to the surface of the projector and the diameter of the projection sphere govern the focal length required for these lenses. Although this type of projector does not have the precision required for the study of navigation problems it is very adequate for pilot control problems such as rendezvous where the star field is primarily used as an attitude reference.'

  2. Nursery of New Stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is a Hubble Space Telescope image (right) of a vast nebula called NGC 604, which lies in the neighboring spiral galaxy M33, located 2.7 million light-years away in the constellation Triangulum. This is a site where new stars are being born in a spiral arm of the galaxy. Though such nebulae are common in galaxies, this one is particularly large, nearly 1,500 light-years across. The nebula is so vast it is easily seen in ground-based telescopic images (left). At the heart of NGC 604 are over 200 hot stars, much more massive than our Sun (15 to 60 solar masses). They heat the gaseous walls of the nebula making the gas fluoresce. Their light also highlights the nebula's three-dimensional shape, like a lantern in a cavern. By studying the physical structure of a giant nebula, astronomers may determine how clusters of massive stars affect the evolution of the interstellar medium of the galaxy. The nebula also yields clues to its star formation history and will improve understanding of the starburst process when a galaxy undergoes a 'firestorm' of star formation. The image was taken on January 17, 1995 with Hubble's Wide Field and Planetary Camera 2. Separate exposures were taken in different colors of light to study the physical properties of the hot gas (17,000 degrees Fahrenheit, 10,000 degrees Kelvin

  3. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  4. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  5. Characterizing Retired A Stars

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Johnson, John

    2015-08-01

    A complete understanding of the formation and evolution of planetary systems depends on the precise characterization of the planets and their host stars. The stellar mass is particularly important because it might influence the planet occurrence and it is used to constrain the planetary masses, thus providing information about the systems' architectures. Single FGK stars on the main sequence usually have precise masses estimated from evolutionary tracks, but the results of this method for subgiants and giants have recently been called into question. In this work, we describe the ongoing efforts to precisely constrain the masses of evolved stars using benchmark subgiants and giants from the literature as well as the sample of retired A stars observed by the California Planet Search survey. Different input atmospheric parameters (from excitation and ionization equilibria, spectral synthesis, interferometry and photometry) and methods (evolutionary tracks, asteroseismology and lithium abundances) are used to critically evaluate the stellar masses and its uncertainties. Preliminary results are discussed and suggest that current mass determinations for evolved stars do not present any significant systematic errors.

  6. Four new Delta Scuti stars

    NASA Technical Reports Server (NTRS)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  7. The effect of diffusion on pulsations of stars on the upper main sequence --- δ Scuti and metallic A stars

    NASA Astrophysics Data System (ADS)

    Turcotte, S.; Richer, J.; Michaud, G.; Christensen-Dalsgaard, J.

    2000-08-01

    Recent dramatic improvements in the modeling of abundance evolution due to diffusion in A stars have been achieved with the help of monochromatic opacity tables from the OPAL group. An important result in the context of stellar pulsations is the substantial helium abundance shown to be left over in the driving region of δ Scuti-type pulsations in chemically peculiar Am stars. An accurate opacity profile in the entire stellar envelope including the full effect of heavy elements is also now available for the first time. Pulsations are shown to be excluded for young Am stars but occur naturally when these stars evolve off the ZAMS. The predicted variable metallic A stars all lie towards the red edge of the instability strip, in qualitative agreement with the observed variable δ Delphini and mild Am stars. Results show little direct excitation from iron-peak elements in A-type stars. The main abundance effect is due to the settling of helium, along with a marginal effect due to the enhancement of hydrogen.

  8. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  9. Collapse of axion stars

    SciTech Connect

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.

  10. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  11. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing

  12. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  13. Neutron star crusts

    NASA Technical Reports Server (NTRS)

    Lorenz, C. P.; Ravenhall, D. G.; Pethick, C. J.

    1993-01-01

    We calculate properties of neutron star matter at subnuclear densities using an improved nuclear Hamiltonian. Nuclei disappear and the matter becomes uniform at a density of about 0.6n(s), where n(s) of about 0.16/cu fm is the saturation density of nuclear matter. As a consequence, the mass of matter in the crusts of neutron stars is only about half as large as previously estimated. In about half of that crustal mass, nuclear matter occurs in shapes very different from the roughly spherical nuclei familiar at lower densities. The thinner crust and the unusual nuclear shape have important consequences for theories of the rotational and thermal evolution of neutron stars, especialy theories of glitches.

  14. Collapse of axion stars

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present inmore » the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.« less

  15. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  16. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  17. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  18. American Urban Star Fest

    NASA Astrophysics Data System (ADS)

    Pazmino, John

    2003-12-01

    Over the last couple of decades New York City implemented, and continues to carry out, several schemes of eradicating luminous graffiti. One result has been the gradual recovery of the natural night sky. By 1994 the normal clear sky transparency over Manhattan deepened to fourth magnitude and has been slowly creeping deeper, until in 2002 it is at magnitude 4 to 4.5. In the spring of 1995, during some lazing on a Manhattan rooftop under a sky full of stars, several New York astronomers hatched the idea of letting the whole people celebrate the renewed starry sky. In due course they, through the Amateur Astronomers Association, engaged the New York City Parks Department and the Urban Park Rangers in an evening of quiet picnicking to enjoy the stars in their natural sky. Thus the Urban Star Fest was born. The event thrilled about 3,000 visitors in Central Park's Sheep Meadow on Saturday 30 September 1995. This year's Fest, the eighth in the series demonstrated the City's upper skyline of stars on Saturday 5 October 2002 to about 2,200 enthused visitors. Although the Fest is always noted as cancelable for inclement weather, so far, it has convened every year, with attendance ranging from 4,000 down to a mere 1,000, this latter being under the smoke plume of the World Trade Center in 2001. Despite this swing in attendance, the American Urban Star Fest is America's largest regularly scheduled public astronomy event. Of course, special occasions, like comets or eclipses, can and do attract far larger interest both in the city and elsewhere. The presentation shows the setup and program of the American Urban Star Fest, to illustrate how the general public can actively become aware of the night sky and see for themselves the result of their very own efforts at removing light pollution--and note where improvement is yet to come.

  19. Weighing the Smallest Stars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  20. Computational astrophysics: Pulsating stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The field of computational astrophysics in pulsating star studies has grown considerably since the advent of the computer. Initially calculations were done on the IBM 704 with 32K of memory and now we use the CRAY YMP computers with considerably more memory. Our early studies were for models of pulsating stars using a 1D Lagrangian hydrodynamic code (SPEC) with radiation diffusion. The radiative transfer was treated in the equilibrium diffusion approximation and the hydrodynamics was done utilizing the approximation of artificial viscosity. The early calculations took many hours of 704 CPU time. Early in 1965 we decided to improve on the usual treatment of the radiative transfer used in our codes by utilizing the method of moments, the so-called variable Eddington approximation. In this approximation the material energy field is uncoupled from the radiation energy field and the angular dependence is introduced through the Eddington factor. A multigroup frequency dependent method may also be applied. The Eddington factor is determined by snapshots of the stars structure utilizing a y-line approximation. The full radiative transfer approximation appears necessary in order to understand the light curves for W Virginia stars and may be important for the light curves of RR Lyrae stars. A detailed radiative transfer method does not appear to be necessary for the understanding of Cepheid light curves. A recent improvement to our models for pulsating stars is in the use of an adaptive mesh scheme to resolve the sharp features in the nonlinear hydrodynamic structure. From these improved structures, better analysis of the radius, velocity, and light curves could be obtained.

  1. Morphodynamics of star dunes

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Narteau, C.; Rozier, O.; Courrech du Pont, S.

    2012-04-01

    Star dunes are among the biggest and the most impressive dunes in Earth sand seas. Nonetheless, they remain poorly studied, probably because of their apparent complexity. They are massive pyramidal dunes with interlaced arms whose slip faces are oriented in various directions. Being large, they can integrate wind properties over a wide range of time scales. Thus, they are observed for wind regimes with multiple directions, and may result from the amalgamation of dunes or from the development of arms on a well-established dune pattern. In both cases, the roles of wind directional variability and secondary flow have been emphasized but not precisely quantified. Here, we report simulations where the star dune shape results from a a combination of longitudinal dunes, which form the star dune arms. These arms may radiate and so interact with the other dunes in the field. This mass exchange, controlled by the morphodynamics of star dunes arms, must play an important role in the large-scale arrangement of star dunes networks. We first demonstrate that star dune arms orientation maximizes the flux in the direction of crests. This is opposed to the usually admit dunes orientation, which maximizes the sediment transport perpendicular to the crest. Indeed, depending on sand availability, dunes development results from the growth of a wave on a sand bed or from a net transport of sediment, which grows and extends an isolated longitudinal dune over a non-erodible soil. These two different mechanisms lead to two different modes of crests orientation. Then, we show that the propagating arms reach a stationary state characterized by constant width, height and growth rate. These are controlled by the frequency at which the wind changes direction. Arm width and height increase, whereas the propagation speed decreases with a decreasing frequency. These morphodynamics properties are helpful to assess from pattern observation the variability of wind directionality over several time

  2. A Real Shooting Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star

    This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light.

    The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years.

    As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake.

    Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence.

    Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer

    Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira

  3. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  4. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  5. A Real Shooting Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star

    This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light.

    The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years.

    As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake.

    Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence.

    Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer

    Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira

  6. A Star on Earth

    ScienceCinema

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2016-07-12

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  7. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  8. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  9. The Drifting Star

    NASA Astrophysics Data System (ADS)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  10. The DQ Herculis stars

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1994-01-01

    We review the properties of the DQ Herculis stars: cataclysmic variables containing an accreting, magnetic, rapidly rotating white dwarf. These stars are characterized by strong X-ray emission, high-excitation spectra, and very stable optical and X-ray pulsations in their light curves. There is considerable resemblance to their more famous cousins, the AM Herculis stars, but the latter class is additionally characterized by spin-orbit synchronism and the presence of strong circular polarization. We list eighteen stars passing muster as certain or very likely DQ Her stars. The rotational periods range from 33 s to 2.0 hr. Additional periods can result when the rotating searchlight illuminates other structures in the binary. A single hypothesis explains most of the observed properties: magnetically channeled accretion within a truncated disk. Some accretion flow still seems to proceed directly to the magnetosphere, however. The white dwarfs' magnetic moments are in the range 10(sup 32) - 10(sup 34) G cc, slightly weaker than in AM Her stars but with some probable overlap. The more important reason why DQ Hers have broken synchronism is probably their greater accretion rate and orbital separation. The observed L(sub x)/L(sub V) values are surprisingly low for a radially accreting white dwarf, suggesting that most of the accretion energy is not radiated in a strong shock above the magnetic pole. The fluxes can be more satisfactorily explained if most of the radial infall energy manages to bypass the shock and deposit itse lf directly in the white dwarf photosphere, where it should emerge as extreme ultraviolet (EUV) radiation. This also provides an adequate source of ionizing photons to power the high-excitation optical and UV emission lines. This is probably the DQ Her analog to the famous 'soft X-ray excess' in AM Her stars. However, unlike the AM Her case, this radiation has not been directly observed, so the analogy must not (yet) be embraced too firmly. There is

  11. The most magnetic stars

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Dayal T.; Tout, Christopher A.; Ferrario, Lilia

    2014-01-01

    Observations of magnetic A, B and O stars show that the poloidal magnetic flux per unit mass Φp/M appears to have an upper bound of approximately 10-6.5 G cm2 g-1. A similar upper bound to the total flux per unit mass is found for the magnetic white dwarfs even though the highest magnetic field strengths at their surfaces are much larger. For magnetic A and B stars, there also appears to be a well-defined lower bound below which the incidence of magnetism declines rapidly. According to recent hypotheses, both groups of stars may result from merging stars and owe their strong magnetism to fields generated by a dynamo mechanism as they merge. We postulate a simple dynamo that generates magnetic field from differential rotation. We limit the growth of magnetic fields by the requirement that the poloidal field stabilizes the toroidal and vice versa. While magnetic torques dissipate the differential rotation, toroidal field is generated from poloidal by an Ω dynamo. We further suppose that mechanisms that lead to the decay of toroidal field lead to the generation of poloidal. Both poloidal and toroidal fields reach a stable configuration which is independent of the size of small initial seed fields but proportional to the initial differential rotation. We pose the hypothesis that strongly magnetic stars form from the merging of two stellar objects. The highest fields are generated when the merge introduces differential rotation that amounts to critical break-up velocity within the condensed object. Calibration of a simplistic dynamo model with the observed maximum flux per unit mass for main-sequence stars and white dwarfs indicates that about 1.5 × 10-4 of the decaying toroidal flux must appear as poloidal. The highest fields in single white dwarfs are generated when two degenerate cores merge inside a common envelope or when two white dwarfs merge by gravitational-radiation angular momentum loss. Magnetars are the most magnetic neutron stars. Though these are

  12. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  13. VPP Star recognition

    NASA Image and Video Library

    2011-06-09

    Stennis Space Center Deputy Director Rick Gilbrech (right) accepts a plaque designating the test facility as a Voluntary Protection Program Star site. Presenting the plaque is Clyde Payne, area director for the Occupational Safety and Health Administration in Jackson, Miss. OSHA established VPP in 1982 as a proactive safety management model to recognize excellence in safety and health. Since then, more than 2,000 organizations have been designated VPP Star sites. To reach that goal, an organization must demonstrate comprehensive and successful safety and health management programs in the workplace.

  14. A Star on Earth

    SciTech Connect

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  15. NuSTAR Briefing

    NASA Image and Video Library

    2012-05-30

    Yunjin Kim, NuSTAR project manager at the Jet Propulsion Laborartory (JPL), talks about NASA's Spectroscopic Telescope Array (NuStar) during a briefing, Wednesday, May 30, 2012, at NASA Headquarters in Washington. Imaging light in the high-energy, short-wavelength X-ray range, the telescope will aim to study how black holes form and evolve along with galaxies. The instrument, packed aboard an Orbital Sciences Pegasus XL rocket is set to launch from a plane in midair no earlier than June 13 from Kwajalein Atoll in the Marshall Islands. Photo Credit: (NASA/Paul E. Alers)

  16. Digital Standard Star Tracker.

    NASA Astrophysics Data System (ADS)

    McQuerry, J. P., Jr.

    The Digital Standard Star Tracker (DSST) is an electro-optical instrument which provides position data used for precise attitude determination. The new DSST design uses flight-proven optical and sensor components from the BASD/NASA Standard Star Tracker (SST) programs while incorporating digital electronics techniques to improve producibility and reliability. This design approach has resulted in a new instrument capable of ≤ 10 arc second calibrated accuracy with 50 percent of the electrical components and only 10 percent of the electrical assemblies used in the SST.

  17. Digital Standard Star Tracker

    NASA Astrophysics Data System (ADS)

    McQuerry, J. P., Jr.

    The Digital Standard Star Tracker (DSST) is an electro-optical instrument which provides position data used for precise attitude determination. The new DSST design uses flight-proven optical and sensor components from the BASD/NASA Standard Star Tracker (SST) programs while incorporating digital electronics techniques to improve producibility and reliability. This design approach has resulted in a new instrument capable of less than 10 arc second calibrated accuracy with 50 percent of the electrical components and only 10 percent of the electrical assemblies used in the SST.

  18. Interferometric star tracking.

    PubMed

    Decou, A B

    1974-02-01

    A new star-tracking technique based on interferometry is described and analyzed in detail. A heuristic comparison is made with traditional star-tracking methods that demonstrates several advantages in the interferometric approach for very high accuracy systems. A detailed error analysis is performed on several versions of the system that use all solid-state detection. One such system is shown to have a potential accuracy of +/-0.01 sec of arc using a small optical system and state-of-the-art components. Applications of the new system in large orbiting astronomical observatories and deep space laser communications systems are also discussed.

  19. Dead Star Warps Light of Red Star Artist Animation

    NASA Image and Video Library

    2013-04-04

    This artist concept depicts an ultra-dense dead star, called a white dwarf, passing in front of a small red star. NASA planet-hunting Kepler was able to detect gravitational lensing by measuring a strangely subtle dip in the star brightness.

  20. Stellar Dynamical Processes in Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Eyer, L.

    2009-01-01

    We study how high precision astrometric measurements by SIM and GAIA of stars involved in dynamical ejection events from star clusters can constrain theories of massive star and star cluster formation. We focus on the Orion Nebula Cluster (ONC). First, we investigate the scientific potential associated with an accurate measurement of the distance and proper motion of Theta 1 Ori C, which is the most massive star in the cluster and was recently involved (about 4000 years ago) in the ejection of a B star: the Becklin-Neugebauer (BN) star. The motion of the BN star has taken it close to a massive protostar, known as source I, where it appears to have influenced the accretion and outflow activity, most likely by a tidal interaction with the accretion disk. An accurate proper motion measurement of Theta 1 Ori C will constrain BN's initial motion, allowing us to search for deflections caused by the gravitational potential of the massive protostar. Second, we search the Hipparcos catalog for candidate runaway stars, i.e. that have been dynamically ejected from the cluster over the course of the last several Myr. SIM and GAIA observations of these stars will be needed to confirm their origin from the ONC. The results of this study will constrain the star cluster formation timescale and the statistics of the population of ejected stars. JCT acknowledges support from from NSF CAREER grant AST-0645412 and a grant from NASA for SIM Science Studies.

  1. Magnetic Fields of Nondegenerate Stars

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Landstreet, J. D.

    2009-09-01

    Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very-low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved giants/supergiants and magnetic white dwarfs/neutron stars. These fields range from a few μG (e.g., in molecular clouds) to TG and more (e.g., in magnetic neutron stars); in nondegenerate stars in particular, they feature large-scale topologies varying from simple nearly axisymmetric dipoles to complex nonaxsymmetric structures, and from mainly poloidal to mainly toroidal topologies. After recalling the main techniques of detecting and modeling stellar magnetic fields, we review the existing properties of magnetic fields reported in cool, hot, and young nondegenerate stars and protostars, and discuss our understanding of the origin of these fields and their impact on the birth and life of stars.

  2. The Death of a Star

    ERIC Educational Resources Information Center

    Thorne, Kip S.

    1971-01-01

    Theories associated with the gravitational collapse of a star into black holes" are described. Suggests that the collapse and compression might go through the stages from white dwarf star to neutron core to black hole." (TS)

  3. UX Ori-Type Stars

    NASA Astrophysics Data System (ADS)

    Grinin, V.

    2017-06-01

    The brief review of the properties of the UX Ori type stars is presented. A special attention is given to the results of the Crimean program of the multi-year photometric and polarimetric observations of these stars.

  4. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  5. The Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Sahade, J.

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  6. Finding Planets around other stars

    NASA Image and Video Library

    Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

  7. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  8. Powerful, Pulsating Core of Star

    NASA Image and Video Library

    2014-09-16

    The blue dot in this image marks the spot of an energetic pulsar -- the magnetic, spinning core of star that blew up in a supernova explosion. NASA NuSTAR discovered the pulsar by identifying its telltale pulse.

  9. Photographic photometry of variable stars

    NASA Technical Reports Server (NTRS)

    Kholopov, P. N.

    1973-01-01

    Photographic methods of determining stellar magnitude and measuring brightness of variable stars on negatives include the photoelectric method and the contascope. Calibration curves are usually plotted by the UBV method. Magnitudes of comparison stars can be determined from photographs.

  10. The Death of a Star

    ERIC Educational Resources Information Center

    Thorne, Kip S.

    1971-01-01

    Theories associated with the gravitational collapse of a star into black holes" are described. Suggests that the collapse and compression might go through the stages from white dwarf star to neutron core to black hole." (TS)

  11. Water Around a Carbon Star

    NASA Image and Video Library

    2010-09-01

    This ESA Herschel image shows IRC+10216, also known as CW Leonis, a star rich in carbon where astronomers were surprised to find water. This color-coded image shows the star, surrounded by a clumpy envelope of dust.

  12. Probing thermonuclear burning on accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  13. Hubble Finds Supernova Companion Star after Two Decades of Searching

    NASA Image and Video Library

    2017-09-27

    This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  14. EL CVn-type binaries - discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Bloemen, S.; Heber, U.; Geier, S.; Wheatley, P. J.; Marsh, T. R.; Breedt, E.; Sebastian, D.; Faillace, G.; Owen, C.; Pulley, D.; Smith, D.; Kolb, U.; Haswell, C. A.; Southworth, J.; Anderson, D. R.; Smalley, B.; Collier Cameron, A.; Hebb, L.; Simpson, E. K.; West, R. G.; Bochinski, J.; Busuttil, R.; Hadigal, S.

    2014-01-01

    The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from the Wide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses ({≈ } 0.2{ M_{⊙}}). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B.

  15. Radio Emission from Binary Stars

    NASA Astrophysics Data System (ADS)

    Hjellming, R.; Murdin, P.

    2000-11-01

    Stellar radio emission is most common in double star systems where each star provides something essential in producing the large amounts of radio radiation needed for it to be detectable by RADIO TELESCOPES. They transfer mass, supply energy or, when one of the stars is a NEUTRON STAR or BLACK HOLE, have the strong gravitational fields needed for the energetic particles and magnetic fields needed...

  16. RADIAL STABILITY IN STRATIFIED STARS

    SciTech Connect

    Pereira, Jonas P.; Rueda, Jorge A. E-mail: jorge.rueda@icra.it

    2015-03-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case.

  17. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  18. Young Stars in IC 2118

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Rebull, Luisa; Daou, Doris; Maranto, Tony; Roelofsen, Theresa; Sepulveda, Babs; Weehler, Cynthia

    2005-02-01

    IC 2118, the Witch Head Nebula (~210 parsecs), is region forming stars located near the supergiant star Rigel in the constellation Orion. Kun et al. (2004, A&A, 418, 89) have determined that IC 2118 is on the near side of the Orion-Eridanus Super Bubble and that stellar winds from the Orion OB1 association may be triggering new star formation in the nebula. We propose using IRAC and MIPS to reexamine a small dense region of this nebula where Kun et al. have spectroscopically identified three 2MASS sources as T Tauri stars embedded in the cloud. Previous all-sky surveys, including both IRAS and 2MASS, have included this region, but not to the resolution that Spitzer can provide, and there are few studies of this particular region in the literature. Our team proposes to use IRAC and MIPS observations to (1) investigate star formation, (2) look for likely cluster member stars with infrared excesses, and characterize this young star population by obtaining their colors and therefore estimates of masses and ages, (3) study the distribution of stars, their relationship to the ISM, and the possibilities of triggered star formation, (4) compare the young star population, distribution, and age to other similar sites of star formation, e.g., IC 1396 and (5) produce a dramatic image of the interstellar medium in the region surrounding IC 2118. Since this region is in the Orion constellation near the bright star Rigel, it provides additional appeal to students and the general public.

  19. Dusty Beginnings of a Star

    NASA Image and Video Library

    2009-11-23

    Are brown dwarfs born like stars, as in this rendering, or do they form like planets orbiting another star? A study by researchers using data from NASA Spitzer Space Telescope has led to the preliminary conclusion that they are formed much like a star.

  20. Physics of the Stars

    ERIC Educational Resources Information Center

    Haig, G. Y.

    1974-01-01

    Describes how astrophysics can be a do-it-yourself project within a school boy's budget and background, by giving detailed instruction on equipment construction. In addition, this article describes many experiments to undertake, with the equipment, such as determining color temperature, star spectra, chemical composition and others. (BR)

  1. The Astounding Stars.

    ERIC Educational Resources Information Center

    Montgomery, Angela; And Others

    1983-01-01

    Studying about stellar constellations provides children with an opportunity to learn about ancient myths and mathematics at the same time. An interdisciplinary teaching unit combines information about myths associated with the zodiac signs and instructions for plotting the coordinates of stars. (PP)

  2. First Star I See.

    ERIC Educational Resources Information Center

    Caffrey, Jaye Andras

    This children's novel tells the story of a young girl with attention deficit disorder (ADD) without hyperactivity and her younger brother who has ADD with hyperactivity. Trying to win a school writing contest on the topic of space and stars helps bright, imaginative Paige Bradley realize that fixing her "focusing knob" will compensate for her ADD.…

  3. Insight into star death

    SciTech Connect

    Talcott, R.

    1988-02-01

    Nineteen neutrinos, formed in the center of a supernova, became a theorist's dream. They came straight from the heart of supernova 1987A and landed in two big underground tanks of water. Suddenly a new chapter in observational astronomy opened as these two neutrino telescopes gave astronomers their first look ever into the core of a supernova explosion. But the theorists' dream almost turned into a nightmare. Observations of the presupernova star showed conclusively that the star was a blue supergiant, but theorists have long believed only red supergiant stars could explode as supernovae. Do astronomers understand supernovae better now than when supernova 1987A exploded in the Large Magellanic Cloud (LMC) one year ago Yes. The observations of neutrinos spectacularly confirmed a vital aspect of supernova theory. But the observed differences between 1987A and other supernovae have illuminated and advanced our perception of how supernovae form. By working together, observers and theorists are continuing to hone their ideas about how massive stars die and how the subsequent supernovae behave.

  4. A Helpful Star

    NASA Image and Video Library

    2007-02-05

    The Cassini spacecraft gazes toward a distant star as Saturn rings slip past in the foreground. At upper left is the outer A ring, with its dark Keeler Gap. At lower right, a train of bright clumps shuttles past in the wispy F ring

  5. Physics of the Stars

    ERIC Educational Resources Information Center

    Haig, G. Y.

    1974-01-01

    Describes how astrophysics can be a do-it-yourself project within a school boy's budget and background, by giving detailed instruction on equipment construction. In addition, this article describes many experiments to undertake, with the equipment, such as determining color temperature, star spectra, chemical composition and others. (BR)

  6. Reaching for the Stars.

    ERIC Educational Resources Information Center

    Roper-Davis, Sharon

    1999-01-01

    Describes "Reaching for the Stars," a program which develops teaming and mentoring skills in senior physics students. Phase 1 requires student pairs to design a rocket; Phase 2 pairs seniors with gifted second graders who build the rocket from written instructions; and in Phase 3, pairs of seniors create a children's storybook explaining…

  7. Chemical Compositions of Stars

    NASA Astrophysics Data System (ADS)

    Leckrone, D.; Murdin, P.

    2000-11-01

    In 1835, in a famously inaccurate forecast, the French philosopher Auguste Comte wrote of stars that, `We understand the possibility of determining their shapes, their distances, their sizes and their movements; whereas we would never know how to study by any means their chemical composition…'. At the close of the 20th century the accurate measurement of the abundances of the chemical elements in...

  8. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  9. Sleeping under the stars

    NASA Astrophysics Data System (ADS)

    Zirkel, Jack

    Sherlock Holmes and Dr. Watson went on a camping trip. As they lay down for the night, Holmes said, “Watson, look up at the sky and tell me what you see.”Watson:“! see millions and millions of stars.”

  10. Multipath star switch controller

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1980-01-01

    Device concept permits parallel computers to scan several commonnetwork-connected data stations at maximum rate. Sequencers leap-frog to bypass ports already being serviced by another computer. Two-path system for 16-port star switch controller is cost effective if added bandwidth or increased reliability is desired. Triple-path system would be cost effective for 32-port controller.

  11. Trek to the Stars

    ERIC Educational Resources Information Center

    Rubinstein, Robert E.

    1977-01-01

    "Star Trek", which was aired on television for three years, brought the creatures and conflicts of the "outer reaches" of space into our living rooms. Here its new episodes and reruns are analyzed by elementary students as part of a social studies/elementary science curriculum. (Author/RK)

  12. The Astounding Stars.

    ERIC Educational Resources Information Center

    Montgomery, Angela; And Others

    1983-01-01

    Studying about stellar constellations provides children with an opportunity to learn about ancient myths and mathematics at the same time. An interdisciplinary teaching unit combines information about myths associated with the zodiac signs and instructions for plotting the coordinates of stars. (PP)

  13. Reaching for the Stars.

    ERIC Educational Resources Information Center

    Roper-Davis, Sharon

    1999-01-01

    Describes "Reaching for the Stars," a program which develops teaming and mentoring skills in senior physics students. Phase 1 requires student pairs to design a rocket; Phase 2 pairs seniors with gifted second graders who build the rocket from written instructions; and in Phase 3, pairs of seniors create a children's storybook explaining…

  14. Reaching for the Stars

    ERIC Educational Resources Information Center

    Terry, Dorothy Givens

    2012-01-01

    Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…

  15. Quarkonium at STAR

    SciTech Connect

    LeCompte, T. J.

    1998-11-11

    The STAR detector is capable of reconstruction the J/{psi} meson in its dielectron decay channel, along with continuum dielectrons from heavy quark decay. The limitation is not instrumental--the ability of the STAR detector to identify electrons--rather, the primary limitation is yield. We expect to reconstruct of order 10,000 events per year in the bin of highest centrality, with perhaps ten times that many integrated over all bins of centrality. This is enough for a rather detailed study of J/{psi} production. The yields for {psi}{prime} and the high p{sub T} {chi} mesons which are in a low enough background region of phase space to permit reconstruction are too small for precision measurements. The only parent of the J/{psi} with a large enough yield for clear observation is the b quark. Even limited to just the J/{psi}, there is a rich physics program available to STAR: the yield provides information on the gluon flux as well as color screening, especially when compared to the open charm and b {r_arrow} J/{psi}X yields. The p{sub T} distribution measures energy loss in a nuclear medium, either by comparison with pp data or across different bins in centrality. The STAR quarkonium program should provide several unique windows into the physics of heavy ion collisions at RHIC.

  16. NuStar

    Integrated Risk Information System (IRIS)

    Integrated Risk Information System ( IRIS ) Chemical Assessment Summary U.S . Environmental Protection Agency National Center for Environmental Assessment This IRIS Summary has been removed from the IRIS database and is available for historical reference purposes . ( July 2016NuStar ; CASRN 85509 -

  17. White Star technology.

    PubMed

    Olson, Randall J; Kumar, Rajiv

    2003-02-01

    White Star micropulse technology is a software modification that allows extremely short bursts of ultrasound energy. Studies have shown that this decreases wound heat build-up with the retained efficiency of continuous ultrasound. Decreased energy utilization with improved corneal function and improved nuclear fragment followability appear to be additional benefits.

  18. Division Iv: Stars

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher; D'Antona, Francesca; Spite, Monique; Asplund, Martin; Charbonnel, Corinne; Docobo, Jose Angel; Gray, Richard O.; Piskunov, Nikolai E.

    2012-04-01

    This Division IV was started on a trial basis at the General Assembly in The Hague 1994 and was formally accepted at the Kyoto General Assembly in 1997. Its broad coverage of ``Stars'' is reflected in its relatively large number of Commissions and so of members (1266 in late 2011). Its kindred Division V, ``Variable Stars'', has the same history of its beginning. The thinking at the time was to achieve some kind of balance between the number of members in each of the 12 Divisions. Amid the current discussion of reorganizing the number of Divisions into a more compact form it seems advisable to make this numerical balance less of an issue than the rationalization of the scientific coverage of each Division, so providing more effective interaction within a particular field of astronomy. After all, every star is variable to a certain degree and such variability is becoming an ever more powerful tool to understand the characteristics of every kind of normal and peculiar star. So we may expect, after hearing the reactions of members, that in the restructuring a single Division will result from the current Divisions IV and V.

  19. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  20. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)